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ABSTRACT

The orientation completion problem for a hereditary class C of oriented graphs asks

whether a given partially oriented graph can be completed to a graph belonging to C.
This problem was introduced recently and is a generalization of several existing problems,

including the recognition problem for certain classes of graphs and the representation

extension problem for proper interval graphs. A local tournament is an oriented graph

in which the in-neighbourhood as well as the out-neighbourhood of each vertex induces a

tournament. Local tournaments are a well-studied class of oriented graphs that generalize

tournaments and their underlying graphs are intimately related to proper circular-arc

graphs. Proper interval graphs are precisely those which can be oriented as acyclic local

tournaments. The orientation completion problems for the class of local tournaments and

the class of acyclic local tournaments have been shown to be polynomial-time solvable.

In this thesis, we characterize the partially oriented graphs that can be completed to

local tournaments by finding a complete list of obstructions. These are in a sense the

minimal partially oriented graphs that cannot be completed to local tournaments. We

also determine the minimal partially oriented graphs that cannot be completed to acyclic

local tournaments.
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Chapter 1

Introduction

We consider graphs, digraphs and partially oriented graphs in this thesis. For graphs

we assume that they do not contain loops or multiple edges (i.e., they are simple), and

for digraphs we assume they do not contain loops or two arcs joining the same pair of

vertices (i.e., they are oriented graphs).

A partially oriented graph is a mixed graph H obtained from some graph G by orienting

the edges in a subset of the edge set of G. The graph G is called the underlying graph of

H. We denote H by (V,E ∪ A) where E is the set of (non-oriented) edges and A is the

set of arcs in H. We use uv to denote an edge in E with endvertices u, v and use (u, v)

to denote an arc in A with tail u and head v. In either case we say that u, v are adjacent

in H. We say the partially oriented graph H is connected if its underlying graph G is.

A class C of graphs is called hereditary if it is closed under taking induced subgraphs,

that is, if G ∈ C and G′ is an induced subgraph of G then G′ ∈ C. Similarly, a class of

digraphs is hereditary if it is closed under taking induced subdigraphs. We extend this

concept to partially oriented graphs.

Let H = (V,E ∪A) and H ′ = (V ′, E ′ ∪A′) be partially oriented graphs. We says that

H critically contains H ′ (or H ′ is critically contained in H) if V ′ ⊆ V and for all u, v ∈ V ′,

• u and v are adjacent in H ′ if and only if they are adjacent in H;

• if (u, v) ∈ A′ then (u, v) ∈ A;

• if uv ∈ E ′, then uv ∈ E, or (u, v) ∈ A, or (v, u) ∈ A.

. Equivalently, H ′ is critically contained H if and only if it is obtained from H by deleting

some vertices, followed by replacing some arcs (u, v) with edges uv.

We note that, in case when H and H ′ are both graphs or both digraphs, H critically

contains H ′ if and only if H contains H ′ as an induced subgraph or as an induced sub-

digraph. We call a class C of partially oriented graphs hereditary if H ∈ C and H ′ is

critically contained in H then H ′ ∈ C.
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1.1 Overview

Let C be a hereditary class of oriented graphs. The orientation completion problem

for C asks whether a given partially oriented graph H = (V,E ∪ A) can be completed to

an oriented graph in C by orienting the edges in E. The hereditary property of C ensures

that if a partially oriented graph H can be completed to an oriented graph in C then

every partially oriented graph that is critically contained in H can also be completed to

an oriented graph in C. Therefore the partially oriented graphs which can be completed

to oriented graphs in C form a hereditary class.

Orientation completion problems were introduced recently and are a generalization

of several existing problems, cf. [3]. Many graph classes can be defined in terms of the

existence of certain orientations, cf. [6, 7, 11, 14, 16, 18, 23]. Deciding whether a graph

admits such an orientation is a special orientation completion problem, cf. [13]. An ori-

ented graph D = (V,A) is called transitive if for any three vertices u, v, w, (u, v) ∈ A

and (v, w) ∈ A imply (u,w) ∈ A, cf. [6]. The underlying graphs of transitive oriented

graphs are known as comparability graphs, cf. [8]. When C is the class of transitive ori-

ented graphs, the orientation completion problem for C asks whether a partially oriented

graph can be completed to a transitive oriented graph. If the input is restricted to unori-

ented graphs, the orientation completion problem for C is exactly the recognition problem

for comparability graphs. Finding a linear time recognition algorithm for comparability

graphs is a long standing open problem in the structural graph theory. The current best

known algorithm runs in O(n2) time, cf. [21].

A local tournament is an oriented graph in which the in-neighbourhood as well as the

out-neighbourhood of each vertex induces a tournament. Local tournaments are a well-

studied class of oriented graphs that generalize tournaments, cf. [1, 9, 10, 12, 17]. The

underlying graphs of acyclic local tournaments are precisely the proper interval graphs,

cf. [10]. These are the graphs which can be represented by intervals where no interval

contains another. Such representations can be obtained from acyclic local tournament

orientations of the graphs. Thus the orientation completion problem for the class of

acyclic local tournaments corresponds to a representation extension problem for proper

interval graphs which has been studied in [15].

Orientation completion problems have been studied for several classes of oriented

graphs, including local tournaments, local transitive tournaments, and acyclic local tour-

naments, cf. [3, 13]. A local transitive tournament is an oriented graph in which the

in-neighbourhood as well as the out-neighbourhood of each vertex induces a transitive

tournament 1. These three classes of oriented graphs are nested; the class of local tour-

naments properly contains local transitive tournaments, which in turn as a class properly

1Locally transitive local tournaments have been previously used for local transitive tournaments in [3]
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contains acyclic local tournaments. It has been proved in [3] that the orientation com-

pletion problem is polynomial-time solvable for local tournaments and for acyclic local

tournaments, but NP-complete for locally transitive local tournaments.

Any hereditary class of graphs or digraphs admits a characterization by forbidden

subgraphs or subdigraphs. The forbidden subgraphs or subdigraphs consists of minimal

graphs or digraphs which do not belong to the class. This is also the case for a hereditary

class of partially oriented graphs and in particular for the class of partially oriented graphs

which can be completed to local tournaments and the class of partially oriented graphs

which can be completed to acyclic local tournaments. We call a partially oriented graph

X = (V,E ∪ A) an obstruction for local tournament orientation completions (or simply,

an obstruction) if the following three properties hold:

1. X cannot be completed to a local tournament;

2. For each v ∈ V , X − v can be completed to a local tournament;

3. For each (u, v) ∈ A, the partially oriented graph obtained from X by replacing (u, v)

with the edge uv can be completed to a local tournament.

Thus an obstruction X is a partially oriented graph which cannot be completed to a

local tournament and is minimal in the sense that if X ′ is critically contained in X and

X ′ 6= X then X ′ can be completed to a local tournament.

The dual of an obstruction X is obtained from X by reversing the arcs in X (if any).

Clearly, the dual of an obstruction is again an obstruction. Obstructions are present in

any partially oriented graph that cannot be completed to a local tournament, as justified

by the following proposition.

Proposition 1.1. A partially oriented graph H cannot be completed to a local tournament

if and only if it critically contains an obstruction.

Proof: If H can be completed to a local tournament, then every partially oriented

graph critically contained in H can also be completed to a local tournament so H does

not contain an obstruction. On the other hand, suppose that H cannot be completed to

a local tournament. By deleting vertices and replacing arcs with edges in H as long as

the resulting partially oriented graph still cannot be completed to a local tournament we

obtain an obstruction that is critically contained in H.

Obstructions for acyclic local tournament orientations completions can be defined in a

similar way as for local tournament orientation completions (see Chapter 4). An analogous

version of Proposition 1.1 can also be obtained in the same way (see Proposition 4.1).

The main results of this thesis are the following two theorems.
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Theorem 1.2. Let X be an obstruction for local tournament orientation completions.

Then either X or its dual is a graph in Figures 2.1–2.6, or C2k (k ≥ 3), or C2k+1 +K1

(k ≥ 1), or the complement of a graph in Figures 1.1, 3.1–3.7 (with arcs being specified

in the figures).

Theorem 1.3. Let X be an obstruction for acyclic local tournament orientation comple-

tions. Then X or its dual is a Ck (k ≥ 4) or one of the graphs in Figures 4.1–4.3.

The thesis is organized as follows. In the remainder of Chapter 1 we will give prelim-

inary results on local tournaments and their underlying graphs. We will give a general

description of obstructions whose underlying graphs are local tournament orientable. In

Chapters 2 and 3, we will determine all obstructions for local tournament orientation

completions. In Chapter 4, we will find all obstructions for acyclic local tournament ori-

entation completions. In Chapter 5, we will explain how Theorems 1.2 and 1.3 follow from

the results obtained in Chapters 2 - 4 and provide algorithms for recognizing obstructions

and finding obstructions critically contained in partially oriented graphs that cannot be

completed to local tournaments.

1.2 Preliminary results

A graph G = (V,E) is said to be a proper circular-arc graph if there is a family

of circular-arcs Iv, v ∈ V on a circle where no circular-arc contains another such that

uv ∈ E if and only if Iu and Iv intersect. Skrien [20] proved that a connected graph

is a proper circular-arc graph if and only if it can be oriented as a local tournament.

Thus, if a partially oriented graph H can be completed to a local tournament, then every

component of the underlying graph of H must be a proper circular-arc graph.

Tucker [24] found all minimal graphs which are not proper circular-arc graphs.

Theorem 1.4 ([24]). A graph G is a proper circular-arc graph if and only if G does not

contain C2k (k ≥ 3), C2k+1 + K1 (k ≥ 1), or any of graphs in Figure 1.1 as an induced

subgraph.
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Figure 1.1: Complements of forbidden induced subgraphs for proper circular-arc graphs.

It follows that the complements of C2k (k ≥ 3), C2k+1 + K1 (k ≥ 1), and the graphs

in Figure 1.1 are precisely the obstructions for local tournament orientation completions

which do not contain arcs. Hence we only need to find obstructions that contain arcs. By

definition the underlying graph of any obstruction that contains arcs is a proper circular-

arc graph and hence local tournament orientable.

Let G = (V,E) be a graph and Z(G) = {(u, v) : uv ∈ E} be the set of all ordered

pairs (u, v) such that uv ∈ E. Note that each edge uv ∈ E gives rise to two ordered pairs

(u, v), (v, u) in Z(G). Suppose that (u, v) and (x, y) are two ordered pairs of Z(G). We

say (u, v) forces (x, y) and write (u, v)Γ(x, y) if one of the following conditions is satisfied:

• u = x and v = y;

• u = y, v 6= x, and vx /∈ E;

• v = x, u 6= y, and uy /∈ E.

We say that (u, v) implies (x, y) and write (u, v)Γ∗(x, y) if there exists a sequence of pairs

(u1, v1), (u2, v2), . . . , (uk, vk) ∈ Z(G) such that

(u, v) = (u1, v1)Γ(u2, v2)Γ · · ·Γ(uk, vk) = (x, y).

We will call such a sequence a Γ-sequence from (u, v) to (x, y). It is easy to verify that

Γ∗ is an equivalence relation on Z(G).

We say a path P avoids a vertex u if P does not contain u or any neighbour of u.

Proposition 1.5. Let G be a graph and u, v, w be vertices Suppose that P is a path of

length k connecting v, w that avoids u in G. If k is even, then (u, v)Γ∗(u,w). Otherwise,

(u, v)Γ∗(w, u).

5



Proof: Denote P : p0p1 . . . pk where p0 = v and pk = w. Since P avoids u in G,

(u, pi)Γ(pi+1, u) for each 0 ≤ i ≤ k − 1. If k is even, then

(u, v) = (u, p0)Γ(p1, u)Γ(u, p2)Γ · · ·Γ(u, pk) = (u,w).

Otherwise,

(u, v) = (u, p0)Γ(p1, u)Γ(u, p2)Γ · · ·Γ(pk, u) = (w, u).

Proposition 1.6 ([12]). Let G be a graph and D = (V,A) be a local tournament orien-

tation of G. Suppose that (u, v)Γ∗(x, y) for some (u, v), (x, y) ∈ Z(G). Then (u, v) ∈ A if

and only if (x, y) ∈ A.

Regardless whether or not G is local tournament orientable, the relation Γ∗ on Z(G)

induces a partition of the edge set of G into implication classes as follows: two edges

uv, xy of G are in the same implication class if and only if (u, v)Γ∗(x, y) or (u, v)Γ∗(y, x).

An implication class is called trivial if it has only one edge and non-trivial otherwise.

An edge uv of G is called balanced if N [u] = N [v] and unbalanced otherwise. Clearly,

any balanced edge forms a trivial implication class and the unique edge in any trivial

implication class is balanced.

The following theorem characterizes the implication classes of a local tournament

orientable graph and describes all possible local tournament orientations of such a graph.

Theorem 1.7 ([12]). Let G = (V,E) be a connected graph and let H1, H2, . . . , Hk be the

components of G. Suppose that G is local tournament orientable and F is an implication

class of G. Then F is one of the following types:

• F is trivial;

• F consists of all unbalanced edges of G within Hi for some i;

• F consists of all edges of G between Hi and Hj for some i 6= j.

Moreover, suppose that F1, F2, . . . , F` are the implication classes of G. For each 1 ≤ i ≤ `,

let Ai be the equivalence class of Γ∗ containing (u, v) for some uv ∈ Fi and let A = ∪`i=1Ai.

Then D = (V,A) is a local tournament orientation of G.

Let H = (V,E ∪ A) be a partially oriented graph and (a, b), (c, d) be arcs of H. We

say that the two arcs (a, b), (c, d) are opposing in H if (a, b)Γ∗(d, c). For convenience we

also call an arc of H balanced if the corresponding edge is balanced. Clearly, if (a, b), (c, d)

are opposing then neither of them is balanced.

6



Proposition 1.8. Suppose that H is a partially oriented graph whose underlying graph

U(H) is local tournament orientable. Then H can be completed to a local tournament if

and only if it does not contain opposing arcs.

Proof: If H contains opposing arcs, then by Proposition 1.6 it cannot be completed

to a local tournament. On the other hand, suppose that H does not contain opposing

arcs. Let F1, F2, . . . , F` be implication classes of U(H). For each 1 ≤ i ≤ `, if no edge in

Fi is oriented then let Ai be an equivalence class of Γ∗ containing (u, v) for some uv ∈ Fi;
otherwise let Ai be the equivalence class of Γ∗ containing (u, v) where uv ∈ Fi and (u, v)

is an arc. With A = ∪`i=1Ai, Theorem 1.7 ensures that D = (V,A) is a local tournament

completion of H.

The next theorem is fundamental in determining whether a partially oriented graph

whose underlying graph is local tournament orientable is an obstruction.

Theorem 1.9. Let X be a partially oriented graph whose underlying graph U(X) is local

tournament orientable. Then X is an obstruction if and only if X contains exactly two

arcs (say (a, b), (c, d)) which are opposing and, for every vertex v ∈ V (X) \ {a, b, c, d},
the arcs (a, b), (c, d) are not opposing in X− v (that is, the edges ab, cd belong to different

implication classes in U(X − v)). Moreover, any Γ-sequence connecting (a, b) and (d, c)

must include all vertices of X.

Proof: For sufficiency, suppose that (a, b), (c, d) are the only arcs and they are op-

posing in X and that, for every vertex v ∈ V (X) \ {a, b, c, d}, the arcs (a, b), (c, d) are not

opposing in X − v. Since X contains opposing arcs, it cannot be completed to a local

tournament by Proposition 1.8. Let v be a vertex in X. Since U(X) is local tournament

orientable, U(X − v) is also local tournament orientable. If v ∈ {a, b, c, d}, then X − v
contains at most one arc and hence no opposing arcs. If v /∈ {a, b, c, d}, then the only two

arcs in X − v are not opposing by assumption. Hence X − v can be completed to a local

tournament Proposition 1.8. Therefore X is an obstruction.

Conversely, suppose that X is an obstruction. By Proposition 1.8 X must contain

opposing arcs. Let (a, b), (c, d) be opposing arcs in X. If X contains an arc (x, y) that

is distinct from (a, b), (c, d), then replacing the arc (x, y) by the edge xy gives a partially

orientable graph in which (a, b), (c, d) are still opposing and hence cannot be completed

to a local tournament. This contradicts the assumption that X is an obstruction. So

(a, b), (c, d) are the only arcs in X. Since X is an obstruction, for every every v ∈ V (X),

X − v can be completed to a local tournament and hence by Proposition 1.8 contains no

opposing arcs. This implies in particular that if v ∈ V (X)\{a, b, c, d}, the arcs (a, b), (c, d)

are not opposing in X − v.

The second part of the theorem follows from the fact deleting any vertex results in a

graph that contains no Γ-sequence connecting (a, b) and (d, c).
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Let v be a vertex and (x, y) be an arc in a partially oriented graph H where v /∈ {x, y}.
We call v the (x, y)-balancing vertex if v is the only vertex adjacent to exactly one of x, y;

when the arc (x, y) does not need to be specified, we simply call v an arc-balancing vertex.

Each obstruction has at most two arc-balancing vertices as it contains at most two arcs.

A vertex of a graph G is called a cut-vertex of G if G− v has more components than

G. For a partially oriented graph H, a cut-vertex of U(H) is also called a cut-vertex of

H.

Proposition 1.10. Let X be an obstruction with opposing arcs (a, b), (c, d) and let v /∈
{a, b, c, d}. Then v is an arc-balancing vertex, or a cut-vertex of U(X), or a cut-vertex of

U(X).

Proof: Assume that v is not a cut-vertex of U(X) or of U(X) as otherwise we are

done. We show that v must be an arc-balancing vertex. Since ab, cd are in the same

implication of U(X), by Theorem 1.7 ab, cd are unbalanced edges either contained in a

component or between two components of U(X). Since v is not a cut-vertex of U(X),

each component of U(X − v) is a component of U(X) except possibly missing v. It follows

that ab, cd are contained in some component or between two components of U(X − v).

Since v is not a cut-vertex of U(X), U(X − v) is connected. If ab, cd are both unbalanced

edges in U(X − v), then they remain in the same implication class of U(X − v) and

hence (a, b), (c, d) are still opposing in X − v, which contradicts the assumption that

X is an obstruction. So one of ab, cd is balanced in U(X − v), which means that v is

(a, b)-balancing or (c, d)-balancing.

An arc-balancing triple in a partially oriented graph H is a set of three vertices in

which one balances an arc between the other two.

Corollary 1.11. Let X be an obstruction with opposing arcs (a, b), (c, d). Suppose that

U(X) has no cut-vertices. Then U(X) contains at most six non-cut-vertices. In the

case when U(X) has six non-cut-vertices, the six non-cut-vertices form two disjoint arc-

balancing triple.

Proof: Let v be a non-cut-vertex of U(X). By assumption v is not a cut-vertex of

U(X) and thus, by Proposition 1.10, it is either in {a, b, c, d} or an arc-balancing vertex.

There are at most two arc-balancing vertices so U(X) contains at most six non-cut-

vertices. When U(X) has six non-cut-vertices, among the six non-cut-vertices two are

arc-balancing vertices and the other four are incident with arcs. Hence the six non-cut-

vertices form two disjoint arc-balancing triple.

A proper interval graph is the intersection graph of a family of intervals in a line where

no interval contains another. Proper interval graphs form a prominent subclass of proper

circular-arc graphs and play an important role in the orientation completion problem for
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local tournaments. It is proved in [10] that a graph is proper interval graph if and only if

it can be oriented as an acyclic local tournament

A straight enumeration of a graph G is a vertex ordering ≺ such that for all u ≺ v ≺ w,

if uw is an edge of G, then both uv and vw are edges. This property is referred to as the

umbrella property of the vertex ordering. A graph is a proper interval graph if and only

if it has a straight enumeration, cf. [12].

