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Abstract

From the point of view of the electromagnetic interaction, empirical descriptions of the nucleus involve only
a few parameters, one of the most important being the nuclear charge radius. This has been well measured for
ground state nuclei, but it is difficult to measure for excited states, since they decay too quickly for conventional
methods to be used. We study the atomic transitions in muonic 90Zr and find that the nuclear charge radius
of the first excited state can be inferred by measuring the gamma emissions from certain transitions. We
find that with 1keV photon resolution, we can infer a difference between the charge radius of the nuclear
ground state and first excited state as small as 0.13%. We will work in units where ~ = c = 4πε0 = 1 so that
e2 = α ≈ 1/137 (unless otherwise specified). Mass, momentum, and energy will have units of eV, whereas
distances will be given in eV−1. In qualitative discussion, we will sometimes revert to discussing distances in
meters due to the familiarity of typical scales (e.g. nuclear radius, Bohr radius). When working with 4-vectors
in Minkowski space, we use the metric convention (+,−,−,−).
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Chapter 1

Introduction

1.1 Basics of Atomic Physics

Ernest Rutherford is most famously known for his gold-foil experiment [1] conducted in the early 20th century,
where α particles were shot at a thin gold foil. The accepted atomic model was J.J. Thompson’s ”plum-pudding”
model, in which the negatively charged electrons sat as ”plums” (or raisins) in a ”pudding” of positive charge.
When Rutherford’s students shot the positively charged α particles through the foil, most passed through largely
unaffected, but a small portion was deflected at a large angle, sometimes back towards the α emitter. Rutherford
concluded that the atom was mostly empty space, with the positive charge concentrated in a very small region
in the center, the nucleus.

The nucleus is so small compared to the orbiting electrons so that it often seems to act as a pointlike particle,
but realistically the nucleus has a finite size. The radius of the nucleus is on the femtometer scale (10−15m), four
orders of magnitude smaller than the atomic scale of hydrogen (10−11m). Although the pointlike nucleus is an
excellent approximation in many cases, we will be interested in studying the finite size effects of the nucleus on
its orbiting particles. Although the nucleus is composed of protons and neutrons (each composed of quarks), for
the purpose of this research we will describe the nucleus as a single entity.

The most simple way to imagine a classical finite size nucleus is the neutrons and protons interlocking to form
an object similar to a ball. If we instead view the nucleus from a quantum picture (as we should) the ball becomes
blurry, reflecting the inherent uncertainty in the position and momentum of each of the nucleons. In particular,
there is a non-zero probability (albeit extremely small) for the individual nucleons to be found far outside what
we would classically think of the edge of the ball.

How should we describe the nucleus, if we can’t know the position and momentum of its components? We
can focus on the average distribution of the nucleons within the nucleus, and model the nucleus based on these
average parameters. Since we want to model the nuclear effect on the orbiting particles via the Coulomb force,
we will be interested in modeling the nuclear charge. In this fuzzy ball model, there are three main parameters.
Firstly, the total charge of the nucleus, given by the number of protons Z. The second is the nuclear charge
distribution ρ(r), which describes how the charge is distributed ”within” the nucleus. The third is the nuclear
charge radius RNuc, which describes the ”radius” of the fuzzy ball. We should pause to comment on the notion
of the ”radius” of the fuzzy ball. Based on the qualitative discussion above, the ball is fuzzy because it has no
well defined edge. Returning to the classical model, the nucleus is a sphere of charge, so that the charge radius
is simply the distance where the charge density falls from a finite value to zero. In the fuzzy picture, the charge
density does not fall immediately at the edge, but instead drops to zero over a short distance. In this case we
will refer to the radius as the value where the charge density is half of its maximum value.

A short time after Rutherford’s experiment, Neils Bohr proposed a model of the atom which came to be
known as the Bohr atom [2]. He employed Rutherford’s idea of a small nucleus, but Bohr’s model was special
because it proposed that the electrons orbiting the nucleus could only exist at discrete energy levels. The electrons
could jump from one energy level to another, emitting only fixed energies in the process. Although it was soon
outdated by more accurate models the fundamental principles of discrete energy levels was an important step in
the development of quantum mechanics, and it did predict the correct energy levels of the basic atoms.

Just over a decade later, Erwin Schrödinger came up with one of the most famous equations in physics [3],
which became one of the main starting points to describe quantum mechanics. For a particle in a single spatial
dimension labeled by x, the Schrödinger equation can be written as

i
∂Ψ(x, t)

∂t
= − 1

2m

∂2

∂x2
Ψ(x, t) + V (x, t)Ψ(x, t) (1.1)

where m is the mass of the particle, V (x, t) is the potential, and the function Ψ(x, t) is called the wavefunction,
from which physical quantities can be computed. Its complex square modulus can be interpreted as the spatial
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probability distribution for the particle of interest, and is thus normalized so that∫
|Ψ(x, t)|2dx = 1 (1.2)

The generalization to three dimensions is straightforward by including second partial derivatives for the other
spatial coordinates, so that we have

i
∂Ψ(r, t)

∂t
= − 1

2m
∇2Ψ(r, t) + V (r, t)Ψ(r, t) (1.3)

where ∇2 = ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2 is the Laplacian in cartesian coordinates. The normalization condition is
now taken over the total spatial volume V so that∫

V

|Ψ(r, t)|2dV = 1 (1.4)

If we have a time independent potential, then we can separate the time dependence in the wavefunctions,
writing

Ψj(r, t) = ψj(r)e−iEjt (1.5)

where the states ψj for a complete set of stationary states, each one satisfying

− 1

2m
∇2ψj(r) + V (r)ψj(r) = Ejψj(r) (1.6)

The general solution is written as a linear combination of the solutions above

Ψ(r, t) =
∑
j

cjψj(r)e−iEjt (1.7)

We can simplify the equations further if we are dealing with a spherically symmetric potential. For complete-
ness, we will work in spherical coordinates

x = r sinφ sin θ

y = r cosφ sin θ

z = r cos θ

(1.8)

with θ ∈ [0, π) and φ ∈ [0, 2π). In this case we can write the Laplacian in spherical coordinates and use separation
of variables to split the time independent Schrödinger equation into an angular equation and a radial equation
(see for example [4, 5, 6]). The radial solutions will depend on the potential of interest, but the solutions to
the angular part do not depend on the potential or energy levels, so they can be applied any time we have
spherical symmetry. The angular solutions are the spherical harmonics, Yl,m(θ, φ) where l is the orbital angular
momentum, taking values 0 ≤ l < n (n is the principle or radial quantum number, which takes natural number
values, n = 1, 2, 3, ...), and m is its component along any spatial direction (typically chosen to be the z-axis),
taking values −l ≤ m ≤ l. For completeness, the normalized spherical harmonics are given by

Yl,m(θ, φ) = (−1)
1
2 (m+|m|)

√
2l + 1

4π

(l − |m|)!
(l + |m|)!

eimφPml (cosθ) (1.9)

where Pml (cos θ) are the associated Legendre functions

Pml (x) = (1− x2)|m|/2
(
d

dx

)|m|[
1

2ll!

(
d

dx

)l
(x2 − 1)l

]
(1.10)

The function in the square brackets is often written Pl(x), and is the l-th Legendre polynomial. The spherical
harmonics are orthonormal, meaning∫ 2π

0

∫ π

0

[Yl′,m′(θ, φ)]∗[Yl,m(θ, φ)] sinθ dθ dφ = δll′δmm′ (1.11)

In order to simply notation, we will often write these angular integrals using the solid angle Ω as follows∫
f(θ, φ)dΩ ≡

∫ 2π

0

∫ π

0

f(θ, φ) sinθ dθ dφ (1.12)
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Upon separation of variables, the radial equation takes the form

d

dr

(
r2
dRnl(r)

dr

)
− 2mr2[V (r)− Enl]Rnl(r) = l(l + 1)Rnl (1.13)

In general the energies and radial wavefunctions will depend on both the principle quantum number n as well as the
orbital angular momentum l, but not explicitly on the z-component m. With a change of variable u(r) ≡ rR(r),
we can bring the radial equation into a more convenient form, resembling the original one dimensional Schrödinger
equation (cf. eq. 1.1)

− 1

2m

d2unl(r)

dr
+

[
V (r) +

1

2m

1(l + 1)

r2

]
unl(r) = Enlunl(r) (1.14)

We can interpret the term in square brackets as an effective potential, resulting from the combination of the
radial potential and the centrifugal term l(l+ 1)/2mr2. We can rewrite the radial wavefunction normalization in
terms of this new function ∫ ∞

0

|Rnl(r)|2r2dr =

∫ ∞
0

|unl(r)|2dr = 1 (1.15)

This redefinition is useful as the final form of the Schrödinger equation is cleaner. Furthermore the lack of any
linear derivatives of u(r) (in contrast to those in R(r)) allows the development of an algorithm for numerical
solutions that is very accurate as we will see in section 3.3. In order to make more progress on solutions, one
needs to specify the potential and solve the radial equation.

1.2 The hydrogen-like Atom

There exist very few potentials for which the Schrödinger equation can be exactly solved, yielding closed formed
solutions for the energy eigenstates and eigenvalues. The hydrogen-like atom is one such case, where the potential
is given by the spherically symmetric Coulomb potential

V (r) = −Zα
r

(1.16)

Physically this represents a pointlike nucleus with Z protons and a single orbiting electron. The typical approach
is to expand the radial eigenfunctions in a power series and solve for the recursion relation to find the power series
coefficients [4, 5, 6]. After properly normalizing the wavefunctions, one finds the solutions

Rnl =

√(
2

naZ

)3
(n− 1− 1)!

2n[(n+ l)!]3

(
2r

naZ

)l
[L2l+1
n−l−1(2r/naZ)]e−r/naZ (1.17)

where L2l+1
n−l−1 are the associated Laguerre polynomials, n is the principal quantum number, l is the orbital angular

momentum. Lastly, the characteristic orbital distance of the hydrogen-like atom is given by the Bohr radius

aZ =
1

Zαm
=

~
Zαmc

(1.18)

where the second equation is in SI units, and α ≈ 1/137 is the fine structure constant. The first few s-wave and
p-wave radial wavefunctions are plotted in figure 1.1. Note that the s-wave states are far more likely to be near
the origin, and for higher principle quantum numbers n, the states are on average further from the origin.

To be more precise, the mass factor appearing in the Bohr radius and hence the radial wavefunctions is the
reduced mass of the nucleus, mN , and the orbiting particle, m,

mred =
mNm

mN +m
(1.19)

For the case of hydrogen, me = 9.109 × 10−31kg, mN = mp = 1.673 × 10−27kg, so we find the reduced mass to
be mred = 9.104 × 10−31kg ≈ me. Because the nucleus (proton) is much heavier than the electron, the reduced
mass effects are very small, and we can approximate the reduced mass of the system to be equal to the electron
mass.

For an electron orbiting hydrogen (me = 9.109 × 1031kg, Z = 1), we find a Bohr radius of 5.29 × 10−11m.
Heavier particles orbit closer to the atom, and a nucleus with higher charge Z will also cause the orbit to be
smaller. It’s important to note that we should not think of the electron as orbiting on a fixed path with a certain
orbital radius, as we do in classical mechanics. Since we are dealing with quantum mechanics, all we can do is
assign probabilities for the electron to be at any given place. Quantifying this statement, the probability of finding

3



(a) S-Wave Solutions (b) P-Wave Solutions

Figure 1.1: The first few s-wave and p-wave radial wavefunctions for the hydrogen atom.

the electron in the radial interval [r, r+ dr] is given by r2|Rnl(r)|2dr. In this way the average radial distance can
be calculated by taking the average over all possible positions. For the hydrogen-like atom, we find [5]

〈Rnl|r|Rnl〉 =

∫ ∞
0

R∗nl(r)rRnl(r)r
2dr =

aZ
2

[3n2 − l(l + 1)] (1.20)

We see that the average distance is always proportional to the Bohr radius. States with higher radial quantum
numbers will be found, on average, further from the nucleus, and states with higher orbital angular momentum,
will be found, on average, closer to the nucleus. By solving the radial equation we also find the energy eigenstates.
In this case, the energies are defined so that negative energies represent particles which are bound to the nucleus,
whereas positive energy solutions represent particles which feel the effect of the Coulomb potential, but are not
bound to the nucleus (more on this later). The larger the absolute value of the energy, the more bound the
particle is to the nucleus. The energy spectrum for the bound eigenstates form a discrete spectrum, increasing
linearly with particle mass and quadratically with nuclear charge

En = − (Zα)2

2n2
m (1.21)

The discretization of allowed energy levels is one of the drastic departures from classical mechanics. An atom
undergoing a transition in which the state of the orbiting particle changes from a known initial state to a known
final state will emit a fixed amount of energy. There are a variety of ways in which this energy can be carried
away, but we now turn to the case where it is carried away by a photon. The photon is a spin one particle, so
it has at least one unit of total angular momentum, and hence by conservation of angular momentum the initial
and final states must differ by at least one unit of angular momentum. In the next section, we will come to
understand these statements more precisely. Although this discussion was in the context of a particle orbiting the
nucleus, the same rules apply to any system where angular momentum is conserved. We will also be interested
in applying them to transitions directly involving the nucleus.

Unlike the hydrogen-like atom, the electron wavefunctions for atoms with multiple electrons cannot be solved
analytically since the Coulomb potential introduces electron-electron repulsion. There are a variety of approxi-
mations used to treat this problem, see Gasiorowicz Ch.14 [5] for an introduction.

1.3 Photon Transitions

One of the main tools we have for studying atomic and nuclear structure is analyzing the radiation emitted in a
transition, where the system ”jumps” from a state to another with lower energy (or equivalent absorbs a photon
and transitions to a higher energy state). Not only does the energy of the photon(s) provide information about
the energy levels of the system, but the type of photon can provide information about the initial and/or final
states. Photons can be classified by their parity and total angular momentum. If these are conserved quantities
in our system of interest, only certain types of photons can mediate transitions between the initial and final state.

Before discussing the parity and angular momentum, we briefly introduce some review some terminology,
following Landau and Lifshitz [7]. The photon field is a four-vector Aµ = (Φ,A), where Φ is the scalar potential
and A is the vector potential. As in classical electrodynamics, we are free to alter the potential by choosing a
gauge transformation of the form Aµ → Aµ + ∂µχ, with χ is an arbitrary scalar function of the coordinates and
time. We will work in the transverse gauge, where the wave equation for the photon field in free space is given by

∂2A

∂t2
−∇2A = 0 (1.22)
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The general solution using the plane wave ansatz, and normalizing our wavefunction so that we have one photon
in a volume V = 1 yields

Aµk(r, t) =
√

4π
eµ√
2ω
e−iωt+ik·r (1.23)

where eµ is the unit polarization four vector, ω is the photon energy, and k is its momentum (or wavenumber),
related by the dispersion relation |k| = ω. Since we are working in the transverse gauge, the polarization vector
takes the form

eµ = (0, e), e · k = 0 (1.24)

We will return to this later when we are interested in the photon wavefunctions for definite values of the angular
momentum.

It is impossible to distinguish the photon’s spin and orbital angular momentum. Spin can be thought of as
the angular momentum when the particle is at rest, but the photon is massless and therefore cannot be at rest, so
this interpretation fails. We can also note that we typically associate spin with the mathematical transformation
properties of the vector wavefunction of interest, but this fails because choosing a gauge for the photon field
necessarily breaks this symmetry, for more details see Vol 4 of Landau and Lifshitz [7]. Hence only the total
angular momentum of the photon has meaning, which can take non-zero positive integer values. However, we still
speak of the photon spin s and its orbital angular momentum l, but the context is different. We say the photon
has spin 1 because it is a vector quantity. We will usually perform an expansion of the photon wavefunction in
terms of the spherical harmonics Ylm and the orbital angular momentum corresponds to the value of l of the term
in this expansion. In this manner the photon has at least one unit of angular momentum because it is a spin one
particle, but it can have higher values depending on the order of the spherical harmonics. Due to the properties
of the spherical harmonics, the number l also defines the parity of the photon, according to

Pph = (−1)l+1 (1.25)

The expansion mentioned above is typically done as a multipole expansion, and we classify the photons based
on their total angular momentum j as well as the parity. A photon with angular momentum j and parity (−1)j

is called an electric 2j-pole (or Ej) photon. A photon with angular momentum j and parity (−1)j+1 is called a
magnetic 2j-pole (or Mj) photon.

In order to find the wavefunctions of the electric and magnetic photons, we need to know the eigenfunctions
of J and jz. This corresponds to finding the spherical harmonic vectors Ylm, which satisfy J2Ylm = j(j+1)Ylm,
and jzYlm = mYlm, with z referring to a specific Cartesian coordinate axis. It turns out that the solutions are
given by [7]

Y
(e)
jm =

1√
j(j + 1)

∇nYjm, P = (−1)j

Y
(m)
jm = n×Y

(e)
jm, P = (−1)j+1

Y
(l)
jm = nYjm, P = (−1)j

(1.26)

where n = r/r, and ∇n = |k|∇k which acts on functions which depend only on the direction of n. For complete-
ness, in spherical coordinates its two components are given by

∇n =

(
∂

∂θ
,

1

sinθ

∂

∂φ

)
(1.27)

The parities of the eigenfunctions have been listed to the right. The superscript e, m, and l refer to the fact that

the first two will be the elctric and magnetic photons which are both transverse, whereas the last function Y
(l)
jm

is longitudinal. The vector Y
(m)
jm can be written as a linear combination of the scalar spherical harmonics Ylm of

order l = j only. The other two spherical harmonics vectors can be written as linear combinations of the scalar
spherical harmonics with l = j± 1. This can be observed by comparing the parities, noting that the parity of the
scalar harmonics is (−1)l+1.

We now turn to the photon wavefunctions. Due to our transversality condition, we can only use Y
(e)
jm and

Y
(m)
jm , since Y

(l)
jm is longitudinal. If we want an Ej photon, we must choose the vector spherical harmonic with

parity (−1)j , which is clearly Y
(e)
jm. Similarly the Mj photon has parity (−1)j+1, so we must choose Y

(m)
jm . Hence

the wavefunction for a photon with definite angular momentum j and z-component m with energy ω is given by

Aωjm(k) =
4π2

ω3/2
δ(|k| − ω)Yjm(n) (1.28)

where the specific spherical harmonic vector is chosen for either the electric or magnetic case. The normalization
is different from what we previously considered (cf. eq. 1.23) because this is the momentum space wavefunction
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of the photon, which is related to the coordinate space representation by a fourier transform. Note that the delta
function enforces the photon’s dispersion relation |k| = ω.

So far we have been working in the transverse gauge, where the scalar potential satisfies Φ = 0, and we
have only worked on the magnetic potential A. If we choose to work in another gauge, the magnetic photon
wavefunction is left unchanged because none of the other components have the same parity. However the electric
photon can be written as a linear combination in the following way

A
(e)
ωjm(k) =

4π2

ω3/2
δ(|k| − ω)(Y

(e)
jm + CnYjm)

Φ
(e)
ωjm(k) =

4π2

ω3/2
δ(|k| − ω)CYjm

(1.29)

Now that the photon wavefunctions are known, we can evaluate electric and magnetic multipole transition
rates. We quickly pause to introduce Dirac’s equation and the corresponding fermion solutions. We do not
offer a complete discussion here, just the basics needed. For further discussion, there are a number of textbooks
with significantly more detail, for example [7, 8]. Dirac’s equation is the relativistic extension of the Schrödinger
equation for fermions. For a particle of mass m, charge e, which feels an external field with four potential Aµ,
Dirac’s equation is given by

[γµ(pµ − eAµ)−m]ψ = 0 (1.30)

where p is the 4 momentum operator pµ = (i∂/∂t,∇), ψ is the (4-component) wavefunction, and γ are the Dirac
matrices,

γ0 =

(
I2 0
0 −I2

)
, γ =

(
0 σ
−σ 0

)
(1.31)

Here I2 is the 2x2 identity matrix, and σ = (σ1, σ2, σ3) is the vector formed by the three pauli matrices. It
should be emphasized the that the notation γ implies there are 3 spatial 4x4 gamma matrices, each formed
with the respective pauli matrix. It is obvious to see that the Dirac equation includes the spin of the particle.
We thus expect that the energy levels are spin dependent, in contrast to the Schrödinger theory where spin
dependent energy contributions are only introduced via perturbations. Although we will not derive it, a low
velocity expansion, v < 1, yields the Schrödinger equation plus 3 extra terms (up to order 1/c2) [7]. The first
two are the relativistic kinematic and spin-orbit perturbations, and the third is the Darwin term, which can be
thought of (in the non-relativistic framework) as the smearing of the potential due to the inherent uncertainty of
the particles position. We will give more details on these perturbations in section 3.3.

