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ABSTRACT

We study online active learning under the Bernstein condition for bounded general

losses and offer a solution for online variance estimation. Our suggested algorithm

is based on IWAL (Importance Weighted Active Learning) which utilizes the online

variance estimation technique to shrink the hypothesis set. For our algorithm, we

provide a fallback guarantee and prove that in the case that R(f ∗) is small, it will

converge faster than passive learning, where R(f ∗) is the risk of the best hypothesis

in the hypothesis class. Finally, in the special case of zero-one loss exponential

improvement is achieved in label complexity over passive learning.
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Chapter 1

Introduction

A good dataset is essential for solving a learning problem. Many supervised learning

algorithms, such as neural networks, require not only a labeled dataset but also a

large one. However, in some situations, we have access to cheap unlabeled data, but

labeling the data is expensive, time-consuming or difficult for some other reasons. For

example, assume the problem of annotating semi-scientific texts of a particular subject

on Wikipedia. One needs to hire an expert in the related majors for annotating the

data. Clearly, the cost of hiring experts would be high. Another example is learning

problems related to medical issues. Collecting data from patients is difficult and

can take up to years; therefore, one would like to make sure these samples are as

informative as possible. Usually, an analyst would like to solve their learning problem

as cheap and as fast as possible. A solution in such situations is to use unsupervised

learning. However, unsupervised learning algorithms have shown promising results

in specific problems; it is not possible to utilize them in many cases. In many cases,

unsupervised learning algorithms are usually built upon prior knowledge about the

data or the problem, which, if this knowledge is unavailable, then unsupervised learning

algorithms are not guaranteed to do well. Thus, we use active learning to label as few

samples as possible while utilizing the unlabeled samples.

Active learning is a subfield of semi-supervised learning. In semi-supervised

learning, the learning is provided with labeled and unlabeled samples. It is reasonable

to assume the labeled samples are more limited than the unlabeled samples. In many

semi-supervised learning problems, the labeled and unlabeled data is simply given to

the algorithm by Nature. In active learning, however, the algorithm can interactively

choose what unlabeled samples to label. The most crucial active learning algorithm’s

goal is to label as few samples as possible and speed up the learning process. To do so,
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the algorithm must query the most informative samples. Informative samples are the

most useful samples for the algorithm, which depends on how the algorithm works.

Some of these techniques will be discussed later in Chapter 3.

Assume the following realizable classification problem. The samples are on a 1-d

space. For any sample x ≤ C, it is labeled 0; otherwise, it is labeled 1. We aim to find

the best 1-d threshold function. It is shown that an active learning algorithm can find

a threshold function with low excess risk by only querying log(n) labels, where n is the

number of samples required by passive learning to find a threshold function as good

(Dasgupta, 2005). The idea for this algorithm is similar to the binary search algorithm.

However, it might not be possible to expand this idea to other learning problems, but

it shows how active learning can decrease the number of necessary labels to solve a

problem. Some of the most popular fields that have utilized active learning is natural

language processing (NLP), Computer Vision, and Biomedical Imaging. Many NLP

applications, such as Part-of-Speech Tagging or Named Entity Recognition, require

many labeled samples. More importantly, labeling these samples are expensive as it is

time-consuming, and only an expert can label the samples.

Active learning has been studied in many different settings. In this work, we first

study active learning under the Bernstein noise condition for general losses. Learning

under the Bernstein noise condition is well studied in passive learning, and it has

been shown that under the Bernstein noise condition, we can achieve better label

complexities since the noise is limited. We discuss under what conditions, our proposed

algorithm can achieve a label complexity smaller than passive learning. A similar

study has been done for zero-one loss in active learning framework (Huang et al.,

2015); in the last section of chapter 3, we recover their results by slightly modifying

our algorithm. Second, we introduce an algorithm that improves upon a fundamental

algorithm in active learning community, IWAL (Beygelzimer et al., 2009). Our second

algorithm is aimed for harder problems, while the first algorithm is intended to be

used for data with bounded noise.

Outline. In Chapter 2, we briefly discuss different settings of active learning

and some of the important works around each topic. In Chapter 3 is the main

contribution of this thesis. We propose an algorithm designed to benefit from the

Bernstein condition for bounded general losses. We also modify our algorithm for

zero-one loss to achieve up to exponential improvements in label complexity over

passive learning, under the Bernstein condition. Chapter 4 consists of experiments
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to compare our algorithm to passive learning and also, to study the behavior of our

algorithm in different cases. Finally, in Chapter 5 , we have discussion and possible

future work.
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Chapter 2

Background

An active learning algorithm interactively chooses whether to query the label of an

unlabeled sample from an oracle. A good active learner must query as few labels

as possible to learn. This technique is especially applicable to problems where an

enormous amount of unlabeled data exists, but labeling the data is expensive, time-

consuming, or, overall, difficult to label by a realistic oracle. Such problems are often

observed in natural language processing, computer vision, and many other important

areas.

Active learning has been studied in different settings. Two of the most important

settings are the pool-based and online (sequential) ones, where the main difference is

how the learner observes samples. In the pool-based setting, a learner has access to all

the unlabeled data at once. At every iteration, the learner picks one or a small batch

of samples from the sample set and asks the oracle to label them. It could be said

that pool-based active learning is inspired by the batch setting in passive learning.

Similarly, online active learning is inspired by online learning. In the online setting,

which is the focus of this study, the learner observes a sample at each round and right

away must decide whether to query the label or not. If the learner skips querying that

sample, she will never be able to request the oracle to label it again. Two kinds of

guarantees should be given for active learning algorithms: (i) an upper bound on the

generalization error of the returned hypothesis f̂ by the algorithm; (ii) an upper bound

on label complexity, i.e., the number of labels required to achieve generalization error

at most ε. Here the generalization error is the difference in the error of hypothesis

returned by the algorithm and the best hypothesis in the hypothesis set.

Another way to categorize active learning works is by their approach to the problem.

Three main ideas have been used by the active learning community: disagreement-
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based, margin-based, and cluster based. The margin-based line of work is mostly

dedicated to linear separators. For a short survey on these techniques, see (Balcan

and Urner, 2016).

Different approaches have been taken to tackle the pool-based setting. One of the

most significant techniques is exploiting cluster structure in the data. The general idea

is to separate the data into m clusters, where each cluster represents only one class.

Note that more than one cluster can represent a class. A good algorithm based on

this technique should be able to, first, break the data into adequately small clusters so

that each cluster is almost pure without making them too small. By pure, we mean

that most of the samples in each cluster are from one class. Second, the algorithm

should not need to know m in advance. Dasgupta and Hsu (2008) have proposed an

algorithm that can find such clusters. Their algorithm queries a batch of samples

at each round of learning, and then, in a bottom-up fashion, the algorithm scores

each cluster, and if necessary, the algorithm prunes the cluster to two smaller clusters.

This process is repeated until no cluster needs to be pruned, or the algorithm has

exhausted the labeling budget; where the labeling budget is the number of labels an

algorithm is allowed to query from the oracle. They show if there exists a clustering

of m clusters with error η, then the algorithm is guaranteed to find it after O(m/η)

label queries. Once the algorithm is finished, we can label each cluster by the label

associated with it. Finally, this labeled dataset could be used by any passive learning

algorithm that is robust to errors in a small dataset.

Another technique used to approach the pool-based setting is the disagreement

technique. This technique is used in both frameworks, online active learning and

pool-based active learning. Our contributions, discussed in Chapter 3, are based on

the disagreement technique and concern the online active learning setting. For this

reason, we discuss some of the disagreement-based works in online active learning

in more detail in Chapter 3. Most algorithms based on this technique, implicitly or

explicitly, maintain a version space. The version space is a subset of the hypothesis set

such that the algorithm believes any hypothesis in the version space has excess risk

lower than a certain amount, where the excess risk of a hypothesis f is the difference

of risk of the best hypothesis in the hypothesis set and the risk of f (Generalization

error, defined in the previous paragraph, is the excess risk of the returned hypothesis

by the algorithm). As the algorithm visits more labeled data, it intends to shrink

the version space. There are two common challenges in this line of work. First,

algorithms that maintain the version space explicitly are computationally intractable
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(Beygelzimer et al., 2009; Dasgupta, 2006). Second, these algorithms tend to be mellow

in their decisions, i.e, they query almost any sample if there are two hypotheses in

the version space disagreeing on its label (Beygelzimer et al., 2009, 2010; Dasgupta,

2006). Beygelzimer et al. (2010); Huang et al. (2015) have proposed algorithms that

avoid explicit use of a version space and that are computationally efficient considering

an ERM oracle. However, we suspect that it is possible to implement most of these

algorithm in a way to avoid explicit implementation of version space.

Tosh and Dasgupta (2017); Dasgupta (2006) have used the disagreement technique

in the pool-based setting. The work of Tosh and Dasgupta (2017) is of interest because

not only do they manage to propose an efficient algorithm, but their procedure for

querying a label is more aggressive than similar works, and most importantly, their

idea could inspire a faster algorithm in online active learning. In this subject, we refer

to an algorithm as aggressive, if this algorithm has a stingier policy for querying labels.

For example, if an algorithm would query a label only based on the outcome of two

hypotheses in the version space, this algorithm is mellow; however, if an algorithm

considers the outcome of all the hypotheses to decided whether it should query a

label, then most likely this algorithm will end up querying fewer labels and is more

aggressive. At every round, Tosh and Dasgupta (2017)’s algorithm asks the oracle to

label the sample with the maximum average disagreement among the hypotheses left

in the version space.

The disagreement based technique has been used in the online active learning

setting for many years (Balcan et al., 2006; Beygelzimer et al., 2010, 2009; Huang

et al., 2015; Cortes et al., 2019b,a). Balcan et al. (2006) proposed an algorithm

called A2, which was the first work to propose an algorithm that its only assumption

was that the samples are i.i.d instead of older works with stronger assumptions like

realizability. Later, Hanneke (2007) showed an upper bound on label complexity of

A2. A common phenomenon in these works is that the number of labels required to

achieve generalization error ε consists of at least two terms, first, a term that depends

on the generalization error ε. Second, a term that depends on R(f ∗), the risk of the

best hypothesis in the hypothesis set. To our knowledge, a general efficient algorithm

with good generalization bounds does not exist.