Proposition 1.12. Let G = (V,E) be a connected proper interval graph and let ≺ be a

straight enumeration of G. Suppose that (u, v)Γ∗(x, y). Then u ≺ v if and only if x ≺ y.

Proof: It suffices to show that if u ≺ v and (u, v)Γ(x, y) then x ≺ y. So assume that

(u, v)Γ(x, y). Then one of the following holds:

• u = x and v = y;

• u = y, v 6= x, and vx /∈ E;

• v = x, u 6= y, and uy /∈ E.

Clearly, x ≺ y when u = x and v = y. Suppose that u = y, v 6= x, and vx /∈ E. If

u ≺ x ≺ v, then it violates the umbrella property because uv ∈ E but xv /∈ E. If

u ≺ v ≺ x, then it again violates the umbrella property because ux ∈ E but vx /∈ E.

Hence we must have x ≺ u = y. The proof for the case when v = x, u 6= y, and uy /∈ E
is similar.

Let H be a partially oriented graph whose underlying graph U(H) is a proper interval

graph. Suppose that ≺ is a straight enumeration of U(H). We call an arc (u, v) of H

positive (with respect to ≺) if u ≺ v and negative otherwise. If H does not contain

negative arcs, then H can be completed to an acyclic local tournament by replacing all

edges of H with positive arcs. Similarly, if H does not contain positive arcs then it can

also be completed to an acyclic local tournament. It follows that if X is an obstruction

such that U(X) is a proper interval graph, then the two arcs in X must be opposite (i.e.,

one is positive and the other is negative).

A vertex in a graph is universal if it is adjacent to every other vertex.

Proposition 1.13 ([12]). Suppose that G = (V,E) is a connected proper interval graph

that is not a complete graph. Then G has a unique non-trivial component H. If F is an

implication class of G, then F is one of the following types:

• F is trivial;

• F consists of all unbalanced edges within H;

9



• F consists of all edges of G between H and a universal vertex of G.

In particular, if G contains no universal vertex, then G has a unique non-trivial implica-

tion class.

Proposition 1.14. Let G be a connected proper interval graph and let v1, v2, . . . , vn be a

straight enumeration of G. Suppose that vα is a cut-vertex of G. Then α ∈ {1, n} and

G− vα contains a vertex that is adjacent to every vertex except vα in G.

Proof: Since G has a cut-vertex, G is not a complete graph and by Theorem 1.13, G

has a unique non-trivial component H. Thus the cut-vertex vα of G is in fact a cut-vertex

of H. Again by Theorem 1.13, H − vα has at most one non-trivial component. Hence H

contains a vertex vβ that is only adjacent to vα in G, that is, in G it is adjacent to every

vertex except vα. If α < β, then α = 1 as otherwise we have 1 < α < β and vβ is adjacent

to v1 but not to vα, a contradiction to the umbrella property of the straight enumeration

Similarly, if β < α, then α = n as otherwise β < α < n and vβ is adjacent to vn but not to

vα, also a contradiction to the umbrella property of the straight enumeration Therefore,

α ∈ {1, n}.

10



Chapter 2

Obstructions with cut-vertices

Our goal is to find all obstructions for local tournament orientation completions. In

view of Theorem 1.4 we only need to find those which contain arcs and whose underlying

graphs are connected and local tournament orientable (i.e., proper circular-arc graphs).

By Theorem 1.9 each of them contains exactly two arcs which are opposing. So from now

on we assume that all obstructions have a pair of opposing arcs.

In this chapter we examine the obstructions that contain cut-vertices. It is easy

to see that their underlying graphs are proper interval graphs and thus have straight

enumerations.

Let X be an obstruction that contains arcs and let ≺ be a straight enumeration of

U(X). If v is a cut-vertex of X, then the umbrella property implies v is neither the first

nor the last vertex in ≺ and moreover, for all u,w with u ≺ v ≺ w, uw is not an edge in

U(X). A cut-vertex v of X is called dividing with respect to ≺ if one of the two arcs in

X is incident with a vertex preceding v and the other is incident with a vertex succeeding

v. A cut-vertex that is not dividing is called non-dividing. An obstruction may or may

not contain dividing cut-vertices.

2.1 Obstructions containing dividing cut-vertices

In this section, we focus on the obstructions that contain dividing cut-vertices. We

will show that they consist of the three infinite classes in Figure 2.1 and their duals. In

each of these graphs, the dots in the middle represent a path of length ≥ 0; when the

length of the path is 0 the two vertices beside the dots are the same vertex.

11



. . .

(i)

. . .

(ii)

. . .

(iii)

Figure 2.1: Obstructions with dividing cut-vertices.

Lemma 2.1. Let X be an obstruction that contains a dividing cut-vertex and let ≺:

v1, v2, . . . , vn be a straight enumeration of U(X). Suppose that vc is the first dividing cut-

vertex in ≺. Then, either c = 2 and v1, v2 are the endvertices of an arc, or c = 4 and

v2, v3 are the end vertices of an arc. In the case when c = 4, v1, v2, v3, v4 induce in U(X)

the following graph:

v1 v2 v3 v4

Proof: By considering the dual of X if necessary we may assume that (vj, vk) and

(vs, vt) are the two arcs in X where j < k ≤ c ≤ t < s. By Theorem 1.9, there is a

Γ-sequence from (vt, vs) to (vj, vk) that include all vertices of X. Let

(vt, vs) = (u1, w1)Γ(u2, w2)Γ · · ·Γ(uq, wq) = (vj, vk)

be the shortest such a sequence. Since vt ≺ vs, we have ui ≺ wi for each i by Proposi-

tion 1.12. Let ` be the smallest subscript such that u`+1 ≺ w`+1 = vc = u` ≺ w`. Such

` exists because vc is a cut-vertex dividing (vj, vk) and (vs, vt). We distinguish two cases

depending on whether or not k = c. Suppose first k = c. Note that (vj, vk)Γ(u`, w`).

Thus the choice of the Γ-sequence implies (u`+1, w`+1) = (uq, wq) = (vj, vk). Since the

Γ-sequence includes all vertices of X, vj is the only vertex preceding vc in ≺, that is, c = 2

(and (v1, v2) is an arc in X).

Suppose now that k < c. Thus j < k < c. We claim that vj, vk, vc are consecutive

vertices in ≺ (i.e., j + 1 = k = c− 1). Suppose that k > j + 1. Since vj, vk are adjacent,

vj+1 cannot be a cut-vertex of U(X). Since vj+1 is not the first or the last vertex in ≺,

Proposition 1.14 ensures that vj+1 cannot be a cut-vertex of U(X). By Proposition 1.10,

vj+1 is an arc-balancing vertex. Clearly, vj+1 is not (vj, vk)-balancing. So it must be

(vs, vt)-balancing. Since j+1 < c and vc is a cut-vertex, vj+1 has no neighbours succeeding

vc. It follows that vs = vc. Since vj+1vc is an edge and j + 1 < k < c, vkvc is an edge by

the umbrella property. Again, since vc is a cut-vertex, vk cannot be adjacent to vt. This

contradicts the fact that vj+1 is arc-balancing for the arc between vs, vt. Hence j+ 1 = k,

i.e., vj and vk are consecutive vertices in ≺.
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Suppose c > k + 1. Neither of vk, vk+1 can be a cut-vertex of U(X) as otherwise it

would be a dividing cut-vertex preceding vc, a contradiction to the choice of vc. Since

vk+1 is not the first or the last vertex in ≺, it is not a cut-vertex of U(X) according to

Proposition 1.14. By Proposition 1.10, vk+1 is an arc-balancing vertex. Since vk is not a

cut-vertex of U(X), vk−1 = vj is adjacent to vk+1. So vk+1 is adjacent to both vj, vk and

hence not arc-balancing for the the arc between them. So vk+1 is arc-balancing for the

arc between vs, vt. Similarly as above we have vc = vs and vk+1 is adjacent to vs but not

to vt. If c > k+ 2, then vk+2 is adjacent to vc by the umbrella property and the fact vk+1

is adjacent to vc. Thus vk+2 is adjacent to vc = vs but not to vt, a contradiction to that

vk+1 is arc-balancing to the arc between vs, vt. If c = k + 2, since vk+1 is not a cut-vertex

of U(X), vk is adjacent to vk+2 = vc. Thus vk is adjacent to vs = vc but not to vt, a

contradiction again to the fact that vk+1 is arc-balancing to the arc between vs, vt. Hence

c = k + 1, i.e., vk, vc are consecutive vertices in ≺. Therefore vj, vk, vc are consecutive in

≺.

Since vc is the first dividing cut-vertex in ≺, vk cannot be a cut-vertex of U(X) and

hence vj, vc are adjacent in X. We claim that there exists a vertex preceding vj in ≺ which

is adjacent to vj but not to vk. First, observe that if no vertex is adjacent to exactly one

of vj, vk, then vj and vk would share the same closed neighbourhood. In this case, the arc

between vj and vk would be balanced, a contradiction. Hence, there is at least one vertex

adjacent to exactly one of vj, vk. Clearly, such a vertex must precede vj in ≺ and hence

is adjacent to vj but not to vk. Assume that vp is such a vertex closest to vj.

We show that vp and vj are consecutive in ≺, that is, p = j − 1. If p < j − 1, then

vj−1 cannot be a cut-vertex of U(X) because vp is adjacent to vj. On the other hand, by

Proposition 1.14, vj−1 is not a cut-vertex of U(X). It follows from Theorem 1.10 that vj−1
is an arc-balancing vertex. The choice of vp implies that vj−1 is adjacent to both vj, vk so

it does not balance the arc between vj and vk. Hence, vj−1 is an arc-balancing vertex for

the arc between vs and vt. By definition it is the unique vertex adjacent to exactly one of

vs and vt. This also implies vc = vs. But then vk is also a vertex adjacent to vs but not

to vt, a contradiction. Hence p = j − 1.

Since (u`+1, w`+1)Γ(u`, w`) and u`+1 ≺ w`+1 = vc = u` ≺ w` (i.e., u`+1 is a vertex

preceding and adjacent to vc but not adjacent to w`), u`+1 can only be vc−1 or vc−2, Since

Γ-sequence is chosen to be the shortest from (vt, vs) to (vj, vk), we must have u`+1 = vc−2.

It follows that

(vt, vs) = (u1, w1)Γ(u2, w2)Γ · · · (u`, w`)Γ(vc−2, vc)Γ(vc−3, vc−2)Γ(vc−2, vc−1) = (vj, vk)

is the shortest Γ-sequence. The Γ-sequence must contain all vertices of X, which means

vc−3, vc−2, vc−1 are all the vertices preceding vc. Therefore c = 4 and v1, v2, v3, v4 induce

in U(X) the graph in the statement.
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We can now apply Lemma 2.1 to prove the following:

Theorem 2.2. Let X be an obstruction that contains a dividing cut-vertex with respect

to a straight enumeration. Then X or its dual belongs to one of the three infinite classes

in Figure 2.1.

Proof: Let ≺: v1, v2, . . . , vn be a straight enumeration of U(X) and let vc and vd
be the first and last dividing cut-vertices respectively with respect to ≺. By considering

the dual of X if necessary assume that (vj, vk) and (vs, vt) are the arcs in X where

j < k ≤ c ≤ d ≤ t < s.

Suppose c = 2 and d = n − 1. Since vc = v2 is a cut-vertex, v2 is the only neighbour

of v1. Similarly, vn−1 is the only neighbour of vn. If vp is adjacent to vq for some 2 ≤
p < q − 1 ≤ n − 1, then it is easy to see that the partially oriented graph obtained

from X by deleting vp+1, . . . , vq−1 cannot be completed to local tournament orientation,

a contradiction to the assumption X is an obstruction. Hence X belongs to Figure 2.1(i).

Suppose that c 6= 2. Then c = 4 by Lemma 2.1. If d = n− 1, then a similar proof as

above shows that X belongs to Figure 2.1(ii). On the other hand if d 6= n− 1, then again

by Lemma 2.1 we must have d = n− 3. In this case X belongs to Figure 2.1(iii).

2.2 Obstructions containing only non-dividing cut-

vertices

In this section, we will determine the rest of obstructions that contain cut-vertices,

i.e., those contain only non-dividing cut-vertices.

Lemma 2.3. Let X be an obstruction and ≺: v1, v2, . . . , vn be a straight enumeration of

U(X). Suppose that vc is a non-dividing cut-vertex. Then c = 2 or c = n− 1. Moreover,

if vc is incident with both arcs then n = 4.

Proof: Let (vj, vk) (j < k) and (vs, vt) (s > t) be the arcs in X. Since vc is non-

dividing, either c ≤ min{j, t} or c ≥ max{k, s}. Suppose that c ≤ min{j, t}.

Let (vj, vk) = (u1, w1), . . . , (uq, wq) = (vt, vs) be a Γ-sequence of U(X) between (vj, vk)

and (vt, vs). By Theorem 1.9, the sequence must include all vertices of X. Let α be

the smallest subscript such that one of uα, wα precedes vc (and hence the other ver-

tex is vc since vc is a cut-vertex). Similarly, let β be the largest subscript such that

one of uβ, wβ precedes vc (and hence the other vertex is vc). Then it is easy to verify

that (u1, w1), . . . , (uα, wα), (uβ+1, wβ+1), . . . , (uq, wq) is a Γ-sequence between (vj, vk) and

(vt, vs). Since this sequence contains a unique vertex preceding vc and includes all vertices

of X, we must have c = 2. A similar argument shows that if c ≥ max{k, s} then c = n−1.
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Suppose vc is incident with both arcs. Then either c = j = t = 2 or c = k = s = n−1.

If c = j = t = 2, then (vj, vk)Γ(v1, vj)Γ(vt, vs) and by Theorem 1.9, v1, vj = vt, vk, vs are

all the vertices of X so n = 4. A similar argument shows that X has exactly four vertices

if c = k = s = n− 1.

The following theorem deals with the case when v2 and vn−1 are both non-dividing

cut-vertices of U(X).

Theorem 2.4. Let X be an obstruction and ≺: v1, v2, . . . , vn be a straight enumeration

of U(X). Suppose that v2 and vn−1 are the two cut-vertices of U(X), both non-dividing.

Then X or its dual is one of the two graphs in Figure 2.2.

Figure 2.2: Obstructions with two non-dividing cut-vertices.

Proof: Since both v2 and vn−1 are non-dividing cut-vertices, n ≥ 5. Hence by

Lemma 2.3, each of v2 and vn−1 is incident with at most one arc.

We show that v1 and vn are arc-balancing vertices. By symmetry we only prove that

v1 is arc-balancing. Clearly v1 is not a cut-vertex of U(X) and is not incident with an

arc. By Proposition 1.10, it can only be an arc-balancing vertex or a cut-vertex of U(X).

Assume that v1 is a cut-vertex of U(X). By Proposition 1.14, some vertex v is adjacent

to every vertex in X except v1. Since vn−1 is the only neighbour of vn in U(X). It follows

that v = vn−1. Since the vertex v = vn−1 is adjacent to v2, by the umbrella property,

the vertices vi with 2 ≤ i ≤ n − 1 induce a clique in U(X). Thus the vertices vi with

3 ≤ i ≤ n − 2 have the same closed neighbourhood in U(X) and hence cannot contain

both endvertices of any arc. It follows that each arc is incident with v2 or vn−1. From

the above we know that each of v2 and vn−1 is incident with at most one arc. It is not

possible that v2 and vn−1 are incident with the same arc (as otherwise the endvertices of

the other arc have the same closed neighbourhood). Hence v2 and vn−1 are incident with

different arcs. We see that v1 is an arc-balancing vertex.

By taking the dual of X if necessary we assume (v2, vk) and (vn−1, vt) are the two

arcs in X where 3 ≤ k, t ≤ n − 2. Then v1 is the (v2, vk)-balancing vertex and vn is the

(vn−1, vt)-balancing vertex. No vertex vi with 2 < i < n − 1 is a cut-vertex of U(X) or

U(X) and hence each must be incident with an arc of X by Proposition 1.10. Hence vk
and vt are the only vertices between v2 and vn−1 in ≺. It is now easy to verify that X is

one of the two graphs in Figure 2.2.

It remains to consider the case when X has only one cut-vertex and it is non-dividing.

By Lemma 2.3 and reversing the straight enumeration ≺ if necessary we will assume v2
is this vertex.
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Lemma 2.5. Let X be an obstruction and ≺: v1, v2, . . . , vn be a straight enumeration of

U(X). Suppose that v2 is the only cut-vertex and it is non-dividing. Then, the following

statements hold:

(a) For each i ≥ 3, vi is an arc-balancing vertex or incident with an arc;

(b) For some i ≥ 3, vi is adjacent to every vertex except for v1. Moreover, there are at

most two such vertices, each incident with exactly one arc;

(c) The number of vertices in X is between 4 and 8 (i.e., 4 ≤ n ≤ 8).

Proof: For (a), if each vi with i ≥ 3 is an arc-balancing vertex or incident with an

arc then we are done. Otherwise, by Proposition 1.10, some vi with i ≥ 3 is a cut-vertex

of U(X). According to Proposition 1.14, vi = vn and there is a vertex adjacent to every

vertex except vn in U(X). Such a vertex can only be v2. Since vn−1 is not a cut-vertex

of U(X), vn is adjacent to vn−2. Since v2 is not adjacent to vn, n − 2 > 2 (i.e., n > 4)

and hence by Lemma 2.3, there is an arc which is not incident with v2. This arc must

have endvertices strictly between v2 and vn in ≺. Therefore vn is an arc-balancing vertex,

which contradicts our assumption.

Statement (b) holds if v1 is a cut-vertex of U(X). Indeed, by Proposition 1.14 there is

a vertex vi which is adjacent to every vertex except vi and it is clear that i ≥ 3. So assume

v1 is not a cut-vertex of U(X). Since v2 is the only cut-vertex and it is non-dividing, v1 is

neither a cut-vertex of U(X) nor incident with an arc, and hence must be an arc-balancing

vertex by Proposition 1.10. Without loss of generality, assume v1 balances an arc between

v2 and vj for some j > 2. If vj = vn or vj is adjacent to vn, then vj is adjacent to every

vertex except v1 and we are done. Otherwise, j < n and vj is not adjacent to vn. For

each j < k < n, vk is a not cut-vertex of U(X) by assumption so vk−1 must be adjacent

to vk+1. Since vj is not adjacent to vn, j < n− 2 and thus n > j + 2 > 5. By statement

(a), each vertex vi with i ≥ 3 is an arc-balancing vertex or incident with an arc. Since

v1 is arc-balancing and v2 is incident with an arc, there are at most four vertices vi with

i ≥ 3. Hence n ≤ 6 and therefore n = 6. It is now easy to see that v4 is adjacent to every

vertex except v1.