To understand the interaction between a Dirac fermion and a photon, we use the term −ejµfiAµ found in the

Lagrangian in classical electrodynamics. Here jµfi ≡ ψ∗fγ
µψi = (ψ∗fψi, ψ

∗
fγ

0γψi) is the electromagnetic current,
and Aµ is the photon wavefunction. For the purposes of the quantum interaction, we replace the operators by
their quantum counterparts, so that the matrix element for such an interaction takes the form

Vfi = e

∫
d3x jµfi(r)A∗µ(r)

= e

∫
d3x jµfi(r)

∫
d3k

(2π)3
A∗µ(k)e−ik·r

(1.32)

We have omitted the subscripts (ωjm) from the photon wavefunction for simplicity. Suppose we are interested
in the emission of a photon with definite values of angular momentum j, and its component m in some direction
z. Furthermore, we will suppose it is an electric photon, so we use the wavefunctions given in eq. 1.29. We will
take the arbitrary constant C = −

√
(j + 1)/j. This choice will cause a cancellation of the spherical harmonics

of order j − 1 from the contribution of the spatial components of the photon wave function (A). Compared to
the contribution from A0 = Φ, this is a higher order in a0/λ (where λ is the photon wavelength), which includes
spherical harmonics of the lowest order j. Hence we take our photon wavefunction as

Aµ = (Φ,0), Φ(k) = −

√
j + 1

j

4π2

ω3/2
δ(|k| − ω)Yjm (1.33)

We now substitute this photon wavefunction into our matrix element (eq. 1.32) and integrating over the delta
function giving

Vfi = e

∫
d3x ψ∗f (r)ψi(r)

∫
d3k

(2π)3

[
−

√
j + 1

j

4π2

ω3/2
δ(|k| − ω)Yjm

]∗
e−ik·r

= −e

√
j + 1

j

√
ω

2π

∫
d3x ψ∗f (r)ψi(r)

∫
dΩkY

∗
jm(nk)e−ik·r

(1.34)
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To evaluate the angular part of the momentum integral, we use the plane wave expansion

eik·r = 4π

∞∑
l=0

l∑
m′=−l

igl(kr)Y
∗
lm′(nk)Ylm′(nr) (1.35)

where nk,r are the unit vectors in momentum and position space, respectively. The functions

gl(kr) =
√
π/2krJl+1/2(kr) are the spherical Bessel functions, which are related to the Bessel function of the first

kind Jα(x), having the expansion

Jα(x) =

∞∑
n=0

(−1)n

n!Γ(n+ α+ 1)

(
x

2

)2n+α

(1.36)

The plane wave expansion is useful because we can now use the orthonormal properties of the spherical harmonics
to evaluate the angular integral. Integration over dΩk will give Kronecker deltas δjlδmm′ , and then the summations
in the Bessel expansion will pick out the term with l = j and m′ = m. In other words∫

dΩkY
∗
jm(nk)e−ik·r = 4πijgj(kr)Y

∗
jm(nr) (1.37)

so that the matrix element becomes

Vfi = −2eij
√
ω

√
j + 1

j

∫
d3x ψ∗f (r)ψi(r)gj(kr)Y

∗
jm(nr) (1.38)

At this point the integral could be computed numerically, but we can also impose some physical constraints
in order to simplify the integral. Schematically, the characteristic scale of the radial orbitals is given by the
Bohr radius, which scales as a0 = 1/Zαm. The transition occurs between two energy levels in the atom, so the
wavelength scales as λ ∼ 1/E ∼ 1/(Zα)2m. Hence the product of the momentum and the radial distance scales
as ka0 ∼ a0/λ ∼ Zα < 1. Given that we expect our wavefunctions to localized around the nucleus with roughly
exponential decay of characteristic radial scale equal to the Bohr radius, the integrand will only be significant for
kr � 1 (for Zα � 1). This allows us to perform a Taylor expansion on the functions gj(kr), keeping the first
term

gj(kr) ≈
(kr)j

(2j + 1)!!
(1.39)

It is important to note that this expansion is also valid up to order (kr)j+1. This is because the Bessel
functions have a power series expansion about 0 which is either in odd or even powers (depending on the index l,
see eq. 1.36). Naively we expect that the term containing (kr)j will proportional to (a0/λ)j ∼ (Zα)j so that the
next order term will give a contribution of order (Zα)2 smaller. Hence we find, using Yj,−m = (−1)j−mY ∗jm

Vfi = −2eij
ωj+1/2

(2j + 1)!!

√
(2j + 1)(j + 1)

πj
(Q

(e)
j,−m)fi (1.40)

where

(Q
(e)
jm)fi =

√
4π

2j + 1

∫
d3x ψ∗f (r)ψi(r)rjYjm(nr) (1.41)

are called the 2j-pole electric transition moments of the system. Applying Fermi’s golden rule
Γ =

∫
2π|Vfi|2δ(Ei − Ef − ω)dω and integrating over ω to set the photon energy yields the probability of Ej

radiation

Γ
(e)
jm =

2(2j + 1)(j + 1)

j[(2j + 1)!!]2
ω2j+1|(Q(e)

j,−m)fi|2 (1.42)

Before studying this in more depth, we look at the lowest case, corresponding to j = 1 (j = 0 is not possible
because the photon must have at least one unit of total angular momentum). The above formula reduces to

Γ
(e)
1m =

4ω3

2
e2|(Q(e)

1,−m)fi|2

=
4αω3

2

∣∣∣∣ ∫ d3x ψ∗f (r)ψi(r)

[√
4π

3
rY1m(nr)

]∣∣∣∣2 (1.43)
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To work on the term inside the square bracket, we note that by writing the spherical harmonics and rearranging,
we find √

4π

3
rY10(nr) = z√

4π

3
rY1,±1(nr) = ∓ i√

2
(x± iy)

(1.44)

Summing over m in eq. 1.43 above to find the transition rate to all final states, we have

Γ(e) =
∑
m

4αω3

2

∣∣∣∣ ∫ d3x ψ∗f (r)ψi(r)

[√
4π

3
rY1m(nr)

]∣∣∣∣2
=

4αω3

2
(|〈x〉|2 + |〈y〉|2 + |〈z〉|2)

=
4αω3

2
|〈r〉|2

=
4ω3

2
|〈d〉|2

(1.45)

where d = er is the electric dipole operator. This is the probability for a transition involving an electric dipole
photon, or the E1 transition. The formula is the same in the non-relativistic case [5], except that we would replace
the Dirac wavefunctions with the Schrödinger wavefunctions.

Each successive term in the multipole expansion above contains another power of r. Hence we would expect
the radial integral in the Ej transition probability to scale as aj0/λ

j ∼ (Zα)j , up to some constants which are
dependent on the initial and final states. Given that Zα � 1, the dipole transition will dominate over the
other decay modes. In some cases, the dipole transition is forbidden, so we must calculate the leading non-zero
transition. To understand why some transitions might be forbidden, we turn to the angular integral.

The angular integral in the 2j-pole electric transition moments contains a spherical harmonic of order j. Recall
this represents a photon of total angular momentum j. If the initial system has total angular momentum ji and
final angular momentum jf , then by vector addition of angular momentum rules, we must have

|ji − jf | ≤ j ≤ ji + jf , j 6= 0 (1.46)

Furthermore, the components mi and mf must satisfy mi −mf = m.
Another selection rule is obtained by studying the parity of the system. Parity is conserved by EM interactions,

so if the parity of the initial state is Pi and that of the final state is Pf with Pph being the photon parity, we have
Pi = PfPph. Since parity only takes the values ±1, we can rewrite this as PiPf = Pph. Recall we found that the
parity of an electric photon is Pph = (−1)j , so we must have

PiPf = (−1)j , Electric 2j photon (1.47)

A similar analysis can be done for the emission of a magnetic photon. The idea is similar, using instead the
magnetic photon wavefunction, but the derivation is a bit more complicated. We will postpone it until section 4.1
where we will use it. We note that the same angular momentum selection rules apply to magnetic photons, but
since the parity of the magnetic photon is Pph = (−1)j+1, we have

PiPf = (−1)j+1, Magnetic 2j photon (1.48)

These selection rules are very powerful, if we know the initial and final parities and angular momentum,
we can immediately see that some multipole transition modes are forbidden. Consider the atomic transition
2s1/2 → 1s1/2 in Hydrogen. We have Pi = Pf = 1, so we require Pph = 1. Right away we can see that the electric
dipole (j = 1) is forbidden because the E1 photon has parity -1. It turns out no electric photon can mediate the
2s1/2 → 1s1/2 transition. The only way to achieve a change of angular momentum of at least 1 is if the electron
spin flips, as initial and final states are both s waves. Opposite spin states are orthogonal, and the electric photon
provides no operator that interacts with the electron spin. Conversely the magnetic dipole transition (j = 1)
could mediate this transition because it has the correct parity, and contains the Pauli matrices which can mediate
a spin flip. Since the M1 transition is the first term in the magnetic photon expansion, we might expect it would
be the dominant transition between these electron states of hydrogen, since the other terms would be further
suppressed by higher orders in Zα. However it turns out that the radial integral in the M1 transition is strongly
suppressed, and a second order perturbative approach dominates, the two photon transition (2E1) [7]. Both the
magnetic and electric decays developed above are first order in the photon perturbation (they both contain a
single photon matrix element). We will study both the M1 and 2E1 transitions in a similar atomic transition in
chapter 4.
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1.4 Describing the Nucleus

The main issue with describing the nucleus analytically is that we cannot solve quantum many body problems.
There has been some recent computational advancement, but we still cannot achieve nucleon wavefunctions for
higher mass nuclei (A > 16, [9]). For higher mass nuclei we typically describe the nucleus as if it acts as a single
particle. Although this contains far less information about the nuclear structure than the nucleon wavefunctions,
we will find it sufficient under certain approximations and assumptions, and it is certainly easier to work with.
Along with the charge radius RNuc, total charge Z, and its spatial distribution ρ(r), we will also describe the
nucleus by the nuclear spin I and parity π. It is not uncommon that the charge distribution contains only a few
parameters, one being the charge radius, with some only requiring the charge radius. Hence the charge radius is
one of the fundamental parameters for this empirical description. If the spin and parity of the state are already
known, the charge radius is the next most important parameter.

The neutrons and protons have their own respective spin, and the nuclear spin is the vector sum of the
individual angular momentum of each of the nucleons. There are several forces in the empirical description of
the nucleus [10], including the nuclear pairing force which causes the nucleons to couple together in spin-0 states.
An important result is that nuclei with an even number of nucleons will have a spin-0 ground state. In a similar
manner to spin, the total nuclear parity is determined by multiplying the parity of the individual nucleons, with
+ denoting even parity and - denoting odd parity. We typically use the notation Iπ to describe the spin and
parity of the nucleus. For example the notation 0+ indicates that the nucleus is in a spin 0 state with even parity.

Just as the orbiting leptons may be excited to higher energy states, the nucleus can also be excited to a higher
energy state. These excited states have been observed during a muonic cascade [11] and also by scattering charged
particles on the nucleus [12, 13]. A nuclear excited state can be formed by moving an individual nucleon to a
higher energy orbit, by exciting a vibrational or rotational mode of a pair of nucleons, or breaking apart a pair
of nucleons. Due to this extra energy exciting some mode, the excited nuclear states will have a slightly larger
charge radius.

There is a huge variation in the lifetime of excited nuclear states. We shall be interested in an excited state
which has a half life of roughly 60ns. Because the lifetime is so short, we cannot use traditional techniques to
determine the nuclear charge radius. The goal of this research will be to determine if atomic transitions can
provide insight on the nuclear charge radius of the excited state.

Given that we are interested in quantifying nuclear and orbiting lepton states, we should pause to develop
notation. In general we will use Dirac’s bra-ket notation to describe both, with the usual |nlm〉 notation for
the leptonic states. We will use |N〉 to describe the two nuclear states of interest, with |0〉 denoting the nuclear
ground state, and |1〉 denoting the excited nuclear state. As an example, the notation for the combined system
of the nuclear being in its first excited state and the orbiting lepton to be in the 2s state is |200〉|1〉. If we do
not mention the nuclear state at all it is understood that the nucleus is in the ground state (e.g. muonic 2s state
implies |200〉|0〉). Likewise if only the nuclear state is mentioned, it is assumed that the muon is in the ground
state (e.g. a comment about the nuclear excited state would imply the |100〉|1〉 state).

1.5 The Electric Monopole Transition between Nuclear States

Since the energy gaps between nuclear states are typically much larger than the corresponding binding energies, a
transition between different nuclear states can result in an electron being ejected from the atom. Such transitions
are called internal conversion, and were first studied in the 1920’s [14]. It was realized that internal conversion
was due to the direct electromagnetic interaction between the nucleus and an electron, and was not mediated
via the emission and reabsorption of an actual photon. In the early 1950’s, it was realized that the internal
conversion process was dependent on the finite size of the nucleus in two ways. Firstly, the electron wavefunctions
are modified within the nucleus due to the difference in the potential. Furthermore, the existence of penetration
matrix elements was discovered as a result of the penetration of electrons into the nucleus.

The penetration matrix elements led to new phenomena, such as the electric monopole (E0) transition. This
transition, which is mediated between two nuclear states having the same spin, has no single gamma transition
counterpart due to conservation of angular momentum. In particular, between two 0+ nuclear states, single gamma
transitions are forbidden, and the E0 transition can be the most dominant transition. Since E0 transitions depend
solely on this penetration effect, they are sensitive to the nuclear structure, including its charge radius.

1.6 The Isotope of Interest, 90Zr

We will be studying the stable 90Zr isotope, often containing a muon as one of its orbiting particles. The nucleus
is composed of 40 protons and 50 neutrons. The reason for the muon will become clear in the next section, but
for now we focus on the nuclear properties of 90Zr. The most important characteristic of interest is that both its
ground state and first excited state are 0+ states, which severely constrains its decay modes. The first excited
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state sits 1760.71MeV above the ground state, and has a half life of 61.3ns [15]. With regard to the angular
selection rules previously mentioned, this implies that the decay cannot proceed by any of the single photon
transitions discussed above, both the initial and final states are spin 0. The most common transition is an electric
monopole transition (where the nucleus interacts directly with an electron, ejecting it from the atom), followed by
electron-positron pair production. Two photon nuclear de-excitation is also possible, but vastly subdominant [16].

Note that the nuclear excitation energy is far larger than the binding energy of an electron orbiting the nucleus

Eb,Z=40,e = 0.5(Zα)2me = 0.022MeV

aZ=40,e =
1

Zαmµ
= 6.70MeV−1

aZ=40,e =
~

Zαmµc
= 1.32× 10−12m (SI)

(1.49)

The Bohr radius has been included for the purpose of comparison with a muon below. The monopole transition
ejects one of the innermost bound electrons into the continuum states, with final energy much larger than the
binding energy.

Suppose instead that one of the innermost electrons is replaced by a muon. Atoms with an orbiting muon are
called muonic atoms and we will refer to zirconium with a bound muon as muonic zirconium. The muon has charge
-1e, and is a heavier version of the electron, with mass mµ = 105.658MeV, approximately 207 times the mass
of the electron. Since the muon is much heavier, it may seem like reduces mass effects may be more significant,
but the zirconium nucleus is also far heavier than the hydrogen nucleus. Using Eq. 1.19, with a proton mass of
938.27MeV and a neutron mass of 939.57MeV, we see that the reduced mass of the muonic zirconium system is
mred = 105.526MeV ≈ mµ. Therefore the reduced mass effects are not significant, and we can approximate them
by using the muon mass. In order to distinguish between the two leptons, we will often use the subscript e or µ to
denote quantities related to the electron or the muon, respectively. If we do not want to distinguish between the
two, we will simply leave out the subscript. For example aZ,e refers to the Bohr radius of an electron bound to a
nucleus with Z protons whereas aZ,µ refers to the Bohr radius of a muon bound to a nucleus with Z protons, and
lastly aZ refers to the Bohr radius of either system. Because the muon is much heavier, it has a larger binding
energy and a smaller Bohr radius

Eb,Z=40,µ = 0.5(Zα)2mµ = 4.50MeV

aZ=40,µ =
1

Zαmµ
= 0.0324MeV−1

aZ=40,µ =
~

Zαmµc
= 6.40× 10−15m (SI)

(1.50)

There are two important things to note. Firstly the binding energy of muonic zirconium is larger than the
nuclear excitation energy by a factor of three. In particular, the energy different between the ground state (1s)
and the next lowest state (2s) using the hydrogen-like, pointlike approximation is 3.38MeV, which is still larger
than the nuclear excitation energy. This has an important implication: if the atom is in the state |100〉|1〉, that
is, the muon is in the ground state and the nucleus is in the first excited state, it can only decay to the full ground
state, |100〉|0〉, purely based on energy conservation. We need both the ground and nuclear excited states to be
0+, otherwise de-excitation via a single gamma transition would likely dominate, and we also need the excited
nuclear state to be the next accessible energy state in the muonic case, so that it cannot decay to the nuclear
ground state and a muonic p-wave state. Zirconium is the only atom which satisfies both these considerations.
Although nuclear excitations in muonic systems have been previsouly studied, no one has addressed the 0+ → 0+

transition in a muonic system. Along with probing the nuclear structure via spectroscopy of muonic atoms, we are
also able to make the first predictions comparing the rates of electronic vs muonic modes for nuclear de-excitation.

The second important thing to note is that the Bohr radius of muonic zirconium is on the same scale as
the nuclear radius. Because the muon and the nucleus are quantum objects, the radius is not a fixed value of
their distance, simply a characteristic scale at which they are most likely to be found. In reality, they spend
time at radii both smaller and larger then this characteristic scale, implying that the muon samples the Coulomb
potential from the nucleus over a range of distances. Since the nuclear radius is on the same scale as the Bohr
radius, the muon is significantly more likely to sample the potential within the nucleus compared to the electron.
In the pointlike approximation, the probability of finding the 1s state at the origin is proportional to the cube of
the Bohr radius, which means the muon is more likely to be found at the origin by a factor of(

aZ,e
aZ,µ

)3

=

(
mµ

me

)3

≈ 2003 = 8× 106 (1.51)

Hence muonic atoms are much more sensitive to the effects of finite nuclear size since they are approximately
8 million times more likely to be found at the origin. Muonic atoms have been the subject of significant study
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because they currently are the most precise source of information about the charge distribution of nuclei (see for
example [17, 18]). In particular, choosing a muonic atom with a higher nuclear charge Z increases the Coulomb
force and hence pulls the muon closer to the nucleus. Given that 90Zr has 40 protons, it is a useful muonic atom
to study, but the primary reason is that the only nuclear de-excitation mode is a 0+ → 0+ transition in the
muonic system.

Because the muonic Bohr radius and the nuclear radius are on the same scale, we need to take into account
the finite size effects of the nucleus. We will see in the next section that this cannot be done in a perturbative
manner, and numerical methods are used to find the muon wavefunctions.

As noted above, the only kinematically available decay from the excited nuclear state is to the full ground
state. Once the muon is attached to the nucleus, we can treat it as a spin 1/2 object. Then we can consider
the possibility of a forbidden magnetic dipole transition as a mode of nuclear de-excitation. Although we will
not analyze it here, forbidden M1 transitions in muonic atoms can be used as a first step towards experimentally
constraining parity violating operators. Recall that the E0 transition and the M1 transition are very slow in
comparison to other atomic transitions. It is possible that a parity violating operator arising from a neutral
current could cause a transition to an intermediate state, which could then decay via a much quicker atomic
transition. Measurements (or lack thereof) of this quick transitions could give information and constraints into
these parity violating operators.

1.7 A Qualitative Description of the Process

Before diving into the technical details and computations, we quickly summarize the goal of the research, and
the effects we expect.

From classical electrodynamics, we know that a charged particle inside a uniform sphere of charge feels no
force. Given that both the ground state and first excited state of zirconium are spin zero, they will have radially
symmetric charge distributions [14]. Hence the muon only feels the potential of the charge distribution within its
radius. The total charge enclosed within its radius is at most the total nuclear charge Z, but will be smaller if the
muon is within the nucleus. Therefore the muon feels a smaller potential on average, and is thus less bound to the
nucleus. We thus expect to find a different energy spectrum than the hydrogen-like pointlike approximation, and
in particular each energy should be smaller in absolute value. On a side note, since states with non-zero angular
momentum are suppressed near the origin, we would expect these states to be less affected by this change.

