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Abstract

A particle accelerator simulation which straddles the gap between multi-
particle and moment codes is derived. The hybrid approach represents the
beam using macro-particles which contain discrete longitudinal coordinates
and transverse second moments. The discretization scheme for the macro-
particles is derived using variational principles, as a natural extension of well
known variational approaches. This variational discretization allows for exact
transverse emittance conservation. The electrostatic self-potential is discrete
in the longitudinal direction and solved semi-analytically in the transverse
direction using integrated Green’s functions. The algorithm is implemented
and tested against both a moment and multi-particle code.
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Chapter 1

Introduction

1.1 Particle Accelerator Simulation

Particle accelerators are machines that use electromagnetic fields to acceler-
ate and contain charged particles for a variety of scientific, medical and in-
dustrial applications. To build new machines and improve the existing ones,
we construct mathematical models. These models are used in the design pro-
cess to predict performance and to guide design decisions. For machines that
are already operating, models are used to identify and diagnose problems,
and to gain a more nuanced understanding of the intricacies of the machine
with the goals to improve their reliability and extend their capabilities.

The laws that govern the dynamics of charged particles in electromagnetic
fields have been well known since Lorentz published in 1895 [2]. Even with
the added refinement of Special Relativity by Einstein, the study of motion
of individual charged particles remains managable. The difficulty arises from
the electromagnetic field that is produced by the particles themselves. This
so-called ‘self field’ (as opposed to external field), depends on the position and
velocity of each of the particles, and therefore requires a detailed model of
the beam to reproduce. Directly modelling every individual charged particle
in a realistic machine would require tracking the an immense number of
individual particles including the exact electromagnetic interaction between
each of them. This approach is impractical.

The complexity of the problem can be reduced by viewing the distri-
bution of particles as a continuum of charge. By taking this continuous
approximation, the system can be described by partial differential equations.
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The system of interest in accelerator and plasma physics is the the Maxwell
Vlasov system, a set of non-linear partial differential equations. This system
was first presented by Vlasov in Ref. [3]. The ensemble of particles is rep-
resented by a continuous particle density function in six-dimensional phase
space. This distribution of charge generates electric and magnetic fields that
influences itself. There are many methods both analytic and numerical to
solve such a system. I will restrict the scope to specific numerical schemes.

Detailed Discretizations

One numerical approach to discretize the continuum of charge is the method
of ‘macro-particles’. This method tracks the flow of continuous media by
tracking a set of points in phase space as they evolve in time. This is often
referred to as the Lagrangian specification of fluid flow. This discretization
scheme is used in many areas including fluid dynamics, plasma dynamics
and astrophysics. Many of these applications are discussed in the seminal
textbook by Hockney and Eastwood [4] which presents a unified picture of
the method. In accelerator and plasma physics, the macro-particles represent
some number of real particles and hence have the same mass to charge ratio
as them as well.

One of the most widely used tools for studying space charge effects in par-
ticle accelerators is the particle-in-cell (PIC) method, where macro-particles
are tracked through discretized electric and magnetic fields. The PIC scheme
has among the best time-stepping performance, conserves particle momen-
tum, and is second-order accurate in space and time. [4]. With the PIC
method, using modern hardware, accelerator physicists have recently been
able to simulate systems with a realistic number of particles. However the
computing requirements are tremendous. See the discussion of the use of
high performance parallel computing by Ryne Ref. [5].

Reduced Discretizations

An alternative approach to solving such a system is to track a set of macro-
scopic variables that broadly describe the evolution of the system, while ne-
glecting the minutiae. Kapchinskij and Vladimirskij derived a self-consistent
system of equations (KV equations) that described the transverse size of a
continuous beam in a transport line [6]. Their system assumes the beam is
a particular idealized distribution in phase-space, which produces a linear
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space-charge force. Sacherer generalized the KV equations to beams with
ellipsoidal symmetry showing that for such a beam, the linear force depends
almost entirely on the second moments, in 1, 2 and 3 dimensions [7]. The
size of the ellipsoidal beam is described by a collection of statistical second
moments, the dynamics for which is derived by averaging over the collection
of discrete particle equations of motion.

There are computer codes that track the size of the ellipsoidal beam in
phase space such as TRANSPORT [8] and TRANSOPTR [9, 10, 11]. These codes
are still in use today, as they offer unrivalled performance. However, these
methods are limited in that they cannot model the degradation of beam
quality from the non-linear components of external and space-charge forces.
To extend the method of moments, work was done to derive systems of
statistical moments of arbitrary order by Channell [12]. While the second
order moment method remains in use, higher-order moment methods have
not. The preferred models of detailed dynamics are usually multi-particle.

Errors in Mathematical Modelling

The dynamics in particle accelerators is precisely governed by well-known
physical laws. Even so, in the early years of accelerators, the limited com-
puting power led accelerator physicists to rely heavily on reduced models and
approximations, often having to leave large margins of error in the design
process. Hence the popularity of the envelope codes like TRANSPORT. Even
with the use of multi-particle codes, many simplifying assumptions had to be
made to make implementation and computation time tractable. In more re-
cent years, with the accessibly of high performance computing facilities, the
modelling of entire machines with high resolution is possible. It has enabled
physicists to develop designs with significantly more precision. This leads to
the temptation to include every detail of the accelerator in the model.

However, the short article written by Saltelli [1], cautions that care must
be taken when building and testing mathematical models. From this article,
Fig 1.1 outlines the fundamental trade off between model error and com-
plexity that has to be considered when designing mathematical models. By
including many details not essential to the area of interest, we may introduce
sources of uncertainty into the simulation, which can increase the model error
overall.

The software used in accelerator physics is high quality: having been well
tested, and the underlying physics is well understood, however, the mod-
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Figure 1.1: Saltelli [1], the total error in a model as function of the complexity.
The total error is a combination of the errors made by the simplicity of the
model as well as the errors made due to uncertainty present in the inputs to
the model.

elling of the machines done in the input to the software may diverge from
reality. This divergence arises from many different sources of input error
which may be due to manufacturing errors, incorrect alignment or faulty
control software, among many others. To build a detailed model which ac-
curately represents an as-built machine, all of these sources of error must be
taken into account.

This consideration of mathematical modelling is a motivating factor be-
hind the work of this thesis. That is, to build a model with reduced complex-
ity, by removing some unnecessary details and leaving fewer inputs which are
more robust to statistical and systematic error.

Variational Discretizations

Direct discretization of the system of equations of motion is known to lead
to difficulties. The equations of motion have underlying mathematical struc-
ture such as conservation laws for energy, momentum and symplecticity.
This underlying structure is often important to the validity of the results
and often ends up being neglected by directly discretizing the equations of
motion. The underlying mathematical structure is expressed by the varia-
tional formulation of the system. In mechanics, this is Hamilton’s principle
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of stationary action. The first variational formulation of the Vlasov-Maxwell
system was done by Low [13] as a classical field theory Lagrangian which
led eventually to work done by Morrison and collaborators [14, 15, 16] to
discover the Hamiltonian formulation of the Maxwell-Vlasov system using
a non-canonical Poisson bracket. This approach, based on the stationary
action principle, enabled plasma physicists to produce a class of energy con-
serving macro-particle algorithms. These are also presented in the textbook
by Hockney and Eastwood [4]. These early variational algorithms had limi-
tations such as requiring an implicit time step at a specific integration order
and their performance scaled poorly with discretization parameters, which
overall resulted in a large computational cost that prevented adoption in the
accelerator physics community.

The work of Evstatiev and Shadwick in Ref.[17, 18] marks a turning point
for variational macro-particle algorithms. Their methods for deriving new
algorithms loosens the restrictions previously applied to these algorithms.
Of particular importance to accelerator physics, the variational algorithms
can be integrated with an arbitrary order and accuracy, while conserving
many of the desirable properties of the underlying mechanics.

The variational formalism also had consequences for moment methods.
The work done by Shadwick and collaborators [19, 20] presents an elegant
moment expansion and truncation using the non-canonical Hamiltonian for-
mulation of the Vlasov system. In the conclusion to the 1999 conference
paper [19] they suggest:

It is also possible to construct “semi-discrete” models; for ex-
ample, by averaging only over the transverse phase space, one
obtains a system where the transverse dynamics are determined
by moments while a full kinetic description is retained longitudi-
nally.

1.2 Outline of Thesis

The purpose of the thesis is to derive and test a “semi-discrete” space charge
algorithm. This algorithm consists of a macro-particle discretization in the
longitudinal direction and moments transversely. This chapter covers the
underlying mathematical model which is the Hamiltonian formulation of the
Vlasov Poisson system, and its application in accelerator physics.
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Chapter 2 is a review that presents the variational derivation of three sep-
arate one-dimensional algorithms. The first two schemes are macro-particle
methods: the particle-particle method as well as the particle-in-cell method.
The third scheme is the moment method. The derivations in Chapter 2 serve
as pedagogical examples, as well as the basis for the next chapter. Chapter 3
presents the derivation for the three-dimensional hybrid macro-particle mo-
ment method. The details of the self-field discretization and calculation can
be found in Appendix C. Chapter 4 presents the tests of the implementation
of the hybrid scheme including the comparison to another code. The analytic
results used in testing are derived in Appendix D.

1.3 The Vlasov Poisson System

The Vlasov Poisson system of partial differential equations describes the time
evolution of a distribution of charged particles in the continuum limit. The
continuum limit, in this case, considers the charge to be smoothly distributed,
this removes the singularities in the potential from individual charged parti-
cles. It has a few underlying assumptions, the first being that the particles are
non-relativistic. The second assumption is that the collisions between par-
ticles is negligible. Consider a distribution of identical particles with mass,
denoted by m, and charge, denoted by q. This distribution of particles can
be described by the particle distribution function f(x,p, t). This is a number
density in phase space and has units of number of particles per phase-space
volume. Integrating over a phase-space volume V , we find the total number
of particles in the volume.

N(t) =

∫
V

d3x d3p f(x,p, t) . (1.1)

Let φ(x, t) denote the electrostatic potential that satisfies the Poisson equa-
tion:

∆xφ(x, t) = − q
ε0

∫
d3p f(x,p, t) = − q

ε0
n(x, t) , (1.2)

where n(x, t) is the spatial number density. Then, the force on a particle
with charge, q is:

F = −q∇xφ(x, t) . (1.3)
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So the Vlasov Poisson system in its entirety is:

∂f

∂t
+

p

m
· ∇xf − q∇xφ · ∇pf = 0,

∆xφ+
q

ε0
n = 0 .

(1.4)

Note, that the above equations are for a single particle species, however, it
may easily be extended to include an arbitrary number of different particle
distributions.

The system of equations (1.4) is the basis for many of the high-performance
particle-in-cell codes written today. To continue in the direction of Evstatiev
and Shadwick [17, 18], we need to study the variational formulation of this
system.

1.3.1 Hamiltonian Formulation

The Hamiltonian formulation of the Vlasov Poisson system was first derived
by Morrison in Ref. [15]. This section presents a broad overview of this
system. Although, it is the underlying mathematical model of this thesis,
the details of the classical field theory formulation are not crucial as the focus
of this work is on discretization. The intrepid reader may refer to Appendix A
which derives the equations of motion yielding the Vlasov Poisson equations.

The phase space is comprised of the position vector x, and the canonical
momentum vector p. This system is constructed using the Eulerian descrip-
tion of a fluid. In this case, the variables x and p are considered independent
variables like time. An excellent summary on the Hamiltonian fomulation of
an Eulerian fluid is given by Salmon in Ref. [21].

The Hamiltonian is the energy of the system, which for the Vlasov Poisson
system may be written as:

H =

∫
d3x d3p f(x,p, t)

(
p2

2m
+
q

2
φ[f ](x, t)

)
. (1.5)

the sum of the kinetic and potential energy.1

1Note that the factor of 1
2 on the electrostatic potential relates to the sum of two

terms in the Lagrangian, the interaction energy of the charge distribution with the electric
potential and the energy in the field itself.
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To use this Hamiltonian to find equations of motion, the non-canonical
Poisson bracket is defined as:

{F,G} =

∫
d3x d3p f(x,p, t)

[
δF

δf
,
δG

δf

]
, (1.6)

where F and G are functionals of f , and may be functions of time. The
terms δF

δf
and δG

δf
are functional derivatives of F and G with respect to the

particle density function, for more information see the Appedix A.1. Also,
the expression, [ · , · ] is the familiar canonical Poisson bracket with respect
to x and p given by:

[a, b] = ∇xa · ∇pb−∇pa · ∇xb , (1.7)

where a and b are general functions of the canonical variables (x,p). Then,
Morrison in section 1.2 of Ref. [15] defines a system to be Hamiltonian if the
time derivative of a functional is given by the Poisson bracket:

δF

δt
= {F,H} . (1.8)

This Poisson bracket obeys the usual properties of anti-symmetry and bi-
linearity it also satisfies Leibniz’s Rule and the Jacobi Identity. For more
specifics, see the paper in which it was first derived by Morrison in section 6
of Ref. [15]. Note that while the overall bracket is called non-canonical, the
phase-space coordinates (x,p) are canonically conjugate.

Self Field

An important subtlety of this formalism is that the electrostatic potential is
defined as a functional, as well as a function:

φ[f ](x′, t) = − q
ε0

∫
d3x d3p f(x,p, t)G(x′,x) , (1.9)

where the function G(x′,x′′) is called the Green’s function for the Poisson
equation. The Green’s function follows from Poisson’s equation:

∆xφ[f ](x, t) = − q
ε0

∫
d3p f(x,p, t) , (1.10)
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where we may write the solution as:

φ[f ](x, t) = − q
ε0

∫
d3x′ d3p′ f(x′,p′, t)G(x,x′) . (1.11)

Since G(x,x′) is defined as the Green’s function that satisfies

∆xG(x,x′) = δ(3)(x− x′) (1.12)

inside the domain of interest, and it must also satisfy any boundary condi-
tions. See Arfken and Weber, Ref. [22], for existence and uniqueness proofs
of the Poisson equation.

Using the explicit form of the potential, (1.11), the Hamiltonian may be
written more explicitly as two terms:

Hp =

∫
d3x d3p f(x,p, t)

p2

2m
, (1.13)

Hφ = − q2

2ε0

∫
d3x′ d3x′′ d3p′ d3p′′ f(x′,p′)f(x′′,p′′)G(x′,x′′) , (1.14)

such that the total Hamiltonian: H = Hp + Hφ, the sum of kinetic and po-
tential energy terms respectively. This is the expression for the Hamiltonian
that will be used most commonly in this thesis.

1.3.2 From Plasmas to Electrostatic Optics

The motivating problem for this work is to model the bunching process in the
injection line to the TRIUMF 520 MeV cyclotron. This beamline transports
and bunches H− ions at a relatively low energy of 300 keV, well below the
relativistic regime. However, it can transport relatively high current; up to
around 500 µA, which makes it heavily influenced by the effects of space-
charge.

To apply the Poisson Vlasov model to such a problem in accelerator
physics, we will need to determine where it is valid. In particle accelerators,
the beam moves coherently in one direction, the ‘longitudinal’ direction, in
which most of the kinetic energy is carried. The plane perpendicular to the
longitudinal direction is called the ‘transverse’ plane. The beam is assumed
to travel through a system of vacuum chambers so that it does not degrade
in quality due to interactions with the atmosphere. Colloquially, the vacuum
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chamber is often called the ‘beam-pipe’, as it is often a metallic pipe.
The main limitation of the model is that it is non-relativistic. It will

only be valid for relatively heavy particles at lower energy. The extension
to a relativistic model would have to be done similarly to Shadwick and
Wurtele [19] but that extension is outside the scope of this thesis. The non-
relativistic limitation is not a concern for our application since the average
velocity of the beam in the injection line is around 2.5% the speed of light.

The feature often distinguishing accelerator modelling from plasma physics
is the tracking through the electromagnetic field that is produced by the ma-
chine to contain and control the beam. Since the injection line consists of
only electrstatic optical elements, we only need to model the electric potential
of these elements. Let the external potential be ϕ(x, t). The energy of the
particle distribution in this potential, hence the Hamiltonian is the integral:

Hexternal =

∫
d3x d3p f(x,p, t)qϕ(x, t) . (1.15)

This is a general model able to represent arbitrary electrostatic and radio-
frequency devices neglecting magnetic fields. It may extended to include
some magnetic elements in certain regimes.2

2For systems with a constant longitudinal velocity, v0, it is possible to represent some
magnetic elements using the longitudinal component of the magnetic vector potential. In
this case, the external potential has the form:

ϕ(x, t) = ϕexternal(x, t)− v0Az(x, t) . (1.16)

This approximation works well for common magnetic optical elements like dipoles,
quadrupoles, and octopoles.
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Chapter 2

A Tutorial on Macro-particle
and Moment Algorithms

To be able to implement an algorithm on a computer, the system of partial
differential equations must be reduced to a system with finite number of dis-
crete degrees of freedom. This chapter is a pedagogical exercise to show that
this formalism allows for the unified description of very different techniques
of discretization.

The macro-particle discretization scheme splits the particle density func-
tion into many sub-distributions with a fixed shape and charge. Each of these
distributions represents many real particles and each has the same charge-to-
mass ratio as the real particles. The set of these macro-particles is equivalent
to a statistical sampling of the density function. The macro-particles obey
equations of motion similar to those of real particles, and can be integrated as
such. The fixed shape of each macro-particle distributes its charge smoothly
in space to avoid creating artificial collisions between the macro-particles.
This approach is used to derive the particle-particle method in Section 2.2.1
as well as the particle-in-cell method in Section 2.2.2.