Suppose vi with i ≥ 3 is a vertex adjacent to every vertex except v1. Clearly vi is

not an arc-balancing vertex and hence by (a) it is incident with an arc. We show by

contradiction that vi is incident with exactly one arc. So suppose that vi is incident with

both arcs of X. Let vs and vt denote the other endvertices of the two arcs. We first

show that either s = 2 or t = 2. By Theorem 1.9, the edges vivs, vivt belong to different

implication classes in U(X − v1). Since vi is an isolated vertex in U(X − v1), each of

vs, vt, vi belongs to a different component of U(X − v1) by Proposition 1.13 In particular,

one of vs, vt is an isolated vertex in U(X − v1). Without loss of generality, assume vs is

such a vertex. Thus, vs is adjacent to every vertex except possibly v1 in X. If vs is not
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adjacent to v1, then vs and vi share the same closed neighbourhood, so the arc between

vs and vi is balanced, a contradiction. Hence, vs is adjacent to v1 and vs = v2. Consider

vt. Suppose t < i. Since 2 = s < t < i and vi is adjacent to vs, the umbrella property

implies vt is adjacent to vs. If vt is also adjacent to vn, then vi and vt have the same

closed neighbourhood so the arc between them is balanced, a contradiction. Hence, vt
is not adjacent to vn. Since s < t < n, the umbrella property implies that vs and vn
are not adjacent. Thus (vt, vi)Γ(vi, vn)Γ(vs, vi) is a Γ-sequence between the arcs and not

containing v1, a contradiction by Theorem 1.9. It follows that i < t. If vt is non-adjacent

to vs, then (vi, vt)Γ(vs, vi) is a Γ-sequence between the arcs and not containing v1, a

contradiction. Hence, vt is adjacent to vs = v2. If t = n, then the arc between vi and vt
is balanced by the umbrella property, a contradiction. If t < n, then vt is adjacent to vn
because i < t < n and vi is adjacent to vn, leading to a similar contradiction. Therefore

vi is incident with exactly one arc. Suppose vi, vj are two such vertices. By the above,

each of them is incident with an arc. Moreover, they cannot be incident with the same

arc because they share the same neighbourhood. Hence, they are each incident with a

different arc. Since X contains two arcs, there are at most two such vertices.

Finally we prove (c). Clearly, n ≥ 4. Since there are at most four vertices incident

with arcs and at most two arc-balancing vertices in X, there can be at most six vertices

vi with i ≥ 3 by (a). Therefore n ≤ 8.

Theorem 2.6. Let X be an obstruction and ≺: v1, v2, . . . , vn be a straight enumeration of

U(X). Suppose that v2 is the only cut-vertex and it is non-dividing. If n = 4 or 5, then

X or its dual is one of the graphs in Figure 2.3.

(i) (ii) (iii)

Figure 2.3: Obstructions with a unique non-dividing cut-vertex on 4 or 5 vertices.

Proof: Suppose n = 4. Since v3 is not a cut-vertex, v2 and v4 are adjacent. Both v3
and v4 are adjacent to every vertex except for v1 and by Lemma 2.5(b) they are incident

with different arcs. It is easy to see that X is Figure 2.3(i).

Suppose n = 5. For each i = 3, 4, vi is not a cut-vertex, so vi−1 and vi+1 are adjacent.

On the other hand if v2 is adjacent to v5, then the umbrella property implies v3, v4, v5 are

all adjacent to every vertex except for v1, contradicting Lemma 2.5(b). So v2 and v5 are

not adjacent. Each of v3, v4 is adjacent to every vertex except v1 and by Lemma 2.5(b)

they are incident with different arcs. Since n 6= 4, v2 is not incident with both arcs

according to Lemma 2.3. It follows that v5 must be incident with at least one arc. If v5
is incident with exactly one arc, then X is or its dual is Figure 2.3(ii). Otherwise v5 is

incident with both arcs and X or its dual is Figure 2.3(iii).
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Lemma 2.7. Let X be an obstruction and ≺: v1, v2, . . . , vn be a straight enumeration

of U(X). Suppose vk is a (vi, vj)-balancing vertex. Then, either k < min{i, j} or k >

max{i, j}. Moreover,

• If k < min{i, j}, then no vp with p < k is adjacent to either one of vi, vj, and any

vq with q > max{i, j} is adjacent to either both or neither of vi, vj;

• If k > max{i, j}, then no vp with p > k is adjacent to either one of vi, vj, and any

vq with q < min{i, j} is adjacent to either both or neither of vi, vj.

Proof: First we show that either k < min{i, j} or k > max{i, j}. Otherwise, vk is

between vi and vj. Since vivj is an edge of U(X), the umbrella property implies that

both vi and vj are adjacent to vk, a contradiction to the fact that vk is a (vi, vj)-balancing

vertex. Thus, either k < min{i, j} or k > max{i, j}.

By symmetry, it suffices to consider the first case. Suppose k < min{i, j}. If vp
with p < k is adjacent to either one of vi, vj, then it must also be adjacent to vk by the

umbrella property. Since vk is the only vertex adjacent to exactly one of vi, vj, vp must be

adjacent to both vi and vj. By the umbrella property, both vi and vj are adjacent to vk,

a contradiction. On the other hand, since vk is the only vertex adjacent to exactly one

of vi, vj, it is clear that any vq with q > max{i, j} is adjacent to either both or neither of

vi, vj.

Theorem 2.8. Let X be an obstruction and ≺: v1, v2, . . . , vn be a straight enumeration

of U(X). Suppose that v2 is the only cut-vertex and it is non-dividing. If n = 6, then X

or its dual is one of the graphs in Figure 2.4.

Proof: For each 3 ≤ i ≤ 5, vi is not a cut-vertex, so vi−1 and vi+1 are adjacent. Now

v2v5 and v3v6 cannot both be edges in U(X) as otherwise v3, v4 and v5 each is adjacent

to every vertex except for v1, contradicting Lemma 2.5(b).

We claim that v4 and v5 is each incident with an arc. Since v4 is adjacent to every

vertex except for v1, it is incident with exactly one arc by Lemma 2.5(b). On the other

hand, suppose v5 is not incident with an arc. By Lemma 2.5(a), v5 is an arc-balancing

vertex for some arc. Thus v5 is adjacent to exactly one endvertex of the arc. It is easy

to see that the other endvertex can only be v2. Since v2 is a cut-vertex, v1 is adjacent to

exactly one endvertex (i.e., v2) of the arc, a contradiction to that v5 is arc-balancing for

the arc. Hence v5 is incident with an arc.

Suppose v3 and v6 are also incident with arcs. Then v3, v4, v5, v6 are endvertices of

the two arcs. Suppose that the two arcs are between v3 and v4 and between v5 and v6
respectively. Then v3v6 is not an edge of U(X) as otherwise the arc between v5 and

v6 is balanced, a contradiction. If v2v5 is not an edge of U(X) then X or its dual is
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Figure 2.4(i); otherwise, X or its dual is Figure 2.4(ii). Suppose that the two arcs are

between v3 and v5 and between v4 and v6 respectively. Then X or its dual is Figure 2.4(iii),

(iv) or (v) depending whether or not v2v5 and v3v6 are edges of U(X). Suppose the two

arcs are between v3 and v6 and between v4 and v5 respectively. Then X or its dual is

again Figure 2.4(v) (with v5 and v6 being switched).

Suppose v3 is not incident with an arc. By Lemma 2.5(a), v3 is an arc-balancing

vertex. By Lemma 2.7, v3 balances an arc between v5 and v6. Since v4 is incident with an

arc and v3 is not, the arc incident with v4 has the other endvertex being v2, v5, v6. These

three cases are represented by Figure 2.4(vi), (vii) and (viii).

It follows from the above that at least one v3 and v6 is incident with an arc. Thus it

remains to consider the case that v3 is incident with an arc but v6 is not. By Lemma 2.5(a),

v6 is an arc-balancing vertex for some arc. By Lemma 2.7, v2 cannot be an endvertex of

this arc, so the arc must be between v3 and one of v4, v5. In particular, this implies v3v6
is not an edge of U(X). It is now easy to verify that X or its dual is Figure 2.4(ix), (x)

or (xi).

(i) (ii)

(iii) (iv)

(v) (vi)

(vii) (viii)

(ix) (x)

(xi)

Figure 2.4: Obstructions with a unique non-dividing cut-vertex on 6 vertices.

Lemma 2.9. Let X be an obstruction and ≺: v1, v2, . . . , vn be a straight enumeration of

U(X). Suppose that v2 is the only cut-vertex and it is non-dividing. If n ≥ 7, then v2 is

not incident with an arc and the subgraph of U(X) induced by the vertices vi with i ≥ 3
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cannot contain a copy of K5.

Proof: Suppose that v2 is incident with an arc. Then v1 is adjacent to exactly one

endvertex of this arc so this arc cannot be balanced by any vertex vi with i ≥ 3. It follows

that there is at most one arc-balancing vertex vi with i ≥ 3. By Lemma 2.5(a) and the

assumption n ≥ 7 there are at least four vertices vi with i ≥ 3 which are incident with

arcs, which is impossible because v2 is such a vertex.

By Lemma 2.5(a) and (c), n ≤ 8 and each vi with i ≥ 3 is an arc-balancing vertex or

incident with an arc. Since neither of v1, v2 is incident with an arc, any set of five vertices

vi with i ≥ 3 must contain an arc-balancing triple and hence cannot induce a copy of K5

in U(X).

Theorem 2.10. Let X be an obstruction and ≺: v1, v2, . . . , vn be a straight enumeration

of U(X). Suppose that v2 is the only cut-vertex and it is non-dividing. If n = 7, then X

or its dual is one of the graphs in Figure 2.5.

(i) (ii)

(iii) (iv)

(v) (vi)

(vii) (viii)

Figure 2.5: Obstructions with a unique non-dividing cut-vertex on 7 vertices.

Proof: First, note that v3v7 is not an edge in U(X) as otherwise the vertices vi with

i ≥ 3 induce a K5 in U(X), a contradiction to Lemma 2.9. If v2v6 and v4v7 are both edges

of U(X), then each of v4, v5, v6 is adjacent to every vertex except for v1, contradicting

Lemma 2.5(c). So, v2v6 and v4v7 cannot both be edges in U(X).

By Lemma 2.5(b), there exists a vertex vi with i ≥ 3 adjacent to every vertex except

for v1. Since v3v7 is not an edge in U(X), neither v3 nor v7 is such a vertex. It is easy to

see that if v6 is such a vertex, then v5 is also such a vertex. Hence, at least one of v4, v5
is adjacent to every vertex except for v1.
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Suppose v4 is adjacent to every vertex except for v1. This implies in particular that

v4v7 is an edge of U(X) and thus v2v6 is not an edge of U(X). By Lemma 2.5(b), v4
is incident with exactly one arc. Lemma 2.9 implies the other endvertex of this arc is

one of v3, v5, v6, and v7. Suppose that the other endvertex is v3. If no vi with i ≥ 5

is an arc-balancing vertex for this arc, then {v5, v6, v7} must be an arc-balancing triple,

a contradiction because these vertices induce a clique. Hence for some i ≥ 5, vi is an

arc-balancing vertex for the arc between v4 and v3. By Lemma 2.7, it must be v7. Since

v7 balances the arc between v4 and v3, we see that v3 must be adjacent to v6. Both v5
and v6 are adjacent to vi for each i ≥ 3 so they cannot be arc-balancing vertices. Hence

by Lemma 2.5(a), both v5 and v6 are incident with arcs. This means there is an arc

between v5 and v6, which implies that v5 is adjacent to v2 (as otherwise v5 and v6 have

the same closed neighbourhood in U(X)). Since v3v7 is not an edge in U(X), X or its

dual is Figure 2.5(vii). Suppose next that there is an arc between v4 and v5. Since v4 and

v5 cannot have the same closed neighbourhood in U(X), v2v5 is not an edge in U(X).

Clearly, the arc between v4 and v5 is not balanced by any of v3, v6, v7, so {v3, v6, v7} is an

arc-balancing triple. By Lemma 2.7, the arc is between v6 and v7. It follows that v3v6 is

an edge in U(X). Hence X or its dual is Figure 2.5(vi).

Suppose next that there is an arc between v4 and v6. By Lemma 2.7, the arc between v4
and v6 cannot be balanced by v3, v5, v7. Similarly as above, {v3, v5, v7} is an arc-balancing

triple. If v7 balances an arc between v3 and v5, then v2v5 and v3v6are edges in U(X), and

X or its dual is Figure 2.5(vii). Suppose that v3 balances an arc between v5 and v7. Each

vertex except v3 is either adjacent to both v5, v7 or neither. Since v2 is not adjacent to v7,

it is not adjacent to v5. Hence, X or its dual is Figure 2.5(iv) or (vi) depending whether

or not v3v6 is an edge of U(X). Finally, suppose there is an arc between v4 and v7. By

Lemma 2.7, none of v3, v5, v6 is an arc-balancing vertex for this arc. Hence, {v3, v5, v6} is

an arc-balancing triple. By Lemma 2.7, v3 balances an arc between v5 and v6. It follows

that neither v2v5 nor v3v6 can be an edge in U(X). So X or its dual is Figure 2.5(iv).

Suppose now v4 is not adjacent to one of v2, v3, . . . , v7. From the above we know that

v5 must be adjacent to every vertex except for v1. So v5 is incident with exactly one arc,

and the other endvertex of this arc is one of v3, v4, v6, and v7. We claim that it cannot

be v6. Suppose to the contrary that there is an arc between v5 and v6. By Lemma 2.7,

none of v3, v4, v7 can be an arc-balancing vertex for this arc. Hence, {v3, v4, v7} is an

arc-balancing triple. Since neither v4v7 nor v3v7 is an edge of U(X), the second arc can

only be between v3 and v4 but it is not balanced by v7, a contradiction. Hence, there is

an arc between v5 and one of v3, v4, and v7.

Suppose first that there is an arc between v5 and v3. Assume that this arc is balanced

by a vertex. By Lemma 2.7, it is balanced by v7. It follows that v3v6 is an edge in U(X).

Since v6 is adjacent to every vertex vi with i ≥ 3, which are where all endvertices of arcs

are, it cannot be an arc-balancing vertex. It follows that v6 is incident with an arc. We
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claim that the other endvertex of this arc is v4. Indeed, if it is not v4, then v4 would be

the arc-balancing vertex for this arc, a contradiction by Lemma 2.7. Thus, X or its dual

is Figure 2.5(v) or (viii) depending whether or not v2v6 is an edge of U(X). Assume now

that the arc between v5 and v3 is not balanced by any vertex. In this case, {v4, v6, v7}
is an arc-balancing triple. By Lemma 2.7, either v4 balances an arc between v6 and v7,

or v7 balances an arc between v4 and v6. In the first case, v3v6 cannot be an edge of

U(X), as that would imply v3v7 is also an edge, a contradiction. Hence, X or its dual is

Figure 2.5(iii). In the second case, v2v6 must be an edge of U(X) and X or its dual is

Figure 2.5(viii).

Suppose there is an arc between v5 and v4. We claim that v3 is not arc-balancing

vertex. Indeed, if it is, then it must balance an arc between v6 and v7. Thus, v4v7 is

an edge of U(X), contradicting the fact that v4 is not adjacent to one of v2, v3, . . . , v7.

Hence, v3 is incident with an arc. The other endvertex of this arc is v4, v6, or v7. Clearly it

cannot be v7 because that would imply v4v7 is an edge of U(X), a contradiction. Suppose

the second arc is between v3 and v4. Then, v6 must be an arc-balancing vertex. Clearly,

v6 cannot balance the arc between v5 and v4, so it must balance the arc between v3 and

v4. It follows that v3v6 is not an edge of U(X), so X or its dual is Figure 2.5(ii). On the

other hand, suppose the second arc is between v3 and v6. In this case, X or its dual is

Figure 2.5(v) or (viii) depending whether v2v6 is an edge of U(X).

Finally, suppose there is an arc between v5 and v7. Clearly, none of v3, v4, v6 can be

an arc-balancing vertex for this arc. Hence {v3, v4, v6} is an arc-balancing triple. By

Lemma 2.7, v6 must balance an arc between v3 and v4. It follows that v3v6 is not an edge

of U(X), so X or its dual is Figure 2.5(i).

Theorem 2.11. Let X be an obstruction and ≺: v1, v2, . . . , vn be a straight enumeration

of U(X). Suppose that v2 is the only cut-vertex and it is non-dividing. If n = 8, then X

or its dual is one of the graphs in Figure 2.6.

(i) (ii)

Figure 2.6: Obstructions with a unique non-dividing cut-vertex on 8 vertices.

Proof: Since there are six vertices succeeding v2, exactly two of them are arc-balancing

vertices and the other four are incident with arcs by Lemma 2.5(a). By Lemma 2.5(b),

there exists a vertex succeeding v2 that is adjacent to every vertex except for v1. If any

of v3, v4, v7, v8 is adjacent to every vertex except for v1, then U(X) contains a copy of K5

among the vertices vi with i ≥ 3, contradicting Lemma 2.9. Hence, only v5 and v6 can be

adjacent to every vertex except for v1.
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Suppose v5 is adjacent to every vertex except for v1. By Lemma 2.5(b) again, v5 is

incident with exactly one arc. By Lemma 2.7, v8 balances an arc between v5 and one of

v3, v4. If v3 is an endvertex of this arc, then v3v7 would be an edge in U(X), contradicting

Lemma 2.9. Hence, v8 balances an arc between v5 and v4. It follows that v4v7 is an

edge of U(X). Moreover, there is an arc with both endvertices and arc-balancing vertex

among v3, v6, v7. If v7 balances an arc between v3 and v6, then v3v8 is an edge of U(X),

contradiction Lemma 2.5(b). Hence v3 balances an arc between v6 and v7. It follows that

X or its dual is Figure 2.6(i).

On the other hand, suppose v5 is not adjacent to one of v2, v3, . . . , v8. By the previous

discussion, v6 must be the unique such vertex. By Lemma 2.5(b), v6 is incident with

an arc. By Lemma 2.7, v8 balances an arc between v6 and one of v3, v4, v5. If v3 is an

endvertex of this arc, then v3v7 is an edge of U(X), contradicting Lemma 2.9. Suppose v8
balances an arc between v6 and v4. Then, v4v7 is an edge of U(X). Moreover, {v3, v5, v7}
is an arc-balancing triple. By Lemma 2.7, v7 balances an arc between v3 and v5. If v5v8 is

an edge of U(X), then v3v8 is also an edge, contradicting Lemma 2.9. Hence v5v8 is not

an edge and so X or its dual is Figure 2.6(ii). Suppose instead that v8 balances an arc

between v6 and v5. In this case, {v3, v4, v7} is an arc-balancing triple. By Lemma 2.7, v7
balances an arc between v3 and v4. Since v5v8 and v3v7 are not edges of U(X), X or its

dual is Figure 2.6(ii).
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Chapter 3

Obstructions without cut-vertices

We now examine obstructions X that do not contain cut-vertices. We shall consider

the complements U(X) of the underlying graphs U(X). All theorems and proofs, including

the drawings of obstructions X, in this chapter will be presented in terms of U(X) instead

of U(X).

Lemma 3.1. Suppose that X is an obstruction that contains no cut-vertices. Then, in

U(X), each vertex has at least two non-neighbours.

Proof: Note that X has at least vertices. Since X has no cut-vertices and U(X)

is connected, in U(X) each vertex has at least two neighbours and hence in U(X) each

vertex has at least two non-neighbours.

Recall from Corollary 1.11 that if an obstruction X has no cut-vertices then U(X) has

at most six non-cut-vertices. We show this holds for every connected subgraph of U(X).

Lemma 3.2. Let X be an obstruction that contains no cut-vertices and H be a connected

subgraph of U(X). Then U(X) contains at least as many non-cut-vertices as H. In

particular, H has at most six non-cut-vertices.

Proof: Since adding edges does not decrease the number of non-cut-vertices, we may

assume H is an induced subgraph of U(X). Thus H can be obtained from U(X) by

successively deleting non-cut-vertices. Since each deletion of a non-cut-vertex does not

increase the number of non-cut-vertices, U(X) contains at least as many non-cut-vertices

as H. By Corollary 1.11, U(X) has at most six non-cut-vertices. So H has at most six

non-cut-vertices.

Lemma 3.3. If X is an obstruction that contains no cut-vertices, then U(X) contains

no induced cycle of length at least 6.

Proof: By Lemma 3.2, any connected subgraph of U(X) has at most six non-cut-

vertices. Thus U(X) contains no induced cycle of length at least 7. Theorem 1.4 ensures
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that U(X) does not contain an induced cycle of length 6. Therefore U(X) contains no

induced cycle of length ≥ 6.

