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Abstract

Seasonal shifts in predation habits, from a generalist in the summer to a specialist
in the winter, have been documented for the great horned owl (Bulbo virginialis) in
the boreal forest. This shift occurs largely due to varying prey availability. There is
little study of this switching behaviour in the current literature. Since season length
is predicted to change under future climate scenarios, it is important to understand
resulting effects on species dynamics. Previous work has been done on a two-species
seasonal model for the great horned owl and its focal prey, the snowshoe hare (Lepus
americanus). In this thesis, we extend the model by adding one of the hare’s most
important predators, the Canadian lynx (Lynx canadensis). We study the qualitative
behaviour of this model as season length changes using tools and techniques from dy-
namical systems. Our main approach is to determine when the lynx and the owl may
invade the system at low density and ask whether mutual invasion of the predators
implies stable coexistence in the three-species model. We observe that, as summer
length increases, mutual invasion is less likely, and we expect to see extinction of the
lynx. However, in all cases where mutual invasion was satisfied, the three species
stably coexist.
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Résumé

Des changements saisonniers dans les habitudes de prédation ont été documentés
pour le grand-duc d’Amérique (Bulbo virginialis) de la forêt boréale, d’un généraliste
en été à un spécialiste en hiver. Ce changement se produit en raison de la disponi-
bilité variable des proies. Il existe peu d’études de ce changement de comportement
dans la littérature actuelle. Étant donné que la durée des saisons changeront dans
les scénarios climatiques futurs, il est important de comprendre les effets résultants
sur la dynamique des espèces. Quelques recherches antérieures ont porté sur un
modèle saisonnier à deux espèces pour le grand-duc d’Amérique et sa proie focale, le
lièvre d’Amérique (Lepus americanus). Dans cette thèse, nous étendons le modèle
en ajoutant l’un des prédateurs le plus importants du lièvre, le lynx Canadian (Lynx
canadensis). Nous étudions le comportement qualitatif de ce modèle à mesure que
la durée des saisons changent, à l’aide d’outils et de techniques issus de la théorie
des systèmes dynamiques. Notre approche principale consiste à déterminer quand
le lynx et l’hibou peuvent envahir le système à faible densité et à se demander si
l’invasion mutuelle des prédateurs implique une coexistence stable dans le modèle à
trois espèces. Nous observons qu’à mesure que la longeur estivale augmente, l’invasion
mutuelle est moins probable et nous attendons à voir l’extinction du lynx. Cependant,
dans tous les cas où l’invasion mutuelle était satisfaite, les trois espèces coexistent de
manière stable.
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Chapter 1

Introduction

In predator–prey systems, species dynamics are dependent on the way in which a prey
responds to a predator; i.e., how many prey are killed and how frequently they are
killed [11, 29]. It is therefore important to understand the behaviour of the predator
in a system in order to understand the dynamics of the system. What happens to
dynamics when the behaviour of the predator changes through the year? This is the
type of question we will study in this thesis.

Seasonally dependant phenomena may force a species to behave in a different
way than they would normally [5, 27]. For example, resource availability may alter
the way a predator hunts for food. In this work, we consider two distinct behaviours
of predators. When a predator specializes in hunting a single species and other food
sources are negligible, we classify them as specialists. There are also instances where
a predator may prefer a variety species if available, but if this specific species becomes
hard to find, the predator will focus on other resources. We classify these predators
as generalists.

A change in predation behaviour of the great horned owl (Bulbo virginialis) in
the boreal forest, an area which is susceptible to climate change [2], is documented
empirically [21]. Krebs, Boutin & Boonstra observe that changes in gut content of
the great horned owl indicate a change from a specialist in the winter to a generalist
in the summer. In the winter, the snowshoe hare (Lepus americanus) represents a
high percentage of the diet and therefore the owl is a specialist predator of the hare
in this season. In the summer, the hare is still prominent in the diet of the owl,
but there is a significant amount of other species present. This indicates that the
behaviour of the owl has switched to that of a generalist predator. This scenario
of a behaviour switch has previously been modelled [39]. Tyson & Lutscher divided
the year into two seasons, and modelled the owl as a generalist in the summer and
a specialist in the winter. They find that relatively small changes in summer season
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1. INTRODUCTION 2

length can have a profound impact on the system. In particular, the predator can
drive prey to extinction, there can be coexisting stable steady states, and there can
be large-amplitude limit cycles coexisting with a stable steady state.

In this work, we will extend this two-species model to include an important
predator of the hare, the Canadian lynx (Lynx canadensis). The lynx is a specialist
predator of the hare whose behaviour does not vary throughout the year [21]. There-
fore, in the seasonal model the lynx will behave identically in both seasons.

We will model the three-species system with a set of ordinary differential equa-
tions (ODEs). Such equations can express change in a species density as a function
of the density itself. To accurately model the seasonal dependence of functional re-
sponses, we create a set of ODEs for the summer season and a separate set for the
winter season. The differences between these sets of equations are mainly due to the
predators and their behaviour. To model this behaviour, functions of prey density
that accurately represent the specialist and generalist functional responses have been
derived mathematically ([16] and [28], respectively) with the help of empirical data.
A specialist, or type II, functional response may be modelled by functions that are
approximately linear at low prey density and approach an upper bound as density
increases. Functions that model a generalist, or type III, functional response also
approach an upper bound as prey density increases; however, at low densities, the
functions are approximately zero. We expand on such functions in Section 2.5. How-
ever, the seasonally dependent model we obtain is difficult to study analytically. In
particular, discontinuities in differential equations may lead to difficulties in analytic
studies, especially in the case of impulsive differential equations [4]. However, the
discontinuities in our model will only consist of finite jumps in time, which leads
to continuous solutions when integrating the system. In order to work around the
discontinuities, we take the annual average of the seasonal equations and study the
resulting model; we note that the averaging method can be applied in part due to the
fact that the discontinuities in the seasonal model will be finite. The averaged model
is still complicated, so we further simplify the equations and study the dynamics of
the simplified models. The goal with this method is to develop tools to study the
simplified models and import them to the averaged model to better understand the
dynamics. In particular, we are interested in stable coexistence of the species. In the
framework of ODEs, this corresponds to either an equilibrium of the system in which
all components are strictly positive or a stable limit cycle.

Although we have the tools from ODE theory necessary to determine when we
have stable coexistence, the results are difficult to interpret biologically. For exam-
ple, standard stability analysis may result in inequalities in which many parameters
appear. In this case, it is difficult to understand how any single parameter affects



1. INTRODUCTION 3

stability, whereas the biological implications generally result from the effect of indi-
vidual parameters. Therefore, we use a different technique that can predict when
there is stable coexistence in a way that sheds light on the biological mechanisms at
play. We use a tool called invasion analysis. Rather than studying the coexistence
in the three-species model, we ask whether one of the predators can invade if the
other two species are at stable coexistence. With linear stability analysis of ODEs,
we find invasion conditions; i.e., conditions for which if satisfied, each predator can
simultaneously invade the other two species. This scenario is called mutual invasion.
We can make sense of these conditions biologically, and we study whether mutual in-
vasion implies stable coexistence in the averaged model and each of its simplifications.
We hypothesize that mutual invasion will always imply stable coexistence. However,
the species can coexist at a stable steady state or in an oscillatory state, and the
invasion conditions may not specify which coexistence we obtain. The question of
mutual invasion implying coexistence has been posed as early as 1978 [37] and has
been studied often since then [7, 38, 31]. However, explicit scenarios have been found
in which mutual invasion does not imply coexistence [6, 36].

Finally, we discuss biological implications of our results. We observe that vari-
ation in the owl growth rates and saturation rates strongly affect possibilities for
coexistence; moreover, if the owl is too prevalent in the system, it will drive the lynx
and possibly the hare to extinction. Seasonality also strongly influences coexistence
scenarios. As the length of summer increases, it will be less likely for the three species
to coexist due to the increased growth in owl density during the summer. Therefore
it would be necessary to limit owl growth if we wish to avoid extinction of either hare
or lynx.

In Chapter 2, we present a literature review of the necessary theory of ordinary
differential equations and bifurcation theory. We discuss Floquet theory, which allows
us to study stability of solutions in time-periodic differential equations. Averaging
theorems are given that allow us to make connections between the dynamics of our
seasonal model and that of its averaged model. Finally, we discuss predator–prey
models, functional responses and the study of species invasions.

In Chapter 3, we present the construction of our seasonal model and discuss the
averaging process of this model. Our seasonal model includes a discontinuity in time,
and we motivate why the averaging process is still applicable in this case.

In Chapter 4, we present various simplifications of the averaged model. We study
the dynamics in the case where both lynx and owl terms are simplified and then the
case where only owl terms are simplified. We also note from [39] that hare-owl dy-
namics are complicated so we study a simplification of this two-species model. In
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each case, we ask whether mutual invasion implies coexistence and discuss the re-
gions in which mutual invasion and coexistence occur in parameter space. In each
simplification, mutual invasion implies stable coexistence, either at a steady state or
at a periodic orbit.

In Chapter 5, we return to the averaged model. We first consider the hare–owl
model and extend the work done by Tyson & Lutscher [39]. In particular, we find
analytic conditions for which bistability occurs in this model and which determine
whether we observe hare extinction for certain summer lengths. We find a simple yet
reasonable case in which there is unique stable coexistence in the two-species model.
Mutual invasion is then analysed in the three-species model, and we find that mutual
invasion implies coexistence. Moreover, stable coexistence occurs either at a steady
state or in a periodic orbit, which is determined by the dynamics in the hare–lynx
model.

Finally, in Chapter 6, we discuss our findings and present future directions for
this thesis. In particular, we wish to compare averaged dynamics with seasonal dy-
namics, consider more complicated cases of the hare–owl model and closely study
some interesting bifurcation scenarios that occur in the model.



Chapter 2

Literature Review

In this section, we give a review of the theory necessary for studying predator-prey
systems. We begin with an overview of the standard ODE theory one might encounter
at the graduate level. We extend this theory to include that of periodic systems,
and more complicated bifurcations. Moreover, we discuss the averaging process for
non-autonomous systems and present various theorems related to taking the average
of a differential equation. Finally, we present mathematical formulations of certain
relevant aspects of animal ecology, such as predator–prey relationships and functional
responses. We then relate principles of stability analysis to ecological outcomes such
as species invasion, persistence and extinction.

2.1 ODE Preliminaries

Most of the fundamental ODE theory necessary for this research can be found in stan-
dard differential equation textbooks [8]. In particular, we study nonlinear systems
and their associated linearised systems, stability of steady states via eigenvalues, as
well as phase-plane analysis. We begin with some basic definitions.

Throughout this section, we will consider an ODE of the form

ẋ = f(t, x, λ), (2.1.1)

where f : J × U × Λ → Rn is a smooth function for some open sets J ⊆ R, U ⊆ Rn

and Λ ⊆ Rk. J can be thought of as the time interval on which the ODE is defined,
U is the space of possible solutions (or phase space) and Λ is the set of parameters.
Moreover, the dot denotes differentiation with respect to the time variable t. If we
specify an initial condition (t0, x0) ∈ J × U , then we refer to the resulting system as

5
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an initial-value problem, given by

ẋ = f(t, x, λ),

x(t0) = x0.
(2.1.2)

The first step in analysing the dynamics of (2.1.1) often consists of finding the
equilibrium points of the system and studying their local stability. This refers to the
dynamics of the system in a neighbourhood around the equilibrium point. In the case
of autonomous systems, defined below, this is done via constructing the Jacobian ma-
trix associated to (2.1.1), evaluating this matrix at an equilibrium point and finding
the eigenvalues of the resulting matrix. This approach assumes the existence of a
solution to a given ODE and proceeds to determine the asymptotic behaviour of this
solution. It is therefore important to impose conditions on system (2.1.1) under which
a solution exists. Moreover, given an initial condition, it is useful to know when the
associated solution is unique. Otherwise, the asymptotic behaviour determined from
the above approach may not correspond to the observed behaviour of the phenomena
we are modelling.

Luckily, existence and uniqueness of solutions are achieved with fairly reasonable
constraints on system (2.1.2).

Theorem 2.1.1 (Local existence and uniqueness of solutions). If the function f : J×
Ω×Λ→ Rn in the differential equation (2.1.1) is continuously differentiable, t0 ∈ J ,
x0 ∈ Ω and λ0 ∈ Λ, then there are open sets J0 ⊆ J , Ω0 ⊆ Ω and Λ0 ⊆ Λ such that
(t0, x0, λ0) ∈ J0 × Ω0 × Λ0 and a unique C1 function φ : J0 × Ωo × Λ0 → Rn given
by (t, x, λ) 7→ φ(t, x, λ) such that t 7→ φ(t, x0, λ0) is the solution of the initial-value
problem (2.1.2).

A proof for Theorem 2.1.1 can be found in [8]. In general, solutions may not
exist for all t ∈ R. For example, the solution to the initial-value problem

ẋ = x2,

x(0) = x0

is x(t) = x0
1−x0t . Solutions are only defined for t ∈

(
−∞, 1

x0

)
if x0 is positive, or

t ∈
(

1
x0
,∞
)

if x0 is negative. For the rest of this chapter, we will assume our so-

lutions are defined for all t ∈ R. We call these global solutions. Moreover, we will
assume all solutions are unique by imposing the conditions of Theorem 2.1.1. For the
models encountered later in this thesis, one can show that all solutions are global.

We can now present some important definitions and theorems that allow us to
study the behaviour of solutions of (2.1.2).
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Definition 2.1.2. Suppose we have an ODE of dimension at least 2, which we can
write as

ẋ1 =f1(x1, . . . , xn),

...

ẋn =fn(x1, . . . , xn).

The xi-nullcline for this system is the solution surface to the equation fi(x1, . . . , xn) =
0. Note that equilibrium points lie at the mutual intersection of all the nullclines.

Definition 2.1.3. An ODE is called autonomous if the function f in (2.1.2) does
not explicitly depend on time; i.e., if it can be written in the form

ẋ = f(x, λ) (2.1.3)

for x ∈ U and λ ∈ Λk. If f does explicitly depend on time, then the corresponding
differential equation is called non-autonomous.

We are interested in studying the qualitative behaviour of solutions of differential
equations of the form (2.1.1). To do so, it is helpful to define the flow associated with
a given ODE.

Definition 2.1.4. Consider a differential equation of the form

ẋ = f(x), (2.1.4)

where x ∈ Rn. Define a map φ : R×U → Rn as follows: let (t, x) 7→ φt(x) denote the
solution of (2.1.4) that satisfies φ0(x) = x. We say φ is the flow of (2.1.4). Moreover,
this map is unique.

Given the flow φ of a differential equation with initial condition x(t0) = x0, we
can study the associated solution given by the map t 7→ φt(x0).

Definition 2.1.5. An equilibrium point for (2.1.4) is a point x∗ such that f(x∗) = 0.

Definition 2.1.6. Let x0 ∈ Rn and let φ be the flow for the differential equation
(2.1.4). The solution t 7→ φt(x0) is T -periodic, or periodic with period T , if there
exists T > 0 such that φt(x0) = φt+T (x0) for all t ∈ R and φt(x0) 6= φs(x0) when
0 < |t− s| < T .

Definition 2.1.7. A set S ⊆ Rn is called a (forward) invariant set for the differential
equation (2.1.4) if, for each x ∈ S, the solution t 7→ φt(x), t < 0, has its image in S.
Equivalently, solutions that start in S will stay in S.
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Definition 2.1.8. The orbit of a point x under the flow of (2.1.4) is defined as the
set {φt(x) : t ∈ J}.

To describe the limiting behaviour of an orbit, we have the following definitions:

Definition 2.1.9. Suppose that φ is the flow for (2.1.4) and p ∈ Rn. A point x ∈ Rn

is called an ω-limit point of the orbit through p if there is a sequence of numbers
t1 ≤ t2 ≤ t3 ≤ . . . such that limi→∞ ti = ∞ and limi→∞ φti(p) = x. The collection of
all such ω-limit points is denoted by ω(p) and is called the ω-limit set of p. Similarly,
the α-limit set α(p) is defined to be the set of all limits limi→∞ φti(p) where t1 ≥ t2 ≥
t3 ≥ . . . and limi→∞ ti = −∞.

Definition 2.1.10. A limit cycle is a periodic orbit that is the ω-limit set or the
α-limit set of some point in the phase space outside of itself.

