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ABSTRACT 

 
A security operation center (SOC) is a cybersecurity clearinghouse responsible for 

monitoring, collecting and analyzing security events from organizations’ IT infrastructure and 

security controls. Despite their popularity, SOCs are facing increasing challenges and pressure due 

to the growing volume, velocity and variety of the IT infrastructure and security data observed on a 

daily basis. Due to the mixed performance of current technological solutions, e.g. intrusion detection 

system (IDS) and security information and event management (SIEM), there is an over-reliance on 

manual analysis of the events by human security analysts. This creates huge backlogs and slows 

down considerably the resolution of critical security events. Obvious solutions include increasing 

the accuracy and efficiency of crucial aspects of the SOC automation workflow, such as the event 

classification and prioritization. In the current thesis, we present a new approach for SOC event 

classification and prioritization by identifying a set of new machine learning features using graph 

visualization and graph metrics. Using a real-world SOC dataset and by applying different machine 

learning classification techniques, we demonstrate empirically the benefit of using the graph-based 

features in terms of improved classification accuracy. Three different classification techniques are 

explored, namely, logistic regression, XGBoost and deep neural network (DNN). The experimental 

evaluation shows for the DNN, the best performing classifier, area under curve (AUC) values of 

91% for the baseline feature set and 99% for the augmented feature set that includes the graph-based 

features, which is a net improvement of 8% in classification performance. 
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Chapter 1: Introduction 

 
1.1 Context 

 
Over the last few years, there has been significant growth in the number of cyberattacks. In 

2016, there were 758 million malicious attacks occurred according to KasperskyLab [2]. In 2014, a 

hack on Yahoo impacted more than 3 billion user accounts which is the biggest hacking of 

individuals against a single organization [11]. In 2017, NotPetya and WannaCry ransomware [2] 

disrupted many organizations’ networks. In 2017, hackers targeted Equifax and compromised the 

personal information (name, address, social security number and credit card number) of over 145 

million individuals [2]. 

Large organizations secure their computers and networks by using firewalls, Intrusion 

Detection System (IDS) and Intrusion Prevention Systems (IPS). Firewalls are used to protect the 

network by blocking and filtering unauthorized access and allowing only the authorized 

communications. Because firewalls can be compromised or bypassed, it is important to have 

additional protection mechanisms, such as IDS, which is widely used in organizations. Intrusion 

detection is the process of monitoring the events occurring in the network and devices and analyzing 

these events for signs of possible incidents or policy violations. Network-based Intrusion Detection 

System (NIDS) monitors network connections for suspicious activities for all the hosts in that 

network. Host-based Intrusion Detection System (HIDS) resides in the host and can monitor 

suspicious activities that are starting and coming to that host only [15]. 

In a broader way, intrusion detection can be categorized into two types: anomaly-based 

intrusion detection and signature-based intrusion detection. In anomaly-based intrusion detection we 

basically check for ‘abnormal activities’. In this case, a baseline model is defined that characterizes 
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normal system behavior, and if the traffic/activity is found to deviates from the baseline an alert is 

triggered. A signature-based detection model consists of predefined attack patterns encoded, for 

instance, using a rule base. Whenever a new event is generated the intrusion detection system checks 

it against the predefined patterns or rules in the database and if there is a match, an alert is generated. 

Despite the benefits of IDS, current systems have several weaknesses, one of the major ones 

being the fact that it generates a lot of false alerts [8]. For instance, a rule for detecting Simple Network 

Management Protocol (SNMP) probes from external networks may also trigger intrusion detection 

alerts on SNMP GET, although these are merely a routine monitoring activity. 

A large number of false alerts makes it very difficult for the security analysts to investigate 

the alerts and there is a high probability that the alerts which are important will be missed. Some 

organizations investigate alerts all by themselves but there are many organizations that want extra 

security on their data, and so rely on a Security Operation Center (SOC). 

A security operation center (SOC) is a cybersecurity clearinghouse responsible for 

monitoring, collecting and analyzing security events from organizations’ IT infrastructure and 

security controls. It is accountable for the continuous surveillance and analysis of the organization’s 

data and provides security measures accordingly [12]. The typical SOC leverages cybersecurity tools 

for log aggregation, correlation and analysis, such as the security information and event management 

system (SIEM). But they also heavily depend on a dedicated team of security analysts who pore over 

the outputs of the tools to prioritize the events and conduct incident management and response 

activities, which are essential tasks in any threat hunting endeavor. In Figure 1.1, we can see that 

SOC is getting the alert logs generated by many different organizations IDS. The SOC team will 

investigate these alerts and notify the clients about suspicious alerts; alerts found not to be suspicious 

will be not be notified to the clients. 
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Figure 1.1: IDS alert logs sent to SOC. 

 

 

 

1.2 Research Problem 

 
Despite the growing popularity of SOCs and their essential role in improving organizations’ 

security posture, according to a recent survey of 554 IT security practitioners involved in SOCs by 

the Ponemon Institute [17], there is a frustration among SOC customers about the ineffectiveness of 

current platforms in detecting attacks. According to the study, the mean time to resolution (MTTR) 

of security events can span several months. While 22% of the survey participants indicated that the 

resolution can take hours or days, 42% of the participants indicated that the MTTR can be months or 

years, which represents extremely long windows of vulnerability. Some of the causes for the low 

effectiveness of SOC are rooted in the low confidence in the ability to identify threats, the high-stress 

work environment for analysts and the lack of visibility in the network traffic and the underlying IT 

security infrastructure. Another key reason for the low effectiveness of SOC is the large amounts of 

indicator of compromise (IOCs) and false positives to handle, and the huge amount of internal traffic 

to consider by the analysts. The typical SOC receives on a regular basis massive amounts of diverse 

log data generated from IT environments that arrive at high velocity. For instance, Ślęzak et al. studied 

in [20] the case of a SOC where the growth in the observed monitored traffic was over 300 billion 

new events per month. The data is characterized by great amounts of false positives and false 

IDS IDS 

SOC (Security Operations Center) 

IDS IDS 
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negatives. This represents a significant challenge to the current SOC business model which is heavily 

centered around human operators. While technological solutions such as log aggregators and SIEMs 

are heavily used in the initial layers of event processing, event prioritization and resolution are 

generally performed manually by human analysts. Such a model is becoming unsustainable with the 

fast-growing volume, velocity, and variety of IT infrastructure and security systems data. 

According to the aforementioned survey by the Ponemon Institute, automation of the workflow 

is seen as the top solution (by 67% of respondents) to improve the quality of the SOC services. Also, 

the need for help in prioritizing incidents and tasks is seen as another top solution (by 49% of 

respondents) and this can also be addressed through automation. Our focus in the current thesis is on 

the latter concern by developing a new approach to assist in the automation of incidents prioritization. 

The purpose of the research conducted in this thesis is to develop an effective method for 

analyzing automatically SOC data. We make a step forward such vision by identifying from the initial 

features describing the event log data, a set of new features using graph visualization and graph 

metrics. Specifically, we introduce a set of new features by using the graph metrics as the features 

themselves. We explore different classification techniques and show that the introduction of the new 

features improve noticeably the accuracy of the classifiers. 

 

 

 
1.3 Approach Outline and Thesis Contributions 

 
Our proposed approach consists of studying sample SOC data by deriving an underlying graph 

model and extracting a set of features based on graph metrics. The extracted features are analyzed 

using machine learning techniques. We make two main contributions as follows. 

1. The first contribution of the thesis is the introduction of a new feature model based on graph 

metrics for SOC data classification. The graph metrics which we used are eccentricity, 
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diameter, radius, degree, center, periphery and sum of degrees. We show experimentally that 

the incorporation of these metrics in the feature model helps boost the accuracy of the machine 

learning models and helps them classify the suspicious and non-suspicious events in a better 

way compared to using only the original features and their derivatives. 

2. The second contribution of the thesis is validating the potential of deep learning in improving 

the classification performance of SOC events compared with shallow learners. We investigated 

different linear and non-linear machine learning models. We started our experimentation with 

linear models such as logistic regression, but we were not able to achieve better results, so we 

switched to non-linear models such as XG Boost and Deep Neural Network (DNN) which 

helped us in achieving the best results. 