Lemma 3.3 implies that any induced cycle in U(X) has length 3, 4 or 5. We show

that U(X) contains at most one C3 and at most one induced C5 and moreover, if U(X)

contains an induced C5, then it does not contain an induced C3 or C4.

Lemma 3.4. Let X be an obstruction. Suppose C is an odd cycle (not necessarily induced)

in U(X). Then in U(X) each vertex is either on C or adjacent to a vertex of C. In

particular, each cut-vertex of U(X) is on C.

Proof: Since C is an odd cycle, U(X) contains an induced odd cycle C2k+1 on some

vertices on C. By Theorem 1.4, U(X) does not contain C2k+1+K1 as an induced subgraph.

Thus each vertex is either in C2k+1 or adjacent to a vertex of C2k+1. Since the vertices of

C2k+1 are all on C, each vertex is either on C or adjacent to a vertex of C. Consequently,

each cut-vertex of U(X) is on C.

Lemma 3.5. Suppose that X is an obstruction that contains no cut-vertices. Then U(X)

contains at most one C3.

Proof: Suppose that C and C ′ are two copies of C3 in U(X). If C and C ′ share no

common vertex, then every vertex of U(X) is either not on C or not on C ′ and hence

by by Lemma 3.4 is a non-cut-vertex. But U(X) has at most six non-cut-vertices by

Corollary 1.11, so U(X) is a union of C and C ′. According to Proposition 1.10 each

vertex of U(X) is an endvertex of an arc or an arc-balancing vertex. There are at most

four endvertices of arcs and at most two arc-balancing vertices. So among the six vertices

of U(X) four are the endvertices of arcs and the remaining two are arc-balancing vertices.

Suppose that (a, b) is an arc (of X) and u is its balancing vertex that is adjacent to a but

not to b in U(X). Then each of the remaining three vertices is adjacent to a or b and thus

to both a, b. Hence b is the only non-neighbour of a in U(X), a contradiction to Lemma

3.1. Therefore any two copies of C3 in U(X) must share a common vertex.

Suppose that C and C ′ share exactly one common vertex. Denote C : v1v2v3 and

C ′ : v1v4v5. Let u,w be two non-neighbours of v1 in U(X) guaranteed by by Lemma 3.1.

Each vertex except v1 is not on C or C ′ and hence by Lemma 3.4 is a non-cut-vertex. Since

U(X) has at most six non-cut-vertices, it consists of C,C ′ and u, v. A similar argument

as above among the six non-cut-vertices u,w, v2, v3, v4, v5 four are the endvertices of arcs

and the remaining two are arc-balancing vertices. We claim that the two arc-balancing

vertices are u,w. Indeed, since v1 is not an arc-balancing vertex, there is no arc between

u,w and v2, v3, v4, v5. Suppose that there is an arc between u and w. Assume without

loss of generality that this arc is balanced by v2 which is adjacent to u but not w. By

Lemma 3.4, w is adjacent to a vertex on C. Since w is not adjacent to v1 or v2, it is

adjacent to v3. Since v3 does not balance the arc between u and w, v3 is adjacent to u.
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But then uv2v3 and C ′ are vertex-disjoint copies of C3, a contradiction. Hence neither

of u,w is an endvertex of an arc so both are arc-balancing vertices. Without loss of

generality assume that u balances an arc between v2 and v4 and is adjacent to v2 but not

v4. Since v3 is adjacent to v2, it must be adjacent to v4. Similarly, v5 must be adjacent

to v2. By Lemma 3.4, u is adjacent to a vertex on C ′ which can only be v5. Hence uv2v5
and v1v3v4 are vertex-disjoint copies of C3, a contradiction. Therefore any two copies of

C3 in U(X) must share at least two common vertices.

Suppose that C and C ′ share exactly two vertices. Denote C : v1v2v3 and C ′ : v1v2v4.

We claim that in U(X) any vertex v /∈ C ∪ C ′ that is adjacent one of v3, v4 must be

adjacent to both v3, v4 and neither of v1, v2. Without loss of generality, suppose v /∈ C∪C ′

is adjacent to v3. If it is also adjacent to v1, then v1v3v and v1v2v4 would be two distinct

copies of C3 in U(X) that share exactly one common vertex, a contradiction to the above.

Hence, v is not adjacent to v1. Similarly, v is not adjacent to v2. By Lemma 3.4 v must

be adjacent to a vertex on C ′ so it is adjacent to v4.

Now, we show that v3 and v4 are incident with different arcs. Suppose v3 balances an

arc between a and b and is adjacent to a but not b. If a = v1, then since v2 and v4 are

adjacent to v1, they must also be adjacent to b. So, bv2v4 and C are two distinct copies

of C3 in U(X) that share exactly one common vertex, a contradiction. Thus, a 6= v1.

Similarly, a 6= v2. Suppose a = v4. Since v1 and v2 are adjacent to a, they must be

adjacent to b as well. Thus v1v2b and v3v4v2 are two copies of C3 in U(X) that share

exactly one common vertex, a contradiction.

It follows that a /∈ C ∪ C ′. Since a /∈ C ∪ C ′ and a is adjacent to v3, it is adjacent to

both of v3, v4 by the above claim. Since v4 is adjacent to a, it must also be adjacent to

b. Moreover, b /∈ C ∪ C ′ because it is adjacent to v4 but not a. Since b /∈ C ∪ C ′ and b

is adjacent to v4, the above claim implies b is adjacent to both of v3, v4, a contradiction

because v3 balances the arc (a, b). Thus, v3 is not an arc-balancing vertex. Since v3 is not

on C ′, it is not a cut-vertex of U(X) by Lemma 3.4. By Proposition 1.10, v3 is incident

with an arc. Similarly, v4 is incident with an arc. If v3 and v4 are incident with the same

arc, then there must be a vertex u that is adjacent to exactly one of v3, v4 because arcs

in X are not balanced. Clearly, u /∈ C ∪ C ′. This is a contradiction because any vertex

not in C ∪C ′ is adjacent to either both of v3, v4 or neither, by above claim. Thus, v3 and

v4 are each incident with a different arc.

Suppose there exists a vertex v /∈ C ∪ C ′ that is adjacent to either of v3, v4. By the

above claim, we know that v is adjacent to both of v3, v4 and neither of v1, v2. Since v is

adjacent to both of v3, v4, which are each incident with a different arc, v is not incident

with an arc. Moreover, since v is not on the odd cycle C, Lemma 3.4 implies v is not a

cut-vertex of U(X). So by Proposition 1.10, v is an arc-balancing vertex. Since v3 and

v4 are each incident with a different arc, we may assume without loss of generality that v

balances an arc incident with v3. Let w denote the other endvertex of this arc. Then, w
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is adjacent to v1 and v2, so v1v2w is a triangle. By Lemma 3.4, v is adjacent to a vertex

on v1v2w, which must be w, a contradiction because v balances the arc between v3 and w.

It follows U(X) does not contain a vertex v /∈ C ∪ C ′ that is adjacent to either of v3, v4.

By Lemma 3.1, v1 has at least two non-neighbours, say u and w. Clearly, u,w /∈ C∪C ′.
So by the above, neither of u,w is adjacent to either of v3, v4. By Lemma 3.4, each of

u,w is adjacent to a vertex on C, which must be v2. Similarly, v2 has at least two non-

neighbours, say x and y, and each is adjacent to v1. By Lemma 3.4, each of v3, v4, u, w, x, y

is a non-cut-vertex of U(X) and so by Corollary 1.11 they form two disjoint arc-balancing

triples. Since v3 and v4 are each incident with a different arc, exactly two of u,w, x, y are

arc-balancing vertices. Without loss of generality, assume u is an arc-balancing vertex

for an arc incident with v3. Since v3 is adjacent to both v1 and v2, the other endvertex

must also be adjacent to both v1 and v2. This is a contradiction because none of w, x, y

is adjacent to both v1 and v2 by assumption. It follows that C and C ′ cannot share two

common vertices. Therefore U(X) contains at most one C3.

Lemma 3.6. Suppose that X is an obstruction that contains no cut-vertices. Then U(X)

contains at most one induced C5.

Proof: Suppose that C and C ′ are induced copies of C5 contained in U(X). By

Lemma 3.4, any vertex not on C or C ′ is a non-cut-vertex of U(X) and hence by Corollary

1.11 there can be at most six such vertices. Thus C and C ′ must share at least two common

vertices. If C and C ′ share less two or three common vertices, then the subgraph of U(X)

induced by C ∪ C ′ is connected and has at least seven non-cut-vertices, contradicting

Lemma 3.2. Hence, C and C ′ must share exactly four vertices.

Denote C : v1v2v3v4v5 and C ′ : v2v3v4v5v6. Then v1v6 is not an edge in U(X) as

otherwise v1v2v6 and v1v5v6 are two copies of C3 in U(X), a contradiction to Lemma 3.5.

We claim that v1, v6 are endvertices of arcs in X. By symmetry we only prove that v1
is an endvertex of an arc in X. We prove it by contradiction. So assume that v1 is not

an endvertex of an arc in X. Since v1 is not in C ′, by Lemma 3.4 it is not a cut-vertex

of U(X). Hence v1 is an arc-balancing vertex for some arc according to Proposition 1.10.

Suppose that v1 balances the arc between vertices a, b and is adjacent to a but not to b

in U(X). If a is not on C ′, then a must be adjacent to a vertex of C ′ by Lemma 3.4.

But then the subgraph of U(X) induced by C ∪ C ′ ∪ {a} is connected and has seven

non-cut-vertices, contradicting Lemma 3.2. Hence a is a vertex of C ′ and therefore it is v2
or v5. Assume by symmetry a = v2. Since v1 balances the arc between a, b, every vertex

not in {v1, a, b} is either adjacent to both a, b or neither. It follows that b cannot be in

C ∪C ′. Thus the subgraph of U(X) induced by C ∪C ′ ∪ {b} is connected and has seven

non-cut-vertices, a contradiction to Lemma 3.2. Therefore v1, v6 are both endvertices of

arcs of X. We claim that there is no arc between v1, v6. Suppose not; there is an arc

between v1, v6. Then there must exist a vertex u adjacent to exactly one of v1, v6. Then
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there must exist a vertex u adjacent to exactly one of v1, v6. A similar argument as above

shows that u is not in C ∪ C ′ but adjacent to a vertex in C ∪ C ′. Thus the subgraph

of U(X) induced by C ∪ C ′ ∪ {u} is connected and contains seven non-cut-vertices, a

contradiction. Thus, v1, v6 are endvertices of different arcs.

The subgraph of U(X) induced by C ∪ C ′ contains six non-cut-vertices, so U(X)

contains six non-cut-vertices by Lemma 3.2. It follows from Proposition 1.10 that X

contains exactly four vertices incident to arcs and exactly two arc-balancing vertices. In

particular, both arcs have an arc-balancing vertex.

By Proposition 1.10, v3 is a cut-vertex of U(X), an arc-balancing vertex, or is incident

with an arc. We claim it must be a cut-vertex of U(X). Suppose instead v3 is an arc-

balancing vertex. Without loss of generality, assume it balances the arc incident with v1.

Then, the other endvertex must be adjacent to each of v2, v5. Clearly, the subgraph of

U(X) induced by C ∪ C ′ together with this endvertex contains seven non-cut-vertices,

a contradiction. On the other hand, suppose v3 is incident with an arc. The other

endvertex is one of v1, v6. Without loss of generality, assume it is v1. Then, v4 and v5 are

both vertices adjacent to exactly one of the endvertices of this arc, so the arc between v1
and v3 has no arc-balancing vertex, a contradiction. Thus, v3 is a cut-vertex of U(X).

Let v7 be a neighbour of v3 belong to a different component of U(X − v3) as the

vertices in (C ∪ C ′) \ {v3}. By Lemma 3.4, v7 cannot be a cut-vertex of U(X). On

the other hand, suppose v7 is incident with an arc. Without loss of generality, assume

the other endvertex is v1. Since v2 and v3 are both vertices adjacent to exactly one of

v1, v7, there is no corresponding arc-balancing vertex for this arc, a contradiction. Thus,

v7 cannot be incident with an arc. By Proposition 1.10, v7 is an arc-balancing vertex

for either the arc incident with v1 or the arc incident with v6. In either case, the other

endvertex must be adjacent to both v2 and v5. Clearly, the subgraph of U(X) induced by

C ∪C ′ together with this endvertex contains seven non-cut-vertices, a contradiction.

Lemma 3.7. Let X be an obstruction that contains no cut-vertices. If U(X) contains an

induced C5, then it contains neither C3 nor an induced C4.

Proof: Let C : v1v2v3v4v5 be an induced C5 in U(X). We first show that U(X) does

not contain C3. Suppose otherwise and let C ′ be a C3 in U(X). A similar argument as

the one in Lemma 3.6 shows that C and C ′ have exactly two common vertices. Without

loss of generality let C ′ : v1v2v6. By Lemma 3.4, v4 must be adjacent to a vertex on C ′,

which clearly must be v6. The subgraph induced by C ∪C ′ contains six non-cut-vertices,

so U(X) contains six non-cut-vertices by Lemma 3.2. Each of these six non-cut-vertices is

an arc-balancing vertex or incident with an arc by Proposition 1.10. Hence, each arc has a

arc-balancing vertex. If both endvertices of some arc are on C, then C contains two other

vertices which are both adjacent to exactly one of the endvertices, contradicting the fact

that each arc has a unique arc-balancing vertex. It follows that each arc has at most one
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endvertex on C. In particular, at most two vertices on C are incident with arcs. On the

other hand, at most two vertices on C are arc-balancing. It follows from Proposition 1.10

that C has a cut-vertex. By Lemma 3.4, each cut-vertex belongs to C ∩ C ′, so only v1
and v2 can be cut-vertices.

We claim that if v1 is a cut-vertex, then there exists a vertex v7 that is adjacent only

to v1 and an arc between v5 and v7 that is balanced by v4. Suppose v1 is a cut-vertex.

Let v7 be a vertex adjacent to v1 that belongs to a different component of U(X − v1) as

the vertices in (C ∪C ′)\{v1}. If v7 is adjacent to a vertex other than v1, then that vertex

must be adjacent to a vertex in C ∪ C ′ by Lemma 3.4, contradicting the choice of v7.

Hence, v7 is adjacent only to v1. By Lemma 3.4, v7 is not a cut-vertex. Suppose v7 is an

arc-balancing vertex. Then, v1 is incident with an arc, and the other endvertex of this

arc must be adjacent to v2, v5, v6. Clearly, this endvertex is none of the vertices in C ∪C ′,
so the subgraph of U(X) induced by C ∪ C ′ together with this endvertex contains seven

non-cut-vertices, contradicting Lemma 3.2. Hence, v7 is not an arc-balancing vertex. By

Proposition 1.10, v7 is incident with an arc. Since v7 is adjacent only to v1, the other

endvertex has degree 2 and is adjacent to v1. Clearly, it must be v5. The corresponding

arc-balancing vertex is adjacent to v5 and not to v7, so it must be v4. This proves our

claim.

Recall that at least one of v1, v2 is a cut-vertex. Without loss of generality, assume v1
is a cut-vertex. By the above, there exist a vertex v7 that is adjacent only to v1 and an

arc between v5 and v7 that is balanced by v4. In particular, v6 is not an arc-balancing

vertex for this arc. By Lemma 3.4, v6 is not a cut-vertex. Hence by Proposition 1.10, v6 is

arc-balancing for the other arc or incident with it. By symmetry, if v2 is also a cut-vertex,

then there exist a vertex v8 that is adjacent only to v2 and an arc between v3 and v8, a

contradiction because v6 is neither arc-balancing for this arc nor incident with this arc.

Thus, v2 is not a cut-vertex. Since v4 balances an arc between v5 and v7 and v2, v3, v6 are

non-cut-vertices, {v2, v3, v6} is an arc-balancing triple. It follows that v2 balances an arc

between v3 and v6, a contradiction. Thus, U(X) does not contain an induced C3.

It remains to show that U(X) does not contain an induced C4. Suppose otherwise,

and let C ′ be such a cycle. A similar argument as the one in Lemma 3.6 shows that C and

C ′ have exactly three common vertices. Let C ′ : v1v2v3v6. If v6 is adjacent to neither v4
or v5, then v1v6v3v4v5 is an induced C5, contradicting Lemma 3.6. Hence, v6 is adjacent

to one of v4, v5. It follows that U(X) contains an induced C3, a contradiction.

3.1 U(X) is disconnected

We first examine obstructions X that do not contain cut-vertices for which U(X) is

disconnected. These obstructions have a simple structure as described in the following
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theorem.

Theorem 3.8. Let X be an obstruction that does not contain cut-vertices. Suppose that

U(X) is disconnected. Then the following statements hold:

• U(X) is the union of two disjoint paths P : p1p2 . . . pk and Q : q1q2 . . . q`;

• X or its dual contains the arcs (p1, q1), (q`, pk) if k + ` is even, and (p1, q1), (pk, q`)

otherwise.

That is, U(X) is one of the graphs in Figure 3.1 and X or its dual contains the dotted

arcs.

. . .

. . .

p1 p2 pk

q1 q2 q`

(i) k + ` is even.

. . .

. . .

p1 p2 pk

q1 q2 q`

(ii) k + ` is odd.

Figure 3.1: Obstructions X for which U(X) is disconnected.

Proof: Let (a, b) and (c, d) be the two arcs of X. Then ab and cd belong to the same

implication class of U(X). By Theorem 1.7, either ab and cd are unbalanced edges of

U(X) within a component of U(X) or they are edges between two components of U(X).

Since U(X) is disconnected, it has at least two components. If some component of U(X)

does not contain any of a, b, c, d, then any non-cut-vertex of that component is not a

cut-vertex of U(X) by assumption, and is also not an arc-balancing vertex because it is

not adjacent to any of a, b, c, d in U(X). This contradicts Proposition 1.10. Thus U(X)

has exactly two components and ab, cd are edges between them.

Consider a component H of U(X) and let P be a shortest path in H between some two

of a, b, c, d. If H contains a vertex v that is not in P then it follows from Proposition 1.5

that ab and cd are still in the same implication class of U(X−v), which is a contradiction

to Theorem 1.9. This shows that each component of U(X) is a path connecting two

vertices of a, b, c, d and U(X) is the union of two disjoint paths.

Let P : p1 . . . pk and Q : q1 . . . q` be the two paths in U(X). The two arcs are between p1
and q1 and between pk and q` respectively. Without loss of generality, assume (p1, q1) is an

arc. Suppose k+` is even. If k, ` are both even, then (p1, q1)Γ
∗(q`, p1) and (q`, p1)Γ

∗(pk, q`)

by Proposition 1.5. Since the arcs must be opposing, the other arc is (q`, pk). Otherwise,

k, ` are both odd. In this case, we have (p1, q1)Γ
∗(p1, q`) and (p1, q`)Γ

∗(pk, q`), so the other

arc is (q`, pk). Hence X or its dual is Figure 3.1(i). A similar proof shows that, when k+`

is odd, X or its dual is Figure 3.1(ii).
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We remark that if k = 1 and 2 ≤ ` ≤ 3, then the graph X is an obstruction that

contains cut-vertices, and thus does not belong to this case. In particular, the dual of X

is Figure 2.1(i) if k = 1 and ` = 2, and X is Figure 2.3(i) if k = 1 and ` = 3.

Corollary 3.9. If X is an obstruction that does not contain cut-vertices and for which

U(X) is disconnected, then U(X) is acyclic.

3.2 U(X) is a tree

We next examine obstructions X that do not contain cut-vertices and for which U(X)

is a tree. We begin with a useful lemma.