An important question to ask in active learning is ”when can active learning help?”

One way to answer this question is by studying the label complexity of a problem and

the importance of unlabeled data. Dasgupta (2006) studied the sample complexity

of an active learning problem which depends on (1) the desired accuracy ε; (2) the
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distribution over the input space; and (3) the target function f ∗ in the hypothesis

set H for problems with finite VC dimension or separable problems. The notion of

splitting index (ρ, ε, τ ), introduced in this work, is meant to capture the local geometry

of H around the f ∗. They prove that the sample complexity of an active learning

problem is Ω(1/ρ). More interestingly, they show, for a hypothesis set H with splitting

index (ρ, ε, τ), to learn a hypothesis with an error at most ε, any active learning

algorithm with ≤ 1/τ unlabeled samples needs to request at least 1/ρ labels. These

results show us that a lack of unlabeled samples increases the required amount of

labeled samples, but it does not show that the existence of unlabeled data can reduce

the required amount of labeled samples. This question is also well studied in passive

learning (Göpfert et al., 2019; Kääriäinen, 2005).

Active learning has been studied beyond binary classification. Agarwal (2013)

studies the problem of cost-sensitive multi-class classification. Multi-class classification

in the context of active learning was mostly studied with an empirical approach before

this work. Agarwal also looks at multi-class learning under a low noise condition.

Another area studied in active learning is the region-based setting. In this setting, the

input space is partitioned into regions. Cortes et al. (2019a) studies this setting and

proposes an algorithm based on IWAL, which learns a different hypothesis for each

region.

Another line of work in active learning is the study of active learning with surrogate

losses. Since optimization under zero-one loss is not possible efficiently, one could

approach this issue by using a surrogate loss to ease optimization’s computational

complexity. An extensive theoretical study of this subject is done by Hanneke (2014)

and ?. There are many other interesting problems studied in active learning that we

have not been covered here.
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Chapter 3

IWAL-σ

3.1 Introduction

In this chapter we study online active learning under the Bernstein condition for general,

bounded losses. The Bernstein condition (see Definition 3.2) is a low noise condition. It

has been shown that under the Bernstein condition fast rates of learning are achievable

for general losses in passive learning (Massart et al., 2006; van Erven et al., 2015).

Also, previous works in active learning such as Hanneke (2009); Koltchinskii (2010);

Huang et al. (2015) have studied active learning under an adaptation of the Tsybakov

noise condition for zero-one loss and achieved up to a logarithmic label complexity

in this special case. However, active learning under a low noise condition has not

been sufficiently investigated in the case of general losses. We show improvements in

label complexity in the case the risk of the best hypothesis in the hypothesis class is

small, for general losses and recover logarithmic label complexity for the special case

of zero-one loss. We use refined variance-based concentration inequalities (Freedman’s

inequality) in the design and analysis of our new algorithm, IWAL-σ, and leverage the

Bernstein condition to upper bound the variance. IWAL-σ is based on an algorithm

called IWAL proposed by Beygelzimer et al. (2009), who studied online active learning

for general, bounded losses under no assumption. However, IWAL is designed for

general losses, yet under no Bernstein’s condition assumptions the label complexity

obtained by IWAL is of the same order as the label complexity obtained by Beygelzimer

et al. (2010); Huang et al. (2015)’s algorithms even though these latter algorithms are

designed only to be used for zero-one loss.
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Contributions. Our work is centered around a new algorithm named IWAL-σ

designed to be used under the Bernstein condition and flexible to any bounded loss

function. We show how this condition can be used to be beneficial in some cases. We

prove both generalization bounds and label complexity results for IWAL-σ. Finally,

we study the special case of zero-one loss and achieve up to exponential improvements

in label complexity over passive learning under the Tsybakov noise condition.

The rest of the paper is structured as follows. We begin by covering some prelimi-

naries. Before diving into our contribution, we review the Importance Weighted Active

Learning algorithm (IWAL) since our work is based on IWAL. Next, we introduce

and analyze our algorithm, named IWAL-σ. In Section 3.6, we discuss an adapted

version of our algorithm for zero-one loss.

3.2 Preliminaries

In this section, we cover some of the frequently used notation in this paper. We

draw samples i.i.d. from an unknown and fixed distribution D over X × Y, where

X ⊆ Rd and Y are input and output spaces respectively. The class of hypotheses

is denoted by H, where, for each hypothesis f in H, f maps the input space to the

prediction space, Z ⊆ R. Let a loss function `(z, y) be a mapping from Z × Y to

[0, 1], where z ∈ Z and y ∈ Y. Denote by f ∗ = arg minf∈HR(f) the best hypothesis

in H, where R(f) = E(x,y)∼D[`(f(x), y)]. In our case of study, online active learning,

at the beginning of each round t, Nature provides the learner with a new sample xt

drawn from Dx, where Dx is the marginal distribution over the input space. Next, the

learner decides whether or not to query yt.

3.3 Review of IWAL

We review IWAL (see Algorithm 1), which is an important algorithm among the active

learning community and, most importantly in this work, our algorithm IWAL−σ is

based on IWAL. The main idea of IWAL is to maintain a good hypothesis set called

the effective version space, denoted by Ht, for each round t. At every round t, IWAL

maintains an effective version space of hypotheses Ht+1 for the next round, where

initially H1 = H. At the beginning of every round, the algorithm observes a sample

xt. Next, with some probability pt(xt), the algorithm will query the label yt, where
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pt(xt) is computed as

pt(xt) = max
f,g∈Ht

L(f(xt), g(xt)).

Here, L(f(x), g(x)) is the maximum possible disagreement value between two hypothe-

ses, f and g on point x ∈ X , defined as

L(f(x), g(x)) = max
y∈Y
|`(f(x), y)− `(g(x), y)|,

and ` has range in [0, 1]. After observing pt(xt), the algorithm draws a sample, Qi,

from a Bernoulli distribution with parameter pt(xt). The algorithm queries yt if and

only if Qi is 1. Whether the algorithm queries yt or not, it updates the importance

weighted loss of each hypothesis Lt(f), defined as

Lt(f) =
1

t

t∑
i=1

Qi

pi(xi)
`(f(xi), yi).

Finally, any f ∈ Ht that satisfies Lt(f) ≤ Lt(f̂t) + ∆t will be kept in Ht+1, where

∆t =
√

(8/t) ln(2t(t+ 1))|H|2/δ and f̂t = arg minf∈Ht Lt(f). The thresholding-based

elimination can be written as

Ht+1 = {f ∈ Ht : Lt(f) ≤ Lt(f̂t) + ∆t}.

Beygelzimer et al. (2009) prove that any hypothesis f kept in Ht has an excess risk

not worse than ∆t. We refer to ∆t as upper deviation term.

The original analysis of IWAL (Beygelzimer et al., 2009) was done only for losses

with bounded slope asymmetry (See Definition 4 in Beygelzimer et al. (2009)); later,

an improved analysis was proposed by Cortes et al. (2019b), which also relaxed the

algorithm to use bounded general losses. In Beygelzimer et al. (2009), the label

complexity bound grows as Kl · θIWAL, where Kl is the slope asymmetry and θIWAL is

the disagreement coefficient (See Definition 9 in Beygelzimer et al. (2009)). In Cortes

et al. (2019b)’s analysis, they used a different definition for disagreement coefficient θ,

(which is the same definition that we use, see Section 3.5 for the definition). They

improved the label complexity bound by replacing Kl · θIWAL by θ. Later, Zhang

(2019) proved that θ ≤ Kl · θIWAL.

Cortes et al. (2019b) also proposed IWAL-D, which is an improved version of IWAL.

They improve IWAL by reducing ∆t to 1+L(f,f̂t)
2

∆t, where L(f, g) = E[L(f(x), g(x))].
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The assumption that L(f, g) is accessible is reasonable since in active learning we can

assume that learner has access to a large unlabeled dataset for free. Thus, IWAL-D can

compute an estimate of L(f, g) prior to requesting any label. Even though IWAL-D’s

improvements might not be large, there is the question of whether it is possible to

define a better upper deviation bound to reduce the number of labels queried.

Algorithm 1: IWAL(H, δ, T )

H1 = H
for t ∈ [T ] do

Receive xt

Pt ← maxf,g∈Ht L(f(xt), g(xt)

Qt ← Bernoulli(Pt)

if Qt then

yt ← Label(xt)

end

f̂t ← arg minf∈Ht Lt(f)

∆t =
√

(8/t) ln(2t(t+ 1))|H|2/δ
Ht+1 = {∀f ∈ Ht : Lt(f) ≤ Lt(f̂t) + ∆t}

end

3.4 IWAL-σ

Inspired by previous works in passive learning and the agnostic active learning line

of work in active learning, we study the case of agnostic learning under a low noise

constraint. To study such problems, first, we must formally define the low noise

condition. One of the most commonly used notions of restricted noise in active

learning is an adaptation of the Tsybakov noise condition (Mammen and Tsybakov,

1999; Beygelzimer et al., 2010; Huang et al., 2015; Hanneke, 2014).

Definition 3.1 (Tsybakov noise condition). A learning problem D with hypothesis

class H satisfies the Tsybakov noise condition with exponent α ∈ [0, 1] and non zero

constant C if

P (f(X) 6= f ∗(X)) ≤ C(R(f)−R(f ∗))α for all f ∈ H.
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It is worth mentioning that in the original Tsybakov noise condition (Mammen and

Tsybakov, 1999), R(f ∗Bayes) is used instead of R(f ∗), where f ∗Bayes or Bayes optimal

learner is the best possible predictor function. Assuming f ∗Bayes ∈ H is a strong

assumption and hence not desired. This likely is one of the main reasons previous

works such as Huang et al. (2015); Beygelzimer et al. (2010) considered to use an

adapted version of the original definition of the Tsybakov noise condition. Here we use

the Bernstein condition; these two notions look quite similar and yet are fundamentally

different. One of the differences is that the Bernstein condition applies to general

losses; however, the commonly used Tsybakov noise condition is only applicable in

the case of zero-one loss.