The combination of graph-based features and deep learning provides an effective way to 

automate the process of identifying suspicious and non-suspicious events and reducing the manual 

work of the SOC analysts. Experimental evaluation based on a dataset collected by an existing SOC, 

yields for Deep Neural Network (DNN), the best performing of all algorithms, an area under curve 

(AUC) of 99%. 
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1.4 Thesis outline 

 

The outline of the thesis is as follows: 

 
Chapter 1 gives an outline of the context of the research, formulates the research problem and 

summarizes the thesis contributions. 

Chapter 2 discusses the background knowledge and related works. 

Chapter 3 presents the SOC dataset and related feature set. 

Chapter 4 presents the proposed graph-based feature identification using graph visualization and 

graph metrics. 

Chapter 5 presents the feature analysis and data preprocessing techniques used in the proposed 

framework. 

Chapter 6 presents the experiments conducted to assess the impact of the derived features on 

performance and evaluate the F1 and area under curve of the proposed model. 

Chapter 7 makes concluding remarks and discusses future work. 
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Chapter 2: Background and Related Work 

 
The amount of published research work on SOC and graph-based feature engineering is 

limited. In this chapter, we summarize and discuss the few related works on SOC operation and 

graph-based feature engineering that we have come across in our review of the literature. 

2.1 On SOC 

 
Although there is a rich literature on SOC enabling techniques such as intrusion detection, and 

alert aggregation and correlation, the research on crucial aspects of the SOC workflow are still at a 

nascent stage. As a result, there is a limited number of papers published on improving SOC 

effectiveness and efficiency. 

Ślęzak et al [20] discussed the complementarity between machine learning aimed at events 

classification and interactive analytics tools used to resolve uncertain cases by human analysts by 

considering the case of an SOC. The authors presented a solution to deal with the huge amount of 

data received and processed by analysts at SOCs using partially approximate queries based on 

information granulation and summary-based processing. The underlying rationale being to trade-off 

adequately the speed, accuracy and cost underlying the decision making involved in threat analysis. 

Chandran et al. [6] conducted an anthropological study of three SOCs, two of which belongs 

to corporations and the third belong to a public university. A key outcome of the study is the emphasis 

placed on the human resource over technological resources (e.g. SIEM). While the technology still 

plays an important role in those SOCs, they tend to rely predominantly on human analysts in 

operations. The human analysts are considered the most critical drivers in the operational tasks. For 

some of the SOCs, there is a preference for technological solutions that support a workflow centered 

around the human intervention. There is a lack of confidence in the ability of existing SIEMs to 

perform some critical tasks such as event prioritization and alert verification. It is expected that the 
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correlated events produced by the SIEM will have to be classified manually as true or false positive 

by a human analyst. 

Jacobs, Arnab, & Irwin [9] developed a classification and rating scheme for an SOC based on 

its capability and maturity level. The goal of the proposal was to provide SOC’s stakeholders a way 

to assess objectively the effectiveness and maturity of SOC services. The proposed model enables 

measuring SOC capability and maturity from three different perspectives: SOC services, SOC aspects 

and SOC processes per aspect. 

Marty [14] presented a cloud logging framework and guidelines to provide a proactive 

approach to logging. The proposed approach leverages proactive information and system logging to 

make sure that the data needed for forensic investigation is available. Because forensic analysis is 

considered as the main component of a SOC, it is limited to post-event and reverse engineering 

analysis. 

Alruwaili and Gulliver [4] introduced a SOC as a service framework for cloud computing with 

a focus on security and regulatory compliance. The framework relies on the aggregation of events and 

logs collected from security devices and systems deployed on cloud infrastructure. 

Miloslavskaya [13] highlighted the highly heterogeneous and huge amounts of data handled 

by SOC and the fact that this was unsustainable by the typical headcount in the current SOCs, 

especially considering the over-reliance on manual processing of security events by human analysts. 

The author also highlighted the limitations of traditional SOCs which depend on rule-based SIEMs. 

While such systems perform relatively well in detecting conventional attacks, they are ineffective 

when confronted with emerging attacks such as advanced persistent threats (APT), which use targeted 

and stealthier techniques to evade detection. This leads to a great number of false positives and false 

negatives, which are exacerbated by a huge volume of data arriving in the pipeline. 
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Aijaz et al. [1] highlighted the importance of the threats faced by academic institutions and 

emphasized the need for these organizations for establishing SOC as a way to improve their security 

posture. 

Van Niekerk and Jacobs [23] discussed the suitability of security-as-a-service for critical cloud 

information infrastructure services. They suggested a model to integrate traditional security solutions 

into a cloud infrastructure. The proposed model provides the high-level description and details for 

implementing a SOC in the cloud infrastructure. 

2.2 On Graph-based Feature Engineering 

 
To our knowledge, only a limited number of works have been published on graph-based feature 

engineering. We summarize those works in the following. 

Heim et al. [7] proposed to extend traditional requirements analysis and management by a 

graph-based visualization that allows representing multidimensional relations in a flexible way. In 

particular, the authors proposed a special representation form that enables the exploration of 

requirements along with their relationships and facilitates the understanding of dependencies between 

requirements by making use of the graph-based visualization. In our work we leverage graph-based 

visualization to extract machine learning features from the dataset. 

Van Ham and Wattenberg [24] described the solution to the problem of the small graphs with 

low diameter; the existing techniques break down visually even when the graph has only a few 

hundred nodes. The authors used a global edge metric technique to determine a subset of edges that 

captures the graph’s intrinsic clustering structure. This structure is then used to create an embedding 

of the graph, after which the remaining edges are added back in. 

Polzlbauer et al [18] presented a novel technique consisting of using the Self-Organizing Map 

for data analysis by taking the density of data into account. The authors defined the graphs resulting 
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from the nearest neighbor and radius-based distance calculations in data space and showed projections 

of these graph structures on the map. In our work, we set one node as the source node and considered 

all the other nodes as the destination nodes and then calculated the graph metrics based on this 

technique. 

Cui and Qu [25] focused on various visualization techniques for massive graphs. As the data 

has become very large nowadays, traditional graph visualization techniques fail to reveal the pattern 

hidden in the data and massive data pose many challenges for graph visualization, such as visual 

clutter, layout and evaluation criteria. The authors described the clutter reduction algorithms and user 

navigation techniques to use the graphs in many applications, such as social networks and Internet 

communications. We also used graph visualization technique to find the patterns in our dataset, e.g. 

on which day the maximum attacks occurred, or which network the notified and non-notified attacks 

occurred. 

Wang and Chang [26] proposed a neural graph-based dependency parsing model which utilizes 

hierarchical Long short-term memory (LSTM) networks on character level and word level to learn 

word representations, allowing the model to avoid the problem of the limited-vocabulary and 

capture both distributional and compositional semantic information. The model shows effectiveness 

in recovering dependencies involving out-of-vocabulary words. 

Atzmueller and Sternberg [5] proposed a mixed-initiative feature engineering approach using 

the explicit knowledge captured in a knowledge graph complemented by a novel interactive 

visualization method. Using the explicitly captured relations and dependencies between concepts and 

their properties, feature engineering is enabled in a semi-automatic way. The results obtained 

throughout the process can be utilized for refining the features and the knowledge graph. 

Nguyen et al. [16] presented a novel neural network model that learns the part of speech 

(POS) tagging and graph-based dependency parsing jointly. The model uses bidirectional LSTM to 
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learn feature representations shared for POS tagging and dependency parsing tasks, and with this, it 

handles the feature-engineering problem. In their extensive experiments, they have worked on 19 

languages from the Universal Dependencies project, showing that the model outperforms the state-

of-the-art neural network-based stack propagation model for joint POS tagging and the transition-

based dependency parsing, resulting in a new state of the art. 

2.3 Summary 

 
In this chapter, we summarized related work on SOC and on graph-based feature engineering. 

It is clear from the reviewed research that only a limited amount of work has been published on SOC 

event classification. The graph-based techniques have been used on the LSTM neural network to 

learn word representations; some authors have explored pattern recognition in the graph and 

captured the relations and dependencies between concepts and properties of the graph. In our 

research we have explored for the first time the usage of the graph metrics as machine learning 

features. 