The moment discretization scheme represents the particle density distri-
bution by a collection of its statistical moments. We can expand and truncate
the Hamiltonian, so that it is an explicit expression of the moments. Then,
the Poisson bracket is used to compute the equation of motion for each of
these moments. The result is a linear system of first order ordinary differ-
ential equations. This approach is used to derive the 1D KV equation in
Section 2.3.
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2.1 One Dimension Simplification

For simplicity, throughout this chapter, I work with the Vlasov Poisson
system in one transverse dimension: (x, p). The particle density function,
f(x, p, t), is a number density in phase space. The Hamiltonian is then:

H =

∫
dx dp f(x, p, t)

(
p2

2m
+ qϕ(x, t)

)
− q2

2ε0

∫
dx′ dx′′ dp′ dp′′ f(x′, p′)f(x′′, p′′)G(x′, x′′) , (2.1)

and the Poisson bracket is

{F,G} =

∫
dx dp f(x, p, t)

[
δF

δf
,
δG

δf

]
, (2.2)

where the one-dimensional Poisson bracket defined with respect to phase-
space functions, a(x, p) and b(x, p) is:

[a, b] =
∂a

∂x

∂b

∂p
− ∂a

∂p

∂b

∂x
. (2.3)

2.2 Macro-particle Discretization

The work by Evstatiev and Shadwick, Ref. [17], was the first to present
a Hamiltonian formulation of a variational macro-particle algorithm. This
section restates the presentation by Evstatiev and Shadwick, with the goal
of providing explicit derivations.

First consider the particle density function f(x, p, t). The first step is to
divide this distribution function into different groupings:

f(x, p, t) =

Np∑
i=1

fi(x, p, t) , (2.4)

where each fi interacts only though the self-field, i is the macro-particle
index and Np is the total number of macro-particles. Furthermore, assume
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that each fi has an explicit form:

fi(x, p, t) = wiR(x− xi(t))δ
(
p− pi(t)

wi

)
, (2.5)

where the coordinate pair (xi, pi) is position and momentum of the macro-
particle in phase space. Here, I have assumed that this grouping of particles
contains a constant number, wi, of real particles. The macro-particle is
distributed over a fixed spatial distribution R(x) with an exact momentum.
1

The density function is explicitly:

f(x, p, t) =

Np∑
i=1

wiR(x− xi(t))δ
(
p− pi(t)

wi

)
. (2.6)

The spatial distribution, R(x), is a function that satisfies the norming
condition [17]: ∫ ∞

−∞
dxR(x) = 1 . (2.7)

This results in the total charge being a conserved quantity.
The shape of the spatial distribution of the macro-particle is a choice

left to the creator of the algorithm. The smoothness of the distribution
function will influence the smoothness of the force between particles. In
particular, by choosing some distribution other than a Dirac δ-function, we
may avoid hard-edge collisions that can introduce an artificial level of noise
into the computation. Even though smoother distribution functions are more
desirable, they have a the greater implementation and computation time
cost, so a delicate balance must be achieved. Usually, first and second order
polynomials are chosen as they provide sufficient smoothness while being
cheap to evaluate. The macro-particle shape distribution is usually chosen
to be an even function. For further discussion on macro-particle shape see
Evstatiev and Shadwick, Ref. [17].

1Note that the coordinate xi is the centre of mass position of the macro-particle and the
momentum, pi, is the total momentum of the macro-particle. This choice differs from that
of Evstatiev and Shadwick so that these are canoniclly conjugate variables, as shown in
Appendix B. The term pi/wi in (2.5) is the average momentum of the constituent particles
in the macro-particle.
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2.2.1 A Particle-Particle Algorithm

For the purpose of simplicity we will assume that the particle shape function
is given by the Dirac δ-function. This choice is the most natural for the
purpose of explanation, however in practice it leads to simulations plagued
by numerical noise and instability, see the discussion on macro-particle shape
by Evstatiev and Shadwick, Ref. [17]. The particle density function is then:

f(x, p, t) =

Np∑
i=1

wiδ(x− xi(t))δ
(
p− pi(t)

wi

)
. (2.8)

Recall the one dimensional Hamiltonian is:

H =

∫
dx dp f(x, p, t)

(
p2

2m
+ qϕ(x, t)

)
− q2

2ε0

∫
dx′ dx′′ dp′ dp′′ f(x′, p′)f(x′′, p′′)G(x′, x′′) , (2.9)

substituting (2.8) directly, taking care to use unique indices for the summa-
tions and straightforward integration of the δ-functions gives:

H̃ =
∑
i

(
pi

2

2mwi
+ qwiϕ(xi, t)

)
− q2

2ε0

∑
j,k

wjwkG(xj, xk) , (2.10)

this is almost identical to a single particle Hamiltonian, but for the weight
factors of wi, wj and wk. The Green’s function may be interpreted as the po-
tential energy between two infinitesimal charges, which will give the familiar
Coulomb force between the particles. This Hamiltonian is equivalent to the
one constructed by Qiang in Ref. [23].

To see how the equations of motion are derived variationally from this
discretization scheme, refer to Appendix B. Section B.2 in particular, shows
that the non-canonical Poisson bracket reduces to Hamilton’s equations for
the (xi, pi) pairs. Hamilton’s equations are:

dx`
dt

=
∂H̃

∂p`
,

dp`
dt

= − ∂H̃

∂x`
.

Starting with the equation of motion for the position, the only dependence
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on p` is in the kinetic energy term:

dx`
dt

=
p`
mw`

. (2.11)

Similarly for the momentum,

dp`
dt

= −
(
qw`

∂ϕ(x`, t)

∂x`
− q2

2ε0

∑
j,k

[
w`wk

∂G(x`, xk)

∂x`
+ wjw`

∂G(xj, x`)

∂x`

])
.

(2.12)
Note that the self-potential term is split into two terms. However, the

Green’s function is symmetric so, swapping the arguments in the Green’s
function and relabelling the indices, k → j, gives:

dp`
dt

= −
(
qw`

∂ϕ(x`, t)

∂x`
− q2

ε0

∑
j

wjw`
∂G(xj, x`)

∂x`

)
. (2.13)

Further simplification gives:

dp`
dt

= −qw`
∂

∂x`

(
ϕ(x`, t)−

q

ε0

∑
j

wjG(xj, x`)

)
. (2.14)

So the overall system of equations for the particle-particle scheme is:

dx`
dt

=
p`
mw`

, (2.15)

dp`
dt

= −qw`
∂

∂x`

(
ϕ(x`, t)−

∑
j

q

ε0
wjG(xj, x`)

)
. (2.16)

This system of equations is the same as any system of non-relativistic parti-
cles in an external potential with interaction terms. The factors of w` show
that the macro-particle has mass mw` and charge qw`, the mass and charge
of the total number of real particles it represents.
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2.2.2 A Particle-In-Cell Algorithm

This method is similar to the previous method, however, it involves also dis-
cretizing the self-potential. This derivation diverges slightly from the work of
Evstatiev and Shadwick, Ref. [17], and takes inspiration from Qiang Ref. [24].
This approach involves finding the discrete form of the Green’s function by
solving the discrete Poisson equation, which will be derived separately from
variational principles.

Discrete Green’s Function

Since the potential formulation of the electric field is degenerate (there is no
explicit time dependence), the Hamiltonian formalism cannot produce the
equations of motion for the electrostatic potential. To overcome this, I will
use the Lagrangian formulation of the electrostatic potential to variationally
derive and solve the resulting discrete equations of motion following directly
the one dimensional Lagrangian of Evstatiev and Shadwick in Ref [17], but
with a general charge density function ρ(x, t). The Lagrangian is:

L = −
∫

dx ρ(x, t)φ(x, t) +
ε0
2

∫
dx (∇xφ(x, t))2 . (2.17)

First, let us approximate the self-potential by projecting it onto a set of
local basis functions on a uniform spatial grid with grid points labelled by
i = 1, 2, . . . , Ng, the grid spacing is h and the basis function is denoted ψi(x).
The potential is then:

φ(x, t) =

Ng∑
i=1

φi(t)ψi(x) , (2.18)

where φi(t) is the value of the potential at grid point i and ψi(x) is the finite
element function centred at that grid point. For details on the linear finite el-
ement basis functions refer to Appendix C. Similar to previous discretization
schemes, substitute this directly into the Lagrangian to find:

L = −
∑
i

φi

∫
dx ρ(x, t)ψi(x) +

ε0
2

∑
j,k

φjφk

∫
dx∇xψj(x)∇xψk(x) . (2.19)

16



Note that the remaining integral in the second term is a constant that only
depends on the shape of the basis functions so may be computed directly.
For now, this integral is defined to be:

Djk = −1

h

∫
dx∇xψj(x)∇xψk(x) , (2.20)

which may be written as a symmetric matrix. Therefore the discrete La-
grangian is:

L = −
∑
i

φi

∫
dx ρ(x, t)ψi(x)− hε0

2

∑
j,k

φjφkDjk . (2.21)

Since this does not depend on the time derivative of φi, the Euler-Lagrange
equation is simply:

∂L

∂φ`
= 0 , (2.22)

for all ` = 1, 2, . . . , Ng. Therefore, we have that:

−
∫

dx ρ(x, t)ψ`(x)− hε0
2

∑
j,k

(δj`φk + φjδk`)Djk = 0 (2.23)

−
∫

dx ρ(x, t)ψ`(x)− hε0
2

∑
k

φkD`k − h
ε0
2

∑
j

φjDj` = 0 , (2.24)

since D is symmetric, we can relabel k → j to find:∫
dx ρ(x, t)ψ`(x) + hε0

∑
j

φjDj` = 0 (2.25)

∑
j

φjDj` = − 1

hε0

∫
dx ρ(x, t)ψ`(x) . (2.26)

Which is the discrete Poisson equation. On the left hand side, D represents
a discrete second order differentiation and the right hand side is the charge
density projected onto the basis functions.

Now, this system may be solved. Since D can be written as a symmetric
matrix, assume that it has an inverse D−1. Written with indices this may be
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expressed as: ∑
j

DijD
−1
jk = δik , (2.27)

that is, matrix multiplying the matrix with its inverse gives the identity
matrix. So, contracting the discrete Poisson equation with the inverse gives:∑

`

∑
j

φjDj`D
−1
`k = −

∑
`

D−1`k
1

hε0

∫
dx ρ(x, t)ψ`(x) (2.28)

∑
j

φjδjk = −
∑
`

1

hε0
D−1`k

∫
dx ρ(x, t)ψ`(x) (2.29)

φk = − 1

hε0

∑
`

D−1`k

∫
dx ρ(x, t)ψ`(x) , (2.30)

the explicit solution for each basis function. Now, substituting this solution
into the self-potential to find the analytic solution for the potential:

φ(x, t) = − 1

hε0

∑
i,`

ψi(x)D−1`i

∫
dx′ ρ(x′, t)ψ`(x

′) , (2.31)

and written in a more suggestive form:

φ(x, t) = − 1

ε0

∫
dx′ ρ(x′, t)

(
1

h

∑
i,j

ψi(x)D−1ij ψj(x
′)

)
. (2.32)

Compare this to the equation for the potential with respect to the Green’s
function:

φ(x, t) = − 1

ε0

∫
dx′ρ(x′, t)G(x, x′) . (2.33)

Thus, the discrete form of the Green’s function is:

GD(x, x′) =
1

h

∑
i,j

D−1ij ψi(x)ψj(x
′) . (2.34)

Note that this function is also symmetric with respect to its arguments since
D−1 is a symmetric matrix. The continuous Green’s function may be inter-
preted as the energy stored between two infinitesimal points with unit-charge;
the infinitesimal points are labelled x and x′. The discrete Green’s function
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projects the points onto the basis of finite elements and the matrix D−1 de-
scribes the energy stored between each combination of basis functions, for a
unit charge.

For details on the basis functions, see Appendix C and for the proof of
the symmetry of D−1, see Section C.1.2.

Discrete Hamiltonian

Substituting the discrete Green’s function (2.34) into the discrete macro-
particle Hamiltonian (2.10) and after simplifying we have:

H̃ =
∑
i

wi

(
pi

2

2m
+ qϕ(xi, t)

)
+

q2

2ε0h

∑
j,k

∑
n,m

wjwkD
−1
nmψn(xj)ψm(xk) .

(2.35)
The derivation of the equations of motion follows the exact same steps as the
previous algorithm. Note that this derivation relies on the symmetry of the
discrete Green’s function. The equations of motion are:

dx`
dt

=
p`
mw`

, (2.36)

dp`
dt

= −qw`
∂

∂x`

(
ϕ(x`, t)−

∑
j,n,m

qwj
ε0h

D−1nmψn(x`)ψm(xj)

)
, (2.37)

where the equations are the same as the particle-particle method, with the
discrete Green’s function substituted for the analytic one.

2.2.3 Discussion

To compare the computational complexity of these methods, independent of
the choice of integration scheme, consider the numerical evaluation of the
derivatives. The particle-particle method has time complexity O(Np

2). This
is because for each macro-particle, there is a second sum over all of the other
macro-particles to find the internal forces. As for the particle-in-cell scheme,
even though it has a greater number of sums in the equations of motion,
the time complexity may be O(Np + Ng

2) if implemented optimally. The
optimal implementation first involves computing the contribution of each
macro-particle to each basis function in O(Np) time since each basis function
has finite length. Then, solve the linear system with Dij for the potential
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values which would take O(Ng
2) time. (This is opposed to the non-optimal

solution which involves matrix multiplying with the inverse D−1ij , which would

take O(Ng
3) time.) Lastly, applying the potential values to the equations of

each macro-particle takes O(Np) time. The potential grid stores information
in an intermediate data structure to reduce the time complexity, this is a
common feature of many algorithms in computer science. Typically, Np > Ng

so the particle-in-cell method is generally preferred.
The initial particle density distribution is a smooth function. The macro-

particles are initialized with phase space coordinates which are statistically
sampled from the initial particle density distribution. Integrating the system
in time, the set of macro-particles represent a sampling distribution of the
particle density function at the later time. From the set of macro-particles,
sample statistics may be calculated. The error of sample statistics scales
with N

−1/2
p , so a well bounded error requires many macro-particles.

The discrete equations for both methods are left as continuous functions
of time. They can then be integrated using any desired integration method,
including symplectic integration schemes.

2.3 Moment Discretization

The goal of this section is to study the reduction of the density function
using moments. In principle, the set of infinitely many statistical moments
contains adequate information for describing an arbitrary distribution. In
practice, we must work with a finite number of moments, so the system of
moments needs to be carefully truncated so that the system of equations of
motion is closed.

A difficulty that has often arisen in previous work on deriving moment
systems is that the only naturally closed system of moments are the first and
second order systems of moments [7, 12, 19]. When computing the equation
of motion for any moment of third order or higher, it will always depend on
some moment of higher order than itself [7]. Thus, when expanding such a
system from the equations of motion directly, there appears to be no natural
method of truncation.

However, this drawback was overcome by Shadwick and Wurtele in Ref. [19].
One can create a truncation of such a system by Taylor expansion of the
Hamiltonian to a chosen arbitrary order. Then, the non-canonical Poisson
bracket of Morrison in Ref. [15], as seen in the previous sections can be used
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to compute the equations of motion for all of the moments up to the chosen
order. This will yield a closed system of equations for the moments.

This section presents a highly simplified version of the derivation in
Ref. [19], considering only one dimensional motion in the non-relativistic
and electrostatic regimes. Furthermore, the discussion of the self-field is left
until the end of this section.

For convenience, moments are denoted using angle brackets:

〈a〉 =

∫
dx dp f(x, p) a(x, p) , (2.38)

where a(x, p) is an arbitrary function of the phase space coordinates. Note
that such a moment is a functional of f(x, p).

An important simplifying assumption is that the first order moments are
zero. This is equivalent to asserting that the beam is well centred on the
design-axis, or reference-trajectory, of the accelerator. This assumption is
not required for general modelling but it is useful for reducing the errors in
mathematical modelling as discussed in Section 1.1.

2.3.1 Moment Expansion

Starting from the one-dimensional Hamiltonian without space charge:

H =

∫
dx dp f(x, p, t)

(
p2

2m
+ qϕ(x, t)

)
. (2.39)

Note that the momentum term of the Hamiltonian is already written in terms
of a second moment:

Hp =

∫
dx dp f(x, p)

p2

2m
=
〈p2〉
2m

. (2.40)

However, the external potential term does not depend explicitly on moments.
So, taking the Taylor expansion of ϕ(x, t) with respect to x gives:

ϕ(x, t) ≈ ϕ(0, t) + x
∂ϕ

∂x

∣∣∣∣
x=0

+
1

2
x2

∂2ϕ

∂x2

∣∣∣∣
x=0

+O(x3) . (2.41)
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Substituting this expansion and dropping the higher order terms leaves:

Hϕ =

∫
dx dp f(x, p) qϕ(x, t) ≈ q〈1〉ϕ(0) + q〈x〉 ∂ϕ

∂x

∣∣∣∣
x=0

+
q

2
〈x2〉 ∂

2ϕ

∂x2

∣∣∣∣
x=0

,

(2.42)
where the moment 〈1〉 is the particle number, a constant. The first moment
〈x〉 is the beam centroid which is zero because of the on-axis assumption.
The final moment, 〈x2〉 relates to the square of the beam size, up to a mul-
tiplicative factor. Dropping the constant terms we are left with:

H =
〈p2〉
2m

+
q

2
〈x2〉 ∂

2ϕ

∂x2

∣∣∣∣
x=0

. (2.43)

This reduced Hamiltonian is a functional of f that depends only on 〈x2〉 and
〈p2〉. Now we need to check that the set of second order moments paired
with this Hamiltonian form a closed system of equations.

Using the Poisson bracket to compute the time derivatives for the mo-
ments, the functional derivatives are given by (A.6):

δ〈x2〉
δf

= x2 ,
δ〈xp〉
δf

= xp ,
δ〈p2〉
δf

= p2 , (2.44)

as well as the functional derivative of the Hamiltonian:

δH

δf
=

p2

2m
+
q

2
x2

∂2ϕ

∂x2

∣∣∣∣
x=0

, (2.45)

which just recovers the single particle Hamiltonian. The equations of motion
follow:

d〈x2〉
dt

=

∫
dx dp f(x, p)

[
x2,

δH

δf

]
=

∫
dx dp f(x, p)

(
2x

p

m

)
=

2

m
〈xp〉 .