Definition 3.2 (Bernstein condition). A learning problem D with hypothesis class H
satisfies the (C, β)−Bernstein condition if

Ex,y∼D[(`(f(x), y)− `(f ∗(x), y))2] ≤ C(R(f)−R(f ∗))β for all f ∈ H,

where C is a non zero constant and 0 ≤ β ≤ 1.

Our goal is to introduce an algorithm that benefits from the Bernstein condition.

To do so, we use the variance of importance weighted losses in our generalization

bound, which helps us to achieve a tighter bound. Before discussing the algorithm and

the details, let us review and redefine a few definitions. The probability of querying

some x at round t is denoted by

pt(x) = max
f,g∈Ht

L(f(x), g(x)); (3.1)

in particular, let Pt := pt(xt), where xt is the sample observed on round t. Let Qt(x)

be a sample from Bernoulli(pt(x)) and Qt be sample drawn from Bernoulli(Pt). Like

before, the importance weighted loss is defined as Lt(f) = 1
t

∑t
i=1

Qi
Pi
`(f(xi), yi). Most

importantly

Zf,f∗,t =


Qt
Pt

(`(f(xt), yt)− `(f ∗(xt), yi))− (R(f)−R(f ∗)) if f, g ∈ Ht

0 otherwise,

where Ht is the effective version space at round t. Conceptually, Ht is similar to the

effective version space explained before; however, the details of maintaining Ht in

IWAL-σ are different and will be covered after introducing a few more definitions.
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The upper deviation term ∆f,g,t is defined as

∆f,g,t =
1

t
max

(√
4σ2

f,g,t ln(
4 ln(t)

δ′t
), 6 ln(4 ln(t)/δ′t)

)
,

where f, g ∈ H, t is the round number, σ2
f,g,t =

∑t
i=1 V ar(Zf,g,i | Fi−1), and δ′t is the

confidence variable. Also, the history is denoted by Ft = {A1, A2, . . . , At}, where

Ai = {xi, yi, Qi}. The effective version space at the beginning of round t is denoted by

Ht = {f ∈ Ht−1 : Lt(f) ≤ Lt(f̂t) + ∆f,f̂t,t
},

where f̂t = arg minf∈Ht Lt(f).

In the rest of this section, we first (in Lemmas 3.1 and 3.2) prove a generalization

bound. Next we discuss why we cannot use ∆f,g,t directly in IWAL-σ, suggest an

alternative, ∆̂f,g,t, and then rewrite the results of Lemmas 3.1 and 3.2 based on ∆̂f,g,t.

Finally, we study label complexity.

Lemma 3.1. For all probability distributions D, for all hypothesis classes H, for all

δ > 0, with probability at least 1− δ, for all T and any f, g ∈ HT ,

|LT (f)− LT (g)−R(f) +R(g)| ≤ ∆f,g,T ,

where ∆f,g,T = 1
T

max
(√

4σ2
f,g,T ln(4 ln(T )

δ′T
), 6 ln

(
4 ln(T )
δ′T

))
, δ′T = δ

|H|2T (T+1)
, and σ2

f,g,T =∑T
t=1 V ar(Zf,g,t | Ft−1).

Proof. In this proof, we fix f, g ∈ H and for the sake of readability, we summarize

Zf,g,t by Zt. Then by the law of total expectation, we can write

E [Zt | Ft−1] = E
[
1 [f, g ∈ Ht]

(
Qt

Pt
(`(f(xt), yt)− `(g(xt), yt))−R(f) +R(g)

)
| Ft−1

]
= E [1 [f, g ∈ Ht] (`(f(xt), yt)− `(g(xt), yt)−R(f) +R(g)) | Ft−1]

= 1 [f, g ∈ Ht]E [(`(f(xt), yt)− `(g(xt), yt)) | Ft−1]−R(f) +R(g) = 0

Therefore, Z1, Z2, . . . is a martingale difference sequence for any fixed f, g. We can use

Freedman’s inequality to bound the sum of Zt, hence Zt ≤ 2 where the loss function
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is ranged in [0, 1]. Also note that

1

T

T∑
t=1

Zt =
1

T

T∑
t=1

1 [f, g ∈ Ht]

(
Qt

Pt
(`(f(xt), yt)− `(g(xt), yt))−R(f) +R(g)

)

=
1

T

T∑
t=1

(
Qt

Pt
(`(f(xt), yt)− `(g(xt), yt))−R(f) +R(g)

)
= LT (f)− LT (g)− (R(f)−R(g))

where the second equality holds if f, g ∈ HT . We like to bound Pr[|
∑T

t=1 Zt| ≥ T∆f,g,T ]

for a fixed T , f and g. By applying Freedman’s inequality (see Lemma A.1) from

Kakade and Tewari (2009), we have

Pr

[
T∑
t=1

Zt ≥ max

(
2σf,g,t

√
ln(

4 ln(T )

δ′T
), 6 ln(

4 ln(T )

δ′T
)

)]
≤ δ′T .

Taking a union bound over all f, g ∈ H and another union bound over T completes

the proof.

Lemma 3.2. For any probability distribution D and hypothesis class H, let f ∗ ∈ H
be a minimizer of the loss function with respect to D. For any δ > 0, with probability

at least 1− δ: (i) f ∗ ∈ Ht for any t, and (ii) R(f̂t)−R(f ∗) ≤ ∆f∗,f̂t,t
for any t ≥ 2.

Proof. Similar to Beygelzimer et al. (2009) we use mathematical induction on t to

prove the first part. The base case trivially holds for t = 1, 2 hence H1 = H2 = H and

f ∗ ∈ H, this holds since shrinking the effective version space can be started at second

round. We assume that this claim holds for t = T for some T > 2. We are going to

prove it for t = T + 1. Using Lemma 3.1, where f = f ∗, we can write

Lt(f
∗)− Lt(f̂t) ≤ ∆f∗,f̂t,t

+R(f ∗)−R(f̂t) ≤ ∆f∗,f̂t,t
, (3.2)

where the first inequality holds because of Lemma 3.1 with the second inequality holds

because R(f ∗)−R(f̂t) is non-positive. By moving Lt(f̂t) we can write

Lt(f
∗) ≤ Lt(f̂t) + ∆f∗,f̂t,t

. (3.3)

This proves the algorithm keeps f ∗ in Ht+1. To prove the second part, we use Lemma
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3.1 again.

R(f̂t)−R(f ∗) ≤ ∆f∗,f̂t,t
− Lt(f ∗) + Lt(f̂t) ≤ ∆f∗,f̂t,t

where the second inequality holds because Lt(f
∗) ≥ Lt(f̂t).

While Lemma 3.2 provides a generalization bound, the bound is not descriptive

enough since it depends on σ2
f∗,f̂t,t

, which might be small or large. Thus, to easily

interpret the generalization bound, we need to upper bound σ2
f∗,f̂t,t

, which will be

studied in Lemma 3.3. Besides not being easily interpretable, we do not know σ2
f,g,t in

advance, and so it is not possible to directly use ∆f,g,t in an algorithm. Therefore,

we need to estimate the variance of Zf,g,t. To do so, we use Lemma 3.4. We start by

bounding σ2
f,f∗,T , after which we approach the second problem.

Lemma 3.3. Under the assumption that the (C, β)-Bernstein condition holds, for

any f ∈ H, σ2
f,f∗,T ≤ T

√
C(R(f)−R(f ∗))β.

Proof. Recall that,

σ2
f,f∗,T =

T∑
t=1

V ar(Zf,f∗,t | Ft−1)

Zf,f∗,t =


Qt
Pt

(`(f(xt), yt)− `(f ∗(xt), yi))− (R(f)−R(f ∗)) if f, g ∈ Ht

0 otherwise
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By definition, we have

σ2
f,f∗,T =

T∑
t=1

(
E
[
Z2
f,f∗,t | Ft−1

]
− E

[
Z2
f,f∗,t | Ft−1

]2)
≤

T∑
t=1

E
[
Z2
f,f∗,t | Ft−1

]
=

T∑
t=1

E

[
1 [f, f ∗ ∈ Ht]

(
Qt

Pt
(`(f(xt), yt)− `(f ∗(xt), yt))− (R(f)−R(f ∗))

)2

| Ft−1

]

=
T∑
t=1

1 [f, f ∗ ∈ Ht]E

[(
Qt

Pt
(`(f(xt), yt)− `(f ∗(xt), yt))− (R(f)−R(f ∗))

)2

| Ft−1

]
(♠)
=

T∑
t=1

1 [f, f ∗ ∈ Ht]

(
E

[(
Qt

Pt
(`(f(xt), yt)− `(f ∗(xt), yt))

)2

| Ft−1

]
− (R(f)−R(f ∗))2

)

≤
T∑
t=1

1 [f, f ∗ ∈ Ht]E

[(
Qt

Pt
(`(f(xt), yt)− `(f ∗(xt), yt))

)2

| Ft−1

]
(♥)
≤

T∑
t=1

1 [f, f ∗ ∈ Ht]E
[
Qt

Pt
|`(f(xt), yt)− `(f ∗(xt), yt)| | Ft−1

]
(♣)
=

T∑
t=1

1 [f, f ∗ ∈ Ht]E [|`(f(xt), yt)− `(f ∗(xt), yt)| | Ft−1]

=
T∑
t=1

1 [f, f ∗ ∈ Ht]E
[√

(`(f(xt), yt)− `(f ∗(xt), yt))2 | Ft−1
]

≤
T∑
t=1

1 [f, f ∗ ∈ Ht]
√

E [(`(f(xt), yt)− `(f ∗(xt), yt))2 | Ft−1]

≤
T∑
t=1

1 [f, f ∗ ∈ Ht]
√
C(R(f)−R(f ∗))β = T

√
C(R(f)−R(f ∗))β.

We briefly explain why the non-trivial steps above hold. First, we argue why each

of equalities/inequalities marked by (♠), (♥), and (♣) holds; these all hold “point-

wise” (for each t ∈ [T ]), and so we consider a fixed t. In the case that 1 [f, f ∗ ∈ Ht]

is zero, they all hold as then the LHS and RHS for each is equal to zero. There-

fore, we now consider the case that f, f ∗ ∈ Ht. In this case,
(♠)
= holds because

E
[
Qt
Pt

(`(f(xt), yt)− `(f ∗(xt), yt)) | Ft−1
]

= R(f) − R(f ∗); next,
(♥)
≤ holds because

Pt ≥ (`(f(xt), yt)− `(f ∗(xt), yt)); last,
(♣)
= holds by taking the conditional expectation
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of Qt. The line after that follows by applying Jensen’s inequality, and the final line

uses the Bernstein condition.