If we consider the transition from the |100〉|1〉 state to the |100〉|0〉 state in muonic zirconium, we know that
there will be a change in energy corresponding to nuclear de-excitement of 1760.71keV. This was measured using
electronic zirconium (i.e. zirconium with oribiting electrons), which are far less likely to be found near the nucleus
(compared to their muonic counterparts) and hence do not feel finite size effects significantly. On the other hand,
muonic zirconium is sensitive to the finite size effects. In the |100〉|0〉 state, the muon will be bound to the
nucleus with energy Eb(RNuc), where we are being explicit in noting that the binding energy depends on the
charge radius as discussed above. On the other hand the muon in the |100〉|0〉 state will be bound with energy
Eb(RNuc + ∆R) ≡ Eb(RNuc) −∆E. That is, the muon is bound slightly less (∆E > 0) since the radius of the
excited nuclear state is slightly larger. This means that in the muonic |100〉|1〉 → |100〉|0〉 transition, the actual
transition energy will be E = 1760.71keV + ∆E. This is schematically depicted in figure 1.2. If this transition is
be observed with sufficient energy resolution to determine ∆E, then we can infer the charge radius of the excited
nuclear state. Alternatively, if we can’t determine ∆E, it places a constraint on the charge radius of the excited
nuclear state.

Before attempting to observe this transition, we need to understand what mediates this transition, and how
often this transition would occur given current experimental set-ups. In Chapter 2 we investigate the nuclear
de-excitation in electronic zirconium, and develop a model to analyze the muonic system. In Chapter 3 we
investigate how the excited nuclear state can be populated, and how often this occurs. In Chapter 4 we investigate
the mechanism for the nuclear de-excitation of muonic zirconium and compare it to the electronic case. Lastly, in
Chapter 5 we study how significant the difference in the excited nuclear charge radius has on the energy difference
∆E. In other words, if our detectors are have a certain energy resolution, what is our experimental sensitivity to
the change in charge radius of the excited nuclear state.
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Figure 1.2: The schematic decay diagram for the muonic zirconium atom. The dotted arrow represents the most
common atomic decays. The top solid arrow represents a decay that can populate the nuclear excited state,
studied in chapter 3, and the bottom solid arrow represents the decays which can de-excite the nucleus, studied
in chapters 2 and 4.
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Chapter 2

E0 transition in Electronic Zr

2.1 The Electric Monopole (E0) Transition

The nuclear de-excitation in electronic zirconium has been previously studied, which gives us the energy of nuclear
de-excitation ENuc = 1760.71keV as well as the half life T1/2 = 61.3ns [15]. We will now investigate this transition
in order to understand how we can use this to model muonic zirconium later. Recall we are interested in a nuclear
transition 0+ → 0+. As we just saw, it is impossible for a single photon to mediate this transition, due to the
conservation of angular momentum. We first provide a review of the E0 transition, which is slightly different
from our approach. There are, however, common factors in both which will allow us to compare our approach
later and ensure it is consistent.

Church and Weneser [19] model the E0 transition using the Coulomb force. They write the total Hamiltonian
as

H = H(Nuclear) +

[
H(electron)− α

∑
e

∫
dτ

q(r)

|r− re|

]
+

[
α
∑
e

∫
dτ

q(r)

|r− re|
−
∑
p,e

α

|rp − re|

]
(2.1)

The first term represents the interactions of protons and neutrons in the nucleus. The second is the electrons’
self-interaction as well as their interaction with the average charge distribution, where q(r) is the average nuclear
charge distribution. The third, including the individual Coulomb interactions between protons and electrons, is
treated perturbatively for the E0 transition. We need an operator that can connect the otherwise orthogonal
nuclear states so the only choice is the very last term, which depends on both the proton coordinates rp as well as
the electron coordinates re. For rp � re, we proceed by expanding the potential using the Laplace expansion [20]:

1

|rp − re|
=

∞∑
l=0

l∑
m=−l

(−1)m
4π

2l + 1

rlp

rl+1
e

Yl,−m(θ, φ)Yl,m(θ′, φ′)

≈ 1

re

(2.2)

Here the primes refer to angles with respect to re, and the non-primes refer to angles with respect to rp. In
the second line, we have only included the l = 0 term, which we will denote as VE0, where E0 stands for electric
monopole. In the opposite case where re � rp, the sum can be approximated by 1/rp. The interaction process
where the electron is ejected from the atom is referred to as internal conversion, and the l = 0 term corresponds
to the electric monopole interaction. Using the notation discussed in the intro with |i〉 and |f〉 representing the
electron initial and final state respectively, the Laplace expansion allows us to write the matrix element as

〈0|〈i|VE0|f〉|1〉 = −α
∑
p,e

[ ∫
dτNuc

∫ rp

0

dτelφ
∗
0ψ
∗
f

1

rp
φ1ψi +

∫
dτNuc

∫ ∞
rp

dτelφ
∗
0ψ
∗
f

1

re
φ1ψi

]
(2.3)

where ψ are the electronic wavefunctions and φ are the nuclear wavefunctions, which are the product of all
proton wavefunctions. Consider the second term:

∫
dτNuc

∫ ∞
rp

dτelφ
∗
0ψ
∗
f

1

re
φ1ψi =

∫
dτNuc

∫ ∞
0

dτelφ
∗
0ψ
∗
f

1

re
φ1ψi −

∫
dτNuc

∫ rp

0

dτelφ
∗
0ψ
∗
f

1

re
φ1ψi

= −
∫
dτNuc

∫ rp

0

dτelφ
∗
0ψ
∗
f

1

re
φ1ψi

(2.4)

The first integral on the right hand side vanishes because the nuclear wavefunctions are orthogonal, and
the result of the electron wavefunction integral is independent of the any nuclear operators since the limits are
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constants. Thus we can write the matrix element as

〈0|〈i|VE0|f〉|1〉 = −α
∑
p,e

∫
dτNuc

∫ rp

0

dτelφ
∗
0ψ
∗
f

(
1

rp
− 1

re

)
φ1ψi

= −α
∑
p,e

∫
dτNuc

∫ rp

0

drelφ
∗
0R
∗
f

(
r2e
rp
− re

)
φ1Ri

∫
dΩelYf,elYi,el

= −α
∑
p,e

R∗f (0)Ri(0)
1

6

∫
dτNuc

∫ rp

0

drelφ
∗
0r

2
pφ1

= −α
6
R∗f (0)Ri(0)R2

Nρ

(2.5)

where RN is the nuclear radius, and ρ is the nuclear strength parameter, defined by

ρ ≡
∑
p

∫
dτNucφ

∗
0

(
rp
RN

)2

φ1 (2.6)

Since the electron’s characteristic distance scale is much larger than the nuclear radius (aZ � rp), the radial
wavefunctions Rf,i(r) do not vary significantly during the integrand, so we have replaced them by their value at
the origin. Later we will see that the Dirac wavefunctions are divergent at the origin, so we will modify this by
evaluating the wavefunctions at the nuclear radius. In the second line, we have made it explicit that the angular
integral evaluates to unity due to normalization, and only the radial wavefunction is left (Ri,f ). If we were to
expand our wavefunctions as a power series in the electron’s radial coordinate instead of taking its constant value
at the origin, we would find higher order terms of rp/RN appearing in the integrand of ρ [19]. This is important
if one seeks to use relativistic wavefunctions found using numerical methods for a finite size nucleus, however the
approximation of using the Coulomb wavefunctions evaluated at the nuclear radius is a common choice.

Church and Weneser separate the total decay rate as the product of the square of the nuclear strength
parameter ρ, and the electronic factor ΩK , which is defined as ΩK ≡ Γ/ρ2. The electronic factor is independent
of the spin of nuclear states, and can be calculated if the radial wavefunctions are known. Note that the nuclear
charge distribution will affect the electronic radial wavefunctions, so that the electronic factor is not completely
independent of the nuclear structure. The nuclear strength parameter is largely independent of the electron
wavefunctions, but can be affected by higher order terms in the radial wavefunction expansion, as described
above. In general the nuclear strength parameter cannot be calculated because the proton wavefunctions are
unknown. Instead it is found by measuring the decay rate Γ and calculating the electronic factors as follows

ΩK = 2(2π)

∫
d3p

(2π)3
|〈0|〈i|VE0|f〉|1〉|2δ(E − ENuc − Ei)/ρ2 (2.7)

The first factor of two is due to the two electrons in the 1s state which can be ejected from the transition. In
principle any initial state can give a contribution (not just the 1s state) but the 1s states provide the dominant
effect, since they have the largest overlap at the origin. The other s-wave states can also contribute a reasonable
amount, but non s-wave states are very suppressed due to their rl behaviour near the origin. The rest of the
decay rate expression is an application of Fermi’s golden rule, integrated over the momentum phase space as the
final particle is a continuum state.

The total decay rate is given by

ΓE0 = 2(2π)

∫
d3p

(2π)3
|〈0|〈i|VE0(L = 0)|f〉|1〉|2δ(E − ENuc − Ei) (2.8)

The integration measure d3p can be converted into spherical momentum space coordinates. As there is no
angular dependence in the decay rate, the angular integral gives an additional factor of 4π. We are then left with
p2dp = pEdE, which follows from the relativistic dispersion relation p =

√
E2 −m2

e, so that

dp

dE
=

E√
E2 −m2

e

=
E

p
⇒ pdp = EdE (2.9)

Note that a fully non-relativistic treatment would use the dispersion relation E = p2/2me, yielding pdp =
medE. Hence the fully non-relativistic calculation involves replacing E by the mass of the electron, and non-
relativistic limits involve taking (amonst other things) the limit Ef → me, where Ef is the final energy of the
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ejected electron. The integral over the delta function is now trivial, yielding

ΓE0 =
(4π)(4π)

(2π)3

∣∣∣∣− α

6
R∗f (0)Ri(0)R2

Nρ

∣∣∣∣2 ∫ dE pEδ(E − ENuc − Ei)

=
α2

18π
pfEf |Rf (0)Ri(0)|2R4

Nρ
2

=
8πα2

9
pfEf |ψf (0)ψi(0)|2R4

Nρ
2

(2.10)

where Ef = ENuc − Ei and pf are the energy and momentum of the ejected electron. The decay rate depends
on the nuclear strength parameter ρ2, which is typically on the order of 10−3. For the case of 90Zr, Kibédi
and Spear [21] give an experimental value ρ2 = 3.46(14)× 10−3, with the numbers in parenthesis indicating the
uncertainties in the final digits.

2.2 A Simple Interaction Model for the Electric Monopole Transition

For simplicity, we will first study our interaction model in a very simple case, and later add in more complications.
In the most simple case, we will treat the nucleus as a pointlike particle, and the electron as a plane wave. Since
the electron cannot interact with the nucleus via a photon, the electron must be physically present at the nucleus
for the interaction to occur. We do not seek to model the nuclear wavefunctions, so our potential will only
explicitly include operators which act on the electron states. The nuclear matrix element will be included via
a constant strength parameter. This implies that the potential is composed of two parts, the first being the
constant strength parameter, and the second must evaluate the probability for the electron to be found at the
nucleus. If we treat the nucleus as point-like, the potential governing the E0 transition is a 3D delta function,
Vp(r) = Bδ3(r), where B determines the strength of the interaction, and the subscript p denotes the perturbative
nature of the potential. We will later develop an expression linking B to the nuclear strength parameter of
Church and Weneser. It is obvious that the matrix element picks out the values of the final and initial state
wavefunctions at the origin. Because the nuclear de-excitation energy is much larger then the electron binding
energy Ef = ENuc − Eb � 0, the final state can be approximated by a plane wave. Here we normalize by one
particle in a box with volume V , however the volume factor from the matrix element cancels with the volume
factor from the phase space, so we neglect it for now. Apart from this volume factor the plane wave evaluates to
unity at the origin, so the contribution to the matrix element is solely due to the initial 1s electron state, with
wavefunction

ψ100(r, φ, θ) =
1√
π

(
1

a3Z,e

)3/2

e−r/aZ,e (2.11)

Evaluating the decay rate, we obtain

dΓE0 = 2(2π)|〈i|Bδ(r)|f〉|2 V d
3p

(2π)3
δ(E − ENuc − Ei)

dΓE0 = 4πB2

∣∣∣∣ ∫ d3r
1√
π

(
1

a3Z,e

)3/2

e−r/aZ,eδ(r)
1√
V
e−ip·r

∣∣∣∣2 V d3p(2π)3
δ(E − ENuc − Ei)

dΓE0 = 4|B|2(Zαme)
3 d3p

(2π)3
δ(E − ENuc − Ei)

(2.12)

Converting the momentum space integral into spherical coordinate, we find

dΓE0 =
16π

8π3
|B|2(Zαme)

3pEdEδ(E − ENuc − Ei) (2.13)

The final integral is now trivial, and sets the electron energy and momentum to their values as dictated by
conservation laws. Thus the decay rate is

ΓE0 =
2

π2
|B|2(Zαme)

3pfEf (2.14)

where pf is the momentum of the final state, determined by its energy, Ef = ENuc +Ei. The decay rate can be
related to the half-life of the state, T1/2 by

Γ =
ln(2)

T1/2
(2.15)

which allows us to solve for the coefficient of the delta interaction, B,
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|B|2 =
π2

2

ln(2)

T1/2(Zαme)3pfEf
(2.16)

Note the basic similarities between this approach and the one previously discussed, they both contain the
square of some parameter which represents the nuclear matrix element, and they both depend on the electron’s
wavefunctions evaluated at the origin as well as the electrons final energy and momentum. The final energy of
the ejected electron is the nuclear de-excitation energy minus the binding energy, Ef = 1738.93keV, which gives
a momentum of pf = 1662.15keV. As mentioned before, the half-life is T1/2 = 61.3ns, or 9.313×1010keV−1, using
~ = 6.582× 10−9keV s. This gives |B|2 = 2.755× 10−24keV.

We will soon abandon the plane wave approximation for the final state and instead use a more accurate
wavefunction. Further accuracy will lead us to incorporate relativistic effects, and take both the initial and final
wavefunctions to be solutions of the Dirac equation. In order to simplify notation, it will be convenient to rewrite
the result above as a function of the wavefunctions, rather than the parameters upon which they depend. The
delta function causes evaluation of both wavefunctions at the origin, so that the decay rate is proportional to the
absolute square of both wavefunctions. In turn, the interaction strength parameter, B, is inversely proportional
to the decay rate. Factoring out the appropriate constants, we find an expression for the strength parameter:

|B|2 =
π

2

ln(2)

T1/2pfEf

1

|ψ100(0)ψf (0)|2
(2.17)

The effect of alterations on the wavefunctions (given that our potential remains a delta function) are now
obvious. Before moving onto more precise calculations, there is a correction that needs to be made. When
we related the decay rate and the half-life, we implicitly made the assumption that the only (or at least only
significant) decay mode was the E0 transition, i.e. ΓT = ΓE0, where ΓT is the total decay rate, related to the
half-life. However there are two other potentially significant decay modes. The first is de-excitation by two
photons, and the second is electron-positron pair production, since the nuclear excitation energy is greater than
2me. Theoretical decay rates for pair production and the E0 transition are given by Thomas [22], whereas the two
photon transition is compared to pair production by Oppenheimer [23]. Pair production is found to be significant,
with a comparable decay rate to the E0 transition. Two photon emission is suppressed due to the larger energy
of the intermediate virtual 1− nuclear states compared to the energy of the first nuclear excited state, and has
been experimentally measured to be very subdominant [16] so we will ignore it from now on. Denoting the E0
decay rate as ΓE0 and the pair production decay rate as ΓPP , we have ΓE0 ≈ 2.54ΓPP [24]. Incorporating this
effect, we have

Γ = ΓE0 + ΓPP = (1 + 1/2.54)ΓE0 = 1.39ΓE0 (2.18)

Hence the decay rate of the E0 transition is related to the overall half-life via

ΓE0 =
ln(2)

1.39T1/2
(2.19)

This factor of 1.39 appears in the interaction strength parameter as well, which becomes

|B|2 =
π

2

ln(2)

1.39T1/2pfEf

1

|ψ100(0)ψf (0)|2
(2.20)

We will later see that the probability to populate the excited nuclear state in a muonic atom is proportional to |B|2,
so a decrease in B means a loss in statistics for an experimental observation. Unfortunately, most corrections
will cause a decrease in this strength parameter, indicating that our simple approximation overestimates the
interaction strength.

2.3 The Non-Relativistic Coulomb Wave Correction

For a more accurate result, we could abandon the approximation of using a plane wave for the final state and
instead use the positive energy solution to the Schrödinger equation for a Coulomb potential. The free energy
Coulomb wavefunctions with momentum p for this case are given by [6] (note that they use Coulomb units, so
the momentum is measured in units of a−1Z = Zαm)

ψp(r) = e−πZαme/2pΓ(1 + iZαme/p)e
ip·rF (−iZαme/p, 1, ipr − ip · r) (2.21)

The function F (a, b, x) is the confluent hypergeometric function (also called Kummer’s function of the first kind)
is defined via

F (a, b, x) =
Γ(b)

Γ(a)

∞∑
n=0

Γ(a+ n)

Γ(b+ n)

xn

n!
≈ 1 +

a

b
x (2.22)
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The last approximation holds in the case where |x| � 1. One can quickly note that in the limit of a vanishing
potential (Zα → 0), all terms except the exponential reduce to unity, and we are left with the plane wave as
expected since no potential exists. With reference our last expression for B (eq. 2.20), we want to calculate the
absolute square of this wavefunction, evaluated at the origin. Denoting x = Zαme/p, we can rewrite this as

|ψp(0)|2 = eπZαme/p|Γ(1 + iZαme/p)|2

= eπx|Γ(1 + ix)|2

= eπxΓ(1 + ix)Γ(1− ix)

= eπx(ix)(−ix)Γ(ix)Γ(−ix)

= eπxx

[
− i(ix)Γ(ix)Γ(−ix)

]
= eπxx

[
π

−i sin(iπx)

]
= eπxx

[
π

sinh(πx)

]
=

2πx

1− exp(−2πx)

=
2πZαme/p

1− exp(−2πZαme/p)

(2.23)

where we have related the Gamma function to the sin function via the identity sin(πx) = −π/[xΓ(x)Γ(−x)].
Consider a positive energy particle in a Coulomb potential with momentum much greater than the typical

atomic momentum p � Zαme. In this case, the effects of the Coulomb potential are thus negligible (except
very close to the origin), and the plane wave approximation should be valid. Our expression above confirms this
statement, Taylor expanding the exponential in the high energy limit, corresponding to p � Zαme, shows this
correction reduces to unity

2πZαme/p

1− exp(−2πZαme/p)

p�Zαme−−−−−−→ 2πZαme/p

1− (1− 2πZαme/p)
= 1 (2.24)

In the case of the electronic 90Zr E0 transition, the final momentum is 1662keV, and the electron mass is
0.511keV, so this correction is

|ψp(0)|2 =
2πZαme/pf

1− exp(−2πZαme/pf )
= 1.3083 (2.25)

Since B depends inversely on this factor, the Coloumb wave correction causes the strength parameter to
decrease. This is a fairly small correction (compared to some others that we will see) because the momentum of
the ejected electron is large compared to the typical atomic momentum, Zαme/pf = 0.089� 1.

2.4 The Relativistic Wavefunction Correction

To go a step further we should use the wavefunctions which are solutions to the Dirac equation. The typical
atomic speed is comparable to Zα = 40/137 = 0.29, which is comparable to the speed of light (c = 1), so it
should be no surprise that relativistic effects will be important. For motion in a spherically symmetric field, the
solutions to the Dirac equation take the form [7]

ψ =

(
φ
χ

)
=

(
f(r)Ωjlm

(−1)
1
2 (1+l−l

′)g(r)Ωjl′m

)
(2.26)

The quantum numbers j and l′ are defined by j = 1±1/2 and l′ = 2j− l, where j is the total angular momentum.
The 2 component spinors Ωjlm are the spherical harmonic spinors, defined as

Ω1+ 1
2 ,l,m

=

√ j+m
2j Yl,m− 1

2√
j−m
2j Yl,m+ 1

2


Ω1− 1

2 ,l,m
=

−√ j−m+1
2j+2 Yl,m− 1

2√
j+m+1
2j+2 Yl,m+ 1

2

 (2.27)
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The functions f(r) and g(r) are the large and small radial Dirac functions, defined by

f, g (r) =
±(2λ)3/2

Γ(2γ + 1)

[
(m± E)Γ(2γ + nr + 1)

4m(Zαm/λ)(Zαm/λ− κ)nr!