(2.46)
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d〈xp〉
dt

=

∫
dx dp f(x, p)

[
xp,

δH

δf

]
=

∫
dx dp f(x, p)

(
p
p

m
− qx2 ∂

2ϕ

∂x2

∣∣∣∣
x=0

)
=

1

m
〈p2〉 − q〈x2〉 ∂

2ϕ

∂x2

∣∣∣∣
x=0

.

(2.47)

d〈p2〉
ds

=

∫
dx dp f(x, p)

[
p2,

δH

δf

]
=

∫
dx dp f(x, p)

(
−2qp x

∂2ϕ

∂x2

∣∣∣∣
x=0

)
= −2q〈xp〉 ∂

2ϕ

∂x2

∣∣∣∣
x=0

.

(2.48)

Thus, the equations of motion for the second moments without space-charge
only depend on the other second moments; the system is closed.

In more compact notation, the equations of motion are:

d

dt

〈x2〉〈xp〉
〈p2〉

 =


0 2

m
0

−q ∂2ϕ
∂x2

∣∣∣
x=0

0 1
m

0 −2q ∂2ϕ
∂x2

∣∣∣
x=0

0


〈x2〉〈xp〉
〈p2〉

 , (2.49)

which is a first order matrix ordinary differential equation. This system is
identical to the one derived by Sacherer in Ref. [7], without the space charge
terms. The matrix is a function of time since the external potential may be
time dependent. The integration of such a system is well studied, however
we would like to integrate in such a way as to maintain the structure from
which it derives.

Canonical Coordinates

Using the theory of general Poisson systems presented in Appendix B we
may find a symplectic integration scheme for our moment method. General
Poisson systems are defined by a Poisson bracket that uses a generalization
of the symplectic matrix: the structure matrix. For details on the structure
matrix, refer to Appendix B.1.
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Computing the structure matrix involves taking the Poisson bracket be-
tween each pair of coordinates. Our system of coordinates is defined by the
triplet 〈x2〉, 〈xp〉, 〈p2〉 which we may write as a coordinate vector:

y =

〈x2〉〈xp〉
〈p2〉

 . (2.50)

The components of the structure matrix is given by the Poisson bracket
between each of the coordinates:

B(y) =

 0 2〈x2〉 4〈xp〉
−2〈x2〉 0 2〈p2〉
−4〈xp〉 −2〈p2〉 0

 , (2.51)

the explicit derivation is presented in Section B.3 in the appendix. Note that
this structure matrix depends on the state y, however it has familiar prop-
erties of the symplectic matrix, those being anti-symmetry and it satisfies
Jacobi’s identity, which is straightforward to verify. Given these properties,
this system of moments is a valid Poisson system.

One property of canonical systems is that they are always even-dimensional.
Our moment system has three dimensions so we can surmise that it will be
reduced to one position coordinate and its canonical momentum as well as
an additional conserved quantity. This kind of conserved quantity is called
a Casimir [25] and is described by:

∇yC ·B(y) = 0 , (2.52)

for all states y and where C is the Casimir. That is, regardless of what
the Hamiltonian is, the Casimir is invariant, it is a property of the Poisson
bracket structure.

One of the set of canonical coordinates will be the Casimir. In general,
there is no mechanistic method of solving for them, besides guessing and
checking. A candidate for the constant of motion in linear optics is the
emittance, which is given by:

E =
√
〈x2〉〈p2〉 − 〈xp〉2 . (2.53)

We can determine if it is a Casimir by taking the left side of the Poisson
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bracket, (2.52) which gives:

∇yE ·B(y) =
[
〈p2〉
2E − 〈xp〉E

〈x2〉
2E

] 0 2〈x2〉 4〈xp〉
−2〈x2〉 0 2〈p2〉
−4〈xp〉 −2〈p2〉 0


=

1

E

2〈xp〉〈x2〉 − 2〈x2〉〈xp〉
〈p2〉〈x2〉 − 〈x2〉〈p2〉

2〈p2〉〈xp〉 − 2〈xp〉〈p2〉


= 0 ,

(2.54)

and it is indeed a Casimir.
In general, there is no straightforward method to determine the coordi-

nates besides by ansatz motivated by dimensional analysis. For our system,
dimensional analysis leads us to the new coordinates and the Casimir, la-
belled (Q,P, E) where the coordinate transformation is given by:

Q =
√
〈x2〉 , P =

〈xp〉√
〈x2〉

, E =
√
〈x2〉〈p2〉 − 〈xp〉2 . (2.55)

The physical interpretation of the new coordinates is shown in Fig. 2.1.
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Figure 2.1: Canonical coordinates on the uniformly distributed phase space
ellipse. The canonical position and momentum correspond to the right-most
point of the ellipse in phase space. The emittance multiplied by π is the area
of the ellipse.

By computing the Poisson bracket between each of these coordinates, we
find the new structure matrix:

B̃(y) =

{Q,Q} {Q,P} {Q, E}{P,Q} {P, P} {P, E}
{E , Q} {E , P} {E , E}

 =

 0 1 0
−1 0 0
0 0 0

 , (2.56)

where the upper left-hand corner is the symplectic matrix, J, with a zero
row and column corresponding to the conserved emittance. This verifies
that the coordinates Q and P are canonically conjugate, and the Casimir is
a conserved quantity. For convenience, the inverse transformation is given
by:

〈x2〉 = Q2 , 〈xp〉 = QP , 〈p2〉 =
E2
Q2

+ P 2 . (2.57)
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We may express the Hamiltonian in terms of the new coordinates:

H =
P 2

2m
+
E2

2mQ2
+
q

2
Q2 ∂

2ϕ

∂x2

∣∣∣∣
x=0

. (2.58)

We are finally left with a canonical system of canonical coordinates which
may be integrated with standard symplectic integrators. The equations of
motion follow from Hamilton’s equations as:

dQ

dt
=
∂H

∂P
=
P

m
, (2.59)

dP

dt
= −∂H

∂Q
=
E2
mQ3

− qQ ∂2ϕ

∂x2

∣∣∣∣
x=0

. (2.60)

The above system of equations is the KV envelope equations without the
space charge force. The next section completes the derivation of the 1D KV
equations.

2.3.2 Kapchinskij Vladimirskij Equations

Recall the self-field term of the Hamiltonian (2.1):

Hφ = − q2

2ε0

∫
dx′ dx′′ dp′ dp′′ f(x′, p′)f(x′′, p′′)G(x′, x′′) , (2.61)

Since the second moments are insufficient for uniquely describing a distribu-
tion, this term cannot be computed directly. Instead, further assumptions
have to be made about the form of f(x, p), so that the second moments fully
parametrize the shape of the real-space density function, n(x).

This assumption must be carefully considered since it is only fixing the
projection of the distribution, n(x). In general, an external potential will
transform the phase space distribution function in a way that is inconsistent
with the assumption. Kapchinskij and Vladimirskij derived a set of distri-
butions, for two and four phase-space dimensions for which the projection is
always consistent, regardless of the transformations applied by linear external
forces. Using the KV distribution in two phase space dimensions implies that
n(x) is uniformly distributed. The Green’s function of the Poisson equation
in one dimension is:

G(x, x′) =
1

2
|x− x′| , (2.62)
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for open boundary conditions. The uniform distribution may be written
using Heaviside step functions, in terms of our canonical variables (Q,P ) it
is:

n(x) =
N

2
√

3Q

[
Θ

(
x√
3Q

+ 1

)
−Θ

(
x√
3Q
− 1

)]
, (2.63)

where we define the step function using the Dirac delta function:

Θ(x) =

∫ x

−∞
dx′ δ(x′) . (2.64)

The Hamiltonian self-field, (2.61), may then be integrated directly to yield:

Hφ = − q2

2ε0

N√
3
Q . (2.65)

So, we have an additional Hamiltonian term that describes the energy con-
tained in a uniformly distributed beam. Now, the total Hamiltonian with
space charge is:

Htotal =
P 2

2m
+
E2

2mQ2
+
q

2
Q2 ∂

2ϕ

∂x2

∣∣∣∣
x=0

− q2

2ε0

N√
3
Q . (2.66)

and Hamilton’s equations are:

dQ

dt
=
∂H

∂P
=
P

m
, (2.67)

dP

dt
= −∂H

∂Q
=
E2
mQ3

− qQ ∂2ϕ

∂x2

∣∣∣∣
x=0

− q2

2ε0

N√
3

, (2.68)

and by converting to a second order equation of motion for the size Q we
find:

d2Q

dt2
=

1

m

dP

dt

=
E2

m2Q3
− q

m
Q
∂2ϕ

∂x2

∣∣∣∣
x=0

− q2

2mε0

N√
3

,

(2.69)

which, in a more familiar form is:

d2Q

dt2
− E2
m2Q3

+
q

m
Q
∂2ϕ

∂x2

∣∣∣∣
x=0

+
q2

2mε0

N√
3

= 0 , (2.70)
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the well-known one dimensional envelope equation presented by Sacherer in
Ref. [26]. The first analogue of which was the two-dimensional equations
derived by Kapchinskij and Vladimirskij in Ref. [6]. It may be solved us-
ing any analytic or numerical methods for ordinary differential equations.
Furthermore, in the Hamiltonian form, it may be integrated symplectically.
Also note that the choice of the KV distribution for the explicit form of the
distribution is not required. Sacherer showed in Ref. [26] that choosing other
1D distributions with the same symmetry such as a Gaussian or parabolic
distribution produce a comparable force.

2.4 Discussion

Notice some important features of each of these methods. The macro-particle
methods work for an arbitrary external potential, hence they are useful for
studying optical elements of higher order than quadrupoles. The second
order moment approach, conversely, only describes the effects from linear
external forces. This limitation may be overcome by expanding to include
higher order moments, as outlined by Shadwick and Wurtele in Ref. [19],
however this has not been derived including the effects of space-charge.

The moment method is also significantly faster than the macro-particle
methods. The moment method involves integrating one discrete degree of
freedom, whereas for the macro-particle methods, there are at least as many
degrees of freedom as there are macro-particles. Since, the numerical accu-
racy of the macro-particle method depends on the number of macro-particles
the user of such a code will have to balance the computational cost with the
accuracy and noise of the simulation. This problem is made more difficult in
particle-in-cell methods where the fields are discrete as well. No such tension
exists in moment methods.

In practice, both classes of algorithms have domains in which they are
useful. Moment algorithms are very convenient for building and validating
models since they require fewer inputs. Particle algorithms are needed to
model details that may be important for specific machines, especially the
effects of complex external fields. The moment method also requires a much
simplified input which reduces the model input error significantly, compared
to the macro-particle model. There are some accelerators where the rele-
vant physics are not ideally handled by either case, so the next chapter will
combine these methods to cover such an application.
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Chapter 3

Hybrid Method

The motivating problem of this thesis is to self-consistently model the tran-
sition from a DC to a bunched beam. In this process, the longitudinal phase
space undergoes filamentation, where non-linear forces effectively change the
emittance of the beam. These non-linear forces arise from the RF bunchers,
which impart a sinusoidal momentum spread, as well as the space charge
force. The longitudinal distribution of the beam also directly affects the
transverse dynamics. In one respect, momentum deviation will change the
effective focusing strength from the quadrupoles, an effect known as chro-
maticity. Also, as the beam becomes bunched the transverse space charge
force will increase, potentially affecting the transverse tune. Clearly, the
longitudinal dynamics need to be described with a detailed discretization
scheme. However, the transverse dynamics would be well described by sec-
ond moments; since the beam is relatively localized and the beam is well
matched though linear optics. By using the strengths of both discretization
schemes the essential physics may be represented while minimizing the errors
arising from model complexity.

This chapter starts with the discretization of the particle density func-
tion. The discretization assumes that the distribution is divided into macro-
particles, which unlike before, have a general transverse distribution de-
scribed by second moments. For simplicity, I choose to ignore the second
moments that correspond to correlations between the x and y transverse
directions. The discretization of the electrostatic self-field follows, using a
particle-in-cell discretization in the longitudinal direction only. This dis-
cretization gives a system of partial differential algebraic equations which
are solved to identify the semi-analytic Green’s function. Finally, the end of
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this chapter combines these components of discretization to look at the final
system. This includes a discussion of some of the important implementation
details, and further assumptions that have been made. One such assumption
that is important to note, is that for ease of implementation and for testing
performance, I break the symplectic capabilities of the algorithm by simpli-
fying the self-field term of the Hamiltonian. All tests in the next chapter
follow using this approximate implementation.

3.1 Hybrid Discretization

Starting from the three dimensional Vlasov Hamiltonian neglecting the self-
field:

H =

∫
d3x d3p f(x,p, t)

(
p2

2m
+ qϕ(x, t)

)
. (3.1)

To discretize, divide the distribution function into different groupings,
like a macro-particle discretization:

f(x,p, t) =
∑
i

fi(x,p, t) , (3.2)

where each fi interacts only through the self-field. This may be interpreted
as attaching different labels to groups of particles. In this case, the Poisson
bracket becomes:

{F,G} =
∑
i

∫
d3x d3p fi(x,p, t)

[
δF

δfi
,
δG

δfi

]
, (3.3)

a sum over the normal Poisson bracket for each group of particles.
Each grouping is split into the normal macro-particle discretization in the

longitudinal phase space but now the transverse distribution remains general.
This gives the particular explicit distribution:

fi(x,p, t) = wif
⊥
i (x⊥,p⊥, t)R(z − zi(t))δ

(
pz −

pzi(t)

wi

)
, (3.4)

where f⊥i (x⊥,p⊥) is the transverse distribution of the ith group. The symbol
⊥ denotes a quantity in the transverse plane. Recall, R(z−zi(t)) is the macro-
particle shape function described in Section 2.2. It is an even, non-negative
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function that satisfies the norming condition. Now, the longitudinal phase
space of each fi is fully described by the set of coordinates wi, zi, pzi. By
substituting (3.4) any functional of fi can now be written as a function of the
coordinates wi, zi, pzi and a functional of f⊥i . The particle density function
has discrete form:

f(x,p, t) =
∑
i

wif
⊥
i (x⊥,p⊥, t)R(z − zi(t))δ

(
pz −

pzi(t)

wi

)
, (3.5)

Let us denote the moment with respect to the ith transverse distribution
with square brackets for example:

〈a〉i =

∫
d2x⊥ d2p⊥ f⊥i (x⊥,p⊥) a(x⊥,p⊥) , (3.6)

for some function of the transverse phase space, a(x⊥,p⊥).
Once again, the transverse dynamics will be described by a system of

second moments. The set of second moments consists of 〈x2〉i, 〈xpx〉i, 〈p2x〉i,
〈y2〉i, 〈ypy〉i and 〈p2y〉i. I choose to neglect the other second moments corre-
lating the x and y dimensions which are: 〈xy〉i, 〈xpy〉i, 〈ypx〉i and 〈pxpy〉i.
Therefore each macro-particle is described by the following set of non-canonical
coordinates:

yi = (〈x2〉i, 〈xpx〉i, 〈p2x〉i, 〈y2〉i, 〈ypy〉i, 〈p2y〉i, zi, pzi) , (3.7)

where, as before, each of these coordinates can be written as a functional of
fi.

The uncorrelated assumption implies that the coordinates can be de-
scribed as being in their own ‘subspace’ of phase space. This means that
the results of Chapter 2 directly apply. The Poisson bracket between each of
these coordinates is the same as before, with the brackets of coordinates in
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different directions being zero. The structure matrix is then:

B(y) =



0 2〈x2〉 4〈xpx〉 0 0 0 0 0
−2〈x2〉 0 2〈p2x〉 0 0 0 0 0
−4〈xpx〉 −2〈p2x〉 0 0 0 0 0 0

0 0 0 0 2〈y2〉 4〈ypy〉 0 0
0 0 0 −2〈y2〉 0 2〈p2y〉 0 0
0 0 0 −4〈ypy〉 −2〈p2y〉 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 −1 0


.

(3.8)
a block-diagonal matrix with each block corresponding to the structure ma-
trices for 1D moments in x and y and 1D particles in z.

Now to transform to a set of canonical coordinates, using the results of
Chapter 2 directly. The transformation is as follows:

Qxi =
√
〈x2〉i , Pxi = wi

〈xpx〉i√
〈x2〉i

, Exi = wi

√
〈x2〉i〈p2x〉i − 〈xpx〉2i ,

Qyi =
√
〈y2〉i , Pyi = wi

〈ypy〉i√
〈y2〉i

, Eyi = wi

√
〈y2〉i〈p2y〉i − 〈ypy〉2i ,

Qzi = zi , Pzi = pzi ,

(3.9)

where Exi and Eyi the transverse emittance, in the respective direction. Note
the momenta have a factor of wi for the same reason as before, the canonical
momentum is the momentum of all of the real particles that the macro-
particle represents.

The new state vector of canonical coordinates for macro-particle i is:

ỹi = (Qxi, Qyi, Qzi, Pxi, Pyi, Pzi, Exi, Eyi) . (3.10)
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With respect to these coordinates, the structure matrix becomes:

B̃(y) =



0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
−1 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0
0 0 −1 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


. (3.11)

which is the symplectic matrix, with zero rows and columns for the Casismir
functions. In fact, the Poisson bracket is now in symplectic form as:

{F,G} =
∑
i

(
∂F̃

∂Qxi

∂G̃

∂Pxi
− ∂F̃

∂Pxi

∂G̃

∂Qxi

)
+

(
∂F̃

∂Qyi

∂G̃

∂Pyi
− ∂F̃

∂Pyi

∂G̃

∂Qyi

)

+

(
∂F̃

∂Qzi

∂G̃

∂Pzi
− ∂F̃

∂Pzi

∂G̃

∂Qzi

)
. (3.12)

Thus, Hamilton’s equations can be used to find the equations of motion.
Although, the Hamiltonian must first be simplified to close this system.