By substituting σ2
f̂T ,f∗,T

by T

√
C(R(f̂T )−R(f ∗))β into ∆f∗,f̂T ,T

and using part

(ii) of Lemma 3.2, we can finally see that

R(f̂T )−R(f ∗) ≤ O

(
1

T

√
C ln(4 ln(T )/δ′T )

)2/(4−β)

.

Next, we attempt to estimate σ2
f,g,t by Lemma 3.4 below in order to obtain a

new, empirical version of ∆f,g,T , later denoted by ∆̂f,g,T . This lemma estimates σ2
f,g,t

by V̂f,g,t, where V̂f,g,t is an observable estimate of σ2
f,g,t (see (3.7) for details). Given

V̂f,g,t, we estimate ∆f,g,t by ∆̂f,g,t and use ∆̂f,g,t in IWAL-σ. Lemma 3.4 is inspired by

Lemma 3 from Peel et al. (2013); however, we had to make changes to their result to

utilize it in our algorithm.

Lemma 3.4. Let {Xt}t∈[T/2] be a stochastic process adapted to a filtration {Gt}t∈[T/2],
where, for each t ∈ {0, 1, . . . , T/2− 1}, X2t+1 and X2t+2 are conditionally i.i.d. given

X1, . . . , X2t (i.e., given G2t). We use the notation gGt in order to indicate a random

function that, ignoring its argument, is Gt-measurable; therefore, such a function is

fixed after time t. Suppose {g{Gt}}t∈[T ] is a family of functions which take their values

in [0, 1/2]; then for all 0 < δσ ≤ 1

Pr

[
|V̂T − VT | ≥

√
T

4
ln

(
2

δσ

)]
≤ δσ

where

VT =

T/2∑
t=1

V ar
[
g{G2t−2}(X2t−1) + g{G2t−2}(X2t) | G2t−2

]
and

V̂T =

T/2∑
t=1

(g{G2t−2}(X2t−1)− g{G2t−2}(X2t))
2. (3.4)

Proof. First, we observe that

V ar
[
g{G2t−2}(X2t−1) + g{G2t−2}(X2t) | G2t−2

]
= 2V ar

[
g{G2t−2}(X2t) | G2t−2

]
. (3.5)
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Next, we turn to forming an estimator for these conditional variances. Define Mt as

Mt := (g{G2t−2}(X2t−1) + g{G2t−2}(X2t))
2.

Note that Mt is G2t-measurable. Next, define Bt as

Bt := Mt − E [Mt | G2t−2] .

Next, we observe that the sequence {Bt}t≥1 is a martingale difference sequence. To

see this clearly, we define G ′t := G2t for each t ∈ [T/2]. Then we can re-express Mt and

Bt as Mt = (g{G′t−1}(X2t−1) + g{G′t−1}(X2t))
2 and Bt = Mt − E

[
Mt | G ′t−1

]
respectively,

each of which is G ′t-measurable. Finally, since E
[
Bt | G ′t−1

]
= 0, the sequence {Bt}t≥1

is indeed a martingale difference sequence.

Since each function in the family is [0, 1/2]-valued, we have Bt ∈ [−1/2, 1/2].

Also, observe that the sequence
{∑T

t=1Bt

}
T≥1

is a martingale. Applying the Azuma-

Hoeffding inequality on this sequence yields

Pr

T/2∑
t=1

Bt ≥ ε

 ≤ 2 exp

(
−2ε2

T/2

)

Finally observe that

E [Mt|G2t−2] = E
[
(g{G2t−2}(X2t−1) + g{G2t−2}(X2t))

2 | G2t−2
]

= 2V ar
[
g{G2t−2}(X2t−1) | G2t−2

]
,

matching (3.5). Hence we have

Pr

|V̂T − T/2∑
t=1

2V ar
[
g{G2t−2}(X2t−1) | G2t−2

]
| ≥ ε

 ≤ 2 exp

(
−2ε2

T/2

)
.

The proof is concluded by setting ε =

√
T
4

ln
(

2
δσT

)
.

To use Lemma 3.4 we need to clarify what are Xt and g{Gt} in our case. Let At be
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H2t+1

H2t+2A2t+2

A2t+1

∆̂f,f̂2t,2t

L2t(f)

V̂f,f̂2t,2t
p1, . . . , p2t−2

x1, . . . , x2t

A1, . . . , A2t

Figure 3.1: Dependency Graph

Xt (in the lemma). We set

g{G2t−2}(X2t−1) = g{F2t−2}(A2t−1)

= 1 [f, g ∈ H2t−1]

(
Q2t−1(x2t−1)

4p2t−1(x2t−1)
(`(f(x2t−1), y2t−1)−`(g(x2t−1), y2t−1))

− 1

4
(R(f)−R(g))

)
where f and g are fixed functions from H. We have to make sure that A2t+1 and A2t+2

only depend on A1, A2, . . . , A2t. Figure 3.1 demonstrates dependencies of A2t+1 and

A2t+2. As shown in the figure, A2t+1 and A2t+2 depend on A1, A2, . . . , A2t. So, in our

case we can write VT as

Vf,g,T = 16

T/2∑
t=1

V ar [Zf,g,2t−1/4 + Zf,g,2t/4|F2t−2] = 16

T/2∑
t=1

2V ar [Zf,g,2t−1/4|F2t−2]

(3.6)
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and, for even T , we can write V̂T as

V̂f,g,T = 16

T/2∑
t=1

1 [f, g ∈ H2t−1]

(
Q2t−1(x2t−1)

4p2t−1(x2t−1)
`f−g(x2t−1, y2t−1)−

Q2t(x2t)

4p2t(x2t)
`f−g(x2t, y2t)

)2

,

(3.7)

where we use the fact that H2t−1 = H2t and use the notation `f−g(x, y) = `(f(x), y)−
`(g(x), y). Denote by ∆̂f,f̂T ,T

an adapted version of ∆f,f̂T ,T
by replacing σ2

f,g,T with

V̂f,g,T + 16
√

(T/4) ln(2/δ). In the next result, since the claim is only for f, g ∈ HT ,

the indicator 1 [f, g ∈ H2t−1] in (3.7) is always one and hence can be ignored.

Corollary 3.1. For all probability distributions D, for all hypothesis classes H, for

all δ > 0, with probability at least 1− δ, for all T and any f, g ∈ HT ,

|LT (f)− LT (g)−R(f) +R(g)| ≤ ∆̂f,g,T

where

∆̂f,g,T =
1

T
max

2

√
V̂f,g,T + 16

√
T

4
ln(2/δσT )

√
ln(

4 ln(T )

δ′T
), 6 ln(

4 ln(T )

δ′T
)


and δ′T = δσT = δ

2|H|2T (T+1)
.

Proof. The proof is the same as Lemma 3.1 except that we replace σ2
f,g,T by V̂f,g,T +

16
√

T
4

ln(2/δσT ). Since V̂f,g,T + 16
√

T
4

ln(2/δσT ) is larger than σ2
f,g,T , the proof is still

valid.

Theorem 3.1. For any probability distribution D and hypothesis class H, let f ∗ ∈ H
be a minimizer of the loss function with respect to D. For any δ > 0, with probability

at least 1 − δ: (i) f ∗ ∈ Ht for any t, and (ii) R(f̂t) − R(f ∗) ≤ ∆̂f∗,f̂t,t
for any

t ≥ 2 (iii) for any f ∈ Ht and t ≥ 2 we have R(f) − R(f ∗) ≤ ∆̃t + 2∆̃t−1, where

∆̃t = maxf∈Ht ∆̂f,f̂t,t
.

Proof. The proof for (i) and (ii) are the same as the proof of Lemma 3.2 but using

Corollary 3.1’s results instead of Lemma 3.1’s results. To prove the third part, first

observe that from Corollary 3.1 for any f ∈ Ht we can write

Lt−1(f̂t)− Lt−1(f)−R(f̂t) +R(f) ≤ ∆̂f,f̂t,t−1 ⇔

R(f)−R(f̂t) ≤ ∆̂f,f̂t,t−1 − Lt−1(f̂t) + Lt−1(f). (3.8)
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Next, we bound ∆̂f,f̂t,t−1 by ∆̃t−1 and Lt−1(f)−Lt−1(f̂t) by ∆̃t−1 since f, f̂t ∈ Ht and

we get

R(f)−R(f̂t) ≤ ∆̂f,f̂t,t−1 + ∆̂f,f̂t,t−1 = 2∆̃t−1. (3.9)

By putting together (3.9) and the fact that R(f̂t)−R(f ∗) ≤ ∆̃t, we have

R(f)−R(f ∗) = (R(f̂t)−R(f ∗)) + (R(f)−R(f̂t)) ≤ ∆̃t + 2∆̃t−1.

Corollary 3.1 and Theorem 3.1 together prove a generalization bound with respect

to ∆̂f∗,f̂T ,T
. The next corollary demonstrates the generalization bound with respect

to only δ and T .

Corollary 3.2. Under the assumption that the Bernstein condition holds, R(f̂T )−

R(f ∗) ≤ O
(

1
T

√
C ln(4 ln(T )/δ′T )

)2/(4−β)
.