Lemma 3.10. Let X be an obstruction that contains no cut-vertices. If U(X) is a tree,

then it is a caterpillar and has at most four leaves. Moreover, suppose P : p1p2 . . . pk is

a longest path in U(X). If p1 is an arc-balancing vertex, then p2 has only two neighbours

(namely, p1, p3) and p1 balances an arc between p2 and a leaf adjacent to p3 but not in P .

Proof: Since U(X) is a proper circular-arc graph, U(X) does not contain the fifth

graph in Figure 1.1 by Theorem 1.4 and hence is a caterpillar. If v is a leaf of U(X) that

is not incident with an arc of X, then by Proposition 1.10 v is an arc-balancing vertex

and hence adjacent to a vertex that is incident with an arc. Clearly, the vertex adjacent

to v cannot be adjacent to any other leaf. Since there are at most four vertices incident

with arcs, U(X) has at most four leaves.

Since P is a longest path, p1 is a leaf. If p1 is an arc-balancing vertex, then p2 is

incident with an arc balanced by p1. Let u be the other endvertex of the arc. Every

vertex other than p1 is adjacent either to both p2, u or neither. Since p3 is adjacent to p2,

it is adjacent to u. Since U(X) is a tree, p3 is the only neighbour of p2 other than p1 and

the only neighbour of u. It follows that p1, p3 are the only neighbours of p2. If u is in P

then u = p4 and k = 4. Thus each vertex not in P can only be adjacent to p3 in U(X),

which implies that p1 is a cut-vertex of U(X), a contradiction. Therefore u is a leaf of

U(X) adjacent to p3 but not in P .

Theorem 3.11. Let X be an obstruction that contains no cut-vertices and for which

U(X) is a tree. Let P : p1p2 . . . pk be a longest path in U(X). Then U(X) consists of

P and u, v (possibly u = v) where u is either a leaf adjacent to some p` but not in P or

u = p` and v is either a leaf adjacent to some pj but not in P or v = pj, and one of the

following statements holds:

(i) u is not in P and ` = 3, v is not in P and j = k − 2, and X or its dual has arcs

(p2, u), (pk−1, v) (See Figure 3.2(i));
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(ii) u is not in P and ` = 3, 1 ≤ j ≤ k − 2 with j > 2 when v is not in P , and X or its

dual has arcs (p2, u), (v, pk) if either k + j is even and v is not in P or k + j is odd

and v is in P ; otherwise X or its dual has arcs (p2, u), (pk, v) (See Figure 3.2(ii));

(iii) u is not in P and 2 ≤ ` ≤ k − 2, j = ` + 1, X or its dual has arcs (p1, pk), (v, u)

if either k is even and v is not in P or k is odd and v is in P ; otherwise X or its

dual has arcs (p1, pk), (u, v) (See Figure 3.2(iii));

(iv) 3 ≤ ` ≤ k − 1, ` − 1 ≤ j ≤ k − 2, and X or its dual has arcs (p1, u), (pk, v) if

either k + `+ j is even and P contains both u, v or neither, or k + `+ j is odd and

P contains exactly one of u, v; otherwise X or its dual has arcs (p1, u), (v, pk) (See

Figure 3.2(iv)).

Proof: Suppose both p1, pk are arc-balancing vertices. By Lemma 3.10, p1 balances

an arc between p2 and a leaf u adjacent to p3 but not in P , and pk balances an arc

between pk−1 and a leaf v adjacent to pk−2 but not in P . In the tree U(X) the unique

(u, pk)-path avoids p1 and the unique (p1, v)-path avoids pk. The lengths of these two

paths have the same parity so by Proposition 1.5, we have either (u, p1)Γ
∗(pk, p1)Γ

∗(pk, v)

or (u, p1)Γ
∗(p1, pk)Γ

∗(pk, v). In both cases, we have (u, p1)Γ
∗(pk, v) and therefore it follows

that (p2, u)Γ(u, p1)Γ
∗(pk, v)Γ(v, pk−1). Since the two arcs of X are opposing, X or its dual

contains arcs (p2, u), (pk−1, v). Since the subgraph of X induced by P together with u, v

is an obstruction, and proper induced subgraphs of obstructions are not obstructions, the

minimality of X ensures that U(X) consists of P and u, v and thus statement (i) holds.

Suppose next that p1 is an arc-balancing vertex but pk is not. By Lemma 3.10 p1
balances an arc between p2 and a leaf u adjacent to p3 but not in P . Since pk is not an

arc-balancing vertex, it is an endvertex of an arc. Let v be the other endvertex. Then

either v = pj for some 1 ≤ j ≤ k− 2 or a leaf adjacent to some vertex in P . Suppose that

v is a leaf adjacent to pj. Then j /∈ {1, k} because P is the longest path in U(X), and

j 6= 2 because p2 has no neighbour other than p1, p3 according to Lemma 3.10. Moreover,

j 6= k − 1 as otherwise the arc between pj and pk is balanced, which is not possible. So

2 < j < k− 1. In the tree U(X) the unique (u, pk)-path avoids p1 and the unique (p1, v)-

path avoids pk. If k + j is even and v is not in P or k + j is odd and v is in P , then the

lengths of these two paths have the same parity. By Proposition 1.5, (u, p1)Γ
∗(pk, v) and

so (p2, u)Γ(u, p1)Γ
∗(pk, v). Since the two arcs of X are opposing, X or its dual contains

arcs (p2, u), (v, pk). Otherwise, the lengths of the two paths have the opposite parities and

we have (p2, u)Γ(u, p1)Γ
∗(v, pk). Hence X or its dual contains arcs (p2, u), (pk, v). The

minimality of X ensures that U(X) consists of P and u, v and thus statement (ii) holds.
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. . .
p1 p2 p3 pk−2 pk−1 pk

u v

(i)

. . . . . .
p1 p2 p3 pj pk−1 pk

u v

(ii.a): The second arc is (v, pk) if k + j is
even and (pk, v) otherwise where 2 < j <
k − 1.

. . .
p1 p2 p3 pk−1 pk

u

(ii.b): The second arc is (pj , pk) if k + j is
odd and (pk, pj) otherwise where 1 ≤ j ≤
k − 2.

. . . . . .
p1 p2 p` p`+1 pk−1 pk

u v

(iii.a): The second arc is (v, u) if k is even
and (u, v) otherwise.

. . . . . .
p1 p2 p` p`+1 pk−1 pk

u

(iii.b): The second arc is (p`+1, u) if k is
odd and (u, p`+1) otherwise.

. . . . . .
p1 p2 p`−1 p` pk−1 pk

v u

(iv.a): The second arc is (pk, v) if k+ `+ j
is even and (v, pk) otherwise.

. . . . . . . . .
p1 p2 p` pj pk−1 pk

u v

(iv.b): The second arc is (pk, v) if k+ `+ j
is even and (v, pk) otherwise.

. . . . . .
p1 p2 p`−1 p` pk−1 pk

(iv.c): The second arc is (pk, p`−1) if k+`+j
is even and (p`−1, pk) otherwise.

. . . . . . . . .
p1 p2 p` pj pk−1 pk

(iv.d): The second arc is (pk, pj) if k+ `+ j
is even and (pj , pk) otherwise.

. . . . . .
p1 p2 p`−1 p` pk−1 pk

u

(iv.e): The second arc is (pk, p`−1) if k+`+j
is odd and (p`−1, pk) otherwise.

. . . . . . . . .
p1 p2 p`

u

pj pk−1 pk

(iv.f): The second arc is (pk, pj) if k+ `+ j
is odd and (pj , pk) otherwise.

Figure 3.2: Obstructions X for which U(X) is a tree.
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It remains to consider the case when neither of p1, pk is an arc-balancing vertex. Sup-

pose first that X contains an arc between p1 and pk. Let u, v be the endvertices of the

other arc. We claim that at least one of u, v is not in P . Indeed, if they are both in P (say

u = pi and v = pj where i < j) then j > i + 1. It is easy to check that X − pi+1 cannot

be completed to a local tournament, which contradicts the minimality of X. So at least

one of u, v is not in P . Assume without loss of generality that u is not in P . Since U(X)

is a caterpillar, u is a leaf adjacent to some p` in P , and v = pj or v is a leaf adjacent to

some pj in P . By reversing ≺ if needed we assume that j ≥ `. Since uv is an unbalanced

edge of U(X), j 6= `. In the tree U(X) the unique (p1, u)-path avoids pk and the unique

(v, pk)-path avoids u. If k is even and v is not in P or k is odd and v is in P , then

the lengths of these two paths have the same parity. By Proposition 1.5, (p1, pk)Γ
∗(u, v)

and hence X or its dual contains arcs (p1, pk), (v, u). Otherwise, the lengths of the two

paths have opposite parities and we have (p1, pk)Γ
∗(v, u) and X or its dual contains arcs

(p1, pk), (u, v). If j > `+1, then the two arcs are still opposing in X−p`+1, a contradiction

to the assumption that X is an obstruction. So j = ` + 1. The minimality of X ensures

U(X) contains no other vertices. Therefore statement (iii) holds.

Suppose now that X does not contain an arc between p1, pk. Then p1, pk are incident

with different arcs. Let u, v be the other endvertices of the arcs incident with p1, pk
respectively. Then u = p` or is a leaf adjacent to some p` in P and v = pj or is a leaf

adjacent to some pj in P . Since X has no arc between p1, pk and p1u is an unbalanced

edge of U(X), 3 ≤ ` ≤ k − 1. Similarly, 2 ≤ j ≤ k − 2. In U(X) the unique (p1, v)-path

avoids pk and the unique (u, pk)-path avoids p1. If k+ `+ j is even and P contains either

both u, v or neither, or k + ` + j is odd and P contains exactly one of u, v, then the

lengths of these two paths have opposite parities. By Proposition 1.5, (p1, u)Γ∗(v, pk) and

hence X or its dual contains arcs (p1, u), (pk, v). Otherwise, the lengths of the two paths

have the same parity and (p1, u)Γ∗(pk, v) and X or its dual contains arcs (p1, u), (v, pk).

If j < ` − 1, then the two arcs are opposing in X − p`−1, contradicting that X is an

obstruction. So j ≥ ` − 1. The minimality of X ensures that U(X) contains no other

vertices. Therefore statement (iv) holds.

3.3 U(X) contains a C3 but no induced C4

We now examine obstructions X that do not contain cut-vertices and for which U(X)

contains cycles. By Corollary 3.9, U(X) is connected. We know from Lemma 3.3 that

any induced cycle in U(X) is of length 3, 4 or 5, and also from Lemma 3.7 that if U(X)

contains an induced cycle of length 5 then it does not contain an induced cycle of length

3 or 4.

We divide our discussion into four cases: U(X) contains a C3 but no induced C4;
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U(X) contains an induced C4 but no C3; U(X) contains both C3 and an induced C4; and

U(X) contains an induced C5. These four cases will be treated separately.

Lemma 3.12. Let X be an obstruction that contains no cut-vertices. Suppose U(X)

contains a C3 but no induced C4. Then the C3 is the only cycle in U(X) and any vertex

not on C3 is a leaf adjacent to a vertex on C3 and incident with an arc. Moreover, any

vertex on C3 is adjacent to a vertex not on it.

Proof: Since U(X) contains a C3 but no induced C4, by Lemmas 3.3, 3.5, and 3.7,

the C3 is the unique cycle in U(X). Let C3 : v1v2v3 the unique cycle. Consider a vertex

u that is not on C3. By Lemma 3.4, u is adjacent to a vertex on C3. Since the C3 is the

unique cycle in U(X), u must be a leaf. Clearly, u is not a cut-vertex of U(X) and by

assumption is not a cut-vertex of U(X). If u is an arc-balancing vertex, then u balances

an arc incident with a vertex in the C3. Thus the other two vertices of the C3 must be

adjacent to both endvertices of the arc, a contradiction to the fact the C3 is the unique

cycle in U(X). So u is not an arc-balancing vertex and therefore by Lemma 1.10 it is

incident with an arc.

It remains to show that each vertex on the C3 is adjacent to a vertex not on it. Suppose

on the contrary that v1 is not adjacent to a vertex not on the C3. By Lemma 3.1, v2 and

v3 each has two non-neighbours. Clearly, the non-neighbours of v2 and of v3 are not in

the C3. We know from the above they are endvertices of arcs. Since v1 is adjacent to

none of them, v1 is not an arc-balancing vertex. By assumption v1 is not a cut-vertex of

U(X). It cannot be a cut-vertex of U(X) because it is adjacent only to v2, v3 (which are

adjacent). This is a contradiction to Lemma 1.10.

Theorem 3.13. Let X be an obstruction that contains no cut-vertices. Suppose U(X)

contains a C3 but no induced C4. Then U(X) is one of the graphs in Figure 3.3 and X

or its dual contains the dotted arcs.

v1

v3 v2

u

w v

(i)

v1

v3 v2

uz

w v

(ii)

Figure 3.3: Obstructions X for which U(X) contains a C3 but no induced C4.

Proof: Suppose X is an obstruction. Let C3 : v1v2v3 be the unique C3 in U(X). By

Lemma 3.12, each vertex of the C3 is adjacent to a vertex not on it and each vertex not on

the C3 is a leaf adjacent to a vertex of the C3. Let u, v, w be vertices adjacent to v1, v2, v3
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respectively but not on the C3. By Lemma 3.12, each of u, v, w is incident with an arc.

Since X contains exactly two arcs, there must be an arc with both endvertices among

u, v, w. Without loss of generality, assume there is an arc between u and v. By possibly

considering the dual of X, let (u, v) be an arc. On the other hand, let z denote the other

endvertex of the arc incident with w. First suppose z is on the C3. Then z ∈ {v1, v2}.
Without loss of generality, assume z = v1. Then (u, v)Γ(v2, u)Γ(u, v3)Γ(w, u)Γ(v1, w) =

(z, w). Since the two arcs in X are opposing, the second arc must be (w, z) = (w, v1).

Thus U(X) is Figure 3.3(i). Otherwise, z is not on the C. By Lemma 3.12, z is a leaf

adjacent to a vertex on C. Clearly, z cannot be adjacent to v3 because otherwise the arc

between w and z would be balanced. Hence, assume without loss of generality that z is

adjacent to v1. If z = u, then u, z belong to one component of U(X − v1) and v, w belong

to another, so uv and wz belong to the same implication class of U(X−v1), contradicting

Theorem 1.9. Hence, z 6= u. In this case, we have (u, v)Γ∗(w, u)Γ(v1, w)Γ(w, z). Hence,

the second arc is (z, w). Thus U(X) is Figure 3.3(ii).

3.4 U(X) contains an induced C4 but no C3

We consider next the case when U(X) contains an induced C4 but no C3. Since U(X)

is a proper circular-arc graph, by Theorem 1.4 any induced C4 in U(X) contains at most

two cut-vertices of U(X).

Theorem 3.14. Let X be an obstruction that contains no cut-vertices. Suppose U(X)

contains a unique induced C4 but no C3. Then U(X) is one of the graphs in Figure 3.4

and X or its dual contains the dotted arcs.

Proof: Let C : v1v3v3v4 be the unique induced C4 in U(X). Since U(X) and U(X)

are both connected, at least one vertex on C is adjacent to a vertex not on C. Moreover,

since C is the unique cycle in U(X), any vertex on C that is adjacent to a vertex not on

C is a cut-vertex of U(X). So C contains at least one cut-vertex.

Suppose that only one vertex on C is a cut-vertex of U(X). Without loss of generality

assume v4 is such a vertex. We claim that v1, v3 are incident with different arcs. Indeed,

since v1, v3 are not cut-vertices, by Proposition 1.10 they are either incident with arcs or

arc-balancing vertices. If v1 is an arc-balancing vertex, then it balances an arc incident

with v2 or v4. Note that v3 is adjacent to both v2 and v4 so v3 must be adjacent to

the other endvertex of the arc balanced by v1, which is not possible. Hence v1 is not an

arc-balancing vertex. By symmetry v3 is not an arc-balancing vertex either. Therefore

each of v1, v3 is incident with an arc. Since v1, v3 have the same neighbourhood, there

cannot be an arc between v1, v3, which implies that v1, v3 are incident with different arcs

as claimed.
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. . .

v1

v2

v3

p2p1 pk

(i): k is even.

. . .

v1

v2

v3

p2p1 pk

(ii): k is odd.

. . . . . .

v1

pi+1

pi

pi−1p1 pk

(iii): k is even.

. . . . . .

v1

pi+1

pi

pi−1p1 pk

(iv): k is odd.

. . . . . .

v1 v2

pi+1pip1 pk

(v): k is even.

. . . . . .

v1 v2

pi+1pip1 pk

(vi): k is odd.

. . . . . .

v1 v2

pi+1pip1 pk

(vii): k is even.

. . . . . .

v1 v2

pi+1pip1 pk

(viii): k is odd.

. . .

v1 v2

p3p2p1 pk−2 pk−1 pk

x

(ix): k > 4.

v1 v2

p3p2p1 p4

(x): k = 4.

. . .

v1 v2

p3p2p1 pk

(xi): The second arc is between pk and any ver-
tex x /∈ {v2, p1, pk−1, pk}. If k+ d(p1, x) is even,
then (x, pk) is an arc. Otherwise, (pk, x) is an
arc.

Figure 3.4: Obstructions X for which U(X) contains a unique induced C4 but no C3.
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Let u,w denote the other endvertices of the arcs incident with v1, v3 respectively.

Clearly, u,w are not on C. Since v4 is the unique cut-vertex on C, each of u,w belongs to

a component of U(X − v4) that does not contain a vertex of C. According to Theorem

1.9, v1u and v3w belong to different implication classes of U(X − v4). Since v1, v3 are

in the same component of U(X − v4), u,w are in different components of U(X − v4)
by Theorem 1.7. The vertex v2 is not a cut-vertex so it is an arc-balancing vertex by

Proposition 1.10. Without loss of generality, assume v2 balances the arc between v1
and u. Then u must be a leaf adjacent to v4, as otherwise there is a vertex adjacent

to u but not to v1, a contradiction to the fact v2 balances the arc between v1 and u.

Let P : u = p1, p2, . . . , pk = w be a shortest (u,w)-path. Such a path exists because

U(X) is connected. It is easy to see that p2 = v4. By possibly considering the dual of X,

assume (p1, v1) is an arc of X. If k is even, then (p1, v1)Γ(v2, p1)Γ(p2, v2)Γ
∗(pk, v2)Γ(v3, pk)

by Proposition 1.5. The two arcs of X are opposing, so the second arc is (pk, v3). The

minimality of X ensures U(X) is Figure 3.4(i) and X contains the dotted arcs. Otherwise,

k is odd and the second arc is (v3, pk), so U(X) is Figure 3.4(ii) and X contains the dotted

arcs.

Suppose that exactly two vertices of C are cut-vertices of U(X). We consider first

the case when the two cut-vertices of U(X) on C are non-consecutive, say v2 and v4.

We claim that v1, v3 are incident with different arcs. Since v1, v3 are not cut-vertices,

neither of them is adjacent to any vertex not on C. In particular, if v1 is an arc-balancing

vertex, it must balance an arc incident with v2 or v4, and the other endvertex is adjacent

to v3 but not to v1. Such a vertex does not exist, so v1 is not an arc-balancing vertex.