3.1.1 Expanded Hamiltonian

Now that the Poisson bracket is in canonical form, the next step is to simplify
the Hamiltonian. Following the moment method in Chapter 2, the external
potential needs to be expanded so that it has an explicit dependence on the
second moments transversely.

Taylor expanding the external potential to second order in x and y gives:

ϕ(x, t) ≈ ϕ(x, t)|x⊥=0 + x
∂ϕ(x, t)

∂x

∣∣∣∣
x⊥=0

+ y
∂ϕ(x, t)

∂y

∣∣∣∣
x⊥=0

+
x2

2

∂2ϕ(x, t)

∂x2

∣∣∣∣
x⊥=0

+ xy
∂2ϕ(x, t)

∂x∂y

∣∣∣∣
x⊥=0

+
y2

2

∂2ϕ(x, t)

∂y2

∣∣∣∣
x⊥=0

. (3.13)

For notational convenience, let the on-axis external potential terms be de-
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noted:

ϕ(z, t) = ϕ(x, t)|x⊥=0 , ϕx(z, t) =
∂ϕ(x, t)

∂x

∣∣∣∣
x⊥=0

, ϕxx(z, t) =
∂2ϕ(x, t)

∂x2

∣∣∣∣
x⊥=0

,

(3.14)

such that the subscript denotes a partial derivative. Similarly, ϕyy(z, t) is the
second y derivative.

Thus, substituting the expansion into the Hamiltonian yields:

H =
1

2m

∫
d3x d3p f(x,p, t)

(
p2x + p2y + p2z

)
+ q

∫
d3x d3p f(x,p, t)

(
x2

2
ϕxx(z, t) + xyϕxy(z, t) +

y2

2
ϕyy(z, t)

)
+ q

∫
d3x d3p f(x,p, t) (ϕ(z, t) + xϕx(z, t) + yϕy(z, t)) . (3.15)

Now, note that the terms in xy will lead to a correlation moment and
the terms linear in x and y will give a first order moment. Given the
on-axis assumption, the first order moments will remain zero as long as
ϕx(z) = ϕy(z) = 0. This restricts the model to exclude alignment errors and
steerers. Similarly, for the system to remain uncorrelated ϕxy(z) = 0, this
means that this model is restricted to optical elements with axial-rotational
symmetry, dipole symmetry and quadrupole symmetry. Note that compared
to Section 2.3, the lowest order term of the Taylor expansion remains. This
term will be used to model acceleration gaps both direct-current and radio-
frequency devices.

To convert this from a continuous Vlasov Hamiltonian to a discrete Hamil-
tonian, substituting the discretization scheme, (3.5), and simplifying gives:

H =
∑
i

1

2mwi

(
〈p2x〉i + 〈p2y〉i + pz

2
i

)
+ qwi

∫
dz R(z − zi)

(
ϕ(z) +

〈x2〉i
2

ϕxx(z) +
〈y2〉i

2
ϕyy(z)

)
, (3.16)
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Then, applying the coordinate transformation to canonical coordinates:

H =
∑
i

1

2mwi

(
(Pxi)

2 +

( Exi
Qxi

)2

+ (Pyi)
2 +

( Eyi
Qyi

)2

+ (Pzi)
2

)

+ qwi

∫
dz R(z −Qzi)

(
ϕ(z) +

(Qxi)
2

2
ϕxx(z) +

(Qyi)
2

2
ϕyy(z)

)
. (3.17)

This is now a closed system of macro-particles and moments. The next step is
to consider how to best represent the self-field, in this discretization scheme.

3.2 Self Field Discretization

Intuitively, the potential should be both discrete in the longitudinal direction
as well as linearised in the transverse directions to make it consistent with the
particle discretization. To accomplish this, I will use the same discretization
scheme as in the particle-in-cell approach in Chapter 2, this time in three
dimensions.

Starting from the three dimensional electrostatic Lagrangian with an ex-
ternally applied charge distribution:

L = −
∫

d3x d3p ρ(x,p)φ(x) +
ε0
2

∫
d3x |∇φ|2 . (3.18)

Using the same discretization scheme as the particle-in-cell algorithm in Sec-
tion 2.2 but now, applying it to a full three-dimensional system. The poten-
tial is decomposed onto a uniform grid of basis functions in the z direction,
with grid spacing h which is expressed as:

φ(x, t) =

Ng∑
i=1

φi(x
⊥, t)ψi(z) , (3.19)

where ψi(z) is the finite element basis function of the ith node. Note that
the coefficient of the basis function φi(x

⊥, t) is a function of the transverse
directions x⊥. The purpose of this section is to compute the explicit solution
for each of these functions to solve the semi-analytic form of the self potential.
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Substituting the discretization scheme into the Lagrangian gives:

L = −
∑
i

∫
d3x ρ(x, t)φi(x

⊥, t)ψi(z)

+
hε0
2

∑
jk

Mjk

∫
d2x⊥

(
∇x⊥φj(x

⊥, t) · ∇x⊥φk(x
⊥, t)

)
+
ε0
2h

∑
jk

Djk

∫
d2x⊥

(
φj(x

⊥, t)φk(x
⊥, t)

)
, (3.20)

where

Mnm =
1

h

∫
dzψn(z)ψm(z) , (3.21)

Dk` = h

∫
dz

dψk(z)

dz

dψ`(z)

dz
. (3.22)

In the context of the finite element method, M is called a ‘mass matrix’ and
D is a ‘stiffness matrix’.

Taking the Euler Lagrange equations with respect to the set of transverse
fields φi(x

⊥, t) we find:∑
n

(
M`n∆x⊥φn −

1

h2
D`nφn

)
= − 1

ε0h

∫
dz ρ(x, t)ψ`(z) , (3.23)

where ∆x⊥φn(x⊥, t) is the 2D Laplacian of the semi-discrete potential φn(x⊥, t).
This is a set of differential algebraic equations for the set of transverse

fields. To solve this system, it will first have to be diagonalized then the
remaining independent partial differential equations can be solved.

3.2.1 Solving the Differential Algebraic Equations

Diagonalizing the system requires that M and D be simultaneously diago-
nalizable. Appendix C shows that for the linear finite elements that the node
mass and differentiation matrices are simultaneously diagonalizable.

Let the matrix M have the set of eigenvalues, λMi , and eigenvectors, which
form an orthogonal matrix S. The eigenvalues of D are then denoted λDi and
are found by similarity transform using S. This may be written in index
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notation as:

λMi δijk =
∑
ab

SjaMabSbk , (3.24)

λDi δijk =
∑
ab

SjaDabSbk , (3.25)

where the δijk denotes a three-index Kronecker delta symbol:

δabc =

{
1, a = b = c

0, else,
(3.26)

which is used to write the vector of eigenvalues as a diagonal matrix. Con-
tracting both free indices with S gives:

Mnm =
∑
ijk

λMi SnjδijkSkm , (3.27)

Dnm =
∑
ijk

λDi SnjδijkSkm , (3.28)

since S is orthogonal: ∑
j

SijSjk = δik . (3.29)

Let the particle density term be a vector of distributions ρ`(x
⊥) which is

given by:

ρ`(x
⊥, t) =

∫
dz ρ(x, t)ψ`(z) , (3.30)

then simplifying:∑
n

(
M`n∆x⊥ − 1

h2
D`n

)
φn(x⊥, t) = − 1

ε0h
ρ`(x

⊥, t) , (3.31)

where ∆x⊥ is the 2D Laplace operator, that commutes with numbers. Sub-
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stituting the diagonalized M and D gives:∑
ijkn

(
λMi S`jδijkSkn∆x⊥ − 1

h2
λDi S`jδijkSkn

)
φn(x⊥, t) = − 1

ε0h
ρ`(x

⊥, t) ,

(3.32)∑
ijkn

S`j

(
λMi ∆x⊥ − 1

h2
λDi

)
δijkSknφn(x⊥, t) = − 1

ε0h
ρ`(x

⊥, t) ,

(3.33)

and contracting with S on the left hand side:∑
ikn

(
λMi ∆x⊥ − 1

h2
λDi

)
δiakSknφn(x⊥, t) = − 1

ε0h

∑
`

Sa`ρ`(x
⊥, t) . (3.34)

So, the diagonalized potential and charge density vectors are defined as:

φ̃k(x
⊥, t) =

∑
n

Sknφn(x⊥, t) , (3.35)

ρ̃a(x
⊥, t) =

∑
`

Sa`ρ`(x
⊥, t) . (3.36)

Now, by applying the definition of the Kronecker delta symbol we are left
with a vector of independent partial differential equations to solve for each
diagonalized transverse potential:(

λMa ∆x⊥ − 1

h2
λDa

)
φ̃a(x

⊥, t) = − 1

ε0h
ρ̃a(x

⊥, t) , (3.37)

where there is no summation over indices. Dividing by the eigenvalue λMa we
find: (

∆x⊥ − λDa
λMa h

2

)
φ̃a(x

⊥, t) = − 1

ε0hλMa
ρ̃a(x

⊥, t) . (3.38)

This is called the Screened Poisson Equation or alternatively the modified
Helmholtz equation. It has the screening constant (ka)

2 = λDa /(λ
M
a h

2); note
that it depends on the index a. Now to solve this equation.
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3.2.2 Green’s Function

Since the modified Helmholtz equation is an inhomogeneous linear partial
differential equation, it may be solved using the Green’s function. Consider
this equation for a general index a and a δ-function source term, let Φa(x

⊥)
be the solution that satisfies:(

∆x⊥ − k2a
)
Φa(x

⊥) = −δ(2)(x⊥) . (3.39)

The Green’s function, Ga(x
⊥,y⊥), is written using the point source solution,

Φa(x
⊥):

Ga(x
⊥,y⊥) = Φa(y

⊥ − x⊥) . (3.40)

Now, to solve for Φa(x
⊥). Let Φ̃a(k

⊥) denote the two dimensional Fourier
transform of Φa(x

⊥) from x⊥ to k⊥. Then, taking the Fourier transform of
(3.39) gives: (

−|k⊥|2 − k2a
)
Φ̃a(k

⊥) = −1 , (3.41)

and dividing, assuming the denominator is non-zero:

Φ̃a(k
⊥) =

1

|k⊥|2 + k2a
. (3.42)

Taking the inverse Fourier transform gives a modified Bessel function of the
second kind:

Φa(x
⊥) =

1

2π
K0

(
ka|x⊥|

)
, (3.43)

this is the point source solution. For transverse boundary conditions which
are zero at infinity, we have:

Ga(x
⊥,y⊥) = Φa(y

⊥ − x⊥) . (3.44)

The boundary conditions that arise more naturally in accelerator physics is a
metallic pipe of radius R. Using the method of images, we add an additional
source term outside of the pipe:

Ga(x
⊥,y⊥) = Φa(y

⊥ − x⊥)− Φa
( |x⊥|

R

(
y⊥ − R2

|x⊥|2x⊥
))

, (3.45)

this satisfies that the potential is zero at the pipe wall and there is no addi-
tional source term within the pipe.
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3.2.3 Solution

Whichever set of boundary conditions is chosen, the solution in the diagonal
basis using the Green’s function is:

φ̃a(x
⊥) =

1

ε0hλMa

∫
d2x̃⊥ρ̃a(x̃

⊥)Ga(x
⊥, x̃⊥) . (3.46)

The explicit solution for φ is found by contracting with S to return to the
non-diagonal basis, and substituting the definition of ρ̃ to give:

φ(x) =
1

ε0h

∑
n,a,`

ψn(z)SnaSa`

(
1

λMa

∫
d2x̃⊥ρ`(x̃

⊥)Ga(x
⊥, x̃⊥)

)
. (3.47)

This is the semi-analytic solution for the self-potential.

3.3 External Potential Approximation

Ideally, this semi-analytic potential would be used like the discrete Green’s
function in the particle-in-cell method derived in Section 2.2. However, this
straightforward approach would be computationally prohibitive. To evalu-
ate the equations of motion, this would require the numerical integration of
O(Np

2) four dimensional integrals.
To overcome this cost, I take inspiration from the work done by Cook

et al. in Ref [27], in which they use the Hamiltonian formulation to de-
scribe the particle dynamics and where the self-field is subject to ‘auxiliary-
conditions’ which are the equations of motion for the self field deriving from
Lagrangian formulation. By writing the self-field as the explicit solution to
the Lagrangian equations of motion, these ‘auxiliary-conditions’ are enforced
explicitly.

The Hamiltonian term for the self-potential is then the negative of the
Lagrangian interaction term, as in:

Hφ = q

∫
d3x d3pf(x,p)φ(x) , (3.48)

which is identical to the external field term.
This allows the Taylor expansion of the self-potential, as if it was an

external potential. It follows that by making the same sets of assumptions,
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the expanded self-potential gives the Hamiltonian term:

Hφ =
∑
i

qwi

∫
dzR(z −Qzi(t))

(
φ(z) +

(Qxi)
2

2
φxx(z) +

(Qyi)
2

2
φyy(z)

)
.

(3.49)
Where, to reiterate, the potential is Taylor expanded to second order about
the z-axis and the first order terms are assumed to be zero because of the
uncorrelated assumption. The computation cost to evaluate the equation of
motion requires only computing the self-potential and some of its derivatives
on-axis. This reduces the computation cost to O(NpNg) two-dimensional
integrals.

However, the enforcement of the ‘auxiliary conditions’ in this way vio-
lates the standard Hamiltonian formalism. The proper methods of formu-
lating Hamiltonian systems with constraints, similar to Lagrange multipliers
are described by Hairier et. al. at the start of Chapter VII. Non-Canonical
Hamiltonian Systems from Ref [25]. Thus, this system will no longer be
energy conserving. This assumption violates Hamiltonian mechanics by in-
troducing an explicit asymmetry in how the charge is deposited into the
potential compared to how the potential influences the charges. This asym-
metry is typical for momentum-conserving particle-in-cell codes.

3.4 The Algorithm

The particle distribution function is a discrete sum of macro-particles:

f(x,p, t) =
∑
i

wif
⊥
i (x⊥,p⊥, t)R(z −Qzi)δ

(
pz −

Pzi
wi

)
. (3.50)

In the transverse dimensions, each macro-particle contains a distribution
which is described by the system of second moments. The ith macro-particle
is defined with respect to the following set of coordinates:

ỹi = (Qxi, Qyi, Qzi, Pxi, Pyi, Pzi, Exi, Eyi) , (3.51)
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where the Q and P are canonically conjugate and the E are constants. The
Hamiltonian of this system is:

H =
∑
i

1

2mwi

(
(Pxi)

2 +

( Exi
Qxi

)2

+ (Pyi)
2 +

( Eyi
Qyi

)2

+ (Pzi)
2

)

+ qwi

∫
dz R(z −Qzi)

(
ϕ(z) +

(Qxi)
2

2
ϕxx(z) +

(Qyi)
2

2
ϕyy(z)

)

+ qwi

∫
dzR(z −Qzi)

(
φ(z) +

Q2
xi

2
φxx(z) +

Q2
yi

2
φyy(z)

)
. (3.52)

Using Hamilton’s equations, the equations of motion for the spatial coordi-
nates are simple:

dQxi

dt
=

∂H

∂Pxi
=

Pxi
mwi

, (3.53)

dQyi

dt
=

∂H

∂Pyi
=

Pyi
mwi

, (3.54)

dQzi

dt
=

∂H

∂Pzi
=

Pzi
mwi

. (3.55)

As for the momenta, it is more complicated:

dPxi
dt

= − ∂H

∂Qxi

=
1

mwi

E2xi
Q3
xi

− qwiQxi

∫
dz R(z −Qzi)

(
ϕxx(z) +

∂2φ(x, t)

∂x2

∣∣∣∣
x⊥=0

)
,

(3.56)

dPyi
dt

= − ∂H

∂Qyi

=
1

mwi

E2yi
Q3
yi

− qwiQyi

∫
dz R(z −Qzi)

(
ϕyy(z) +

∂2φ(x, t)

∂y2

∣∣∣∣
x⊥=0

)
,

(3.57)
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dPzi
dt

= − ∂H

∂Qzi

= −qwi
∫

dz
∂R(z −Qzi)

∂Qzi

(
ϕ(z) +

(Qxi)
2

2
ϕxx(z) +

(Qyi)
2

2
ϕyy(z)

+ φ(x, t)|x⊥=0 +
(Qxi)

2

2

∂2φ(x, t)

∂x2

∣∣∣∣
x⊥=0

+
(Qyi)

2

2

∂2φ(x, t)

∂y2

∣∣∣∣
x⊥=0

)
.

(3.58)

As a detail pertaining to the code, to be able to use a δ-function particle
kernel, we integrate the z-direction equation of motion by parts to instead
calculate:

dPzi
dt

= −qwi
∫

dz R(z −Qzi)
∂

∂z

(
ϕ(z) +

(Qxi)
2

2
ϕxx(z) +

(Qyi)
2

2
ϕyy(z)

+ φ(x, t)|x⊥=0 +
(Qxi)

2

2

∂2φ(x, t)

∂x2

∣∣∣∣
x⊥=0

+
(Qyi)

2

2

∂2φ(x, t)

∂y2

∣∣∣∣
x⊥=0

)
. (3.59)

The self-potential is computed each time the equations of motion of the
momenta are evaluated. We have only to compute the following terms:

φ(x, t)|x⊥=0 ,
∂2φ(x, t)

∂x2

∣∣∣∣
x⊥=0

,
∂2φ(x, t)

∂y2

∣∣∣∣
x⊥=0

. (3.60)

For details on how the self-potential terms are calculated numerically, refer
to Appendix C. In the following chapter, we test the numerical evaluation of
these terms against analytic solutions.

Macro-Particle Initialization

The interpretation of the coordinates of each macro-particle are the local-
ized point or spatial distribution in longitudinal phase space (z, pz) with an
associated transverse distribution.