Proof. First, we know that

R(f̂T )−R(f ∗) ≤ ∆̂f∗,f̂T ,T
. (3.10)

Next, we upper bound V̂f∗,f̂T ,T which is used in ∆̂f∗,f̂T ,T
with

V̂f∗,f̂T ,T ≤ σ2
f,g,T + 16

√
T

4
ln(2/δσT )

≤ T

√
C(R(f̂T )−R(f ∗))β + 16

√
T

4
ln(2/δσT ), (3.11)

where the first inequality is a direct application of Lemma 3.4 and the second inequality

is derived by upper bounding σ2
f,g,T ≤ T

√
C(R(f̂T )−R(f ∗))β. By upper bounding

V̂f∗,f̂T ,T in ∆̂f∗,f̂T ,T
in (3.10), we get the following:

R(f̂T )−R(f ∗)

≤ 1

T
max

2

√
T

√
C(R(f̂T )−R(f ∗))β + 32

√
T

4
ln(2/δσT )

√
ln(

4 ln(T )

δ′T
), 6 ln

(
4 ln(T )

δ′T

) .
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To solve this equation, first we use√
T

√
C(R(f̂T )−R(f ∗))β + 32

√
T

4
ln(2/δσT ) ≤2 max(

√
T

√
C(R(f̂T )−R(f ∗))β,√

32

√
T

4
ln(2/δσT ))

and then solve the equation. Since the results based on the term

√
T

√
C(R(f̂T )−R(f ∗))β

is larger for any 0 ≤ β ≤ 1 we avoid the max in the final result.

3.5 Label Complexity

As we discussed earlier, to propose an active learning algorithm, we should provide

a generalization bound and an upper bound on the number of labels queried by the

algorithm. In this section, we discuss the latter. Before upper bounding the number

of queried samples, we have to introduce the notion of disagreement coefficient. The

disagreement coefficient, denoted by θ, is the infimal value that satisfies the following

for any r:

Ex∼D[ max
f∈B(f∗,r)

L(f(x), f ∗(x))] ≤ θr,

where

B(f, r) := {g ∈ H : D(f, g) ≤ r}

and

D(f, g) := E [|`(f(x), y)− `(g(x), y)|] .

The disagreement coefficient is a commonly used notion among the active learning

community. It was first introduced by Hanneke (2007). Later Beygelzimer et al.

(2009) has extended this definition for general losses. This particular definition used

in this work was recently introduced by Cortes et al. (2019a). Hanneke (2007, 2014)

has bounded the value of θ is different cases such as linear separators under uniform

distribution, and more generally, the value of θ for zero-one loss. Throughout this

section δσT , δ′T , and δ are used as confidence variables and are defined as δTσ = δ′T =
δ

2|H|2T (T+1)
, where δ is the confidence variable used in Corollary 3.1. We show two

different upper bounds for label complexity. First, in Corollary 3.4 we provide a

fallback guarantee by showing that the label complexity is not worse than θ/ε, where ε
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is the generalization bound. This shows that our algorithm is not more expensive than

passive learning techniques in terms of label complexity. Unfortunately, we suspect it

is not possible to improve this result further in general (Hanneke and Yang, 2010),

and thus we focus on two special cases. First, we focus on situations where R(f ∗) is

small and prove in such cases it is possible to improve the label complexity down to

θ/
√
ε. Second, we study the case of zero-one loss in Section 3.6, in which case the

Bernstein condition becomes the Tsybakov noise condition, and decrease the label

complexity down to log(θ/ε), a result that was previously achieved by Hanneke (2009);

Koltchinskii (2010); Huang et al. (2015).

Theorem 3.2. Under the assumption that the Bernstein condition holds, for any

δ > 0, with probability 1− δ, for any t ≥ 2, the following holds for the label requesting

indicator Pt of IWAL-σ:

Ex∼Dx [Pt | Ft−1] ≤ 2θrt,

where rt =
√
C(∆̃t + 2∆̃t−1)β and ∆̃t = maxf∈Ht(∆̂f,f∗,t).

Proof. First we start by bounding D(f, f ∗) for any f ∈ Ht:

E [|`(f(x), y)− `(f ∗(x), y)|] = E
[√

(`(f(x), y)− `(f ∗(x), y))2
]

(3.12)

≤
√
E [(`(f(x), y)− `(f ∗(x), y))2] (3.13)

≤
√
C(R(f)−R(f ∗))β ≤

√
C(∆̃t + 2∆̃t−1)β (3.14)

where in the first inequality we used Jensen’s inequality. To derive the second inequality,

the Bernstein condition is used, and the last inequality holds with high probability

1− δ for all f ∈ Ht and t ≥ 2 simultaneously due to Theorem 3.1. Second, we prove

that Ht ⊆ B(f ∗, rt) with probability 1 − δ for any t ≥ 2. For a fixed f, t ≥ 2 and

δ′t = δ
|H|t(t+1)

we can write this as

P (f ∈ Ht ∧ f /∈ B(f ∗, rt)) =P (f ∈ Ht ∧D(f, f ∗) ≥ rt)

=P

(
f ∈ Ht ∧D(f, f ∗) ≥

√
C(∆̃t + 2∆̃t−1)β

)
≤P

(
f ∈ Ht ∧R(f)−R(f ∗) ≥ ∆̃t + 2∆̃t−1

)
≤ δ′t

where the first two equalities hold by definition and the first inequality holds due to

(3.14) and finally Theorem 3.1 is used. By taking a union bound over all f ∈ Ht we
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have

P (∃t ≥ 2,Ht 6⊆ B(f ∗, rt)) ≤ δ.

Next, we can write

E[Pt | Ft−1] = E[ max
f,g∈Ht

L(f(x), g(x)) | Ft−1] (3.15)

≤ 2E[max
f∈Ht
L(f(x), f ∗(x)) | Ft−1] (3.16)

≤ 2E[ max
f∈B(f∗,rt)

L(f(x), f ∗(x)) | Ft−1] ≤ 2θrt. (3.17)

The following shows why the first inequality holds.

max
f,g∈Ht

L(f(x), g(x)) = max
f,g∈Ht

max
y∈Y
|`(f(x), y)− `(g(x), y)|

= max
f,g∈Ht

max
y∈Y
|`(f(x), y)− `(f ∗(x), y) + `(f ∗(x), y)− `(g(x), y)|

≤ max
f∈Ht

max
y∈Y
|`(f(x), y)− `(f ∗(x), y)|+ max

f∈Ht
max
y∈Y
|`(f ∗(x), y)− `(f(x), y)|

≤ 2 max
f∈Ht
L(f(x), f ∗(x)).

Next, because ∆̃t depends on the variance, we should rewrite it in a form that

does not depend on variance or excess risk. We already have all the tools to do that.

Corollary 3.3. Under the assumption that the Bernstein condition holds,

∆̃T ≤ O


C1/4

√
ln( ln(T )

δ′T
)

√
T

1+ β
4−β

+
ln(2/δσT )1/4

T 3/4

√
ln(

ln(T )

δ′T
)

 ,

where ∆̃T = maxf∈HT (∆̂f,f∗,T )).
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Proof. Observe that

∆̃T = max
f∈HT

∆̂f,f∗,T = max
f∈HT

2
√
V̂f,f∗,T + 16

√
ln(2/δσT )(T/4)

√
ln(4 ln(T )

δ′T
)

T

≤ max
f∈HT

2
√
σ2
f,f∗,T + 32

√
ln(2/δσT )(T/4)

√
ln(4 ln(T )

δ′T
)

T

≤ max
f∈HT

2
√
T
√
C(R(f)−R(f ∗))β + 32

√
ln(2/δσT )(T/4)

√
ln(4 ln(T )

δ′
)

T

≤ O


√
T

√
C
(√

C ln(4 ln(T )/δ′T )

T

)2β/(4−β)
+
√
T ln(1/δσT )

√
ln( ln(T )

δ′T
)

T


≤ O


C1/2 ln( ln(T )

δ′T
)

T

 2
4−β

+
ln(2/δσT )1/4

T 3/4

√
ln(

ln(T )

δ′T
)

 ,

where in the first inequality, we upper bounded V̂f,f∗,T by σ2
f,f∗,T + 16

√
ln(2/δσT )(T/4),

since the result of Lemma 3.4 is two-sided. The second inequality holds by Lemma

3.3, and the third inequality by the bound on excess risk.

The next corollary implies a label complexity fallback guarantee.

Corollary 3.4. The number of labels queried by IWAL-σ after T rounds is

T∑
t =1

E[Pt | Ft−1] =
T∑
t=1

2θC1/2Õ

( 1√
t

(
C1/4

√
ln(

ln(t)

δ′t
)

)) β
4−β


= 2θC

1
2
+ β

8−2β Õ
(
T 1− β

4−β

)
Using the above result and Corollary 3.2 we can see that the label complexity of

IWAL-σ is Õ
(
θC

1
2
+ β

8−2β ε−(2−β)
)

; this rate matches (with respect to ε) the sample

complexity of passive learning under the same assumptions (Massart et al., 2006)

ignoring θ. Next, by rewriting Theorem 3.2 we provide a different upper bound that

depends on R(f ∗).

Theorem 3.3. Under the assumption that the Bernstein condition holds, for any

δ > 0, with probability 1− δ, for all t ∈ [T ], the following holds for the label requesting
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indicator Pt of IWAL-σ: Ex∼Dx [Pt | Ft−1] ≤ 2θrt, where rt = 2R(f ∗) + ∆̃t + 2∆̃t−1

and ∆̃t = maxf∈Ht(∆̂f,f∗,t).

Proof. First, we start by bounding D(f, f ∗), where f ∈ Ht.

E [|`(f(x), y)− `(f ∗(x), y)|] ≤ E [`(f(x), y) + `(f ∗(x), y)] = R(f) +R(f ∗) (3.18)

≤ 2R(f ∗) + ∆̃t + 2∆̃t−1, (3.19)

where in the last inequality Theorem 3.1 is used and holds with high probability 1− δ.
Next, we can write

E[Pt | Ft−1] = E[ max
f,g∈Ht

L(f(x), g(x)) | Ft−1] ≤ 2E[max
f∈Ht
L(f(x), f ∗(x)) | Ft−1]

≤ 2E[ max
f∈B(f∗,rt)

L(f(x), f ∗(x)) | Ft−1] ≤ 2θrt.

Corollary 3.5. The number of labels queried by IWAL-σ after T rounds is

T∑
t=1

E[Pt | Ft−1] ≤
T∑
t=1

2θ(2R(f ∗) + ∆̃t + 2∆̃t−1) ≤ 2θ(2TR(f ∗) + Õ
(
T 1− 2

4−β

)
),

where in the last inequality we used Corollary 3.3, then solved the integration.

Corollary 3.5 shows that the number of labels requested could be improved down

to O(θT 1− 2
4−β ) when R(f ∗) ≤ O(T−

2
4−β ). When R(f ∗) is adequately small, the label
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complexity of IWAL-σ is Õ
(
θε−

2−β
2

)
.