]1/2
(2λr)γ−1e−λr×[

(Zαm/λ− κ)F (−nr, 2γ + 1, 2λr)∓ nrF (1− nr, 2γ + 1, 2λr)

] (2.28)

In the definitions above, the top sign corresponds to the function f(r), and the bottom to g(r). The parameters
appearing in the radial Dirac functions are

κ =

{
−(j + 1/2) = −(l + 1), j = l + 1/2

(j + 1/2) = l, j = l − 1/2

nr =

{
0, 1, 2, ..., κ < 0

1, 2, 3, ..., κ > 0

γ =
√
κ2 − (Zα)2

E = m

[
1 +

(Zα)2

[
√
κ2 − (Zα)2 + nr]2

]−1/2
λ =

√
m2 − E2

(2.29)

The parameter nr is the principal quantum number, E is the energy of the state, and m is the mass of the
orbiting particle. Note that nr can take the value of 0, so it differs slightly from the non-relativistic principal
quantum number. Lastly, the function F (a, b, z) is the confluent hypergeometric function appearing in the
non-relativistic Coulomb free energy wavefunction (cf. eq. 2.22). For the ground state wavefunction we have
l = 0, j = 1/2, κ = −1, nr = 0, and the energy is given by

E = m

[
1 +

(Zα)2

[
√
κ2 − (Zα)2 + nr]2

]−1/2
= m

[
1 +

(Zα)2

1− (Zα)2

]−1/2
= m

√
1− (Zα)2 = mγ

(2.30)

Hence we have λ = Zαm, so we can write

f1s1/2(r) =
(2Zαm)3/2

Γ(2γ + 1)

[
(1 + γ)Γ(2γ + 1)

4× 2

]1/2
(2Zαmr)γ−1e−ZαmRN × 2F (0, 2γ + 1, 2Zαmr)

=
2(Zαm)3

Γ1/2(2γ + 1)
(1 + γ)1/2(2Zαmr)γ−1e−ZαmRNF (0, 2γ + 1, 2Zαmr)

(2.31)

It can be shown [7] that the non-relativistic limit of the Dirac functions is given by

f(r) ≈ R(r), g(r) ≈ R′(r)

2m
(2.32)

where R(r) is the corresponding non-relativistic wavefunction (solution to the Schrödinger equation). In this
limit it is easy to see why g(r) are the small component wavefunctions. As we saw before, the Schrödinger
radial wavefunctions can be written as Rnl ∝ L2l+1

n−l−1(r/aZ) exp(−r/aZ), where L2l+1
n−l−1(r/aZ) are the Laguerre

polynomials. Importantly, both these functions depend on the ratio r/aZ , so that a derivative allows us to factor
out an additional a−1Z = Zαm. In the approximation above, we have R′(r)/2m ∼ (Zα/2)R(r). Given that the
non-relativistic limit is found by taking the velocities to be small (Zα < 1), we can see that this term is much
smaller than the large component function f(r). This can also be seen graphically in figure 2.1, where we plot
the first two s-wave state solutions of the Dirac and Schrödinger equations.
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(a) Dirac and Schrödinger 1s radial wavefunctions (b) Dirac and Schrödinger 2s radial wavefunctions

Figure 2.1: The first two s-wave states solutions of the Dirac and Schrödinger equations for Z = 40. The large
component Dirac solutions, f(r), are comparable to the Schrödinger solutions as suggested by Eq. 2.32, but we
note that the Dirac solutions are divergent near the origin. We can also see that the small component Dirac
solutions, g(r) are smaller than the large component solutions by a factor of 6.5 for the case of Z = 40.

We will ignore the contribution from the small component wavefunctions for now, by approximating the radial
matrix element integrand as f1s1/2(r)fp(r) + g1s1/2(r)gp(r) ≈ f1s1/2(r)fp(r), where fp, gp are the positive energy
Dirac radial wavefunctions with momentum p. The large component positive energy solution to the Coulomb
potential is given in [7] (eq. 36.15), however we must note there is a extra factor of 2 in their expression, see pg
52 of [25].

fp(r) = 21/2
√
m+ E

E
eπZαE/2p

|Γ(γ + 1 + iZαE/p)|
Γ(2γ + 1)

(2pr)γ

r
× Im{ei(pr+ξ)F (γ − iZαE/p, 2γ + 1,−2ipr)}

= 21/2
√
m+ E

E
eπZαE/2p

|Γ(γ + iZαE/p)|
Γ(2γ + 1)

(2pr)γ

r
|γ + iZαE/p|Im{ei(pr+ξ)F (γ − iZαE/p, 2γ + 1,−2ipr)}

(2.33)

Here p =
√
E2 −m2 is the particle’s momentum. We also have

e−2iξ =
γ − iZαE/p
κ− iZαm/p (2.34)

However this isn’t the correct normalization we want to use. We would like our expression to reduce to the
plane wave limit when the Coulomb potential becomes negligible (Zα → 0) and in the non-relativistic limit
(where E → m). We first use the Bessel expansion to write a plane wave as

e−ip·r = 4π

∞∑
l=0

l∑
m=−l

iljl(pr)Y
∗
lm(p/p)Ylm(r/r)

=
√

4πj0(pr)Y00(r/r)

(2.35)

In the second line we have taken only the l = 0 term, and we have kept the angular part of the wavefunction
separate in since we want to focus on the radial wavefunction. Thus our wavefunction (which is the l = 0
continuous radial wavefunction with momentum p) must reduce to the first Bessel function times a factor of

√
4π.

The asymptotic expression for fp (pr →∞) is

fp(r) ≈
√

2

r

√
m+ E

E
sin

(
pr + δk +

iZαE

p
ln(2pr)

)
(2.36)

where

δk = ξ − argΓ

(
γ + 1 +

iZαE

p

)
− πγ

2
(2.37)

We note that in the non-relativistic plane wave limit (Zα→ 0), γ → 1 and E → m, so that
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e−2iξ =
γ − iZαE/p
κ− iZαm/p

= −1

⇒ ξ = π/2

⇒ δk = π/2− argΓ(2)− π

2
= 0

(2.38)

Thus we see our wavefunction becomes

fp(r)→
2

r
sin(pr) (2.39)

Thus in order to match this to the Bessel function,
√

4πj0(pr) =
√

4π sin(pr)/(pr), we need to multiply the
wavefunction by a factor of

√
4π/2p. Modifiying the wavefunction by this factor gives

fp(r) =
√

4π21/2
√
m+ E

E
eπZαE/2p

|Γ(γ + iZαE/p)|
Γ(2γ + 1)

(2pr)γ−1|γ + iZαE/p|×

Im{ei(pr+ξ)F (γ − iZαE/p, 2γ + 1,−2ipRN )}
(2.40)

We note that both the continuum and bound wavefunctions diverge at the origin due to the rγ−1 term, since
γ < 1. Hence we cannot simply apply our previous formula where we evaluate the wavefunctions at the origin.
This divergent behaviour is caused by the divergent Coulomb potential at the origin. Although the electrons are
typically far from the nucleus and the pointlike approximation is a good approximation most of the time, this is a
case where it fails. A finite size nucleus would alter the potential inside the nucleus, resulting in a finite potential
at the origin, eliminating the divergent behaviour of the Dirac wavefunctions. Instead of numerically solving the
Dirac equation with a finite size nucleus, a good approximation in this case is to use the Coulomb wavefunctions
evaluated at the nuclear radius RN instead of the origin [19], [26].

The charge radius of 90Zr has been previously determined to be RNuc = 4.8791fm[27]. In units of ~ = c = 1,
this gives RN = 2.4726 × 10−8eV−1 = 0.0126/me, so that we have 2λRN = 2ZαmeRN ≈ 0.0058 � 1. We
also have |γ + iZαE/p|Im{ei(pr+ξ)F (γ − iZαE/p, 2γ + 1,−2ipRN )} = 0.9787 ≈ 1. This allows us to make the
following approximations in the wavefunction

f1s1/2(RN ) ≈ 2(Zαme)
(3/2)

Γ1/2(2γ + 1)
(1 + γ)1/2(2ZαmeRN )γ−1

fp(RN ) ≈
√

4π21/2
√
me + E

E
eπZαE/2p

|Γ(γ + iZαE/p)|
Γ(2γ + 1)

(2pRN )γ−1
(2.41)

Returning to our expression for the nuclear strength parameter B, it becomes

|B|2 =
π

2

ln(2)

1.39T1/2pfEf

16π2

|f1s1/2(RN )fp(RN )|2
(2.42)

Since we have written the expresison in terms of the radial wavefunctions instead of the full wavefunctions, we
get an addition factor of |Y ∗00Y00|2 = 1/16π2 (cf. eq. 2.20).

Compared to the non-relativistic Coulomb wavefunctions, the relativistic variants represent a decrease in the
strength parameter of

|Y ∗00Y00f1s1/2(RN )fp(RN )|2

|Y00R10(0)ψp(0)|2|
=

=
1

4π

[
1− exp(−2πZαme/pf )

2πZαme/pf

][
1

4(Zαme)3

][
4(Zαme)

3

Γ(2γ + 1)
(1 + γ)(2ZαmeRN )2γ−2

]
×[

8π
me + E

E
e2πZαE/p

|Γ(γ + iZαE/p)|2

Γ2(2γ + 1)
(2pRN )2γ−2

]
=

1− exp(−2πZαme/pf )

2πZαme/pf

2πZαE/pf
1− exp(−2πZαE/pf )

1 + γ

Γ3(2γ + 1)
(2ZαmeRN )2γ−2×

2
me + E

E
(2pRN )2γ−2

=
2(1 + γ)

Γ3(2γ + 1)

me + E

me

1− exp(−2πZαme/pf )

1− exp(−2πZαEf/pf )
(4ZαmepR

2
N )2γ−2

= 8.2275

(2.43)
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Again we find a decrease in the strength parameter, with the most recent corrections yielding |B|2 = 2.55 ×
10−25keV. Compared to our original plane wave calculation, the use of accurate wavefunctions decreases the
strength parameter by a factor of 1.3 × 8.2 ≈ 10. Note that the non-relativistic limit corresponds to γ → 1 and
Ef → me.

|Y ∗00Y00f1s1/2(RN )fp(RN )|2

|Y00R10(0)ψp(0)|2|
γ→1−−−−−→

Ef→me

2(1 + 1)

Γ3(1 + 1)

me +me

me

1− exp(−2πZαme/pf )

1− exp(−2πZαme/pf )
(4ZαmepR

2
N )2−2 = 1 (2.44)

In this limit, there is no difference between the non-relativistic and relativistic approaches, and the correction
factor reduces to 1 as expected.

2.5 Other Corrections

There are other corrections that could be incorporated into this calculation. We could numerically solve the
Dirac equation using a reasonable finite size nuclear charge distribution and numerically integrate to find the
matrix element. The approximation of using the Coulomb wavefunctions evaluated at the origin underestimates
the decay rate by 10-20% [26].

We could also include the contribution of the small component Dirac wavefunction into the E0 matrix element.
We found that the small component functions are smaller by a factor of 6.5, so this would only be a 2% contribution
to the decay rate.

None of the above approaches considered screening of the electron undergoing a transition. Realistically, both
electrons in the 1s states will be screened by each other, and to a certain extent by the other electrons in the atom
as well. In the simplest calculation, the E0 transition depends on the cube of the total charge felt by the electron.
This is not significantly altered by our more accurate wavefunctions. Hence we naively expect that screening
would cause the transition to be modified by a factor of (Zeff/Z)3, where Zeff represents an effective nuclear
charge felt by the electron which undergoes the transition. As a naive estimate, we assuming an effective charge of
39−5/16 due to screening from the other s-wave electrons, we find a decrease to the decay rate by approximately
2.5%. The choice of 5/16 is a rough estimate, arising from the Ritz Variational principal for modeling electron
screening in Helium [5]. Since B depends inversely on Z3, this represents an increase to the interaction strength
parameter. In actuality however, because the E0 transition depends on the square modulus of the wavefunction
at the nucleus, the effect of screening is not significant because there is essentially no screening extremely close
to the nucleus [28].

In principle one could also discuss screening of the ejected electron, with positive energy Coulomb wavefunction.
If its De Broglie wavelength is large compared to the system of interest, then it will sample the potential at various
scales in the atom and could be screened by the orbiting electrons. In our case, given the final momentum is
large, pf = 1662keV, then the De Broglie wavelength is λ = 1/pf = 6 × 10−4keV−1. Converting to SI units via
~c ≈ 2× 105keV fm gives the de Broglie wavelength on the order of 100fm. Since this roughly 500 times smaller
than the Bohr radius, screening effects on the ejected electron are negligible.

We have also not included the possibility for other s-wave states to undergo the E0 transition. Any s-wave
state can undergo the E0 transition, although the other s-wave states are more affected by screening and they
are less likely to be found on the nucleus (|ψn00(0)|2 ∼ n−3 in the non-relativistic case). Summing over all s-wave
state electrons, this would modify the decay rate to be

ΓE0 =
1

π
|B|2

∑
e−s−wave

pf,nEf,n|ψn00(0)ψf (0)|2 (2.45)

The final momentum and energy depend on the principal quantum number n, although the effect is extremely
weak because the nuclear excitation energy (1761keV) is much larger then the electron binding energy (22keV).
Since each of these terms is positive, it will also cause a decrease to the strength parameter B. In its lowest energy
state, 90Zr’s electron configuration is [Kr]4d25s2. If we assume the momentum and energy to be independent
of the principal quantum number n and take the non-relativistic wavefunction scaling, we have (ignoring any
screening)

ΓE0 =
2

π
|B|2pfEf |ψf (0)|2

5∑
n=1

|ψn00(0)|2

=
2

π
|B|2pfEf |ψ100(0)ψf (0)|2

5∑
n=1

1

n3

= 1.186ΓE0,n=1

(2.46)

where ΓE0,n=1 denotes the contribution to the decay rate from the ground state electrons, on which we previously
focused. We see that the E0 transition is predominantly due to transitions from the ground state electrons,
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the other states giving at most a 20% difference. Screening would be more significant for excited s-wave states,
causing a decrease to the total decay rate.

Although one could in principle include these extra corrections, using the relativistic wavefunctions as well as
the positive energy coulomb solutions provide the largest corrections by far, and give a reasonable estimate for
the decay rate.

2.6 Comparison of the Two Methods

As previously discussed, our approach differs from the general approach in the literature. However, we can express
their E0 transition results in terms of our parameters. In particular, we want to derive an expression for the
nuclear matrix element ρ2 (eq. 2.6). In our approach (Vp = Bδ(r)), we found the decay rate to be

ΓE0 =
2

π
|B|2pfEf |ψi(0)ψf (0)|2 (2.47)

where ψi,f were the initial and final wavefunctions of the electron. If we instead follow the approach of Church
and Weneser (cf. eq. 2.10), the decay rate can be written as

ΓE0 =
8πα2

9
2pfEfR

4
Nρ

2|ψi(0)ψf (0)|2 (2.48)

Equating and solving for their nuclear strength parameter, we find

ρ2 =
9

4π2α2

|B|2

R4
N

(2.49)

Using the relativistic wavefunctions for the parameter B, we find that

ρ2 = 2.92× 10−3 (2.50)

which is comparable to ρ2 = 3.46(14) × 10−3, the value reported by Kibédi and Spear [21]. The difference, a
factor of roughly 1.2, is likely due to the choice of the Dirac wavefunctions evaluated at the nuclear radius, and
in ignoring the other corrections discussed above.

Before moving onto our analysis of muonic zirconium, we comment on the applicability, and flaws, of our
approach. In the next section, we will be interested in considering the corrections to the energy eigenstates
(referred to as the perturbative mixing) due to this potential for a muon orbiting the nucleus. The muon is
important, its Bohr radius is comparable to the nuclear radius and therefore it is more susceptible to the finite
size nuclear effects. Due to lepton universality, the potential which affects the electron will also affect the muon.
Using the electric monopole potential as a perturbation, the modified energy eigenstates for both leptonic systems
will be of the form

|i〉 = |i〉|0〉+
∑
k

〈0|〈i|VE0|k〉|1〉
Ei − Ek

|k〉|1〉 (2.51)

The ket |i〉 represents the initial lepton state, and the kets |k〉 represent the other lepton states which mix
perturbatively with the initial state. Following Church and Weneser’s analysis, we can write the matrix element
as (rl being the lepton radial coordinate)

〈0|〈i|VE0|k〉|1〉 = −α
∑
p,e

∫
dτNuc

∫ rp

0

drlφ
∗
0R
∗
k(rl)

(
r2l
rp
− rl

)
φ1Ri(rl) (2.52)

In the case of the electron, we were able to perform the integral over the electron radial coordinate by noting that
the wavefunctions did not change appreciably for rel ∈ [0, rp]. However, for the case of the muon, this will not
be true, since the Bohr radius is comparable to the nuclear radius. Performing the integral will not lead to the
simple r2p behaviour discovered for the electron transition, and the nuclear matrix element will be different than
the parameter ρ which we found above. As was noted earlier, zirconium’s atomic number is too large to find the
proton wavefunctions, so we cannot calculate the size of this mixing.

Using our approach, this perturbation can be calculated. As discussed earlier, the parameter B contains
information about the matrix element between the nuclear states. Consider the operator A, responsible for the
nuclear part of the E0 transition, 〈0|A|1〉. In our approach, this matrix element is implicitly present in the
parameter B. By lepton universality, the same interaction occurs between the nucleus and the electron as does
between the nucleus and the muon. Hence the matrix element in the perturbative mixing behaves as

〈0|〈i|VE0|k〉|1〉 = 〈i|Bδ3(r)|k〉 (2.53)
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which can be calculated. In the future when we discuss mixing in leptonic states, we will often write the
perturbation matrix element as 〈i|Bδ3(r)|k〉, where the nuclear matrix element is understood as sitting within B.
The drawback of this approach is a potential lack of accuracy. As seen above, the nuclear matrix elements which
appear when considering muonic states may not have the same form as those between the electron states. We
make the implicit assumption that they do have the same form. We have mentioned several times that the finite
size of the nucleus is an important consideration when discussing muonic zirconium states. In the next chapter,
we will generalize our pointlike delta potential to incorporate finite size effects, and then apply it to study the
muonic states.
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Chapter 3

Populating the Excited Nuclear State

From hereon in, when we discuss an atom, it is assumed that we are discussing muonic zirconium unless otherwise
specified. We now want to study how the muonic |100〉|1〉 state can be populated. That is, how can we prepare the
muonic atom where the muon sits in the 1s state, but the nucleus is in the first excited state. Muons are typically
captured in high n and high l orbitals, which subsequently decay via electric dipole transitions to lower atomic
energy states. The electric dipole transition is the fastest transition which can occur (as long as selection rules
allow it) so it will be the most common decay channel. Furthermore, electric dipole transitions occur between
states differing by one unit of angular momentum. Since we want our muon to end up in the 1s state, this
suggests our initial state should be an np state. Because the muons are typically captured in high n and high
l orbits, and dipole transitions dominate, this suggests that np states with higher values of n are very unlikely
to be populated. One might ask why wouldn’t it be possible to access the spectrum of excited nuclear states
from each one of the decays in the muonic cascade. That is, why not study a |430〉|0〉 → |320〉|1〉 transition, for
example. As we we will soon see, the opportunity for a transition arises when one considers perturbative mixing
of the muonic and nuclear states. The potential responsible is the one we have studied, proportional to a delta
function. This implies that only mixing between s-wave states can occur, because all other states are zero at the
origin. We shall study this effect when we consider the finite size nucleus, and show that the transition is still
dominated by s-wave mixings. Hence we focus on populating the |100〉|1〉 state when the initial muonic state is
either 2p or a 3p. We will study the branching ratios from the initial states, that is, given we have a muon in the
|210〉|0〉 state, what is the probability it transition to the |100〉|1〉 rather than a transition to a state containing
the nuclear ground state.