With these definitions, we can state two fundamental theorems in the study of
planar systems.

Theorem 2.1.11 (Poincaré–Bendixson). If Ω is a non-empty compact ω-limit set of
a flow in R2 and if Ω does not contain a steady state, then Ω is a periodic orbit.

We are particularly interested in the converse of this statement, which says that
if Ω is a nonempty compact ω-limit set of a flow in R2 that does not contain a periodic
orbit, then it must contain a steady state.

Theorem 2.1.12 (Bendixson–Dulac Criterion). Consider a smooth differential equa-
tion

ẋ = g(x, y), ẏ = h(x, y).

If there is a smooth function B(x, y) defined on a simply connected region S ⊆ R2

such that d
dx

(Bg) + d
dy

(Bh) is not identically zero and of fixed sign on S, then there
are no periodic orbits in S. The function B is called a Dulac function.

Proofs for Theorems 2.1.11 and 2.1.12 are found in [8].

In this work, we will encounter various systems that have periodic solutions, and
we wish to determine the stability of these solutions. The following definitions are
useful.

Definition 2.1.13. Let φt : J×U → Rn be the flow for (2.1.4), and let x∗ be a steady
state of (2.1.4). The local stable manifold of x∗ is defined as

W s
loc(x

∗) = {x ∈ U : φt(x)→ x∗ as t→∞, and φt(x) ∈ U for all t ≥ 0}. (2.1.5)
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Similarly, the local unstable manifold of x∗ is defined as

W u
loc(x

∗) = {x ∈ U : φt(x)→ x∗ as t→ −∞, and φt(x) ∈ U for all t ≤ 0}. (2.1.6)

The (global) stable manifold of x∗ is

W s(x∗) =
⋃
t≤0

φt (W s
loc(x

∗)) (2.1.7)

and the (global) unstable manifold of x∗ is

W u(x∗) =
⋃
t≥0

φt (W u
loc(x

∗)) . (2.1.8)

We will also define the notion of a Poincaré map associated to a given periodic
orbit, which is a useful tool for studying the stability of this orbit. Let γ be a non-
trivial T -periodic orbit of some flow φt in Rn, arising from a nonlinear differential
equation ẋ = f(x). We first take a local cross section Σ ⊂ Rn of dimension n−1 based
at some point x∗ on the periodic orbit, such that the flow is everywhere transverse to
Σ. For example, take the set

Σ = {x ∈ Rn | 〈x− x∗, f(x∗)〉 = 0}.

By virtue of the Implicit Function Theorem, we can find a local neighbourhood U ∈
Rn of x∗ and a unique continuously differentiable map

τ : U → R

such that τ(x∗) = T and φτ(x)(x) ∈ Σ for all x ∈ U . We refer to this map as the
first-return map associated to Σ at x∗. The existence of this map relies on the fact
that f(x∗) 6= 0, which is true because x∗ lies on a non-trivial periodic orbit and is
therefore not a steady state.

Definition 2.1.14. The Poincaré map Q : U → Σ is defined for a point x ∈ U by

Q(x) = φτ (x), (2.1.9)

where τ = τ(x) is the first-return map associated to Σ at x∗.

We end this section on a note about bifurcations. As mentioned at the begin-
ning of this section, the first step studying the qualitative behaviour of systems of
ODEs is to find equilibrium point(s) and study their local stability. This is done via
constructing the Jacobian matrix of the system evaluated at an equilibrium point,
and computing the eigenvalues of the matrix. We then classify local stability of the
equilibrium point as follows:
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Figure 2.1: Sketch of the Poincaré map, taken from [1].

Proposition 2.1.15. Let x∗ be an equilibrium point for the ODE

ẋ = f(x)

and let DF (x∗) be the Jacobian matrix of f(x) evaluated at x∗.

� If the real parts of all the eigenvalues of DF (x∗) are strictly negative, the equi-
librium point is locally asymptotically stable.

� If at least one of the eigenvalues of DF (x∗) has strictly positive real part, the
equilibrium point is unstable.

When an eigenvalue has zero real part, this method of stability analysis does
not tell us whether or not the equilibrium point is stable. It is therefore useful to
introduce the following definition.

Definition 2.1.16. Let x∗ be an equilibrium point for an n-dimensional differential
equations

ẋ = f(x),

and let λ1, . . . , λn be the eigenvalues of DF (x∗). If the real part of λi is non-zero for
all i, then we say that x∗ is hyperbolic.

When a fixed point for an ODE ẋ = f(x) is hyperbolic, we can invoke the
Hartman-Grobman Theorem [8] and use the Jacobian of f to accurately study dy-
namics of the ODE around the fixed point. This can be used to show that hyperbolic
fixed points are either locally asymptotically stable or unstable. When the ODE
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contains parameters, the fixed points as well as their local stability may depend on
these parameters. Therefore, we can expect that varying parameters will change the
stability of a hyperbolic fixed point. When this occurs, we say the system undergoes
a bifurcation. Although there are many types of bifurcations, we describe three com-
mon types that appear throughout our work.

The first type is a transcritical bifurcation. This occurs when a system has at
least two distinct equilibrium points that exchange stability. For example, consider
the system

ẋ = x(r − x), (2.1.10)

where r ∈ R is a parameter. This system has equilibrium points x∗1 = 0 and x∗2 = r.
The Jacobian matrix associated to this system is

J(x) = r − 2x.

Evaluating J at the equilibrium points, we obtain J(x∗1) = r and J(x∗2) = −r. There-
fore,

� if r > 0, x∗1 is unstable and x∗2 is stable.

� if r < 0, x∗1 is stable and x∗2 is unstable.

We then observe a transcritical bifurcation at r = 0. A bifurcation diagram is given
in Figure 2.2. Generally, this type of bifurcation occurs when the eigenvalue of an
equilibrium point passes through zero.

Figure 2.2: Transcritical bifurcation in (2.1.10) at a = 0. Steady states represented
by a solid line are stable, and those by a dashed line are unstable.
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The second type of bifurcation we present is a saddle-node bifurcation. This
occurs when a system has two distinct equilibrium points which collide and simulta-
neously vanish. For example, consider the system

ẋ = a+ x2, (2.1.11)

where a ∈ R is a parameter. This system has equilibrium points x∗1 =
√
−a and

x∗2 = −
√
−a. Therefore, when a < 0, there are two distinct equilibrium points.

When a = 0, we have that x∗1 = x∗2, and once a becomes positive, there are no equi-
librium points. Moreover, the Jacobian is given by J(x) = 2x, so if the equilibrium
points exist, x∗1 is unstable and x∗2 is stable. A bifurcation diagram is given in figure
2.3.

Figure 2.3: Saddle-node bifurcation in (2.1.11) at a = 0. Steady states represented
by a solid line are stable, and those by a dashed line are unstable.

The third type of bifurcation we encounter in this work is a Hopf bifurcation.
This occurs when an equilibrium point undergoes a change in local stability and a
periodic orbit emerges. We have the following theorem [15].

Theorem 2.1.17 (Poincaré–Andronov–Hopf). Let ẋ = A(λ)x + F (λ, x) be a three-
times continuously differentiable planar vector field depending on a scalar parameter
λ such that F (λ, 0) = 0 and DxF (λ, 0) = 0 for all sufficiently small |λ|. Assume that
the linear part A(λ) at the origin has the eigenvalues α(λ)± iβ(λ) with α(0) = 0 and
β(0) 6= 0. Furthermore, suppose that the eigenvalues cross the imaginary axis with
nonzero speed; that is,

dα

dλ
(0) 6= 0.

Then, in any neighbourhood U of the origin in R2 and any given λ0 > 0, there is a λ̄
with |λ̄| < λ0 such that the differential equation ẋ = A(λ̄)x+F (λ̄, x) has a nontrivial
periodic orbit in U , with period near 2π/β(0).
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For example, consider the following model in polar coordinates

ṙ = (λ− ar2)r,
θ̇ = 1 + br2,

(2.1.12)

where λ, a and b are real positive parameters. A (non-trivial) periodic solution in this
system corresponds to a positive steady state of the radial equation and a monotone
solution of the angular equation. Since the right-hand side of the angular equation is
strictly positive, any solution θ(t) will be monotone increasing. Moreover, a steady
state of the radial equation can be found by solving

(λ− ar2)r = 0.

There are solutions r∗ = 0 and r∗ =
√
λ/a, since we do not consider negative radii.

The positive steady state is given by r̄ =
√
λ/a, under the condition that λ/a > 0.

Therefore, if we fix a > 0, for example, and vary λ through 0, a Hopf bifurcation
will occur at λ = 0 with limit cycles for λ > 0. A bifurcation diagram of the radial
equation is given in Figure 2.4, and we note that the periodic solution with r∗ = 0
can be thought of as the steady state at the origin.

Figure 2.4: Hopf bifurcation in (2.1.12) at λ = 0. Curves give the radii of periodic
solutions. Radii represented by a solid line indicate a stable periodic orbit, and
those by a dashed line represent an unstable periodic orbit.

2.2 Floquet Theory

The method of finding the equilibrium points of a system and studying their local sta-
bility generally does not apply to non-autonomous systems, which we will encounter
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later. For example, if the function f(t, x, λ) from (2.1.2) depends explicitly on t,
then it may be the case that there are no equilibrium points; i.e., no solutions of
f(t, x, λ) = 0 that are constant in x and λ. As a result, we cannot consider local
stability around a steady state, as they do not exist. However, the non-autonomous
systems we encounter in this work are defined by time-periodic functions. These time-
periodic systems typically have time-periodic solutions. To study their stability, we
linearise and obtain a time-periodic linear equation. In particular, we have a linear
system of the form

ẋ = A(t)x, (2.2.1)

where x ∈ Rn and t 7→ A(t) is a T -periodic continuous matrix-valued function.
Section 2.4 of [8] details the study of these systems, known as Floquet theory. To
state the main result, we first define a fundamental matrix solution of (2.2.1).

Definition 2.2.1. A n × n matrix function t 7→ Ψ(t), defined on an open interval
J , is called a matrix solution of the homogeneous linear system (2.2.1) if each of its
columns is a (vector) solution. A matrix function is called a fundamental matrix
solution if its columns form a fundamental set of solutions; i.e., the columns form a
basis for the space of solutions.

The main result of Floquet theory is as follows.

Theorem 2.2.2 (Floquet’s Theorem). If Φ(t) is a fundamental matrix solution of
the T -periodic system (2.2.1), then, for all t ∈ R,

Φ(t+ T ) = Φ(t)Φ−1(0)Φ(T ).

In addition, for each (possibly complex) matrix B such that

eTB = Φ−1(0)Φ(T ),

there is a (possibly complex) T -periodic matrix function t 7→ P (t) such that Φ(t) =
P (t)etB for all t ∈ R. Also, there is a real matrix R and a real 2T -periodic matrix
function t 7→ Q(t) such that Φ(t) = Q(t)etR for all t ∈ R.

The representation Φ(t) = P (t)etB is the Floquet normal form, which will be used
to study the stability of the zero solution of periodic homogeneous linear systems. An
important definition for the application of Floquet theory to this research is that of
characteristic exponents, µ. These are defined as eigenvalues of the matrix eTB. A
similar notion is that of the characteristic multipliers, defined by ρ = eµT . It is impor-
tant to note that the matrix B from Floquet’s Theorem, as well as the characteristic
exponents, are not unique. This follows from the fact that the matrix exponential
function is not injective; if µ is a characteristic exponent, then so is µ+2πik/T for all
k ∈ Z. However, the characteristic eigenvalues are unique, and therefore the stability
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of the zero solution is uniquely determined.

Finally, we can use the characteristic multipliers/exponents to study stability of
the zero solution of (2.2.1). This is outlined in the following theorem.

Theorem 2.2.3. There is a time-dependent (2T -periodic) change of coordinates, x =
Q(t)y, that transforms the periodic system (2.2.1) to a (real) constant coefficient linear
system.

(1) If the characteristic multipliers of the periodic system (2.2.1) all have modulus
less than one — equivalently, if all characteristic exponents have negative real
part — then the zero solution is asymptotically stable.

(2) If any of characteristic multipliers of the periodic system (2.2.1) have modulus
greater than one — equivalently, if any of the characteristic exponents have
positive real part — then the zero solution is unstable.

The term Floquet multipliers is used analogously when studying the Poincaré
map of a periodic solution. With a choice of cross-section Σ based at a point x∗

on the periodic solution, we can study the discrete-time dynamical system (defined
locally around x∗) given by

Q : Σ→ Σ,

x 7→ Q(x).

The stability of the periodic solution can be determined by the Floquet multipliers of
the periodic solution, which are defined as the eigenvalues of DQ(x∗). The stability
of the periodic solution is then subject to Theorem 2.2.3, with “periodic solution” in
place of “zero solution”. We note in some scenarios that the Poincaré map is defined
from an open ball around x∗ to itself. In this case, the eigenvalues will be the same
Floquet multipliers are above, with an additional eigenvalue of 1. This eigenvalue
corresponds to the eigenvector that is tangent to the periodic orbit ar x∗.

Although the above theory applies to n-dimensional systems of the form (2.2.1),
this thesis only goes as far as studying one-dimensional periodic homogeneous linear
systems. We formally write these as

ẋ = a(t)x, (2.2.2)

where x ∈ R and a : R → R is a T -periodic function. In this case, we are able to
explicitly calculate the characteristic multiplier/exponent.
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Theorem 2.2.4. The characteristic exponents of (2.2.2) are given by

µ =
1

T

∫ T

0

a(s) ds+
2πki

T

for any k ∈ Z. Similarly, the characteristic multiplier of (2.2.2) is given by

ρ = e
∫ T
0 a(s) ds.

Proof: We first solve the system (2.2.2) explicitly, starting at t = 0.

ẋ = a(t)x

=⇒ ẋ

x
= a(t)

=⇒ ln
∣∣x(t)

∣∣ =

∫ t

0

a(s) ds+ c̃

=⇒ x(t) = ce
∫ t
0 a(s) ds.

If we suppose initial condition x(0) = 1, then clearly c = 1, so

x(t) = e
∫ t
0 a(s) ds.

To find characteristic exponents, we first wish to find a matrix B satisfying the
condition

eTB = Φ(0)−1Φ(T ), (2.2.3)

where Φ(t) is a fundamental matrix solution, as per Floquet’s Theorem. As we are in

the one-dimensional case, B is a number, and our above solution x(t) = e
∫ t
0 a(s) ds is

a fundamental solution. Setting Φ(t) = x(t) in the condition (2.2.3), we then obtain

eTB = Φ(0)−1Φ(T )

= x(0)−1x(T )

= x(T )

= e
∫ T
0 a(s) ds.

Taking the natural logarithm of both sides yields

TB =

∫ T

0

a(s) ds+ 2πki
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for k ∈ Z. Therefore, we can take B = 1
T

∫ T
0
a(s) ds+ 2πki

T
for any k ∈ Z. Since B is

a number, then if we consider it as a 1× 1 matrix, it is its own eigenvalue. Therefore,
the characteristic exponents of (2.2.2) are

µ =
1

T

∫ T

0

a(s) ds+
2πki

T

for any k ∈ Z, and the characteristic multiplier is

ρ = eµT = e
∫ T
0 a(s) ds.

Using this theorem in conjunction with Theorem 2.2.3, we can take k = 0 to tell us
that

(1) if 1
T

∫ T
0
a(s) ds < 0, then the zero state of system (2.2.2) is asymptotically

stable.

(2) if 1
T

∫ T
0
a(s) ds > 0, then the zero state of system (2.2.2) is unstable.

If, by chance, we have 1
T

∫ T
0
a(s) ds = 0, the zero state is called Lyapunov stable. In

this work, however, we are not particularly interested in this case. We use Floquet
theory to determine when a species can invade (see Section 2.6), and therefore we
only wish to satisfy statement (2) above.

2.3 Averaging Differential Equations

Consider a non-autonomous ODE of the form

ẋ = A(t)x.

