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ABSTRACT

Unmanned ground vehicles (UGVs) have been widely used in many areas such as agri-

culture, mining, construction and military applications. This results from the fact

that UGVs can not only be easily built and controlled, but also be featured with high

mobility and handling hazardous situations in complex environments. Among the

competences of UGVs, autonomous navigation is one of the most challenging prob-

lems. This is because that the success in achieving autonomous navigation depends

on four factors: Perception, localization, cognition, and proper motion controller.

In this thesis, we introduce the realization of autonomous navigation for a two-

wheeled differential ground robot under the robot operating system (ROS) environ-

ment from both the simulation and experimental perspectives. In Chapter 2, the

simulation work is discussed. Firstly, the robot model is described in the unified

robot description format (URDF)-based form and the working environment for the

robot is simulated. Then we use the gmapping package which is one of the packages

integrating simultaneous localization and mapping (SLAM) algorithm to build the
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map of the working environment. In addition, ROS packages including tf, move base,

amcl, etc., are used to realize the autonomous navigation. Finally, simulation results

show the feasibility and effectiveness of the autonomous navigation system for the

two-wheeled UGV with the ability to avoid collisions with obstacles.

In Chapter 3, we introduce the experimental studies of implementing autonomous

navigation for a two-wheeled UGV. The necessary hardware peripherals on the UGV

to achieve autonomous navigation are given. The process of implementation in the ex-

periment is similar to that in simulation, however, calibration of several devices is nec-

essary to adapt the scenario in a practical environment. Additionally, a proportional-

integral-derivative (PID) controller for the robot base is used to handle the external

noise during the experiment. The experimental results demonstrate the success in

the implementation of autonomous navigation for the UGV in practice.
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Chapter 1

Introduction

1.1 Overview of the unmanned ground vehicle (UGV)

An unmanned ground vehicle (UGV) refers to a vehicle that operates on the ground

without human intervention [2]. Originally UGVs were developed for military applica-

tions such as exploring space with radiation levels, repairing runway under enemy fire,

and processing packages with potential danger. Then during the late 1960s, compo-

nents of UGVs including sensors, control systems and communication links achieved

rapid development. This resulted in that an increasing amount of research efforts

have been put on designing UGVs to satisfy a variety of requirements for different

applications [3].

According to the operation environment, UGVs can be divided into two categories:

Indoor UGVs and outdoor UGVs. Indoor UGVs are mostly prototypes of outdoor

UGVs before field applications or designed for research and educational purposes.

Typical applications using indoor UGVs include pattern recognition and following

[4], data processing in indoor environments [5], robot soccer play and autonomous

navigation [6]. Generally indoor UGVs possess the advantages of small size, high
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customizability and low cost. Well-known indoor UGVs include Dingo by Clearpath

Robotics [7] and Turtlebot by Willow Garage [8]. Figure 1.1 shows the Turtlebot 2e

which is the second edition of Turtlebot.

Figure 1.1: Turtlebot 2e - An indoor UGV 1.

Compared to indoor UGVs, most outdoor UGVs are more functional and versa-

tile, and have more complex structures. This results from twofold aspects. Firstly,

outdoor UGVs operate in complicated environments such as rough terrains, mine

fields, and toxic or hazardous environments. As these environments may be incon-

venient or impossible to have a human operator present, these UGVs are equipped

with reliable long-distance communication systems, high-performance visual systems,

high-precision sensors for accurate localization, and large-capacity battery. This leads

to that they have large sizes and weights. Secondly, they are required to conduct

complicated missions [9] such as mine detection [10], fire detection and fighting [11],

farmland work using tractor-trailer systems [12], pesticide spraying [13], and selective

stabilization of images when operating in terrains [14]. In addition, one single UGV

can be used along with multiple UGVs or other robotic systems such as unmanned
1 https://www.turtlebot.com/turtlebot2/

https://www.turtlebot.com/turtlebot2/
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aerial vehicles (UAVs) to complete tasks such as formation operation [15], collab-

orative patrolling [16], and cooperative path planning for target tracking [17, 18].

Figure 1.2 shows an outdoor UGV named Warthog which is suitable for applications

in mining, agriculture and environment monitoring.

Figure 1.2: Warthog - An outdoor UGV 2.

1.2 Autonomous navigation for ground vehicles

One of the most widely-used applications using ground vehicles is the autonomous

navigation. Generally, there are two types of autonomous navigation for ground vehi-

cles: Waypoint (point-to-point) navigation and path following navigation. Waypoint

navigation as illustrated in Figure 1.3(a) requires a robot to reach specified locations.

And a desired path is required to be followed in path following navigation as shown

in Figure 1.3(b). To achieve autonomous navigation, a robot should be able to plan

its paths, execute the plan without human intervention, and deal with any possible

unexpected obstacles.

2 https://clearpathrobotics.com/warthog-unmanned-ground-vehicle-robot/

https://clearpathrobotics.com/warthog-unmanned-ground-vehicle-robot/
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(a) Waypoint navigation. (b) Path following navigation.

Figure 1.3: Two types of autonomous navigation.

Autonomous navigation can be considered as the hardest task for a ground vehicle

to deal with. However, it is the most needed ability that many ground vehicles should

possess. Why is the autonomous navigation for ground vehicles challenging? This is

because that the success in autonomous navigation depends on the realization of four

perspectives: Perception, localization, cognition, and motion control [19].

The perception of a robot relies on whether the robot is able to extract useful

data from sensors. The sensor system embedded in a ground vehicle often consists

of two groups: Navigation sensors and visual sensors [20]. The navigation sensors

provide the vehicles with localization abilities and visual sensors enable the vehicles

to observe the environment.

Typical navigation sensors include the global positioning system (GPS), inertial

measurement unit (IMU) and encoders attached to the motors on vehicles. GPS can

directly provide the information on 3-dimensional (3D) position in the global range

[21]. Thus it has been mostly applied in outdoor applications such as forest patrol

[22], outdoor exploration [23] and autonomous driving in the urban environment [24].
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Due to the advantage of lower cost than GPS, IMU and encoders are more widely

used in civilian applications. Also, compared to GPS, IMU and motor encoders can

only provide position information in terms of odometry measurements such as accel-

erations, velocities and orientation. However, as the position of a robot is determined

by these measurement data, even slight inaccuracy in the raw data may deteriorate

the precision of computed positions. To increase the reliability of obtaining positions

using these devices, adequate calibration methods are necessary [25]. And it is also

feasible to combine different sensors to integrate the data obtained from these sensors.

In this process, by applying data fusion algorithms such as the Kalman filter [21, 26],

the positions calculated by making use of data from different navigation sensors can

be more accurate.

Essentially visual sensors endow the ground vehicles with the ability to sense the

ranges during autonomous navigation. Specifically, visual sensors provide ground ve-

hicles with the distance from themselves to the obstacles, which prevents collisions.

Common visual sensors include Lidar, Radar and depth cameras. Generally, Lidar

and Radar sensors achieve a larger detection range with higher precision than cam-

eras. Depth cameras with binocular or trinocular vision are more preferable for indoor

UGV applications because of relatively lower prices than Lidar and Radar. Also, cam-

eras with monocular vision have been proved to be effective to perform autonomous

navigation for UGVs [27, 28]. Similarly to the navigation sensor system, the vision

sensor system can be constituted of a single visual sensor or a group of different ones.

However, as the volume of data obtained from images captured by visual sensors is

large, efficient data fusion techniques are necessary to avoid overhead data processing

[29].

Success in localization means that a robot is aware of its position in the surround-

ing environment. The well-known simultaneous localization and mapping (SLAM)
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technique provides a feasible solution to handle the localization issue. The SLAM

heavily relies on the perception ability since the position is determined by applying

suitable SLAM algorithms to process the data extracted from sensors. Generally, the

navigation data provides the odometry information which is concerned with obtain-

ing the current position relatively to the starting point of a robot. And the visual

data which shows the current view facilitates the estimation of current position with

respect to the overall surrounding environment. By integrating these two groups of

data, the map of an unknown environment can be built in real time [30]. To increase

the efficiency of achieving SLAM, visual SLAM has been proposed. It only needs

the data from visual sensors and does not need data from navigation sensors [28, 31].

However, it requires visual sensors with high precision during the map building pro-

cess and reliable algorithms for position estimation and feature extraction to achieve

autonomous navigation.

The cognition ability for a UGV can be defined as the act of reaching given goals,

i.e., a cognitive UGV is able to plan a collision-free path from the current position to

the target position. Therefore, it can be seen that the cognition is strongly connected

to the localization. If the UGV does not know its position, it cannot make judgment

on whether it arrives at the target position. Meanwhile, a cognitive UGV should be

integrated with path planning algorithms which solve the find-path problem for the

robot. The most common path planning algorithm is considered as the A* algorithm

[32] which is also adopted for path planning in this thesis. A brief introduction

to this algorithm will be given in Chapter 2. There are also other path planning

algorithms such as genetic algorithm [33], particle swarm optimization (PSO) [34],

and prediction-based algorithm by utilizing Markov Decision Process [35]. Essentially

they are all optimization-based algorithms which compute a feasible path by solving

an optimization problem.
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The motion control problem for UGVs is considerably difficult to give a brief de-

scription here as it is highly dependent on the hardware structure of UGVs. However,

it is known to us that an effective motion controller enables a UGV to follow the paths

computed by the path planning algorithms. As a result, the autonomous navigation

can be achieved. Therefore, from above description we can see that the four elements

to achieve the success in autonomous navigation: Perception, localization, cognition

and motion control are strongly related to each other. This makes the autonomous

navigation for ground vehicles a challenging mission.

1.3 Contributions

The implementation of autonomous navigation for our existing two-wheeled UGV is

motivated by developing applications such as auto car parking management system

which can utilize this functionality. Considering the economic cost of implementation,

the ground vehicle is built with devices with considerably low prices and precision.

However, it is feasible to achieve autonomous navigation. The contributions of this

thesis are summarized as follows:

• A model of our two-wheeled differential ground vehicle described in the unified

robot description format (URDF) is built for simulation.

• The SLAM with utilizing mainly gmapping package for the two-wheeled ground

vehicle is realized in both simulation and experiment.

• The autonomous navigation for the two-wheeled ground vehicle with the ability

to avoid obstacles is realized in both simulation and experiment.
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1.4 Thesis organization

The remainder of this thesis is organized as follows:

• Chapter 2 introduces several basic concepts in robot operating system (ROS)

and the adopted framework of navigation stack. After describing the process of

building a URDF-based model for the two-wheeled UGV, the simulation results

are given to show the realization of autonomous navigation.

• Chapter 3 mainly discusses the experimental results in the implementation

of autonomous navigation. The hardware components installed on our UGV

to facilitate the implementation and the calibration of these devices are briefly

introduced. To mitigate the influence brought by the external disturbances

during the experiment, a PID-based controller is used. And the experimental

results demonstrate the effectiveness of the adopted framework of navigation

stack and the success in realization in a practical application.