Algorithm 2: IWAL-σ(H, δ, T )

H1 = H
for t ∈ [T ] do

δσt = δ′t = δ
2|H|2t(t+1)

Receive xt

Pt ← maxf,g∈Ht L(f(xt), g(xt)

Sample Qt from Bernoulli(Pt)

if Qt then yt ← Label(xt)

if t mod 2 == 0 then

f̂t ← arg minf∈Ht Lt(f)

for f ∈ Ht do

V̂f,f̂t,t =

t/2−1∑
i=0

[
Q2i+1(x2i+1)

p2i+1(x2i+1)

(
`(f(x2i+1), y2i+1)− `(f̂t(x2i+1), y2i+1)

)
− Q2i+2(x2i+2)

p2i+2(x2i+2)

(
`(f(x2i+2), y2i+2)− `(f̂t(x2i+2), y2i+2)

)]2

∆̂f,f̂t,t
=

2

√(
V̂f,f̂t,t

+16
√

t
4
ln(1/δσt )

)
ln(4 ln(t)/δ′t)

t

Ht+1 ← {{f}+Ht+1 : Lt(f) ≤ Lt(f̂t) + ∆̂f,f̂t,t
}

end

end

end

3.6 Special case of zero-one loss

In this section, we focus on the zero-one loss. This loss has a variety of applications

since it is a natural loss to use for classification. Besides its applications, our particular

interest in zero-one loss is its specific characteristics whose utilization enables us

to achieve an exponential improvement over passive learning and recover known

exponential improvements of label complexity achieved by Hanneke (2009); Koltchinskii

(2010); Huang et al. (2015); however, we manage to achieve this result by slightly
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modifying an algorithm for general losses.

The first important characteristic of zero-one loss is that estimating σ2
f,g,t does not

require labeled samples. It is because for zero-one loss, as long as the predictions by

f, g ∈ H are not the same the loss difference will be 1; it is 0 otherwise. Therefore, we

do not need the labels to estimate σ2
f,g,t. Consequently, an algorithm can look at as

many samples as necessary to estimate V ar(Zf,g,t | Ft−1) without labeling any of the

samples. To estimate V ar(Zf,g,t | Ft−1) for a fixed f , g, and t we utilize Theorem 4 of

Maurer and Pontil (2009) using t i.i.d. samples (which are the same first t samples

given to the algorithm by Nature). However, a sample could be reused for any f, g

and t, and thus, at any round t, we can use the already seen t samples to estimate

V ar(Zf,g,t | Ft−1) for any f and g.

The second feature of zero-one loss is that the Bernstein condition can be written in

form of the Tsybakov noise condition, since for zero-one loss (`(f(x), y)−`(g(x), y))2 =

1 [`(f(x), y) 6= `(g(x), y)].

Definition 3.3 (Tsybakov noise condition). A learning problem D with hypothesis

class H satisfies the Tsybakov noise condition with exponent α ∈ [0, 1] and non zero

constant C if

P (f(X) 6= f ∗(X)) ≤ C(R(f)−R(f ∗))α for all f ∈ H.

We use a different technique to estimate the variance in this section; however,

in general, we use a similar analysis. Denote by Uf,g,t = 1 [f(xt) 6= g(xt)], and

Ûf,g,T = 1
T

∑T
t=1 Uf,g,t. Finally, let µf,g = E[1 [f(X) 6= g(X)]]. First, we estimate

σ2
f,g,T by an empirical quantity denoted by σ̂2

f,g,T , such that with high probability,

σ2
f,g,T ≤ σ̂2

f,g,T + ε, where ε is the estimation error.

To estimate σ2
f,g,T , first, we show that Var[Zf,g,t|Ft−1] ≤ Pr (f(X) 6= g(X)), using

the fact that in the case of zero-one loss, Pt ∈ {0, 1} and Qt = Pt. We conclude that

σ2
f,g,T ≤ T · Pr (f(X) 6= g(X)). Therefore, to get an empirical upper bound for σ2

f,g,T ,

it suffices to construct an estimator for Pr (f(X) 6= g(X)). Using this estimator and

an empirical Bernstein bound (Maurer and Pontil, 2009), we can then get an upper

confidence bound for σ2
f,g,T denoted by σ̂2

f,g,T = T ·
(
Ûf,g,T +

√
2Ûf,g,T ln 2

δ

T−1 +
7 ln 2

δ

3(T−1)

)
,

where δ is the confidence variable. Since σ2
f,g,T ≤ σ̂2

f,g,T , we can use σ̂2
f,g,T in our

algorithm.
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Lemma 3.5. We have σ2
f,g,T ≤ T · Pr (f(X) 6= g(X)).

Proof. For the sake of readability, we introduce the more compact notation

`f−g(Xt, Yt) := `(f(Xt), Yt)− `(g(Xt), Yt)

and Rf−g := R(f)−R(g). Recall that

Zf,g,t = 1 [f, g ∈ Ht] ·
(
Qt

Pt
`f−g(Xt, Yt)−Rf−g

)
.

First, observe that

Var[Zf,g,t | Ft−1] ≤ E
[
Z2
f,g,t | Ft−1

]
]

= E

[
1 [f, g ∈ Ht] ·

(
Qt

Pt
`f−g(Xt, Yt)−Rf−g

)2
∣∣∣∣∣ Ft−1

]

= E
[
1 [f, g ∈ Ht] ·

(
Qt

Pt
`f−g(Xt, Yt)

2 − 2
Qt

Pt
`f−g(Xt, Yt)Rf−g +R2

f−g

) ∣∣∣∣ Ft−1] ,
where the last equality uses the fact that Q2

t = Qt, that P 2
t = Pt (since Pt ∈ {0, 1} for

zero-one loss). Next, for zero-one loss, whenever f, g ∈ Ht, we have from the definition

of Pt that Qt = Pt and Pt ≥ `f−g(Xt, Yt). Therefore, the last line above is equal to

E
[
1 [f, g ∈ Ht] ·

(
Qt

Pt
`f−g(Xt, Yt)

2 −R2
f−g

) ∣∣∣∣ Ft−1]
≤ E

[
1 [f, g ∈ Ht] ·

Qt

Pt
`f−g(Xt, Yt)

2

∣∣∣∣ Ft−1]
= E

[
1 [f, g ∈ Ht] ·

Qt

Pt
|f(Xt)− g(Xt)|

∣∣∣∣ Ft−1] .
Finally, again using Qt = Pt ≥ `f−g(Xt, Yt) when f, g ∈ Ht, the last line above is

equal to

1 [f, g ∈ Ht] Pr (f(Xt) 6= g(Xt)) ≤ Pr (f(Xt) 6= g(Xt)) .

In conclusion, we have shown that

Var[Zf,g,t | Ft−1] ≤ Pr (f(Xt) 6= g(Xt)) .
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Now, we look at getting an empirical version of σ2
f,g,T . We have

σ2
f,g,T =

T∑
t=1

Var[Zf,g,t | Ft−1]

≤
T∑
t=1

Pr (f(Xt) 6= g(Xt))

= T · Pr (f(X) 6= g(X)) ,

where X ∼ D.

Lemma 3.6. For any f, g ∈ H, with probability at least 1− δ, we have σ2
f,g,T ≤ σ̂2

f,g,T ,

where σ̂2
f,g,T = T ·

(
Ûf,g,T +

√
2Ûf,g,T ln 2

δ

T−1 +
7 ln 2

δ

3(T−1)

)
.

Proof. From Theorem 4 of Maurer and Pontil (2009), we know if W1, . . . ,Wn are

i.i.d. Bernoulli samples with true mean µ, with high probability at least 1− δ,

µ ≤ Ŵn +

√
2Vn(W) ln 2

δ

n
+

7 ln 2
δ

3(n− 1)
,

where Vn(W) := 1
n(n−1)

∑
1≤i<j≤n(Wi−Wj)

2 is the sample variance of W = (W1, . . . ,Wn)

and Ŵn = 1
n

∑n
i=1Wi. Also, since Wi is {0, 1}-valued sample drawn from a Bernoulli

distribution, and 0 ≤ Ŵn ≤ 1, we have Vn(W) = n
n−1Ŵn(1−Ŵn) ≤ n

n−1Ŵn. Therefore,

also with probability at least 1− δ,

µ ≤ Ŵn +

√
2Ŵn ln 2

δ

n− 1
+

7 ln 2
δ

3(n− 1)
. (3.20)

Since Uf,g,1, . . . , Uf,g,T are {0, 1}-valued, i.i.d. samples drawn from a Bernoulli distri-

bution with true mean µf,g, we can use (3.20), to estimate µf,g. Also, from Lemma

3.5, we know that σ2
f,g,T ≤ T · µf,g. Thus, we can write

σ2
f,g,T ≤ T ·

Ûf,g,T +

√
2Ûf,g,T ln 2

δ

T − 1
+

7 ln 2
δ

3(T − 1)

 .

To bound the generalization error, we bound ∆̃T , in order to do that, we have to
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bound Ûf,g,T first. Using Bennett’s inequality, we prove that Ûf,g,T ≤ µf,g+

√
2µf,g ln

1
δ

T
+

ln 1
δ

3T
. Next, using the upper bound on Ûf,g,T , we can bound ∆̂f,g,T in terms of µf,g and

T . Finally, we can upper bound the generalization error.

Lemma 3.7. For any t > 0 and a fixed f, g ∈ H, with high probability at least 1− δ,

Ûf,g,T ≤ µf,g +

√
2µf,g ln 1

δ

T
+

ln 1
δ

3T
. (3.21)

Proof. Let Wf,g,t = 1− Uf,g,t. Also, let Uf,g be an independent copy of Uf,g,1 and set

Wf,g = 1 − Uf,g. Using Bennett’s inequality (See Theorem 3 of Maurer and Pontil

(2009)), with high probability at least 1− δ, we can write

E[Wf,g]−
1

T

T∑
t=1

Wf,g,t ≤

√
2Var(Wf,g) ln 1

δ

T
+

ln 1
δ

3T
.