It may be the case that A(t) is periodic in time, of period T , and variations in A(t)
are small. In particular, we may write

ẋ = εÃ(t)x (2.3.1)

for ε > 0 small. Although the ODE is still non-autonomous, the function A(t) is
almost independent of time, in the sense that it only ever varies from its average by
an order of ε. It may seem intuitive then to study dynamics induced by the averaged
system to approximate the dynamics of (2.3.1). In this section, we detail this aver-
aging process and discuss the applicability of this method.
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In general, averaging is applicable to systems of the form

ẋ = εf(x, t, ε), (2.3.2)

where x ∈ U ⊆ Rn, 0 ≤ ε � 1, and f : Rn × R × R+ → Rn is r times continuously
differentiable, r ≥ 2, bounded on bounded sets, and of period T > 0 in t. We define
the associated autonomous averaged system as

ẏ = εf̄(y) ≡ ε
1

T

∫ T

0

f(y, t, 0)dt. (2.3.3)

We employ the following theorem, which is proved in [13].

Theorem 2.3.1 (The Averaging Theorem). There exists an r-times continuously
differentiable change of coordinates x = y + εw(y, t, ε) under which (2.3.2) becomes

ẏ = εf̄(y) + ε2f1(y, t, ε), (2.3.4)

where f1 is of period T in t. Moreover,

(i) If x(t) and y(t) are solutions of (2.3.2) and (2.3.3) based at x0, y0, respectively,
at t = 0, and |x0 − y0| = O(ε), then |x(t) − y(t)| = O(ε) on a time scale
t = O(1/ε).

(ii) If p0 is a hyperbolic fixed point of (2.3.3), then there exists ε0 > 0 such that,
for all 0 < ε ≤ ε0, (2.3.2) possesses a unique hyperbolic periodic orbit γε(t) =
p0 +O(ε) of the same stability type as p0. This periodic orbit may be trivial.

(iii) If xs(t) ∈ W s(γε) is a solution of (2.3.2) lying in the stable manifold of the
hyperbolic periodic orbit γε = p0 +O(ε), ys(t) ∈ W s(p0) is a solution of (2.3.3)
lying in the stable manifold of the hyperbolic fixed point p0 and |xs(0)−ys(0)| =
O(ε), then |xs(t)−ys(t)| = O(ε) for t ∈ [0,∞). Similar results apply to solutions
lying in the unstable manifolds on the time interval t ∈ (−∞, 0].

We note that conclusions (ii) and (iii) generalize to more complicated hyper-
bolic sets: for example, if (2.3.3) has a hyperbolic closed orbit, then (2.3.2) has a
corresponding hyperbolic invariant torus [14]. Theorem (2.3.1) allows us to study
the averaged system associated to our non-autonomous seasonal model, and use our
results to understand the behaviour of the seasonal model. In particular, we will look
for steady states and periodic orbits in the averaged system and study their local sta-
bility. This translates directly to periodic orbits and invariant tori in of the seasonal
model with the same stability type.
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We will also be interested in bifurcations of our non-autonomous focal model.
Consider a family of systems of the form

ẋ = εfµ(x, t, ε), (2.3.5)

where µ ∈ R, as well as the associated family of averaged systems

ẏ = εf̄µ(y). (2.3.6)

There is a corresponding bifurcation theorem for averaged systems, whose proof
can also be found in [13].

Theorem 2.3.2. If (2.3.6) undergoes a saddle-node or a Hopf bifurcation at µ = µ0,
then, for µ near µ0 and ε sufficiently small, the Poincaré map of (2.3.5) also undergoes
a saddle-node or a Hopf bifurcation.

2.4 Predator–Prey Models

This thesis focuses on differential equations that model population dynamics and
predator-prey interactions. Therefore, we discuss the relevant ecological phenomena
and how they may be translated into differential equations. All of the material in
this section can be found in [20].

The first step is understanding growth and death mechanisms of populations.
We can then choose functions that take into account the key mechanisms that we
would like to model and use these functions to derive our differential equations. To
give a basic example, let x = x(t) represent the population density of a species, and
consider the following equation:

ẋ = rx−mx. (2.4.1)

The parameters r,m ≥ 0 are per capita birth and death rates of the species. However,
we can also define a = r −m and write (2.4.1) as

ẋ = ax. (2.4.2)

In this case, we no longer have separate terms on the right-hand side of the equation,
but rather a single term that encompasses all of the growth and death mechanisms
that apply to the species. Throughout many ecological models, certain terms are
commonly used to model population dynamics of a species. We list two important
terms here.
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Exponential growth:
ẋ = ax. (2.4.3)

The example we gave above, (2.4.2), represents exponential growth of a population.
It is called such because solutions to (2.4.3) are of the form

x(t) = ceat,

where c is a constant that represents the initial condition. With the solution written
as such, we can then see that, when a > 0, the population increases indefinitely (given
that we start with a non-zero population). This corresponds to the case where r > m
in equation (2.4.1); in other words, the species growth outpaces its death. Similarly,
if a < 0, the population decreases to 0. Finally, if a = 0, the population remains
constant for all times.

Logistic growth:

ẋ = rx
(

1− x

K

)
. (2.4.4)

Logistic growth can be used to model a species that grows at low densities with
growth rate r but is limited by a carrying capacity K. When the population is above
this carrying capacity, the rate of change is negative. Therefore, the population de-
clines as it approaches the carrying capacity. We note that (2.4.4) is not written as a
growth and death term separately. However, for x < K, ẋ is positive, so the density
increases; for x > K, the density decreases. Therefore, growth and death are taken
into account via the carrying capacity.

In the case of predator–prey relationships, we will construct models that take into
account multiple species and that will have growth and death terms that represent
the interactions between the species. We can construct a general model for a prey,
denoted by x, which has one predator, denoted by y. For example, we may write

ẋ = r(x)−m(x, y),

ẏ = cm(x, y)− u(y).
(2.4.5)

In this setup, we define r(x) as the net prey growth in the absence of the predator.
m(x, y) and u(y) are taken to be non-negative functions. The term m(x, y) represents
predation-induced death of the prey, and u(y) is predator death. Finally, c represents
the conversion coefficient of predation, which measures how a predator may convert
prey consumption into its own population growth.

A classic example of a predator–prey model is the Lotka–Volterra model [24],
given as

ẋ = ax− bxy,
ẏ = cxy − dy.

(2.4.6)
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It can be shown that there is a unique steady state, which is stable but not asymp-
totically stable, given by

(x∗, y∗) =

(
d

c
,
a

b

)
.

All other positive solutions are periodic around this steady state [20].

Another famous, and slightly more complicated, predator–prey model is the
Rosenzweig–MacArthur model [20, 29]. It reads

ẋ = rx
(

1− x

K

)
− mxy

a+ x
,

ẏ =
gxy

a+ x
− uy.

(2.4.7)

We will study the details of this model in Section 4.3. This system always has
a trivial and prey-only state. In addition, the system may have a coexistence state.
Moreover, the coexistence state may lose stability via a Hopf bifurcation, which gives
rise to stable limit cycles in the system.

Throughout this work, we will create differential equations that model the inter-
actions of a single prey with two distinct predators. We will use particular functions
to describe growth and death terms of these species, as well as the predation of the
predators on the prey.

2.5 Functional Responses

In the previous section, we introduced some possible forms of the function r(x), which
represents the net growth of the prey species. In this section, we will present some
options for the function m(x, y), which is a non-negative function representing prey
death due to the predator.

We introduce the notion of a functional response to motivate the choice of func-
tion m(x, y). This is a term used in ecology to describe the way in which a prey
responds to a predator; i.e., how many prey are killed per predator. Once enough
field data is collected to understand the functional response, one can construct func-
tions that fit the data and encompass the observed behaviour of the response. When
a suitable functional response is found, which we denote by φ(x), where x is the prey
density, we can define the prey death term as

m(x, y) = φ(x)y,
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where y is the predator density. Throughout this work, we will use the functional
responses presented by C.S. Holling [16, 17], as well as a third response [28].

A type I functional response assumes a linear death rate with respect to prey
density x, which is capped at some density x∗. Therefore, an appropriate choice of
function is

φ1(x) =

{
mx if x ≤ x∗

mx∗ if x ≥ x∗
(2.5.1)

where m > 0 is a parameter.

A type II functional response assumes an approximately linear predation rate at
low prey density, which tapers off to some maximal intake rate at higher prey density.
The main difference between type I and II is that type I has a ‘corner’ at x∗ whereas
type II does not. An example of a function that exhibits this behaviour is Holling’s
disc equation [17], given by

φ2(x) =
mx

a+ x
, (2.5.2)

where m, a > 0 are parameters. In fact, this function was mechanistically derived
via an artificial predator–prey situation wherein a blindfolded subject ‘hunted’ for
discs on a table. The motivates the name disc equation. The denominator in this
functional response imposes the upper bound on intake rate as prey density is large.
However, for small prey density, the type II functional response is approximated by
the linear function m

a
x. Moreover, φ2(x) is monotone increasing and

lim
x→∞

mx

a+ x
= m,

which shows that this functional response is bounded above by m. We will refer to
the parameter m as the saturation killing rate. Moreover, the parameter a is the half-
saturation constant; i.e., when x = a, the density is at half of its maximum capacity.
Specialist predators typically show a functional response consistent with that of a
type II. We note that function (2.5.1) also satisfies the desired behaviour of the type
II functional response. In particular, this function is linear for low prey density and
is bounded above when prey density is larger. The preference of a function such as
(2.5.2) is the continuous derivative for all positive values of prey density.

A type III functional response is also bounded above, but the behaviour at low
densities differs from that of type I or type II. A type III response assumes a predation
rate that is very low at low prey density, relative to the type I or II responses. The
idea is that at low prey density, the predator does not encounter many of the focal
prey items and hence will not bother to learn how to hunt them well. Alternatively,
a predator may switch to alternative food sources at low focal prey density. In this
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case, the model must include an additional predator growth term, which represents
the growth due to additional food sources. This term will not depend on prey density,
and therefore this case will not fit into the framework of (2.4.5). An example of an
appropriate function is

φ3(x) =
mx2

a+ x2
, (2.5.3)

where m, a > 0 are constant parameters. m can be again thought of as the saturation
killing rate, and a is the square of the half-saturation constant. The role of the de-
nominator in this function is to impose an upper bound on prey consumption, similar
to the type II functional response. However, as prey density decreases, this function
is approximated by the quadratic function m

a
x2 and is therefore small when prey den-

sity is low. Moreover, type III has an inflection point, as opposed to types I and II.
Therefore, there is a qualitative difference between type II and type III responses in
that when x is small, φ2(x) is approximately linear whereas φ3(x) is approximately
quadratic. Moreover, a type II response typically has an inflection point, whereas a
type II does not. Generalist predators typically show a functional response consistent
with that of a type III. Figure 2.5 compares functional responses of types I, II and III.

Figure 2.5: Holling type functional responses. Type I: m = 1. Type II: m = 1, a =
0.5. Type III: m = 1, a = 2.

Using these functional responses, we can now define suitable functions m(x, y)
for modelling predator–prey interactions. Throughout this work, these functions will
be of the form

m(x, y) = φi(x)y

where the choice of functional response φi depends on the behaviour of the predator.
The Canadian lynx is a specialist predator year round, which calls for a type II
functional response. In addition to the preference of a continuous derivative, we
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choose the type II response for the lynx because empirical data predicts such a choice
of functional response [40]. The great-horned owl is a specialist in the winter and
a generalist in the summer, so we will model owl predation with type II and III
responses, respectively.

2.6 Invasion Analysis

The final section in this chapter will detail an approach called invasion analysis, which
we use to study some qualitative aspects of the complicated models encountered later
in the work. Suppose we have a system with n ≥ 2 species. One of the species is re-
moved to obtain a system with n−1 species. We determine when this smaller system
exhibits stable coexistence and derive conditions under which the missing predator
can invade; i.e., grow at low density, at this coexistence state; we call these invasion
conditions for the removed species. In particular, we will define successful invasion
as this coexistence state being unstable in the direction of the missing species. This
process is then repeated for all the species in the original system. Once the various
invasion conditions are obtained, we check whether they can be satisfied simultane-
ously. If so, we are in the case of mutual invasion in the n species model. Finally,
we aim to show that mutual invasion implies coexistence in the n species model as well.

This process translates to studying local stability of semi-trivial states in an n-
dimensional systems of ODEs; these are the steady states or periodic solutions where
at least one component is zero. We provide an example to demonstrate the invasion
analysis approach, and highlight its advantages and drawbacks.

Consider the following system with one predator and one prey, where x is prey
density and y is predator density.

ẋ = rx(1− x)−mxy,
ẏ = gxy − uy.

(2.6.1)

r, m, g and u are taken to be strictly positive parameters. For the purpose of this
work, we are interested in predator invasion. We know that, in the absence of the
predator in (2.6.1), the prey exhibits logistic growth and therefore exists at a positive
stable steady state. We wish to determine the predator invasion conditions at this
steady state. In more detail, we first set the predator density to zero in the equations
to obtain

ẋ = rx(1− x),

ẏ = 0.
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We can consider the first equation as a 1-dimensional ODE, which has steady states
x∗ = 0 and x∗ = 1. The positive state x∗ = 1 is always stable within the x-line, and
corresponds to a semi-trivial state (x∗, y∗) = (1, 0) in (2.6.1). We then compute the
Jacobian of (2.6.1), which, evaluated at the semi-trivial state, gives us

J(1, 0) =

[
−r −m
0 g − u

]
.

If we then consider the linearised system[
ẋ
ẏ

]
=

[
−r −m
0 g − u

] [
x
y

]
,

the predator equation decouples as

ẏ = (g − u)y.

We see that the state (1, 0) is unstable in the y direction if g − u > 0. Therefore
when g − u > 0, there will be a small region around (1, 0) in which solutions will
diverge from (1, 0) along the y direction. This means that if the predator invades the
prey system with low density, it will initially increase in density. We consider this a
successful invasion and so we take g−u > 0 as the invasion condition for the predator.

We now verify that, under this invasion condition, we obtain coexistence in
(2.6.1). The steady state of this system is given by

(x∗, y∗) =

(
u

g
,
r

m

(
1− u

g

))
.

We note that this state is positive only if 1 − u
g
> 0 or g − u > 0, which is the

predator’s invasion condition. The Jacobian of (2.6.1) evaluated at this steady state
is

J(x∗, y∗) =

[
− ru

g
−mu

g
r
m

(g − u) 0

]
,

with characteristic polynomial

λ2 +
ru

g
λ+

ru

g
(g − u).

Since the parameters are assumed to be strictly positive, then, under the invasion
condition, all of the coefficients in the characteristic polynomial are strictly positive.
By the Routh–Hurwitz criterion [20], the roots of this polynomial will all have nega-
tive real parts. Therefore, the positive steady state is stable. We then see that if the
predator can successfully invade in (2.6.1), then stable coexistence is achieved.
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This example highlights the usefulness of the invasion analysis approach in that
we can obtain conditions for stable coexistence in a two-dimensional system by study-
ing the dynamics of various one-dimensional systems. Although general stability anal-
ysis is feasible in this case, it will be significantly harder in the three-species model
that we encounter in this thesis. The main question we will ask ourselves then is
whether or not mutual invasion implies stable coexistence in the three-species model.
We can develop a sufficient understanding of the dynamics of the underlying two-
species models, and invasion conditions of the third species are easy to write down.
Therefore, if mutual invasion implies stable coexistence, these invasion conditions will
also serve as sufficient conditions for coexistence. In some cases, mutual invasion and
stable coexistence do not coincide, but we will spend some time investigating and
discussing the relationship between these two. We end with the remark that species
invasion at a steady state has often been studied, sometimes under the guise of per-
sistence [9, 23, 41]. However, the scenario of invasion along a periodic orbit is not as
common but is handled nicely by Floquet theory.



Chapter 3

The Model

With much of the essential background theory laid out, we can formulate the ODE
model with which we will study the dynamics of the snowshoe hare, Canadian lynx
and great-horned owl. We first review the ecological literature in order to determine
predation patterns of the lynx and the owl, as well as other growth and death mech-
anisms that affect all of our species. Once that is done, we translate these patterns
and mechanisms into explicit functions that serve as the building blocks of our ODE
model. We create one set of equations for the warmer portion of the year, which we
refer to as the summer season from now on, and another set for the colder portion,
which we call the winter season. Finally, we non-dimensionalize the model and take a
functional average of the seasonal equations to remove the explicit time dependence
of the system. The resulting model will be the focus of the remainder of this thesis.
Our derivation closely follows the derivation of the model in [39]. We generalize their
approach by including the lynx that is the dominant predator of the snowshoe hare.