Similarly, v3 is not an arc-balancing vertex. By Proposition 1.10, v1, v3 are incident with

arcs. Moreover, since v1, v3 share the same neighbourhood, they must be incident with

different arcs as claimed. Let H1 denote a component of U(X − v2) not containing vertices

on C, and H2 denote a component of U(X − v4) not containing vertices on C. Since C is

the unique cycle in U(X), H1, H2 are vertex-disjoint trees. Let u,w be leaves of U(X) in

H1, H2 respectively. Clearly, neither u nor w can balance the arc incident with v1 because

otherwise the other endvertex would be adjacent to both of v2, v4 and thus would be v3,

a contradiction to the fact that v1, v3 are incident with different arcs. Similarly, neither u

nor w can balance the arc incident with v3. Hence each of u,w is incident with an arc by

Proposition 1.10. Without loss of generality, assume there is an arc between u, v3 and an

arc between w, v1. By the choice of u and w, there is a (w, u)-path that contains v3 but

not v1. Let P : w = p1, . . . , pk = u be a shortest (w, u)-path where pi−1 = v4, pi = v3, and

pi+1 = v2 for some i. By possibly considering the dual of X, assume (w, v1) = (p1, v1) is an

arc. Suppose k is even. If i is even, (p1, v1)Γ
∗(p1, pk)Γ

∗(pk, pi) by Proposition 1.5. So the

second arc is (pi, pk) = (v3, u). If instead i is odd, then (p1, v1)Γ
∗(pk, p1)Γ

∗(pk, pi). The

second arc is again (pi, pk) = (v3, u). The minimality of X ensures U(X) is Figure 3.4(iii)

and X contains the dotted arcs. Otherwise, k is odd and U(X) is Figure 3.4(iv) and X

contains the dotted arcs.
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We now consider the case when the two cut-vertices of U(X) on C are consecutive,

say v3 and v4. First suppose both v1 and v2 are incident with arcs. Clearly, v1, v2 are

incident with different arcs. Let u,w be the other two endvertices of the arcs. By a similar

argument as above, u,w are leaves in components of U(X − p3), U(X − p4) respectively.

Let P : w = p1 . . . pk = u be a shortest (w, u)-path where pi = v4 and pi+1 = v3 for some

i. There are two possibilities: either w or u is the endvertex of the arc incident with v1.

Suppose there is an arc between w and v1. By possibly considering the dual of X, assume

(p1, v1) = (w, v1 is an arc in X. Suppose k is even. If i is odd, then Proposition 1.5

implies (p1, v1)Γ
∗(p1, pk)Γ

∗(v2, pk). If i is even, then (p1, v1)Γ
∗(pk, p1)Γ

∗(v2, pk). In either

case, the second arc is (pk, v2), so U(X) is Figure 3.4(v) and X contains the dotted

arcs. Otherwise, k is odd and U(X) is Figure 3.4(vi) and X contains the dotted arcs.

On the other hand, suppose (p1, v2) is an arc in X. Suppose k is even. Then we have

(p1, v2)Γ
∗(p1, pk)Γ

∗(v1, pk) if i is even, and (p1, v2)Γ
∗(pk, p1)Γ

∗(v1, pk) if i is odd. In either

case, the second arc is (pk, v1), so U(X) is Figure 3.4(vii) and X contains the dotted arcs.

Otherwise, k is odd and U(X) is Figure 3.4(viii) and X contains the dotted arcs.

Suppose that one of v1, v2 is not incident with an arc. Without loss of generality,

assume it is v2. Then v2 is an arc-balancing vertex by Proposition 1.10. Since v3 is

a cut-vertex, it is adjacent to a vertex x not on C. So, if v2 balances an arc incident

with v3, then the other endvertex must be adjacent to both v4 and x, contradicting the

fact that C is the unique cycle. Hence v2 balances an arc incident with v1. Since v1 is

adjacent only to v2 and v4, the other endvertex w is a leaf adjacent to v4. Without loss

of generality, assume (w, v1) is an arc. Since v3 is a cut-vertex, there is a component H

of U(X − v3) not containing the vertices on C. Let u be a vertex of maximal distance

from v3 in H, and let P : w = p1 . . . pk = u be a shortest (w, u)-path in U(X). Clearly,

p2 = v4 and p3 = v3. Moreover, since C is the unique cycle and u is of maximal distance

from v3 in H, u is a leaf. First suppose u balances an arc incident with pk−1. There

are two cases depending on whether or not k > 4. If k > 4, then pk−1 6= v3, so the

other endvertex is a leaf x adjacent to pk−2. If k = 4, then pk−1 = v3, so the other

endvertex is v1, because it must be adjacent to both v2 and v4 and C is the unique cycle.

In either case, we have d(v1, pk)+d(p1, x) = 2k−3, so one of d(v1, pk), d(p1, x) is even and

the other is odd. Otherwise if d(v1, pk) is even and d(p1, x) is odd, then Proposition 1.5

implies (p1, v1)Γ
∗(p1, pk)Γ

∗(pk, x)Γ(x, pk−1). If d(v1, pk) is odd and d(p1, x) is even, then

(p1, v1)Γ
∗(pk, p1)Γ

∗(pk, x)Γ(x, pk−1). In either case, the second arc must be (pk−1, x). Thus,

U(X) is Figure 3.4(ix) if k > 4 and is Figure 3.4(x) if k = 4, and X contains the dotted

arcs.

Otherwise, u is incident with an arc by Proposition 1.10. Let x denote the other

endvertex. Since v2 is not incident with an arc, x 6= v2. Theorem 1.9 implies p1v1 and pkx

belong to different implication classes of U(X−p2), so x 6= p1 by Theorem 1.7. Thus, x /∈
{v2, p1, pk−1, pk}. Suppose k+d(p1, x) is even. Since d(v1, pk)+d(p1, x) = (k−1)+d(p1, x),
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one of d(v1, pk) and d(p1, x) is even and the other is odd. If d(v1, pk) is even and d(p1, x)

is odd, then Proposition 1.5 implies (p1, v1)Γ
∗(p1, pk)Γ

∗(pk, x). Otherwise if d(v1, pk) is

odd and d(p1, x) is even, then (p1, v1)Γ
∗(pk, p1)Γ

∗(pk, x). In either case, the second arc

is (x, pk). Otherwise, k + d(p1, x) is odd and the second arc is (pk, x). So, U(X) is

Figure 3.4(xi) and X contains the dotted arcs.

Theorem 3.15. Let X be an obstruction that has no cut-vertices. Suppose that U(X)

contains two induced C4’s but no C3. Then U(X) is one of the graphs in Figure 3.5 and

X or its dual contains the dotted arcs.
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Figure 3.5: Obstructions X for which U(X) contains two induced C4 but no C3.

Proof: Suppose there are two induced C4’s in U(X) which share at most one common

vertex. Let C and C ′ be such induced C4’s and let P : p1p2 . . . pk be a shortest path

between a vertex of C and a vertex of C ′. By Lemma 3.2 any connected subgraph of

U(X) has at most six non-cut-vertices. The (connected) subgraph of U(X) induced by

C ∪ C ′ ∪ P has at least six non-cut-vertices and thus has exactly six non-cut-vertices.

This implies that P is the unique path between C and C ′ and each pi of P is a cut-vertex

of U(X). Since the subgraph of U(X) induced by C ∪ C ′ ∪ P has six non-cut-vertices,

U(X) also has six non-cut-vertices according to Lemma 3.2. Thus by Corollary 1.11 the

six non-cut-vertices of U(X) form two disjoint arc-balancing triples.
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Denote C : v1v2v3p1 and C ′ : v4v5v6pk. We first show that v1 is not incident with an

arc. Suppose there is an arc between v1 and a vertex z. Since p1 is a cut-vertex of U(X),

it does not balance the arc between v1 and z. Since p1 adjacent to v1, it is adjacent to

z. If z is not in C ∪ C ′ ∪ P , then the subgraph induced by C ∪ C ′ ∪ P ∪ {z} contains

seven non-cut-vertices (i.e., v1, v2, v3, v4, v5, v6, z), which contradicts Lemma 3.2. So z is

in C ∪ C ′ ∪ P . Note that z is adjacent to p1. If z 6= v3, then v2 is adjacent to v1 but

not z and there is a vertex in C ∪C ′ ∪ P adjacent to z but not v1, a contradiction to the

fact that v1 and z are in a an arc-balancing triple. Thus z = v3. But then the vertex v

which balances the arc between v1 and z cannot be in C ∪C ′∪P . Assume without loss of

generality that v is adjacent to v1 but not to z. Since v1 is incident with an arc, it is not a

cut-vertex of U(X). So U(X)−v1 has a (v, v3)-path Q. The connected subgraph of U(X)

induced by C ∪ C ′ ∪ P ∪ Q contains seven non-cut-vertices (i.e., v1, v2, v3, v4, v5, v6, v), a

contradiction to Lemma 3.2. Therefore v1 is not incident with an arc. By symmetry, none

of v3, v4, v6 is incident with an arc.

Since p1 is a cut-vertex and any induced C4 in U(X) contains at most two cut-vertices

of U(X), v1, v3 cannot both be cut-vertices of U(X). Moreover, we know from above that

neither of v1, v3 is incident with an arc so Proposition 1.10 implies that one of v1, v3 is

an arc-balancing vertex. Similarly, one of v4, v6 is an arc-balancing vertex. Hence one

of v1, v3 is an arc-balancing vertex and the other is a cut-vertex of U(X). Without loss

of generality, assume v1 is an arc-balancing vertex and v3 is a cut-vertex of U(X). The

vertex v1 is adjacent to exactly one endvertex u of the arc it balances. We claim that

u = v2. If u is not in C ∪ C ′ ∪ P , then U(X) contains a (u, v2)-path Q not containing v1
because v1 is a non-cut-vertex. So the connected subgraph induced by C ∪ C ′ ∪ P ∪ Q
contains seven non-cut-vertices, contradicting Lemma 3.2. So u is in C ∪C ′∪P . Since p1
is a cut-vertex and no cut-vertex of U(X) is arc-balancing or incident with an arc, u 6= p1.

Hence u = v2 as claimed, and v1 balances an arc incident with v2. The other endvertex x

must therefore be outside of C ∪ C ′ ∪ P and adjacent to v3.

By symmetry, v4 balances an arc between v5 and a vertex y outside of C ∪C ′ ∪P and

adjacent to v6. By possibly taking the dual of X assume (v2, x) is an arc in X. If k is

even, then Proposition 1.5 implies (p1, x)Γ∗(x, pk) and (p1, y)Γ∗(y, pk). Hence

(v2, x)Γ(x, v1)Γ(p1, x)Γ∗(x, pk)Γ(v6, x)Γ(x, y)Γ(y, v3)Γ(p1, y)Γ∗(y, pk)Γ(v4, y)Γ(y, v5)

and so the second arc is (v5, y). Otherwise, k is odd and in this case, we have

(v2, x)Γ(x, v1)Γ(p1, x)Γ∗(pk, x)Γ(x, v6)Γ(y, x)Γ(v3, y)Γ(y, p1)Γ
∗(y, pk)Γ(v4, y)Γ(y, v5)

and the second arc is again (v5, y). The minimality of X ensure that U(X) is the graph

in Figure 3.5(i) and X contains the dotted arcs.

Suppose next there are two induced C4’s in U(X) which share two common vertices
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but no two induced C4’s in U(X) share three common vertices. Then such two C4’s must

share an edge. Let C : v1v2v3v4 and C ′ : v3v4v5v6 be such induced C4’s in U(X). Since

U(X) contains no C3 and no two induced C4’s share three vertices, the subgraph induced

by C ∪ C ′ has exactly seven edges belonging to the two C4’s. We claim that no vertex

outside of C ∪ C ′ is adjacent to v3 or v4. Indeed, if some vertex z outside of C ∪ C ′ is

adjacent to v3 or v4, then it must be adjacent to at least two vertices in C ∪ C ′, because

otherwise Theorem 1.4 would imply that U(X) is not a proper circular-arc graph. But

then C ∪ C ′ ∪ {z} would induced a connected subgraph in U(X) having seven non-cut-

vertices, a contradiction to Lemma 3.2.

Suppose both v3 and v4 are arc-balancing vertices. If v3 balances an arc incident with

v4, then the other endvertex z of the arc is not in C ∪ C ′ that is adjacent to both v1
and v5. Thus the (connected) subgraph of U(X) induced by C ∪ C ′ ∪ {z} has seven

non-cut-vertices, contradicting Lemma 3.2. Hence v3 does not balance an arc incident

with v4. Moreover, since no vertex outside of C ∪ C ′ is adjacent to v3, v3 must balance

an arc incident with v2 or v6. Similarly, v4 must balance an arc incident with v1 or v5.

Without loss of generality, assume v3 balances an arc incident with v2. Thus the other

endvertex x is a vertex whose only neighbour in C ∪C ′ is v1. We claim v4 balances an arc

incident with v5. Otherwise, v4 balances an arc incident with v1, so the other endvertex

of the arc has v2 as the only neighbour in C ∪ C ′. Clearly, either v5 is a non-cut-vertex

or U(X) has a non-cut-vertex in a component of U(X − v5) not containing vertices in

C ∪C ′. In either case, U(X) contains a non-cut-vertex that is neither an endvertex of an

arc nor an arc-balancing vertex, a contradiction by Proposition 1.10. Hence v4 balances

an arc incident with v5 as claimed. The other endvertex y of the arc has v6 as the only

neighbour in C ∪C ′. By possibly considering the dual of X, assume (x, v2) is an arc in X.

Since (x, v2)Γ(v3, x)Γ(x, v6)Γ(y, x)Γ(v1, y)Γ(y, v4)Γ(v5, y), the second arc is (y, v5). The

minimality of X ensures that U(X) is Figure 3.5(ii) and X contains the dotted arcs.

Suppose at least one of v3, v4 is not an arc-balancing vertex. Without loss of generality

assume that v3 is not an arc-balancing vertex. Then by Proposition 1.10, v3 must be

incident with an arc. The subgraph of U(X) induced by C ∪ C ′ has six non-cut-vertices

so by Lemma 3.2 U(X) has six non-cut-vertices. Corollary 1.11 implies that the six non-

cut-vertices of U(X) form two disjoint arc-balancing triples. Since v3 has three neighbours

in C ∪ C ′ and the arc incident with v3 has an arc-balancing vertex, the other endvertex

must be adjacent to at least two of the three neighbours of v3 in C ∪ C ′. Since any

connected subgraph of U(X) has at most six non-cut-vertices by Lemma 3.2, so any

vertex not in C ∪C ′ is adjacent to at most one vertex in C ∪C ′. It follows that the other

endvertex of the arc incident with v3 is in C ∪ C ′. Without loss of generality, assume

(v1, v3) is an arc in X. Clearly, v6 is the (v1, v3)-balancing vertex. We claim that v4 is

incident with an arc. Otherwise, Proposition 1.10 would imply v4 is an arc-balancing

vertex and hence balances an arc incident with v5. By the above, the other endvertex
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x of the arc incident with v5 is adjacent to v6. Clearly, either v2 is a non-cut-vertex

or U(X) has a non-cut-vertex in a component of U(X − v2) not containing vertices in

C ∪ C ′. In either case, U(X) contains a non-cut-vertex that does not belong to either

arc-balancing triple, a contradiction by Proposition 1.10. Therefore v4 must be incident

with an arc. By a similar argument as above, the other endvertex of the arc incident

with v4 is in C ∪C ′. Since U(X) contains two disjoint arc-balancing triples and v6 is the

(v1, v3)-balancing vertex, the other endvertex cannot be v6 and hence must be v2. Since

(v1, v3)Γ(v6, v1)Γ(v2, v6)Γ(v5, v2)Γ(v2, v4), the second arc is (v4, v2). The minimality of X

ensures that U(X) is Figure 3.5(iii) and X contains the dotted arcs.

Suppose now that there are two induced C4’s in U(X) which share three common

vertices. Let C : v1v2v3v4 and C ′ : v2v3v4v5 be such induced C4’s. Note that C ∪ C ′

induces a K2,3 in U(X). Each vi with 1 ≤ i ≤ 5 may or may not be a cut-vertex of

U(X). If vi is a cut-vertex of U(X), then U(X − vi) must contain a non-cut-vertex of

U(X) that is not in C ∪C ′. Let ui be such a vertex in U(X − vi) when vi is a cut-vertex;

otherwise let ui = vi for each 1 ≤ i ≤ 5. First note that u2, u4 are non-adjacent and

that u1, u3, u5 are pairwise non-adjacent. Moreover, if ui 6= vi then ui is not adjacent

to uj for all j 6= i. Since each ui is a non-cut-vertex, it is an endvertex of an arc or

an arc-balancing vertex by Proposition 1.10. This implies that there is an arc-balancing

triple T contained in {u1, u2, . . . , u5}. Since there is exactly one edge in T , we know from

the above observation the only edge in T has one endvertex in {u2, u4} and the other in

{u1, u3, u5}. Without loss of generality assume that u2u5 is the edge in T . Then we must

have u2 = v2 and u5 = v5 and thus neither v2 nor v5 is a cut-vertex of U(X). It is easy to

see that the third vertex of T is u4 and v2 balances the arc between u4 and v5. Without

loss of generality assume (u4, v5) is an arc in X. Clearly, u4 6= v4 and v4 is a cut-vertex of

U(X).

Since C has at most two cut-vertices of U(X), at most one of v1, v3 can be a cut-vertex.

If neither of v1, v3 is a cut-vertex, then one of them is an endvertex of an arc which is

balanced by the other vertex. Since v2 is adjacent to both v1, v3, it is adjacent to the other

endvertex of the arc, which implies U(X) contains a C3, a contradiction to assumption.

So exactly one of v1, v3 is a cut-vertex of U(X) and we assume it is v3. Suppose that there

is an arc between v1 and u3. Let P : v3 = p1 . . . pk = u5 be the shortest (v3, u5)-path in

U(X). Suppose k is even. Then by Proposition 1.5,

(u4, v5)Γ(v2, u4)Γ(u4, p1)Γ
∗(pk, u4)Γ(v4, pk)Γ(pk, v5)Γ(v2, pk)Γ(pk, v1)

and hence the second arc is (v1, pk). The minimality of X ensures U(X) is Figure 3.5(vi)

and X contains the dotted arcs. Otherwise, k is odd and U(X) is Figure 3.5(vii) and X

contains the dotted arcs.

Suppose that there is no arc between v1 and u3. Then either u3 is incident with an
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arc balanced by v1 or v1 is incident with an arc balanced by u3. Suppose it is the the

former. Let z denote the other endvertex. Since v1 is not adjacent to u3, it is adjacent

to z. Moreover, since u3 is not adjacent to v5, z is also not adjacent to v5. In particular,

z /∈ C ∪C ′. If a vertex other than v1 is adjacent to z, then it must also be adjacent to u3.

In particular, the choice of u3 implies that v3 is the only vertex that is possibly adjacent

to u3. Since U(X) is connected, v3 must be adjacent to u3, so v3 is adjacent to z as well.

Since (u4, v5)Γ(v2, u4)Γ(u4, v3)Γ(u3, u5)Γ(v4, u3)Γ(u3, v1)Γ(z, u3), the second arc is (u3, z).

The minimality of X ensures U(X) is Figure 3.5(iv) and X contains the dotted arcs.

Suppose instead that v1 is incident with an arc balanced by u3. Since u3 is not adjacent

to v1, it is adjacent to the other endvertex. Moreover, since v1 is adjacent to v2 and v4,

the other endvertex is also adjacent to v2 and v4. By the choice of u3, the only vertex that

can be adjacent to all of u3, v2, v4 is v3, so the other endvertex is v3 and u3 is adjacent

to v3. Since (u4, v5)Γ(v2, u4)Γ(u4, v3)Γ(u3, u4)Γ(v4, u3)Γ(u3, v1)Γ(v1, v3), the second arc is

(v3, v1). The minimality of X ensures U(X) is Figure 3.5(v) and X contains the dotted

arcs.

3.5 U(X) contains a C3 and an induced C4

Lemma 3.16. Let X be an obstruction which has no no cut-vertices. Suppose U(X)

contains a C3 and an induced C4. Then U(X) contains a unique C3 and a unique induced

C4, which share two common vertices. Moreover, each vertex not in any of the cycles is

a leaf adjacent to a vertex on the C3 and is incident with an arc.