3.1 The Pointlike Nuclear Approximation

Now that we have a model for the strength of the perturbation V = Bδ(r) and we know the strength parameter
B, we can calculate the effect of this perturbation on the muonic atom. The transition |21m〉|0〉 → |100〉|1〉 cannot
occur without some mechanism to connect the otherwise orthogonal nuclear states. However, the perturbation
will cause some slight mixing from the |100〉|1〉 state to the other muonic s-wave and nuclear ground states
(|n00〉|0〉). It is these states to which the |21m〉|0〉 can decay to. Other orbitals (e.g. p, d, f etc.) cannot mix
under this perturbation as they vanish where the perturbation is non-zero (at the origin) as we discussed above.
Thus we are interested in mixing with the ns state for n ≥ 2 and so we define the final perturbed wavefunction
as ψf , given by

ψf ≡ |100〉|1〉+

∞∑
n=1

〈100|V |n00〉
(E1 + ENuc)− En

|n00〉|0〉

≡ |100〉|1〉+

∞∑
n=1

εns|n00〉|0〉
(3.1)

where we have defined εns as the perturbative mixing parameters

εns ≡
〈100|V |n00〉

(E1 + ENuc)− En
(3.2)

Although this is essentially the same framework we used for the E0 transition above, it is important to remember
that we are now working with a muon oribiting the nucleus. We will soon see that this has important effects on
our treatment.
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For a muonic hydrogren-like atom, we have

E1 + ENuc − E2 = ENuc −
(

1

2
− 1

2n2

)
mµ(Zα)2 (3.3)

and

〈100|V |n00〉 = 〈ψ1s,µ|Bδ3(r)|ψns,µ〉
= Bψ∗1s,µ(r)ψns,µ(r)|r=0

= B|Y00|2R∗10(r)Rn0(r)|r=0

=
B

4π
2a
−3/2
Z,µ 2(naZ,µ)−3/2

= B
(Zαmµ)3

n3/2π

(3.4)

Hence the mixing term εns is given by

εns =
〈100|V |n00〉

E1 + ENuc − En

=
B

n3/2π

2(Zαmµ)3

(2ENuc − (1− 1/n2)mµ(Zα)2)
(3.5)

We see the mixing is suppressed by n3/2, so it decreases for larger n. However there is a possibility of a large
mixing if the denominator is close to zero or in other words if the energies of the states are close. Recall the nuclear
energy is 1761keV, so the energy of the |100〉|1〉 state is E1 + ENuc = −2740keV. The |200〉|0〉 state has energy
E2 = −1125keV, so the energy differences appearing in the denominator in ε1s and ε2s are somewhat similar.
Neither of these states are significantly affected by the n3/2 suppression, so we expect similar contributions from
the |n00〉|0〉, n = 1, 2 states. In comparison, the other s-wave states (|n00〉|0〉, n ≥ 3) have energies further away
from the original state, and are more significantly affected by the n3/2 suppression. It follows that the most
significant contribution come from the first two terms, and so we ignore contributions from n ≥ 3 for now.

If we want to compute the branching ratio for the decay of the |210〉|0〉 state into the ψf state, then we have

Br =
Γ|210〉|0〉→ψf

ΓT

≈
Γ|210〉|0〉→|100〉|1〉

Γ|210〉|0〉→|100〉|0〉

(3.6)

where we have approximated the total branching ratio to be the muonic 2p→ 1s transition, mainly mediated
by the electric dipole transition. We first investigate the decay |210〉|0〉 → ψf . With the above argument in mind,
we take our perturbed final wavefunction to be

ψf = |100〉|1〉+ ε1s|100〉|0〉+ ε2s|200〉|0〉 (3.7)

The dominant term in ψf is the unperturbed term |100〉|1〉, but because this nuclear state is orthogonal to the
nuclear state in the initial wavefunction, the matrix element connects the initial state with the |n00〉|0〉 states
appearing in the perturbed final wavefunction. If A is a purely leptonic operator which mediates the atomic
transition, (i.,e. A does not explicitly contain any nuclear operators), we have

〈i|A|f〉 = 〈0|〈210|A
(
|100〉|1〉+ ε1s|100〉|0〉+ ε2s|200〉|0〉

)
= 〈210|A|100〉��

�*0
〈0|1〉+ ε1s〈210|A|100〉+ ε2s〈210|A|200〉

(3.8)

The most significant contribution to the decay will thus be mediated by a transition from the 2p state to s-wave
states. The strongest transition of this form is the E1 transition, with decay rate

ΓE1 =
4

3
αω3|〈rfi〉|2 (3.9)

Thus taking the radial position operator r as our operator A, we have

〈i|r|f〉 = ε1s〈210|r|100〉+ ε2s〈210|r|200〉 (3.10)
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The 2pµ → 1sµ decay is also an E1 transition, so the ratio of the two depends only on the cube of the photon
frequencies (or transition energies) as well as the matrix element 〈i|r|f〉. As the 2s state and the 1s have no
angular dependence, the angular integral in both decays is identical, so we have

Br =
E3
µ|ε1s〈R21|r|R10〉+ ε2s〈R21|r|R20〉|2

E3
2p→1s|〈R21|r|R10〉|2

=
E3
µ

E3
2p→1s

∣∣∣∣ε1s + ε2s
〈R21|r|R20〉
〈R21|r|R10〉

∣∣∣∣2
(3.11)

where we have defined Eµ ≡ E2 − (E1 +ENuc) as the muonic transition energy in the |210〉|0〉 → ψf decay. The
transition energies are found to be

Eµ = 1615keV

E2p→1s = 3376keV
(3.12)

The radial matrix elements are found to be [29]

〈R21|r|R10〉 =
215/2

39/2
aZ,µ

〈R21|r|R20〉 = −2(3)3/2aZ,µ

〈R21|r|R20〉
〈R21|r|R10〉

= − 36

215/2

(3.13)

With reference to the branching ratio expression above, to determine how the the mixing with the 1s and 2s
states compete, we must compare ε1s and 36/215/2ε2s. We will also include the n=3 mixing term as we will need
it soon to investigate the branching ratio from the 3p state. Using eq. 3.5, we find that

ε1s =
B

π

(Zαmµ)3

ENuc
= 2.67× 10−3

ε2s =
B

23/2π

2(Zαmµ)3

(2ENuc − (1− 1/4)mµ(Zα)2)
= −1.03× 10−3

ε3s =
B

33/2π

2(Zαmµ)3

(2ENuc − (1− 1/9)mµ(Zα)2)
= −4.05× 10−4

(3.14)

So that the contribution from the 1s state is ε1s = 2.67 × 10−3 and the contribution from the 2s state is
−ε2s(36/215/2) = 4.16× 10−3. Including the radial matrix element ratio, the next contribution (the n = 3 term)
can be calculated to be 2.95 × 10−4, which justifies ignoring the other s-wave mixings. The branching ratio is
found to be

Br = 5.12× 10−6 (3.15)

Before moving into a more accurate approach, note that we have included perturbative mixings for the final
state, but not for the initial state. Since the initial state is a p-wave state, it vanishes at the origin. Hence any
effect of the delta perturbation will vanish, so in this approach the initial state remains unchanged after included
effects of the perturbation. When we move forward to a more accurate approach involving a finite nuclear size
perturbation, mixings with the initial state will be non-zero, and we shall investigate their significance.

As previously discussed, we could also investigate the branching ratio from the 3p state, following the same
approach. We must make a slight change, reflecting that the total decay rate is no longer approximated by the
3p → 1s decay, but the combination of the 3p → 1s and 3p → 2s decays. Again the dominant transition is the
E1 transition, which leads to a branching ratio

Br3p =
(E3 − (E1 + ENuc))

3|ε1s〈R31|r|R10〉+ ε2s〈R31|r|R20〉+ ε3s〈R31|r|R30〉|2

E3
3p→1s|〈R31|r|R10〉|2 + E3

3p→2s|〈R31|r|R20〉|2
(3.16)

The transition energies as well as the radial matrix elements are changed to reflect the initial state being the
3p state, but the mixing parameters εns are left unchanged since they only depend on the s-wave states and the
perturbation. We must include terms up to the 3s mixings, because there is significant overlap in 3s and 3p states
in the matrix element. The 4s term mixing is roughly an order of magnitude smaller than the 3s term, so we
ignore it. The transition energies are found to be

E3 − (E1 + ENuc) = 2240keV

E3p→1s = 4001keV

E3p→2s = 625keV

(3.17)
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The radial matrix elements are

〈R31|r|R10〉 =
37/2

213/2
aZ,µ

〈R31|r|R20〉 =
21037/2

56
aZ,µ

〈R31|r|R30〉 = −3221/2aZ,µ

(3.18)

Hence the branching ratio from the 3p state is found to be

Br3p = 6.61× 10−6 (3.19)

In a similar manner to the E0 transition, we will now make the branching ratio more accurate by including
more realistic effects. In the E0 transition, we used more accurate wavefucntions by including free energy Coulomb
waves and relativistic effects. For the muonic states, it turns out that the effects of the finite nuclear size are
the most important correction. The Hydrogen point-like wavefunctions are convenient to work with due to their
simple nature, but they fail to be a good approximation in this case.

Given that the proton (i.e. Hydrogen nucleus) has a finite size [30] [31], why are these effects not important
for an electron oribiting Hydrogen? The answer lies in the characteristic orbital scale of the two scenarios. We
have already seen that the electron in hydrogen has a Bohr radius 5 orders of magnitude smaller than the proton
radius, where as muonic zirconium’s Bohr radius is comparable to the nuclear radius.

In a perturbative approach for the point-like nucleus, the result of including the finite nuclear size as a
perturbation leads to an energy shift for the s wave states [7]

∆EFinite Size =
2π

3
Zαr2c |ψn00(0)|

=
2π

3

Z4α4

n3
r2c
m3

~3

=
2π

3

Z4α4

n3

(
rc

1fm

)2(
1fm m

197.3MeV fm

)2(
m

eV

)
eV

(3.20)

To understand the size of this effect, an empirical estimate gives the nuclear radius as rc ≈ 1.3fmA1/3, where
A is the atomic number. For hydrogen this yields rc = 1.3fm, and for zirconium this gives rc = 4.5fm. Although
the proton is know to have a radius closer to 0.83fm, the order of magnitude will be the same. For hydrogen, the
energy shift of the ground state is

∆EFinite Size, Hydrogen =
2π

3

1

1374

(
rc

1fm

)2(
1fm 0.511MeV

197.3MeV fm

)2(
511000eV

eV

)
eV

≈ 2× 10−8
(
rc

1fm

)2

eV

≈ 10−8ev

Eb,Hydrogen = 13.6eV

(3.21)

For electronic zirconium, it is

∆EFinite Size,90Zr,e =
2π

3

404

1374

(
rc

1fm

)2(
1fm 0.511MeV

197.3MeV fm

)2(
511000eV

eV

)
eV

≈ 0.0512

(
rc

1fm

)2

eV

= 1.04eV

Eb,90Zr,e = 21800eV

(3.22)

and for the ground state of muonic zirconium, we find

∆EFinite Size,90Zr,µ =
2π

3

404

1374

(
rc

1fm

)2(
1fm 105.5MeV

197.3MeV fm

)2(
1.055× 108eV

eV

)
eV

≈ 5× 105
(
rc

1fm

)2

eV

= 15.6MeV

Eb,90Zr,µ = 4.5MeV

(3.23)
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To determine which scenarios can be treated perturbatively, we need to compare these energy shifts to the
binding energies Eb = 0.5(Zα)2m, listed in the last line of each calculation. Wee see the finite size is relatively
unimportant for hydrogen (as expected) and even electronic zirconium. However, the energy shift of muonic
zirconium is larger than the binding energy implying the finite size of the nucleus can not be treated in a
perturbative manner for muonic zirconium. In the next section, we will see include the finite size of the nucleus
by numerically solving the Schrödinger equation.

3.2 The Finite Nuclear Charge Distribution

We must solve the Schrodiner equation with a potential that takes into account the finite size of the nucleus. This
is done by modifying the nuclear charge distribution from a delta function (point-like), to a smooth distribution
extending radially outward with some characteristic size before it quickly falls off. Typical choices involve a
uniform charge distribution, modeled by a Heaviside function, or the Fermi distribution. We will use the Fermi
distribution [32], where the nuclear charge distribution ρ(r) is modeled by

ρ(r) =
ρ0

1 + exp( r−ca )
(3.24)

The parameter c is the half-density radius, where the charge distribution drops to one half its value at the
origin. The diffuseness parameter, a, is a measure of how quickly the charge distribution falls off near the nuclear
radius. It is related to the skin thickness, t, which measures how quickly the charge distribution drops from 90%
to 10% of its maximum value by t = (4 ln 3)a. These parameters have been previously determined to be [27]
(and references within)

c = 4.8791fm

a = 0.5367fm
(3.25)

The half-density radius was determined using muonic transition energies, whereas the diffuseness parameter was
determined using elastic electron scattering data. They also briefly discuss some of the differences between
charge radius definitions in the context of muonic atoms. The last parameter in the Fermi distribution, ρ0, is a
normalization constant that ensures ∫

d3rρ(r) = Ze (3.26)

Using the parameters above, the charge distribution has been plotted in blue, in figure 3.1, taking ρ0 = 1 for
simplicity. The red curve represents a charge distribution with a diffuseness parameter a twice as large, creating
a longer charge fall-off region. The yellow curve features a diffuseness parameter half as large as Zirconium,
implying a quicker fall-off region. The green curve represents a sphere with a uniform charge density.

Figure 3.1: The Fermi charge distribution for the nucleus of Zirconium. The diffuseness parameter of red and
yellow curves has been doubled and halved, for comparison. The normalization of the distribution has been taken
to be ρ = 1 for simplicity, since it does not affect the curve shape.

As we pass from the red to blue to yellow curve, we can see the charge distribution becomes more similar to
the spherical uniform charge distribution in green, whose parametrization is given by
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ρ(r) =

{
ρ0, r � c

0, r � c
(3.27)

where c represents the nuclear charge radius. Indeed, if we take the limit as the diffuseness parameter becomes
small a→ 0, then we have

lim
a→0

exp

(
r − c
a

)
=

{
0, r � c

∞, r � c
(3.28)

Hence the charge distribution vanishes outside the charge radius, and is constant in the interior, that is

lim
a→0

ρ0
1 + exp( r−ca )

=

{
ρ0, r � c

0, r � c
(3.29)

As the E0 transition is due to EM interaction, it can only happen due to an interaction between the electron
and a proton. Hence we want to model the proton distribution in the nucleus. The protons are the only charged
nucleons, so their distribution must be identical the charge distribution. We thus model the average proton
density by

NNuc(r) =
b

1 + exp( r−ca )
(3.30)

where b is a normalization parameter which ensures∫
d3rNNuc(r) = 1 (3.31)

Before using this charge distribution to solve the Schrödinger equation and solve the wavefunctions and
energies, we should investigate if this new interaction affects the E0 transition. As before, we model the interaction
potential being proportional to the electron being found on the nucleus. Therefore our perturbation is proportional
to the charge distribution

V (r) = BNNuc(r) (3.32)

Here B is a constant that represents the strength of the interaction. The usefulness of the normalization of
NNuc(r) in Eq. 3.31 is that the strength parameter B retains the same formula as it did in the pointlike nuclear
case. To see this, note that we have the same equation as before for the decay rate

dΓ = (2)2π|〈f |V |i〉|2 d3p

(2π)3
δ(E − ENuc − Ei) (3.33)

Since the potential is no longer a delta function, it seems like we must actually perform an integral in the
matrix element. Since we can treat the finite size pertubatively for electronic zirconium, the initial and final state
wavefunctions correspond to the pointlike nuclear wavefunctions. We first look at the matrix element

〈f |V |i〉 =

∫
d3rψf (r)BNNuc(r)ψi(r) (3.34)

Note that the Fermi distribution (and hence NNuc(r)) is only significant for r . 2c ≈ 10fm. Because we are
still considering a decay involving an electron, the 1s wavefunction has a characteristic scale of the Bohr radius,
and is essentially constant in the region where the nuclear distribution is non-zero. A similar analysis applies to
the final state particle, with momentum pf = 1662keV. Taylor expanding the wavefunction, the positive energy
electron’s wavefunction does not change significantly given that pr � 1. Converting using ~c ≈ 2 × 105keV fm,
distances smaller than 10fm correspond to distances smaller than 5 × 10−5keV−1. Hence when the integrand is
significant (i.e. when NNuc(r) is significant), we have pr ≤ (1662keV)(5× 10−5keV−1) = 0.08� 1. Thus we may
approximate both the electron wavefunctions by their value at the origin, which is essentially the same approach
as using the delta function. The differences between the two potentials will be much more significant when using
the muon wavefunctions, whose characteristic scale is the same order of magnitude as the nuclear radius.

As mentioned before, our normalization of the nuclear distribution yields the same expression for the interac-
tion strength parameter

|B|2 =
π

2

ln(2)

1.39T1/2pfEf

16π2

|f1s1/2(RN )fp(RN )|2
(3.35)
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3.3 Numerical Solutions

3.3.1 The Numerov Method

Unlike the pointlike nucleus discussed earlier, there are no closed form solutions for the potential or the radial
wavefunctions found by using the Fermi charge distribution. The potential however, does have a series expan-
sion, with different expressions inside and outside the charge radius [33] although we will proceed via numerical
integration. We will discretize our radial coordinate and employ numerical integration techniques to find our
wavefunctions. We first pause to discuss the Numerov method [34] (following the presentation in [35]), which we
will apply to the Schrödinger equation in order to find the radial wavefunctions.

As we discussed in the introduction, the radial part of the Schrödinger equation can be written in the form

d2u(r)

dr2
+

2m

~2

(
E − V (r)− ~2

2m

l(l + 1)

r2

)
u(r) = 0 (3.36)

where u(r) = rR(r). If we define

k2(r) ≡ 2m

~2

(
E − V (r)− ~2

2m

l(l + 1)

r2

)
(3.37)

then Schrödinger’s equation becomes
d2u(r)

dr2
+ k2(r)u(r) = 0 (3.38)

All we have done so far is simplified the equation by redefining parameters. We will now take advantage of
its form, in particular it is linear in the function u(r) and has no term involving the first derivative, du(r)/dr.

Now consider performing a Talyor expansion of the function u(r) about the point r+ h and r− h, where h is
some small parameter. Denoting the nth derivative of the function u(r) by u(n)(r), we have

u(r + h) = u(r) + hu(1)(r) +
h2

2
u(2)(r) +

h3

6
u(3)(r) +

h4

24
u(4)(r) +O(h5)

u(r − h) = u(r)− hu(1)(r) +
h2

2
u(2)(r)− h3

6
u(3)(r) +

h4

24
u(4)(r) +O(h5)

(3.39)

If we add these two terms together, the odd terms cancel, yielding

u(r + h) + u(r − h) = 2u(r) + h2u(2)(r) +
h4

12
u(4)(r) +O(h6) (3.40)

Rearranging this gives an expression for the second derivative

u(2)(r) =
u(r + h) + u(r − h)− 2u(r)

h2
− h2

2
u(4)(r) +O(h4)

0 =
u(r + h) + u(r − h)− 2u(r)

h2
−
(
u(2)(r) +

h2

2
u(4)(r)

)
+O(h4)

(3.41)

In the second line, we have reordered the expression, as we will soon make a substitution in order to eliminate
the term in parenthesis. To do this, we apply the differential operator 1 + (h2/12)d2/dr2 to eq. 3.38, yielding

u(2)(r) +
h2

12
u(4)(r) + k2(r)u(r) +

h2

12

d2

dr2
[k2(r)u(r)] = 0

⇒ u(2)(r) +
h2

12
u(4)(r) = −k2(r)u(r)− h2

12

d2

dr2
[k2(r)u(r)]

(3.42)

If we now substitute eq. 3.42 into eq. 3.41, we find

0 =
u(r + h) + u(r − h)− 2u(r)

h2
−
(
− k2(r)u(r)− h2

12

d2

dr2
[k2(r)u(r)]

)
+O(h4)

⇒ 0 = u(r + h) + u(r − h)− 2u(r) + h2k2(r)u(r) +
h4

12

d2

dr2
[k2(r)u(r)] +O(h6)

(3.43)

We use an elementary difference formula to evaluate the last term

d2

dr2
[k2(r)u(r)] ≈ k2(r + h)u(r + h) + k2(r − h)u(r − h)− 2k2(r)u(r)

h2
(3.44)
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This approximation has an error O(h2), but it is multipled by a factor of h4, preserving the O(h6) accuracy.
Making this substitution into eq. 3.43, we find

0 = u(r + h) + u(r − h)− 2u(r) + h2k2(r)u(r)+

+
h4

12

k2(r + h)u(r + h) + k2(r − h)u(r − h)− 2k2(r)u(r)

h2
+O(h6)

(3.45)

We will be interested in solving for the function u(r+h), as this will allow us to work outward from the origin
recursively, given that u(0) and u(h) are known. Gathering like terms, we have

−u(r + h)

(
1 +

h2

12
k2(r + h)

)
= u(r)

(
− 2− 2h2k2(r)

12
+ h2k2(r)

)
+ u(r − h)

(
1 +

h2

12
k2(r − h)

)
⇒ u(r + h) =

2(1− 5
12h

2k2(r))u(r)− (1 + 1
12h

2k2(r − h))u(r − h)

1 + 1
12h

2k2(x+ h)
+O(h6)

(3.46)

To clean up notation, let the n-th step be rn ≡ nh, where we start from the origin, r = 0, let kn ≡ k(rn), and
un ≡ u(rn). This allows us to write the recursive solution

un+1 =
2(1− 5

12h
2k2n)un − (1 + 1

12h
2k2n−1)un−1

1 + 1
12h

2k2n+1

(3.47)

with an error of O(h6). If we know suitable boundary condditions for the Radial wavefunctions around the origin,
we can use this equation to find the Radial wavefunctions, since all the parameters on the right hand side are
known. Specifically we need the boundary conditions u(r = 0) = u0 and u(r = h) = u1. It is no surprise that we
require two boundary conditions, since the Schrödinger equation is a second order differential equation.