To formulate the model, we define a function N = N(t) to represent the popu-
lation of the hare over time. Similarly, we define P = P (t) as the population of the
lynx and Q = Q(t) as the population of the owl. As we are considering a seasonal
model, we also define 0 < T < 1 as the fraction of the year representing the summer
season. During the summer, the hare grows logistically and is subject to predation
by the lynx, a specialist predator, and the owl, a generalist. The lynx grows due to
the consumption of the hare, and dies linearly. Finally, the owl grows in a logistic-like
fashion, independent of the hare, in addition to growth due to the consumption of
the hare. However, if the hares are not abundant, there is very little growth due to
hare consumption. Using the functional forms of Section 2.5, the summer equations

27
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are given as

dN

dt
= rN

(
1− N

K

)
− cNP

b+N
− aN2Q

B2 +N2
,

dP

dt
= f

cNP

b+N
−mP,

dQ

dt
= h

aN2Q

B2 +N2
+

sQ

1 + vQ
− uQ.

(3.0.1)

During the winter season, hare growth is negligible due to insufficient resources,
but predation due to both predators remains the leading cause of death. The lynx
continues to act as a specialist predator with linear death rate. However, the owl acts
as a specialist predator during this season due the unavailability of alternative prey,
and continues to die linearly. Using the functional forms of Section 2.5, the winter
equations read as

dN

dt
= − cNP

b+N
− αNQ

β +N
,

dP

dt
= f

cNP

b+N
−mP,

dQ

dt
= h

αNQ

β +N
− uQ.

(3.0.2)

Interpretations of the parameters in (3.0.1) and (3.0.2) are given in Table 3.1.
We assume all parameters are strictly positive.

To formulate the complete seasonal model, we alternate between equation (3.0.1)
and (3.0.2) according to season. We choose one year as our unit of time and start
our year during the summer season. Thus, the summer equations (3.0.1) are valid
for n ≤ t < n + T where n is a non-negative integer, while the winter equations
(3.0.2) are valid for n + T ≤ t < n + 1. We assume that the switch between seasons
is instantaneous and population densities remain continuous, as the densities at the
end of a season will serve as initial densities for the next season. Our seasonal model
will then read

Summer : t ∈ [n, n+ T ), n ∈ Z
dN

dt
= rN

(
1− N

K

)
− cNP

b+N
− aN2Q

B2 +N2
,

dP

dt
= f

cNP

b+N
−mP,

dQ

dt
= h

aN2Q

B2 +N2
+

sQ

1 + vQ
− uQ,

Winter : t ∈ [n+ T, n+ 1), n ∈ Z
dN

dt
= − cNP

b+N
− αNQ

β +N
dP

dt
= f

cNP

b+N
−mP,

dQ

dt
= h

αNQ

β +N
− uQ.

(3.0.3)
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Parameter Description Units
r hare growth rate 1/year
K hare carrying capacity hare
c lynx saturation killing rate hare/lynx/year
b lynx half-saturation constant hare
a owl saturation killing rate (summer) hare/owl/year
B owl half-saturation constant (summer) (hare)2

f lynx conversion efficiency lynx/hare
m lynx death rate 1/year
h owl conversion efficiency (summer) owl/hare
s owl alternative killing rate 1/year
v owl alternative density-dependence 1/owl
u owl death rate 1/year
α owl saturation killing rate (winter) hare/owl/year
β owl half-saturation constant (winter) hare

Table 3.1: Parameters in (3.0.1) and (3.0.2).

To simplify the analysis, we non-dimensionalize the model. This will help identify
important parameter combinations as well as reduce the overall number of parameters
in the system. We define the following new quantities:

x =
N

K
,

y =
cP

rK
,

z =
aQ

rK
,

τ = rt,

b =
b

K
,

B =
B2

K2
,

a =
α

a
,

d =
β

K
,

f =
fc

rK
,

m =
m

r
,

h =
ha

r
,

g =
hα

r
,

s =
sa

r2K
,

v =
a

vKr
,

u =
u

R
.

Substituting these new quantities into (3.0.3) and dropping the overhead bars, defin-
ing the overhead dot as the derivative with respect to τ , we obtain

Summer t ∈ [n, n+ T ), n ∈ Z

ẋ = x(1− x)− xy

b+ x
− x2z

B + x2
,

ẏ =
fxy

b+ x
−my,

ż =
hx2z

B + x2
+

sz

v + z
− uz,

Winter t ∈ [n+ T, n+ 1), n ∈ Z

ẋ =
xy

b+ x
− axz

d+ x
,

ẏ =
fxy

b+ x
−my,

ż =
gxz

d+ x
− uz.

(3.0.4)
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Finally, we wish to write (3.0.4) as a single system of ODEs. To do so, we define a
new function S : R→ {0, 1} as

S(t) =

{
1, if n ≤ t < n+ T, n ∈ Z
0, if n+ T ≤ t < n+ 1, n ∈ Z

.

In other words, S(t) is equal to 1 during the summer season and equal to 0 during
the winter. We can then write the model as

ẋ = S(t)

(
x(1− x)− xy

b+ x
− x2z

B + x2

)
+ (1− S(t))

(
xy

b+ x
− axz

d+ x

)
,

ẏ =
fxy

b+ x
−my,

ż = S(t)

(
hx2z

B + x2
+

sz

v + z
− uz

)
+ (1− S(t))

(
gxz

d+ x
− uz

)
.

(3.0.5)

The seasonal model (3.0.5) is difficult to study. This is partly due to the discon-
tinuity of S(t), but mostly due to the fact that the system is not autonomous. To
address this issue, we use temporal averaging to create a much simpler, autonomous
model that still contains the biological mechanisms that influenced the creation of
the seasonal model (3.0.5). Guided by the theory in Section 2.3, we take the func-
tional average of (3.0.5) over the length of one period, which is 1. A problem that
we encounter with this approach is that system (3.0.5) is not continuous, which is a
requirement for Theorem 2.3.1, and moreover there is no obvious choice of a small
parameter to take the role of ε in Theorem (2.3.1). To circumvent the first issue, one
can use bump functions to approximate (3.0.5) to an arbitrary degree with infinitely
differentiable functions. Details can be found in many textbooks on analysis and/or
distributions; for example [12]. We still do not have a small parameter, however.
There is no obvious choice for such a parameter in (3.0.5); nevertheless, we adopt the
averaging approach since it has been shown to give good approximations. For exam-
ple, when y = 0, Tyson & Lutscher give several examples where averaged dynamics
accurately predict seasonal dynamics [39]. In [19], Hsu & Zhao study the period
map of a seasonal-competition model, and the stability conditions they obtain agree
identically with those of the averaged model. The averaged system corresponding to
(3.0.5) is then

ẋ = T
(
x(1− x)− xy

b+ x
− x2z

B + x2

)
+ (1− T )

(
− xy

b+ x
− axz

d+ x

)
,

ẏ =
fxy

b+ x
−my,

ż = T
( hx2z

B + x2
+

sz

v + z
− uz

)
+ (1− T )

( gxz

d+ x
− uz

)
.

(3.0.6)
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Descriptions and ranges of the parameters found in (3.0.6) are given in Table
3.2. Once again, parameters are taken to be strictly positive.

Parameter Description Units Range Reference
b Lynx half-saturation hare/ha 0.3–1.5 [30]

B
Owl half-saturation
constant (generalist)

(hare/ha)2 0.0049–0.09 [39]

a
Owl saturation killing rate

(specialist)
hare/owl/year 0.4–2.7 [39]

d
Owl half-saturation
constant (specialist)

hare/ha 0.004–0.6 [21]

f
Hare–lynx conversion

efficiency
1/year 2.75–3.2 [40, 34]

m
Lynx death rate in absence

of hare
1/year 2–2.4 [40, 34]

h
Hare–owl conversion
efficiency (generalist)

1/year 0.33–1 [3, 33]

s
Owl alternative killing rate

(generalist)
owl/year 1.4 [3, 33]

v
Owl alternative density
dependence (generalist)

owl/ha unknown

u Owl death rate 1/year 0.07–0.9 [3, 18]

g
Hare–owl conversion
efficiency (specialist)

1/year 0.33–1 [3, 33]

Table 3.2: Parameters in (3.0.6), and their values.



Chapter 4

Simplifications of the Model

The non-dimensionalization process as well as the averaging technique serve to sim-
plify the seasonal model (3.0.3) significantly. In general, ODE analysis is much simpler
for autonomous systems with a minimal amount of free parameters. However, the
high degree of nonlinearity in the focal model (3.0.6) results yet again in a complicated
analysis. In this chapter, we present an alternative direction to study this model. We
will formulate various simplifications, aiming to remove some of the nonlinear as-
pects of (3.0.6) that introduce difficulties in the analysis. Moreover, we motivate our
choices of simplifications; we aim to apply techniques previously used in the study of
predator–prey systems to which a simpler model lends itself, but we also ensure that
the simplified models we create remain biologically relevant to our predator–predator–
prey scenario. The goal of these simplifications is to develop new approaches that we
may apply to the focal model (3.0.6), as well as notice trends in the simplified models
that we can look for in the non-simplified case.

4.1 Hare–Owl Submodel

We recall that in the invasion analysis approach that we hope to apply, it is necessary
to understand the dynamics of the underlying two-species model. The hare–lynx
model of (3.0.6) is a Rosenzweig–MacArthur model for which we understand the
dynamics. However, the hare–owl model is more complicated. This two-species model
reads

ẋ = T
(
x(1− x)− x2z

B + x2

)
+ (1− T )

(
− axz

d+ x

)
,

ż = T
( hx2z

B + x2
+

sz

v + z
− uz

)
+ (1− T )

( gxz

d+ x
− uz

)
.

(4.1.1)

The model has already been analysed. For example, the summer equations are studied
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in [10], and the full model in [39]. This model has a wide range of possible dynamics,
including bistability and limit cycles. Moreover, an analytic study of this model is
very difficult, and the majority of the results in [39] are purely numerical. As our
focal model (3.0.6) extends this model to include a second predator, the lynx, we wish
to further the analysis of (4.1.1) in order to understand its role in the study of the
focal model.

We wish to develop some analytical tools for studying this model. To do so, we
introduce a simplification of (4.1.1) for which the growth and death mechanisms are
similar, but the particular equations are much simpler to work with. We first replace
the alternative growth of the owl, given by the term

sz

v + z
− uz,

with logistic growth
sz(1− z).

These two terms are qualitatively similar as functions of z, as seen in Figure 4.1. In
particular, both growth functions have zeros at z = 0 as well as some positive value
of z, and we can choose parameters such that these positive values coincide at 1.
Moreover, we can simultaneously ensure that the growth rates at z = 0 are equal.

Figure 4.1: Alternative growth (dashed red) and logistic growth (solid blue) func-
tions for the owl. The solid black curve represents the x-axis. For alternative
growth, s = 2, u = 1, v = 1. For logistic growth, s = 1.
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We recall from Section 2.5 that the specialist and generalist predation terms both
include denominators, which serve to bound consumption by the predators at high
prey density. In the case of the hare–owl system, the logistic growth forces an upper
bound on prey density. Therefore, prey consumption must also be bounded above,
as it depends strictly on the amount of prey available. This motivates the decision to
remove the denominators, as we obtain much simpler polynomial equations while en-
suring that a bounding mechanism for prey consumption is still present in the model.

Finally, we are left with a simplified hare–owl model, which reads

ẋ = T
(
x(1− x)−Bx2z

)
+ (1− T )

(
− dxz

)
= F (x, z),

ż = T
(
hx2z + sz(1− z)

)
+ (1− T )

(
gxz − uz

)
= G(x, z).

(4.1.2)

For the summer-only case (T = 1), this model is similar to work done by Magal
et al [25] where they study two logistically growing species and a Holling type II
functional response. We can completely determine the dynamic behaviour of (4.1.2)
in the biologically relevant quadrant (x ≥ 0 and z ≥ 0). To do so, we consider the
nontrivial hare and owl nullclines of the system, given, respectively, by

z = Nh(x) =
T (1− x)

TBx+ (1− T )d
(4.1.3)

and

z = No(x) =
1

Ts

(
T (hx2 + s) + (1− T )(gx− u)

)
. (4.1.4)

Theorem 4.1.1. If Nh(0) > No(0) and No(1) > 0, then the hare and owl nullclines,
(4.1.3) and (4.1.4) respectively, intersect exactly once in the positive quadrant of the
(x, z)-plane. In this case, there exists a unique globally stable coexistence point of
(4.1.2).

Proof: We begin by finding a forward invariant domain for the system, by con-
sidering the nullclines. Setting x̃ = 1 + ε for small ε > 0 and

z̃ = max

{
1

2
, No(x̃)

}
,

we define the region
D = [0, x̃]× [0, z̃].

We define z̃ such that it is always strictly positive. We will show that D is
invariant with respect to the vector field (4.1.2) by showing that the vector field is
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Figure 4.2: D is the greyed region above. The non-trivial hare (solid blue) and
owl (dashed red) nullclines intersect in the interior of D to give a coexistence point
(x∗, z∗). Parameters are T = 0.5, B = 1, a = 1, s = 2, h = 0.5, g = 1 and u = 2.

pointing inwards along the boundary ∂D.

As with all population models [20], the positive quadrant in the x-z plane is
invariant. Therefore, we must only look at the boundary segments along the lines
x = x̃ and z = z̃. Consider the derivatives of the non-trivial nullclines,

N ′h(x) =
−(1− T )d− T 2B

(TBx+ (1− T )d)2

and

N ′o(x) =
2hs

x
+

(1− T )g

Ts
.

Since 0 < T < 1 and x ≥ 0, we observe that Nh(x) is monotone decreasing and No(x)
is monotone increasing.

Now, choose any point (x, z) above the graph of Nh(x). We have that

z >
T (1− x)

TBx+ (1− T )d
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=⇒
(
TBx+ (1− T )B

)
z > T − Tx

=⇒ 0 > T − Tx−
(
TBx+ (1− T )d

)
z

= T − Tx− TBxz − (1− T )dz

= T
(

1− x− dxz
)

+ (−T )
(
− bz

)
.

Multiplying through by x ≥ 0, we obtain 0 > F (x, z). Therefore, ẋ < 0 above Nh(x)
and ẋ > 0 below. Similarly, if we choose a point (x, z) above the graph of No(x), we
can show that G(x, z) < 0 so ż < 0 above No(x) and ż > 0 below.

Now, consider the segment of ∂D along the line x = x̃, which is given by

Dx = {x̃} × (0, z̃].

Since Nh(1) = 0 and x̃ > 1, we must have Nh(x̃) < 0 as Nh is strictly decreasing.
Therefore, Dx lies completely above the graph of Nh, so ẋ < 0 along Dx and the
vector field (4.1.2) is pointing inwards along this segment.

Simarly, the segment of ∂D along the line z = z̃ is given by

Dz = (0, x̃)× {z̃}.

As No is increasing, it attains its maximum on [0, x̃] at x = x̃. Therefore, Dz lies above
the graph of No(x). Therefore, ż < 0 along Dz so the vector field is pointing inwards
along Dz. We conclude that the region D is an invariant domain for the flow of (4.1.2).

The next step is to determine when a positive steady state exists in the interior
of D. We first note that, since Nh is strictly increasing and No is strictly decreasing,
these nontrivial nullclines can intersect at most once, so there is at most one positive
steady state. The goal is now to determine under which conditions the nullclines
intersect. Due to the monotonicity of Nh and No, sufficient conditions can be given
by

Nh(0) > No(0) (4.1.5)

and
No(1) > 0. (4.1.6)

Since Nh(1) = 0, the second condition implies Nh(1) < No(1) and so, by the interme-
diate value theorem, we have Nh(x

∗) = No(x
∗) for some x∗ ∈ (0, 1). Therefore, the

point (x∗, z∗) =
(
x∗, Nh(x

∗)
)

is the unique positive steady state.

Finally, we suppose conditions (4.1.5) and (4.1.6) are met so that the positive
steady state (x∗, z∗) exists. We wish to show that it is globally asymptotically stable.
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To do so, we define Do as the interior of D. In particular, Do = D \ ∂D. By a similar
argument as above, Do is invariant with respect to the vector field (4.1.2). We now
define a function ϕ(x, z) = 1

xz
and compute ∇(ϕF, ϕG). With

∂ϕF

∂x
= −T

z

and
∂ϕG

∂z
= −TB − Ts

x
,

we obtain

∇(ϕF, ϕG) =
∂ϕF

∂x
+
∂ϕG

∂z

=− T

z
− TB − Ts

x
.