We introduced a deep learning-based approach for automating the process of identifying the 

suspiciousness of the alerts generated by the IDS using two new sets of features: graph metrics as 

features and features based on graph-based visualization. The benefit of using the aforementioned 

technique is improved accuracy of the machine learning classifier. 
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Chapter 3: The SOD Dataset and Feature Set 

 
In this chapter, we present the SOC dataset used in our experimental evaluation. We present 

the initial features used to describe the security events in the dataset and derive a group of features by 

converting categorical features and merging some of the initial features. We use the aforementioned 

features as baseline against which we can assess the effectiveness of the graph-based features 

introduced in the next chapter. 

3.1 Dataset Overview and Initial Feature Set 

 
The dataset used in our evaluation consists of event log data from Security On-Demand (SOD) 

[20], which is a company that runs an SOC on behalf of various customers. The data has been sanitized 

by obfuscating the security and privacy sensitive information. The dataset was released in two phases 

as part of the IEEE BigData 2019 Suspicious Network Event Recognition track. The dataset is a 

labeled dataset consisting of security events and their classification by security analysts. The 

classification is either ‘notified’ or ‘non-notified’, which corresponds to whether or not the customer 

was notified about the alert. 

 

Feature Description Feature Domain 

weekday A day of the week of the first log event that 

is assumed to be the first event that 
corresponds to the alert. 

Mon, Tue, Wed, Thurs, Fri, Sat, Sun 

overallseverity Alert severity generated by the system 

rules. 

1, 2, 3, 4, 5 

reportingdevice_cd Device that reported the event. 0, 1, 2, 3, 4, 5, …, 30 

devicetype_cd Reporting device type. 0, 1, 2, 3, 4, 5 

devicevendor_cd Vendor that produced the reporting device. 0, 1, 2, 3, 4, 7 

categoryname A category name of the alert that 

corresponds to its severity. 

Attack, Exploit, Malicious Activity, 
Suspicious Network Activity, 
Suspicious Attack Activity 

Table 3.1: Sample Original Features from the SOD dataset. 
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The initial SOD dataset consists of a total number of 39,427 records out of which 37,151 

records were not being notified to the client as the SOC team did not find them suspicious (class 0) 

and 2, 276 records were notified to the client as the SOC team found those records suspicious (class 

1). This dataset is a skewed dataset as the number of observations that belong to one class is higher 

than the other class. 

The second SOD dataset which consists of about 430 GB of event log data is similar to the 

previous one, split into training and testing data. The test data was missing the notified values (i.e. the 

label). Each record in the dataset is described by 62 original features. Table 3.1 presents sample features 

from the original dataset. We have used the initial dataset for the experimentation in the current thesis. 

3.2 Features Conversion 

 

3.2.1 Converting Categorical Features 

 
As mentioned above, the original feature set in the SOD consists of 62 original features; 50 

among these features are categorical features. We started the data analysis by converting the categorical 

features into numerical features by using the one-hot encoding technique. For example, Figure 3.1 

illustrates one-hot encoding using categoryname, which is a categorical feature from the original 

feature set. 
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Figure 3.1: Applying one-hot encoding to the categoryname feature 

 

 

 

This feature describes a category name for the alert that corresponds to its severity. It takes the 

following values: Attack, Exploit, Malicious Activity, Suspicious Network Activity and Suspicious 

Attack Activity. When one-hot encoding is applied to this feature it will create the features with the 

values of the categoryname column and will assign value ‘1’ to its corresponding column and ‘0’ to 

others. 

After applying one-hot encoding, we handle the missing values in the dataset by taking the 

median of the numerical values and the mode of the categorical values, and then replace the missing 

values with the median and mode values, respectively. 

The next step in the analysis is to normalize the data and handle outliers. In our work, this is 

done using Z-score normalization, which is also known as mean normalization and consists of 

transforming the data in such a way that mean equates to 0 and standard deviation varies according to 

the data points. 

alert_id Attack Exploit Malicious 

Activity 

1 1 0 0 

2 0 1 0 

3 0 0 1 

4 0 0 0 

5 1 0 0 

6 0 1 0 

 

One-Hot 

Encoding 

alert_id categoryname 

1 Attack 

2 Exploit 

3 Malicious Activity 

4 Suspicious Network 

Activity 
5 Attack 

6 Exploit 

 
 

 

 
Data Supplied to the 

machine learning model 
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3.2.2 Feature Conversion through merging 

 
We identified several new features by merging some existing features with common characteristics. 

 
Some of the initial features in the SOD dataset carry related or common knowledge although such 

relation cannot necessarily be exposed through statistical correlation. By reviewing the original 

features, we identified two groups of features that meet the aforementioned criteria: time-based features 

and IP related features, named Time and IP_Type, respectively, and obtained by merging the features 

in each of the separate groups. 

IP_Type: IP information is an important component of the security event data as this provides 

knowledge about the participants and locations involved in the underlying activity. In the SOD dataset 

there are two columns named ipcategory_name and ipcategory_scope. These two columns are 

dependent on the IP column and their information can be gathered from the IP column itself. So, we 

decided to merge these two columns and come up with a new column ‘IP_Type’ which describes what 

the IP address type is. 

 

IP IP_TYPE DESCRIPTION 

AB.AB.01.01 II Internet Internet 

192.AB.AB.02 PP Private Network 

169.KU.AZ.103 LS Link-local Subnet 

255.PQ.CZ.255 BS Broadcast Subnet 

127.JI.PF.1/255 LH Loopback Host 

ZC.WB.188.1 MI Multimedia Internet 

Table 3.2: Representing IP_TYPE feature value. 
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Table 3.2 represents the new IP_Type feature values; sample IP values, the categorical values 

and their descriptions are provided in the table. For instance, IP_Type feature value II stands for 

Internet Internet. This new feature merges the two columns ipcategory_name and ipcategory_scope 

from the original SOD dataset. 

Time: In the SOD dataset there are three columns named start_hour, start_minute and start_second. 

Start_hour represents an hour of the first log event, start_minute represents a minute of the first log 

event and start_second represents a second of the first log event. Basically, these represent the time, so 

we decided to remove all these three features and come up with a new feature Time (sec). The new 

feature Time (sec) converts the time in seconds. For instance, if the start_hour value is 8, start_minute 

value is 14 and start_second value is 32, the absolute time is 8:14:32; when we will store the values in 

our new column, we will convert the given time in seconds. 

3.3 Summary 

 
In this chapter, we presented the SOC dataset used in our research and the original features 

used to describe the corresponding security events. One Hot encoding has been applied to all the 

categorical features so that those features make sense to machine learning models. Specifically, we 

have derived two more features from the original features, i.e. IP_Type and Time, respectively. 

Through the above transformation, we end up in total with 41 features including 39 original features 

and 2 derivatives. We will use these original features and their derivatives as our baseline feature 

space to assess the effectiveness of the new graph-based features that will be introduced in the next 

chapter. 
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kj 

Chapter 4: Graph Based Feature Identification 

 
In this chapter, we present a new approach for extracting and deriving machine learning 

features using a graphical representation of the data. The approach consists of generating a graphical 

representation of the training data and identifying salient characteristics and relationships and 

converting those into new features. Two main types of features are extracted: features derived from 

the graph structure through visualization and features based on standard graph metrics. We illustrate 

in more detail the proposed approach by using the SOD dataset in the following. 

4.1 Proposed Graph Model 

 
Our feature derivation approach assumes that a dataset is available, such as a training set. Let’s 

assume that the dataset consists of m records, each described by n different feature types. Let assume 

that one of the feature types plays the most pivotal role in the problem domain captured by the dataset. 

Our proposed graph model consists of a knowledge graph describing the unique feature values from 

the dataset and their relationships. In other words, each unique feature value will be represented as a 

node in the graph. We refer to the nodes corresponding to the aforementioned most pivotal feature 

type as pivotal nodes. Obviously, each record will have a unique pivotal node. 

Given a record Ri  = xi1,..,xik ,..., xim  
 

from the dataset, let us assume that xik is the pivotal node. 
 

The edges in the knowledge graph will be drawn by connecting the pivotal node as source to the other 

 
nodes involved in the record, giving a sequence of edges 

i 
= (x 

 
, xij ), where k  

 
j. Note that there 

 

is no edge from a pivotal node to itself. So, each record Ri will induce n-1 edges. 
 