Each macro-particle must be initialized with a constant weight wi as well
as the initial coordinates:

(Qxi, Qyi, Qzi, Pxi, Pyi, Pzi, Exi, Eyi) , (3.61)
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at the initial time. It may be more natural however, to initialize using the
non-canonical moment system. In this case, the user of the code needs to
specify the following initial parameters:

(〈x2〉i, 〈xpx〉i, 〈p2x〉i, 〈y2〉i, 〈ypy〉i, 〈p2y〉i, zi, pzi) , (3.62)

where both sets of coordinates are related by the canonical coordinate trans-
formation.

Either way, one must specify the initial longitudinal phase space distri-
bution function f(z, pz) and the initial transverse moments as a function of
the longitudinal phase space:

(〈x2〉(z, pz), 〈xpx〉(z, pz), 〈p2x〉(z, pz), 〈y2〉(z, pz), 〈ypy〉(z, pz), 〈p2y〉(z, pz)) .
(3.63)

This is the most general way to specify such initial conditions.
The process to initialize the set of macro-particles follows. Firstly, gener-

ate a set of longitudinal phase-space coordinates from f(z, pz) using a numer-
ical method such as rejection sampling or Markov chain Monte Carlo. Then,
for each macro-particle, given it’s longitudinal phase-space coordinates assign
the transverse moments from (3.63). Finally, if necessary, for each macro-
particle transform the transverse moments to canonical coordinates.

For example, consider the three-dimensional distribution of the uniform
sphere of charge, that is initially stationary. The distribution function can
be expressed as:

f(x,p) =

{
3N

4πR3 δ
(3)(p),

√
x2 + y2 + z2 ≤ R ,

0, otherwise.
(3.64)

To project this into the longitudinal phase-space, integrate over the trans-
verse dimensions:

f(z, pz) =

∫
d2x⊥ d2p⊥ f(x,p) =

{
3N
4R3 (R2 − z2)δ(pz), |z| ≤ R ,

0, otherwise.
(3.65)

Now, for the moments, since it is initially stationary all momentum moments
are zero, and by symmetry: 〈x2〉(z, pz) = 〈y2〉(z, pz). So, computing the

45



cross-sectional moment:

〈x2〉(z, pz) =

∫
d2x⊥ d2p⊥ x2 f(x,p) =

{
3N
4R3

(R2−z2)2
4

δ(pz), |z| ≤ R ,

0, otherwise.

(3.66)
Which is all of the information needed to initialize a uniform sphere.

Following a similar procedure, the uniform cylinder of charge with longi-
tudinal length L and transverse radius R has the distribution:

f(x,p) =

{
N

πR2L
δ(3)(p),

√
x2 + y2 ≤ R and |z| < L/2 ,

0, otherwise.
(3.67)

So the projection onto the longitudinal phase space is:

f(z, pz) =

∫
d2x⊥ d2p⊥ f(x,p) =

{
N
L
δ(pz), |z| ≤ L/2 ,

0, otherwise,
(3.68)

and the transverse second moments are:

〈x2〉(z, pz) =

∫
d2x⊥ d2p⊥ x2 f(x,p) =

{
N
L
R2

4
δ(pz), |z| ≤ L/2 ,

0, otherwise,
(3.69)

where the same symmetry argument from the uniform sphere applies here to
〈y2〉(z, pz).

This process can be applied to any given analytic distribution function
f(x,p) of the six dimensional phase-space. This approach is preferred when
initializing distributions where f(x,p) may be written as a direct product of
distributions in each dimension as in:

f(x,p) = f1(x, px)f2(y, py)f3(z, pz) , (3.70)

which is the case for distributions with no correlations between the phase-
space dimensions.

Another method of initialization is from the output of an envelope code
such as TRANSPORT or TRANSOPTR. This arises when modelling a 2D contin-
uous beam, since such envelope codes return the set of transverse moments
as a function of the location. In the case of a continuous beam, the current
and the longitudinal distribution function are assumed to be uniform in z

46



and some thermal distribution of appropriate temperature in pz.

External Field Numerical Integration

The longitudinal particle kernel function R(z) is implemented as a couple of
options. The first is the δ-function kernel:

Rδ(z) = δ(z) , (3.71)

the other kernel function is the uniform kernel:

R1(z) =

{
1
h

, |z| ≤ h/2 ,

0 , |z| > h/2 ,
(3.72)

where h is the width of the kernel. Both of these kernels are analytically
integrated against the potential basis functions.

Conversely, the external potential must be numerically integrated against
the kernel function. For Rδ, it is trivially the field evaluated at the macro-
particle location. For R1, there is a choice of some numerical integration
scheme. For such a numerical integration scheme consider the integral:∫ ∞

−∞
dz R1(z −Qzi)Φ(z) , (3.73)

where Φ(z) is some function representing the external fields. Then, by making
a change of variables to z′ = z −Qzi it becomes:∫ h/2

−h/2
dz′R1(z

′)Φ(z′ +Qzi) . (3.74)

If h is small with respect to how quickly Φ(z) changes in both time and
space, then only need a few numerical integration points are needed. In fact,
if h is very small, compared to the change in Φ(z), then taking the rectangle
rule over the full interval gives:∫ h/2

−h/2
dz′R1(z

′)f(z′ +Qzi) ≈ f(Qzi) , (3.75)

which is the same as the Rδ kernel.
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For general external fields, I implemented the Trapezoidal rule for a
more accurate integration by dividing the interval into N sub-intervals in
[−h/2, h/2]. This gives:∫ h/2

−h/2
dz′R1(z

′)f(z′+Qzi) ≈
1

2

N∑
k=1

(f(Qzi − h/2 + zk−1) + f(Qzi − h/2 + zk)) ,

(3.76)
where zk is the left end point of of the kth interval.

In the implementation of the code, the following external potential terms
must be specified as continuous functions:

ϕz(z, t) , ϕxx(z, t) , ϕyy(z, t) , ϕxxz(z, t) , ϕyyz(z, t) . (3.77)

Numerical Integration

The implementation integrates using using the simplest explicit symplectic
numerical integrators. However, since I made the approximation to the self-
field, symplectic integrators will not be energy conserving. Even so, the
implementation includes the first order Symplectic Euler method as well as
the second order Störmer-Verlet method.

Let the time at the start of the simulation be t = 0. Then the time at
any later step is given by t = n∆t, where ∆t is the time incremented per
integration step and n is the number of integration steps completed. Then,
label the state of the coordinates at time n∆t by the two vectors:

(qn,pn) , (3.78)

where pn denotes the vector of canonical momenta and qn the vector of
canonical positions both at at the nth time step. The Hamiltonian is a
function of the phase space coordinates: H(q,p). Using this notation, the
first order symplectic Euler method is:

pn+1 = pn −∆t∇qH(qn,pn+1) , (3.79)

qn+1 = qn +∆t∇pH(qn,pn+1) . (3.80)
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And similarly, the second order symplectic Störmer-Verlet method:

pn+1/2 = pn − ∆t

2
∇qH(qn,pn+1/2) , (3.81)

qn+1 = qn +
∆t

2

(
∇pH(qn,pn+1/2) +∇pH(qn+1,pn+1/2)

)
, (3.82)

pn+1 = pn+1/2 − ∆t

2
∇qH(qn+1,pn+1/2) . (3.83)

These integration schemes are explicit for separable Hamiltonian systems.
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Chapter 4

Validation and Application

4.1 Simple Geometries

To test the field solver as well as the integration scheme I start with looking
at idealized distributions. To test the field solver, its output is compared to
analytic solutions for the on-axis potential and second transverse derivatives.
The derivation of the analytic solutions is found in Appendix D.

These artificial distributions have zero initial temperature. This makes
the calculations in this section susceptible to an artificially high level of
numerical noise. Many more macro-particles and grid points are used for
these calculations than is necessary for a more realistic beam, as will be
shown in the next section.

4.1.1 Uniform Sphere of Charge

The first test of the field solver is to model a uniformly distributed sphere
of charge. The uniform sphere contains 108 protons in a radius of 1 cm. To
create a uniform spherical distribution 1024 macro-particles were initialized
uniformly throughout the sphere with varying sizes and weights. The poten-
tial grid of length 10 cm centred on the sphere was initialized with metallic
boundary conditions and constructed with 104 grid points. Fig. 4.1 shows
the calculated potential and radial second derivative of the potential from the
field solver compared to the analytic solution. Since the analytic solution is
for free space boundary conditions, the method of images was used to find the
solution with metallic boundary conditions. The calculated potential shows
excellent agreement with the analytic solution in contrast with the transverse
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second derivatives which show some disagreement. The calculation near the
edge of the sphere shows a smoothing effect. This effect may be due to the
finite resolution of the grid which is not able to resolve the relatively ‘sharp’
edge where the linear density and size rapidly decrease to zero.
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Figure 4.1: The potential and second transverse derivative of the potential
(in this case in the x-direction) is compared to the analytic solution for a
uniform sphere of charge. The vertical dotted lines indicate the edge of the
sphere.

4.1.2 Expanding Uniform Sphere of Charge

The distribution of macro-particles is tracked over the time it takes for the
sphere to double in size. The distribution of 1024 macro-particles was ini-
tialized in the same manner as the static sphere of uniform charge. This
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sphere contained 108 charges in an initial radius of 1 cm. The potential grid
is constructed with 250 points and metallic boundary conditions, with a grid
length of 10 cm. Fig. 4.2 shows the time evolution of the edge of the sphere
in each of the Cartesian directions. The sphere doubles in size in the correct
amount of time in each of the directions, and there is no symmetry breaking
in any direction. Fig. 4.3 shows a more detailed look at the expansion of
the distribution. The scale of the distribution changes appropriately in time,
while it maintains the same shape.

For the purposes of Fig. 4.2, the edge is calculated from the time depen-
dent second moments. Consider the normalized spatial distribution for the
uniform sphere:

f(x) =

{
3

4πR3 ,
√
x2 + y2 + z2 ≤ R ,

0, otherwise.
(4.1)

The second moment in the x direction is:

〈x2〉 =

∫
d3x d3px2f(x,p) =

R2

5
, (4.2)

and by symmetry this is the same for 〈y2〉 and 〈z2〉. Therefore given that the
sphere maintains uniformity, the second moments are related to the edge of
the sphere by:

Rx =
√

5〈x2〉 , Ry =
√

5〈y2〉 , Rz =
√

5〈z2〉 , (4.3)

where a separate radius is specified in each Cartesian direction to observe
any symmetry breaking in the expanding sphere.
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Figure 4.2: The Cartesian edges of the uniform sphere of charge as it expands,
plotted against the analytic solution. The analytic solution is indicated by
the grey line.
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Figure 4.3: The deposited charge and shape on the self-field grid are shown at
evenly spaced times. On top is the projected linear charge density, normalized
by the total charge. Below that, the projected transverse 1-σ width in the
x-direction is shown. The width in the y-direction, not shown, is identical.
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4.1.3 Uniform Cylinder of Charge

The next simple geometry test is the uniform cylinder of charge. The dis-
tribution of 1010 protons has a radius of 5 cm and length 20 cm. To create
a uniform cylindrical distribution 1024 macro-particles were initialized uni-
formly along the cylinder with a constant size and weight. The potential
grid of length 100 cm centred on the cylinder was initialized with metallic
boundary conditions and was constructed with 104 nodes. Fig. 4.4 shows
the calculated potential and radial second derivatives of the potential. The
field solver shows excellent agreement for both the potential and the second
transverse derivative.
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Figure 4.4: The potential and second transverse derivative of the potential
(in this case in the x-direction) are compared to the analytic solution for a
uniform cylinder of charge. The vertical dotted lines indicate the edge of the
cylinder.

4.1.4 Expanding Uniform Cylinder of Charge

Compared to the expanding sphere of charge, a cylinder of charge features
less symmetry so there is no analytic expression for its expansion. Instead, I
choose to compute the expansion using the three dimensional moment code
TRANSOPTR. TRANSOPTR uses the longitudinal position as the independent
variable so the protons are initialized with an initial 1 MeV kinetic energy
in the longitudinal direction with no initial momentum spread. The self
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potential grid maintains a constant length but is repositioned to be centred
on the centre of mass of the distribution.

The distribution of 1024 macro-particles was initialized in the same man-
ner as the static cylinder of uniform charge, with different parameters. This
distribution contains 5 · 1010 protons in an initial radius of 1 cm and length
4 cm. The potential grid is constructed with 250 points and metallic bound-
ary conditions, with a grid length of 10 cm. Fig. 4.5 compares the second
moments in each of the Cartesian directions against the position of the centre
of mass in the longitudinal direction. The moment tracking shows excellent
agreement with TRANSOPTR. Fig. 4.3 shows a more detailed look at the expan-
sion of the distribution. The scale of the distribution changes appropriately
in time, while the shape of the distribution expands to be more sphere-like.
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Figure 4.6: The deposited charge and shape on the self-field grid are shown
at different times. On top is the projected linear charge density, normalized
by the total charge. Below that, the projected transverse 1-σ width in the
x-direction is shown. The width in the y-direction, not shown, is identical.
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4.2 Code Comparison

With the current set of assumptions, the algorithm is suited to systems with
only external electric fields with space charge effects. One such system is
the Ion Source Injection System (ISIS) for the TRIUMF cyclotron which
provides a high current beam of 300 keV H− ions. Focusing is provided by
electrostatic quadrupoles and bunching is done by two bunchers, a first and
a second harmonic, each of which are the two-gap type.

Due to the limitations of the current set of assumptions, many specifics
of the injection line can not be modelled. For simplicity, I choose to use
the uniform quadrupole lattice instead of the realistic focusing lattice which
has different periodic sections with matching sections between them. Since
the model does not track first moments and correlations, and the field solver
does not work for curvature, it cannot model the two sets of electrostatic
cylindrical benders which bend the beam out from the source and then down
into the vertical section. For the same reasons, the spiral inflector which
bends the beam into the mid-plane of the cyclotron cannot be included. Also,
since correlations are neglected, the main magnet fringe-field which acts like
a solenoidal field cannot be modelled either. This field rotates the beam
axially while the beam travels down the vertical section into the cyclotron.

First I start by tracking the beam through the electrostatic quadrupole
lattice. This will let us check the numerical stability of the scheme. I then
include a model for the first and second harmonic bunchers to compare the
results to a one dimensional code SPUNCH written by Baartman Ref. [28]
to study the process of bunching in the injection system to the TRIUMF
Cyclotron.

4.2.1 Matched Quadrupole Lattice

To verify the numerical stability of the algorithm, I test the long-term track-
ing behaviour through a periodic quadrupole lattice. This calculation tracks
500 µA of 300 keV protons through a periodic lattice of electrostatic quadrupoles.
The parameters of the quadrupoles are chosen to be the most common species
found in the ISIS beamline. The quadrupoles have an aperture radius of
2.54 cm and a length of 12.08 cm, they are placed 25.0 cm apart. The voltage
is set to ±3.5 kV on the vanes and they are wired in a focus-drift-defocus-
drift pattern. One period of this lattice consists of one focus and one defocus
quadrupole.
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The on-axis fields of the quadrupoles are modelled using a one-parameter
Enge function. That is the quadrupole strength is a soft-edge model where
the edge is parametrized by:

k(z) =
1

2

(
1 + tanh

(
a0z

4ra

))
, (4.4)

for an edge at z = 0. The variable ra is the aperture radius of the quad and
a0 is the lowest order Enge parameter, which parametrizes the slope of the
fringe field. The 3D potential for the quad is then:

V (x, y, z) = G0(x
2 − y2) [k(z + L/2)− k(z − L/2)] , (4.5)

where G0 is the electric field gradient and L is the length of the quad. The
quads are modelled with the Enge parameter a0 = 6.5169.

To model a direct current beam the self-potential is taken to be periodic in
the longitudinal direction where the period is the length of one quadrupole
lattice period. The distribution of macro-particles is randomly uniformly
distributed over the length of one lattice. The longitudinal momentum is
derived from the energy expression given by a thermal distribution for one
degree of freedom at 2000 ◦C in addition to the initial accelerating potential
of 300 kV. Since some macro-particles are initialized inside quadrupoles,
the potential energy for those is taken into account as well. The matched
distribution is calculated using TRANSOPTR and then used to initialize the
transverse moments of the macro-particles. The calculation uses 1920 macro-
particles and 64 grid points. Which is 30 macro-particles per grid point.
The second order Stromer Verlet scheme is used with a step size which is
equivalent to 50 steps per period.

Figure 4.7 shows the envelope, or transverse beam size over the first 5
periods of the lattice compared to the 2D moment code TRANSOPTR. The
envelopes show excellent agreement. Figure 4.8 plots the emittance growth
relative to the initial emittance over the integration interval. The emittance
in each transverse direction is conserved precisely, as it is an exact conserved
quantity of the discretization scheme. The longitudinal emittance grows
sharply initially before fluctuating about 5 % to 8 % of the initial value. The
initial growth is explained by the initial randomly sampled distribution hav-
ing some structure that is inconsistent with a thermalized distribution. Once
the distribution is thermalized, it reaches stability.
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Lastly, Figure 4.9 plots the longitudinal phase space portraits at the first,
half-way and final view screen locations along the lattice. The colour of
the points indicates the estimated local density in phase space, with lighter
colours being more dense. The distribution maintains the appropriate shape
and scale.
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Figure 4.7: The cross-sectional width, the one standard deviation width,
over the first 5 periods of the lattice. Above is the width in the x-direction
and below is the negative width in the y-direction. This layout highlights
the feature of matched distributions in a FODO lattice, having a constant
cross-sectional area.
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Figure 4.8: The percentage relative emittance growth in each direction is
plotted over the integration time. The observations are measured by a sim-
ulated view screen placed at the end of each cell. The transverse emittance
is conserved. The longitudinal emittance grows initially and then fluctuates
but remains bounded.
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Figure 4.9: Longitudinal phase space portraits of the beam at three view
screens placed at the end of the first, cell the five-hundredth cell and the
one-thousandth cell (respectively from top to bottom). Each point is an
individual macro-particle phase space location, the colour indicates a local
approximate density of macro-particles.
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4.2.2 Quadrupole Lattice with Bunching

Comparing the results to a one dimensional code SPUNCH written by Baart-
man [28] to study the process of bunching in the injection system to the
TRIUMF Cyclotron. This code tracks the momentum and phase of many
uniform discs of charge, but cannot track the transverse envelope; the discs
are artificially given a fixed radius. The model can track the bunch through
drifts and idealized thin-lens bunchers. The forces between the discs are de-
rived from an analytic expression which includes the effect of the beam pipe.
Mirror charge terms are included in the longitudinal direction.