It is then clear that ∇(ϕF, ϕG) < 0 for all x, z > 0. In particular, we have
∇(ϕF, ϕG) < 0 in Dδ. By the Bendixson–Dulac criterion (Theorem 2.1.12), we con-
clude that there can be no periodic orbits in Dδ. Furthermore, as Dδ is open and
invariant with respect to the flow of (4.1.2), the ω-limit sets of any orbit must lie
within Dδ. As there can be no periodic orbits and there is only one steady state in
Dδ, the Poincaré–Bendixson Theorem (Theorem 2.1.11) implies that the ω-limit set
of any orbit consists solely of the positive steady state. A steady state can only occur
at the intersection of the hare and owl nullclines; therefore the unique intersection
point of these nullclines in D is the ω-limit set of any orbit of (4.1.2). In other words,
the positive steady state (x∗, z∗) must be stable if it exists.

Although the theorem only gives a sufficient condition for stable coexistence at
a steady state, we can argue that the only possible coexistence is at a stable steady
state. First, we can argue diagrammatically, by looking at Figure 4.2, that the con-
ditions in Theorem 4.1.1 are in fact necessary. A steady state corresponds to an
intersection of the blue and red curves, and if these curves are to cross, it is necessary
that at x = 0 and x = 1 the conditions of Theorem 4.1.1 are satisfied. Moreover,
the use of the Bendixson–Dulac criterion in the proof of this theorem rules out any
possibility of periodic solutions, so the only stable equilibrium we can have is the
stable steady state in Figure 4.2.

This provides us with a sufficient understanding of the dynamics in the simplified
hare–owl system (4.1.2). We have explicit conditions for existence and stability of the
positive steady state. We know from [39] that the non-simplified hare–owl subsys-
tem exhibits a wide array of complex dynamics, so we expect significant qualitative
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changes in dynamics as we move from the simplified three-species models to the orig-
inal model (3.0.6), but the results of this section serve as a good starting point to
when we consider these simplified models.

4.2 Simplfied Lynx & Owl Model

In the previous section, removing the denominators of the hare–owl model (4.1.1)
allowed us to completely classify the population dynamics. Therefore we hope to
simplify the focal model (3.0.6) in the same way as we had for the hare–owl model
(4.1.1), by omitting denominators in the equations and replacing the alternate growth
of the owl by logistic growth. As such, this section will focus on the following model:

ẋ = T
(
x(1− x)− bxy −Bx2z

)
+ (1− T )

(
− bxy − dxz

)
,

ẏ = fxy −my,

ż = T
(
hx2z + sz(1− z)

)
+ (1− T )

(
gxz − uz

)
.

(4.2.1)

The analysis of this model is not as straightforward as it was for the hare–owl
model. Understanding the dynamics of the hare–owl model (4.1.1) relied on ODE
theory for planar systems, such as the Bendixson–Dulac criterion and the Poincaré–
Bendixson Theorem. Moreover, the arguments with nullclines do not translate well
from a two-dimensional system to a three-dimensional system, as it is difficult to en-
sure intersections of three nullsurfaces simultaneously. Therefore, to study coexistence
in (4.2.1), we must explicitly study stability of the various steady states of the system.

In the case of (4.2.1), we can have steady states with different combinations of
species, such as hare only, owl only, hare-lynx, hare-owl, and all three. For example,
the unique non-trivial steady state of the (4.2.1) is

x∗ =
m

f
,

y∗ =
1

b

(
T
(
1− x∗ −Bx∗z∗

)
+ (1− T )

(
− dz∗

))
,

z∗ =
1

Ts

(
Th(x∗)2 + (1− T )gx∗ + Ts− (1− T )u

)
.

(4.2.2)

These equations are already complicated, and determining their stability will add
another layer of complexity by having to calculate eigenvalues for matrices whose en-
tries contain combinations of the steady-state expressions. It does not seem promising
then to proceed with the study of stability at the nontrivial steady state. Instead, we
apply the invasion analysis process to (4.2.1), as outlined in Section 2.6.
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We begin with the owl-invasion scenario. Following Section 2.6, we first set z = 0
in equations (4.2.1) to obtain the hare–lynx submodel. The resulting system is

ẋ = Tx(1− x)− bxy,
ẏ = fxy −my,
ż = 0.

(4.2.3)

The next step is to determine when the above system has a stable coexistence
point. We first solve for the non-trivial steady state(s) (x∗, y∗, 0). From the y equation,
we must have

x∗ =
m

f
.

We then solve for y∗ in the x equation, giving us

y∗ =
T

b
(1− x∗) =

T

b

(
1− m

f

)
.

This gives us the steady state

(x∗, y∗, 0) =

(
m

f
,
T

b

(
1− m

f

)
, 0

)
. (4.2.4)

It is clear that the steady state is biologically relevant if and only if 0 < m
f
< 1.

We now wish to determine when it is stable in the (x, y)-plane. To do so, consider
the Jacobian matrix

J(x, y, z) =

T − 2Tx− by −bx 0
fy fx−m 0
0 0 0

 .
Evaluating this matrix at the steady state (4.2.4) yields

J

(
m

f
,
T

b

(
1− m

f

)
, 0

)
=


T − 2T m

f
− bT

b

(
1− m

f

)
−bm

f
0

f T
b

(
1− m

f

)
f m
f
−m 0

0 0 0



=

 −T m
f

− bm
f

0
fT
b

(
1− m

f

)
0 0

0 0 0


.

This matrix is stable in the (x, y)-plane precisely when the eigenvalues of the top-left
2 × 2 block, which we refer to as J∗, are both negative. Rather than calculating
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the eigenvalues explicitly, however, we know that the trace of J∗ will be the sum of
the eigenvalues, and the determinant of J∗ will be the product of the eigenvalues.
Moreover, the matrix J∗ has the sign pattern[

− −
+ 0

]
.

The trace of J∗ is negative whereas the determinant is positive. If the product of
both eigenvalues must be positive, then they must be of the same sign. Moreover, their
sum is negative, so they must both be negative. We conclude that both eigenvalues
are negative, and that the steady state (4.2.4) stable. To summarize, we have the
following.

Theorem 4.2.1. Suppose 0 < m
f
< 1. Then there exists a unique positive steady

state of the hare–lynx subsystem (4.2.3), given by(
m

f
,
T

b

(
1− m

f

)
, 0

)
, (4.2.5)

and it is stable.

We note that this is a common theorem, and not original to this thesis. It can
be found in many textbooks, for example [20].

The last step in the invasion analysis process is to determine under which condi-
tions the owl can invade at this coexistence point. In other words, we derive conditions
under which the state z = 0 is unstable in the simplified model (4.2.1), given that
0 < m

f
< 1. To do so, we consider the Jacobian of the simplified system evaluated at

the steady state (4.2.5), given by

J(x∗, y∗, 0) =

T (1− 2x∗)− by∗ −bx∗ T (−B(x∗)2) + (1− T ) (−dx∗)
fy∗ 0 0
0 0 T (h(x∗)2 + s) + (1− T )(gx∗ − u)

 .
In the linearised system associated to (4.2.1) around (x∗, y∗, 0), we then have that the
z equation decouples as

ż =
(
T
(
h(x∗)2 + s

)
+ (1− T )(gx∗ − u)

)
z.

Therefore, the state (x∗, y∗, 0) is unstable in the z direction precisely when

T

(
h

(
m

f

)2

+ s

)
+ (1− T )

(
gm

f
− u
)
> 0. (4.2.6)
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We will refer to inequality (4.2.6), given that the condition 0 < m
f
< 1 holds, as the

owl-invasion condition for (4.2.1).

To derive lynx-invasion conditions, we repeat the same process with the lynx as
the invading predator. Setting y = 0 in (4.2.1), we obtain

ẋ = T
(
x(1− x)−Bx2z

)
+ (1− T )

(
− dxz

)
,

ẏ = 0,

ż = T
(
hx2z + sz(1− z)

)
+ (1− T )

(
gxz − uz

)
.

(4.2.7)

This is precisely model (4.1.2) from in the previous section. Therefore, system
(4.2.7) has a globally stable coexistence point if Nh(0) > No(0) and No(1) > 0, given
by the intersection of the curves Nh(x) and No(x). We will denote this point by
(x∗, 0, z∗). For all three sets of parameters we choose in Figure 4.3 below, both of
these nullcline conditions are satisfied everywhere in the figure. The next step in the
invasion analysis process is to derive conditions under which the state (x∗, 0, z∗) is
unstable in the y direction in model (4.2.1), given the existence of the globally stable
coexistence point in (4.2.7). In the linearised system associated to (4.2.1) around
(x∗, 0, z∗), we then have that the y equation decouples as

ẏ = (fx∗ −m)y.

Therefore, the state y = 0 is unstable precisely when

fx∗ −m > 0. (4.2.8)

We will refer to inequality (4.2.8), given that the conditions Nh(0) > No(0) and
No(1) > 0 hold, as the lynx-invasion conditions.

We have now derived both owl-invasion conditions and lynx-invasion conditions
for system (4.2.1). The final step in the invasion analysis process is to verify whether
we can satisfy all the invasion conditions simultaneously (we call this the mutual in-
vasion scenario), and whether mutual invasion implies coexistence in (4.2.1). Due
to the large number of free variables in inequality (4.2.6), mutual invasion is easy to
ensure.

The next step in the study of the simplified model (4.2.1) is to decide how to
proceed with the goal of proving coexistence. Ultimately, we are required to consider
the eigenvalues of the Jacobian matrix evaluated at the coexistence points, which will
be a very complicated process due to the lengthy equations in (4.2.1). However, we
can turn to numerical simulations at this point in the analysis in order to develop an
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intuition as to whether or not mutual invasion implies coexistence. This approach
does not prove coexistence, but we can check whether or not mutual invasion and
coexistence agree for a given selection of parameters.

We first choose two parameters to vary throughout our plots in order to produce
legible numerical results. The choice of T as a varying parameter is motivated by
the goal of this research project; we wish to understand the effects of seasonality on
species coexistence and the varying length of summer T is how our model incorpo-
rates seasonal fluctuations. The second choice of parameter is a matter of interest.
We argue that the owl is the more interesting predator in our model, as it exhibits
the seasonal-switching behaviour, and modelling its predation leads to complicated
dynamics [39]. Therefore, we choose to vary the parameter s, which measures the
amount of alternative food source for the owl, or the level of generality of the owl
with regards to its selection of food. Variation in this parameter directly affects the
hare consumption by the owl as well as the owl’s prevalence in the system.

The first step in the numerical approach is to calculate lynx and owl invasion
conditions, (4.2.8) and (4.2.6) respectively, as we vary T and s and fix the remaining
parameters. Using MATLAB, we can compute for which values of T and s we obtain
mutual invasion of the predators. We then calculate the explicit equilibrium point of
(4.2.1) and determine for which values of T and s we have that all three components
of the equilibrium are strictly positive. Finally, we can construct the Jacobian matrix
for system (4.2.1) evaluated at this equilibrium point, and compute the eigenvalues of
the matrix. Similarly, we determine the values of T and s for which the eigenvalues
all have negative real part; hence it is a stable equilibrium point.

After this process, we are left with three regions in (T, s)-space: a region corre-
sponding to mutual invasion, one corresponding to positivity of the coexistence steady
state, and finally a region in which the coexistence steady state is stable. Comparing
these regions and observing for which values of T and s the three regions overlap, we
hypothesize that the three regions will be identical, which is equivalent to saying that
mutual invasion of the predators implies coexistence in the model. When all three
regions overlap, we will refer to this region as the coexistence region.

Figure 4.3 includes various plots of the regions of interest. We observe that in
each row, the regions of mutual invasion (denoted by A in column (i)), positivity of
the steady state equations (the black region of column (ii)), and stable steady state
(the black region of column (iii)) align exactly. We show this explicitly in Figure
4.4. Row (1) shows that the regions of mutual invasion are identical to the regions of
positivity of the steady state. Row (2) shows that the regions of mutual invasion are
identical to the regions of stability of the steady state. Therefore, all three regions
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(i) (ii) (iii)

(1)

(2)

(3)

Figure 4.3: Coexistence regions for the simplified lynx and owl model (4.2.1).
In column (i), only the lynx invades in Regions C, only the owl in Regions B,
and we have mutual invasion in Regions A. In column (ii), the equilibrium has
three positive components in the black region. Only the owl is non-positive in
the magenta region, and only the lynx is non-positive in the green region. In
column (iii), three eigenvalues have negative real part in the black region, two in
the red region, and all eigenvalues have non-negative real part in the green region.
Moreover, imaginary parts are non-zero in the crossed regions and zero in the
dotted regions. In row (1), we fix parameters d = 1, B = 1, f = 2, m = 1, h = 0.5,
g = 1, u = 1.8, b = 1. In row (2), we set d = 0.5, and in row (3), we set d = 1 and
B = 0.5.

must be equal, and we observe that mutual invasion implies stable coexistence of all
three species.
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(i) (ii) (iii)

(1)

(2)

Figure 4.4: In row (1), mutual invasion occurs between the blue and red curves,
and the steady state (4.2.2) is positive in the black region. In row (2), mutual
invasion occurs between the blue and magenta curves, and the steady state is
stable in the black region. In column (i), we fix parameters d = 1, B = 1, f = 2,
m = 1, h = 0.5, g = 1, u = 1.8, b = 1. In column (ii), we set d = 0.5, and in
column (iii), we set d = 1 and B = 0.5.

In row (2) of Figure 4.3, we lower the parameter d, which represents the hare
death rate due to the owl in the winter, and observe how the mutual invasion region
changes. We will only talk about the mutual invasion region in this discussion, as
we know the stable coexistence region is identical. As we decrease d from 1 to 0.5,
we notice a change in the magenta curve, which represents the boundary of the lynx
invasion region. With a lower death rate due to the owl, the hare density is increased
during the winter, which in turn provides a larger amount of resources contributing
to the lynx growth. We then expect that the lynx is more likely to persist in the
system. This is reflected in the change in the magenta curve. For a fixed s, there is a
wider range of T for which the lynx can invade because the magenta curve is extended
to the right in row (2). This is a direct consequence of the increased hare density.
However, this increased hare density occurs only in the winter. As summer length
increases, winter dynamics are less influential on annual dynamics, and therefore the
lynx will still go extinct beyond a sufficiently large value of T .
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In row (3) of Figure 4.3, we lower the parameter B, which represents the hare
death rate due to the owl in the summer, from 1 to 0.5. The changes in the mutual
invasion region are much more drastic in this case. For lower summer lengths, we do
not observe many differences compared to the mutual invasion region in row (1), be-
cause we only change a parameter that affects summer dynamics. On the other hand,
the region of mutual invasion changes drastically as summer length increases. The
intrinsic hare growth rate and lowered death rate in the summer, in conjunction with
a longer summer, implies a larger pool of resources for lynx growth that is available
for a majority of the year. For values of T roughly between 0.3 and 0.7, the lynx can
still go extinct for sufficient large owl growth rates; however, there is a critical value
of T beyond which the three species will coexist regardless of owl growth. This is a
direct consequence of the greatly increased hare density. We note that, for s close to
0, there is a small region in which we do not obtain coexistence. Once again, this is
a region where the lynx cannot invade, so there is only coexistence of the hare and
the owl.

We summarize the results of this section as follows.

Main Result 4.2.2. Suppose that 0 < m
f
< 1 and that the following invasion

conditions are satisfied:

� T

(
h
(
m
f

)2
+ s

)
+ (1− T )

(
gm
f
− u
)
> 0,

� fx̃−m > 0,

where x̃ is the x-component of the unique positive stable steady state found in The-
orem 4.1.1. Then there exists a unique stable positive steady state for (4.2.1), given
by equation (4.2.2).

For every choice of parameters we make, we observe that mutual invasion implies
coexistence. When studying other simplifications of original model (3.0.6), as well
as the original model itself, we will use this approach to look for regions of coexis-
tence. Although the implication of coexistence due to mutual invasion is difficult to
prove analytically, the approach presented in this chapter is applicable to all models
in which we can find mutual invasion conditions, as well as calculate an explicit non-
trivial steady state. We will see that this is the case in the following section, where
we simplify only the owl terms in (3.0.6).