• Chapter 4 concludes this thesis and gives future research directions.
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Chapter 2

Simulation of Autonomous

Navigation for a Two-Wheeled

UGV

2.1 Introduction to ROS

Nowadays, many UGVs are equipped with the ROS environment [36]. With highly-

integrated feature packages provided by the ROS community, many challenging com-

petences required of UGVs can be implemented in much easier manners. Thus the

efficiency of developing high-performance UGVs can be significantly improved. In our

work, ROS is also adopted. Therefore, we first give a brief introduction to ROS.

As the name implies, ROS is an operating system designed for robots [37]. How-

ever, ROS is different from traditional operating systems such as Windows and Linux

whose operation is directly dependent on the computer hardware. In terms of the

framework, ROS can be divided into three layers: Operating system (OS) layer, in-

termediate layer, and application layer. The OS layer is the operation platform that
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ROS runs on. Currently ROS can only run on Unix-based platforms such as Ubuntu,

macOS, Debian etc. The intermediate layer enables the communication between the

operation system and robot based on transmission control protocol (TCP) or user

datagram protocol (UDP). In addition, the intermediate layer provides client libraries

for the application layer. In the application layer, open-source repositories can be

used to implement different applications. The modules in repositories operate in the

unit of ROS node and the nodes are managed by a so-called “Master”, individually

or in groups. Below we introduce some basic concepts in ROS operation.

2.1.1 ROS concepts

A package is the fundamental unit for organizing software in ROS [38]. A ROS

package may contain ROS nodes, libraries, datasets, configuration and executable

files, etc. A ROS package is the biggest unit for building and releasing by users.

ROS nodes are processes that perform computation and can also be called as appli-

cation or software modules with each node having its functions. Nodes communicate

with each other by passing ROS messages [39].

A ROS message is simply a data structure which can be custom-built by users

or one of the built-in ROS messages. The built-in ROS messages support standard

primitive types such as integer, floating point, Boolean, and also arbitrarily nested

structures and arrays. Messages are transmitted under the publish/subscribe seman-

tics, i.e., a message is routed from a publisher node to a subscriber node. Specifically,

the publisher node publishes messages to a given topic and the subscriber node can

receive messages from the corresponding topic which it subscribes to [40].

The publish/subscribe based communication model utilizes a many-to-many, one-

way transport mechanism, thus not suitable to be used in distributed systems. Instead

we have ROS services to handle this situation. ROS services are based on the clien-
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t/server model. Services can consist of one server node and many client nodes. Clients

use a service by sending requests to the server and server replies the corresponding

messages to clients [41].

2.1.2 Navigation stack

The navigation stack provides a systematic setup to achieve autonomous navigation

for a robot. Figure 2.1 shows the operating principle of the navigation stack. The

navigation stack takes the data from odometry source, sensor streams, and the nav-

igation goal as inputs, while sends the desired speed signal as output to the base

controller of a robot. As mentioned in Chapter 1, the success in autonomous navi-

gation relies on the success in four aspects: Perception, localization, cognition, and

motion control [19, 42]. These four building blocks for autonomous navigation can

be seen from the navigation stack setup. Perception is reflected in that a robot needs

messages from sensor transforms, odometry and sensor sources such as odometers

and lasers. The odometry information helps the robot to localize itself. However,

the odometry sources may not provide consistent reliable data. For instance, when

the wheels of a ground robot skid, the data from motor encoders become inexact.

Therefore, the data from other sources and localization algorithms such as adaptive

Monte Carlo localization (amcl) are then necessary to ensure the reliable localization.

In addition, the planners including the global and local planners endow the robot

with the cognition ability and an effective base controller for the robot is the key to

the success in motion control.

Now we detail the navigation stack by discussing important ROS packages used

in the navigation stack setup.
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Figure 2.1: Navigation stack setup 1.

• TF package [43]

TF package facilitates users to track coordinate frames. On the one hand,

it can maintain static transformation relationships between coordinate frames.

We take a simple robot as an example for illustration as shown in Figure 2.2(a).

This mobile robot consists of two parts: A mobile base whose attached coor-

dinate frame is named “base link” and a laser whose attached frame is named

“base laser”. The laser used to observe the environment is fixed on the mobile

base in a manner shown in Figure 2.2(b). Figure 2.2(c) shows a normal sit-

uation in navigation where the laser detects an object at a distance of 0.3 m

ahead of it. However, under such a circumstance, the mobile base which is the

only controllable part of robot is not aware of the obstacle if the transformation

relationship between frame “base link” and frame “base laser” are not built.

Therefore, we need to configure the static transformation between these two

frames. Then the mobile base knows that there is an obstacle at a distance of

0.4 m ahead of the robot base and can make moves to avoid the collision with
1 http://wiki.ros.org/navigation/Tutorials/RobotSetup?action=AttachFile&do=view

&target=overview_tf.png

http://wiki.ros.org/navigation/Tutorials/RobotSetup?action=AttachFile&do=view&target=overview_tf.png
http://wiki.ros.org/navigation/Tutorials/RobotSetup?action=AttachFile&do=view&target=overview_tf.png
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the obstacle.

(a) (b) (c)

Figure 2.2: An example for illustrating configuring transform using TF package2.

On the other hand, TF package can be used to describe dynamical transfor-

mation relationships. This contributes to publishing odometry information in

navigation. Generally, for a short-term navigation, we name the coordinate

frame attached to the mobile robot base as “base link” and the world-fixed

reference frame computed from odometry sources as “odom” frame. As both

frames can be tracked by TF, the dynamic transformation from “odom” frame

to “base link” frame helps a robot localize itself in autonomous navigation.

• gmapping package [44]

As aforementioned, one technique closely related to autonomous navigation is

SLAM. SLAM requires a robot to be able to build a map of an unknown en-

vironment and meanwhile to be aware of its position in the environment. In

other words, a robot with high intelligence can construct and update the map

of its working environment during its autonomous navigation. Therefore, the

robot does not need a map server to provide a map in advance which makes

“map server” an optional node in the navigation stack setup as shown in Figure

2.1. However, if a map created before navigation is not given, then the global

costmap used for global path planning is needed and built using the data from
2 http://wiki.ros.org/navigation/Tutorials/RobotSetup/TF

http://wiki.ros.org/navigation/Tutorials/RobotSetup/TF
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sensor sources such as lasers and cameras during the navigation. This requires a

high-performance sensor system. As our robot does not possess a considerably

high performance sensor system, we choose the map-based navigation approach,

i.e., we build a map before navigation and need a map server to provide the

map when the navigation starts.

Among the ROS packages which integrate SLAM algorithms, gmapping is one

of the most widely-used and mature packages. It integrates a laser-based SLAM

algorithm which is based on Rao-Blackwellized particle filter. Table 2.1 lists the

topics that gmapping subscribes to and publishes. From the table, we can see

that essentially gmapping makes use of the odometry information and data

from laser scans to generate a map of the environment. The created map is

a 2-D occupancy grid map, and an example is shown in Figure 2.3. The TF

transforms related to gmapping package are listed in Table 2.2. Additionally,

the configurable parameters in gmapping are listed in Table 2.3.

Table 2.1: Topics in gmapping package.

Name Type Description

Subscribed Topics
tf tf/tfMessage

Transforms between laser frame

and “base link” frame, also

between “base link” frame

and “odom” frame

scan sensor msgs/LaserScan Data from laser scans

Published Topics

map metadata nav msgs/MapMetaData Meta data of map

map nav msgs/OccupancyGrid Data of grid map

∼entropy std msgs/Float64
Estimate of the entropy of

the distribution over the robot pose
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Figure 2.3: An example of 2-D occupancy grid map3.

Table 2.2: TF transforms related to gmapping package.

TF transforms Description

Required TF Transforms

〈laser scan frame〉 → “base link”

Transform between laser frame and

“base link” frame, usually published

by the node robot state publisher

or static transform publisher

“base link” → “odom”
Transform between “base link” frame

and “odom” frame, usually

published by odometry system

Published TF Transform “map” → “odom”
Transform between “map” frame and

“odom” frame, used to estimate

the robot pose in the map

• move base package [45]

The move base package is the core of the navigation stack setup. It performs

the path planning to let the robot reach a given navigation goal by using a

global planner and a local planner. Each planner uses its own corresponding

costmap to plan a path for the mobile robot base. Specifically, the global plan-

ner computes a global path based on the given goal and a global costmap. The
3 http://www2.informatik.uni-freiburg.de/˜stachnis/research/rbpfmapper/gmappe

r-web/freiburg-campus/fr-campus-20040714.carmen.gfs.png

http://www2.informatik.uni-freiburg.de/~stachnis/research/rbpfmapper/gmapper-web/freiburg-campus/fr-campus-20040714.carmen.gfs.png
http://www2.informatik.uni-freiburg.de/~stachnis/research/rbpfmapper/gmapper-web/freiburg-campus/fr-campus-20040714.carmen.gfs.png
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Table 2.3: Key parameters in gmapping package.

Paramter Type Default value Description

∼throttle scans int 1
Process 1 out of n scans

where n is the set value

∼base frame string “base link” Frame attached to robot base

∼map frame string “map” Frame attached to map

∼odom frame string “odom” Odometry frame

∼map update interval float 5.0 Time between two map updates (s)

∼maxUrange float 80.0 Maximum range that laser reaches (m)

∼sigma float 0.05 Standard deviation of endpoint matching

∼kernelSize int 1
Search in the nth kernel

where n is the set value

∼lstep float 0.05 Step size of optimization in translational movement

∼astep float 0.05 Step size of optimization in rotational movement

∼iterations int 5 Number of iterations of scan matching

∼linearUpdate float 1.0 Translational distance between each laser scan (m)

∼angularUpdate float 0.5 Rotational distance between each laser scan (rad)

∼temporalUpdate float -1.0

If the processing speed of the latest scan

is less than the speed of update,

process one scan. Stop the time-based

updates if the value is negative

∼particles int 30 Number of particles in the filter

∼xmin float -100.0

Initial map size (m)
∼ymin float -100.0

∼xmax float 100.0

∼ymax float 100.0

∼delta float 0.05 Resolution of the map (m/grid block)

∼transform publish period float 0.05 Time between two TF transform publications (s)

∼occ thresh float 0.25 Threshold value of occupancy rate for map
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global planning utilizes the Dijkstra or A* algorithm to compute the optimal

path from the current robot position to the target position and outputs this

optimal path to the local planner. In many cases, the robot cannot strictly fol-

low the global path due to physical limits and unexpected obstacles. This leads

to the requirement of the local planner. The local planner takes inputs includ-

ing the global path, local costmap and odometry information to plan a local

path to be close to the global path as much as possible. Also the local planner

takes the obstacles that may appear at any time into consideration by using the

Trajectory Rollout and Dynamic Window Approach (DWA) algorithms. Below

we summarize the working principles of the Trajectory Rollout and DWA al-

gorithms as these two are fundamental to enable the ability to avoid collisions

with obstacles for the robot during autonomous navigation.

The working principles of Trajectory Rollout and DWA algorithms can be di-

vided into five steps:

1. Discretize the set of achievable velocities for the robot, thus many pairs

with each consisting of translational and rotaional velocities can be formed,

and each pair would result in a trajectory for the robot.

2. Determine the closest obstacle on each trajectory. Predict if the robot is

able to stop without causing collisions with applying the velocities. Discard

the pairs of velocities that violate.