To illustrate the graph construction process, we consider a small subset of the SOD dataset containing 

a few records and a subset of the features as shown in Table 4.1. 

e ik 
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Table 4.1: Sample records and feature subsets 

 

 

 

As it can be observed, we have duplicate values for all the features. So, the first thing to do 

is taking the unique values of all the features. Figure 4.1 depicts the unique values of all the features 

from the sample dataset. In total, we have 14 unique values, so the graph will have 14 vertices/nodes. 

 
Figure 4.1: Unique feature values from the sample records (in Table 4.1) 

 

 

 

Figure 4.2 shows the knowledge graph derived from the sample records based on the model 

described above. The most critical feature used to describe security events is the IP address. So, in 

the SOD dataset and by extension in the sample records, the pivotal nodes correspond to IP 

addresses. 

The sample graph is built by considering the unique IP addresses as the source nodes and all 

the other nodes as the destination nodes. In the above example, we have 3 unique IPs, so we have 3 

source nodes, i.e. OR.TP.3.36, 10.BH.OO.125 and 10.FA.CC.246. 
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Figure 4.2: Knowledge graph derived from the sample records (in Table 4.1) 

 

In the example dataset, we can see in record number 0 that IP OR.TP.3.36 is associated with 

Exploit, 5 and Fri. This is translated in the graph into 3 edges connecting OP.TP.3.36 to Exploit, 5 

and Fri, respectively. 

Records numbers 1 and 2 share the same IP address, i.e. 10.BH.OO.125. In the graph, this 

results in 9 edges coming from 10.BH.OO.125 to Attack, 4, Sat, Exploit, 5, Fri, Compromise, 3 and 

Mon. 

In the graph we have orange dots on the IP. We use this notation to express the fact that a 

particular IP has a degree greater than 1. The degree represents the number of edges incident to the 

vertex and as we can see all the 3 IPs have more than one edge coming out of it; so, we have orange 

dots on all the 3 IPs. 
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4.2 Features based on Graph Metrics 

 
Here, the main idea is to use graph metrics as features. To illustrate and validate this concept, we 

consider 6 graph metrics as described in the following. 

4.2.1 Graph Metrics 

 
Given a training set, our approach consists of building separate knowledge graphs for negative 

and positive samples and deriving the metrics values for each of the separate graphs. While there is 

a wide variety of graph metrics that could represent good candidates for defining our suggested 

features, we will illustrate our approach using a subset consisting of six graph metrics described in 

the following. 

Eccentricity: It is the maximum of the distances between one vertex to all other vertices. 

 

For instance, Table 4.2 shows the eccentricity values for the nodes of the sample graph depicted in 

Figure 4.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.2: Eccentricity measures obtained from the graph shown in Figure 4.2 

Node-name Eccentricity 

OR.TP.3.36 3 

Exploit 2 

10.BH.OO.125 3 

Attack 4 

10.FA.CC.246 3 

Compromise 4 

5 4 

4 4 

2 4 

3 4 

Fri 4 

Sat 4 

Thu 4 

Mon 4 
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Diameterofrow: The diameter is the maximum value of the eccentricity for all the vertices. We define 

a new feature based on the diameter that we call diameterofrow. This feature is obtained by taking 

the maximum value of the eccentricity among the vertices generated from a given record 

Ri  = xi1,..,xik ,..., xim . 

 

Radiusofrow: The radius is the minimum value of the eccentricity for all the vertices. Based on the 

radius we define a new feature called radiusofrow. This feature is obtained by taking the minimum 

 
value of the eccentricity among the vertices generated from a given record Ri  = xi1,..,xik ,..., xim . 

 

 

 

Centerinrow: The center of a graph is the set of vertices for which the eccentricity is equal to the 

radius of the graph.  These vertices are called central points.  We define a new feature called 

centerinrow, which is obtained by identifying the central points among the set of vertices generated 

 
from a given record Ri  = xi1,..,xik ,..., xim , and then from those vertices we select the vertex whose 

 

feature holds the highest importance based on some preset feature importance metrics. In other words, 

the value of centerinrow will be equal to the feature value associated with the selected vertex. 

 
 

Peripheryinrow: The periphery of a graph is the set of vertices for which the eccentricity is equal to 

the graph diameter. We define a new feature called peripheryinrow, which is obtained by first 

identifying the vertices that have graph eccentricities equal to the graph diameter among the set of 

 
vertices generated from a given record Ri  = xi1,..,xik ,..., xim . Then from the identified vertices, we 

 

select the vertex whose feature holds the highest importance based on some preset feature importance 

metrics and assigns its value to peripheryinrow. 
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Degreeinrow: The degree is the number of edges that are incident to a vertex. Based on the degree 

 

we define a new feature called degreeinrow. This feature is obtained by calculating the degree row 

 
wise, i.e. for all the vertices induced by a given record Ri  = xi1,..,xik ,..., xim  

 

and then taking the 
 

maximum value in the row as the feature value. For example, Table 4.3 shows the degrees for the 

sample graph shown in Figure 4.2. 

 

 
Node-name Degree 

OR.TP.3.36 3 

Exploit 3 

10.BH.OO.125 9 

Attack 1 

10.FA.CC.246 3 

Compromise 1 

5 2 

4 1 

2 1 

3 1 

Fri 2 

Sat 1 

Thu 1 

Mon 1 

Table 4.3: Degree measures obtained from the graph shown in Figure 4.2 

 

 

 
Sumofdegreesinrow: Based on the sum of degrees of vertices, we define a new feature called 

 

sumofdegreesinrow. The feature is obtained by calculating the sum of degrees of vertices row wise, 

 
i.e. for all the vertices associated with a given record Ri  = xi1,..,xik ,..., xim . 
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4.2.2 Graph Structures 

 
In the SOC dataset, the positive samples correspond to the notified class while the negative 

samples correspond to the non-notified class. As the number of data points for class 1 (i.e. positive 

samples) are less as compared to class 0 (i.e. negative samples), we decided to build a single connected 

graph for class 1 and multiple connected graphs for class 0. 

For class 0, the data points were divided based on the time scale. In our SOC dataset we 

introduce a new column time(sec), which describes the time in seconds. Based on this column we 

define a time window of 18,000 seconds (i.e. 5 hours) and all the data points which are falling in the 

first 18,000 seconds time window are used to build the first graph and the data points which are falling 

in the next 18000 seconds are used to build the next graph and so on, as shown in figure 4.3. In this 

way we calculate the graph metrics for class 0. 

 

  

18000 sec 18000 sec 18000 sec 18000 sec 18000 sec 

 
Figure 4.3: Sliding time windows 

 

 

 

 

Figure 4.4 depicts the graph generated for a subset of the records of class 1 from the SOD dataset. 

The graph is built by considering a subset of the initial features from the dataset to give a clearer 

picture. All the green nodes represent IP_Type, blue nodes represent weekdays and the other nodes 

represent categoryname and overallseverity. 
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Figure 4.4: Graph representing the incidents for class 1 with 19 vertices for a subset of the SOD dataset 

 

 

 

Figure 4.5 shows the graph metrics calculated for one of the records representing class 1. For 

centrality and periphery, we have more than 1 value; from all these values we select the value which 

holds higher importance in the feature importance graph. As shown in Figure 4.6, for center we select 

INTERNET value which belongs to the feature srcipcategory_dominate which has higher feature 

importance compared to the other features, and for periphery we select EXPLOIT value, which 

belongs to the feature categoryname, which holds more importance than other features. 

 
 

Figure 4.5: Sample graph metrics 
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Figure 4.6: Graph metrics calculated for class 1 for a single row. 

 

 

 

4.3 Features Derivation from Graph Visualization 

 
The proposed approach consists of visualizing the security events from the training dataset by 

highlighting their spread based on different features, and then analyzing the underlying characteristics 

and relationships. 

Using the SOD dataset, by constructing various graphs based on different features combination, 

the major observation from the analysis is that the notified attacks commonly occurred on private 

network whereas all the non-notified attacks occurred on the public network with overall severity 

value as 5 and on weekdays. Based on this observation, we introduce 10 new features, which are 

described in the following. 