We end this section on a note about the MATLAB scripts used to generate plots
in Figure 4.3 and all similar plots in this thesis. We use two general structures of
MATLAB scripts, one that corresponds to the regions of mutual invasion, and one
that corresponds to the regions of positivity and stability of the steady state.
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In the first case, we create a 98-by-99 grid over a region of the positive quadrant
of the (T, s)-plane. The idea is to establish a 100-by-100 array over the region, but we
ignore the values T = 0, T = 1 and s = 0 because each case causes singularities in ei-
ther the model equations or the Jacobian of the system. Moreover, the vertical size of
the array may change according to the values of s we consider; however, we remain on
the order of 100. Once our array is established, we run a double loop over the grid and
for each point (T, s) on the array, we calculate the lynx and owl invasion conditions,
respectively (4.2.8) and (4.2.6), and we create two new arrays that correspond to the
values of the owl and lynx conditions. For conditions that involve a steady-state value,
we either have an analytic expression for the value or we do not. In the latter case,
we either use the roots function if the value is given by a polynomial of degree ≥ 2,
or we integrate the system using the ode45 function until we are at a steady state.
For sampled values of T and s, we find approximate times until we are at the steady
state; i.e., when values do not change up to fourth decimal order. By default, the
solver would not give higher-order precision on integrated solutions. In some cases,
however, we reduced the relative tolerance to 10−8 and the absolute tolerance to 10−6.

If invasion conditions are defined as the integral along a periodic solution, we
solve the ODE with ode45 until we are on a periodic orbit. We do so the same way
as above, by choosing a run time that is an order of magnitude above the sampled
run times. After the initial run time, we integrate the system again for a different
run time, and we create a while loop that counts the peaks in one component of the
solution using the findpeaks function; if the number of peaks is less than 2, we extend
the second run time and try again. Once we have at least two peaks, we extract the
data of the solution between two peaks, which gives us one orbit around the periodic
solution. We note that it is sufficient to only check the peaks without comparing the
entire solution between the peaks. This is because uniqueness of solutions: if two
solutions agree at a common peak, they must be identical everywhere. We can then
use this data in the invasion conditions. We note that there are always some tolerance
errors, which result in the peaks occurring at exactly the same height. However, we
found that the solution repeats after each peak, and we do not have periodic solutions
that exhibit multiple peaks in a single period. Therefore, we know that, between any
two peaks, we will obtain one full period of the solution, and error resulting from the
difference in peak heights is negligible with respect to the invasion conditions. After
obtaining one period of the solution, we calculate the integrals in the invasion condi-
tions using the trapz function. Once the invasion-condition arrays are complete, we
use the contour function to obtain the green and magenta curves in the left column
of Figure 4.3.

In the second case, we create an identical array of a region of the positive (T, s)-
plane. In every model we encounter, we have an explicit expression for the coexistence
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steady state. Therefore, at each point (T, s) in the array, once again via a double loop,
we compute these expressions. We then check if any components of the expression are
strictly positive, and the amount of such components determine the corresponding
colour of the point. We then plot the point in column (ii) of Figure 4.3. Finally, we
can write analytic expression for the Jacobian matrix and use the eig function to find
eigenvalues. We check which eigenvalues have strictly negative real part and non-zero
imaginary part, which determines the colour of the point. We then plot the point in
column (iii) of Figure 4.3.

For comparison plots such as Figure 4.4, we simply combine both of the above
scripts into one and display results on the same plot. All plots in this thesis are
created identically. If there is an analytic inequality to satisfy, we use the contour
function; otherwise, we use plots with coloured points to define specific regions in
(T, s)-space.

4.3 Simplified Owl Model

The simplifications made in the previous section allowed us to arrive at some inter-
esting results regarding the relationship between seasonality and coexistence in the
three-species model. In this section, we will only simplify the owl terms in the focal
model and proceed with invasion analysis as we did in the previous section. After
simplification and non-dimensionalization, the simplified owl model reads

ẋ = T
(
x(1− x)− xy

b+ kx
− ax2z

)
+ (1− T )

(
− xy

b+ kx
− dxz

)
,

ẏ =
fxy

b+ kx
−my,

ż = T
(
hx2z + sz(1− z)

)
+ (1− T )

(
gxz − uz

)
.

(4.3.1)

The hare–owl subsystem is identical to the previous case (4.1.2), but with pa-
rameter a replacing parameter B. We use Theorem 4.1.1 to determine when we have
coexistence in this subsystem. The conditions in terms of the current parameters are

(i)
T

(1− T )d
>

1

Ts

(
Ts− (1− T )u

)
,

(ii)
1

Ts

(
T (h+ s) + (1− T )(g − u)

)
> 0.

(4.3.2)

Under these conditions, there is a stable steady state (x∗, 0, z∗) of the hare–owl
subsystem. At this state, the lynx equation of the linearised system decouples as

ẏ =

(
fx∗

b+ kx∗
−m

)
y.
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Therefore, the lynx invasion condition is

fx∗

b+ kx∗
−m > 0. (4.3.3)

We now determine owl-invasion conditions. Setting z = 0 in (4.3.1), we obtain

ẋ = Tx(1− x)− xy

b+ kx
,

ẏ =
fxy

b+ kx
−my,

ż = 0.

(4.3.4)

The hare–lynx subsystem of (4.3.4) is a classical Rosenzweig-MacArthur model
[29], and the dynamics of this model are well understood. If

0 <
mb

f −mk
< 1,

there exists a unique hare–lynx coexistence state, given by

(x∗, y∗, 0) =

(
mb

f −mk
, T (1− x∗)(b+ kx∗), 0

)
. (4.3.5)

To determine stability of this steady state, we can follow the method from [20]. In
particular, we can rewrite (4.3.1) as

ẋ =h(x) [g(x)− y] ,

ẏ =f

[
h(x)− m

f

]
y,

(4.3.6)

where
h(x) =

x

b+ kx
, and g(x) = T (1− x)(b+ kx).

We note that y∗ = g(x∗). The Jacobian of (4.3.6) evaluated at the steady state (4.3.5)
is given by  m

f
g′(x∗) −m

f

fh′(x∗)g(x∗) 0

 . (4.3.7)

Since g(x∗) = y∗ and h(x) is an increasing function of x, the determinant of (4.3.7) is
positive. Hence, the steady state is stable if the trace is negative and unstable when
it is positive. We study the bifurcation that occurs when the trace is zero in more
detail. The characteristic equation

λ2 − m

f
g′(x∗)λ+mh′(x∗)g(x∗) = 0,
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has complex conjugate roots when the trace is near zero; i.e., when |m
f
g′(x∗)| is small.

These roots are given explicitly by

λ =
m

2f
g′(x∗)± i

√
mh′(x∗)g(x∗)−

(
m

2f
g′(x∗)

)2

. (4.3.8)

We apply Theorem 2.1.17 and define a new parameter α = g′(x∗) = f(k−b)−mk(k+b)
and study the bifurcation that occurs when α passes through 0. With functions h(x)
and g(x) defined as above, we can rewrite (4.3.8) as

λ = µ(α)± iν(α) =
Tm

2f(f −mk)
α± i

√
Tm

fk
(α + fb)−

(
Tm

2f(f −mk)
α

)2

.

With the eigenvalues written in this form, we have

µ(0) = 0,

µ′(0) =
Tm

2f(f −mk)
6= 0,

ν(0) =

√
Tmb

k
> 0.

The second and third expressions hold because all parameters are strictly positive.
Moreover, for the steady state (4.3.5) to be defined, we need f −mk 6= 0, so µ′(0) is
well-defined. These three conditions are precisely the genericity conditions for a Hopf
bifurcation at α = f(k− b)−mk(k+ b) = 0 [22]. We can further classify the bifurca-
tion by looking at the signs of the term µ′(0) as well as the first Lyapunov coefficient.
This is an important quantity, which appears in the application of normal-form the-
ory to the Taylor expansion of (4.3.4) around the steady state (4.3.5). The sign of
the first Lyapunov coefficient specifies the stability types of the steady state and limit
cycles resulting form a Hopf bifurcation. More details can be found in [22].

In the biological framework of this model, the coexistence steady state (4.3.5)
must satisfy x∗ > 0 and y∗ > 0. Therefore, we require f −mk > 0 so the term µ′(0)
is positive. This means that, for

f(k − b)−mk(k + b) < 0, (4.3.9)

there are no limit cycles, but, as this quantity passes through zero and becomes pos-
itive, we observe a change in stability of the steady state (4.3.5) from which limit
cycles emerge of the opposite stability type. To determine stability of the limit cy-
cles, we can compute the sign of the first Lyapunov coefficient, or we can integrate
the system for cases where condition (4.3.9) is satisfied and cases where it is not and
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observe the stability types. For example, from Figures 8.11 and 8.12 in [20], we see
that the steady state is stable under condition (4.3.9) and becomes unstable as this
condition is reversed, leading to stable limit cycles. We can now proceed with owl
invasion at the steady state (4.3.5) while considering two cases separately: invasion
at a steady state and invasion at a periodic orbit.

Case 1: Owl invasion at a steady state

We know that the coexistence steady state (4.3.5) is stable in system (4.3.4) under
condition (4.3.9). For this case, we suppose this condition is satisfied, as well as the
condition

0 <
mb

f −mk
< 1,

which ensures that the quantities x∗ and y∗ are positive. Under these conditions, the
owl equation in the linearised system at (x∗, y∗, 0) decouples yet again. Therefore,
the state (x∗, y∗, 0) is unstable in the z direction when

T

(
h

(
mb

f −mk

)2

+ s

)
+ (1− T )

(
g

mb

f −mk
− u
)
> 0. (4.3.10)

This is our owl-invasion condition at steady state.

As in the previous chapter, we proceed with a numerical evaluation and illustra-
tion of coexistence in (4.3.1). This is possible because we can explicitly calculate the
unique positive steady state

x∗ =
mb

f −mk
,

y∗ =
(
b+ kx∗

)(
T (1− x∗ − ax∗z∗)− (1− T )dz∗

)
z∗ =

1

Ts

(
T (h(x∗)2 + s) + (1− T )(gx∗ − u)

)
.

(4.3.11)

We vary parameters T and s while the remaining parameters are fixed, and we observe
whether or not regions of mutual invasion, positivity of steady state (4.3.11) and
stability of the steady state overlap. These regions are included in Figure 4.5. All
parameters are fixed and given in the figure, except for the parameter u. We vary
this parameter across each row of the figure; we set b = 1 in the row (1), b = 0.9 in
row (2) and b = 0.9 in row (3).

We observe that the regions of mutual invasion, denoted by A in column (i), are
identical to the regions in which the steady state is positive. We highlight this in the
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(i) (ii) (iii)

(1)

(2)

(3)

Figure 4.5: Coexistence regions for the simplified owl model (4.3.1), given at steady
state in the hare–lynx submodel (4.3.4). In column (i), only the lynx invades in
Regions C, only the owl in Regions B and we have mutual invasion in Regions A.
In column (ii), the equilibrium has three positive components in the black region.
Only the owl term is non-positive in the magenta region, and only the lynx term is
non-positive in the green region. In column (iii), three eigenvalues have negative
real part in the black region, two in the red region, one in the cyan region, and all
eigenvalues have non-negative real part in the green region. Moreover, imaginary
parts are nonzero in the crossed regions, and zero in the dotted regions. In row
(1), we fix parameters k = 0.5, d = 1, a = 0.5, b = 1, f = 2, m = 1, h = 0.5,
g = 1, u = 1.8. In row (2), we set b = 0.9, and in row (3), we set b = 0.8.

row (1) of Figure 4.6. The region of mutual invasion lies between the blue and red
curves, whereas the black region represents positivity of the steady state. We can
also compare mutual invasion and stability of the steady state in an identical way.
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This is shown in row (2) of the same figure. We then see that the regions of mutual
invasion, between the blue and magenta curves, are identical to the regions where the
steady state (4.3.11) is stable. Therefore, mutual invasion implies stable coexistence
at a steady in (4.3.1) when the hare–lynx system has a stable steady state.

(i) (ii) (iii)

(1)

(2)

Figure 4.6: In row (1), mutual invasion occurs between the blue and red curves, and
the steady state (4.3.1) is positive in the black region. In row (2), mutual invasion
occurs between the blue and magenta curves, and the steady state is stable in the
black region. In column (i), we fix parameters k = 0.5, d = 1, a = 0.5, b = 1,
f = 2, m = 1, h = 0.5, g = 1, u = 1.8. In column (ii), we set b = 0.9, and in
column (iii), we set b = 0.8.

Case 2: Owl invasion at a periodic orbit

We now consider the case when condition (4.3.9) is reversed in system (4.3.4). We
know that, as this quantity passes from negative to positive, the steady state (4.3.5)
loses stability via a Hopf bifurcation, and we obtain a stable periodic orbit. We will
denote this orbit by (x∗(t), y∗(t), 0) and its period by τ . In this case, the z equation
in the linearisation of (4.3.1) at the periodic orbit (x∗(t), y∗(t), 0) decouples as

ż =
[
T
(
hx∗(t)2 + s

)
+ (1− T )(gx∗(t)− u)

]
z =: A(t)z.

Since A(t) is periodic of period τ in t, we are in the framework of Floquet theory. By
Theorem 2.2.4, we know that the orbit (x∗(t), y∗(t), 0) is unstable in the z direction
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precisely when

1

τ

∫ τ

0

A(t) dt =
1

τ

∫ τ

0

[
T
(
hx∗(t)2 + s

)
+ (1− T )(gx∗(t)− u)

]
dt > 0. (4.3.12)

This is the owl-invasion condition for the periodic orbit. We proceed with the same
analysis as in the previous case, with the exception of a new owl-invasion condition.
For this case, it will be necessary to numerically integrate the system (4.3.4) to obtain
the periodic orbit before we can determine regions of mutual invasion, positivity and
stability of the steady state (4.3.11). Otherwise, the procedure is identical. These
regions are included in Figure 4.7. All parameters are fixed and given in the figure,
except for the parameter u. We vary this parameter across each row of the figure; we
set u = 0.8 in row (1), u = 0.5 in the second and u = 0.2 in the third.

In Figure 4.8, we observe the relationship between mutual invasion and positivity
of the steady state in this case. Row (1) shows that regions of mutual invasion be-
tween the blue and red curves are identical to regions where the steady state (4.3.11)
is positive, in black. In row (2), however, the regions of mutual invasion, between
the blue and magenta curves, do not align with the black regions, which represent
where the steady state is stable. The difference is there is a cyan region contained
within the region of mutual invasion. The cyan region corresponds to two eigenvalues
with non-negative real part at the steady state (4.3.11). In fact, there is a complex
conjugate pair of eigenvalues indicated by a crossed cyan region rather than dotted.
By integrating the system (4.3.1) in this region, we find periodic solutions (middle
plot of Figure 4.9). As we enter the black region, however (right plot of Figure 4.9),
the oscillations die out, and we are left with a stable steady state. This is indicative
of a supercritical Hopf bifurcation along the boundary of the cyan and black regions.
In the green region, solutions are periodic in the hare–lynx system as expected in this
case. This is shown in the left plot of the same figure. Therefore, owl invasion results
in a periodic solution for sufficiently small s and T and stable steady state for larger
values. We note that the parameter s measures the owl growth rate due to alternative
resources, and, as T increases, more alternative resources are available. The observed
effect of the combination of these phenomena is that the presence of the owl dampens
the oscillations in the hare–owl system to the point where they disappear completely,
resulting in the stable steady state.

We conclude this section with the following summary of our results:

Main Result 4.3.1. Suppose 0 < mb
f−mk < 1 and that the lynx-invasion condition

(4.3.3) is satisfied.

(i) If (4.3.9) is satisfied, as well as the owl invasion condition (4.3.10), then there
exists a unique positive stable steady state for (4.3.1), given by (4.3.11).
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(i) (ii) (iii)

(1)

(2)

(3)

Figure 4.7: Coexistence regions for the simplified owl model (4.3.1), given a peri-
odic orbit in the hare–lynx system (4.3.4). In column (i), only the lynx invades in
Regions C, only the owl in Regions B and we have mutual invasion in Regions A.
In column (ii), the equilibrium has three positive components in the black region.
Only the owl term is non-positive in the magenta region, and only the lynx term is
non-positive in the green region. In column (iii), three eigenvalues have negative
real part in the black region, two in the red region, one in the cyan region, and all
eigenvalues have non-negative real part in the green region. Moreover, imaginary
parts are non-zero is the crossed regions and zero in the dotted regions. In row
(1), we fix parameters k = 0.9, d = 1, a = 1, b = 0.5, f = 2, m = 0.3, h = 0.3,
g = 1, u = 0.8. In row (2), we set u = 0.5, and in row (3), we set u = 0.2.