3. Further discard the pairs of velocities that robot cannot reach due to the

limitations in the accelerations.

4. Formulate an objective function which incorporates three terms. The first

term is related to the effortlessness to the goal position, i.e., it reaches

maximum when the robot can move straight to the goal. The second one
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is related to the distance to the closest obstacle on the trajectory. Last

term is related to the forward velocity of the robot.

5. Find the velocity pair that maximizes the objective function as this pair

makes the robot reach the goal with the least effort, highest efficiency to

handle obstacles, and shortest time. Send the velocities to the mobile base.

Trajectory Rollout and DWA algorithms share common traits, however, differ

in how they discretely choose samples from the set of achievable velocities. As

mentioned in the second step, both algorithms need to perform prediction, thus

a prediction horizon is needed and a step size for sampling is also needed for

discretization. The difference lies in that Trajectory Rollout samples over the

whole prediction horizon, however DWA samples for only one sampling step.

In fact, due to the requirement of real-time performance, both the prediction

horizon and step size for sampling are set to a short period of time. This

results in the comparable performance between Trajectory Rollout and DWA

algorithms in many applications.

Next we discuss the action application programming interface (API), related

topics, services, and configurable parameters in move base which are listed in

Table 2.4.

The action API is based on the actionlib stack. This leads to that besides the

standard subscribed and published topics, move base also possesses the action

subscribed and published topics. Specifically, the user can use the SimpleAc-

tionClient and configure the move base as SimpleActionServer if intending to

track the execution status of move base, otherwise simply use the standard API.

The published topic of the move base is the desired velocity consisting of the

translational velocity and rotational velocity along the x-axis, y-axis and z-axis.
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Table 2.4: Action API, topics and services in move base package.

Name Type Description

Action Subscribed Topics

move base/goal
move base msgs/

MoveBaseActionGoal
Goal for move base to reach

move base/cancel actionlib msgs/GoalID
Request to cancel

a specified goal

Action Published Topics

move base/feedback
move base msgs/

MoveBaseActionFeedback

Feedback that contains

coordinate of mobile base

move base/status
actionlib msgs/

GoalStatusArray

Information on status of

goals sent to move base

move base/result
move base msgs/

MoveBaseActionResult
No result for operation of move base

Subscribed Topics move base simple/goal geometry msgs/PoseStamped

Provide a non-action interface

for users which do not

necessarily need to track the

execution status of goals

Published Topics cmd vel geometry msgs/Twist
Signal that contains desired

velocity sent to mobile base

∼make plan nav msgs/GetPlan

Allow users to ask for

the path plan to reach

a given goal from move base

without making move base

execute the plan

Services
∼clear unknown space std srvs/Empty

Allow users to directly

clear the unknown space

aorund the robot

∼clear costmaps std srvs/Empty

Allow users to command

move base to clear

the obstacles in the costmaps
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And the positive x-axis points the forward direction of the robot, positive y-

axis points left, and positive z-axis points up. As shown in Figure 2.1, the base

controller of a robot receives the desired velocity and converts it to the control

signals to the controllable parts in the robot, e.g., driven wheels for a wheeled

ground robot. Next we list the parameters used to configure move base in the

Table 2.5.

• amcl package [46]

The amcl package provides an approach to realizing the localization for the

robot. However, it is not the only solution to localization. As aforementioned,

gmapping package integrates a SLAM algorithm, and thus it can also be used for

localization. This makes the amcl package an optional node in the navigation

stack setup. Despite other localization algorithms such as gmapping, amcl plays

a leading role in the map-based navigation due to its strong connection with

the pre-given map. The amcl package takes the map, laser scans and necessary

transforms as inputs to give an estimated robot pose as the output by using a

particle filter. The topics and services in amcl package are listed in Table 2.6.

From the subscribed topics of amcl, it can be seen that localization with amcl

relies on the proper configuration of three key components: The particle filter,

laser scans, and odometry transforms. As a result, the configurable parameters

in amcl can be divided into three categories: Parameters of the laser model,

the filter, and the odometry model which are shown in Table 2.7, Table 2.8 and

Table 2.9, respectively.
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Table 2.5: Parameters in move base package.

Paramter Type Default value Description

∼base global planner string “navfn/NavfnROS” Name of plugin for global planner used in move base

∼base local planner string
“base local planner/

TrajectoryPlannerROS”
Name of plugin for local planner used in move base

∼recovery behaviors list

[{name:conservative reset,

type:clear costmap recovery/

ClearCostmapRecovery},

{name:rotate recovery,

type:rotate recovery/Rotate-Recovery},

{name:aggressive reset,

type:clear costmap recovery/

ClearCostmapRecovery}]

A list of plugins for recovery behaviors of move base.

When move base fails to plan an effective path,

it will start the recovery behavior in the order of

this list until making a plan.

Otherwise it will consider the goal

unreachable and abort the mission

∼controller frequency double 20.0
Frequency of move base sending velocity

command to the mobile base (Hz)

∼planner patience double 5.0
Time for planner to wait for an

effective plan before operation of clearing space (s)

∼controller patience double 15.0
Time for controller to wait for an effective

control signal before operation of clearing space (s)

∼conservative reset dist double 3.0

Obstacles within this range will be cleared

in the costmap when operation of

clearing space is performed (m)

∼recovery behavior enabled bool true

Whether to enable recovery behavior

for move base to attempt

to clear space or not

∼clearing rotation allowed bool true

Whether to let mobile base attempt

to rotate in-place when operation of

clearing space is performed or not

∼shutdown costmaps bool false
Whether to shutdown costmaps when

move base becomes inactive

∼oscillation timeout double 0.0
Time allowed for oscillation

before executing recovery behaviors (s)

∼oscillation distance double 0.5

Robot should move this far, otherwise

is considered to be oscillating.

Moving this far will reset the timer counting

up to the parameter ∼oscillation timeout (m)

∼planner frequency double 0.0

Frequency for loop of global planning (Hz).

If the value is set to be 0.0,

global planner will be used

when receiving a new goal or local

planner reports a invalid path

∼max planning retries int32 t -1

Times allowed for the re-planning

before executing recovery behaviors (s). A value

of -1 represents infinite times of re-planning
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Table 2.6: Topics and services in amcl package.

Name Type Description

Subscribed Topics

scan sensor msgs/LaserScan Data from laser scans

tf tf/tfMessage
Information on transforms

of coordinate frames

initialPose
geometry msgs/

PoseWithCovarianceStamped

Mean and covariance used

to initialize particle filter

map nav msgs/OccupancyGrid

When the parameter

use map topic

is set to be true,

this topic is subscribed

to be used for

laser-based localization

Published Topics

amcl pose
geometry msgs/

PoseWithCovarianceStamped

Estimate of robot pose in

the map with covariance

particlecloud geometry msgs/PoseArray

Set of estimated poses

being maintained

by the filter

tf tf/tfMessage
Transform from odom

frame to map frame

Services

global localization std srvs/Empty

Initialize the global

localization. All particles are

randomly spread in free

space of the map

request nomotion update std srvs/Empty
Manually perform update

and set new particles

Services Called static map nav msgs/GetMap
Amcl calls this service

to receive map data
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Table 2.7: Laser model parameters in amcl package.

Paramter Type Default value Description

∼laser min range double -1.0 Minimum range for laser scans (m)

∼laser max range double -1.0 Maximum range for laser scans (m)

∼laser max beams int 30

Number of evenly-spaced

beams used in each

scan when updating filter

∼laser z hit double 0.95

Mixture parameter for z hit, z short,

z max, and z rand part of model

∼laser z short double 0.1

∼laser z max double 0.05

∼laser z rand double 0.05

∼laser sigma hit double 0.2
Standard deviation for Gaussian model

used in z hit part of model

∼laser lambda short double 0.1
Parameter for exponential decay for

z hit part of model

∼laser likelihood max dist double 2.0
Maximum distance to measure

inflation of obstacles (m)

∼laser model type string “likelihood field”
Choice for model including beam,

likelihood field and likelihood field prob
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Table 2.8: Overall filter parameters in amcl package.

Paramter Type Default value Description

∼min particles int 100 Number of minimum particles allowed

∼max particles int 5000 Number of maximum particles allowed

∼kld err double 0.01
Maximum error between true

and estimated distribution

∼kld z double 0.99

The upper standard normal quantile

for (1-p) where p is the probability

that estimated distribution error is

less than the value for parameter kld err

∼update min d double 0.2
Translational distance required for

filter to perform an update (m)

∼update min a double 3.0/π
Rotational angle required for

filter to perform an update (rad)

∼resample interval int 2 Number of updates for filter before re-sampling

∼transform tolerance double 0.1
Time to publish a transform, to indicate

this transform is valid in the future (s)

∼recovery alpha slow double 0.0

Rate of exponential decay for slow

average weighted filter, used to decicde

when to add random poses to recover,

0.0 represents disablement

∼recovery alpha fast double 0.0

Rate of exponential decay for fast

average weighted filter, used to decicde

when to add random poses to recover,

0.0 represents disablement

∼initial pose x double 0.0

Mean of x (m), y (m), and yaw (rad), and covariance

of x*x (m), y*y (m), and yaw*yaw (rad) in initial pose,

used to initialize Gaussian distribution based filter

∼initial pose y double 0.0

∼initial pose a double 0.0

∼initial cov xx double 0.5 * 0.5

∼initial cov yy double 0.5 * 0.5

∼initial cov aa double (π/12) * (π/12)

∼gui publish rate double -1.0
Maximum rate of publishing information

on visualization (Hz), -1.0 represents disablement

∼save pose rate double 0.5
Maximum rate of storing the estimated pose

and covariance in parameter server (Hz), used to

subsequently initialize the filter. -1.0 represents disablement

∼use map topic bool false
When set to be true, amcl subscribes to

map topic instead of receiving map from server

∼use map only bool false
When set to be true, amcl only uses

the first map it subscribes to

instead of the subsequent updated map
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Table 2.9: Odometry model parameters in amcl package.

Paramter Type Default value Description

∼odom model type string “diff”
Choice for model including

diff, omni, diff-corrected,

and omni-corrected

∼odom alpha1 double 0.2

Expected noise in the

estimate of odometry’s rotation

based on the rotational

component of robot motion

∼odom alpha2 double 0.2

Expected noise in the

estimate of odometry’s rotation

based on the translational

component of the robot motion

∼odom alpha3 double 0.2

Expected noise in the

estimate of odometry’s translation

based on the translational

component of the robot motion

∼odom alpha4 double 0.2

Expected noise in the

estimate of odometry’s translation

based on the rotational

component of the robot motion

∼odom alpha5 double 0.2
Parameter for noise related to

translation (only for omni)

∼odom frame id string “odom” Coordinate frame for odometry system

∼base frame id string “base link” Coordinate frame for mobile base

∼global frame id string “map”
Coordinate frame which

the localization system publishes

∼tf broadcast bool true

When set to be false,

amcl will not publish

the transform between the

global and odom frame
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As we have finished the introduction to ROS, we are in the position of presenting

the work on simulating autonomous navigation for a two-wheeled differential robot

in the ROS environment.