Criticalityofweekday: Figure 4.7 shows a graphical depiction of IP vs. weekday for notified and 

non-notified events in the SOD dataset. 

(a) Weekday graph for class 0 
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(b) Weekday graph for class 1 

 

Figure 4.7: Graphical representation of IP vs. weekday in the SOD dataset. 

 

 

 

The orange points in the graph represent the IPs which occurred more than once, specifying that 

alerts from the same IP were captured on two or three different days and this holds a degree greater 

than 1; these IPs are the popular IPs. The analysis shows that most of the events in both classes (i.e. 

notified and non-notified) occurred on weekdays and not on weekends. For the notified class, the 

maximum number of alerts occurred on Wednesday and for non-notified class, the maximum number 

of alerts occurred on Thursday. So, based on this observation, we define the Criticalityofweekday 

feature as a binary feature, which takes value 1 where the original SOD weekday corresponds to Mon, 

Tue, Wed, Thurs or Fri and value 0 where the weekday corresponds to Sat or Sun. 

 
 

DomainofIP_typeforclass1: As mentioned earlier, we have introduced a new feature called IP_Type, 

which represents the name and the scope of the IP. Figure 4.8 shows a graphical depiction of the IP 

vs. IP_Type for non-notified and notified events in the SOD dataset. As we can see in the graph there 

are no orange points; this is because one particular IP belonged to just one network either private, 

internet or subnet. The analysis of Figure 4.8 (b) shows that the maximum number of alerts which 
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were notified (class 1) by the SOC analysts occurred on the private network which is denoted as PP. 

It can be noted also that most of the attacks occurred either on the Internet (II) or on the private 

network (PP). So, based on this observation, we introduce a new feature called 

domainofIP_typeforclass1 which takes value 1 where the value in the IP_Type column corresponds 

to PP and value 0 for all the other values in IP_Type column. 

 
 

(a) IP_Type graph for class 0 

 

 

(b) IP_Type graph for class 1 

 

Figure 4.8: Graphical representation of IP vs. IP_Type in the SOD dataset. 

 

 
DomainofIP_typeforclass0: The analysis of Figure 4.8 (a) shows that the maximum number of alerts 

that were not notified (class 0) by the SOC analysts occurred on the public network i.e. Internet which 

is represented as II. So, based on this observation, we introduce a new feature called 

domainofIP_typeforclass0 which takes value 1 where the value in the IP_Type column corresponds 

to II and value 0 for all the other values in IP_Type column. 
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Severityofalert: One of the original features in the SOD dataset is a feature named overallseverity, 

which represents an estimation of the alert severity. 

 

 
(a) Overallseverity graph for class 0 

 

(b) Overallseverity graph for class 1 

 

Figure 4.9: Graphical representation of IP vs. overallseverity in the SOD dataset 

 

 
Figure 4.9 shows a graphical depiction of the IP vs. overallseverity in the SOD dataset. The orange 

points in the graph represent the IPs that occurred more than once, specifying that alerts from the 

same IP were captured with different values of overall severity. The analysis shows that for both the 

notified (class 1) and non-notified (class 0) alerts, the maximum number of alerts generated was with 
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overall severity 5. So, based on this observation, we introduce a new feature called severityofalert 

which takes value 1 where the value in the overallseverity column corresponds to 5 and value 0 for 

all the other values. 

Using a similar approach, several new features can be identified. Three additional features that were 

considered in our model include the CriticalityofIPAddress, CriticalityofSrcIP and 

CriticalityofDestIP defined as follows. 

 
 

CriticalityofIPAddress: enables distinguishing between the IPs which occurred more often from the 

ones which occurred just once or twice. We set a threshold of 100: the IPs whose occurrence is above 

the threshold were given the value 1 and the IPs occurring below the threshold were given the value 

0. 

 

CriticalityofSrcIP: enables distinguishing source IP addresses that occur more frequently compared 

to others. Source IP addresses that occur with high frequency could be, for instance, spoofed IP 

addresses used in volumetric attacks such as flooding denial of service (DOS) attacks. We set a 

threshold of 100: if one destination IP is occurring more than 100 times it is given a value of 1 and if 

it is occurring less than the threshold value then it is given a value of 0. 

 
 

CriticalityofDestIP: enables distinguishing destination IP addresses that occur more frequently 

compared to others. If one destination IP is occurring very often this means that the IP belongs to 

some crucial site and hackers are hitting on it to hack it. We set a threshold of 100: if one destination 

IP is occurring more than 100 times it is given a value of 1, otherwise it is given a value of 0. 



30  

4.3 Summary 

 
This chapter introduces our proposed graph-based feature identification approach and 

corresponding feature model. Specifically, we showed how features can be derived on the one hand 

from graph visualization and on the other hand based on graph metrics. In total, 13 new graph-based 

features have been identified. The proposed features will help the machine learning models achieve 

the improved classification of SOC events. In the next chapter we discuss about the feature selection 

and data preprocessing techniques used in our framework. 
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Chapter 5: Feature Analysis 

 
Exploratory data analysis (EDA) consists of analyzing the datasets to summarize their 

important characteristics. EDA helps in exploring the data to gain important insights about the data, 

which further helps in building a better machine learning model. In this chapter, we present the 

different techniques used to analyze the features identified in our approach and process the data 

involved. 

5.1 Feature Selection 

 
Our global feature space consists of two groups of features: 

 
1. Original features and derivatives 

 
2. Graph-based features 

 

Number Columns Type 

1 categoryname categorical 

2 parent_category categorical 

3 overallseverity categorical 

4 timestamp_dist numerical 

5 weekday categorical 

6 correlatedcount numerical 

7 score categorical 

8 srcip_cd numerical 

9 dstip_cd numerical 

10 srcport_cd numerical 

11 dstport_cd numerical 

12 alerttype_cd categorical 

13 eventname_cd categorical 

14 severity_cd categorical 

15 reportingdevice_cd categorical 

16 protocol_cd categorical 

17 username_cd categorical 

18 srcipcategory_cd categorical 

19 dstipcategory_cd categorical 

20 isiptrusted categorical 

21 untrustscore categorical 

22 flowscore categorical 
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23 trustscore categorical 

24 enforcementscore categorical 

25 dstipcategory_dominate categorical 

26 srcipcategory_dominate categorical 

27 dstportcategory_dominate categorical 

28 srcportcategory_dominate categorical 

29 thrcnt_month numerical 

30 thrcnt_week numerical 

31 thrcnt_day numerical 

32 p6 categorical 

33 p9 categorical 

34 p5m categorical 

35 p5w categorical 

36 p5d categorical 

37 p8m categorical 

38 p8w categorical 

39 p8d categorical 

40 IP_Type categorical 

41 Time (sec) numerical 

42 alert_ids categorical 

43 client_code categorical 

44 grandparent_category categorical 

45 domain_cd categorical 

46 direction_cd categorical 

47 n1 categorical 

48 n2 categorical 

49 n3 categorical 

50 n4 categorical 

51 n5 categorical 

52 n6 categorical 

53 n7 categorical 

54 n8 categorical 

55 n9 categorical 

56 n10 categorical 

57 devicetype_cd categorical 

58 devicevendor_cd categorical 

59 start_hour numerical 

60 start_minute numerical 

61 start_second numerical 

62 IP categorical 

63 ipcategory_name categorical 

64 ipcategory_scope categorical 

Table 5.1: Original Features and their derivatives. 
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Number Columns Type 

1 Criticalityofweekday categorical 

2 DomainofIP_typeforclass1 categorical 

3 DomainofIP_typeforclass0 categorical 

4 Severityofalert categorical 

5 CriticalityofIPAddress categorical 

6 CriticalityofSrcIP categorical 

7 CriticalityofDestIP categorical 

8 Diameterofrow numerical 

9 Radiusofrow numerical 

10 Centralinrow categorical 

11 Peripheryinrow categorical 

12 Degreeinrow numerical 

13 Sumofdegreesinrow numerical 
Table 5.2: Graph-based Features. 

 

 
Tables 5.1 and 5.2 lists the original features and derivatives and the graph-based features, 

respectively. To evaluate the effectiveness of the graph-based features, we will apply in the next 

chapter different classification techniques to the first group of features and to the global features set 

including all the features, and then compare the corresponding classification performances. Before 

applying the classifiers to the different models, we apply feature selection techniques which consist 

of automatically or manually identifying the most important features and removing the ones that do 

not contribute much to the model’s effectiveness. 