Buncher Model

Since the model only requires linearised transverse fields I choose to use an
expanded three dimensional potential, with azimuthal symmetry. Assuming
that the value of the potential has been specified exactly along the central
axis by a function ϕ(z) and that it satisfies the Laplace equation in free
space, then the potential has approximate form [29]:

Φ(r, z) = ϕ(z)− r2

4

d2ϕ(z)

dz2
+O(r4) . (4.6)

To compute the on-axis potential, the bunchers are modelled using OPERA-2D

based on the original design drawings. The model is shown in Figure 4.10.
The longitudinal on-axis electric field of each buncher is computed at a fixed
voltage, in this case 1 kV. The code then appropriately splines and scales the
resulting electric potentials to a varying radio-frequency voltage. The relative
phases and transit time factors are computed numerically by integrating the
equation of motion of an on-axis non-relativistic reference particle through
the bunchers.
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Figure 4.10: The OPERA-2D model of the second harmonic buncher in the
radial-longitudinal plane with azimuthal symmetry. The central drift tube is
held at a fixed voltage and the equipotential lines in free space are plotted
over the geometry. Vacuum is drawn in the grey regions and metal in red.
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Code Comparison

Since the bunchers have two gaps, the particles gain energy from twice the
effective voltage. In SPUNCH, however the idealized thin buncher imparts a
sinusoidal energy gain from a given voltage. The buncher voltage of SPUNCH
is hence related to the hybrid algorithm by the following:

VSPUNCH = 2TVhybrid , (4.7)

where T is the dimensionless transit time factor that depends on the normal-
ized velocity β, the phase of the RF and the geometry of the gap.

Similar to the quadrupole lattice section this example tracks 500 µA of
300 keV H− ions. The quadrupole lattice is held at the same ±3.5 kV. The
lattice is now 28 periods long with the first buncher placed after the first cell
and the second harmonic buncher placed after the seventh cell. The relative
distances between the bunchers and the end is equal to the spacing in the
ISIS beam line.

For the hybrid implementation, the macro-particles are initialized as in
the previous section. The transverse moments of the macro-particles are
initialized to the matched solution for the focussing lattice. The initial lon-
gitudinal phase space is randomly uniformly distributed over the length of
one period of the first harmonic, instead of the quadrupole lattice. The lon-
gitudinal momentum spread is given by a thermal distribution at 2000 ◦C.
The analogous SPUNCH distribution is initialized over one period of the first
harmonic with an equivalent momentum spread. To make the comparison as
close as possible, the transverse beam size parameter in the input to SPUNCH

is computed from the output of the hybrid code.
The hybrid method is initialized with 1860 macro-particles and 62 self-

potential grid points. The SPUNCH calculation is run with 500 discs, the
maximum due to memory constraints of the computer when it was imple-
mented.

To compare the two codes the bunchers are run with the same param-
eters V1 = 4.740 kV and V2 = −2.450 kV which is a result of a previous
SPUNCH optimization by Baartman and Rao Ref [30]. Figure 4.11 shows the
beam envelope produced by the hybrid algorithm. The transverse beam en-
velope is the time-integrated width of the beam, one standard deviation, at
a particular location. The longitudinal beam envelope is tracked over the
integration time. For consistent plotting it is plotted against the longitudi-
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nal position of the centre of mass. Figure 4.12 compares the phase space
portraits, produced by the two codes, at regularly spaced locations along the
beam line. The phase space is observed at a fixed location at the end of
the indicated quadrupole lattice period. The final phase space distribution
from Figure 4.12 produced by the hybrid code is shown in Figure 4.13 with
additional histograms for the one dimensional projections.

The phase space portraits show excellent agreement, with all of the same
features present with identical scales. Note that the difference in macro-
particle number may make the local density difficult to compare visually.
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Figure 4.11: The cross-sectional, one standard deviation width, over the
lattice. Top is the width in the x-direction, middle is the width in the
y-direction, bottom is the longitudinal width. The buncher locations are
indicated by the vertical red lines.
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the indicated period. The left column is the code SPUNCH compared to the
hybrid implementation in the right column. The last portrait corresponds to
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Chapter 5

Conclusions

This model is the first in accelerator physics used to study conversion of a DC
beam into a bunched one, that reduces the complexity in some dimensions
by linearisation, instead of reducing the dimension. Models with reduced
dimension, cannot self-consistently include the effects of the transverse dy-
namics. Compared to a full 3D macro-particle code, this method is able
to describe the relevant three dimensional dynamics but with many fewer
macro-particles. It also requires a significantly less detailed description of
the optics.

The variational approach to deriving discrete systems of equations pro-
duces algorithms with many desirable traits. This approach was able to serve
as a common mathematical language describing both moment and macro-
particle algorithms.

The method of moment expansion reduces the number of model inputs,
and thus, model input error significantly. For example, the quadrupole model
required only four discrete parameters per quadrupole. The bunchers were
modelled in greater detail, with the electric field on-axis given as a field map.
The reduction in the total number of inputs to a simulation reduces friction
for the users of the code. The lesser friction can mean faster prototyping and
less time spent debugging.

The macro-particle discretization scheme is very useful for detailed mod-
elling of non-linear effects. The statistical limitations for requiring high num-
bers of macro-particles can be lessened by reducing the number of phase space
dimensions that are discretized in this way.

The as-implemented algorithm is inadequate for fully modelling most real-
istic systems. The hybrid macro-particle discretization scheme has potential
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for making useful codes. The extensions of the macro-particle discretization
scheme from the current set of assumptions to a relativistic beam, off-axis
with cross-dimension correlations will be the topic of future work.

Further investigation should be done on the feasibility of extending the
field solver to curved reference trajectories with off-axis particles. The deci-
sion to sacrifice the symplecticity of the system, by making the external field
approximation, led to grid-heating, a flaw of many particle-in-cell codes.
Future investigations into alternate schemes should seek to maintain sym-
plecticity to avoid this.
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Appendix A

Hamiltonian Formulation of the
Vlasov Poisson System

A.1 Calculus of Variations

In discrete classical mechanics, our quantities of interest are functions of time
which are the solutions to ordinary differential equations. In Hamiltonian
mechanics, these differential equations are Hamilton’s equations which are
partial derivatives of the Hamiltonian.

In the variational formulation of the Vlasov system, our quantities of in-
terest are fields: multivariate functions which are the solutions to partial dif-
ferential equations. The systems of partial differential equations are produced
by a generalized set of Hamilton’s equations using functional derivatives.

Functionals can be understood as maps from functions to numbers, of-
ten expressed as an integral. The functional derivative calculates how the
functional varies when its dependent function changes.

The functional derivative exhibits the familiar properties of linearity and
has an associated chain rule and product rule. For the extension of mechanics
to classical field theory, see Landau and Lifshitz Ref. [31]. For a helpful
resource on properties of more complicated of functional derivatives, refer to
the first appendix of the book by Engel and Dreizler Ref. [32]. The following
section reviews the few properties of the functional derivative used in this
thesis.
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A.1.1 Functional Derivatives

Consider a general functional J [g] that depends on the multivariate function
g(x) that maps Rn to R. The functional is an integral over the domain D in
Rn and can be written as:

J [g] =

∫
D

dnxL(g,∇xg, . . . ,x) , (A.1)

where L(g,∇xg, . . . ,x) is called the Lagrangian density of J [g], in this case
it just refers to the fact that it is the integrand of the functional. It may
have explicit dependence on x, g(x), and any number of its higher partial
derivatives.

To find the variational derivative of J [g] with respect to g(x), we consider
a general function η(x). If the function vanishes at the boundary:

η(x)|∂D = 0 , (A.2)

then we may add it as a small perturbation in g. Let us parametrize the
size of the perturbation by ε, a small positive real number. The functional
derivative is defined implicitly by:∫

D
dnx

δJ

δg
η(x) =

d

dε
J [g + εη]

∣∣∣∣
ε=0

, (A.3)

where δJ
δg

is the functional derivative, it does not depend on η(x).
Throughout this thesis the only functionals of interest are functionals of

the particle density function f(x,p, t), with no dependence on its derivatives.
Consider such a functional J [f ], it can be written:

J [f ] =

∫
P

d3x d3p f(x,p, t)j(x,p, t) , (A.4)

where j(x,p, t) a function of phase space variables and P is some phase-space
volume. Since we assume the functional has no dependence on any partial

78



derivatives of f , it follows:∫
P

d3x d3p
δJ

δf
η(x,p) =

d

dε
J [f + εη]

∣∣∣∣
ε=0

=
d

dε

∫
P

d3x d3p (f(x,p, t) + εη(x,p, t)) j(x,p, t)

∣∣∣∣
ε=0

=

∫
P

d3x d3p j(x,p, t)η(x,p, t) .

(A.5)
From the implicit definition, (A.3) the functional derivative is the phase space
function:

δJ

δf(x,p, t)
= j(x,p, t) . (A.6)

Consider the expression: f(x′,p′, t), the density function evaluated at a
specified point. It may be written as a functional in the form of J [f ] using
Dirac δ-functions:

f(x′,p′, t) =

∫
P

d3xd3p f(x,p, t)δ(3)(x− x′)δ(3)(p− p′) . (A.7)

Now, using (A.6) to directly write the functional derivative:

δf(x′,p′, t)

δf(x,p, t)
= δ(3)(x− x′)δ(3)(p− p′) . (A.8)

The relations (A.6) and (A.8) will be used commonly throughout this
thesis. The other properties we will need for calculating functional derivatives
are the chain rule and the product rule. The product rule is given by A.29
from the texbook of Engel and Dreizler [32] which follows.

δ(J1J2)

δg(x)
=

δJ1
δg(x)

J2 + J1
δJ2
δg(x)

(A.9)

for functionals J1[g] and J2[g].
The chain rule is much more complicated because of the many possible

ways functionals may be nested. For our case, however, consider that the
functional J [g(x)] maps the functions g(x) to the real numbers. Since J is
real number valued we may construct a function of J , written F (J [g(x)]),
which through its dependence on J , is also a functional with respect to g(x);
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expressed as F [g(x)]. The variational derivative with respect to g(x) is then:

δF [g]

δg(x)
=
∂F (J)

∂J

δJ [g]

δg(x)
, (A.10)

which follows from A.38 from Engel and Dreizler [32]. This has the familiar
form of a normal function chain rule.

A.2 Continuous Equations of Motion

To find the set of continuous equations of motion of this system, consider the
density function at a particular point f(x′,p′, t). Since the Poisson bracket
is bilinear, the equation of motion simplifies to:

∂f(x′,p′, t)

∂t
= {f(x′,p′, t),Hp}+ {f(x′,p′, t),Hφ} . (A.11)

Firstly, for the kinetic energy term of the Hamiltonian, we have:

{f(x′,p′, t),Hp} =

∫
d3x d3p f(x,p)

[
δf(x′,p′, t)

δf(x,p, t)
,

δHp

δf(x,p, t)

]
. (A.12)

The first functional derivative is identically (A.8). To compute the second
functional derivative recall (A.6), to find:

δHp

δf(x,p, t)
=

p2

2m
, (A.13)

then the Poisson bracket is:

{f(x′,p′, t),Hp} =

∫
d3x d3p f(x,p)

[
δ(3)(x− x′)δ(3)(p− p′),

p2

2m

]
.

(A.14)
Computing the canonical Poisson bracket yields:

=

∫
d3x d3p f(x,p)

(
δ(3)(p− p′)∇xδ

(3)(x− x′) · p

m

)
. (A.15)

Then, integrating by parts to move the gradient from the delta function and
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dropping the boundary term, simplifies to:

= −
∫

d3x d3p δ(3)(p− p′)δ(3)(x− x′)∇xf(x,p) · p

m
. (A.16)

The δ-functions are then integrated over to find:

{f(x′,p′, t),Hp} = −p′

m
· ∇x′f(x′,p′) , (A.17)

the drift term in the Vlasov equation.
Now, to look at the contribution from the self-field. The first functional

derivative is the same as before, the second functional derivative is more
complicated this time so, breaking down the steps. Consider:

δHφ

δf(x,p, t)
=

− q2

2ε0

δ

δf(x,p, t)

∫
d3x′ d3x′′ d3p′ d3p′′G(x′,x′′)f(x′,p′, t)f(x′′,p′′, t) .

(A.18)

The functional derivative will commute with the integrals and the Green’s
function. So, the variational derivative will apply to only the two f terms.
Note that the two instances of f each have different arguments than f(x,p, t).
So, the rule for taking derivatives in (A.6) is not directly applicable. Instead,
the product rule, (A.9), can be used along with (A.8) as follows.

δ (f(x′,p′, t)f(x′′,p′′, t))

δf(x,p, t)
=

(
δf(x′,p′, t)

δf(x,p, t)
f(x′′,p′′, t) + f(x′,p′, t)

δf(x′′,p′′, t)

δf(x,p, t)

)
= δ(3)(p− p′)δ(3)(x− x′)f(x′′,p′′, t) + δ(3)(p− p′′)δ(3)(x− x′′)f(x′,p′, t) .

(A.19)

Putting this result back into (A.18), integrate over the δ-functions giving:

= − q2

2ε0

∫
d3x′′ d3p′′ f(x′′,p′′, t)G(x,x′′)− q2

2ε0

∫
d3x′ d3p′f(x′,p′, t)G(x′,x) .

(A.20)
To further simplify, use the fact that the Green’s function of the Poisson
equation is symmetric. See Section 9.7 of the textbook by Arfken and Weber
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Ref. [22]. Therefore, re-label one of these terms to become identical to the
other, combining them to find:

δHφ

δf(x,p, t)
= −q

2

ε0

∫
d3x′′ d3p′′f(x′′,p′′, t)G(x,x′′) = qφ(x, t) , (A.21)

this is (1.11), the definition of the electrostatic potential written in terms of
the Green’s function. From here onwards, we will use φ(x, t) to denote the
self-field.

Now, the equation of motion of f from this Hamiltonian will be:

{f(x′,p′, t),Hφ} =

∫
d3x d3p f(x,p, t)

[
δ(3)(x− x′)δ(3)(p− p′), qφ(x, t)

]
= −q

∫
d3x d3p f(x,p, t)δ(3)(x− x′)∇pδ

(3)(p− p′) · ∇xφ(x, t) .

(A.22)
Integrating by parts and dropping the boundary term once again gives:

= q

∫
d3x d3p δ(3)(x− x′)δ(3)(p− p′)∇pf(x,p, t) · ∇xφ(x, t) (A.23)

Then, integrating over the δ-functions,

{f(x′,p′, t),Hφ} = q∇x′φ(x, t) · ∇p′f(x′,p′, t) . (A.24)

which describes the force from the self-potential acting on the charge distri-
bution.

The final equation of motion is then found by substituting the results
(A.17) and (A.24) into (A.11) to find:

∂f(x′,p′, t)

∂t
= −p′

m
· ∇x′f(x′,p′) + q∇x′φ(x′, t) · ∇p′f(x′,p′) . (A.25)

Now, since the choice of test coordinate was arbitrary, we recover the Vlasov
Poisson system.

∂f

∂t
+

p

m
· ∇xf − q∇xφ · ∇pf = 0 . (A.26)

Thus, the variational formulation of the Vlasov Poisson system contains the
physics of the Vlasov Poisson system.
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Appendix B

Poisson Systems

The process of discretization is one by which the continuous system is reduced
to a finite set of discrete equations. This chapter covers how such a reduction
may be done using the Poisson bracket formalism for both canonical and non-
canonical systems. This section follows from Chapter VII of the textbook
“Geometric Numerical Integration” by Hairer; Ref. [25].

This chapter starts by presenting the basic theory of general Poisson
systems. I then show that discretizing the continuous Vlasov Poisson sys-
tem gives a discrete general Poisson system with respect to the discrete co-
ordinates. In Section B.1.1, I show that the macro-particle discretization
presented in Section 2.2 has a canonical Hamiltonian structure. Lastly, in
Section B.2 I show the derivation of the Poisson structure matrix used in the
moment discretization method Section 2.3.

B.1 Hamiltonian and Poisson systems

Canonical Poisson Bracket

Let us start with the Poisson bracket of a canonical Hamiltonian system
with N discrete degrees of freedom. For such a canonical system, consider
the phase-space coordinates to be y = (x1, x2, . . . , xN , p1, p2, . . . , pN) where
the positions xi are canonically conjugate to the momenta pi for all i =
1, 2, . . . , N . The Poisson bracket can be written:

{F,G} =
N∑
i=1

(
∂F

∂xi

∂G

∂pi
− ∂F

∂pi

∂G

∂xi

)
. (B.1)
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Alternatively, this can be expressed using vector notation with respect to the
2N -dimensional phase-space vector y as:

{F,G} = (∇yF )T · J · ∇yG , (B.2)

where the matrix J is called the ‘structure matrix’ given by,

J =

[
0 I
−I 0

]
, (B.3)

and I is the N -dimensional identity matrix. The matrix J is known as the
symplectic matrix.

For a given Hamiltonian, H(y), the equations of motion are then:

dy

dt
= {y,H(y)} = (∇yy)T · J · ∇yH(y) = J · ∇yH(y) . (B.4)

General Poisson Bracket

A general Poisson structure is one defined with a structure matrix that is not
J but where the important properties of the Poisson bracket are maintained.
Let the vector of non-canonical coordinates be y. The generalized Poisson
bracket is then given by:

{F,G} = (∇yF )T ·B(y) · ∇yG , (B.5)

where B(y) is the general structure matrix, which may be a function of the
state of the system. For such a system, the individual elements Bij(y) may
be found by taking:

{yi, yj} = Bij(y) , (B.6)

where yi and yj are ith and jth components of y and Bij(y) is the component
of the ith row and jth column of the matrix B(y).