Since Wf,g,t = 1− Zf,g,t and Var(Wf,g) = Var(1− Uf,g) = Var(Uf,g), we can write

1− E[Uf,g]− (1− 1

T

T∑
t=1

Uf,g,t) ≤

√
2Var(Uf,g) ln 1

δ

T
+

ln 1
δ

3T
.

Next, since Var(Uf,g) = µf,g(1− µf,g) ≤ µf,g, we get

Ûf,g,T ≤ µf,g +

√
2µf,g ln 1

δ

T
+

ln 1
δ

3T
.

Lemma 3.8. For any f, g ∈ HT with high probability 1 − δ, we have ∆̂f,g,T ≤

max

{√
µf,g
T
,
µ
1/4
f,g

T 3/4 ,
1
T
,
µ
1/8
f,g

T 7/8

}√
ln(4 ln(T )

δ′T
).

Proof. For the sake of readability, we summarize σ̂f,g,T , Ûf,g,T , and µf,g by σ̂T , ÛT , and
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µ respectively. We can write,

∆̂f,g,T =

√
σ̂2
T ln(4 ln(T )

δ′T
)

T
=

√
T

(
ÛT +

√
ÛT
T

+ 1
T

)
ln(4 ln(T )

δ′T
)

T

≤

√(
ÛT +

√
ÛT
T

+ 1
T

)
ln(4 ln(T )

δ′T
)

√
T

≤

√(
µ+

√
µ
T

+ 1
T

+

√
µ+
√

µ
T
+ 1
T

T
+ 1

T

)
ln(4 ln(T )

δ′T
)

√
T

≤ max

{√
µ

T
,
µ1/4

T 3/4
,

1

T
,
µ1/8

T 7/8

}√
ln(

4 ln(T )

δ′T
)

Lemma 3.9. The generalization error is R(f̂T )−R(f ∗) ≤ O

((
C
T

√
ln(4 ln(T )

δ′T
)
) 1

2−α
)
.

Proof. First, observe that since the Tsybakov noise condition holds, for any f ∈ HT ,

µf,f∗ = Pr(f(X) 6= f ∗(X)) ≤ C(R(f)−R(f ∗))α, (3.22)

and from Theorem 3.1, we know R(f̂T ) − R(f ∗) ≤ ∆̂f̂T ,f∗,T
. By combining (3.22),

Lemma 3.8, and R(f̂T )−R(f ∗) ≤ ∆̂f̂T ,f∗,T
we can write

RT ≤ max

{√
CRα

T

T
,
C1/4Rα/4

T

T 3/4
,

1

T
,
C1/8Rα/8

T

T 7/8

}√
ln(

4 ln(T )

δ′T
) (3.23)

where RT = R(f̂T )−R(f ∗). Solving (3.23) will give us the desired result.

Label Complexity under zero-one loss

To find the number of queried samples for IWAL-σ in case of zero-one loss, we use an

analysis similar to the Section 3.4.

Theorem 3.4. Under the assumption that the Tsybakov condition holds, for any

δ > 0, with probability 1− δ, for all t ∈ [T ], the following holds for the label requesting
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indicator Pt of IWAL-σ: Ex∼Dx [Pt | Ft−1] ≤ 2θrt, where ∆̃t = maxf∈Ht(∆̂f,f∗,t)) and

rt = C(∆̃t + 2∆̃t−1)
α

Proof. The proof of Theorem 3.4 is similar to proof of Theorem 3.2, except we bound

D(f, f ∗) differently. The following is the new bound for D(f, f ∗). We start by

definition of D(f, f ∗),

E [|`(f(x), y)− `(f ∗(x), y)|] ≤ C(R(f)−R(f ∗))α ≤ C(∆̃t + 2∆̃t−1)
α (3.24)

where in the first inequality we used the Tsybakov condition and then, Theorem 3.1

is used.

Next, first, we upper bound ∆̃t and then, we use this upper bound to upper bound

the number of samples queried by the algorithm.

Corollary 3.6. ∆̃T ≤
(
C
T

) 1
2−α

(√
ln
(

4 ln(T )
δ′T

)) α
4−2α

where ∆̃T = maxf∈HT (∆̂f,f∗,T )).

Proof. Using an argument similar to Lemma 3.9, we first show

R(f)−R(f ∗) ≤ O

(
C

T
ln

(
4 ln(T )

δ′T

)) 1
2−α

(3.25)

for any f ∈ HT with high probability 1− δ. In the argument, we use R(f)−R(f ∗) ≤
∆̃T + 2∆̃T−1 instead of R(f̂T )−R(f ∗) ≤ ∆̃T , both from Theorem 3.1. Then, we upper

bound ∆̂f,f∗,T using Lemma 3.8 which gives us,

∆̂f,f∗,T ≤ max

{√
µf,f∗

T
,
µ
1/4
f,f∗

T 3/4
,

1

T
,
µ
1/8
f,f∗

T 7/8

}√
ln(

4 ln(T )

δ′T
). (3.26)

Next, since µf,f∗ ≤ C(R(f)−R(f ∗))α ≤ C
(

3∆̃T

)α
, where the first inequality holds

because of the Tsybakov noise condition. For any f ∈ HT , we conclude that ∆̂f,f∗,T ≤(
C
T

) 1
2−α

(√
ln
(

4 ln(T )
δ′T

)) α
4−2α

thus, ∆̃T ≤
(
C
T

) 1
2−α

(√
ln
(

4 ln(T )
δ′T

)) α
4−2α

.

Corollary 3.7. The number of labels queried by IWAL-σ after T rounds is
∑T

t=1 E[Pt |
Ft−1] ≤ Õ

(
θC2T

2−2α
2−α

)
for α < 1, and for α = 1,

∑T
t=1 E[Pt | Ft−1] ≤ Õ (θC2 log(T )).

Proof. The proof is similar to proof of Corollary 3.4 except that instead of Corollary

3.3, we use Corollary 3.6.
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With a closer look at Corollary 3.7 and Lemma 3.9, we can see if α < 1, we obtain

a polynomial label complexity of O(θε2α−2), and when α = 1 we achieve a logarithmic

label complexity.

3.7 Future Work

One of the disadvantages of IWAL is that it uses an effective version space, which in

many cases, is not efficiently implementable. Works like those of Beygelzimer et al.

(2010) and Huang et al. (2015) proposed a solution that uses the idea of importance

weighted sampling while simultaneously avoiding the use of an effective version space.

Their suggested solutions are efficient under the assumption of an ERM oracle and are

specifically designed for zero-one loss. As future work, we would like to investigate,

under convex losses and for particular hypotheses classes like linear separators, whether

IWAL-σ or a suitable variant affords an efficient implementation.
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Chapter 4

Experiments

In this chapter, we aim to analyze the performance of IWAL-σ on synthetic data. We

also compare IWAL-σ’s performance to IWAL and passive learning’s performance.

First, we discuss our setup for the experiments. Second, we explain how and why

IWAL-σ has been modified for implementations. After that, we see our results for

different loss functions and the amount of noise.

4.1 Experiment Setup

During this chapter, we refer to the number of dimensions of our samples by d. The

number of dimensions for each experiment is mentioned before the plots.

Generating data. The synthetic data is created by uniformly random sampling

55000 points over a d-ball using Muller’s technique, of which 5000 samples will be used

for training and the rest for evaluation. To label our samples, for each sample x, we

create a tuple (x, y), where y = fv(x) := sgn(x·v). Vector v of dimension d corresponds

the perfect classifier before adding any noise and it is defined as v = 1√
d
1. Vector v is

associated with function fv and is also added to the hypothesis set. Moreover, we add

noise to the samples by flipping a coin for each sample. The probability of success for

each coin is determined based on the amount of noise we would like to add. We do our

experiments for different noise values. Note that even if we do not add noise, fv might

not be the best hypothesis (the hypothesis with lowest test error on our dataset) for

some loss functions like logistic loss. The only case that fv is guaranteed to be the

best hypothesis is under zero-one loss with no noise, known as the realizable case.
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Generating hypothesis set. We create a set of randomly drawn unit homogeneous

linear separators. To generate a random hypothesis, we first draw a vector from a

d-dimensional normal distribution and normalize it to be a unit vector. The cardinality

of our initial hypothesis set is 5000. To make the problem even harder, we find the

best hypothesis f on the training data. Next, we create 50 · d new hypotheses that are

similar to f . To create a new hypothesis similar to f , I) we uniformly draw a sample

i, between 1 and d. II) we draw a sample s from a zero mean Gaussian distribution

with standard deviation 0.2. A new hypothesis g is created by adding s to the ith

index of f .

Implementations. We have implemented IWAL precisely as it appears in the

original work (Beygelzimer et al., 2009). IWAL-σ has been implemented similar to

the Algorithm 2 but, there is one modification to the upper deviation bound. The

upper deviation bound has been modified to adapt to the loss range. In Chapter 3,

we assumed that the loss is bounded by 1. However, this assumption is not valid for

the experiments. For this reason, we modify our theoretical results to adapt to the

loss range denoted by b. The only actual difference in the algorithm is in ∆̂f,g,t, where

∆̂f,g,T new definition is

∆̂f,g,T =
1

T
max

2

√
V̂f,g,T + 16

√
T

4
ln(2/δσT )

√
ln(

4 ln(T )

δ′T
), 6b ln(

4 ln(T )

δ′T
)

 .

For passive learning, we use empirical risk minimization. It is important to

remember that any passive learning algorithm visits only the first K samples provided

by Nature, where K is the maximum number of labels queried by IWAL and IWAL-σ.

On the other hand, an active learning algorithm (IWAL or IWAL-σ in our case)

that has labeled K samples potentially has seen more samples. In other words, the

labeled samples visited by IWAL, IWAL-σ, and ERM can be different. Active learning

algorithms will stop learning once there is only one hypothesis left in the effective

version space or there is no training data left.

Experiments have been done under a specific loss function for a certain amount of

noise for all three algorithms. Each experiment is repeated 50 times, and the results

are averaged; we refer to each of these repetitions by a trial. Two sets of plots are

given for each experiment.