The features that we use to train a machine learning model have a huge impact on its 

performance, so it is necessary to discard the irrelevant features and keep the best features. Discarding 

insignificant data helps improve accuracy, avoid unnecessary resource allocation and reduces the time 

taken to train the model. Filter, wrapper and embedded techniques are three different methods 

available for feature selection. 

Filter methods which are also known as univariant selection methods, apply statistical 

measures to all available features, and assign scores to them based on the target class. Important 

features are assigned high score values and unimportant features are assigned low score values. 
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Examples of filter selection methods include the Chi-square test and Linear Discriminant Analysis 

(LDA). The wrapper methods are computationally expensive compared to the filter methods. In a 

wrapper method a model is trained using a subset of features and then based on the conclusions of 

the previous model we add or remove the features from that subset. Examples of wrapper methods 

include forward selection, backward elimination and recursive feature elimination. In the forward 

selection method, we start with having no feature in our model and then we keep on adding the 

features until it is improving the performance of the model. In the backward elimination method, we 

start with having all the features and keep removing the least significant feature until this is impacting 

the performance of the model. In the recursive feature elimination method, unimportant features are 

discarded one by one recursively. Embedded methods learn the best features of the model while the 

model is being created. Examples of embedded methods include regularization methods and the use 

of drop out layers [3]. 

In the current thesis, we use a filter method while assigning scores to the features in a feed 

forward neural network and later while training the model we use an embedded method to avoid 

overfitting. As the filter method we use a Chi-square test. 

In statistics, the Chi-square test is applied to test the independence of two variables. Chi 

square test is applicable only for categorical or nominal data. We calculate the Chi-Square statistics 

between each feature variable and a target variable and assess the relationship between them. 

The formula of Chi-square statistic is given as: 

 
 

 

𝜒2 = ∑ 
(𝑂 − 𝐸)2 

 
 

𝐸 
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Where O represents the observed value and E represents the expected value. As per the 

equation, the Chi-square statistic is based on the difference between what is observed in the data and 

what would be expected if there is no relationship between the feature and the target. A very small 

chi square value means observed data fits expected data very well. In this case, there is a 

relationship. A very large Chi-square value means that the data do not fit well, so there is no 

relationship. All features are assigned a score after calculation of the Chi-square statistics between 

every feature variable and the target variable. We discard features with low scores and features with 

high scores are marked as important and selected to train a machine learning model. 

Figure 5.1 shows the feature importance graph for the original features and their derivatives, 

which has been built using tree-based classifier. Feature importance assigns a score to each feature 

in the dataset: the higher the score the more important or relevant that feature is. Based on the feature 

importance computation, we discarded all the features with importance equal zero and kept the 

remaining features. Specifically, we kept in this first group, 41 features out of 64 features as listed in 

Table 5.1. 
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Figure 5.1: Feature Importance graph based on Original Features and their derivatives. 

 
Figure 5.2 shows the feature importance graph based on the entire feature space, i.e. the original 

features and their derivatives, and the graph-based features. 
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Figure 5.2: Feature Importance graph based on the entire feature space (original and graph-based). 

 
Figure 5.2 shows the feature importance considering a total number of 77 features, out of 

which 64 features belong to the original features and their derivatives and 13 features belong to the 

introduced graph-based features. 
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Based on feature importance, we discarded a few features as follows. Firstly, we calculated 

the importance scores for all the features and normalized those values so that they range between 0 

and 1. Then, we kept all those features whose feature importance value was greater than or equal to 

0.001. We discarded 23 features which are alert_ids, client_code, grandparent_category, domain_cd, 

direction_cd, n1, n2, n3, n4, n5, n6, n7, n8, n9, n10, devicetype_cd, devicevendor_cd, start_hour, 

start_minute, start_second, IP, ipcategory_name and ipcategory_scope. Specifically, we kept in the 

second group a total number of 54 features out of 77 features. 

5.2 Data Preprocessing 

 
Data Preprocessing which is known as feature processing is a technique in which the raw data 

is transformed into an understandable format. It is the initial and the most essential step in machine 

learning as the raw data cannot be fed directly to the machine learning models. The raw data contain 

null values and some missing values, so some operations must be applied to this type of data to get 

valuable information from it. Data preprocessing includes cleaning the data, handling the outliers, 

normalizing the data, standardizing the data and handling the missing values. 

5.2.1 Handling Missing Values 

 
In the SOD dataset there were many missing values. We handled the missing values in the 

dataset by taking the median of the numerical values and taking the mode (most frequent class) of the 

categorical values and then replacing the missing values with the median and the mode values, 

respectively. 

5.2.2 Data Standardization 

Data Standardization which is also known as feature scaling is the process of bringing the 

numerical data into a common format. It is used to normalize the range of feature values. This process 

ensures that all the data points in the dataset follow the same distribution, without losing information 
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or distorting differences in the range of values. 

 

Feature scaling becomes an essential requirement when features are of varying scales. There 

are different techniques for feature scaling [10], such as Z-Score normalization, Min-Max 

normalization, etc. To achieve feature scaling, we have used Z-score normalization which is also 

known as mean normalization to transform the data in such a way that mean equates to 0 and standard 

deviation varies according to the datapoints. 

The Z-score normalization calculates the Z-score of each value and then replaces the given 

value with the calculated Z-score. The Z-score is calculated using the following formula: 

𝑥  =  
𝑥𝑖  − µ 

𝜎 

where xi represents one single value and µ (mean) is the mean value of the feature and 𝜎 is the standard 

deviation of the feature. The reason for choosing Z-score normalization over other techniques is that, 

when Z-score normalization is applied on the datapoints it will handle outliers as well, unlike in the 

case with min-max normalization. The Outlier is a point that deviates significantly from other points. 

It is very important to handle the outliers as they can alter the training process of the machine learning 

algorithms, ultimately resulting in less accuracy and poorer results. Min-Max normalization does not 

handle outliers but brings all the data points in one single range. 
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Figure 5.3 Representing Z-score normalized data 

 

Figure 5.3 represents the distribution of all the feature values after Z-score normalization has 

been applied to the dataset. The distribution is a bell-shaped curve which shows that not all the data 

points are in a range of just 0, instead there is a deviation. If the value is equal to the mean which is 0 

then it is normalized to 0, if it is below mean it is normalized to a negative number and if it is above 

the mean it is normalized to a positive number. The range of those positive and negative numbers is 

determined by the standard deviation of the feature. 

5.3 Addressing Data Imbalance 

 
After data preprocessing, the final step is to train the model on the given dataset. In the SOD 

dataset, one class dominates the other class. In machine learning and data science, this scenario is 

called imbalanced class distribution. As the data points of one class are higher than the other class, 

there are chances that the predictive model developed using this dataset could be biased and 

inaccurate. So, it becomes very important to balance the dataset. Various data sampling techniques 

are available in data science to overcome these challenges such as undersampling, oversampling and 

SMOTE. 
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Undersampling is a technique in which the majority class is under-sampled randomly and 

uniformly so that the samples of the majority class are brought closer to the minority class. This 

technique solves the class imbalance issue but there is a risk that the technique removes some of the 

majority class instances which are more representative, thus discarding the useful information. 

Oversampling is a technique that duplicates the samples of the minority class such that its proportion 

becomes almost equal to that of the majority class samples. This way the data become balanced. The 

downside of oversampling is that because of duplicate data the model may overfit the samples and 

performing a cross validation can be more difficult. As undersampling and oversampling techniques 

have more disadvantages, so we implemented synthetic minority oversampling technique (SMOTE) 

to balance our dataset. 