Proof: By Lemmas 3.4 and 3.5, U(X) contains a unique C3 and each vertex not on

the C3 is adjacent to a vertex in the C3. It follows that each vertex not on the C3 is

adjacent to exactly one vertex on the C3. We show that if C is an induced C4 in U(X)

then C shares exactly two vertices with the C3. Clearly, C share at most two vertices

with the C3. The fact that every vertex not on the C3 is adjacent to a vertex in the C3

implies that C cannot share exactly one vertex with the C3. If C shares no vertex with

the C3, then C ∪ C3 induces a connected subgraph in U(X) with seven non-cut-vertices,

a contradiction to Lemma 3.2.

Denote the unique C3 in U(X) by v1v2v3 and without loss of generality assume that

v2v3v4v5 is an induced C4 in the graph. Let u /∈ {v1, v2, . . . , v5}. From the above we

know that u is adjacent to exactly one vertex in the C3. Suppose that u is adjacent to

v1. Then u cannot be adjacent to both v4, v5 as otherwise uv4v5 is another C3 in U(X), a

contradiction. If u is adjacent to one of v4, v5 then uv1v2v5v4 or uv1v3v4v5 is an induced C5

in U(X), which contradicts Lemma 3.7. If u is adjacent to a vertex w /∈ {v1, v2, . . . , v5},
then w is not adjacent to v1 due to the uniqueness of the C3 and so is adjacent to v2
or v3. But then {u,w, v1, v2, . . . , v5} induces a connected subgraph of U(X) with seven
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non-cut-vertices, a contradiction to Lemma 3.2. Hence u is a leaf in U(X). Suppose that

u is not adjacent to v1. Then it is adjacent to v2 or v3. By symmetry we assume u is

adjacent to v2. It is not adjacent to v5 as otherwise uv2v5 is another C3 in U(X). It is not

adjacent to v4 as otherwise uv4v5v2 is an induced C4 which share just one vertex (namely,

v2) with the C3. Suppose that u is adjacent to a vertex w /∈ {v1, v2, . . . , v5}. Then w is

not adjacent to v2 due to the uniqueness of the C3. It is not adjacent to v1 because from

the above any such vertex is a leaf. So w is adjacent to v3. But then {u,w, v1, v2, . . . , v5}
induces a connected subgraph of U(X) with seven non-cut-vertices, a contradiction to

Lemma 3.2. Therefore any vertex u /∈ {v1, v2, . . . , v5} is a leaf adjacent to a vertex in

the C3. It follows that v2v3v4v4 is the unique induced C4 in U(X). Moreover, such a u

is not a cut-vertex of U(X) or of U(X) and cannot be an arc-balancing vertex. So by

Proposition 1.10 u is incident with an arc.

Theorem 3.17. Let X be an obstruction that contains no cut-vertices. Suppose U(X)

contains a C3 and an induced C4. Then U(X) is one of the graphs in Figure 3.6 and X

or its dual contains the dotted arcs.
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Figure 3.6: Obstructions X for which U(X) contains a C3 and an induced C4.

Proof: By Lemma 3.16, U(X) contains a unique C3 and a unique C4 sharing two

vertices. Denote the C3 and the induced C4 by v1v2v3 and v2v3v4v5 respectively. We also

know from the lemma that every vertex not in any of the cycles is a leaf adjacent to

a vertex in the C3 and is incident with an arc. We claim that at least two vertices of

the C3 are neighbours of leaves. Indeed, since U(X) does not contain cut-vertices and

v1, v2, . . . , v5 induce a path in U(X), there must be at least one vertex not on the cycles,

which implies at least one vertex on the C3 is adjacent to a leaf. If v2 is the only vertex

in the C3 adjacent to a leaf. Then v2 is adjacent to every vertex except v4 in U(X), a

contradiction to Lemma 3.1. So v2 cannot be the only vertex in the C3 adjacent to a leaf.

By symmetry, v3 cannot be the only vertex in the C3 adjacent to a leaf.

Suppose v1 is the only vertex in the C3 adjacent to a leaf. Let u be a leaf of U(X)

adjacent to v1. By Lemma 3.16 u is incident with an arc. The other endvertex of this

arc cannot be another leaf v as otherwise uv is a balanced edge in U(X), a contradiction.

So the other endvertex of this arc must be among v2, v3, v4, v5. Note first that none of

45



v2, v3, v4, v5 is a cut-vertex. If the arc is between u and v2, then v4 does not balance this

arc as it is adjacent to neither of the endvertices. So v4 either balances or is incident

with the second arc. If v4 is incident with the second arc then v3 and v5 are arc-balancing

vertices, which is not possible. If v4 balances the second arc, then the second arc must be

incident with exactly one of v3, v5. But then v2 is also a vertex adjacent to exactly one of

the endvertices of the second arc, which is again impossible. This shows there is no arc

between u and v2. A similar argument shows that there is no arc between u and any of

v3, v4, v5. Therefore at least two vertices of the C3 are neighbours of leaves.

Suppose that all three vertices of the C3 are neighbours of leaves. Let x, y, z be leaves

adjacent to v1, v2, v3 respectively. By Lemma 3.16 each of x, y, z is incident with an arc.

So there is an arc between two of x, y, z. Suppose there is an arc between y and z. By

Lemma 3.4, neither of v4, v5 can be a cut-vertex so each of them is an arc-balancing

vertex or incident with an arc. At least one of v4, v5 must be an arc-balancing vertex

because otherwise x, y, z, v4, v5 would be five vertices incident with arcs. Without loss of

generality, assume v4 is an arc-balancing vertex. Since v4 is adjacent to neither of y, z,

it cannot balance the arc between y and z. Thus v4 balances an arc between x and x3
or between x and v5. This is a contradiction because v2 is another vertex adjacent to

exactly one of endvertices of the arc balanced by v4. Thus there is no arc between y and

z. So there is an arc between x and y or between x and z. By symmetry and taking

the dual of X if necessary we may assume that (x, z) is an arc. Since v1 and v3 are

two vertices adjacent to exactly one of x, z, there cannot be an (x, z)-balancing vertex.

By Lemma 3.4, v4, v5 are non-cut-vertices of U(X) so each of them is arc-balancing or

incident with an arc by Proposition 1.10. Clearly, none of them can be an (x, z)-balancing

vertex. So either v4 balances the arc between y and v5 or v5 balances the arc between

y and v4. The latter case is not possible because v3 is adjacent to v4 but not to y.

Hence there is an arc between y and v5. Since the two arcs of X are opposing and

(x, z)Γ(z, v1)Γ(v2, z)Γ(z, y)Γ(y, v3)Γ(v4, y)Γ(y, v5), (v5, y) is an arc. The minimality of X

ensure that U(X) is the graph in Figure 3.6(i).

Suppose now that exactly two of v1, v2, v3 are neighbours of leaves. First consider

the case when v1 and v2 are neighbours of leaves. Let x, y be leaves adjacent to v1, v2
respectively. Clearly, v3 is not a cut-vertex. Since v4, v5 are not the C3, by Lemma 3.4

they are not cut-vertices. Hence, each of v3, v4, v5 is an arc-balancing vertex or incident

with an arc by Proposition 1.10. By Lemma 3.16, x, y are incident with arcs. So at

least one of v3, v4, v5 is an arc-balancing vertex. If v3 is an arc-balancing vertex, then

it must balance an arc incident with v2 or v4. But then v5 is another vertex adjacent

to exactly one endvertex of this arc, a contradiction. Hence v3 is not the arc-balancing

vertex. For a similar reason, v5 is also not an arc-balancing vertex. Thus v4 is an arc-

balancing vertex. It is easy check an arc balanced by v4 cannot be incident with v3.

So v4 balances an arc incident with v5. The other endvertex of this arc cannot be a
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leaf adjacent to v1. Hence v4 balances an arc between v5 and a leaf adjacent to v2.

Without loss of generality assume it is between v5 and y. By taking the dual of X if

necessary we may assume (v5, y) is an arc. Thus the second arc is between x and v3.

Since (v5, y)Γ(y, v4)Γ(v4, v2)Γ(v1, v4)Γ(v4, x)Γ(x, v3) and the two arcs of X are opposing,

the second arc is (v3, x). So U(X) is Figure 3.6(ii).

The case when v1 and v3 are neighbours of leaves is symmetric to the case when v1 and

v2 are cut-vertices. So we now consider the case where v2 and v3 are neighbours of leaves.

Let y, z be leaves adjacent to v2, v3 respectively. By assumption, v1 is not a cut-vertex.

Since v4, v5 are not on the C3, they are not cut-vertices by Lemma 3.4. Thus each of

v1, v4, v5 is an arc-balancing vertex or incident with an arc by Proposition 1.10. It follows

that at least one of them is an arc-balancing vertex. A similar proof as above shows that

v4 balances an arc between v5 and y. Without loss of generality, assume (v5, y) is an arc.

It is easy to see that v1 is not an arc-balancing vertex so it is incident with an arc. So the

second arc is between v1 and z. Since (v5, y)Γ(y, v4)Γ(v3, y)Γ(y, z)Γ(z, v2)Γ(v1, z) and the

two arcs are opposing, the second arc is (z, v1). Hence U(X) is Figure 3.6(iii).

3.6 U(X) contains an induced C5

Lemma 3.18. Let X be an obstruction which has no cut-vertices. If C is an induced C5

in U(X), then the following statements hold:

(a) C is the unique cycle in U(X);

(b) Each vertex not on C is a leaf adjacent to a vertex on C and incident with an arc;

(c) C contains an arc-balancing vertex that is not a cut-vertex of U(X);

(d) If v is an arc-balancing vertex on C, then v balances an arc between a neighbour of

v on C and a leaf.

Proof: Let C : v1v2v3v4v5 be an induced C5 in U(X). By Lemma 3.3, C is a longest

induced cycle in U(X). According to Lemmas 3.6 and 3.7, U(X) contains at most one

induced C5 and no C3 nor induced C4. Thus C is the unique cycle in U(X).

Suppose that u is a vertex not on C. Then by Lemma 3.4 u is adjacent to a vertex on

C. Since C the unique cycle in U(X), u is a leaf and hence not a cut-vertex of U(X). Let

vi be the neighbour of u. If u is an arc-balancing vertex, then it balances an arc between

vi and some vertex w. Since vi is adjacent to both vi−1, vi+1 which do not balance the

arc between vi and w, w must be adjacent to both vi−1, vi+1. Thus vivi+1wvi−1 is a C4, a

contradiction to the fact C is the unique cycle in U(X). Hence u is incident with an arc

by Proposition 1.10.
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Suppose there are k cut-vertices on C. We know from above that each such vertex

is adjacent to a leaf that is incident with an arc. Since there are at most four vertices

incident with arcs, k ≤ 4 and at most 4 − k vertices on C are incident with arcs. So

there are at least 5 − (4 − k) = k + 1 vertices on C which are not incident with arcs.

It follows that C contains at least one vertex that is not a cut-vertex of U(X) and not

incident with an arc. Such a vertex must be an arc-balancing vertex by Proposition 1.10.

Hence C contains an arc-balancing vertex that is not a cut-vertex of U(X). Without loss

of generality, assume v1 is an arc-balancing vertex and it balances an arc incident with

v2. Clearly the other endvertex cannot be on C so it is a leaf of U(X).

Suppose that v a vertex C which balances an arc between u and w. If one of u,w is

a leaf neighbour of v, then the other vertex has a neighbour that is not v but is adjacent

to exactly one of u,w, a contradiction to the assumption that v balances the arc between

u,w. So neither of u,w can be a leaf neighbour of v. Since v is adjacent to one of u,w,

at least one of u,w is on C. If the other vertex is also on C, then there is a vertex on C

which is not v but is adjacent to exactly one of u,w, a contradiction. Therefore exactly

one of u,w is a neighbour of v on C and the other is a leaf.

Theorem 3.19. Let X be an obstruction that has no cut-vertices. Suppose U(X) contains

an induced C5. Then U(X) is one of the graphs in Figure 3.7 and X or its dual contains

the dotted arcs.

v1

v5

v4 v3

v2

w u

(i)

v1
v5

v4 v3

v2

w u

x

(ii)

v1
v5

v4 v3

v2

u

w

(iii)

v1

v5

v4

v3

v2

u

(iv)

v1

v5

v4 v3

v2

u

w

(v)

v1v5

v4

v3

v2

w

u

(vi)

Figure 3.7: Obstructions X for which U(X) contains an induced C5.
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Proof: Let C : v1v2v3v4v5 be an induced C5 in U(X). By Lemma 3.18, C is the

unique cycle in U(X) and has a vertex which is an arc-balancing but not a cut-vertex of

U(X). Without loss of generality assume v1 is such a vertex. By Lemma 3.18, v1 balances

an arc between an adjacent vertex on C and a leaf. Without loss of generality, assume v1
balances an arc between v2 and u and (v2, u) is the arc. Since any vertex except v1 that is

adjacent to u is also adjacent to v2, u is adjacent to v3. Suppose that neither v4 nor v5 is

an arc-balancing vertex. Then by Proposition 1.10, each of v4, v5 is a cut-vertex of U(X)

or incident with an arc. Since v4, v5 are adjacent in U(X), there is no arc between them.

So one of v4, v5 is not incident with an arc and hence must be a cut-vertex of U(X).

Suppose v4 is a cut-vertex and v5 is incident with an arc. By Lemma 3.18(b), there

is a leaf w adjacent to v4 and incident with an arc. Hence there is an arc between v5
and w. Since we have (v2, u)Γ(u, v1)Γ(v1, v3)Γ(v4, v1)Γ(v1, w)Γ(w, v5) and the two arcs

are opposing in X, the second arc is (v5, w). Thus U(X) is Figure 3.7(i). Suppose instead

that v4 is incident with an arc and v5 is a cut-vertex. By Lemma 3.18, there is a leaf

w adjacent to v5 and incident with an arc. Hence there is an arc between v4 and w.

Since (v2, u)Γ(u, v1)Γ(v1, v3)Γ(v3, v5)Γ(w, v3)Γ(v4, w), the second arc is (w, v4) and U(X)

is Figure 3.7(iii). Finally, suppose both v4 and v5 are cut-vertices. By Lemma 3.12, there

are leaves w, x adjacent to v4, v5, respectively, and incident with arcs. Hence there is an

arc between w and x. Since we have (v2, u)Γ(u, v1)Γ(v5, u)Γ(u, x)Γ(x, v3)Γ(v4, x)Γ(x,w),

the second arc is (w, x). Thus U(X) is Figure 3.7(ii).

Suppose exactly one of v4, v5 is an arc-balancing vertex. Clearly they cannot both

be arc-balancing vertices because v1 is such a vertex and there are at most two arc-

balancing vertices. Consider first the case when v5 is an arc-balancing vertex. Then

v5 either balances an arc between v1 and a leaf adjacent to v2 or an arc between v4
and a leaf adjacent to v3. However, the former is not possible, as otherwise v4 is not

an arc-balancing vertex and not incident with an arc so it is a cut-vertex by Proposi-

tion 1.10. But then a leaf adjacent to it is not incident with an arc, a contradiction to

Lemma 3.18. v5 balances an arc between v4 and a leaf w adjacent to v3. Then we have

(v2, u)Γ(u, v1)Γ(v1, v3)Γ(w, v1)Γ(v5, w)Γ(w, v4). The second arc is (v4, w). When w = u,

U(X) is Figure 3.7(iv); otherwise U(X) is Figure 3.7(v).

Consider now the case when v4 is an arc-balancing vertex. Then v4 either bal-

ances an arc between v5 and a leaf adjacent to v1 or an arc between v3 and a leaf

adjacent to v2. If v4 balances an arc between v5 and a leaf w adjacent to v1, then

(v2, u)Γ(u, v1)Γ(v1, v3)Γ(v3, w)Γ(w, v4)Γ(v5, w). The second arc is (w, v5) and U(X) is

Figure 3.7(vi). On the other hand, if v4 balances an arc between v3 and a leaf adjacent

to v2, then v5 is not an arc-balancing vertex and not incident with an arc so it is a cut-

vertex by Proposition 1.10. But then a leaf adjacent to it is not incident with an arc, a

contradiction to Lemma 3.18. Hence this is not possible.
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Chapter 4

Acyclic local tournament orientation

completions

We now turn our attention to acyclic local tournament orientation completions. A par-

tially oriented graph X = (V,E ∪A) is called an obstruction for acyclic local tournament

orientation completions if the following three properties hold:

1. X cannot be completed to an acyclic local tournament;

2. For each v ∈ V , X − v can be completed to an acyclic local tournament;

3. For each (u, v) ∈ A, the partially oriented graph obtained from X by replacing (u, v)

with the edge uv can be completed to an acyclic local tournament.

This definition mirrors the definition of obstructions for local tournament orientation

completions, so the following proposition can be obtained in a similar way as Proposi-

tion 1.1.

Proposition 4.1. A partially oriented graph H cannot be completed to an acyclic local

tournament if and only if it critically contains an obstruction for acyclic local tournament

orientation completions.

In the remainder of this chapter, we will prove the following:

Theorem 4.2. Let X be an obstruction for acyclic local tournament orientations. Then

X or its dual is a Ck (k ≥ 4) or one of the graphs in Figures 4.1–4.3.

4.1 Proper interval graphs and Wegner’s theorem

Obstructions for acyclic local tournament orientation completions which do not contain

arcs can be derived from the next two theorems.
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Theorem 4.3 ([10, 12]). The following statements are equivalent for a graph G:

• G can be completed to an acyclic local tournament;

• G is a proper interval graph;

• G has a straight enumeration.

Theorem 4.4 (Wegner [25]). A graph G is a proper interval graph if and only if it

does not contain a Ck (k ≥ 4), a tent, a claw, or a net as an induced subgraph. (See

Figure 4.1.)

(i): tent. (ii): claw. (iii): net.

Figure 4.1: Forbidden induced subgraphs for proper interval graphs.

Corollary 4.5. If X is an obstruction for acyclic local tournament orientation comple-

tions that does not contain an arc, then X is a Ck (k ≥ 4) or a graph in Figure 4.1.

Proof: This follows immediately from Theorems 4.3 and 4.4.

4.2 Obstructions for acyclic local tournament orien-

tation completions

It remains to determine the obstructions for acyclic local tournament orientation com-

pletions that contain arcs. Of these obstructions some cannot even be completed to local

tournaments and the rest can be completed to local tournaments but not to acyclic local

tournaments. We will distinguish two cases depending on whether they can be completed

to local tournaments (See Theorems 4.8 and 4.9 below). Note that any obstruction for

acyclic local tournament orientation completions that cannot be complete to a local tour-

nament is an obstruction (for local tournament orientation completions) by definition.

Let X be an obstruction for acyclic local tournament orientation completions that

contains arcs. Clearly, the dual of X is again an obstruction for acyclic local tournament

orientation completions. Since U(X) can be completed to an acyclic local tournament, it

is a proper interval graph and has a straight enumeration by Theorem 4.3.

Let H be a partially oriented graph such that U(X) is a proper interval graph. Observe

that if (u, v) is a balanced arc in H then the partially oriented graph obtained from H by
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replacing (u, v) with (v, u) is isomorphic to H. Whether or not H can be completed to

an acyclic local tournament merely depends on the unbalanced arcs in H. The following

proposition is a reformulation of a result (Corollary 3.3) from [12].

Proposition 4.6 ([12]). Let H be a partially oriented graph such that U(H) is a proper

interval graph and ≺ be a straight enumeration of U(H). Suppose H does not contain a

directed cycle. Then H can be completed to an acyclic local tournament if and only if it

does not contain two unbalanced arcs, one positive and the other negative with respect to

≺.