(ii) Let x∗(t) be the x-component of the periodic solution of (4.3.4) obtained by
reversing (4.3.9). If the owl-invasion condition (4.3.12) is satisfied, then there
is either a unique positive stable steady state of (4.3.1), given by (4.3.11), or
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(i) (ii) (iii)

(1)

(2)

Figure 4.8: In row (1), mutual invasion occurs between the blue and red curves,
and the steady state (4.3.1) is positive in the black region. In row (2), mutual
invasion occurs between the blue and magenta curves, and the steady state is
stable in the black region. Fixed parameters are k = 0.5, d = 1, a = 0.5, f = 2,
m = 1, h = 0.5, g = 1, u = 1.8. We set b = 1 in the left plot, b = 0.9 in the middle
and b = 0.8 in the right plot.

Figure 4.9: Solutions of system (4.3.1) as we pass through the cyan region of the
top-right plots of Figure 4.7. Fixed parameters are k = 0.9, d = 1, a = 1, b = 0.5,
f = 2, m = 0.3, h = 0.3, g = 1, u = 0.8 and s = 1. We set T = 0.38 in the left
plot, = 0.45 in the middle and T = 0.6 in the right plot.

there is a unique stable periodic solution.



Chapter 5

Returning to the Original Model

In the previous chapter, we saw that invasion analysis was a useful approach for finding
regions of coexistence in the simplified models. We observe that mutual invasion
implies stable coexistence in both of the simplified models, so we are confident in this
approach. In this chapter, we will apply the same technique to the original model,

ẋ = T
(
x(1− x)− xy

b+ x
− x2z

B + x2

)
+ (1− T )

(
− xy

b+ x
− axz

d+ x

)
,

ẏ =
fxy

b+ x
−my,

ż = T
( hx2z

B + x2
+

sz

v + z
− uz

)
+ (1− T )

( gxz

d+ x
− uz

)
.

(5.0.1)

The goal is to find regions of mutual invasion, existence of a positive steady state and
stability of this state. A problem with this approach is that the hare–owl subsystem
can exhibit a variety of bistable and limit-cycle dynamics [39]. Therefore, we will
spend some time extending the work done by Tyson & Lutscher on this model.

We begin with the owl-invasion scenario. Setting z = 0 in (5.0.1), we obtain

ẋ = Tx(1− x)− xy

b+ x
,

ẏ =
fxy

b+ x
−my,

ż = 0.

(5.0.2)

Similar to the simplified owl case (4.3.4), we obtain a Rosenzweig–MacArthur model.
By the same analysis, we know that there is a unique non-trivial steady state

(x∗, y∗, 0) =

(
mb

f −m
,

Tfb

(f −m)2
(f −m(b+ 1)), 0

)
. (5.0.3)

56
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We note that this steady is positive precisely when

0 <
mb

f −m
< 1.

We therefore assume this condition when deriving invasion conditions. By the same
analysis as in Section 4.3, we know that when

(f −m)− b(f +m) < 0 (5.0.4)

the steady state is stable, and, as this quantity passes through zero, a Hopf bifurcation
occurs, and there exists a stable periodic orbit (x∗(t), y∗(t), 0) for (5.0.1) when the
quantity is positive. We separate the owl-invasion scenario into two cases: invasion
at a steady state and invasion at a periodic orbit.

Case 1: Owl invasion at a steady state

We first consider the case where (5.0.4) holds. Similar to the previous section, the z
equation of the linearised system around (x∗, y∗, 0) decouples, and we obtain

ż =

[
T

(
h(x∗)2

B + (x∗)2
+
s

v
− u
)

+ (1− T )

(
gx∗

d+ x∗
− u
)]

z.

The origin is unstable when

T

(
h(x∗)2

B + (x∗)2
+
s

v
− u
)

+ (1− T )

(
gx∗

d+ x∗
− u
)
> 0, (5.0.5)

so we take this to be our owl-invasion condition, with x∗ = mb
f−m .

Case 2: Owl invasion at a periodic orbit

When (5.0.4) is reversed, a Hopf bifurcation occurs and system (5.0.2) has a stable
periodic orbit, which we denote by (x∗(t), y∗(t), 0) and its period is τ . In the linearised
system around (x∗(t), y∗(t), 0), the z equation decouples once again as

ż =

[
T

(
hx∗(t)2

B + x∗(t)2
+
s

v
− u
)

+ (1− T )

(
gx∗(t)

d+ x∗(t)
− u
)]

z ≡ A(t)z,

where A(t) is periodic of period τ in t. Once again, we are in the framework of Floquet
theory, so by Theorem 2.2.2, the orbit (x∗(t), y∗(t), 0) is unstable in the z direction
precisely when∫ τ

0

[
T

(
hx∗(t)2

B + x∗(t)2
+
s

v
− u
)

+ (1− T )

(
gx∗(t)

d+ x∗(t)
− u
)]

dt > 0. (5.0.6)
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This serves as our owl-invasion condition at the periodic orbit.

We will now derive lynx-invasion conditions for (5.0.1). Setting y = 0 in (5.0.1),
we have

ẋ = T

(
x(1− x)− x2z

B + x2

)
+ (1− T )

(
− axz

d+ x

)
,

ẏ = 0,

ż = T

(
hx2z

B + x2
+

sz

v + z
− uz

)
+ (1− T )

(
gxz

d+ x
− uz

)
.

(5.0.7)

The resulting system of equations is the focal model of [39], as per the way we con-
structed our three species model (5.0.1). Tyson & Lutscher show that this system
exhibits complex dynamics that are difficult to establish analytically. However, they
divide the study into two cases: a case in which the owl has insufficient alternative
resources in order to persist in the absence of the hare, as well as a case where the
owl has sufficient alternative resources. We note that the hare can always persist
in the absence of the owl. The latter case is divided into two scenarios depending
on the half-saturation constant B of summer predation. The first scenario studies
bistability of a stable node as well as a saddle node. Lowering B introduces limit
cycles alongside this bistable structure, which is studied in the second scenario. For
the purpose of this thesis, we focus on the lynx invasion in the first scenario of the
case where the owl has sufficient alternative resources.

To discuss lynx invasion, we first establish coexistence of the hare–owl system
(5.0.7). However, we know from [39] that describing coexistence analytically is diffi-
cult in this system. Therefore, to determine under which conditions we have coexis-
tence in the hare–owl system, we will look at invasion conditions for both the hare
and the owl. Previously, we have only considered the invasion of a predator into a
pre-existing stable system. In this case, we have to consider invasion of both the hare
and the owl, because, in the absence of either species, it is possible for the other to
exist alone. We will then consider invasion of the owl at the steady state

(x∗, 0) = (1, 0), (5.0.8)

which is stable with respect to x for all T > 0, and invasion of the hare at the steady
state

(0, z∗) =
(

0,
s

v
(T − T ∗)

)
, T ∗ =

uv

s
, (5.0.9)

which is stable with respect to z for T > T ∗. We see that both of these steady states
are stable in the respective single-species models when they are biologically relevant.
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At the hare-only steady state, the owl can invade if T > T ∗∗, where

T ∗∗ =
u− g

d+1
h

B+1
+ s

v
− g

d+1

. (5.0.10)

This can be shown via the invasion analysis we have employed at the beginning of
this section, by linearizing the owl equation at the hare-only steady state. We can
show that T ∗ > T ∗∗. To do so, rewrite T ∗∗ as

T ∗∗ =
uv − gv

d+1

s+ hv
B+1
− gv

d+1

=
uv − α
s+ β − α

, (5.0.11)

where α = gv
d+1

and β = hv
B+1

are strictly positive. We then have

∂T ∗∗

∂α
=

uv − s− β
(s+ β − α)2

.

We know the owl-only steady state exists only for T > T ∗, and, since T ∈ [0, 1], we
require T ∗ < 1 in order to obtain an owl-only steady state. This is equivalent to the
inequality

uv − s < 0,

so we conclude that
∂T ∗∗

∂α
< 0

always. Therefore, T ∗∗ is decreasing with respect to α. The value of T ∗∗ will never
exceed

uv

s+ β
,

which is obtained by setting α = 0 in (5.0.11); moreover, we have

uv

s+ β
<
uv

s
< T ∗.

Therefore, we must have T ∗∗ < T ∗ always.

Biologically, this condition makes sense as well. In the case where the owl is
invading along the hare-only steady state, there are two available resources: the hare
and the alternative resources. However, in the case of the owl-only steady state, there
is only the alternative resource and no hare. Therefore, it is more difficult for the
owl to persist, so the condition for stability of the owl-only state should be more
restricted than the condition for owl invasion along the hare-only steady state. This
would imply T ∗ > T ∗∗.
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Similarly, the hare can invade the owl-only steady state if

T − (1− T )a

d

(
Ts− uv

u

)
> 0.

The left-hand side is quadratic in T with roots

T± =
du

2as

−(1− a(s+ uv)

du

)
±

√(
1− a(s+ uv)

du

)2

− 4a2sv

d2u

 . (5.0.12)

We summarize with the following theorem:

Theorem 5.0.1. Suppose T > T ∗ where T ∗ is defined in (5.0.9), and define T± as in
(5.0.12). Then the owl can invade the hare-only steady state (5.0.8). The hare can
invade the owl-only state (5.0.9) if additionally T ∈ (0, T−) ∪ (T+, 1).

If all the conditions of this theorem are satisfied, there is successful mutual in-
vasion in the hare–owl system (5.0.7). Moreover if T > 0, the trivial steady state
(x∗, z∗) = (0, 0) is unstable, so the mutual invasion obtained from Theorem 5.0.1 im-
plies coexistence in (5.0.7). However, we do not obtain information about how these
species coexist. Tyson & Lutscher [39] study the types of coexistence in this scenario
by studying nullclines of the system, and here we continue this research. They find
that for small T , the two species coexist at a positive stable steady state, which is
calculated numerically. From the above theorem, we know that this occurs precisely
when T < T−. They also find that coexistence is possible for slightly larger values
of T ; however, the situation is more complicated. They find a range of T values
for which the non-trivial nullclines intersect twice, corresponding to a stable node
at a larger hare density, as well as a lower density saddle node. This hints towards
a saddle-node bifurcation in the system. In this scenario, the hare-free state is also
stable which leads to bistability of the nodes at larger hare density and at zero-hare
density, and the mutual invasion conditions are not satisfied.

In this thesis, we further their results by considering the nullclines of the system
(5.0.7). We can write each of the nontrivial nullclines as a function expression z
in terms of x and use MATLAB to solve for simultaneous solutions to the nullcline
equations. In particular, the nontrivial owl nullcline is

z = No(x) =
−Ts

Thx2

B+x2
+ (1−T )gx

d+x
− u
− v

and the nontrivial hare nullcline is

z = Nh(x) =
T (1− x)
Tx

B+x2
+ (1−T )a

d+x

.
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We find solutions which solve No(x) = 0 and Nh(x) = 0 simultaneously, as the pa-
rameter T is varied, leading to both plots in Figure 5.1. We do so using the fimplicit
function in MATLAB. The solutions are represented by the blue curve. We also in-
clude dashed lines corresponding to T ∗ and T ∗∗. The steady states with zero hare
density are omitted from the plots. From the shape of the blue curves, we can deduce
the bifurcation structure of this scenario. We begin by studying the left plot of this
figure. For T between T ∗∗ and T−, there exists a single stable steady state at which
the hare density is strictly positive, as well as an unstable steady state where the
hare density is zero. As T passes through T−, a transcritical bifurcation occurs at the
hare-free steady state, resulting in a second steady state with positive hare density.
The hare-free state becomes stable, and the intermediate steady state is unstable.
In this region, the hare density converges to zero and therefore the hare does not
successfully invade at low density here. As T further increases, the two steady states
with positive hare density collide in a saddle-node bifurcation and disappear, leaving
only the stable hare-free steady state. An opposite saddle-node bifurcation occurs for
a slightly larger value of T , reintroducing the two steady states with positive hare
density. Once again, the intermediate state is unstable, and the larger steady state,
as well as the hare-free state, is stable. Finally, at T = T+, the intermediate state
collides with the hare-free state in a transcritical bifurcation, resulting in an unstable
hare-free steady state. We return to the scenario where there is a single stable steady
state, at which the hare density is positive.

Figure 5.1: Hare densities at steady states of the hare-owl subsystem (5.0.7).
Dashed lines are played at T = T ∗, T = T ∗∗, T = T− and T = T+. Fixed
parameters are B = 0.0625, a = 0.2, d = 0.08, h = 0.07, u = 0.5, g = 0.07,
v = 0.3333. We set s = 0.75 in the left plot and s = 0.74 in the right.

In Figure 5.2, we include the left plot of Figure 5.1 with the entire invariant do-
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Figure 5.2: An example the scenario in Figure 5.1 where the entire invariant
domain of the hare is diaplayed. Fixed parameters are B = 0.0625, a = 0.2,
d = 0.08, h = 0.07, u = 0.5, g = 0.07, v = 0.3333 and s = 0.75.

main of the hare displayed. We notice that at the upper boundary of the domain, the
blue curve representing the hare density at a steady state intersects the line T = T ∗∗.
For T < T ∗∗, we have no biologically relevant positive steady state, as the hare com-
ponents must be contained in the interval [0, 1]. This also corresponds with the range
of T for which the owl can invade the hare-only steady state.

Varying the parameter s, which represents the maximum owl growth rate in the
summer, we may find ourselves in a situation where the saddle-node bifurcation curves
intersect. This is shown in the right plot of Figure 5.1. In this case, a transcritical
bifurcation occurs at T−, but, before a saddle-node bifurcation may occur, the inter-
mediate steady state collides once again with the hare-free steady state in another
transcritical bifurcation. The difference in this case is that the larger stable branch
of steady states persists for all values of T , rather than disappearing between the
saddle-node bifurcations. Therefore, we can see that there exists a stable coexistence
steady state for all values of T > T ∗∗.

Finally, using tools of algebraic geometry and bifurcation theory, we can explicitly
calculate at which value s = s∗ these saddle-node bifurcation curves meet and where
they meet in (x, T )-space. We start with the steady-state conditions

ẋ =F (x, z, T, s) = T

(
x(1− x)− x2z

B + x2

)
+ (1− T )

(
− axz

d+ x

)
= 0,

ż =G(x, z, T, s) = T

(
hx2z

B + x2
+

sz

v + z
− uz

)
+ (1− T )

(
gxz

d+ x
− uz

)
= 0.

We can divide by, and solve for, z in the second equation. This gives us an expression
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for z in terms of x, which we call z = H(x, T, s). We can then substitute z with
H(x, T, s) in the first equation to obtain the expression

F
(
x,H(x, T, s), T, s

)
= 0,

the solutions of which yield the blue curves in Figure 5.1. Generically, solutions can be
represented as two disjoint curves, as we see in either plot of this figure. However, this
is not the case when the two saddle-node branches in the left plot meet, in particular
when s = s∗. At this point, the blue curve can be thought of as two intersecting
curves in (x, T ) space. Therefore at the intersection point, it would be impossible to
express either variable x or T locally as a graph over the other, since the intersection
point is not locally a one-dimensional manifold. In other words, the implicit function
theorem would not hold for either variable x or T at the intersection point, so we
must have

Fx

(
x,H(x, T, s), T, s

)
= 0

and
FT

(
x,H(x, T, s), T, s

)
= 0

satisfied simultaneously.

Therefore, we can find the value of s = s∗ at which the saddle-node branches meet
and moreover the position in (x, T )-space where this occurs by finding a simultaneous
solution to the equations

F
(
x,H(x, T, s), T, s

)
= 0,

Fx

(
x,H(x, T, s), T, s

)
= 0,

FT

(
x,H(x, T, s), T, s

)
= 0.