2.2 A URDF-based model of a two-wheeled differ-

ential robot

To start the simulation of the autonomous navigation for our robot, we need to first

model the robot in the ROS environment. Generally, the Unified Robot Description

Format (URDF) is used to describe robot models in ROS. It is an Extensible Markup

Language (XML) format and adopted to describe properties such as robot appearance,

physical properties, and joint types. However, URDF does not possess the feature of

code reusability, and thus becomes inefficient when adopted to describe considerably

complex robots. As a result, a URDF-based format with higher efficiency is further

developed, namely xacro. Compared to URDF, xacro supports the declaration of

constant variables and code reuse by the creation of macros, and its programming

provides APIs such as variables, mathematical formula, conditional statement. We

also adopt the xacro format to build the robot model for simulation. Next we will

detail the building process.

2.2.1 Basic visual model of the mobile base

We first name our simulated robot “simbot”, describe the robot model in the file

named “simbot.xacro”, and put the configuration parameters related to the robot in

the file named “parameters.xacro”. Thus by calling the file “parameters.xacro” in the

file “simbot.xacro”, the value of parameters can be reused.

Then we start to build our simulated robot model with the chassis of the robot
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and two casters which are omnidirectional wheels to support the chassis. Here we use

the 〈link〉 label to describe the chassis along with the two casters due to the direct

contact between casters and chassis. Another label used is the 〈visual〉 to define

the appearance properties including the 3-D coordinate position, rotation pose, and

specified shape. The detailed properties are shown in Table 2.10.

Table 2.10: Properties of the chassis and casters.

Property Value
Origin of chassis 0 0 0

Roll, pitch and yaw of Chassis 0 0 0
Width of chassis (m) 0.025
Radius of chassis (m) 0.2
Origin of front caster 0.15 0 -0.05
Origin of back caster -0.15 0 -0.05
Radius of caster (m) 0.05

The model of the chassis and its attached casters is shown in Figure 2.4. It uses

rviz which is the 3-D platform for visualization in the ROS environment.

Figure 2.4: The model of the chassis and casters in rviz.

Then we describe the wheels to complete the model of the robot mobile base. To



28

connect the wheels to the chassis, two revolute joints are needed and thus should also

be described. The 〈link〉 label is again used to describe the left and right wheels which

are both in the shape of cylinder. For the hinge joints, we use the 〈joint〉 label and

choose the type as continuous, which makes the two joints both in the revolute type.

And the wheels can rotate infinitely. The types allowed to set for 〈joint〉 label are

listed in Table 2.11. And the child and parent links for the left and right wheel hinge

joints are set to be the corresponding wheel and the chassis, respectively. This enables

the physical connection from the chassis, to the wheel hinge joints, to the wheels. In

addition, the 〈axis〉 label defines the rotation axis for the joints and the 〈limit〉 label

describes the limits of motion including the most upper and lowest position, velocity

and torque limits. The detailed properties of wheels and wheel joints are shown in

Table 2.12.

The model of the robot mobile base is shown in Figure 2.5.

Figure 2.5: The model of the robot mobile base in rviz.
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Table 2.11: Types for the 〈joint〉 label in URDF-based model.

Label Type Joint Type Specification

continuous Revolute joint Allow infinite rotation about a single axis

revolute Revolute joint
Similarly to continuous type,

however set angular limit for rotation

prismatic Prismatic joint
Allow translational movement along

a single axis with limited positions

planar Planar joint
Allow translational or rotational

movement in orthogonal direction of a plane

floating Floating joint Allow translational and rotational movement

fixed Fixed joint Not allow any movement

Table 2.12: Properties of the chassis and casters.

Property Value
Origin of chassis 0 0 0

Width of chassis (m) 0.025
Radius of chassis (m) 0.2
Origin of front caster 0.15 0 -0.05
Origin of back caster -0.15 0 -0.05
Radius of caster (m) 0.05
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2.2.2 Physical and collision properties

Now we have created the model of our robot mobile base which can be visualized.

However, necessary physical and collision properties of each part need to be config-

ured for autonomous navigation. Specifically, the physical properties and collision

properties are described using the 〈inertial〉 label and 〈collision〉 label, respectively.

The physical properties of the chassis consist of two parts: The mass and rotational

inertia matrix. The mass of the chassis is 1.5 kg. As the chassis is in the shape of

regular cylinder, we can compute the inertial matrix by directly using the general

formula shown in Equation 2.1 [47] where M , h, and R denote the mass, height and

radius of the chassis, respectively. The content in the collision description is similar

to that in the visual description due to the simple structure of the chassis. Similarly

the physical and collision properties of two wheels can be configured.


ixx ixy ixz

iyx iyy iyz

izx izy izz

 =


1
12Mh2 + 1

4MR2 0 0

0 1
12Mh2 + 1

4MR2 0

0 0 1
2MR2

 . (2.1)

Since the two casters are considerably small and light, the moments of inertia can

be assumed to be all zeros and the inertia property can be neglected. To describe the

collision properties, we use the 〈surface〉 and 〈friction〉 labels to model the friction

between the caster and the ground or obstacles if any collisions occur. As the surface

of the caster is curved, the friction cannot be easily described without using physics

engine provided by the URDF library. Typical physics engines include ode, orsional,

and bullet. The default engine is ode which is also the most appropriate one to be

used for a curved surface. For the ode physics engine, four parameters: 〈mu〉, 〈mu2〉,

〈slip1〉, and 〈slip2〉 need to be set. Both 〈mu〉 and 〈mu2〉 are set to be zero, which

makes the surface of the caster completely smooth. Parameters 〈slip1〉 and 〈slip2〉 are
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related to the forces which cause the slippery of casters in the horizontal and vertical

direction, respectively.

In addition, the coefficients of damping and static friction of the two wheel joints

are both set to be 1.0.

2.2.3 Sensor model

For a ground robot with the ability to perform autonomous navigation, visual sensors

are indispensable for environment observation. Therefore, we need to add visual

sensors to our simulated robot. Generally, to achieve autonomous navigation, an

indoor ground robot is equipped with a RGB-D camera such as a Kinect camera or a

Lidar such as RPLidar and Hokuyo scanning Lidar. Here we choose the Hokuyo Lidar

due to its advantages of higher accuracy, faster response and lower computational

complexity. To fix the Hokuyo Lidar to the robot, a joint is needed to link the

Lidar to the chassis. In addition, we make use of the ROS plugin for the Hokuyo

Lidar provided by the ROS community to facilitate the adding of the sensor to the

simulated robot and its proper functioning.

Though the Hokuyo Lidar is in a irregular shape, its collision model is configured as

a box which is slightly larger than its original size. This simplification will decrease

the computational demand and increase the smoothness of performing simulation.

The properties of the Hokuyo Lidar and its linked joint are shown in Table 2.13. Now

a URDF-based model with incorporating visual, physical and collision properties is

built and shown in Figure 2.6.

2.2.4 Properties required by Gazebo

To simulate the autonomous navigation for our two-wheeled differential ground vehi-

cle, we use the Gazebo which is a 3-D simulation platform for the ROS environment.
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Table 2.13: Properties of the Hokuyo Lidar and its linked joint.

Property Value

Hokuyo joint

Axis 0 1 0

Origin 0.15 0 0.07

Roll, pitch and yaw angle 0 0 0

Parent link “chassis”

Child link “hokuyo”

Hokuyo Lidar

Origin 0 0 0

Roll, pitch and yaw angle 0 0 0

Size (m×m×m) 0.1×0.1×0.1

Mass (kg) 10−5

Inertia matrix diag(10−6, 10−6, 10−6)

Figure 2.6: The model of a two-wheeled ground vehicle in rviz.
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Although we have created a model of the ground robot which satisfies the basic re-

quirement for simulation in Gazebo, it cannot move in Gazebo due to the lack of

extensional properties needed by Gazebo. To add these properties, the 〈gazebo〉 label

is used for necessary parts of robot. We put the configuration for these properties in

the file named “simbot.gazebo” and declare the reuse of them in the “simbot.xacro”

file similarly to the “parameters.xacro” file.

Since Gazebo is able to read the visual, physical and collision properties only

except the material parameters configured in the visual property, we only need to set

the material type, i.e., the color in the 〈gazebo〉 description for the chassis and two

driven wheels.

Next, we need to configure the base controller for our robot. As aforementioned,

the base controller takes the desired velocity as its input which in our case consists of

two parts: The translational velocity along x-axis and rotational velocity about z-axis.

The base controller is then indispensable for our robot since its input cannot directly

drive the wheels. Here, the base controller is added using the Gazebo controller

plugin. A typical controller plugin used for differential ground robots provided by

Gazebo is named “libgazebo ros diff drive.so”. It converts the desired linear velocity

in the forward direction and planar angular velocity to the velocity of left and right

wheels as:

Vleft = Vx − Vz ∗ d/2

Vright = Vx + Vz ∗ d/2,
(2.2)

where Vleft and Vright denote the linear velocities of the left and right wheels, respec-

tively. And Vx and Vz represent the linear velocities in the forward direction and

planar angular velocity about z-axis, and d is the distance between two wheels.

We directly call the plugin by configuring some parameters specified for our robot
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as shown in Table 2.14.

Table 2.14: Parameters for the base controller.

Parameter Description Value

updateRate
Update rate of sending

control signal to robot (Hz)
30

leftJoint Joint connected to left wheel “left wheel hinge”

rightJoint Joint connected to right wheel “right wheel hinge”

wheelSeparation Distance between two wheels (m) 0.46

wheelDiameter Diameter of wheels (m) 0.2

torque Maximum torque that wheels can operate (Nm) 10

commandTopic
Desired velocity command containing in a

ROS topic that controller subscribes to
“cmd vel”

odometryTopic
Odometry information containing in a

ROS topic that controller publishes
“odom”

odomteryFrame Odometry frame “odom”

robotBaseFrame Frame attached to mobile base “chassis”

Finally, we add the plugin information about the Hokuyo Lidar as shown in Table

2.15.
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Table 2.15: Parameters for the Hokuyo Lidar.

Parameter Description Value

sensor type

Type of sensor, there are two types for

lasers: “gpu ray” and “ray”.

The former utilizes GPU of master

device and the latter does not.

“gpu ray”

update rate Rate of updating one scan (Hz) 40

scan-samples
Number of samples for

performing one scan
720

scan-resolution Resolution of scan in horizontal direction (mm) 1

scan-min angle
Scan angle (rad)

-1.570796

scan-max angle 1.570796

range-min
Detection range (m)

0.10

range-max 30

range-resolution Accuracy of detection 0.01 (1%)

noise-type Type of noise exerted on the Lidar “gaussian”

noise-mean Mean of distribution for noise 0.0

noise-stddev Standard deviation of noise distribution (m) 0.01

plugin-topicName
ROS topic which the ROS

node linked to Lidar publishes
“/simbot/laserScan”

plugin-frameName Frame attached to Hokuyo Lidar “hokuyo”

Note that the parameter values for the simulated Hokuyo Lidar such as the update

frequency, scanning resolution and range, and accuracy are set based on the values

for the actual Hokuyo Lidar. However, the values can be changed to observe to what

extent does the autonomous navigation rely on the performance of the Hokuyo Lidar.