However, there are some restrictions on the matrix B(y). Lemma 2.3 of
Hairer in Ref. [25] states that for this to be a valid Poisson bracket structure
B(y) must be anti-symmetric, that is:

Bij(y) = −Bji(y) , (B.7)
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and it must satisfy the following equation relating to Jacobi’s identity:

N∑
l=1

(
∂Bij(y)

∂qj
Blk(y) +

∂Bjk(y)

∂ql
Bli(y) +

∂Bki(y)

∂ql
Blj(y)

)
= 0 , (B.8)

for all indices i, j, k ranging from 1 to N . For a given matrix, these may be
shown straightforwardly using symbolic algebra software.

The equations of motion, for a given Hamiltonian, H(y), are then:

dy

dt
= {y,H(y)} = (∇yy)T ·B(y) · ∇yH(y) = B(y) · ∇yH(y) , (B.9)

which is very similar to the canonical Hamiltonian equations of motion.

B.1.1 Vlasov Poisson Discretization

This section derives the explicit form of the Poisson structure matrix that
comes from discretizing the continuous Vlasov Poisson system. Discretization
involves approximating the continuous state of the system by a finite number
of coordinates. The choice of these coordinates is specific to the particular
approach, but will remain general for this section. It is important to note that
these coordinates must be representable as functionals of the particle density
function. Since the coordinates are functionals, one can use the Poisson
bracket of the continuous system to find the equations of motion for the
discrete system. To simplify working with the discrete system, the Poisson
bracket can be expressed in terms of the new closed system of coordinates.
This Poisson bracket highlights the underlying canonical structure of the
non-canonical coordinates.

Reduced Poisson Bracket

Assume that a general functional F [f ], by some means, may be written in
terms of our discrete variables, labelled with the vector y. That is: F [f ] =

F̃ (y). If each of the components of y are functionals of f , that is yi[f ] for all
i. Then we may use the chain rule of functional derivatives given by (A.10)
to expand:

δF

δf
=
∂F̃

∂y
· δy
δf

=
∑
i

∂F̃

∂yi

δyi
δf

. (B.10)
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This may be substituted into the Poisson bracket, (1.6) and simplified:

{F,G} =

∫
d3x d3p f(x,p, t)

[
δF

δf
,
δG

δf

]
=

∫
d3x d3p f(x,p, t)

[∑
i

∂F̃

∂yi

δyi
δf
,
∑
j

∂G̃

∂yj

δyj
δf

]

=

∫
d3x d3p f(x,p, t)

∑
ij

∂F̃

∂yi

∂G̃

∂yj

[
δyi
δf
,
δyj
δf

]

=
∑
ij

∂F̃

∂yi

∂G̃

∂yj

∫
d3x d3p f(x,p, t)

[
δyi
δf
,
δyj
δf

]

=
∑
ij

∂F̃

∂yi

∂G̃

∂yj
{yi, yj} ,

(B.11)

where the derivation used the fact that, F̃ (y) and G̃(y) did not depend on
the canonical coordinates (x,p) as well as the bilinear property of the Pois-
son bracket. This is the explicit form of (B.5), the general Poisson bracket
structure. We see that the components of the Poisson structure matrix are
given by:

Bij = {yi, yj} , (B.12)

as shown in the previous section. This shows how the continuous Poisson
bracket becomes a general Poisson system when discretized.

Using this property, we only need to use the continuous Poisson bracket
once to compute the Poisson structure matrix. Then, we can use the gen-
eral Poisson structure matrix to compute equations of motion in much more
simple manner.

B.2 Reduced Macro-particle Poisson Bracket

For the one-dimensional macro-particle methods presented in Section 2.2
the Poisson bracket may be simplified using the discretization scheme (2.6).
Since the macro-particles define separate groups that only interact through
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the self-field, the Poisson bracket becomes a sum over the macro-particles:

{F,G} =
∑
i

∫
dx dp fi(x, p, t)

[
δF

δfi
,
δG

δfi

]
, (B.13)

where each macro-particle has a separate Poisson bracket.
Since this discretization scheme is an explicit representation of the density

function f(x, p, t), then for any functional, F [f ] we may directly substitute
(2.6) into the functional F [f ]. After substitution F [f ] becomes the function

F̃ (w1, . . . wNp , x1, , . . . xNp , p1, . . . , pNp), simply denoted F̃ . This process of
discretization reduces functionals which are integrals over probability density
functions to sums over the macro-particles.

First note that the discrete coordinates can be written as functionals of
fi:

wi =

∫
dx dp fi(x, p, t) ,

xi =
1

wi

∫
dx dp fi(x, p, t)x ,

pi =

∫
dx dp fi(x, p, t) p .

(B.14)

That is wi is the total number of particles contained in each macro-particle.
The coordinate xi is the centroid of the macro-particle, and pi is the aver-
age momentum of the macro-particle multiplied by the total number of real
particles it contains; it is the mechanical momentum of the macro-particle.

The remaining variational derivatives may be computed given that the
new coordinates depend on fi as functionals, as shown by (B.14). Firstly,
the macro-particle weight:

δwi
δfi

=
δ

δfi

(∫
dx dp fi(x, p, t)

)
= 1 , (B.15)

directly from (A.6). Similarly, the momentum:

δpi
δfi

=
δ

δfi

(∫
dx dp fi(x, p, t) p

)
= p . (B.16)

Note that xi depends on a product of the normalizing factor and another
functional, this requires using the product rule. But first, the functional
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derivative of the normalizing factor 1/wi can be computed using the chain
rule. It follows:

δ(1/wi)

δfi
=
∂(1/wi)

∂wi

δwi
δfi

= − 1

w2
i

. (B.17)

where we used (B.15) to simplify. Each functional derivative is either given
by (B.17) or (A.6) which gives:

δxi
δfi

=

(∫
dx dp fi(x, p, t)x

)
δ(1/wi)

δfi
+

1

wi

δ

δfi

(∫
dx dp fi(x, p, t)x

)
= − 1

w2
i

(∫
dx dp fi(x, p, t)x

)
+

1

wi
x

=
x− xi
wi

,

(B.18)
where I substituted the definition of xi. These explicit variational deriva-
tives can now be used to compute the Poisson bracket between each of the
coordinates.

Trivially, since the Poisson bracket between any functionals of fi and fj
where i 6= j is zero, only the following may be non-zero:

{wi,wi} , {wi,xi} , {wi,pi} ,

{xi,wi} , {xi,xi} , {xi,pi} ,

{pi,wi} , {pi,xi} , {pi,pi} .

(B.19)

However, recall that the non-canonical Poisson bracket is written using a
canonical Poisson bracket with respect to x,p. Using this fact, the canonical
Poisson bracket of wi will yield zero. Thus, wi is a constant of motion. Also,
the Poisson bracket of a quantity with itself is identically zero. Which leaves:

{xi,pi} , {pi,xi} . (B.20)
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Computing these explicitly, we have:

{xi, pi} =
∑
j

∫
dx dp fj(x, p, t)

[
δxi
δfj

,
δpi
δfj

]
=

∫
dx dp fi(x, p, t)

[
x− xi
wi

, p

]
=

1

wi

∫
dx dp fi(x, p, t) [x, p]

=
1

wi

∫
dx dp fi(x, p, t)

= 1 .

(B.21)

{pi, xi} =
∑
j

∫
dx dp fj(x, p, t)

[
δpi
δfj

,
δxi
δfj

]
=

∫
dx dp fi(x, p, t)

[
p,
x− xi
wi

]
=

1

wi

∫
dx dp fi(x, p, t) [p, x]

=
1

wi

∫
dx dp fi(x, p, t)(−1)

= −1 .

(B.22)

The results may be expressed as:

{xi, pj} = δij , {pi, xj} = −δij , (B.23)

which means that xi is canonically conjugate to pi.
So, the fully simplified Poisson bracket is expressed as:

{F,G} =
∑
i

(
∂F̃

∂xi

∂G̃

∂pi
− ∂F̃

∂pi

∂G̃

∂xi

)
, (B.24)

which is the canonical Poisson bracket for discrete particles. This Poisson
bracket is relatively general, since the macro-particle shape function, R(x)
has an arbitrary form. Also, note that the simplification of this Poisson
bracket did not involve the Hamiltonian. The next step will be to see how
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this mathematical structure may be used to derive well known algorithms for
specific choices of the Hamiltonian.

B.3 Reduced Moment Poisson Bracket

The structure matrix, (2.51) is derived by taking the continuous Poisson
bracket, (2.2) of each pair of coordinates. Before proceeding with calculation,
note that each of the moments is a simpler phase-space function so (A.6) can
be used to compute the functional derivative. This will leave the canonical
Poisson bracket between each of these second order polynomial phase space
functions. Since the canonical Poisson bracket is skew symmetric the diagonal
terms will be zero. The upper triangular components of the matrix will differ
from the lower triangular components by a sign. Hence, only three terms need
to be computed.

{〈x2〉, 〈xp〉} =

∫
dx dp f(x, p, t)

[
x2, xp

]
=

∫
dx dp f(x, p, t) 2x2

= 2〈x2〉 ,

(B.25)

{〈x2〉, 〈p2〉} =

∫
dx dp f(x, p, t)

[
x2, p2

]
=

∫
dx dp f(x, p, t) 4xp

= 4〈xp〉 ,

(B.26)

{〈xp〉, 〈p2〉} =

∫
dx dp f(x, p, t)

[
xp, p2

]
=

∫
dx dp f(x, p, t) 2p2

= 2〈p2〉 .

(B.27)
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Appendix C

Self-Field Implementation
Details

C.1 Uniform Finite Element Discretization

The potential is discretized in the longitudinal direction by depositing it onto
a set of basis functions. I choose to use linear finite elements which interpolate
with second order accuracy in the grid spacing. The basis function ψn(z)
centred about zn is:

ψn(z) =

{
1− |z−zn|

h
, |z − zn| < h/2

0, otherwise
, (C.1)

where h is the width of the basis function and zn is the centre of the nth grid-
point. The arrangement of the basis functions is illustrated in Figure C.1.

C.1.1 Boundary Conditions

Consider the longitudinal domain to be given over an interval from z ∈ [0, L].
The most commonly used boundary conditions in such a basis is the Galerkin
method where the configuration of node points is shown in Fig. C.2. The
node points are labelled zn where n = 1, 2, . . . , Ng and the open node points
denote the absence of nodes on the boundary. Since the potential is exactly
zero at z = 0 and z = L this corresponds to metallic walls at these points.
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z

1/h
ψi−1(z) ψi(z) ψi+1(z)

h

zi−1 zi zi+1

Figure C.1: Illustration of the basis of linear finite elements.

z = 0 z = L

z1 z2 . . . zNg−1 zNg

Figure C.2: Uniform grid with metallic boundary conditions. The nodes at
the boundary are set to zero.

In accelerator physics, longitudinally metallic boundaries are not often
useful as the beam travels through an open unobstructed pipe. However, by
taking L to be large compared to the charge distribution we may approximate
the potential in free space.

For other problems in accelerator physics, the beam has some periodic
structure longitudinally, so a useful set of boundary conditions is periodic.
The node configuration to construct a periodic grid with length L is shown
in Fig. C.3. The open node locations denote the nearest neighbours on either
side of the interval.

zNg z1z1

z = 0

z2 . . . zNg−1 zNg

z = L

Figure C.3: Uniform grid with periodic boundary conditions. The nodes
to the left and right of the interval are identified with nodes inside of the
interval.

Choosing either set of boundary conditions will determine the specifics of
the node mass and differentiation matrices. We will look at these in the next
section.
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C.1.2 Mass and Stiffness Matrices

Recall (3.21), the components arising from substituting the finite elements
into the Lagrangian. Let us consider these components to define two square
matrices M and D which are Ng × Ng real matrices. M may be identified
as a mass matrix and D a stiffness matrix which has the interpretation of a
second order central finite difference.

The explicit form of M and D for the linear finite elements are symmetric
tri-diagonal matrices with components:

Mnm =

(
1

6
δn,m+1 +

2

3
δn,m +

1

6
δn,m−1

)
, (C.2)

Dk` = (−δn,m+1 + 2δn,m − δn,m−1) , (C.3)

for the case of metallic boundary conditions. The periodic boundary condi-
tions have additional terms:

Mperiodic
nm = Mnm +

1

6

(
δn,1δm,Ng + δn,Ngδm,1

)
, (C.4)

Dperiodic
k` = Dk` −

(
δk,1δ`,Ng + δk,Ngδ`,1

)
, (C.5)

these are interaction terms between the first and last node. In matrix form
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these are tri-diagonal matrices:

M =
1

6



4 1
1 4 1

1 4 1
. . .

1 4 1
1 4 1

1 4


, (C.6)

D =



2 −1
−1 2 −1

−1 2 −1
. . .

−1 2 −1
−1 2 −1

−1 2


, (C.7)

as well as the periodic matrices, with additional coupling terms on the main
skew diagonal:

Mperiodic =
1

6



4 1 1
1 4 1

1 4 1
. . .

1 4 1
1 4 1

1 1 4


, (C.8)

Dperiodic =



2 −1 −1
−1 2 −1

−1 2 −1
. . .

−1 2 −1
−1 2 −1

−1 −1 2


, (C.9)

where the other components are zero.
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To solve the system we need to simultaneously diagonalize M and D. If
two matrices commute, then we can simultaneously diagonalize them.

Let us determine if these matrices commute. Note that M and D are
symmetric matrices. If we assume that their product MD is symmetric
then:

MD = (MD)T = DTMT = DM , (C.10)

the two matrices commute. So to verify for both metallic and periodic bound-
ary conditions the matrix product was computed for arbitrary grid size using
symbolic algebra software.

Firstly, the metallic boundary condition product is:

(MD)nm =
∑
k

MnkDkm

=

(
−Ng

6
δn,m+1 +

4Ng

3
δn,m −

Ng

6
δn,m−1

)
,

(C.11)

as for the periodic boundary condition matrices, it is the same with additional
terms:

(MD)periodicnm = (MD)nm −
1

2

(
δn,1δm,1 + δn,Ngδm,Ng

)
+

1

6

(
δn,1δm,2 + δn,2δm,1 + δn,Ngδm,Ng−1 + δn,Ng−1δm,Ng

)
,

(C.12)
these are both symmetric tri-diagonal matrices. Therefore, for these sets of
boundary conditions M and D commute. This property is important for
simultaneously diagonalizing both matrices to solve the system.

Note that the simultaneous diagonalization of these matrices is not a
property that holds true for other sets of basis functions. The requirement
for simultaneous diagonalization may prevent this scheme to be generalized
to a higher order basis function or to other geometries.

C.2 Evaluating the Self-Field

To evaluate the self-potential requires solving a number of numerical convo-
lutions which will take the majority of the CPU time per integration step.
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C.2.1 Charge Density

Recall (3.30), the equation for the deposited charge density on node `. Sub-
stituting the discretization scheme for the particle density function gives:

ρ`(x
⊥) =

∑
i

wi

∫
d2p⊥f⊥i (x⊥,p⊥)

∫
dz R(z −Qzi)ψ`(z) , (C.13)

where the transverse spatial distribution is left general and the longitudinal
direction is discrete. As in Chapter 2, Section 2.3, to calculate the potential
values, we need to assume that the charge density has an explicit form.

The most straightforward assumption is that each macro-particle is uni-
formly distributed. Namely, consider the ith distribution to be a uniformly
distributed ellipse with the standard deviation in x and y being given by the
corresponding coordinates Qxi and Qyi respectively. Then:∫

d2p⊥f⊥i (x⊥,p⊥) = U(Qxi, Qyi,x
⊥) . (C.14)

The computational time complexity of evaluating the potential at a single
point is O(NpNg

2), with Np×Ng convolutions needing to be computed. This
is approximately equivalent to a full 3D spectral method. We would prefer
to have a 3D PIC-like scaling of O(Np + Ng

2) so we will use a different
assumption about the transverse density.

Instead, of each macro-particle having a definite shape, the transverse
distribution of the entire beam on each basis node is assumed to be uniform.
The total charge and transverse size of this uniform distribution is given by:

q` =
∑
i

qWi` , (C.15)

〈x2〉` =

∑
i(Qxi)

2Wi`∑
jWj`

, (C.16)

〈y2〉` =

∑
i(Qyi)

2Wi`∑
jWj`

, (C.17)

that is, q` is the charge at grid point `, and 〈x2〉` and 〈y2〉` are the moments
of the overall uniform distribution at that grid point. We call the matrix W,
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the longitudinal weight matrix defined by:

Wi` = wi

∫
dz R(z −Qzi)K(z − z`) . (C.18)

So the charge density at each node is:

ρ`(x
⊥) = q`U(〈x2〉`, 〈y2〉`,x⊥) . (C.19)

Using this charge density separates the sum over the particles in the field
evaluation into a deposition step, which takes O(Np), so this does scale like
O(Np + Ng

2). Now with Ng
2 convolutions needing to be computed, this

reduces in the number of convolutions needed overall.