Note that the 1-dimensional Numerov method takes a very similar form:

ψn+1 =
2(1− 5

12h
2k2n)ψn − (1 + 1

12h
2k2n−1)ψn−1

1 + 1
12h

2k2n+1

(3.48)

however care must be taken to distinguish the two cases. In the 1-dimensional case, ψn ≡ ψ(xn) is the actual
wavefunction, whereas in the 3-dimensional case, we are solving for the re-scaled radial wavefunction u(r) = rR(r)

3.3.2 Boundary Conditions for the Wavefunctions

Before moving onto to the numerical calculation of the finite size potential, we need to address the boundary
conditions of the wavefunction, u0 and u1. Here we follow the presentation of Landau and Lifshitz [6], assuming

that the potential has the property that it is not too singular, in particular it satisfies V (r)r2
r→0−−−→ 0. This is

valid for the Coulomb potential, and will certainly be valid for the finite-size nuclear potential. Taking the small
r limit of the radial Schrödinger equation, we find

d

dr

(
r2
dR

dr

)
− 2mr2

~2

(
V (r)− E

)
R− l(l + 1)R

r→0−−−→ d

dr

(
r2
dR

dr

)
−−l(l + 1)R = 0 (3.49)

If we want the behaviour of the radial solutions near the origin, we can perform a Talyor expansion, and retain
only the first term, that is R(r) ≈ Crs, where C is some normalization constant. Making this substitution above
yields

0 =
d

dr

(
r2
dR

dr

)
−−l(l + 1)R

= C
d

dr

(
r2
drs

dr

)
−−Cl(l + 1)rs

= C

(
s(s+ 1)− l(l + 1)

)
rs

(3.50)

Because this must hold for all values of r near the origin, we must have s(s + 1) = l(l + 1), which gives two
possible solutions:

s = 1, or s = −(l + 1) (3.51)

Recall l is the orbital angular momentum associated with the spherical harmonics, so we have l ≥ 0. If
s = −(l + 1) < 0, then our wavefunction will blow up near the origin. Landau and Lifshitz show that for a
potential which becomes infinite near the origin more slowly than 1/r2, the wavefunction must remain finite,
which applies to both the Coulomb and finite size potentials. This is apparent in the finite size case, which is
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our current interest. If the potential V (r) is finite everywhere in space, then the wavefunction R(r) must also be
finite everywhere in space. Therefore the appropriate solution is to take s = l ≥ 0. To be clear, this argument
is only valid for the Schrödinger wavefunctions. As we have already seen, the s-wave Dirac wavefunctions are
divergent at the origin.

Since the Numerov method involves boundary conditions on the function u(r) = rR(r), this implies that near
the origin, the behaviour of the function is given by u(r) ∼ rl+1. Furthermore, the coefficient of proportionality
is unimportant, since it will be fixed by overall normalization of the wavefunction. Hence we take the boundary
conditions as

u0 = 0

u1 = hl+1
(3.52)

We have emphasized that the s-waves solutions will feel finite size effects most significantly because they are
finite at the origin. Although it may seem like the first boundary condition u0 = 0 does not allow for this, it
is important to remember that the function u(r) = rR(r) is not the radial wavefunction. Given that the radial
wavefunction R(r) is finite at the origin, the function u(r) must vanish at the origin.

3.3.3 Calculating the Potential

Before applying the numerov method to find the wavefunctions, we discuss how the potential is obtained from
the nuclear charge distribution. A particle with charge e orbiting a nucleus with a symmetric charge distribution
ρ(r) feels a potential

V (r) = −e
[

4π

r

∫ r

0

ρ(r′)(r′)2dr′ − 4π

∫ ∞
r

1

r′
ρ(r′)(r′)2dr′

]
(3.53)

To see how the Coulomb potential is obtained from this expression, assume for now that the orbiting particle
is suitably outside the nucleus. Mathemtically, it is at some radial distance r ≥ rc, where rc is some ”critical”
radius value outside which the charge distribution vanishes. The second term vanishes, so the potential becomes

V (r) = −e
[

4π

r

∫ rc

0

ρ(r′)(r′)2dr′ − 4π

∫ ∞
rc

1

r′�
��*

0
ρ(r′)(r′)2dr′

]
= −4πe

r

∫ rc

0

ρ(r′)(r′)2dr′

= −Ze
2

r
= −Zα

r

(3.54)

We have normalized the nuclear charge distribution so that the total nuclear charge is Ze, hence the radial charge
integral evaluates to

∫ rc
0
ρ(r′)(r′)2dr′ = Ze/4π.

Recall the Numerov method requires knownledge of the function k2(r), which depends on the potential V (r),
at a discrete grid of points rn. To evaluate the potential at these points, and hence find kn, we use the Fermi
charge distribution given in Eq. 3.24, with parameters a and c given in Eq. 3.25

V (rn) = −e
[

4π

rn

∫ rn

0

ρ0

1 + exp( r
′−c
a )

(r′)2dr′ − 4π

∫ ∞
rn

ρ0

1 + exp( r
′−c
a )

r′dr′
]

(3.55)

We will perform these integrals numerically using MATLAB, but because we are dealing with femtometer dis-
tances, it will be useful to perform a change of variable for computational ease. Specifically, let R = r′/D, so that
if D is on the order of the nuclear radius, then during the period where small changes in r′ cause relatively large
changes in the charge distribution (characterized by the parameter c in the Fermi distribution), the variable R
will be order one and numerical integration will yield accurate results. Effectively, we are zooming in by a factor
of D, in order for the integration bins to be small compared to the scale of change in the charge distribution. We
note that the argument of the exponential can be written

r′ − c
a

=
r′/D − c/D

a/D
=
R′ − C
A

(3.56)

where we have denoted the scaled variables will capital letters (we will use Rn ≡ rn/D later). With reference to
Eq. 3.25, both Fermi parameters a and c are on the femtometer scale, a natural choice for the scaling parameter
D is the nuclear charge radius c. In principal any choice of D on the femtometer scale will give good results,
the choice D = c is by no means unique, the muonic Bohr radius would also be a good choice. Recall that the
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normalization constant ρ0 is calculated by normalization of nuclear charge, which transforms as

ρ0 =
1

Ze

[ ∫ ∞
0

1

1 + exp( r−ca )
r2dr

]−1
=

1

Ze

[ ∫ ∞
0

1

1 + exp(R−CA )
(DR)2d(DR)

]−1
=
D−3

Ze

[ ∫ ∞
0

1

1 + exp(R−CA )
R2dR

]−1
(3.57)

With this scaling in mind, the calculation for the potential becomes

V (rn) = −e
[

4π

rn

∫ rn

0

ρ0

1 + exp( r
′−c
a )

(r′)2dr′ − 4π

∫ ∞
rn

ρ0

1 + exp( r
′−c
a )

r′dr′
]

= −e
[

4π

rn

∫ Rn

0

D−3ρ0

1 + exp(R
′−C
A )

(DR′)2d(DR′)− 4π

∫ ∞
Rn

D−3ρ0

1 + exp(R
′−C
A )

DR′d(DR′)

]
= −e

[
4π

rn

∫ Rn

0

ρ0

1 + exp(R
′−C
A )

(R′)2dR′ − 4π

D

∫ ∞
Rn

ρ0

1 + exp(R
′−C
A )

R′dR′
] (3.58)

Because ρ0 has units of charge per unit volume, it scales as 1/Volume = 1/D3 when we zoom in by a factor of
D. In the first term of the potential, this is cancelled by the Jacobian r2dr. However due to the extra factor of
1/r′ originally appearing in the second term (Eq. 3.24), we end up with an overall factor of 1/D. The resulting
potential is plotted with a solid blue curve in figure 3.2, with scale in MeV given by the left y-axis. The Fermi
charge distribution has been overlaid in orange, with scale given by the right y-axis, to show that the Fermi
potential and the Coulomb potential (plotted as a blue dotted curve) coincide for distances larger than the charge
radius, where the Fermi charge distribution is exponentially suppressed.

Figure 3.2: The potential found from the Fermi charge distribution is nearly identical to the Coulomb potential
outside the nuclear charge radius, but differs significantly as we move towards the origin.

3.3.4 Finding The Energy Eigenstates

So far, with reference to Eq. 3.37, for a particular orbital angular momentum value l, everything is known except
for the energy eigenvalue E. We can attempt to find the energy eigenvalues by guessing the value of E, and
then determining the wavefunction via repeated application of the Numerov recursive relation given in Eq. 3.47.
If we dont have the correct value of E, the wavefunction will quickly shoot off to ±∞, giving wavefunctions
that are not square integrable, and hence not normalizable. Even with energy values extremely close, although
the wavefunctions will give the correct shape near the origin, they will exponentially increase not too far from
the origin, so the proper wavefunctions require a very accurate guess of the energy eigenvalue. To demonstrate
this, the Numerov method was used to find the ground state energy and wavefunction of the Coulomb potential

33



(a) Numerical Solutions, not normalized. (b) Numerical solutions, normalized.

Figure 3.3: The ground state radial wavefunction for the Coulomb potential (Z = 40), and the numerical solutions
found by altering the energy guess very slightly. The blue curve represents an energy guess too large by 10−7%,
and the red curve represents an energy guess too small by the same amount.

for Zirconium (Z = 40). We then altered the energy guess by one part in a billion, and plotted the results in
figure 3.3.

The plot on the left displays the numerical solutions before normalization, whereas the right plot displays the
numerical solutions once they have been normalized. The yellow curve represents the most accurate numerical
solution for the ground state radial wavefunction. The blue curve is found by increasing the energy guess (recall
the correct energy is negative) by one part in a billion, and the red curve is found by decreasing the energy
guess by the same amount. Although their behaviour near the origin seems to be correct, they clearly deviate
siginficantly further out. Note that these wavefunctions have not been normalized, and once this is taken into
account the difference also becomes apparent near the origin, where the incorrect guesses lead to normalized
wavefunctions that appear to vanish. Since the incorrect guesses feature a growing wavefunction far from the
origin, this will have a greater effect on the norm due to the r2dr volume element. The result, displayed on the
right shows that the form of the normalized wavefunctions is very different once the normalization has been taken
into account.

At first this seems hopeless, if we need accuracy better than 10−9, then we would have to guess potentially
tens or even hundreds of billions of energy eigenvalues, before hoping to get the correct one. Although one could
be smart and have some form of detecting when the energy values are close, by measuring if they are near zero
for a while (as in the above plots), there is an easier method, called the Wag-the-Dog Method.

The idea behind the Wag-the-Dog method is to pick a starting energy, E
(1)
0 , and compute the wavefunction

using a recursion relation, such as the Numerov method. In the vast majority of cases, the wavefunction will
shoot off to infinity. One then increases (or decreases) by some chosen amount, ∆E(1) = ∆E, and uses the
same recursion relation to compute the wavefunction. If the asymptotic behaviour is the same, the process is
continued, and we attempt again after adding another energy step ∆E. Suppose that this process continues up to

(and including) the energy value E
(1)
m ≡ E(1)

0 +m∆E, and then when we try it with energy E
(1)
m+1 = E

(1)
m + ∆E,

the asymptotic behaviour flips. That is, the wavefunction with energy parameter E
(1)
m asymptotes to infinity

whereas the wavefunction with energy E
(1)
m+1 asymptotes to negative infinity. This means that in adding ∆E to

E
(1)
m , we have skipped over an energy eigenvalue, where the wavefunction will asmpytote to zero. The case where

its behaviour switches from negative infinity to infinity is treated in a similar manner. In other words, there exists

an energy eigenvalue in the interval (E
(1)
m , E

(1)
m + ∆E). This is shown above in figure 3.3. In jumping from the

red to blue curve (or vice versa), we have crossed over an yellow curve representting an energy eigvenvalue, so we
know that the correct value is somewhere between our two previous guesses. This example was chosen to display
the senstitivity of the asymptotic behaviour on the energy guess. In practice one should start with a much larger
energy step ∆E, so that the search is more efficient.

We can now proceed in the same manner starting from energy E
(1)
0 ≡ E

(1)
m with energy step size ∆E(2) =

∆E/2, until we find the value where its asymptotic behaviour flips sign. Because our energy step is half as large,
this second iteration of scanning energies and studying asymptotic behaviour will allow us to constrain the energy
eigenvalue within an energy interval which is twice as small. In general, the n-th repetition of this procedure
will involve energy steps of size E(n) = ∆E/(2n). Repeating this behaviour by keeping track of the previously
tested energy guesses and the corresponding asymptotic behaviour of the wavefunction allows one to determine
the energy eigenvalue to arbitrary precision, within computational limits. The method gets its name due to the
fact that making a jump over an energy eigenvalue cause the wavefunction to switch the sign of its asymptotic
behaviour, as if the tail of the wavefunction is ”wagging” back and forth.
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Using the notation developed in the Numerov method, we are computing the wavefunction on a discrete radial
grid with points rn = n × h, where n = 0, 1, . . . , nmax indexes the grid position. In this notation the furthest
radial distance is given by hnmax. In principle, we could take nmax to be arbitrarily large, but this increases
computation time for no gain in precision. When we discuss aymptotic behaviour in the previous paragraph, we
mean the behaviour at distance hnmax, and our condition to have an energy eigenvalue implies that we require
the radial wavefunction to be suitably small at this point. This maximum distance must be chosen so that the
wavefunctions are expected to be small in this area, otherwise we could claim a false energy eigenvalue if this
happened to be a node of another the radial wavefunction. An energy eigenvalue that was somewhat accurate
may produce the correct node coinciding with our maximum radial grid position, but fail to display the correct
behaviour further out.

There are a couple potential issues with this method. To reduce computation time, one should choose a

reasonable guess for the starting energy E
(1)
0 , and an intial energy step large enough to scan a wide variety of

energies. If the energy step is too small, time will be lost while the program evaluates the Numerov method for a
large part of the parameter space where there are no energy eigenvalues. If the step is chose too large however,
there may be issues by skipping over two energy eigenvalues at once. Neither of these are issues in the case of
interest as the pointlike nuclear energies are a good approximation to start. In particular, we have seen that
the finite size potential is not as deep near the origin (c.f. figure 3.2), so the particles will be less tightly bound
to the nucleus. With this in mind, the pointlike energy eigenvalues will give a lower bound for the finite size
eigenvalues. Alternatively one could avoid skipping mulitple energy eigenvalues by counting the number of nodes
the wavefunctions has between successive attempts, which increase with the principle quantum number.

Once the energy eigenvalues are determined to suitable precision, the resulting wavefunction can be normalized.
The integral to calculate the norm of the wavefunction may be approximated by∫ ∞

0

|Rnl(r)|2r2dr ≈
nmax∑
n=0

|Rnl(rn)|2 × (rn)2 × h (3.59)

where h is the step size of the radial grid, which takes the place of the integral bin width dr. As before, a smaller
step size will yield more accurate numerical wavefunctions as well as more accurate numerical integrals. Note
that we have approximated the integral by a sum of bins, with bin width h and height equal to the integrand
value at the left-hand side of the numerical bin. We could have also chosen to take the value in the middle of
the bin or the value on the right-hand side. In principle these will produce slightly different results, but given
that the step size (and hence bin width) is small, these effects are negligible. This method will also be used to
calculate numerical integrals resulting from radial matrix elements.

3.3.5 Numerical Solutions for the Fermi Charge Distribution

In our implementation of the Numerov method, we chose a radial grid length of h = 0.02fm, with 10 000 total
steps, for a maximum radial distance of rmax =200fm. In terms of the muonic Bohr radius, aZ,µ = 6.40fm, the
grid length is h = aZ,µ/320, with maximum distance rmax = 31.25aZ,µ. The Fermi charge distribution changes
on scales comparable to the muonic Bohr radius, so that our choice of grid length is small enough to ensure that
no significant changes happen in either the radial wavefunction or the potential between two consecutive radial
bins. The energy search loop was terminated once an accuracy of 0.001eV was reached (i.e. ∆(n) < 0.001eV).

The muonic Zirconium energies are found from the numerical solutions to Schrödinger’s equation, afterwards
including the fine structure perturbations (relativistic kinematic, spin-orbit, and Darwin term), see Table 3.1.
These are very close to energies given by Phan et al. [27] achieved by solving the Dirac equation numerically
with a Fermi distribution for the nuclear charge, which are given in the third column (entries left blank were not
given).

The relativistic kinematic perturbation is found by expanding the kinetic energy of the muon in a Taylor
expansion with m� p ≡ |p|, and taking the leading term not captured by Newtonian kinetic energy. We find

EKin =
√

p2 +m2 −m ≈ p2

2m
− p4

8m3
+ · · · (3.60)

This second term gives rise to the relativistic perturbation, which we can rewrite as

HRel.Kin. = − 1

2m

(
p2

2m

)2

= − 1

2m

(
H0 + V (r)

)2

(3.61)

In the last line we have related the kinetic energy term and the Coulomb term in the original Hamiltonian
H0 = p2/2m − V (r), where V (r) is the potential the muon feels due to the finite size nucleus. When we take
expectation values to find the energy shifts, the operator H0 yields the energy of the state, and we are left with
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Table 3.1: Numerical Energies for the Muonic Nuclear Ground State

Muonic State Numerical Energy (keV) Dirac Numerical Energies (keV) [27]
1s1/2 -3644.6 -3642.965
2s1/2 -1021.6 -1021.254
2p1/2 -1134.8 -1147.770

2p3/2 -1111.7 -1126.996

3s1/2 -468.5
3p1/2 -503.9 -507.998

3p3/2 -495.5 -502.049

4s1/2 -268.7

ENuc 1760.7

finding 〈1/r〉

〈nlm|HRel.Kin.|nlm〉 = − 1

2m

〈
nlm

∣∣∣∣(H0 + V (r)

)2∣∣∣∣nlm〉
= − 1

2m

[
E2
nl + 2Enl〈nlm|V (r)|nlm〉+ 〈nlm|V 2(r)|nlm〉

] (3.62)

Unlike the Hydrogen-like atoms, we do not have an analytic expression for the wavefunctions, so the remaining
expectation values are calculated numerically. The integrals found in the expectation values were computing
using numerical sums, using a rectangular bins with the same width as the step size used to determine the
wavefunctions. We also note that our (non-perturbed) energies depend on the orbital angular momentum l as
well as the principal radial quantum number n, unlike the Hydrogen atom.

The spin-orbit perturbation arises from the interaction of the spin of the muon and a magnetic field

HS.O. = −µ ·B (3.63)

where µ = −e/mS, and S is the spin operator of the muon. The magnetic field arises from the uniform velocity
of the muon moving through the electric field of the proton. Mathematically

B = −v ×E = v ×∇φ(r) = v × r

r

dφ(r)

dr
(3.64)

where φ(r) = V (r)/e. Hence the spin orbit interaction is

HS.O. =
e

m
S · v × r

1

r

dφ(r)

dr

=
1

m2
S · p× r

1

r

dV (r)

dr

=
1

m2
S · L1

r

dV (r)

dr

(Thomas precession) =
1

2m2
S · L1

r

dV (r)

dr

(3.65)

In reality, there is an extra factor of 2, arising from Thomas precession [7] which we have included in the last
line. To evaluate 〈S · L〉, we note that the total angular momentum J is defined via J ≡ L + S, so that

J2 = (S + L)2 = S2 + L2 + 2S · L
S · L = 1/2(J2 − L2 − S2)

(3.66)

If we diagonalize our spin states in terms of eigenvalues of J2 and Jz (instead of L2 and Lz), then we find [5]

S · L|l + 1/2, s+ 1/2〉 = l/2|l + 1/2, s+ 1/2〉
S · L|l − 1/2, s+ 1/2〉 = −(l + 1)/2|l − 1/2, s+ 1/2〉

(3.67)

Again we turn to numerical methods to evaluate the remaining expectation value, 〈r−1V ′f.s〉.
Lastly the Darwin perturbation can be schematically interpreted as the smearing out of the potential. Due to

the uncertainty principle, the muon’s position can only be known to a certain degree. Hence it feels a potential
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not from a single point, but rather an average over a volume with characteristic scale of its compton wavelength
λc = 1/m. Taylor expanding about the center r0 for |r| ≤ λc

V (r0 + r) = V (r0) + r ·∇V (r0) +
1

2

∑
i,j

rirj∇i∇jV (r0) (3.68)

We now average each term over the uncertain volume, which is the sphere with radius equal to the compton
wavelength. The linear term vanishes due to spherical symmetry

∫
rd3r = 0. We evaluate the quadratic term

1

Vsphere

1

2

∑
i,j

∫
rirjd

3r∇i∇jV (r0) =
3

4πλ3c

1

2

∑
i,j

∫
rirjd

3r∇i∇jV (r0)

=
3

4πλ3c

1

2

∑
i,j

∫
ninjdΩ

∫ λc

0

r4dr∇i∇jV (r0)

=
3

4πλ3c

1

2

4π

3
δij

λ5c
5
∇i∇jV (r0)

=
λ2c
10

∑
i

∇i∇iV (r0)

=
1

10m2
∇2V (r)

(3.69)

The correct numerical factor is found by expanding the Dirac equation for p� m yielding (along with the Spin
Orbit and Relativistic Kinetic terms already discussed) [7]

HDarwin =
1

8m2
∇2V (r) (3.70)

One can then use Poisson’s equation ∇2V (r) = 4πρ(r) write

HDarwin =
π

2m2
ρ(r) (3.71)

Although the first expression can be used to compute the expectation value, one needs to use numerical integration
to find the potential, and then finite difference methods to find its Laplacian. To reduce potential numerical
errors, it is simpler and more accurate to use the second expression since the analytic charge distribution is
known. However one must still use numerical sums to evaluate the expectation value since we only have the
numerical wavefunctions.