In addition, the ROS topic published by the ROS node linked to Hokuyo Lidar is

named “/simbot/laserScan”. It is also the subscribed topic for nodes used to localize

the robot. And by using the 〈material〉 label to make our robot colored, we can

display the model of our robot in Gazebo as shown in Figure 2.7.
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Figure 2.7: The model of a two-wheeled ground vehicle in Gazebo.

2.3 Simulation setup

2.3.1 Working environment

To simulate the autonomous navigation, we firstly create a simulated working envi-

ronment. The environment can be built using Gazebo Building Editor tool. Figure

2.8 shows our robot model within the created working environment.

2.3.2 Setup for gmapping, move base and amcl

Then we configure some parameters for the gmapping, move base and amcl packages

to realize the SLAM and navigation using our simulated robot model. The configured

parameters to run the gmapping node are shown in Table 2.16.
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Figure 2.8: The two-wheeled UGV within its working environment in Gazebo.

Table 2.16: Parameter values in gmapping configuration.

Parameter Description Value

delta Resolution of the map (m/grid block) 0.05

xmin

Map size (m)

-20

xmax 20

ymin -20

ymax 20

base frame Frame attached to robot base “chassis”

linearUpdate Translational distance between each laser scan (m) 0.5

angularUpdate Rotational distance between each laser scan (rad) 0.5

particles Number of particles in the filter 80



38

Here, we set the size of created map as 20×20 m2 instead of using the default value

of 100×100 m2 to accommodate the size of the simulated working environment. Ad-

ditionally, it is worth noting the settings of two frames here. Firstly, the “base frame”

is set to be “chassis” to maintain the consistency of frame set in the URDF-based

model. Secondly, since gmapping subscribes to the topic for lase scan named “scan”,

however the topic for the Hokuyo Lidar of our robot is named “simbot/laserScan”, we

then need to set the remapping from “scan” to “simbot/laserScan” with the 〈remap〉

label.

For the setup of the move base package, three parts including the global and local

costmaps, and the local planner need to be configured. The global and local costmaps

share some common configuration shown in Table 2.17 and use exclusive configuration

shown in Table 2.18 and Table 2.19, respectively.

Table 2.17: Adopted parameter values in common configuration for both costmaps.

Parameter Description Value

obstacle range Maximum range for robot to detect an obstacle (m) 1.5

raytrace range Maximum range for robot to clear out free space (m) 1.5

robot radius Radius of robot if setting the robot center as origin (m) 0.3

inflation radius Minimum safety distance between robot and obstacles (m) 0.5

Table 2.18: Adopted parameter values in global configuration for global costmap.

Parameter Description Value

global frame Coordinate frame the costmap runs in “map”

robot base frame Coordinate frame the costmap refers for the robot base “chassis”

update frequency Update frequency of the costmap (Hz) 1.0

static map
If the initialization of the costmap is based

on the map served by the map server
true
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Table 2.19: Adopted parameter values in local configuration for local costmap.

Parameter Description Value

global frame Coordinate frame the costmap runs in “odom”

update frequency Update frequency of the costmap (Hz) 3.0

publish frequency Frequency of costmap publishing visualization information (Hz) 1.0

static map
If initialization of costmap is based on

the map served by the map server
false

rolling window If robot needs costmap to remain centered around robot true

width
The size of the costmap (m)

6.0

height 6.0

resolution Resolution of the costmap (m/cell) 0.01

Once the global costmap is set properly, the global planner does not need to be

configured. The reason lies in that the Dijkstra and A* algorithms utilized by the

global planner can immediately compute the optimal path from the current robot

position to the given goal by using the global costmap. Thus we do not necessarily

need to configure the global planner due to its high efficiency. Nevertheless, the local

planner is faced with much more complex situations than the global planner and needs

to be configured properly to achieve collision-free navigation. The configuration of

the local planner is shown in Table 2.20 below.

At last, we set parameters for the amcl node as shown in Table 2.21. Apart from

the settings for the remapping of laser scan topic, and necessary coordinate frames,

we set the triggering conditions of updating the localization.
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Table 2.20: Adopted parameter values in base local planner configuration.

Parameter Description Value

acc lim x The x acceleration limit of the robot (m/s2) 0.5

acc lim y The y acceleration limit of the robot (m/s2) 0.5

acc lim theta Rotational acceleration limit of the robot (rad/s2) 1.5

max vel x Maximum forward velocity allowed for the base (m/s) 0.5

min vel x Minimum forward velocity allowed for the base (m/s) 0.01

max vel theta Maximum rotational velocity allowed for the base (rad/s) 1.5

min in place vel theta
Minimum rotational velocity allowed for the

base when performing in-place rotations (rad/s)
0.01

escape vel Speed used for driving during escapes (m/s) -0.12

holonomic robot If the robot is holonomic false

Table 2.21: Parameter values in amcl configuration.

Parameter Description Value

odom frame id Coordinate frame for odometry system “odom”

odom model type Type of model for odometry system “diff”

base frame id Coordinate frame for mobile base “chassis”

update min d Translational distance required for filter to perform an update (m) 0.5

update min a Rotational angle required for filter to perform an update (rad) 1.0
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2.4 Simulation results

2.4.1 Creating a map of the environment

As mentioned in Section 2.1.2, we aim to realize the map-based autonomous navi-

gation for our robot. Thus we need to create a map of the working environment in

advance of performing navigation. We first initialize the simulated environment and

robot model and run the gmapping node with pre-set configuration.

Then we run the teleoperation node to control the robot to move in the working

environment. The teleoperation node is an existing node for controlling the sample

robots such as the turtlebot, thus here we can directly use it by changing some parame-

ters and remapping its original published topic “turtlebot3 teleop keyboard/cmd vel”

to the corresponding topic for our robot “cmd vel”. Figure 2.9 illustrates an interme-

diate state of the map creation process in rviz.

And the obtained map of the working environment is shown in Figure 2.10 which

is named “map.pgm”. We also obtain its configuration file named “map.yaml” which

will be used by the map server at the beginning of the autonomous navigation.

We can see that though there are some overlaps between the free space and objects,

the map illustrates the positions of objects in the working environment. Specifically,

the outlines of objects are precisely displayed, which can let the robot easily identify

the objects during the autonomous navigation. Therefore, the quality of the created

map is acceptable.

2.4.2 Autonomous navigation

With the obtained map, we can start the autonomous navigation for our ground

vehicle. Similarly to Section 2.4.1, we first initialize the working environment along

with our robot model. And then we need to start the map server and move base.
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Figure 2.9: An intermediate state of the map creation process in rviz.

Figure 2.10: The created map of the simulated working environment.
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To perform the autonomous navigation, a series of target points for the vehicle to

reach in order is set as shown in Figure 2.11. In other words, the robot is required to

reach position 1, then positions 2, 3 and so on. After arriving at position 6, it again

goes to position 1 and continues the navigation task until we end the task.

There are two interfaces when the autonomous navigation is performed: The rviz

and Gazebo as shown in Figure 2.12. The rviz interface shown in Figure 2.12(a)

enables us to see the planned paths generated by the global and local planners, and

to send additional navigation goals to our robot with the “2D Nav Goal” button. The

Gazebo interface shown in Figure 2.12(b) is for observing the actual robot states in

the working environment.

Figure 2.11: Six target waypoints for the robot to reach.
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(a) The rviz interface. (b) The Gazebo interface.

Figure 2.12: Two interfaces used during the simulation.

Figure 2.13 shows the robot movement towards position 1. The red line segments

in rviz show the results of laser scans using the Hokuyo Lidar. The blue curve is the

global path computed by the global planner and the short green curve represents the

local path computed by the local planner.

To achieve a given goal, say reaching position 1 for example, the robot will plan

feasible global and local paths to the target point with avoiding colliding with the

objects. And after reaching the target point, it will perform in-place rotation until

achieving the desired pose. This process can be shown in Figures 2.14, 2.15 and 2.16.
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Figure 2.13: An intermediate state of robot moving towards position 1.

Figure 2.14: The robot reaches the position 1.
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Figure 2.15: The in-place rotation of the UGV after reaching position 1.

Figure 2.16: The robot achieves the navigation goal for position 1.
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The robot will follow the similar procedures described above to achieve the nav-

igation goal for other five positions. Video results of the simulation can be referred

to the links given in the Appendix.

Then to test whether our robot has the ability to avoid unexpected obstacles, we

add obstacles in the working environment as shown in Figure 2.17.

Figure 2.17: Add three obstacles in the working environment.

The robot then efficiently computes the global and local paths and starts to move

as shown in Figure 2.18.
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Figure 2.18: The robot finishes computing the global and local paths.

Figure 2.19: The robot starts to re-plan the global and local paths.



49

However, when the robot observes the unexpected obstacles, it will discard the

global path and start to re-plan the global path as shown in Figure 2.19. Additionally,

when it comes to a position which is considerably close to two or more objects, it will

stop and perform in-place rotation to search for feasible global and local paths. This

can be seen in Figure 2.20.

Figure 2.20: The in-place rotation of the UGV to search for feasible paths.

When the robot successfully plans a local path which will avoid collisions with

objects, it will follow the local path to move without causing collisions. This is shown

in Figures 2.21 and 2.22.

Lastly, Figures 2.23 and 2.24 show that the robot is able to achieve autonomous

navigation and to continue its navigation task without colliding with any unexpected

obstacles.
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Figure 2.21: The robot avoids the collision with the first added obstacle.

Figure 2.22: The robot avoids the collision with the second added obstacle.
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Figure 2.23: The robot achieves the navigation goal for position 4 with avoiding
unexpected obstacles.

Figure 2.24: The robot continues the navigation.
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2.5 Conclusion

In this chapter, we present the simulation of autonomous navigation for a two-wheeled

differential ground robot in the ROS environment. The simulated URDF-based robot

model is built. And the SLAM of the simulated robot can be realized by properly

using the gmapping package. Moreover, by following the navigation stack setup and

using move base and amcl with suitable configuration, the autonomous navigation

can be achieved with the functionality of collision avoidance.
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Chapter 3

Experiment of Autonomous

Navigation for a Two-Wheeled

UGV

3.1 Overview

In Chapter 2, we conduct the simulation of autonomous navigation for a two-wheeled

differential ground vehicle. In this chapter, we present the realization of autonomous

navigation for a two-wheeled UGV in experiments. The remaining part of this chapter

is organized as follows. Section 3.2 describes the necessary hardware components of

the UGV to realize autonomous navigation. Sections 3.3 and 3.4 introduce the imple-

mentation of SLAM and autonomous navigation for the UGV, respectively. Section

3.5 concludes this chapter.
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3.2 Hardware components of the UGV

A UGV is always faced with sensor errors caused by the external disturbances from

the environment, and also unexpected situations such as wheel skidding during the

practical operation. Therefore, a practical UGV to realize autonomous navigation

should have more hardware components compared to the simulated UGV shown in

Chapter 2. Below we introduce both the existing hardware components of the UGV

and peripheral devices which can be added to enhance the performance of the existing

robot.

3.2.1 Master computer

The master computer provides a platform for ROS operation. It performs most of

the computational work for autonomous navigation. Specifically, it computes odom-

etry, makes data from visual sensor system compatible with the move base node if

necessary, and plans paths by move base. Accordingly, a Dell XPS 15 model is used

with an Intel Core i5-6300HQ CPU @ 2.30 GHz ×4 processor and 8GB RAM. It runs

Ubuntu 18.04 64-bit with ROS Melodic.