(5.0.13)

To find a simultaneous solution, we compute the resultant of these three polyno-
mials using the resultant function in Maple. With parameters fixed as in Figure 5.1,
we obtain many solutions but only one solution has T ∈ (0, 1). At this point, we have
s∗ ≈ 0.745, and the branches meet at T ≈ 0.502. Therefore, if s < s∗ — for example,
in the right plot of Figure 5.1 — then it is possible for the hare to persist for all values
of T , given that it is introduced into the system at a high enough density. Conversely,
if s > s∗ — for example, in the left plot of the same figure — there are small intervals
near the boundary of [T−, T+] in which the hare may still persist if introduced at a
high enough density; however, there is a smaller region strictly contained in [T−, T+]
where there is no hare persistence under any conditions. We note that we can only
calculate s∗ once all the other parameters have been fixed, and for s < s∗ there is
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hare–owl coexistence for all T > T ∗∗. To satisfy this coexistence condition, however,
it is sufficient to suppose impose the condition(

1− a(s+ uv)

du

)2

− 4a2sv

d2u
< 0, (5.0.14)

which guarantees that T± from (5.0.12) are imaginary. If this condition is satisfied,
there will not even be a region of bistability in the hare–owl system (5.0.2), so the
coexistence state will be the unique stable steady state.

With a comfortable understanding of hare and owl coexistence in the first sce-
nario of (5.0.7), we can begin computing lynx-invasion conditions. We then sup-
pose that the conditions are satisfied such that system (5.0.7) exhibits a stable node
(x∗, 0, z∗). In particular, we will assume that we are in the case of the right plot of
Figure 5.1, so as to obtain coexistence in the hare–owl subsystem for all T > T ∗∗.
This happens under the condition that T > T ∗ and s < s∗. In this case, there exists
a stable positive coexistence state in the hare–owl system (5.0.7) for all such values
of T and s, which we can only calculate numerically. We choose this condition on
s for the sake of keeping numerical calculations and plots relatively simple. In the
case where we fix s > s∗, then there may be a region along the T axis where there
is no coexistence in the hare–owl model, so we would have to omit this region from
our plots. Our approach will still work in this case, but we would have to be more
careful, and the corresponding region plots will be more complicated.

The linearisation of the lynx equation at this state is

ẏ =

(
fx∗

b+ x∗
−m

)
y,

from which we see that the lynx-invasion condition is

fx∗

b+ x∗
−m > 0. (5.0.15)

We can now study regions where we have mutual invasion of the lynx and owl,
regions where the unique coexistence steady state of (5.0.1) is positive and regions
where this steady state is stable. Contrary to the hare–owl subsystem, we can explic-
itly calculate the coexistence steady state of (5.0.1). Doing so yields

x∗ =
mb

f −m
,

y∗ =(b+ x∗)

(
T

(
1− x∗ − x∗z∗

B + (x∗)2

)
− (1− T )az∗

d+ x∗

)
,

z∗ =
−Ts

Th(x∗)2

B+(x∗)2
+ (1−T )gx∗

d+x∗

− v.

(5.0.16)
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We note that this is quite remarkable. Tyson & Lutscher showed that there are multi-
ple steady states and bistability in the hare–owl subsystem [39], but upon introducing
a third species, it is possible to explicitly calculate the unique positive steady state.
We first consider the case where we have a steady state in the hare–lynx subsystem.
This is done by assuming (5.0.4). Moreover if s < s∗ with parameters fixed as in Fig-
ure 5.1, we have a steady state in the hare–owl system that is stable for all T > T ∗.
The case s > s∗ further restricts invasion in the positive (T, s)-plane. We know there
is no hare–owl coexistence for some values of T between T− and T+, whereas this
coexistence is necessary to study lynx invasion. Our approach is still valid in the case
where there is hare–owl coexistence, but we will only consider this case in the future.
Therefore, we will study the regions of mutual invasion and positivity and stability
of the steady state in (5.0.1) only with s < s∗.

Figure 5.3: Coexistence regions for the original model (5.0.1), given a steady state
in the hare–lynx submodel (5.0.2). In column (i), only the lynx invades in Regions
C, only the owl in Regions B and we have mutual invasion in Regions A. In column
(ii), the equilibrium has three positive components in the black region. Only the
owl term is non-positive in the magenta region, and only the lynx term is non-
positive in the green region. In column (iii), three eigenvalues have negative real
part in the black region, while only two have negative real part in the red region.
Moreover, imaginary parts are non-zero im the crossed regions and zero in the
dotted regions. Fixed parameters are B = 0.0625, a = 0.2, d = 0.08, h = 0.07,
u = 0.5, g = 0.07, v = 1

3 , b = 0.3, f = 3.2 and m = 2.

Using expressions (5.0.5) as the owl-invasion condition and (5.0.15) as the lynx-
invasion condition, we produce the left plot in Figure 5.3. We have mutual invasion
in Region A, whereas only the owl invades in Region B and only the lynx in Region C.

In the middle plot of the same figure, we plot positivity of the coexistence steady
state (5.0.16). As in the previous section, all three components of the steady state are
positive in the black region, whereas only the hare and lynx components are positive
in the magenta region, and only the hare and owl components are positive in the green
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region. In this case, the regions of mutual invasion and positivity of the steady align,
as shown in the left plot of Figure 5.4. Therefore, mutual invasion implies positivity
of the coexistence steady state.

Figure 5.4: In the left plot, mutual invasion occurs between the blue and red
curves, and the steady state (5.0.16) is positive in the black region. In the right
plot, mutual invasion occurs between the blue and magenta curves, and the steady
state is stable in the black region. Fixed parameters are B = 0.0625, a = 0.2,
d = 0.08, h = 0.07, u = 0.5, g = 0.07, v = 1

3 , b = 0.3, f = 3.2 and m = 2.

Finally, we consider the eigenvalues of the Jacobian of (5.0.1) evaluated at the
steady state (5.0.16). In the black region, all three eigenvalues have negative real
part; in the red region, only two eigenvalues have negative real part. The coexistence
steady state is therefore stable only in the black region. It is shown in Figure 5.4 that
this region agrees identically with the region of mutual invasion as well. Therefore
mutual invasion implies stable coexistence at steady state in this case.

We can now consider the scenario where the hare and lynx coexist in a peri-
odic orbit. This occurs when (5.0.4) is reversed. We proceed identically as in the
steady-state case, to obtain the regions in Figure 5.5. In this case, the region of
mutual invasion aligns with the region of positivity of the steady state, as shown in
the left plot of Figure 5.4. Moreover, in the right plot of the same figure, we see that
mutual invasion agrees with the cyan region. In this region, two of the eigenvalues
corresponding to the stability of (5.0.16) form a complex conjugate pair with positive
real parts. Upon numerical integration, included in Figure 5.7, we see that the coex-
istence state is a stable periodic orbit in the cyan region. This means that when the
owl invades the hare–lynx system, which is at a stable periodic orbit, the solutions
remain periodic solutions. Therefore, mutual invasion yet again implies coexistence;
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however, it is in the form of coexistence in a periodic orbit. We conclude this chapter
with the following summary of our results:

Main Result 5.0.2. Suppose 0 < mb
f−m < 1, and define T ∗∗ as in (5.0.10). If (5.0.14)

is satisfied and T > T ∗∗, then there exists a unique positive stable steady state
(x∗, 0, z∗) of (5.0.7) and no other stable equilibrium.

Moreover, suppose that at this point the lynx-invasion condition (5.0.15) is sat-
isfied.

(i) If (5.0.4) is satisfied, as well as the owl-invasion condition (5.0.5), then there
exists a unique positive stable steady state for (5.0.1), given by (5.0.16).

(ii) Let x∗(t) be the x-component of the periodic solution of (5.0.2) obtained by
reversing (5.0.4). If the owl-invasion condition (5.0.6) is satisfied, then there
exists a unique stable periodic solution for (5.0.1), and no other stable equilibria.

Figure 5.5: Coexistence regions for the original model (5.0.1), given a periodic
orbit in the hare-lynx submodel (5.0.2). In column (i), only the lynx invades in
Regions C, only the owl in Regions B and we have mutual invasion in Regions A.
In column (ii), the equilibrium has three positive components in the black region.
Only the owl term is non-positive in the magenta region, and only the lynx term
is non-positive in the green region. In column (iii), two eigenvalues have negative
real part in the red region, one has negative real part in the cyan regions, and all
eigenvalues have non-negative real part in the green region. Moreover, imaginary
parts are non-zero is the crossed regions and zero in the dotted regions. Fixed
parameters are B = 0.0625, a = 0.2, d = 0.08, h = 0.07, u = 0.5, g = 0.07, v = 1

3 ,
b = 0.3, f = 3.2 and m = 1.7.
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Figure 5.6: In the left plot, mutual invasion occurs between the blue and red
curves, and the steady state (5.0.16) is positive in the black region. In the right
plot, mutual invasion occurs between the blue and magenta curves, and the steady
state is stable in the black region. Fixed parameters are B = 0.0625, a = 0.2,
d = 0.08, h = 0.07, u = 0.5, g = 0.07, v = 1

3 , b = 0.3, f = 3.2 and m = 1.7.

Figure 5.7: Solutions of system (5.0.1) for various values of T and s. The hare
solutions is given in blue, the lynx in red and the owl in green. Fixed parameters
are B = 0.0625, a = 0.2, d = 0.08, h = 0.07, u = 0.5, g = 0.07, v = 1

3 , b = 0.3,
f = 3.2 and m = 1.5. We set T = 0.3 and s = 0.6 in the first plot, T = 0.5 and
s = 0.4 in the second and T = 0.7 and s = 0.3 in the third. All of these choices lie
in the cyan region of column (iii) of Figure 5.5.



Chapter 6

Discussion

In this thesis, we studied the coexistence scenarios in a seasonal differential-equation
model for the snowshoe hare, Canadian lynx and great-horned owl. The owl is a
generalist predator of the hare during the summer and a specialist in the winter. The
lynx is a specialist predator all year. As summer length in a year was varied, we
observed the resulting effect on coexistence in the three-species model. We hypoth-
esized that, as summer length increases, the owl, which has additional resources in
the summer, will become too strong of a predator due to the increased availability of
alternative resources. As a result, either the lynx or the hare may go extinct.

The seasonal model was hard to study analytically, due to the complexity of
the equations as well as the explicit dependence on time. To first simplify our work,
we took a time average of our model over a year to obtain an autonomous set of
equations. For this new model, we explicitly computed a coexistence steady state,
but it was difficult to classify its stability. Therefore, we simplified the model in
various ways and developed tools to understand dynamics of the simplified models.
We then compared these results with the original averaged model. In each simplifica-
tion, we had a complete understanding of the dynamics in the hare–lynx subsystem
and the hare–owl subsystem. We determined when the missing third predator can
invade along either of these two-species models and derived conditions under which
we had mutual invasion of the predators. We then numerically studied the stability
of the coexistence steady state under these conditions to determine the relationship
between mutual invasion and stable coexistence. We hypothesized that if the invasion
conditions of the lynx and the owl are satisfied simultaneously, then there is stable co-
existence in the three-species model, either at a steady state or along a periodic orbit.

Our first simplification of the averaged model involved simplifying all of the lynx
and owl terms in the model equations. In both of the hare–lynx and hare–owl sys-
tems, we found a unique positive stable steady state under reasonable conditions
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on the parameters. Moreover, we could easily compute invasion conditions for both
predators, and we observed that, when the invasion conditions were simultaneously
satisfied, there was a unique positive stable steady state in the averaged system (The-
orem 4.2.2).

We then considered a simplification of the averaged model in which only the
owl terms were simplified. In this case, the hare–lynx system was a Rosenzweig–
MacArthur model, which can have either a positive stable steady state or a stable
periodic solution as stable coexistence scenarios. We found a unique positive stable
steady state in the hare–owl system. Invasion conditions were also straightforward
to derive; however, the invasion scenario of the owl at a hare–lynx periodic solution
required Floquet theory to resolve. In the case of a steady state in the hare–lynx
system, mutual invasion implied stable coexistence at a unique positive steady state
in the three-species model. In the case of a periodic solution in the hare–lynx system,
mutual invasion implied stable coexistence at either a unique positive steady state or
at a unique periodic orbit in the averaged system (Theorem 4.3.1).

We came back to the averaged model with an understanding of dynamics in the
simplified cases, as well as an understanding of the strength of mutual invasion. In
this case, the hare–lynx system was a Rosenzweig–MacArthur model, which sepa-
rated owl-invasion analysis into cases of invasion at a steady state and invasion at
a periodic solution. The hare–owl system was the object of focus in [39], and it is
known that complex coexistence scenarios of bistability and limit cycles may occur.
We extended the research in the case where there is only bistability and no limit
cycles. We derived explicit conditions for bistability in the system, as well as hare
extinction for certain summer lengths. These conditions were the result of a mirrored
scenario of saddle-node and transcritical bifurcations. In the case where the hare will
not go extinct but there is bistability in the system, we found a unique positive stable
steady state, and it was straightforward to derive the lynx-invasion condition at this
steady state. In the case of a steady state in the hare–lynx system, mutual invasion
implied stable coexistence at a unique positive steady state in the averaged system.
In the case of a periodic solution in the hare–lynx system, mutual invasion implied
stable coexistence at a periodic orbit in the averaged system (Theorem 5.0.2). For
the averaged model and all of its simplifications, our hypothesis that mutual invasion
implies stable coexistence was true.

We now discuss some biological implications of our results. For all of our mod-
els, we look at mutual invasion and coexistence in the (T, s)-plane while the other
parameters are fixed. We recall s represents the owl growth rate in the summer due
to alternative resources. In many cases, there is an inverse relationship between s
and T to obtain mutual invasion; i.e., mutual invasion may occur for large s and low
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T or vice-versa. When summer is short, the owl must compensate by having access
to a large amount of alternative resources to persist, as hare density is lower. When
summer is long, the owl cannot have too much access to alternative resources or else
it will drive the lynx to extinction. This is a consequence of the indirect competition
between the lynx and owl. Increased access to alternative resources will inhibit growth
the owl population. As a result, there will be more instances of owls catching and
eating hares, and this will limit the amount of hare available to the lynx. Therefore,
the lynx will see a reduction in resources and, as a result, will have limited growth,
eventually leading to extinction. When we lower parameters related to owl growth
and saturation, we observe that regions of mutual invasion exist for larger values of T ,
and, in some cases, the owl will not be able to drive the lynx to extinction. A result
of this is that, as summer length is projected to increase [26, 32, 35], preservation
measures must be put into place to ensure the lynx can persist, given a greater owl
population.

Many important future research directions may be guided by this thesis. For ex-
ample, we would want to compare coexistence in the averaged model with coexistence
in the seasonal model. We recall that averaged dynamics often agree with seasonal
dynamics in other predator–prey models [19, 39]. In the case of the seasonal model,
analytic invasion conditions would be hard to compute because the equations are not
autonomous. We could impose the invasion conditions of the averaged model, but the
analysis may be purely numerical. An example of a comparison is given in Figure 6.1.
We observe that seasonal and averaged dynamics remain close to one another, indi-
cating that dynamics in both models are similar. In the future, we will investigate this
comparison in more detail. We also wish to consider the case where hare extinction is
possible in the hare–owl model. In this thesis, we only considered a case of relatively
simple dynamics in this two-species model, but the possible combination of bistabil-
ity and limit cycles may have interesting implications when studying coexistence in
the averaged model. Finally, there are many interesting bifurcation scenarios in the
averaged model. We encounter one such example in the hare-owl model, where the
mirrored saddle-node and transcritical bifurcations imply hare extinction and bista-
bility. Another interesting scenario, which we did not examine in this work, is the owl
invasion at a periodic orbit in the hare–lynx system of the averaged model (5.0.1). We
observe that, once the owl invades, there is stable coexistence at a periodic orbit. We
hypothesize that this is due to a Hopf bifurcation that occurs outside of the positive
quadrant in conjunction with a transcritical bifurcation of limit cycles that occurs at
the z = 0 boundary of this quadrant.
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(i) (ii) (iii)

(1)

(2)

Figure 6.1: Comparing solutions of the averaged model (5.0.1) to those of the
seasonal model (3.0.4). Averaged solutions are plotted in black, and seasonal
dynamics are plotted in blue, red and green, representing hare, lynx and owl,
respectively. Condition (5.0.4) is satisfied in row (1), yielding a steady state in the
averaged model. The condition is reversed in row (2), yielding a periodic solution.
Fixed parameters are B = 0.0625, a = 0.2, d = 0.08, h = 0.07, u = 0.5, g = 0.07,
v = 1

3 , b = 0.3, f = 3.2, s = 0.4 and T = 0.5. We set m = 2 in row (1) and
m = 1.7 in row (2).
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