Here we only include the effect of the perturbations on the energy levels, not on the wavefunctions. The
numerical solutions to the first few s-wave states are given below in figure 3.4 and the first two p-wave solutions
are given in figure 3.5

(a) The 1s radial wavefunction (b) The 2s radial wavefunction

Figure 3.4: Numerical and pointlike radial wavefunctions for the first two s-wave states of 90Zr.

It is evident that the s-waves states are significantly affected by the finite nuclear size, whereas the p-wave
states are barely affected. This is easy to understand by looking at the potential in figure 3.2. Inside the nucleus,
the Fermi potential forms a much more shallow well compared to the Coulomb potential. Out of all equally
spaced radial intervals, the s-wave states are most likely to be found at (or nearby) the origin, and feel the effects
of this shallower potential, resulting in a radial wavefunction that is smaller inside the nucleus, and hence more
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(a) The 2p radial wavefunction (b) The 3p radial wavefunction

Figure 3.5: Numerical and pointlike radial wavefunctions for the first two p-wave states of 90Zr.

spread out in space. The p-waves are much less likely to be found near the origin due to the boundary condition
Rnp ∼ rl near the origin. Hence they are less affected by this shallow well. They spend more time in the areas
where the Fermi potential is comparable to the Coulomb potential, which is why their finite-size wavefunctions
are nearly identical to the pointlike solutions. By the same logic, we expect that other oribtals (d,f, etc.) will not
be significantly affected by the finite size potentials.

To ensure that is nothing special about the parameters we have used to compute the wavefunctions, we
have also tested the program using a different total number of steps and step size, with the requirement that
rmax = 200fm is fixed. We parametrized the number of steps as 1000j and a step size of h = 0.2/jfm, with the
parameter j taking values between 5 to 14 (10 total variations). The s-wave energy variations are very small,
within 5× 10−4%, where as the p-wave variations are larger, but still within 0.02%. Note the in both cases, the
rate of change increases as we go to smaller values of j. Small values of j correspond to less total steps, and a large
step size, which we would expect to give less accurate results. The change in energy variations starts to flatten
out as we go to higher values of j, corresponding to more steps and a smaller step size, which we would expect
as numerical finite differences become a better approximation to derivatives. The radial wavefunctions displayed
above are calculated using the parameter j = 10, which we use for the rest of the calculations.

(a) S-wave energy variations (b) P-wave energy variations

Figure 3.6: Percent variations in energy eigenvalues when altering the number of steps and step size in the
Numerov method. The deviations are calculated with respect to the average over all trials.

The branching ratios do depend on the energy eigenvalues, as a ratio of energy cubed. Because the variations
displayed above are so small, the results are not significantly affected by our choice of parameters.

As another check, we can modify the parameters in the Fermi distribution to mimick a pointlike nucleus,
and we should recover our pointlike branching ratio results. To do this, we take the nuclear charge radius to be
c = 0.01fm, and the diffuseness parameter to be c = 0.001fm, representing a very small concentrated charge that
falls off quickly. In particular the charge radius is half as large as our grid size (h = 0.02fm), so all the charge is
distributed within the first radial bin. In this case we find the branching ratios are

Br2p = 4.48× 10−6 vs. 5.12× 10−6 (Analytic Pointlike)

Br3p = 5.88× 10−6 vs. 6.61× 10−6 (Analytic Pointlike)
(3.72)

Although the results are not exactly the same, they are very close to their corresponding analytic pointlike results
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previously calculated, and they are significantly different from the full finite size results we shall find below. The
details of the finite size computation are discussed in the next section.

3.4 Finite Size Branching Ratios

Now that we have expressions for the finite size radial wavefunctions, we can repeat our calculations for the
branching ratios to populate the nuclear excited state. Recall our previous calculation, we needed the perturbative
mixing parameters εns, and the radial matrix elements 〈Rn0|r|R21〉. We first study the mixings of the final state
with the other s-wave states. Although the potential is non-zero for r 6= 0, there is still zero mixing with the
other orbital states (i.e. p,d,f etc.) due to spherical symmetry of the potential and orthogonality of the spherical
harmonics. In the pointlike nuclear case, the significant contributions to the branching ratio were from the mixing
with the |n00〉|0〉, n = 1, 2 states. For now, we will include states up to n = 4 to ensure the contributions from
the n ≥ 3 terms are still negligible. Thus our perturbed final wavefunctions is

ψf = |100〉|1〉+
∑
nlm

B〈nlm|Nnuc(r)|100〉
E1s + ENuc − Ens

|nlm〉|0〉

≈ |100〉|1〉+

4∑
n=1

εns|n00〉|0〉
(3.73)

where the mixing coefficients and matrix elements are given by

εns ≡
B〈n00|Nnuc(r)|100〉
E1s + ENuc − Ens

(3.74)

Note that we can no longer ignore the orbital type (i.e. s,p,d,etc.) when describing the energy eigenvalues because
they are no longer degenerate. The results of the mixing coefficients as well as the E1 transition matrix element
are given in Table 3.2, with the total branching ratio at the bottom.

As before we want to study how this excited nuclear state (|100〉|1〉) is populated in this approach. Due to
the mixing of the s-wave nuclear ground states, |n00〉|0〉, it can be populated via E1 transitions. If we start with
a muonic 2p state, the ratio of decays to the nuclear excited state compared to the nuclear ground state is given
by the branching ratio

Br2p =
Γ|210〉|0〉→|100〉|1〉

Γ|210〉|0〉→|100〉|0〉
(3.75)

Given that both transitions are E1 transitions, whose transition probability is given by Γ = 4/3ω3α|r|2, the
branching ratio is given by

Br2p =
E3
µ

E3
2p→1s

∣∣∣∣ 4∑
n=1

εns
〈Rn0|r|R21〉
〈R10|r|R21〉

∣∣∣∣2

=
E3
µ

E3
2p→1s

∣∣∣∣ 4∑
n=1

B〈Rn0|NNuc(r)|R10〉
E1s + ENuc − Ens

〈Rn0|r|R21〉
〈R10|r|R21〉

∣∣∣∣2
(3.76)

Figure 3.7: Perturbed initial and final wavefunctions are
shown above. The solid lines connect the states with
non-zero E1 matrix elements

As before, Eµ = E2s − (E1s + ENuc). We now
return to the question of perturbative mixing in the
initial state. In the point-like case, the internal conver-
sion perturbation was a delta function, reflecting the
pointlike charge distribution. We considered mixing of
the final state due to this perturbation. There was no
mixing of the initial state because the p-wave states
are zero-valued at the origin where the perturbation
acts. Since we now have a finite size nuclear charge
distribution, the perturbation will generate non-zero
mixing between the p-wave states of the initial state.
We expect this effect to be small as the p-wave states
are still suppressed near the origin compared to the
s-wave states, but as the Bohr radius is comparable to
the nuclear charge radius, we should calculate the size
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of this effect. A visual interpretation of the process
is shown in figure 3.7, with the different involving the extra terms added onto the initial state. Including the
perturbative effects on the initial state, we have

|i〉 = |210〉|0〉+
∑
n10

B〈n10|Nnuc(r)|210〉
E2p − (En10 + ENuc)

|n10〉|1〉

≈ |100〉|1〉+

3∑
n=2

εnp|n10〉|1〉
(3.77)

where the mixing coefficients and matrix elements are given by

εnp ≡
B〈n10|Nnuc(r)|210〉
E2p − (Enp + ENuc)

(3.78)

We ignore the fine structure splitting between the p1/2 and p3/2 for simplicity, since the energy differences are
not significant. We have only included the first two p-wave mixings because we will find they are much smaller
than the s-wave mixings, in principle both of these sums involve an infinite number of terms. The inclusion of
initial state mixing modifies the branching ratio to be

Br2p =
E3
µ

E3
2p→1s

∣∣∣∣ 4∑
n=1

εns
〈Rn0|r|R21〉
〈R10|r|R21〉

+

3∑
n=2

εnp
〈Rn1|r|R10〉
〈R21|r|R10〉

∣∣∣∣2 (3.79)

Each term that contributes to the decay rate contains a mixing factor (ε), as well as a radial matrix element
(〈Rn1|r|Rj0〉) resulting from the dipole operator. To get a feeling of the size of the effects discussed above, the
numerical results for these terms are given below in table 3.2, normalized to the contribution of the 2s state
(which has the largest contribution to the overall transition rate). The total branching ratio is found to be

Br2p = 5.35× 10−8 (3.80)

Table 3.2: Contributions to the 2p→1s Transition Rate due to Mixing with Various States

Initial/Final State Contribution to Transition Rate (Normalized to 2s Contribution)

Mixing of Final States (s-waves) εns〈n00|r|210〉/ε2s〈200|r|210〉
1s 0.45
2s 1
3s -0.025
4s −6.5× 10−3

Mixing of Initial States (p-waves) εnp〈100|r|n10〉/ε2s〈200|r|210〉
2p 2.2× 10−3

3p 4.0× 10−4

Total Branching Ratio 5.35× 10−8

There are 2 important effects to notice in this table. The largest contribution to the sum

4∑
n=1

εns〈Rn0|r|R21〉 (3.81)

appearing in the 2p transition comes from the 2s term. This result is true in general: if we now think of a
transition from an np state to the 1s excited nuclear state, the most significant contribution comes from the
mixing of the 1s nuclear excited state with the ns nuclear ground state. Furthermore, terms in the sum with
j > n decrease very quickly, so we are justified in terminating the sum at j = n. The second important effect is
the size of the contributions due to the initial state mixing, with parameter εnp. As seen above, these effects are
small compared to those introduced by the final state mixings, so we will also ignore them.

A similar analysis can be done if the initial muon is in the 3p state, corresponding to |310〉|1〉. In this case,
the 3p state can transition to both the 2s and 1s states, so the total decay rate is given by

ΓT ≈ Γ3p→1s + Γ3p→2s (3.82)
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Because of these two terms, the branching ratio can’t be put into the same form as is done for the 2p branching
ratio (eq. 3.11), where the result is a combination of ratios comparing the transition to the 1s nuclear excited
state and 1s nuclear ground state. Instead we have

Br3p =

(E3p − E1s − ENuc)3
∣∣∣∣∑3

n=1 εns〈R3p|r|Rns〉
∣∣∣∣2∑2

n=1((E3p − Ens)3|〈R3p|r|Rns〉|2
(3.83)

Upon performing the calculation, we find the branching ratio to be

Br3p = 1.60× 10−8 (3.84)

In both cases, including the finite size effects caused our branching ratio to decrease by a factor of approxi-
mately 90 (Br2p) and 420 (Br3p).

3.4.1 A Closer Look at the Finite Size Effects

Because the finite size corrections are so large, we will study the decays in more detail to understand what is
causing the suppression. We need to investigate three calculations

1. The energy ratio, (E2p g.s.→1s exc./E2p g.s.→1s g.s.)
3

2. The radial matrix elements, 〈R21|r|R20〉, 〈R21|r|R10〉

3. The mixing parameters, |εns|2 = |〈100|V |n00〉/(E1 + ENuc − En)|2

The finite nuclear size effects are felt most by the s-wave states, since they have a large (compared to other
states) probability of being near the origin. Using the numerical solutions, we find the relevant energies are

E1 + ENuc − E2 = −866keV

E2p g.s.→1s exc. = 749keV

E2p g.s.→1s g.s. = 2510keV

(3.85)

The finite nuclear size shrinks the binding energy, causing the energy spectrum to be denser. This results in(
E2p g.s.→1s exc.

E2p g.s.→1s g.s.

)3

=

(
749keV

2510keV

)3

= 0.0266 (3.86)

In the pointlike case this factor was 0.1096, so we have a decrease by a factor of approximately 4.1.
For the radial matrix elements, the effect of the finite size on the s-wave states is to push the wavefunction

away from the origin. For the 1s and 2s states, this causes a supression in the wavefunction inside the nucleus.
Outside the nucleus, the wavefunctions are larger (compared to their pointlike counterparts). The shift happens
on the order of the nuclear radius (RN = 0.76aZ,µ), and differs slightly for the 1s and 2s states. Plots of the finite
size and pointlike wavefunctions are shown below in figure 3.8.

This effect is minor on the radial matrix element between the 2p and the 2s states, but more signficant for
the matrix element between the 2p and 1s state, because the 1s wavefunction is pushed away from the origin,
where the 2p wavefunction is larger. Although the 2s wavefunction is also pushed away from the origin, it is
already comparable to the 2p wavefunction, so the effect is less noticeable. The integrands in the matrix elements
〈R21|r|Rn0〉 are plotted in figure 3.9 below, and one can see the effect of the finite size nucleus on the 2p-1s matrix
element. Evaluating these matrix elements gives

〈R21|r|R20〉 = −5.180aZ,µ (vs Pointlike = −5.196aZ,µ)

〈R21|r|R10〉 = 1.763aZ,µ (vs Pointlike = 1.290aZ,µ)
(3.87)

Lastly we need to compute the change to the mixing parameters for n = 1, 2,

εns =
〈100|V |n00〉

E1 + ENuc − En
(3.88)

We already know the energy from above, E1 + ENuc − E2 = −0.866MeV, so we must compute the matrix
element 〈100|V |n00〉 = 〈100|BNNuc(r)|n00〉. Recall we normalized the nuclear distribution to ensure the constant
B was identical in both the pointlike case and the finite size case. This implies we can focus on comparing
〈100|NNuc(r)|n00〉|FS to 〈100|δ3(r)|n00〉|PL, where the subscript FS indicates we should use the numerical muonic
wavefunctions corresponding to the finite size nucleus, and PL indicates we should use the analytic muonic
wavefunctions corresponding to a pointlike nucleus. The results are given in table 3.3
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Figure 3.8: The first two s-wave states for pointlike and finite size nuclear distributions. The radial coordinate is

scaled by a−1Z,µ and the radial wavefunctions are scaled by a
−3/2
Z,µ .

Figure 3.9: The integrands appearing in the radial matrix elements for pointlike and finite size nuclear distribu-
tions. Note that the 2p-1s radial matrix element is more significantly affected by the finite size nuclear effects.

The radial coordinate is scaled a−1Z,µ and the radial wavefunctions are scaled by a
−3/2
Z,µ .

Hence we find ∣∣∣∣ε1s + ε2s
〈R21|r|R20〉
〈R21|r|R10〉

∣∣∣∣2 = 2.10× 10−6 (3.89)

In this pointlike case this factor was 4.63× 10−5, so we find a decrease of a factor of 22. Combining this with the
suppression of 4.12 from the energy ratio, we find the Branching Ratio should decrease by approximately 90, as
we had previously calculated.

Note that in the 2s mixing parameter, the smaller energy gap causes the pertubative mixing to be higher,

|E1 + ENuc − E2|2PL ≈ 0.3|E1 + ENuc − E2|2FS (3.90)

However the matrix element is much smaller in the finite size case

|〈100|δ3(r)|200〉|PL|2 ≈ 32|〈100|NNuc(r)|200〉|FS |2 (3.91)

The matrix element in the pointlike nucleus case evaluates the wavefunctions at the origin. A convenient way
to view this (in comparison to the finite size case) is to imagine the integrand as a rectangular function, with
unit width, and height equal to the wavefunctions evaluated at the origin. The matrix element is just the area
of the rectangle, equal to the height since it has unit width. In contrast, the integrand in the matrix element
of the finite size nucleus must be numerically integrated. These two integrands are shown below in figure 3.10.
There are a few things to note. Firstly, its is obvious that the pointlike case dominates because of two effect. The
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Table 3.3: Comparison of the Pointlike and Finite Size Effects in the Branching Ratios to Populate the Excited
Nuclear State

Transition Parameter Pointlike Finite Size
ε1s 2.67× 10−3 4.47× 10−4

ε2s 1.03× 10−3 −3.41× 10−4

〈R21|r|R10〉 1.290aZ,µ 1.763aZ,µ
〈R21|r|R20〉 -5.196aZ,µ -5.180aZ,µ

delta function potential picks out the s-wave wavefunction values at the origin, where they are largest, and in
this view, extends them uniformly to r = 1. Furthermore, these are the pointlike wavefunctions, which we have
already noted are larger then their finite size counterparts for distances r . RN , see figure 3.8. Secondly, the
delta function does not feel the ”suppression” of the r2 term in the volume element of spherical coordinates. In
contrast, we see that the finite size nuclear distribution is suppressed near the origin due to this r2 term, exactly
where the wavefunctions are largest. This allows us to understand why this matrix element is much larger for the
finite size case, the delta potential largely overestimates the size of this mixing.

Figure 3.10: The integrands appearing in the perturbative mixing matrix elements for pointlike and finite size
nuclear distributions. Note that we have scaled the potential by its strength parameter B. The suppression of the
finite size nuclear integrand near the origin is due to the factor of r2 appearing in the spherical volume element.

Lastly, why is the mixing suppressed by 420 times in the case of the 3p branching ratio, compared to only 90
times in the 2p branching ratio? Recall the 2p branching ratio contains the term

|ε1s〈R21|r|R10〉+ ε2s〈R21|r|R20〉| (3.92)

where as the 3p branching ratio contains

|ε1s〈R31|r|R10〉+ ε2s〈R31|r|R20〉+ ε3s〈R31|r|R30〉| (3.93)

In the 2p case, the two terms constructively interfere, where as in the 3p case, there is a fine cancellation caused
by destructive interference between the contribution from the n = 2, 3 terms. This destructive interference is
not as significant in the pointlike case. The numerical results, which have been scaled by 103/aZ,µ to make this
cancellation more clear, are summarized below in table 3.4.

We can see the fine cancellation between the terms due to mixing from the 2s and 3s wavefunctions in the
finite size case. Nearly all the final sum comes from the 1s mixing term. Each finite size term is smaller than its
pointlike counterpart due to the delta function overestimating the mixing, as discussed above (see figure 3.10 and
preceding discussion).