Lemma 4.7. Let X be an obstruction for acyclic local tournament orientation completions

that contains arcs but no directed cycle, and let ≺: v1, v2, . . . , vn be a straight enumeration

of U(X). If X can be completed to a local tournament, then the following statements hold:

(a) X contains exactly two unbalanced arcs, one positive and the other negative with

respect to ≺;

(b) There exists a universal vertex incident with exactly one arc of X;

(c) Any vertex not incident with an arc is an arc-balancing vertex.

Proof: Since X cannot be completed to an acyclic local tournament, by Proposition

4.6 it contains two unbalanced arcs, one positive and the other negative with respect to

≺. The minimality of X ensures that X contains no other arcs. This proves (a).

For (b), let (vi, vj) and (vs, vt) be the two unbalanced arcs of X. Since X can be

completed to a local tournament, vivj and vsvt belong to different implication classes

of U(X). By Theorem 1.13, one of vivj, vsvt is an edge of U(X) between the unique

non-trivial component of U(X) and a universal vertex of U(X). That is, there exists a

universal vertex incident with exactly one of (vi, vj), (vs, vt).

Finally, for (c), suppose v is a vertex not incident with an arc. SinceX is an obstruction

for acyclic local tournament orientation completions, the subgraph X−v can be completed

to an acyclic local tournament, so at least one of (vi, vj) and (vs, vt) is balanced in X − v,

which means v is an arc-balancing vertex.

Theorem 4.8. Let X be an obstruction for acyclic local tournament orientation comple-

tions that contains arcs. Suppose that X can be completed to a local tournament. Then

X or its dual is one of the graphs in Figure 4.2.

52



(i) (ii) (iii)

(iv) (v) (vi)

(vii)

. . .

(viii)

Figure 4.2: Obstructions for acyclic local tournament orientation completions containing
arcs that can be completed to local tournaments.

Proof: It is easy to verify that each graph in Figures 4.2 is an obstruction for acyclic

local tournament orientation completions and can be completed to a local tournament.

Hence it suffices to show that X is one of them. Suppose X does not contain a directed

cycle. Fix a straight enumeration ≺: v1, v2, . . . , vn of U(X). By Lemma 4.7(a) and (b),

X contains exactly two unbalanced arcs, one positive and one negative, and there exists

a universal vertex vu incident with exactly one arc of X. Note that since X contains

unbalanced arcs, U(X) cannot be complete and so v1vn is not an edge of U(X) by the

umbrella property. In particular, vu /∈ {v1, vn}.

Clearly, n ≥ 3. If n = 3, then X or its dual must contain the arcs (v1, v2) and (v3, v2)

because the two arcs are unbalanced and opposing, contradicting the fact that X can be

completed to a local tournament. Suppose n = 4. Without loss of generality, assume

vu = v2. So, v2v4 is an edge of U(X). If v1v3 is not an edge of U(X), then the only

unbalanced edges of U(X) are those incident with v2, so both unbalanced arcs of X are

incident with v2, contradicting the choice of vu. Hence, v1v3 is an edge. Since both arcs

of X are unbalanced, there is no arc between v2 and v3. It is now easy to see that X or

its dual is one of Figure 4.2(i) or (ii).

Suppose instead n = 5. We claim that v1v3, v2v4, v3v5 are edges of U(X). Since X

contains a universal vertex, both of v1v3, v3v5 are edges of U(X). If v2v4 is not an edge

of U(X), then vu = v3 and every unbalanced edge of U(X) is incident with v3, so both

unbalanced arcs of X are incident with v3, contradicting the choice of vu. So, v2v4 is an

edge of U(X). Suppose neither v1v4 nor v2v5 are edges of U(X). Then, v3 is the unique

universal vertex, so vu = v3. If the arc not incident with v3 is between v2 and v4, then

X or its dual critically contains Figure 4.2(i) or (ii), a contradiction to the minimality of

X. Hence the arc not incident with v3 is either between v1 and v2 or between v4 and v5.

We may assume without loss of generality (v1, v2) is an arc. If v5 is not incident with an

arc, then it is an arc-balancing vertex by Lemma 4.7(c). Clearly, v5 must balance the arc
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(v3, v2), so X is Figure 4.2(iii). Otherwise if v5 is incident with an arc, then X is (iv).

Suppose instead that v1v4 or v2v5 is an edge of U(X). Without loss of generality, assume

v1v4 is an edge. If v2v5 is also an edge, then each of v2, v3, v4 is a universal vertex and

hence is not an arc-balancing vertex. By Lemma 4.7(c), each of v2, v3, v4 is incident with

an arc, so there is an arc with both endvertices among v2, v3, v4, contradicting the fact

that both arcs are unbalanced. So, v2v5 is not an edge. Any arc incident with v5 does

not have an arc-balancing vertex because there are two vertices adjacent to exactly one

endvertex of such an arc. If v1 or v2 is an arc-balancing vertex, then it balances an arc

incident with v5, so neither v1 nor v2 is an arc-balancing vertex. By Lemma 4.7(c), both

v1 and v2 are incident with arcs. Similarly, neither v3 nor v4 are arc-balancing vertices

because they are universal, so they are both incident with arcs. Since both arcs of X are

unbalanced, X or its dual must be Figure 4.2(v).

Suppose instead that n ≥ 6. Since X contains exactly two arcs, it contains at most two

arc-balancing vertices. Since any vertex not incident with an arc is an arc-balancing vertex

by Lemma 4.7(c), X contains at most two vertices not incident with arcs. In particular,

n = 6 and X contains two disjoint arc-balancing triples. We show that neither v2 nor v5
is universal. Assume v2 is universal. Since X contains two disjoint arc-balancing triples,

one of them contains only vertices succeeding v1. Since v2v6 is an edge of U(X), this

arc-balancing triple induces a clique in U(X) by the umbrella property, a contradiction.

Hence, neither v2 nor v5 is universal by symmetry. So, vu ∈ {v3, v4}. Assume vu = v4
without loss of generality. Let vk be the arc-balancing vertex for the arc incident with v4
and vj be the other endvertex. Then, vk is the unique vertex adjacent to v4 and not vj,

so vj is adjacent to every vertex except for vk. It follows from the straight enumeration

that vk ∈ {v1, v6}.

Suppose vk = v6. If vj = v1, then v1 is adjacent to v5, contradicting the fact that v5 is

not a universal vertex, so vj 6= v1. Since vj is not adjacent to v6, we have either vj = v3 or

vj = v2. First suppose vj = v3. Without loss of generality, assume v6 is a (v4, v3)-balancing

vertex. Since X contains two disjoint arc-balancing triples, {v1, v2, v5} is an arc-balancing

triple. If v1 balances an arc between v2 and v5, then v6 is adjacent to both v2 and v5,

contradicting the fact that v2 is not a universal vertex. Clearly, v2 cannot balance an arc

between v1 and v5 by the straight enumeration. So, v5 is a (v1, v2)-balancing vertex and

thus X is Figure 4.2(vi). On the other hand, suppose vj = v2. Without loss of generality,

assume v6 is a (v4, v2)-balancing vertex. By a similar argument as above, {v1, v3, v5} is

an arc-balancing triple. Clearly, v3 cannot be the arc-balancing vertex by the straight

enumeration. If v1 is a (v3, v5)-balancing vertex, then the dual of X is Figure 4.2(vii).

Otherwise v5 is a (v1, v3)-balancing vertex and X is Figure 4.2(vi).

Otherwise, vk = v1. If vj = v6, then vj is adjacent to v2, so v2 is a universal vertex, a

contradiction. Hence, vj 6= v6. Since vj is not adjacent to vk, we have vj = v5. Without

loss of generality, assume v1 is a (v5, v4)-balancing vertex. By a similar argument as above,
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{v2, v3, v6} is an arc-balancing triple. If v2 balances an arc between v3 and v6, then v6
must be adjacent to v1, a contradiction. Clearly, v3 cannot balance an arc between v2 and

v6 by the straight enumeration. Hence, v6 is a (v2, v3)-balancing vertex. It is now easy to

see that X is Figure 4.2(vii).

On the other hand, suppose X contains a directed cycle. Let C : v1v2 . . . vn denote

a smallest directed cycle of X and assume (v1, v2), (v2, v3), . . . , (vn, v1) are arcs. By the

choice of C, X does not contain arcs other than those of C. Clearly, every vertex of X

is on C because if v is a vertex not on C, then X − v still contains a directed cycle and

therefore cannot be completed to an acyclic local tournament. We show that U(X) is

complete. Since X is an obstruction for acyclic local tournament orientation completions,

the partially oriented graph X ′ obtained from X by replacing (vn, v1) with the edge vnv1
can be completed to an acyclic local tournament D. Clearly, D contains the arc (v1, vn)

because it is acyclic, so vn−1 and v1 are adjacent as they are both in the in-neighbourhood

of vn. Similarly, D contains the arc (v1, vn−1) because it is acyclic, so the same argument

shows that vn−2 and v1 are adjacent. By repeating this argument, we see that D contains

the arcs (v1, vi) for each i 6= 1. Moreover, the out-neighbourhood of v1 induces a clique,

so it follows that U(X) is complete. Thus, X is Figure 4.2(viii).

Theorem 4.9. Let X be an obstruction for acyclic local tournament orientation com-

pletions that contains arcs. Suppose that X cannot be completed to a local tournament.

Then X or its dual is one of the graphs in Figure 4.3.

(i) (ii) (iii)

(iv)

. . .

(v)

. . .

(vi) (vii)

. . .

(viii)

Figure 4.3: Obstructions for acyclic local tournament orientation completions containing
arcs that cannot be completed to local tournaments.

Proof: It is easy to verify that each graph in Figures 4.3 is an obstruction for acyclic

local tournament orientation completions and cannot be completed to a local tournament.

Hence it suffices to show that X contains one of them as an induced subgraph. Since X an

obstruction for acyclic local tournament orientation completions and cannot be completed
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to a local tournament, it is an obstruction for local tournament orientation completions.

By Theorem 1.9 it has exactly two arcs which are opposing. Moreover, X does not contain

any graph in Figure 4.2 as an induced subgraph.

Let ≺: v1, v2, . . . , vn be a straight enumeration of U(X) and let (va, vb), (vc, vd) be the

two arcs in X. Then one of the two arcs is positive and the other is negative. Assume

(va, vb) is positive (i.e., a < b) and (vc, vd) is negative (i.e., c > d).

Consider first the case when the two arcs share an endvertex. Suppose that va = vd is

the shared endvertex. By considering the dual of X if necessary we assume b < c. Then

we have a = d < b < c and the umbrella property of ≺ implies vbvc is an edge of X. Since

X does not contain Figure 4.2(ii), any vertex vj with j > c adjacent to vb is adjacent

to va. This together with the umbrella property of ≺ imply that any vertex adjacent to

adjacent to vb is adjacent to va. The arc (va, vb) is unbalanced so there is a vertex vi
adjacent to va but not to vb. Clearly, we must have i < a and thus the subgraph of X

induced by vi, va, vb, cc is Figures 4.3(i). The case when vb = vc is the shared endvertex

can be treated analogously. Suppose that vb = vd is the shared endvertex. If vavc is not

an edge of X, then the subgraph of X induced by va, vb, vc is Figure 4.3(vi). So assume

vavc is an edge. Since both arcs are unbalanced, for each of them there exists a vertex

adjacent to exactly one of the two endvertices. Suppose there is a vertex vi adjacent to

va but not to vb. Clearly, i < a. If there is a vertex vj adjacent to vc but not to vd = vb,

then j > c and the subgraph of X induced by vi, va, vb, vc, vj is Figure 4.3(ii). If there is a

vertex vk adjacent to vd = vb but not to vc, then i < k < a and the subgraph of X induced

by vi, vk, va, vb, vc is Figure 4.2(iii), a contradiction. Thus we may assume that any vertex

adjacent to va except vb is adjacent to vb. Hence there is a vertex adjacent to vb but not

to va and let vr be such a vertex. If there is a vertex v` adjacent to vd = vb but not to vc,

then ` < a < b < c < r and the subgraph of X induced by v`, va, vb, vc, vr is Figure 4.3(iii).

If there is a vertex vq adjacent to vc but not to vd = vb, then a < b < c < r < q and

the subgraph of X induced by v`, va, vb, vc, vr is Figure 4.2(iii), a contradiction. The proof

for the case when va = vc is the same by considering the dual of X. Therefore we may

further assume the endvertices of the two arcs are pairwise distinct.

Suppose that the endvertices of the two arcs are pairwise adjacent. Let vi be a vertex

adjacent to exactly one of va, vb and vj be a vertex adjacent to exactly one of vc, vd.

Suppose first that vi is adjacent to va but not to vb and vj is adjacent to vd but not to

vc. Clearly, max{i, j} < min{a, d}. The umbrella property of ≺ implies vivj is an edge of

X. Thus vivavdvj is a C4 in U(X) which cannot be induced. So vivd or vjva is an edge of

X. By symmetry assume vivd is an edge. If vivc is not an edge of X then the subgraph

induced by vi, va, vb, vc, vd is Figure 4.2(v), a contradiction. So vivc is an edge, which

implies c < b. Since vj is not adjacent to vc and c < b, vj is not adjacent to vb. If vj is not

adjacent to va, then the subgraph of X induced by vi, vj, va, vb, vc, vd is Figure 4.2(vi), a

contradiction. If vj is adjacent to va, then the subgraph of X induced by vj, va, vb, vc, vd
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is Figure 4.2(v), a contradiction. Suppose now that vi is adjacent to va but not to vb and

vj is adjacent to vc but not to vd. (Note that the other two cases are symmetric.) If vi
is adjacent to neither of vc, vd and vj is adjacent to neither of va, vb, then the subgraph

induced by vi, vj, va, vb, vc, vd is Figure 4.3(iv). If vi is adjacent to exactly one of vc, vd, then

it is adjacent to vd, in which case the subgraph induced by vi, va, vb, vc, vd is Figure 4.2(v),

a contradiction. So vi is adjacent to both vc, vd. This implies c < b because vivb is not an

edge of X. Thus vjvb is an edge following the umbrella property. If vj is not adjacent to va
then the subgraph of X induced by vj, va, vb, vc, vd is Figure 4.2(v), a contradiction. If vj
is adjacent to va, then the subgraph of X induced by vi, vj, va, vb, vc, vd is Figure 4.2(vii),

a contradiction.

Suppose that the endvertices of the two arcs are not all pairwise adjacent. Without

loss of generality assume a < d. Then we must have b < c and in particular vavc is not an

edge of X. Since X does not contain Figure 4.2(i) as an induced subgraph, we must have

b < d and at least one of vavd and vbvc is not an edge of X. By symmetry we assume vavd
is not an edge of X. If a < b − 1 then va+1 is clearly not a cut-vertex of U(X) and by

Proposition 1.14 not a cut-vertex of U(X). Thus va+1 can only be the (vc, vd)-balancing

vertex by Proposition 1.10. Hence va+1vd is an edge of X, which implies vbvd is also an

edge of X. Since va+1 is the unique vertex adjacent to exactly one of the endvertices

of (vc, vd), vbvc must be an edge of X. We see now that the subgraph of X induced

by va, va+1, vb, vc, vd is Figure 4.2(iv), a contradiction. Hence va, vb are consecutive in ≺.

Similarly, vc, vd are consecutive in ≺. If vbvc is an edge of X, then any vertex adjacent

to vd except vc is adjacent to vc. So there must be a vertex vj adjacent to vc but not to

vd. The subgraph of X induced by va, vb, vc, vd, vj is a graph in Figure 4.3(v). So we may

assume vbvc is not an edge of X. If vbvd is an edge of X, then the subgraph of X induced

by va, vb, vc, vd is a graph in Figure 4.3(vi). So we may further assume vbvd is not an edge

of X.

Let vk be the neighbour of vb having the largest subscript k and let v` be the neighbour

of vd having the least subscript. Clearly, b < k < d and b < ` < d. Suppose neither vavk
nor v`vc is an edge of X. Consider first the case when ` < k. If vav` and vkvc are both

edges of X, then the subgraph of X induced by va, vb, v`, vk, vc, vd is Figure 4.3(vii). If

vav` is not an edge of X, then the subgraph of X induced by va, vb, v`, vc, vd is a graph in

Figure 4.3(vi). Similarly, if vkvc is not an edge of X, then the subgraph of X induced by

va, vb, vk, vc, vd is a graph in Figure 4.3(vi). When k ≤ `, the subgraph of X induced by

va, vb, vc, vd together with the vertices in a shortest (vk, v`)-path is a graph in Figure 4.3(vi).

Suppose exactly one of vavk and v`vc is an edge of X and by symmetry we assume it is

vavk. Then any vertex adjacent to vb except va is adjacent to va. So there must be a

vertex vi adjacent to va but not to vb. Thus the subgraph of X induced by vi, va, vc, vd and

the vertices in a shortest (vb, v`)-path is a graph in Figure 4.3(v). Finally suppose vavk
and v`vc are both edges of X. Then there must be a vertex vi adjacent to va but not to vb
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and a vertex vj adjacent to vc but not to vd. The subgraph induced by vi, va, vb, vc, vd, vj
and the vertices in a shortest (vb, vd)-path is a graph in Figure 4.3(viii). This completes

the proof.
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Chapter 5

Conclusion and future work

The main results of the thesis now follow. Theorems 1.4, 2.2, 2.4, 2.6, 2.8, 2.10–2.11,

3.8, 3.11, 3.13–3.15, 3.17, and 3.19 provide a complete list of obstructions for orientation

completions for local tournaments. Since each graph in the associated figures corresponds

to a particular case considered, every graph in the associated figures is an obstruction.

Thus, Theorem 1.2 follows. On the other hand, Theorem 1.3 follows from Corollary 4.5

and Theorems 4.8–4.9 in the same way.

We turn our attention to the computational aspects of obstructions for local tourna-

ment orientation completions. Naturally, we are interested in a recognition algorithm for

obstructions. On the other hand, Proposition 1.1 implies that a partially oriented graph

cannot be completed to a local tournament if and only if it critically contains an obstruc-

tion. We are also interested in an algorithm that finds an obstruction that is critically

contained in a given partially oriented graph (if it exists).

According to [3], the orientation completion problem for both local tournaments and

acyclic local tournaments is polynomial-time solvable. Thus the recognition problem can

also be solved in polynomial-time by directly verifying the definition of obstructions. On

the other hand, to find an obstruction that is critically contained in a given partially

oriented graph (if it exists), it suffices verify that the given graph cannot be completed

to a local tournament, and then to delete vertices or replace arcs with edges as long as

the resulting graph still cannot be completed to a local tournament. When the deletion

of any vertex or the replacement of any arc with an edge results in a graph that can be

completed to a local tournament, then the graph is an obstruction. Similar algorithms

work for the case of obstructions for acyclic local tournament orientation completions.

We conclude the thesis by listing a selection of relevant open problems for future re-

search. As previously discussed, the orientation completion problem for transitive oriented

graphs with the input restricted to undirected graphs is exactly the recognition problem

for comparability graphs.

Problem 1. What are the obstructions for transitive orientation completions?
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A digraph D = (V,A) is said to be quasi-transitive if for any three vertices u, v, w,

(u, v), (v, w) ∈ A implies (u,w) ∈ A, (w, u) ∈ A, or both. Quasi-transitive orientations are

of interest because although this is a weaker condition than transitive orientations, it is

still true that a graph is a comparability graph if and only if it admits a quasi-transitive

orientation, cf. [2]. Thus, similarly as above, the orientation completion problem for

quasi-transitive oriented graphs with the input restricted to undirected graphs is exactly

the recognition problem for comparability graphs.

Problem 2. What are the obstructions for quasi-transitive orientation completions?
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