C.2.2 Convolutions

Consider an uncorrelated, uniform, transverse charge distribution function
with half-width in the x-direction to be sx and the half-width the y-direction
to be sy. The total number of charges in this transverse distribution is N .
This distribution is given by:

ρ(x, y) =
N

πsxsy

[
1−Θ

(
x2

s2x
+
y2

s2y
− 1

)]
, (C.20)

where Θ(x) is the Heaviside step function:

Θ(x) =

∫ x

−∞
δ(x′)dx′ . (C.21)

The convolution that needs to be evaluated is:∫
d2x̃⊥ρ`(x̃

⊥)Ga(x
⊥, x̃⊥) . (C.22)

On-axis Self-Potential

Recall the external potential approximation described in Section 3.3. Since
the self-field was Taylor expanded we only need to evaluate the self-potential
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on-axis. This simplifies the integrals:∫
d2x̃⊥ρ`(x̃

⊥)Ga(0
⊥, x̃⊥)

=
N

2π2sxsy

∫
dxdyK0

(
ka
√
x2 + y2

)[
1−Θ

(
x2

s2x
+
y2

s2y
− 1

)]
. (C.23)

Transforming to normalized coordinates sxu = x and syv = y simplifies to:

=
N

2π2

∫
dudvK0

(
ka

√
s2xu

2 + s2yv
2
) [

1−Θ
(
u2 + v2 − 1

)]
. (C.24)

Now, transforming to polar coordinates (r, θ),

=
N

2π2

∫
drdθ rK0

(
rka

√
s2x cos2 θ + s2y sin2 θ

)[
1−Θ

(
r2 − 1

)]
. (C.25)

Integrating over r, gives the solution:

=
N

2π2

∫
dθ

1− a(θ)K1 (a(θ))

(a(θ))2
, (C.26)

where the function a(θ) is defined by:

a(θ) = ka

√
s2x cos2 θ + s2y sin2 θ , (C.27)

for simplicity. Notice, that if sx = sy, there is cylindrical symmetry, then
a(θ) is a constant and the integral is trivial. This integral is left to be done
numerically.

Second Transverse Derivatives of the Self-Field

Now, because of the external potential approximation described in Section 3.3
the the second transverse derivatives of the potential need to be computed
as well.

Note that (C.22), the integral between the charge distribution function
and the Green’s function, is a convolution. Hence, we may use the following
property of convolutions. Let f(x) and g(x) be functions, and ∗ be the
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convolution operation, then the derivative of their convolution is:

d

dx
(f ∗ g)(x) =

(
df

dx
∗ g
)

(x) =

(
f ∗ dg

dx

)
(x) , (C.28)

so we may write the second derivative as:

d2

dx2
(f ∗ g)(x) =

(
df

dx
∗ dg

dx

)
(x) . (C.29)

Notice that the derivative of the charge density function gives a Dirac δ-
function:

∂ρ(x, y)

∂x
= − N

πsxsy

2x

s2x
δ

(
x2

s2x
+
y2

s2y
− 1

)
. (C.30)

Also, the derivative of the source term of the Green’s function is a higher
order Bessel function:

∂Φa(x, y)

∂x
= − 1

2π
ka

x√
x2 + y2

K1

(
ka
√
x2 + y2

)
. (C.31)

Following the same procedure as with the on-axis potential. This integral
is transformed to normalized coordinates, then to polar coordinates. In this
case, the Dirac delta function makes the radial integral trivial, and we are
left with the following simplified angular integrals:[

∂2

∂x2

∫
d2x̃⊥ρ`(x̃

⊥)Ga(x
⊥, x̃⊥)

]
x⊥=0

=
N

2π2
k2a

∫
dθ cos2 θ

K1(a(θ))

a(θ)
,

(C.32)[
∂2

∂y2

∫
d2x̃⊥ρ`(x̃

⊥)Ga(x
⊥, x̃⊥)

]
x⊥=0

=
N

2π2
k2a

∫
dθ sin2 θ

K1(a(θ))

a(θ)
,

(C.33)

with the same a(θ) as before.

C.2.3 Computing the Image Charge

Recall (3.45), the image charge term in the Green’s function for metallic
boundary conditions with radius R. Taking the limit as either |y⊥| → 0 or
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|x⊥| → 0, yields the potential term:

Gimage(x, y) = lim
|x⊥|→0

−Φa
( |x⊥|

R

(
y⊥ − R2

|x⊥|2x⊥
))

= −Φa(R)

= − 1

2π
K0(kaR) .

(C.34)

Intuitively, this is a potential shift at the centre of the pipe by the total
charge deposited on the pipe. The fact that this term is a constant means
that computing the boundary conditions does not take appreciably more
computation time.

The transverse derivative terms simplify as well. Starting from the second
derivative of the image charge component of the Green’s function, then taking
the on-axis limit gives:

∂2Gimage

∂x2
(x, y) = − ka

2πR2

(
x2kaK0(kaR) +

(x2 − y2)
R

K1(kaR)

)
, (C.35)

∂2Gimage

∂y2
(x, y) = − ka

2πR2

(
y2kaK0(kaR) +

(y2 − x2)
R

K1(kaR)

)
. (C.36)

Integrating these terms against the charge density will give dependence on
the second moments in x and y, and a difference of the moments, which is a
quadrupole term.
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Appendix D

Analytic Potentials

D.1 Uniform Sphere of Charge

The natural test of the field solver is of a uniformly distributed sphere of
charge with total charge Q and radius R. To calculate the potential we refer
to Chapter 1 of Jackson [33] to write the free-space solution for an arbitrary
charge distribution:

Φ(x) =
1

4πε0

∫
dx′

ρ(x′)

|x− x′| , (D.1)

to take advantage of rotational symmetry we transform to spherical coor-
dinates, (r, θ, ϕ) where θ is the polar angle and ϕ is the azimuthal angle.
We put the centre of the sphere of charge at the origin. To transform the
volume integral, the determinant of the Jacobian is r2 sin θ. The distance
between the test point (r, θ, ϕ) and the integration point (r′, θ′, ϕ′) may be
simplified by orienting the axis such that that the test point lies on the z-axis
so θ = ϕ = 0. Then the distance between the test and integration point is:√

(r′)2 + r2 − 2r′r cos θ′ . (D.2)

Now, for a uniformly charged sphere, the charge density is the total charge
Q over the volume of the sphere with radius R:

ρ(r) =

{
3Q

4πR3 , r ≤ R

0, otherwise
. (D.3)
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Substituting these gives the volume integral over the sphere:

Φ(r) =
3Q

16π2ε0R3

∫ R

0

dr′
∫ π

0

dθ′
∫ π

−π
dϕ′

(r′)2 sin θ′√
(r′)2 + r2 − 2r′r cos θ′

, (D.4)

the integral over ϕ′ is trivial, leaving us with:

Φ(r) =
3Q

8πε0R3

∫ R

0

dr′(r′)2
∫ π

0

dθ′
sin θ′√

(r′)2 + r2 − 2r′r cos θ′
. (D.5)

To integrate over the polar angle, let u =
√

(r′)2 + r2 − 2r′r cos θ′ then,

du =
rr′ sin θ′√

(r′)2 + r2 − 2r′r cos θ′
dθ′ . (D.6)

The bounds of integration become
√

(r′)2 + r2 − 2r′r and
√

(r′)2 + r2 + 2r′r
for 0 and π respectively. Therefore the integration over the polar angle is as
follows:

Φ(r) =
3Q

8πε0R3

∫ R

0

dr′(r′)2
∫ √(r′)2+r2+2r′r

√
(r′)2+r2−2r′r

1

rr′
du

=
3Q

8πε0R3

∫ R

0

dr′
r′

r

(√
(r′)2 + r2 + 2r′r −

√
(r′)2 + r2 − 2r′r

)
,

(D.7)
where we may factor the arguments of the square roots to find:

Φ(r) =
3Q

8πε0R3

∫ R

0

dr′
r′

r
(|r + r′| − |r − r′|) , (D.8)

which may be simplified by considering the cases where r′ < r and r′ > r.
This splits the integral:

Φ(r) =
3Q

8πε0R3

(∫ r

0

dr′
2(r′)2

r
+

∫ R

r

dr′ 2r′
)

, (D.9)
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and finally integrating the polynomials in r′ this leaves us with:

Φ(r) =

{
Q

4πε0
1
R

(
3
2
− r2

2R2

)
, r ≤ R

Q
4πε0

1
r
, otherwise

. (D.10)

Now, consider the potential in Cartesian coordinates:

Φ(x, y, z) =


Q

4πε0
1
R

(
3
2
− x2+y2+z2

2R2

)
, r ≤ R

Q
4πε0

1√
x2+y2+z2

, otherwise
. (D.11)

Evaluating the potential along the z-axis gives:

ϕ(z) = Φ(0, 0, z) =

{
Q

4πε0
1
R

(
3
2
− z2

2R2

)
, r ≤ R

Q
4πε0

1
|z| , otherwise

. (D.12)

Now, the transverse derivatives along the z-axis are:

ϕxx(z) =
∂2

∂x2
Φ(x, y, z)

∣∣∣∣
x=y=0

=

{
− Q

4πε0
1
R3 , r ≤ R

− Q
4πε0

1
|z|3 , otherwise

. (D.13)

for x and ϕyy(z) is identical. The particles are uniformly distributed in z
with zero initial momentum in pz. The particle weight is given by the linear
charge density of the sphere:

λ(z) =
3Q

4

R2 − z2
R3

, (D.14)

the transverse moments are initialized according to the longitudinal position.

D.2 Uniform Cylinder of Charge

We now consider a uniform cylinder with total charge Q of length L and
radius R. In cylindrical coordinates, (r, θ, z) it is centred on the z-axis about

103



z = 0. The charge density:

ρ(r) =

{
Q

πR2L
, r ≤ R, |z| < L/2

0, otherwise
, (D.15)

and the Jacobian for cylindrical coordinates is r′. Once again let, r, z define
the location of the test charge where the axis is defined such that θ = 0. And
let (r′, θ′, z′) be the integration variables. The distance between the test and
integration point is:√

r2 + (r′)2 − 2rr′ cos θ′ + (z − z′)2 . (D.16)

So the potential is now:

Φ(r, z) =
Q

4π2ε0R2L

∫ R

0

dr′
∫ 2π

0

dθ′
∫ L/2

−L/2
dz′

r′√
r2 + (r′)2 − 2rr′ cos θ′ + (z − z′)2

.

(D.17)
In the pedagogical note, Ciftja et. al. in Ref. [34] present a trick to integrate
over an angle between any pair of vectors in a cylindrical coordinate system,
Equation 9 from that paper applied to our integral gives:∫ 2π

0

dθ′√
r2 + (r′)2 − 2rr′ cos θ′ + (z − z′)2

= 2π

∫ ∞
0

dkJ0(kr)J0(kr
′)e−k|z−z

′| ,

(D.18)
substituting and simplifying leaves us with:

Φ(r, z) =
Q

2πε0R2L

∫ ∞
0

dk

∫ R

0

dr′
∫ L/2

−L/2
dz′ r′J0(kr)J0(kr

′)e−k|z−z
′| . (D.19)

This may not be integrated analytically, however, we only need the potential
along the z-axis, so we will set r = 0 so that J0(kr) = 1 and we may
now integrate over r′. Using the recurrence property of derivatives of Bessel
functions we have:

∂

∂r′
J1(kr

′) = kJ0(kr
′)− 1

r′
J1(kr

′) (D.20)

=⇒ J0(kr
′) =

1

k

∂

∂r′
J1(kr

′) +
1

kr′
J1(kr

′) . (D.21)
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So substituting into the integral, we find:∫ R

0

dr′ r′J0(kr
′) =

1

k

∫ R

0

dr′ r′
∂

∂r′
J1(kr

′) +
1

k

∫ R

0

dr′J1(kr
′)

=
1

k

(
[r′J1(kr

′)]
R
0 −

∫ R

0

dr′ J1(kr
′)

)
+

1

k

∫ R

0

dr′J1(kr
′)

=
1

k

(
[r′J1(kr

′)]
R
0

)
=
R

k
J1(kR) ,

(D.22)
by integration by parts. Now, integrating over k using symbolic integration
software to find:∫ ∞

0

dk
R

k
J1(kR)e−k|z−z

′| =
√
R2 + (z − z′)2 − |z − z′| , (D.23)

which leaves an integral over z:

Φ(z) =
Q

2πε0R2L

∫ L/2

−L/2
dz′

(√
R2 + (z − z′)2 − |z − z′|

)
. (D.24)

Once again using the integration software, the solution is given by the ex-
pression:

Φ(z) =
Q

16πε0R2L

[
4R2 log

(√
(L+ 2z)2 + 4R2 + L+ 2z√
(L− 2z)2 + 4R2 − L+ 2z

)
+ (L+ 2z)

√
(L+ 2z)2 + 4R2

+ (L− 2z)
√

(L− 2z)2 + 4R2

+

{
−2(L2 + 4z2), |z| ≤ L/2

−8L|z|, |z| > L/2

]
, (D.25)

where one term in the brackets is a piecewise polynomial in z and L. We
also want to compute the second radial derivative of the potential along the
z-axis. So, we return to Eq. D.19, the simplified expression for the potential,
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with radial dependence:

∂2

∂r2
Φ(r, z)

∣∣∣∣
r=0

=
Q

2πε0R2L

∫ ∞
0

dk

∫ R

0

dr′
∫ L/2

−L/2
dz′ r′

∂2J0(kr)

∂r2

∣∣∣∣
r=0

J0(kr
′)e−k|z−z

′| ,

(D.26)
but using the recurrence relation the term simplifies to:

∂2J0(kr)

∂r2

∣∣∣∣
r=0

= lim
r→0

[
k

r
J1(kr)− k2J0(kr)

]
= −k

2

2
. (D.27)

So the potential now simplifies in a similar way to before:

∂2Φ

∂r2
(z) = − Q

4πε0R2L

∫ ∞
0

dk

∫ R

0

dr′
∫ L/2

−L/2
dz′ k2r′J0(kr

′)e−k|z−z
′| . (D.28)

The integral over r′ carries out as before:

∂2Φ

∂r2
(z) = − Q

4πε0R2L

∫ ∞
0

dk

∫ L/2

−L/2
dz′RkJ1(kR)e−k|z−z

′| . (D.29)

Now, integrating over k using the symbolic integration software:

∂2Φ

∂r2
(z) = − Q

4πε0R2L

∫ L/2

−L/2
dz′

R2

(R2 + (z − z′)2)3/2 , (D.30)

and integrating over z′ leaves the final solution:

∂2Φ

∂r2
(z) = − Q

4πε0R2L

(
L− 2z√

4R2 + (L− 2z)2
+

L+ 2z√
4R2 + (L+ 2z)2

)
,

(D.31)
which gives the second transverse derivatives in the x and y directions.

D.3 Expanding Uniform Sphere of Charge

Consider the uniform sphere of charge to be composed of a sphere of particles
initially at rest. We are interested in the time evolution of the sphere.

Recall Eq D.10, the potential for the uniform sphere of charge. The radial
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electric field inside the sphere is:

Er(r) = − ∂

∂r
Φ(r) =

Q

4πε0

r

R3
, (D.32)

this will cause the distribution of particles to be repelled from each other,
and the sphere to expand.

Due to the rotational symmetry of the problem, only the radial distribu-
tion of particles can change over time. Also, the consequence of assuming
rotational symmetry is that the magnetic field is zero. To illustrate, consider
the general solution to the vector potential in the Lorentz gauge:

A(x, t) =
µ0

4π

∫
d3x′

J(x′, t′)

|x− x′| , (D.33)

due to the symmetry the only non-zero component of J(x′, t′) is the radial
component Jr(r, t). Therefore the only non-zero component of the vector po-
tential is radial as well; Ar(r, t). Computing the magnetic field by calculating
the curl of this quantity gives a zero magnetic field.

B(r, θ, ϕ, t) =
1

r

(
1

sin θ

∂Ar
∂ϕ

θ̂ − ∂Ar
∂θ

ϕ̂

)
= 0 . (D.34)

Since gauge transformations do not change the magnetic field, this is true for
all gauges. Because the force applied to the distribution by the electric field
is linear in radius, the sphere will maintain uniformity.

Therefore as the sphere expands the potential is simply re-scaled by the
radius. To track the expansion of the sphere consider the force applied to
the particle with charge q at the edge of the sphere:

F =
qQ

4πε0R2
. (D.35)

So as the sphere expands the particle gains non-relativistic kinetic energy:

T =
1

2
m

(
dR

dt

)2

. (D.36)

Even though the force is changing in time, we may equate the infinitesimal
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change in kinetic energy to the work done for this particle:

dT = F · dR (D.37)

We will integrate time from the initial time t = 0 to an arbitrary time t > 0:∫ t

0

dT =

∫ R(t)

R(0)

F · dR (D.38)[
1

2
m

(
dR

dt

)2
]t
0

=

∫ R(t)

R(0)

qQ

4πε0R2
dR (D.39)[(

dR

dt

)2
]t
0

=
qQ

2πε0m

∫ R(t)

R(0)

1

R2
dR . (D.40)

Now, we can apply the condition that the sphere is initially stationary and
the initial radius is R0:(

dR

dt

)2

=
qQ

2πε0m

[
1

R0

− 1

R(t)

]
(D.41)

dR

dt
= ±

√
qQ

2πε0m

[
1

R0

− 1

R(t)

]
, (D.42)

from which we choose the positive solution, since the sphere is expanding.
Notice, that the integrated work done is simply the difference in the potentials
between the two points. This is unexpected for a system with time-varying
fields. It may be understood that the only energy exchange is between the
kinetic energy of the particles and the electric field energy, since there is no
radiation.

We now have a differential equation for the velocity of the particle at the
edge of the sphere. We may integrate its inverse to find the time it takes to
double in size: ∫ t2

0

dt =

∫ 2R0

R0

1√
qQ

2πε0m

[
1
R0
− 1

R(t)

]dR . (D.43)
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The integral is calculated using symbolic integration software:∫ 2R0

R0

(
1

R0

− 1

R

)−1/2
dR = R0

3/2
(√

2 + sinh−1(1)
)

. (D.44)

So the time for the sphere to double in size is given by:

t2 =
(√

2 + sinh−1(1)
)√2πε0mR0

3

qQ
. (D.45)

In fact, integrating from the initial radius to any larger radius given by
aR0 where a > 1 corresponds to a time:

t(R = aR0) =

(
1

2
log
(

2a− 1 + 2
√
a(a− 1)

)
+
√
a(a− 1)

)√
2πε0mR0

3

qQ
.

(D.46)
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