3.2.2 Microcontroller unit (MCU)

MCU acts as the base controller in Figure 2.1 to drive the DC motors loaded with

the wheels of the robot. Thus it should be compatible with both the ROS and

Ubuntu environments installed on the master computer. It also generates pulse-

width modulation (PWM) signals for driving the motors connected to the robot

wheels. In addition, to handle the external disturbances during the navigation, a

more robust control strategy is implemented in MCU. In this experiment, we apply the

classical proportional-integral-derivative (PID) control strategy. To satisfy the above
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requirements, the Elegoo Atmega2560 R3 board with built-in Atmel Atmega2560

microcontroller is chosen and its technical specifications are listed in Table 3.1.

Table 3.1: Technical specifications of the Elegoo Atmega2560 R3 board [1].

Microcontroller Atmel Atmega2560-16au and Atmega 16u2

Operating Voltage (V) 5

Input Voltage (recommended) (V) 7-12

Input Voltage (limits) (V) 6-20

Digital I/O Pins 54 (of which 15 provide PWM output)

Analog Input Pins 16

DC Current per I/O Pin (mA) 40

DC Current for 3.3V Pin (mA) 50

Flash Memory (KB) 256 KB of which 8 KB used by bootloader

SRAM (KB) 8

EEPROM (KB) 4

Clock Speed (MHz) 16

PWM Specifications
Pin number: 2-13, 44-46

Default frequency: 980 Hz for pins 13 and 4, 490 Hz for others

Scale of duty cycle: 0-255

3.2.3 Sensor system

As aforementioned in Section 1.2, the whole sensor system of the UGV can be divided

into two parts: The odometry sensors and the visual sensors. For odometry sensors,

one can choose to use a single sensor or a combination of several sensors along with

utilizing the data fusion algorithms such as the extended Kalman filter (EKF) and

unscented Kalman filter (UKF) supported by ROS. Here the wheel encoder which is

generally attached to the motor is selected. Unlike the use of the Hokuyo Lidar in

simulation, the Kinect V1 camera which is a RGB-D camera is used due to its low

cost. Though its performance is not comparable to a Lidar, it suffices for most indoor

applications [48]. Additionally, the use of IMU is discussed below in Section 3.2.5.
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3.2.4 Vehicle platform

The vehicle platform consists of three layers: The base layer, medium layer and top

layer. Most hardware peripherals are put on the chassis on the base layer. The

master computer and the visual sensor can be put on the medium layer and top

layer, respectively.

Similarly to the simulated ground robot, the chassis is supported by an omnidi-

rectional caster. The chassis is made of wood due to the low cost and machining

difficulty. The wheels with one on each side of the chassis are linked to the chassis by

the DC motors. And the DC motors are connected to the MCU board through the

DC motor driver board. Considering the compatibility of the four parts: MCU, DC

motor driver board, motors, and wheels, the Cytron MDD10A dual channel 10A DC

motor driver, Pololu 70:1 metal gearmotor 37D×70L mm 12V with 64 CPR encoder,

and wheels with diameter of 72 mm are chosen respectively. As aforementioned, the

wheel encoder is required to provide odometry information, thus the DC motor with

attached quadrature encoder is selected. The caster is then chosen as the Pololu ball

caster with the diameter of 1 inch according to the size of wheels. These peripherals

constitute the base layer of vehicle platform for the UGV.

For the hardware connection on the base layer, the MCU board provides the

ground reference for the motor driver board and the two encoders, and also outputs

5V voltage to power the encoders. Except the pin for ground, the motor driver board

has 4 input pins of which 2 for direction input and other 2 for PWM input. The two

direction input pins can be linked to any 2 digital pins on the MCU board. And the

two PWM input pins need to be connected to pins on the MCU board which are able

to generate PWM signal. The motor driver board has 4 output pins with 2 for each

motor and has 2 pins for external power source. For each encoder, apart from 2 pins

mentioned before, 2 pins are connected to digital pins on MCU board to enable the
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communication. The ground robot is built up as shown in Figure 3.1. Additionally,

the specifications for the UGV are shown in the Table 3.2.

Figure 3.1: The two-wheeled UGV used in the experiment.

3.2.5 Inertial Measurement Unit

The IMU can be an auxiliary device to provide odometry information which helps

the localization of the ground robot. This results from that the data error from

wheel encoders leads to the cumulative inaccuracy of computing the robot position,

especially when a ground vehicle works in a complex outdoor environment to achieve a

long-term task. Under such a circumstance, the localization can be reliable by making

use of more in-depth measurements such as the magnetic field, angular velocities and

linear acceleration. And these measurements can only be provided by the IMU.

However, in our experiment, the UGV works in a considerably small indoor space

and is faced with a simple short-term navigation task, and it is not necessary to use

an IMU to achieve autonomous navigation.
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Table 3.2: Technical specifications of the two-wheeled UGV.

Specification Value

Wheel Diameter (mm) 72

Wheel Width (mm) 34

Distance between Wheels (m) 0.3

Motor Rated Voltage (V) 12

Motor No-load Speed (rpm) 150

Motor No-load Current (A) 0.2

Motor Speed at Max Efficiency (rpm) 130

Motor Current at Max Efficiency (A) 0.68

Gear Ratio 70:1

The Number of Encoder Counts per Revolution of Shaft 4480

The Maximum Linear Velocity for UGV (m/s) 0.565

The Maximum Angular Velocity for UGV (rad/s) 3.77

3.2.6 Power supply

The power supply is determined by the power requirements from each component of

the UGV. As the microcontroller board is powered by the master computer through

a USB cable, the capacity of external power relies on the requirements from the DC

motors, motor driver board and Kinect camera. Accordingly the 25C-50C, 2500mAh,

11.1V LiPo Battery is chosen due to its considerably large capacity and the maximum

voltage of 12.60V.

3.3 Implementation of SLAM for the UGV

In this section, we introduce how to implement SLAM for our two-wheeled UGV,

i.e., create a map of the surrounding environment where our robot operates. We

first discuss the setup and calibration of the hardware devices in Section 3.3.1. Then,
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experimental results on implementing SLAM for our UGV are shown in Section 3.3.2.

3.3.1 Robot setup

The robot setup can be separated into four parts: To calibrate the DC motors loaded

with wheels, implement speed control algorithm on the base controller, configure

necessary transformation among coordinate frames, and make the Kinect camera

prepared for the map creation process.

• Calibration of DC motors loaded with wheels

The calibration of two DC motors each loaded with a wheel is investigated to

obtain the relationship between the duty cycles of PWM signals sent to the

DC motors and the resulting linear velocities. The calibration needs be fin-

ished before the implementation of the control algorithm on the base controller.

Specifically in this procedure, we first vary the duty cycles of PWM signals sent

from the microcontroller board to the DC motors. Secondly, the linear veloci-

ties of two wheels are calculated by using the number of counts from encoders.

Lastly, the relationship between the duty cycles of PWM signals and the linear

velocities of the two wheels is determined by solving two optimization problems.

We start with setting the operation direction of both motors as forward, and

generating an approximately 3.92% duty cycle PWM signal in both channels of

DC motors by writing a value of 10 into the function analogWrite. And then

we increase the value by 10 each time until reaching 240 which corresponds to

an approximately 94.12% duty cycle. To measure the linear velocities of two

wheels, we sample the read from two quadrature encoders in the period of 40

ms and compute the linear velocity as

v = x ∗ π ∗ 0.072
4480 ∗ 40 ∗ 10−3 (m/s), (3.1)
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where x denotes the number of counts from each encoder in 40 ms, and v is the

linear velocity. The linear velocity of each wheel for corresponding duty cycle is

determined as the median of 100 linear velocity samples taken in a time period

of 4 seconds after the stable operation of motor is achieved. Therefore, we have

24 sets of data for each DC motor linked to a wheel as shown in Table 3.3.

Table 3.3: Measured linear velocity of wheels in forward direction for corresponding
duty cycle of PWM signal.

Value Written to analogWrite Function Linear Velocity of Left Wheel (m/s) Linear Velocity of Right Wheel (m/s)

dc1 = 10 vl1 = 0.016409210860729218 vr1 = 0.016409210860729218

dc2 = 20 vl2 = 0.04039190709590912 vr2 = 0.04039190709590912

dc3 = 30 vl3 = 0.06311235576868057 vr3 = 0.06311235576868057

dc4 = 40 vl4 = 0.08835729211568832 vr4 = 0.08835729211568832

dc5 = 50 vl5 = 0.11107774078845978 vr5 = 0.11233998090028763

dc6 = 60 vl6 = 0.13506042957305908 vr6 = 0.13127368688583374

dc7 = 70 vl7 = 0.16030538082122803 vr7 = 0.15904313325881958

dc8 = 80 vl8 = 0.17923907935619354 vr8 = 0.1754523366689682

dc9 = 90 vl9 = 0.2019595354795456 vr9 = 0.20069728791713715

dc10 = 100 vl10 = 0.2284667193889618 vr10 = 0.2259422093629837

dc11 = 110 vl11 = 0.2549739181995392 vr11 = 0.25118714570999146

dc12 = 120 vl12 = 0.2638096213340759 vr12 = 0.2638096213340759

dc13 = 130 vl13 = 0.30420154333114624 vr13 = 0.3029392659664154

dc14 = 140 vl14 = 0.33070874214172363 vr14 = 0.32818421721458435

dc15 = 150 vl15 = 0.35721591114997864 vr15 = 0.3509046733379364

dc16 = 160 vl16 = 0.3824608623981476 vr16 = 0.37867411971092224

dc17 = 170 vl17 = 0.4064435660839081 vr17 = 0.40265679359436035

dc18 = 180 vl18 = 0.4304262399673462 vr18 = 0.42663952708244324

dc19 = 190 vl19 = 0.4569334387779236 vr19 = 0.44557321071624756

dc20 = 200 vl20 = 0.4809161126613617 vr20 = 0.4670313894748688

dc21 = 210 vl21 = 0.5048988461494446 vr21 = 0.4809161126613617

dc22 = 220 vl22 = 0.5276192426681519 vr22 = 0.5023742914199829

dc23 = 230 vl23 = 0.5503396987915039 vr23 = 0.5276192426681519

dc24 = 240 vl24 = 0.5755846500396729 vr24 = 0.5276192426681519

Then we can determine the relationship between the duty cycle of PWM signal

in each channel and the linear velocity of the corresponding wheel by finding a

function which best fits the data. We first analyze the data by making plots in
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MATLAB. The data is shown in the shape of circle in Figure 3.2 which appears

considerably accurate pattern of linear relationship. Thus finding a function to

best fit the data for each wheel becomes two linear regression problems as:

minimize
kl,bl

24∑
i=1

(kl · dci + bl − vli)2

and

minimize
kr,br

24∑
i=1

(kr · dci + br − vri)2

for left and right wheels, respectively. Solving two optimization problems yields

the solution: kl = 0.002452, bl = -0.01273, kr = 0.002328, and br = -0.004788

which form two linear functions shown in the shape of line in Figure 3.2. And

the results can also be validated with the Curve Fitting Tool in MATLAB.
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Figure 3.2: The relationship between the duty cycle of PWM signal and the operation
speed of wheels in forward direction.