 
 

SMOTE uses the k-nearest neighbors’ algorithm to generate new data for the underrepresented 

class in the dataset. It is an over-sampling approach in which the minority class is over-sampled by 

creating synthetic examples along with the line segments joining any/all of the k minority class nearest 

neighbors rather than by over-sampling with replacement. Depending upon the amount of over- 

sampling required, neighbors from the k nearest neighbors are randomly chosen. In our dataset, we 

have class 1 as a minority class. Before applying the SMOTE technique, we split our data in an 80:20 

ratio for training and validation purposes. Post data split, our dataset consisted of 39,427 samples in 

total, consisting of 37,151 samples of class 0 and 2,276 samples of ‘class 1’. SMOTE is applied only 

to 80% of the data which we will use for training purposes. SMOTE oversampled our minority class 

and balanced the dataset in equal distribution of each class. 
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5.4 Summary 

 
This chapter presented the techniques for feature analysis and data preprocessing. For feature 

selection, the Chi-square test is applied on the one hand to the original features and derivatives, and 

on the other hand to the global feature space covering all the features including both the original and 

new features. On the one hand, we selected 41 features out of the 64 original features and derivatives 

to process the machine learning models and on the other hand, we selected 54 features from the entire 

feature space including the graph-based features out of 77 features to process the machine learning 

models. In the next chapter, we will conduct different experiments to assess the performance benefit 

of the proposed graph-based features using different machine learning classifiers. 



43  

Chapter 6: Classification Techniques and Experimental 

Evaluation 

 
In this chapter, we give an overview of the classification techniques used in our work, and then 

conduct the experimental evaluation of the proposed approach based on the SOD dataset. 

We will apply the selected classification models to the first group of features (i.e. original 

features and derivatives) and evaluate their performance, and then repeat the process by applying the 

same classifiers to the global feature space including both feature groups. 

6.1 Classification Techniques 

 
In this section, we give an overview of the classification techniques explored in our study. In 

the current thesis, we studied and compared different linear and nonlinear machine learning models. 

As a linear model we explored Logistic Regression while as nonlinear models, we explored deep 

neural network (DNN) and XG Boost. We used python Scikit-learn libraries to implement these 

algorithms. 

6.1.1 Logistic Regression 

 
Logistic regression is a popular and simple algorithm used to solve any classification task. The 

underlying model uses linear regression and the logistic function for classification. Logistic 

regression is a shallow neural network with no hidden layers, and this makes logistic regression a 

linear classifier. 
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6.1.2 XGBoost 

 
XGBoost stands for eXtreme Gradient Boosting. It is a prototype designed to achieve high 

execution speed and model performance of gradient boosted decision trees. As compared to the 

implementations of other gradient boosting, XGBoost is fast. It is mainly used in tasks involving 

supervised learning, such as regression, classification, and ranking. The feature that makes XGBoost 

unique is that it helps in reducing overfitting. 

6.1.3 Deep Neural Network 

 
Deep neural network (DNN) is a nonlinear machine learning technique that is also part of deep 

learning. Deep learning methods are better than traditional machine learning methods as when we 

supply more data to the deep learning methods such as deep neural network, the performance of the 

algorithm eventually improves unlike in the case of traditional shallow classifiers. The performance 

of shallow classifiers such as SVM becomes constant at some point even when we feed the model 

with more data and the model stops learning from the supplied data. Traditional shallow classifiers 

work well when we have less data, while deep learning methods outperform when they are supplied 

with more data. 

As a deep learner, we use a deep neural network (DNN) model depicted in Figure 6.1. 

 

We use a feed forward neural network which is also known as multilayer neural network. In our 

architecture we have 3 hidden layers and 1 output layer. 
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Figure 6.1. Neural Network Architecture with the hidden layers and the activation functions used. 

 

 

Our deep neural network consists of an input layer which comprises of 54 inputs, a first, a 

second and a third hidden layer consisting of each 108 neurons, and an output layer consisting of 1 

neuron. We use the activation function relu, which is also known as a rectified linear unit. Relu is 

fast compared to sigmoid and tanh activation functions and it is not affected by the problem of 

vanishing gradient descent. This function is nowadays used widely because it works well with the 

multiple layers of a neural network. Its range lies between 0 to infinity and it is also used in the hidden 

layers of neural networks. When this function is applied on a variable whose value is less than 0 it is 

given the value of 0 and if it is greater than 0, the function will return the same value. 
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Due to the binary nature of the SOD dataset, we use the binary cross entropy, which is the 

default loss function for binary classification problems. To optimize the algorithm and to update the 

weights, we use a variant of gradient descent called adam optimizer; adam is an abbreviation for 

Adaptive Moment Estimation. 

To avoid overfitting, we apply dropout on the second and third hidden layers while keeping the 

keep_prob hyper parameter value as 0.8. The keep_prob hyper parameter value states that on each 

iteration every neuron has 80% probability of being included in forward and backward propagation 

and 20% probability of being dropped out. In this way, our learning algorithm has no idea which 

neurons will be dropped, and which neurons will be included, and thus it will not focus on specific 

neurons. 

6.2 Evaluation based on the Original Features and Derivatives 

 
6.2.1 Using Logistic Regression 

 
Using logistic regression, we evaluated the performance by calculating the F1_score and 

area under curve (AUC). 

 
Figure 6.2: Confusion Matrix for Logistic Regression using the original features group 
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We can observe from figure 6.2 that out of a total of 3,715 samples of class 0, the model has truly 

predicted 2677 (TP) samples and falsely predicted 1038 (FP) samples. For class 1, out of a total of 

228 samples, the model has truly predicted 180 (TN) samples and falsely predicted 48 (FN) samples. 

 

 
Figure 6.3: ROC for Logistic Regression using the original features group. 

 

Figure 6.3 shows the Receiver Operating Curve (ROC) for the logistic regression. The x-axis 

represents the false positive rate (FPR) and the y-axis represents the true positive rate (TPR). The 

area under curve (AUC) derived from the ROC is a performance measure that tells how much a 

model is capable of distinguishing between classes. The higher the AUC, the better the model is at 

predicting 1’s as 1’s and 0’s as 0’s. The AUC value for this model evaluated to 75.50%. 

 

 precision (%) recall (%) f1_score (%) support 

class 0 98 72 83 3715 

class 1 15 79 25 228 

micro avg 72 72 72 3943 

macro avg 57 76 54 3943 

weighted avg 93 72 80 3943 

Table 6.1: Classification results for logistic regression classifier using the original features group. 

 

From table 6.1, it can be observed that the results obtained from logistic regression are relatively 

poor and the model is not able to classify the results in a better way. The F1_score for class 1 is very 

low at just 25%. 



48  

6.2.2 Using XGBoost 

 
Using XGBoost, we evaluated the performance by calculating the F1_score and AUC. 

 

 
Figure 6.4: Confusion Matrix for XGBoost using the original features group 

 

 

Figure 6.4 depicts the confusion matrix obtained when using XGBoost. We can observe from figure 

 

6.4 that out of a total of 3,715 samples of class 0, the model has truly predicted 3,550 (TP) samples 

and falsely predicted 165 (FP) samples. For class 1, out of a total of 228 samples, the model has truly 

predicted 158 (TN) samples and falsely predicted 70 (FN) samples. 

Figure 6.5: ROC for XGBoost using original features group. 
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Figure 6.5 shows the ROC for the XGBoost model. The AUC value for this model evaluated to 

82.42% which is better than the value obtained for the logistic regression model. 

 
 

 precision (%) recall (%) f1_score (%) support 

class 0 98 96 97 3715 

class 1 49 69 57 228 

micro avg 94 94 94 3943 

macro avg 73 82 77 3943 

weighted avg 95 94 95 3943 

Table 6.2 Classification results for XGBoost using the original features group. 

 

 

 

Table 6.2 shows the classification results for XGBoost which are better than the values obtained for 

the logistic regression classifier. But the value of the precision which is calculated as the percentage 

of the results which are relevant is very low for class 1 at just 49%. Recall which is calculated as the 

percentage of the total relevant results which are correctly classified by the algorithm is also very 

low for class 1 at just 69%. 
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6.2.3 Using Deep Neural Network 

 

Using DNN, we evaluated the performance by calculating the F1 score and AUC. 

 

 
Figure 6.6: Confusion Matrix for Feed Forward Neural Network using the original features group 

 

 

We can observe from figure 6.6 that out of a total of 3,715 samples of class 0, the model has truly 

predicted 3,390 (TP) samples and falsely predicted 325 (FP) samples. For class 1, out of a total of 

228 samples the model has truly predicted 210 (TN) samples and falsely predicted 18 (FN) samples. 