The first set of plots answers the question of what is the excess risk of f̂t after
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querying i labels by each algorithm?. The second set of plots approaches the question

of what is the excess risk of the worst f in the effective version space after querying

i labels by each algorithm? The reason we care about this question is that from a

theoretical standpoint, there is no guarantee that f̂t is significantly better than any

other hypothesis left in the effective version space. We can argue that comparing the

worst function in the effective version space is the right way of comparing two active

learning algorithms based on the idea of effective version space. This question does

not apply to passive learning algorithms since ERM does not maintain a effective

version space. For each question, there exists two series of plots. The first series

depicts excess risk only. The second series depicts the excess risk in a log scale plot

with a confidence band. The confidence band is determined by the standard deviation

of excess risks over all the trials. For example, in the log scale plot under zero-one

loss for f̂t, when the number of labels queried (NLQ) is 10, the value of the plot itself

is the log of the average of excess risk of f̂t after querying the tenth label, and the

confidence band is the standard deviation of these values.

It is clear that not all the trials will use the same number of labels since the

samples are generated randomly. In such situations, the standard deviation and the

average are taken over the trials that request at least that many labels. For example,

assume 30 trials request 50 labels, and the other 20 trials query 80 labels. Then, to

find the confidence band for NLQ = 75, we find the standard deviation of the excess

risk of those trials that query at least 75 labels.

After running the experiments by looking at Figures 4.1, 4.4, 4.7, and 4.8, we

notice that IWAL-σ is not learning as quickly as IWAL. Taking a close look at the

algorithm, we can see this happens mainly because the second term in ∆̂f,f̂T ,T
can

be too large. The term 6b ln(4 ln(T )
δ′T

) can be larger than 100, which to us, seems

unnecessarily large in practice. To test our hypothesis, we modified the algorithm and

ran another set of experiments. In this modification, the ∆̂f,f̂T ,T
is set to only the

first term 2

√
V̂f,g,T + 16

√
T
4

ln(2/δσT )
√

ln(4 ln(T )
δ′T

), and we have altered the shrinking

process to the following

Ht+1 ← {f ∈ Ht : Lt(f) ≤ Lt(f̂t) + ∆̂f,f̂t,t
+ C0/t},

where C0 is a constant. A good value for C0 varies for each loss. Intuitively, the

purpose of C0 is to make sure that Lt(f), Lt(f̂t), ∆̂f,f̂t,t
are large enough. This is

important because if these values are too small, they might not be accurate yet.
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4.2 Results and Discussion

We categorize our results based on the loss functions. All the experiments are done

with d = 3.

4.2.1 Zero-one Loss

Zero-one loss is the most intuitive loss when it comes to classification. Interestingly,

in our modification of IWAL-σ we can set C0 = 0. First, we look at IWAL-σ and the

other two algorithms under 5% noise. We observe that IWAL-σ converges more slowly

than IWAL.
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Figure 4.1: Results for zero-one loss with no modification on IWAL-σ

Next, we look at how well our modified algorithm and the other two algorithms do

under different amounts of noise.
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Figure 4.2: Results for zero-one loss for modified IWAL-σ

In Figure 4.2, the darker lines are the average log scaled excess risk of the best

empirical hypothesis after observing t labels and the shaded area shows the confidence

interval. We can see that all three algorithms are robust to noise; however, the

difference is that ERM or the passive learning algorithm barely learns anything. This

is not surprising since passive learners do not actively choose informative samples. An

interesting observation is the small fluctuations in IWAL and IWAL-σ. These small

fluctuations increase with noise.
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Figure 4.3: Excess risk of the worst function left in version space for modified IWAL-σ

Figure 4.3 is useful in response to two questions. First, what is the excess risk of

worst function in the effective version space after querying i labels by each algorithm?

Second, it answers the question of if the algorithms are stable, i.e., whether noise has

any effect on stability of the algorithms. We can see that the graphs in Figure 4.3 are

smooth despite the amount of noise. This shows that IWAL and IWAL-σ are similar

in how they shrink the effective version space. As expected, the algorithms finish

faster with a lower amount of noise.

4.2.2 Hinge loss

Hinge loss is a popular loss when it comes to classification. It is defined as `(f(x), y) =

max(0, 1− y · f(x)), and is commonly used for maximum margin classification. In this

set of experiments, the samples’ dimension is 3, and all the experiments are done by

adding 5% noise. The figures below show that similar to before, the unmodified version

of IWAL-σ is not better than IWAL. However, the modified version can converge

faster than IWAL.
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Figure 4.4: Results for hinge loss with no modification on IWAL-σ
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Figure 4.5: Results for hinge loss for modified IWAL-σ - 5% noise

In the Figure 4.5, where C0 = 1, we can see that IWAL and IWAL-σ both are

smooth and converge faster than passive learning. The only exception is in the right

plot, wherein the right tail, IWAL has a significant drop. This is not because IWAL

does a better job after many rounds, but it happens because only a few trials request

65 labels or more. Therefore, if all the trials would request the same amount of labels,

we would not see such a drop. Next, we study the importance of C0.

By studying the plots of the worst function in the version space, we can see the

effect of C0. The larger C0 is, the slower IWAL-σ will shrink the effective version

space. Therefore to benefit from IWAL-σ, it is vital to pick a good value for C0. If C0

is too large, IWAL-σ can be even slower than IWAL, and if C0 is too small, it will

shrink the version space carelessly and eliminate hypotheses with low excess risk.
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Figure 4.6: Excess risk of the worst function left in the effective version space for
modified version of IWAL-σ - Hinge loss - 5% noise
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4.2.3 Logistic and Squared Loss

Logistic loss is of interest since it is convex and not sensitive to outliers. Logistic loss

is defined as

`(f(x), y) =

− log(f(x)) if y = 1

− log(1− f(x)) if y = 0,

and popular in regression problems.

Similar to logistic loss, squared loss is convex and a commonly used loss function

for regression problems, however squared loss is sensitive to outliers. Squared loss is

defined as `(f(x), y) = (f(x)− y)2.

In the case of both of these losses, the results for the unmodified IWAL-σ are not

desirable.
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Figure 4.7: Results for logistic loss with no modification on IWAL-σ
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Figure 4.8: Results for squared loss with no modification on IWAL-σ
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(a) Logistic loss - 5% noise
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Figure 4.9: Results for the modified version of IWAL-σ

In Figures 4.9a and 4.9b we can see that IWAL-σ for logistic loss and squared
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Figure 4.10: Excess risk of the worst function left in the effective version space for
modified IWAL-σ - Logistic loss - 5% noise

loss is faster than IWAL and passive learning on average. It is worth mentioning

that even though on average IWAL-σ looks to be faster than others, after taking the

confidence intervals into account, it might not be clear that IWAL-σ is always the

best. Additionally, since R(f ∗) is not small enough in both of these cases, at least in

our experiments, significant improvement might not be possible. IWAL-σ seems to be

unstable in Figure 4.9a, especially at its final rounds of execution; however Figure 4.10

shows the opposite, and is a better indicator of how stable the algorithm is. Similar

to the results for hinge loss, we can see it is important to choose the value of C0

carefully for both squared and logistic loss. If the value of C0 is too small, the drop at

the beginning of plots in Figures 4.10 and 4.11 can be too large, which could lead to

the elimination of the best hypothesis or hypotheses close to the best hypothesis by

IWAL-σ.
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Figure 4.11: Excess risk of the worst function left in the effective version space for the
modified version of IWAL-σ - Squared loss - 5% noise
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4.3 Conclusion

We can see that the modified version of IWAL-σ outperforms IWAL and passive

learning in some of the experiments on average. However, in some cases like squared

and logistic loss, the the results do not confirm a significant improvement over passive

learning. However, to fully benefit from IWAL-σ, we have to tune its only parameter

C0. An easy rule of thumb for tuning C0 is to set it to half of the loss range. For

example, for hinge loss, C0 = 1 achieves acceptable performance. Of course, the biggest

problem with IWAL-σ and similarly IWAL is that these algorithms are computationally

tractable.
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Chapter 5

Conclusion and Future Work

Active learning could be the solution to learning problems with a large amount of

data, whether these data are labeled or unlabeled. For unlabeled datasets, active

learning will can reduce the cost of labeling the dataset, and in the case that the data

is already labeled, active learning can reduce the computational cost of learning since,

in many cases it learns faster than passive learners.

There have been many attempts to propose efficient active learning algorithms

in the past years. In some settings, efficient and practical algorithms have been

successfully suggested. However, even efficient algorithms tend to query many labels.

The number of labels that algorithms based on disagreement need to query from an

oracle usually differs from the label complexity’s lower bounds by at least a factor

of disagreement coefficient. One of the challenges in active learning is proposing an

algorithm that the number of labels it needs is closer to the lower bounds, or in other

words, it does not depend on the disagreement coefficient.

Another idea that could be worked on in online active learning is to propose a new

way of deciding whether to query a label or not. The work of Tosh and Dasgupta

(2017) could inspire a new technique in online active learning. It might be possible to

focus on the average disagreement on a sample instead of focusing on the maximum

disagreement in a hypothesis set.

In this work, we discussed an algorithm that was flexible to general losses and

could benefit from the Bernstein Condition. The biggest drawback of this algorithm

is that it is not intractable. It might not be possible to propose a general and efficient

implementation for IWAL-σ for any arbitrary hypothesis set. However, it lays the

path for future work to propose efficient algorithms for a specific hypothesis class

under a particular loss function, such as linear separators and squared loss.



49

Appendix A

Additional Information

A.1 Lemmas

Lemma A.1. (Adapted from Lemma 3 of Kakade and Tewari (2009)) Suppose

X1, X2, . . . , XT is a martingale difference sequence with |Xt|≤ b. Let V = σ2 =∑T
t=1 V ar(Xt|X1, . . . , Xt−1) be the sum of conditional variances of Xt’s. Then we

have, for any δ ≤ 1/e and T ≥ 3

P (
T∑
t=1

Xt ≥ max

(
2σ

√
ln(

4 ln(T )

δ
), 3b ln(

4 ln(T )

δ
)

)
) ≤ δ

The only difference between the adapted version of this Lemma here and the

original Lemma in Kakade and Tewari (2009)’s work is that, in the original work on

the right hand side of the inequality you will find 4 ln(T )δ instead of δ alone. Here,

we have only divided all the δs in the inequality by 4 ln(T ) to achieve our desired form

of the inequality. This inequality was first proposed by Freedman (1975).
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