This gives us the relationship between the duty cycle of PWM signal in each

channel and the linear velocity of corresponding wheel when motors rotate in
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forward direction as:

dcl = 1
kl

(vl − bl)

= 1
0.002452(vl + 0.01273),

(3.2)

and

dcr = 1
kr

(vr − br)

= 1
0.002328(vr + 0.004788),

(3.3)

where dcl and dcr denote the value written to anologWrite function to generate

certain duty cycle of PWM signal sent to the DC motors connected to the left

and right wheels, respectively. vl and vr denote the linear velocities of left

and right wheels, respectively. And the positiveness of vl and vr indicate the

rotation of the left and right wheels in the forward direction, respectively. The

negativeness of vl and vr represent the rotation in the backward direction.

When motors rotate in the backward direction, we follow similar procedures

and obtain similar results as:

dcl = 1
kl

(vl − bl)

= 1
−0.00246(vl − 0.009901)

(3.4)

and

dcr = 1
kr

(vr − br)

= 1
−0.002306(vr − 0.006586).

(3.5)

Related data and figures can be referred to Table A.1 and Figure A.1 in the



63

Appendix.

• Mobile base control setup

After the calibration of DC motors loaded with wheels, we program the MCU

board to configure the base controller for the UGV. First we adopt the same

controller used in our simulation. By using Equation 2.2, the velocity command

sent from the master computer is split into the desired velocity of each wheel.

Consider the external disturbances exerting on the UGV, we then implement the

classical PID control method in the MCU board for the DC motor speed control.

Additionally, the PID controller can eliminate the overshoot and decrease the

settling time to meet the real-time requirements. A diagram to illustrate the

speed control of a DC motor using PID method is shown in Figure 3.3.

Figure 3.3: A PID controller for the speed control of a DC motor.

The reference velocity signal Vr is transformed from the velocity command sent

from the master computer using Equation 2.2. The measured velocity Vm of

each motor is computed by the data from motor encoder using Equation 3.1.

And the error between the reference and measured linear velocity of a wheel

can be computed as

e(t) = Vr(t)− Vm(t), (3.6)
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and the control input is given by

u(t) = Kpe(t) +Ki

∫ t

0
e(τ)dτ +Kd

de(t)
dt

, (3.7)

where Kp, Ki and Kd denote the proportional, integral and derivative gains,

respectively.

In order to achieve satisfying control performance, the tuning of these three pa-

rameters is of great importance. There are several classical methods for tuning

PID parameters such as Ziegler-Nichols (ZN) method [49], Tyreus Luyben (TL)

method, Cohen-Coon method, and relay (Åström-Hägglund) method [50, 51].

Consider the similarity between the ZN and TL methods, accuracy of physical

model required by the Cohen-Coon method, and possible dangerous oscillation

caused by the relay method, we choose to follow the process of ZN and TL meth-

ods. The tuning process for each motor loaded with a wheel can be described

in the following four steps:

1. Set a sufficient small proportional gain Kp, and zero integral and derivative

gains, i.e., Kp = 0.1, Ki = Kd = 0. Set the reference velocity to 0.08 m/s

for each wheel in ROS.

2. Keep Ki = Kd = 0 and gradually increase the proportional gain Kp until

a stable oscillation of the output linear velocity is achieved, as shown in

Figures 3.4 and 3.5. Record the critical proportional gain at this point as

Kpc.

3. Set the proportional gain Kp = 0.6 ∗ Kpc, keep Kd = 0 and gradually

increase the integral gain Ki with keeping Kd until the steady-state error

is approximately zero. Record the integral gain at this point denoted as

Kic.
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4. Set the derivative gain as

Kd =
3.6 ∗ k2

pc

40 ∗Kic

, (3.8)

and slightly adjust the integral and derivative gains Ki and Kd until a

considerably fast output response with negligible overshoot and steady-

state error is achieved as shown in Figure 3.6.
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Figure 3.4: The oscillation of linear velocity of the left wheel during PID tuning
process.

Compare with standard ZN and TL methods, some modifications are considered

here. Due to the existence of inherent error of the quadrature encoders, in

step 2, it is difficult to evaluate whether stable oscillations of rotation for both

wheels are accurately achieved according to data from encoders. This can also

be seen in Figure 3.4 and 3.5. Therefore, Kpc for each motor is the value set

to the proportional gain Kp that causes the oscillation for the first time. The

inherent error also leads to that the oscillation period (generally denoted as Tpc

in ZN and TL method) for each wheel is hard to be determined. Therefore,

the formula for the integral gain Ki shown in Equation 3.9 cannot be utilized.
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Figure 3.5: The oscillation of linear velocity of the right wheel during PID tuning
process.
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Figure 3.6: The output response in PID tuning process.
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An appropriate integral gain Ki is considered as the value to best eliminate the

steady-state error. Then with a settled integral gain, we can make use of the

formulas for the integral and derivative gain in ZN method in Equation 3.9 to

derive Equation 3.8.

Ki = 1.2Kpc

Tpc

Kd = 3KpcTpc

40 .

(3.9)

After obtaining the suitable integral gain Ki = Kic and derivative gain Kd

using Equation 3.8, we slightly adjust the two gains to achieve better control

performance. After the adjustment process, for the motor loaded with the left

wheel, the final values of the proportional, integral and derivative gains are set

to be Kp = 3.6, Ki = 0.8, and Kd = 0.8, respectively. For the motor loaded

with the right wheel, the final value of the proportional, integral and derivative

gains are set to be Kp = 3.6, Ki = 1, and Kd = 1, respectively. In conclusion,

from Figure 3.6 we can see that using PID controllers for the speed control of

DC motors loaded with two wheels in our UGV is acceptable and effective.

• Transform configuration

To implement SLAM using gmapping and autonomous navigation with naviga-

tion stack for our two-wheeled UGV, we next need to configure both static and

dynamical transforms to establish relationships between coordinate frames. We

first build the static transform relationship between the frames attached to the

mobile base and visual sensor system. In this experiment, we name the coor-

dinate frame attached to the base layer of UGV as “base link” and the frame

attached to the Kinect camera as “base laser”. We follow a similar procedure for

the example shown in Figure 2.2. The Kinect camera is placed 9cm backward
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and 17.3cm above the center of base layer. Therefore, if we let the “base link”

frame as the parent node of the link and “base laser” frame as the child node,

from the “base laser” frame to the “base link” frame, we have the offsets of

-0.09m, 0, and 0.173m in the x, y and z directions, respectively. Thus a 3-D

vector (-0.09, 0.0, 0.173) is used to set up the translational relationship from

the “base laser” frame to the “base link” frame.

Additionally, the dynamical transform in terms of the odometry information

needs to be configured and published in the ROS environment. This is both

required by the gmapping package when implementing SLAM and by the nav-

igation stack for autonomous navigation. Specifically, the transform from the

“odom” frame to the “base link” frame needs to be published. As aforemen-

tioned, the “odom” coordinate frame is a world-fixed reference frame which can

be used to localize the UGV. Here we briefly introduce how the localization us-

ing these two coordinate frames works. Initially the “base link” frame coincides

with the “odom” frame, with the moving of UGV, the “base link” frame moves

relative to the “odom” frame. With using the data from quadrature encoders

we can compute the relative position of UGV with respect to the “odom” frame

and thus the position in the global working environment can be inferred. This

process is also known as dead reckoning in which the current position of UGV is

determined by using the previous position [52]. We illustrate the computation

by Figure 3.7.
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Figure 3.7: The odometry geometry.

Figure 3.7 shows the movement of the robot over a small time period from

position (x, y) to position (x′, y′). The moving distance for the left and right

wheels during the time period are respectively denoted as dleft and dright. The

rotation angle of the robot during the period is denoted as ϕ. And θ and θ′

denote the heading, i.e., the yaw angle of robot in position (x, y) and (x′, y′),

respectively. The distance between two wheels of robot is denoted as dwheel.

As dleft and dright can be obtained with using the velocity of the corresponding

wheel computed with Equation 3.1, the length of the moving trajectory for the

center of two wheels (approximately the center of the robot) denoted as dcenter

can be computed as

dcenter = 1
2(dleft + dright). (3.10)

And with basic geometry, we can obtain

ϕ = dright − dleft

dwheel

. (3.11)
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Additionally, in our case the sampling period is set to be 40ms which is a

considerably small value, we can approximately have the relationship between

the current position of the robot and the previous position as

θ′ = θ + ϕ

x′ = x+ dcenter cos(θ)

y′ = y + dcenter sin(θ).

(3.12)

More detailed derivation for the odometry can be referred in [53].

To match the form of publishing rotation information in the transform, the yaw

angle needs to be transformed into quaternion. This is realized using the built-

in function createQuaternionMsgFromYaw in TF package. And by Equation

3.12, the position of UGV can be continually updated and thus the transform

from the “odom” frame to the “base link” frame can be published in ROS.

• Kinect setup

To match the type of subscribed topic for the data from visual sensor system,

we need to transfer the image-type data obtained from Kinect camera to the

laser-scan-type data to be used for gmapping and navigation stack nodes. Here

we make use of the depthimage to laserscan package. Figure 3.8 shows how the

depth data is converted to the laser scan data.

The image on the left shows the original image in color taken by the Kinect

camera. The image on the upper right corner is the depth image in grey scale

processed by the depthimage to laserscan package. We can see that there is a

straight line in the middle of the image. The color of the segment on this line

implies the distance of the corresponding position to the camera. Specifically,

red is close to camera and purple is far from camera. Additionally, the image
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on the lower right corner shows the image in the type of laser scan which is

converted from the image on the upper right corner.

Figure 3.8: The RGB, depth, and laser scan images obtained by Kinect camera.

3.3.2 Experimental results

Similarly to our simulation, we first create the map of the working environment of

our UGV. A series of four target waypoints is also set in the working environment

as the navigation goal for UGV. The four waypoints along with the environment in

which the UGV navigates are illustrated in Figure 3.9.

To create the map, we first start the communications between the UGV and the

Kinect camera, MCU board and also start to publish necessary transforms. And then

gmapping node is ran with the same configuration as simulation shown in Table 2.16

and the teleoperation node is launched similarly to simulation.

After controlling the UGV to move in its working environment, the map is obtained

as shown in Figure 3.10.
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(a) The first and second target waypoints for navigation.

(b) The third and fourth target waypoints for navigation.

Figure 3.9: Four target waypoints in the working environment.
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Figure 3.10: The obtained map of working environment for UGV.

It can be observed that in the created map, the black line segments outline the

corresponding objects and walls in practice. Thus the map is applicable to the au-

tonomous navigation. However, there exist overlapping lines in areas near the borders

of the map. This mainly results from the quality of images taken by the Kinect cam-

era and further degradation of images when converted into the type of laser scan.

Additionally, it is difficult for the Kinect camera to observe the border in the bottom.