 
Figure 6.7: ROC for Feed Forward Neural Network using the original features group. 
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Figure 6.7 shows the ROC for the feed forward neural network. The AUC value for this model is 

91.67%. 

 

 precision (%) recall (%) f1_score (%) support 

class 0 99 91 95 3715 

class 1 39 92 57 228 

micro avg 91 91 91 3943 

macro avg 69 92 75 3943 

weighted avg 96 91 93 3943 

Table 6.3: Classification results for Feed Forward Neural Network using original features group. 

 

 

 

Table 6.3 shows the classification results for the Feed Forward Neural Network, which are better 

compared to XGBoost and Logistic Regression. Although the accuracy improved, still the precision 

value for class 1 is low, just 39%. So, to improve the results we evaluated the machine learning 

models based on our global feature model i.e. the original features, their derivatives and the graph- 

based features. 
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6.3 Evaluation based on the Global Features Model 

 
6.3.1 Using Logistic Regression 

 
In this section, we present the performance results using the global features model with 

logistic regression. 

 
 

Figure 6.8: Confusion Matrix for Logistic Regression using the global features space. 

 

 

We can observe from figure 6.8 that out of a total of 7,431 samples of class 0, the model has truly 

predicted 6599 (TP) samples and falsely predicted 832 (FP) samples. For class 1, out of a total of 

455 samples, the model has truly predicted 354 (TN) samples and falsely predicted 101 (FN) 

samples. 
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Figure 6.9: ROC for Logistic Regression using the global features set 

 

 

Figure 6.9 shows the ROC for the logistic regression. The AUC value for this model evaluated to 

83.30%. Table 6.4 provides a summary of the performance indicators. 

 

 

 precision (%) recall (%) f1_score (%) support 

class 0 98 89 93 7431 

class 1 30 78 43 455 

micro avg 88 88 88 7886 

macro avg 64 83 68 7886 

weighted avg 95 88 90 7886 

Table 6.4: Classification results for logistic regression classifier using the global features set 

 

 

It can be observed that although the results obtained from logistic regression are relatively low, the 

obtained performance is an improvement over just using the original features and their derivatives. 

While the previous AUC and F1_score was 75.5% and 25%, respectively, by adding the graph 

metrics we now have AUC and F1_score for class 1 at 83.3% and 43%, respectively. 
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6.3.2 Using XGBoost 

 
In this section, we present the performance results obtained for XGboost when using the global 

features model. 

 
Figure 6.10: Confusion Matrix for XGBoost using the global features set 

 

 

 

We can observe from figure 6.10 that out of a total of 7,431 samples of class 0, the model has truly 

predicted 6,731 (TP) samples and falsely predicted 700 (FP) samples. For class 1, out of a total of 

455 samples, the model has truly predicted 425 (TN) samples and falsely predicted 30 (FN) samples. 
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Figure 6.11: ROC for XGBoost using the global features. 

 

 

Figure 6.11 and Table 6.5 show the ROC and a summary of the performance indicators for the 

XGBoost model. 

 

 precision (%) recall (%) f1_score (%) support 

class 0 100 91 95 7431 

class 1 38 93 54 455 

micro avg 91 91 91 7886 

macro avg 69 92 74 7886 

weighted avg 96 91 92 7886 

Table 6.5 Classification results for XGBoost using the global features set 

 

 

The classification results for XGBoost are better than the results obtained for the logistic regression 

classifier. It can also be noted that the obtained performance for XGBoost is an improvement over 

just using the original features and their derivatives. While the previous AUC was 82.42%, by adding 

the graph metrics we now have AUC at 91.99%. 
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6.3.3 Using Deep Neural Network 

 
In this section, we present the performance results obtained using deep neural network with 

the global features model. 

 

 
Figure 6.12: Confusion Matrix for Feed Forward Neural Network using the global features set.  

 

 

 

We can observe from figure 6.12 that out of a total of 7,431 samples of class 0, the model has truly 

predicted 7,372 (TP) samples and falsely predicted 59 (FP) samples. For class 1, out of a total of 455 

samples the model has truly predicted all the 455 samples as (TN) and there is not a single value that 

falls under the category of FN. 
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Figure 6.13: ROC for Feed Forward Neural Network using the global features set.  

 

 

Figure 6.13 and Table 6.6 show the ROC and summary of performance indicators for the feed 

forward neural network. The AUC value for this model is 99.60%, which is a net improvement over 

using only the original features and their derivatives, in which case the AUC was 91.67%. 

 

 
 precision (%) recall (%) f1_score (%) support 

class 0 100 99 100 7431 

class 1 89 100 94 455 

micro avg 99 99 99 7886 

macro avg 94 100 97 7886 

weighted avg 99 99 99 7886 

Table 6.6 Classification results for Feed Forward Neural Network using the global features set. 
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6.4 Summary 

 
In this chapter, we have demonstrated through experimentation the benefits of using graph- 

based metrics for SOC security events classification. Specifically, we have shown that extending the 

generic/default features using graph metrics helps improves the classification performance compared 

with simply using the generic/default features. We have shown also that using deep machine learning 

techniques such as DNN helps improves the classification accuracy compared with using shallow 

learners such as XGBoost or logistic regression. 

In the next chapter, we make concluding remarks and discuss our future work. 
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Chapter 7: Conclusions 

 
7.1 Contribution Summary 

 
Due to the unreliability of the existing technologies, SOC security events classification is 

conducted to a large extent through manual processes by security analysts. Manual processes are 

time- consuming and labor-intensive, and thereby, costly and error-prone. 

In the last few years, researchers have engaged in enabling the automation of SOC events by using 

machine learning techniques. These efforts are facing important hurdles related to sparsity, velocity 

and massiveness of the SOC data. This requires new feature engineering techniques to better capture 

the substance of the data and make more effective classification decision. 

To address the aforementioned challenges, we make 2 major contributions in the current thesis: 

 
1. Introducing a new feature engineering approach based on graph visualization and graph 

metrics. 

2. Validating the intuition that deep learners have the potential to improve the accuracy of SOC 

event classification over using shallow learners. 

 
 

The encouraging results obtained using deep neural network, indicates that the aforementioned 

feature engineering approach provides a pathway toward improving the accuracy of SOC event 

classification while tackling the growing volume, velocity, and variety of the monitored data. 

We started our research first by providing an overview of the alerts generated by the intrusion 

detection systems and its impact on the organizations. Then we discussed the related work and the 

dataset. Then we discussed feature engineering and feature selection techniques. Then we introduced 

the graph metrics and used them as new features. Finally, we trained the machine learning classifiers 
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on a real-world SOC dataset and compared the results of three classifiers, namely Logistic Regression, 

XGBoost and a deep learning classifier, namely Feed forward neural network. 

Furthermore, we tuned hyper-parameters for each classifier to achieve the best performance 

measures. We noticed that feed forward neural network achieved the best results among all classifiers 

used for the experiment. Since the number of alerts not notified to the clients in our dataset was 

relatively large, the other class became a minority class. To avoid the imbalanced class problem, we 

also applied the SMOTE data oversampling technique to evaluate our classifier. 

Through extensive experimentation, we can say that the added features play an essential role 

with other features in concluding and helped the model achieve 99% AUC. 

 
 

7.2 Perspectives and Future Work 

 
Our future work will consist of working on enhancing the accuracy of the proposed 

classification framework. We have worked on feed forward neural network with three hidden layers; 

the performance of the algorithm can be increased by using ensemble DNN network which is defined 

as many DNN’s trained separately instead of a single network. 

The future work will also include exploring more graph metrics to expand the graph-based 

feature set. This will help toward enhancing the accuracy of the proposed framework. 

SOC data is characterized by its huge size and great velocity. In the current thesis, we have 

focused only on the effectiveness of the event classification. In our future work, we will study the 

efficiency of the proposed approach by measuring the processing overhead and speed using existing 

performance benchmarks. If needed, we will explore techniques to address possible different 

performance bottleneck and ensure the scalability of the proposed framework. 

Our future work will also include extending our experimental evaluation by considering the 

second SOD dataset which consists of about 430 GB of event log data. 
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