As a result, there exists extrusion of free space in the bottom of the map.
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3.4 Implementation of autonomous navigation for

the UGV

3.4.1 Experimental setup

As aforementioned, a UGV with autonomous navigation ability can achieve the given

goal without causing collisions with objects which include existing ones in its working

environment, and unexpected ones during the navigation. Therefore, to test the

autonomous navigation along with the collision avoidance ability, two obstacles are

put in the working environment as shown in Figure 3.11.

Figure 3.11: Two obstacles in the working environment.

Then we need to configure the move base node which includes three parts: The

global and local costmap, and the local planner by setting the values of parameters

introduced in Tables 2.17, 2.18, 2.19, and 2.20. The configuration of these parameters

are listed in Tables 3.4, 3.5, 3.6, and 3.7. In addition, the amcl node is configured as

shown in Table 3.8.
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Table 3.4: Adopted parameter values in common configuration for both costmaps.

Parameter Description Value

obstacle range Maximum range for robot to detect an obstacle (m) 2.5

raytrace range Maximum range for robot to clear out free space (m) 3.0

robot radius Radius of robot if setting the robot center as origin (m) 0.1778

inflation radius Minimum safety distance between robot and obstacles (m) 0.3

Table 3.5: Adopted parameter values in global configuration for global costmap.

Parameter Description Value

global frame Coordinate frame the costmap runs in “map”

robot base frame Coordinate frame the costmap refers for the robot base “base link”

update frequency Update frequency of the costmap (Hz) 5.0

static map
If the initialization of the costmap is based

on the map served by the map server
true

Table 3.6: Adopted parameter values in local configuration for local costmap.

Parameter Description Value

global frame Coordinate frame the costmap runs in “odom”

update frequency Update frequency of the costmap (Hz) 5.0

publish frequency Frequency of the costmap publishing visualization information (Hz) 2.0

static map
If initialization of costmap is based on

the map served by the map server
false

rolling window If robot needs costmap to remain centered around robot true

width
The size of the costmap (m)

3.0

height 3.0

resolution Resolution of the costmap (m/cell) 0.05
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Table 3.7: Adopted parameter values in base local planner configuration.

Parameter Description Value

controller frequency Frequency of sending control signal to the base controller (Hz) 7

acc lim x The x acceleration limit of the robot (m/s2) 0.1

acc lim y The y acceleration limit of the robot (m/s2) 0.0

acc lim theta Rotational acceleration limit of the robot (rad/s2) 0.1

max vel x Maximum forward velocity allowed for the base (m/s) 0.2

min vel x Minimum forward velocity allowed for the base (m/s) 0.02

max vel theta Maximum rotational velocity allowed for the base (rad/s) 0.2

min in place vel theta
Minimum rotational velocity allowed for the

base when performing in-place rotations (rad/s)
0.3

escape vel Speed used for driving during escapes (m/s) -0.15

holonomic robot If the robot is holonomic false
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Table 3.8: Parameter values in amcl configuration.

Parameter Description Value

use map topic
When set to be true, amcl subscribes to

map topic instead of receiving map from server
false

odom model type Type of model for odometry system “diff”

odom alpha3
Expected noise in the estimate of

odometry’s translation based on the

translational component of the robot motion

0.8

gui publish rate
Maximum rate of publishing information

on visualization (Hz), -1.0 represents disablement
10.0

laser max range Maximum range for laser scans (m) 8.0

min particles Number of minimum particles allowed 500

max particles Number of maximum particles allowed 5000

kld err Maximum error between true and estimated distribution 0.05

laser z hit

Mixture parameter for z hit, z short,

z max, and z rand part of model

0.5

laser z short 0.05

laser z max 0.05

laser z rand 0.5

odom frame id Coordinate frame for odometry system “odom”

update min d Translational distance required for filter to perform an update (m) 0.2

update min a Rotational angle required for filter to perform an update (rad) 0.5

resample interval Number of updates for filter before re-sampling 1

3.4.2 Experimental results

After we launch the communication with UGV, start the move base and amcl nodes,

and send the navigation goal to UGV, the autonomous navigation is performed. Fig-

ures 3.12, 3.13, and 3.14 show that the UGV reaches positions 1, 2 and 3, respectively.
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Figure 3.12: The UGV reaches the first
target position.

Figure 3.13: The UGV reaches the sec-
ond target position.

Figure 3.14: The UGV reaches the third
target position.

Figures 3.15, 3.16 and 3.17 show the process of UGV moving from position 3 to

position 4 while avoiding the collisions with the two obstacles. And from Figure 3.18

we can see that UGV successfully reaches the fourth target waypoint position 4.

In conclusion, the autonomous navigation using our two-wheeled UGV without

collisions with objects is successfully implemented.

Video result of the experiment can be referred to the link given in the Appendix.
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Figure 3.15: The UGV starts to move
from the third position.

Figure 3.16: The UGV stops to plan the
local path.

Figure 3.17: The UGV moves to avoid
the obstacles.

Figure 3.18: The UGV reaches the fourth target position.
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3.5 Conclusion

In this chapter, we present the experimental studies on the autonomous navigation for

a two-wheeled UGV. The hardware devices on the UGV are first introduced. For the

software part, differently from the simulation, the classical PID-based speed control

for the DC motors loaded with wheels is applied. In addition, transforms configured

to publish odometry information for our UGV are introduced. By following similar

setups to the simulation, the SLAM and autonomous navigation using our UGV are

both successfully implemented.
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Chapter 4

Conclusions and Future Work

4.1 Conclusions

This thesis presents the realization of map-based autonomous navigation for a two-

wheeled UGV from both the simulation and experimental perspectives. The imple-

mentation is based on the framework of navigation stack under the ROS environment.

In Chapter 2, the adopted framework of navigation stack is first introduced by

detailing the major components of navigation stack. Then the process of building a

URDF-based model of the two-wheeled UGV is described in steps. The simulation is

conducted under rviz and gazebo environments. The simulation results show that the

autonomous navigation for the UGV with the obstacle avoidance ability is performed.

Therefore, the effectiveness of the adopted framework of navigation stack can be

validated.

In Chapter 3, the experimental studies on achieving autonomous navigation

for our two-wheeled UGV are described. Firstly the hardware peripherals used in

our UGVs are introduced. Then the experimental results on the implementation of

SLAM and autonomous navigation are presented. The implementation of SLAM for
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our UGV is realized in advance to the navigation to obtain the map of the environ-

ment where the UGV operates. This results from that for a map-based autonomous

navigation, the map is needed by a map server when the navigation starts. Finally,

the experimental results demonstrate the implementation of autonomous navigation

for a practical two-wheeled UGV.

4.2 Future work

In this thesis, to achieve autonomous navigation for our two-wheeled UGV, we adopt

the open source framework of navigation stack provided by the ROS community.

Though it has been proved to be a feasible approach, there still exist shortages in

following the framework of navigation stack. Therefore, further research work can

focus on improving the current framework or designing new ones. Additionally, the

applications with utilizing autonomous navigation can be further completed. These

lead to two possible research directions as listed below.

• The first issue is the efficiency of the navigation stack framework. Specifically,

the path planning algorithm adopted in the move base package is inefficient

to some extent. The generation of a feasible local path for the UGV is often

time-consuming. This results from the low efficiency of solving the optimization

problem involved in the path planning algorithm. Further work will focus on

adopting new optimization algorithms with higher efficiency.

• Our current work can be further developed to be incorporated into applica-

tions such as the intelligent car parking management system. Such applications

require the use of hardware devices with higher practicability. For instance,

battery with larger capacity should be used to be sufficient for long operating

time of the UGV. And other smart devices as the master computer instead of
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the laptop should be used to enhance the portability of the UGV. Also the

successful rate of performing autonomous navigation should be improved. Cur-

rently, the situation which our UGV collides with obstacles still occurs due

to the limitations of Kinect camera and the compatibility problem with the

depthimage to laserscan package. To improve the operation stability, visual

sensors with higher precision should replace the current camera in use.
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Appendix A

Supplementary Materials

Here are the links to two videos which show the simulation of autonomous naviga-

tion for our two-wheeled UGV: https://www.youtube.com/watch?v=YGI9IJ3Z5xE,

https://www.youtube.com/watch?v=JPM6fnoJiWk. The first video shows the nav-

igation without any unexpected obstacles and the second shows the navigation with

unexpected obstacles.

Here is the link to a video which shows the experimental results: https://ww

w.youtube.com/watch?v=7OyUPlrRGLc&t=4s.

https://www.youtube.com/watch?v=YGI9IJ3Z5xE
https://www.youtube.com/watch?v=JPM6fnoJiWk
https://www.youtube.com/watch?v=7OyUPlrRGLc&t=4s
https://www.youtube.com/watch?v=7OyUPlrRGLc&t=4s
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Table A.1: Measured linear velocity of wheels in backward direction for corresponding
duty cycle of PWM signal.

Value Written to analogWrite Function Linear Velocity of Left Wheel (m/s) Linear Velocity of Right Wheel (m/s)

dc1 = 10 vl1 = -0.01514696516096592 vr1 = -0.01514696516096592

dc2 = 20 vl2 = -0.03912965953350067 vr2 = -0.037867408245801926

dc3 = 30 vl3 = -0.06311235576868057 vr3 = -0.06185010448098183

dc4 = 40 vl4 = -0.08835729211568832 vr4 = -0.08457054942846298

dc5 = 50 vl5 = -0.11107774078845978 vr5 = -0.10855324566364288

dc6 = 60 vl6 = -0.13127368688583374 vr6 = -0.13127368688583374

dc7 = 70 vl7 = -0.16156762838363647 vr7 = -0.15525639057159424

dc8 = 80 vl8 = -0.18555031716823578 vr8 = -0.1754523366689682

dc9 = 90 vl9 = -0.21079525351524353 vr9 = -0.2019595354795456

dc10 = 100 vl10 = -0.23477794229984283 vr10 = -0.2259422093629837

dc11 = 110 vl11 = -0.2638096213340759 vr11 = -0.24866266548633575

dc12 = 120 vl12 = -0.286530077457428 vr12 = -0.2638096213340759

dc13 = 130 vl13 = -0.3117750287055969 vr13 = -0.29662805795669556

dc14 = 140 vl14 = -0.3370199501514435 vr14 = -0.31808626651763916

dc15 = 150 vl15 = -0.3622649013996124 vr15 = -0.3408066928386688

dc16 = 160 vl16 = -0.3862476050853729 vr16 = -0.3647893965244293

dc17 = 170 vl17 = -0.41275477409362793 vr17 = -0.38750985264778137

dc18 = 180 vl18 = -0.4367374777793884 vr18 = -0.41275477409362793

dc19 = 190 vl19 = -0.46072015166282654 vr19 = -0.43168848752975464

dc20 = 200 vl20 = -0.4859651029109955 vr20 = -0.45314669609069824

dc21 = 210 vl21 = -0.5099478363990784 vr21 = -0.4859651029109955

dc22 = 220 vl22 = -0.5276192426681519 vr22 = -0.5074233412742615

dc23 = 230 vl23 = -0.5528641939163208 vr23 = -0.5187835693359375

dc24 = 240 vl24 = -0.5680111646652222 vr24 = -0.5314059853553772
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Figure A.1: The relationship between the duty cycle of PWM signal and the operation
speed of wheels in backward direction.
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