Summarizing, we find that there is a very small chance to populate the excited nuclear state with a muon.
Although a quick calculation gives a braching ratio on the order of one in a million atoms, we find that finite size
effects are extremely important. These effects decrease the branching ratio by nearly a two orders of magnitude,
significantly lowering the rate at which the excited nuclear state can be populated.
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Table 3.4: Comparing the Pointlike and Finite Size Effects

Transition Parameter×103/aZ,µ Pointlike Finite Size
ε1s〈R31|r|R10〉 1.38 0.276
ε2s〈R31|r|R20〉 −3.15 −1.48
ε3s〈R31|r|R30〉 5.14 1.47
Sum of 3 terms 3.36 0.27
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Chapter 4

Decay Modes for Muonic Nuclear
De-excitation

Now that we have studied how to populate the excited nuclear state of muonic zirconium, we must investigate
how it can decay. As we previously saw (cf. Table 3.1), the energy gap between the muonic ground state and the
excited state is larger than the nuclear excitation energy, which implies that the excited state must decay into
the full ground state. Also recall that a muon that makes the transition into the nuclear excited state (|100〉|1〉)
has perturbed wavefunction

ψi = |100〉|1〉+ εi,1s|100〉|0〉+ εi,2s|200〉|0〉+ · · ·

εi,ns ≡
〈100|V |n00〉

E1 + ENuc − En
(4.1)

The full ground state will also include some perturbative mixing, given by

ψf = |100〉|0〉+

∞∑
n=1

〈100|V |n00〉
E1 − (ENuc + En)

|n00〉|1〉

ψf ≡ |100〉|0〉+ εf,1s|100〉|1〉+ εf,2s|200〉|1〉+ · · ·
(4.2)

The mixing parameter εi,ns in the initial are identical to the parameters εns used in the previous chapter, with
the slight change of notation now necessary to distinguish between final and initial state mixing. The parameters
εf,ns only differ by a change of ENuc in the denominator, implying that εi,1s = −εf,1s. The subscripts i and f
serve to distinguish the mixing effects in the initial and final states, respectively. As before, we ignore terms with
n ≥ 3 because they are smaller by a factor of approximately 10. If this decay will be mediated by an operator A
which does not contain any nuclear operators, the matrix element will go as

〈f |A|i〉 =

(
〈0|〈100|+ εf,1s〈1|〈100|+ εf,2s〈1|〈200|

)
A
(
|100〉|1〉+ εi,1s|100〉|0〉+ εi,2s|200〉|0〉

)
= 〈100|A|100〉��

�*0
〈1|0〉+

��
���

��:0
(εi,1s + εf,1s)〈100|A|100〉+ (εi,2s + εf,2s)〈100|A|200〉+O(ε2)

(4.3)

The first term is zero because of the nuclear orthogonality, and the second is zero because εi,1s = −εf,1s. To
lowest order, our transition would involve the matrix element between the 2s and 1s states. This is depicted in
figure 4.1 below, with the dotted lines representing the matrix element connecting the 1s states, which cancel as
argued above. The solid black lines represent the the non-zero matrix elements which we shall focus on.

Figure 4.1: Perturbed initial and final wavefunctions
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Hence this decay would be mediated by the operator responsible for 2s → 1s transitions in hydrogen-like
atoms. In a similar manner to the E0 transition, this transition involves a matrix element between states of equal
spin and parity. There are two different decay modes which might be significant

1. The magnetic dipole (M1) transition

2. The two photon (2E1) transition

We begin comparing these transitions with some order of magnitude estimates. In hydrogen, the 2s → 1s
transition is completely dominated by the two-photon decay, with the magnetic dipole decay rate being 6 orders
smaller [36]. However, the two photon decay scales with the nuclear charge as Γ2E1 ∼ Z6, whereas the magnetic
dipole transition scales as ΓM1 ∼ Z10. Hence for hydrogen-like zirconium (i.e. a one-electron zirconium atom),
we have

ΓM1

Γ2E1
= Z4

(
ΓM1

Γ2E1

∣∣∣∣
Hydrogen,Z=1

)
= 404(10−6)

= 2.56

(4.4)

Hence for a single electron orbiting zirconium, the magnetic dipole rates catches up to the photon rate, and
they are on the same order of magnitude. Obviously our case of interest is not a one-electron zirconium, it is
zirconium with one muon and 39 electrons. Since the muonic Bohr radius is 200 times smaller than the electronic
Bohr radius, the muon feels essentially no screening from the electrons. To prove this, we note that the ground
state is the most likely state to be found near the nucleus. The probability, P , for a ground state electron to be
found within the muonic Bohr radius (using the pointlike wavefucntions) is given by

P =

∫ aZ,µ

0

|R10,e(r)|2r2dr

=
4

aZ,e

∫ aZ,µ

0

r2 exp(−2r/aZ,e)dr

= 1− e−2me/mµ
[
1 + 2

me

mµ
+ 2

m2
e

m2
µ

]
= 1.5× 10−7

(4.5)

So the one-electron approximation is a good approximation for this order of magnitude comparison. This is only
an estimate however, since the M1 and 2E1 decay rates also depend on the transition energy, which is altered
because of the involvement of the nuclear excitation energy. The decay rates may also be modified by the change
in the muon wavefunctions due to the finite size potential. We proceed with a general investigation of the M1
transition, and subsequently apply it to our decay scenario.

4.1 The Magnetic Dipole Transition

We will first develop the theory for a relativistic M1 transition, following the presentation in Landau and Lifs-
chitz [7]. For simplicity, we will then calculate the transition for a pure 2s→ 1s transition and later look at the
application to our scenario.

The EM interaction term between a Dirac fermion ψ and a photon is given by ejµfiAµ, where e is the electro-
magnetic charge, jfi ≡ ψfαψi is the current, and Aµ is the photon wavefunction. Recall that the matrix element
for the EM interaction between a Dirac fermion ψ with current jfi = ψfαψi and a photon with wavefunction
Aµ(r) is given by

Vfi = e

∫
jµfi(r)A∗µ(r)d3x

= e

∫
d3x jµfi(r)

∫
d3k

(2π)3
A∗µ(k)e−ik·r

(4.6)

We have omitted the subscripts (ωjm) from the photon wavefunction for simplicity. The wavefunction of a
magnetic photon with angular momentum j and energy ω has the form Aµ = (0,A), with

Aωjm =
4π2

ω3/2
δ(|k| − ω)Y

(m)∗
jm (nr) (4.7)

Substituting this expression into the matrix element above gives
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Vfi = e

∫
d3x jfi(r) ·

∫
k2dkdΩk

(2π)3
4π2

ω3/2
δ(|k| − ω)Y

(m)∗
jm (nr)e

−ik·r

= −e
√
ω

2π

∫
d3x jfi(r) ·

∫
dΩkY

(m)∗
jm (nr)e

−ik·r
(4.8)

The factor of e−ikr can be expanded in terms of spherical Bessel functions and the spherical harmonics by use of

e−iωr = 4π

∞∑
l=0

l∑
m=−l

i−lgl(ωr)Ylm(nk)Y ∗lm(nr) (4.9)

here gj(ρ) is the j-th order spherical Bessel function. Rayleigh’s formula allows us to express the bessel function
as

gl(ρ) = (−ρ)l
(

1

ρ

d

dρ

)l
sinρ

ρ
(4.10)

Writing the spherical harmonic vector in terms of its components and using the orthogonality properties results
in ∫

dΩke
−ikrY

(m)∗
jm (nr) = 4πi−jgj(ωr)Y

(m)∗
jm (nr) (4.11)

Thus the matrix element becomes

Vfi = −ei−j2
√
ω

∫
d3x gj(ωr)jfi(r) · Y (m)∗

jm (nr) (4.12)

We now perform a Taylor expansion of the Bessel functions near the origin, and use the definition of the
spherical harmonic vector corresponding to the magnetic photon

gl(ωr) =

∞∑
n=j

g
(n)
j (0)

n!
(ωr)n ≡

∞∑
n=j

βnr
n (4.13)

Y
(m)∗
jm (nr) =

1√
j(j + 1)

r ×∇Y ∗jm (4.14)

Note that our sum begins with the n = j term because this is the first non-zero term of the Taylor expansion of
the Bessel functions of order j. This allows us to rewrite the matrix element as

Vfi = − ei−j2
√
ω√

j(j + 1)

∫
d3x

∞∑
n=j

βnr
n−jrjjfi(r) · r ×∇Y ∗jm

=
ei−j2

√
ω√

j(j + 1)

∫
d3x

∞∑
n=j

βnr
n−jr × jfi · ∇(rjY ∗jm)

= ei−1
√

2ω

∫
d3x

∞∑
n=1

βnr
n−1r × jfi · ∇(rY ∗1m)

(4.15)

In the last line we have written the result for the j = 1 case, corresponding to the magnetic dipole transition
(M1), which is the form we will use later. The relation used in the second last line in the derivation above is best
seen from writing the vectors in component form

−(r × jfi) · ∇(rjY ∗jm) = −εpqrrp(jfi)q[∇(rjY ∗jm)]r

= (jfi)qεprqrp[∇(rjY ∗jm)]r

= (jfi)qεprqrpr
j [∇Y ∗jm]r + (jfi)qεprqrp[∇rj ]rY ∗jm

= rj(jfi)qεprqrp[∇Y ∗jm]r

= rjjfi · (r ×∇Y ∗jm)

(4.16)

The second term in the third line vanishes as it contains εprqrp[∇rj ]r = r ×∇rj ∝ r × r = 0.
The usefulness of splitting up rn = rn−jrj in the Taylor expansion now becomes clear in the j = 1 case, as√

4π

3
rY10 = iz,

√
4π

3
rY1±1 = ± i√

2
(x± iy) (4.17)
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and hence the gradients appearing above are simply the spherical units vectors for j = 1. Thus the components
of √

3

4π
ei−1
√

2ω

∫
d3x

∞∑
n=1

βnr
n−1r × jfi (4.18)

are the spherical components of the vector

Mfi = ei−1
√

3ω

2π

∫
d3x

∞∑
n=1

βnr
n−1r × jfi (4.19)

so that the decay rate is given by
ΓM1 = 2π|Vfi|2 = 2π|Mfi|2 (4.20)

We now turn to solutions of the Dirac equation, which will allow us to calculate r × jfi. Recall that the
solutions to the Dirac equation for a particle in a spherically potential take the form

ψ =

(
φ
χ

)
=

(
f(r)Ωjlm

(−1)
1
2 (1+l−l

′)g(r)Ωjl′m

)
(4.21)

Here Ωjlm are the spherical harmonic spinors, defined in eq. 2.27. The quantum numbers l and l′ are defined by
j = 1 ± 1/2 and l′ = 2j − l (j being the total angular momentum). The functions f(r) and g(r) are the large
and small radial Dirac functions, given in eq. 2.28. We will make use of the non-relativistic limit of the Dirac
functions is given by

f(r) ≈ R(r), g(r) ≈ R′

2m
(4.22)

where R(r) is the non-relativistic wavefunction.
Finally, we will rewrite the second spinor via (nr · σ)Ωjlm = il

′−1Ωjl′m. We first focus on the form of the
matrix element, and return later to evaluate the radial integral. As we are interested in the 2s → 1s transition,
we have l = 0 and j = l+1/2. Using the above relation, the components of the spherical harmonic spinors reduce
to Y00 = 1/

√
4π (up to a phase), so we can write the initial and final spinors as

ψi =
1√
4π

(
fi(r)wi

−igi(r)(n · σ)wi

)
ψf =

1√
4π

(
ff (r)wf

−igf (r)(n · σ)wf

) (4.23)

here wi = wi(mi) and wf = wf (mf ) are real unit spinors corresponding to the spin projection value mi and mj .

4.1.1 Computing the Matrix Element

Simplifying the Matrix Element

We first work on simplyfying r× jfi. Using our expressions for the Dirac wavefunctions, the EM current is

jfi = ψfαψi = φ†fσχi + χ†fσφi

=
1

4π

[
ff (r)wTf σ(−i)gi(r)(n · σ)wi + (i)gf (r)[(n · σ)wf ]†σfi(r)wi

]

=
1

4πi

[
ff (r)gi(r)w

T
f σ(n · σ)wi − gf (r)fi(r)w

T
f (n · σ)σwi

] (4.24)

We now need to compute r × jfi. We can simplify the result by working on the vector components, ignoring
the radial functions, scalar factors, and spinors for now. The first term goes as

r × σ(n · σ) = rn× σ(n · σ)

= rεijknjσkσpnp
(4.25)
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Hence the matrix element (cf. 4.19) goes as∫
dΩ r × σ(n · σ) = rεijkσkσp

∫
dΩ njnp

=
4π

3
rεijkσkσpδjp

= −4π

3
rεikjσkσj

= −4π

3
rσ × σ

= −8πi

3
rσ

(4.26)

The final line follows from the identities σaσb = δabI + iεabcσc and εabcεdef = 2δad. The second term in the
matrix element is nearly identical, except that there is no need to permute the indices of the levi-civita symbol
in order to make the cross product apparent. Hence we arrive at the same result, with a negative sign,∫

dΩ r × (n · σ)σ =
8πi

3
rσ (4.27)

Putting this together gives

r × jfi =
−2

3
rwTf σwi(fi(r)gf (r) + ff (r)gi(r)) (4.28)

Now that we have computed r × jfi, we can return to our expression for the matrix element (Eq. 4.19)

Mfi = ei−1
√

3ω

2π

∫
d3x

∞∑
n=1

βnr
n−1r × jfi

= ei−1
√

3ω

2π

∫
dr r2

∞∑
n=1

βnr
n−1
(
−2r

3
wTf σwi(fi(r)gf (r) + ff (r)gi(r))

)

= −ei−1
√

2ω

3π
(wTf σwi)

∫
dr r2g1(ωr)(fi(r)gf (r) + ff (r)gi(r))

(4.29)

In the last line, we have recombined the factor of r arising from r× jfi with the remaining powers of r and rn−1,
giving our original Bessel function. We can rewrite the integral as an inner product for clarity

Mfi = −ei−1ω3/2

√
2

3π
(wTf σwi)

[
〈gf |g1(ωr)/ω|fi〉+ 〈ff |g1(ωr)/ω|gi〉

]
= −ei−1ω3/2

√
2

3π
(wTf σwi)IR

(4.30)

where we have defined IR ≡ 〈gf |g1(ωr)/ω|fi〉+ 〈ff |g1(ωr)/ω|gi〉, which we will refer to as the radial integral. We
have also introduced a factor of 1/ω into the radial integral to match the traditional expression for the M1 rate.
The decay rate is given by

ΓM1 = 2π|Mf i|2

= 2π
2ω3e2

3π
|IR|2|wTf σwi|2

=
4ω3e2

3
|IR|2|wTf σwi|2

(4.31)

Before calculating the radial integral, we turn to the spin dependent portion of the decay rate |wTf σwi|2.
As the final spin state of the muon is free to be either up or down, and as we assume the initial state to be
unpolarized, we average over initial states and sum over final states. If the final state is the same as the initial
state, we get a contribution from the z-component of σ, otherwise we get a contribution from both the x and y
components. The result is

wTf σwi =

{
(0, 0,±1), mi = mf

(1,±i, 0), mi 6= mf

(4.32)
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The signs above depend on the spin of the initial state, but since we square and sum over final states it doesn’t
affect the final result. Squaring and summing gives a factor of 3, hence the decay rate becomes

ΓM1 = 4ω3e2|IR|2 (4.33)

This is the general form of the M1 decay rate, although the Radial integral is sometimes redefined with a factor
of three, as is done in Landau and Lifshitz as well as Johnson (1972) [36]. The factor of three they include into
the radial integral is to cancel a factor of one third appearing as the first coefficient in the Bessel function Taylor
expansion.

We now turn to the evaluation of the radial Dirac functions and the radial integral, IR. Recall the form of
the Dirac radial wavefunction, given in chapter 2

f, g (r) =
±(2λ)3/2

Γ(2γ + 1)

[
(m± E)Γ(2γ + nr + 1)

4m(Zαm/λ)(Zαm/λ− κ)nr!

]1/2
(2λr)γ−1e−λr×[

(Zαm/λ− κ)F (−nr, 2γ + 1, 2λr)∓ nrF (1− nr, 2γ + 1, 2λr)

] (4.34)

The initial state has nri = 1, and the final state has nrf = 0. As both states are l = 0 states, κi = κf = −1, so
that γi = γf , hence we relabel κ = κi = κf and γ = γi = γf for simplicity. We first look at the hypergeometric
functions. With reference to Eq. 2.28, we see that both fi(r) and gi(r) contain F (−nri , 2γ+1, 2λir). As nri = −1,
the series terminates after n = 1, giving F (−1, 2γ + 1, 2λir) = 1 − 2λir/(2γ + 1). The second hypergeometric
function reduces to F (0, 2γ + 1, 2λir) = 1. The final radial Dirac functions (for nrf = 0) also contain the same
terms, with the substitutions λi → λf .

In order to better appreciate the radial dependance of the wavefunctions, we will first define some notation to
reduce the clutter of the constants. We define

βfi =
(2λi)

γ+1/2

Γ(2γ + 1)

[
(m+ Ei)Γ(2γ + nr + 1)

4m(Zαm/λi)(Zαm/λi − κ)nri !

]1/2
βgi =

−(2λi)
γ+1/2

Γ(2γ + 1)

[
(m− Ei)Γ(2γ + nr + 1)

4m(Zαm/λi)(Zαm/λi − κ)nri !

]1/2 (4.35)

so that the radial Dirac functions can be written as

fi(r) = βfir
γ−1e−λir

[(
Zαm

λi
− κ
)(

1− 2λir

2γ + 1

)
− 1

]
gi(r) = βgir

γ−1e−λir
[(

Zαm

λi
− κ
)(

1− 2λir

2γ + 1

)
+ 1

] (4.36)

Analogous to the constants defined above in Eq. 4.35 for the initial wavefunctions, we can do the same for the
final wavefunctions, replacing the initial parameters with the final parameters (e.g. λi → λf ) to find the radial
Dirac functions of the final state

ff (r) = βff r
γ−1e−λfr

(
Zαm

λf
− κ
)

gf (r) = βgf r
γ−1e−λfr

(
Zαm

λf
− κ
) (4.37)

The simplicity of the final state functions is due to nrf = 0, which causes the second term in the square brackets
to vanish, and also the first hypergeometric function to be unity.

The First Term in the Bessel Expansion

Recall the matrix element involves the inner product with the operator g1(ωr)/ω. Note that as ω is the photon
energy, we have ωr ≈ m(Zα)2a0 = Zα < 1. With reference to Eq. 4.10, we can approximate the Bessel function
as

g1(ωr) =
sin(ωr)

(ωr)2
− cos(ωr)

ωr
≈ ωr

3
− (ωr)3

30
(4.38)

50



In this section, we will just retain the first term, but later we will be interested in evaluating the second one.
Thus there are two terms we need to evaluate in the radial integral (cf. 4.30). Let

Ia =

∫
dr

1

3
r3fi(r)gf (r)

Ib =

∫
dr

1

3
r3ff (r)gi(r)

(4.39)

We first study Ia

Ia =
βfiβgf

3

(
Zαm

λf
− κ
)∫

dr r3r2γ−2e−(λi+λf )r
[(

Zαm

λi
− κ
)(

1− 2λir

2γ + 1

)
− 1

]
(4.40)

Let a = 2γ + 1, b = λi + λf , c = Zαm/λi − κ, and d = 2λi/(2γ + 1), so that we can write

Ia =
βfiβgf

3

(
Zαm

λf
− κ
)∫ ∞

0

dr rae−br[c(1− dr)− 1]

=
βfiβgf

3

(
Zαm

λf
− κ
)[

1

ba+2
[cdΓ(a+ 2, br) + b(1− c)Γ(a+ 1, br)]

]∞
0

= −
βfiβgf

3

(
Zαm

λf
− κ
)

1

ba+2

(
cdΓ(a+ 2) + b(1− c)Γ(a+ 1)

) (4.41)

where Γ(a, x) =
∫∞
x
ta−1e−tdt is the upper incomplete gamma function, satisfying the following relations

Γ(a, 0) = Γ(a), (Re(a) > 0)

lim
x→∞

Γ(a, x) = 0
(4.42)

Having evaluated the radial integral, we can simplify the result

Ia = −
βfiβgf

3(λi + λf )2γ+3

(
Zαm

λf
− κ
)[(

Zαm

λi
− κ
)

2λi
2γ + 1

Γ(2γ + 3) + (λi + λf )

(
1− Zαm

λi
+ κ

)
Γ(2γ + 2)

]

(4.43)

Its important to note that the β parameters have dimension eV2γ+1, so that the radial integral has dimension
eV−1. Given that the only other dimensional parameter in the decay rate is the transition energy, ω3, we see the
dimension of the decay rate is indeed eV (or s−1 in SI units) as expected.

We now turn to the second integral

Ib =

∫
dr

1

3
r3ff (r)gi(r) =

βgiβff
3

(
Zαm

λf
− κ
)∫

dr r3r2γ−2e−(λi+λf )r
[(

Zαm

λi
− κ
)(

1− 2λir

2γ + 1

)
+ 1

]
(4.44)

Comparing Ib to our expression for Ia, we see the only diffference in the radial integrand is the +1 instead of
−1 in the last factor. The computation is very similar, with some sign differences in the last term in the final line.
The only difference from the β constants is the appearance of (m − Ei)(m + Ef ) instead of (m + Ei)(m − Ef ).
Making these replacements gives the second integral as

Ib = −
βgiβff

3(λi + λf )2γ+3

(
Zαm

λf
− κ
)[(

Zαm

λi
− κ
)

2λi
2γ + 1

Γ(2γ + 3)− (λi + λf )

(
1 +

Zαm

λi
− κ
)

Γ(2γ + 2)

]

(4.45)

The radial integral is thus approximated by the integral I1 ≡ Ia + Ib. Using the definitions appearing in
Eq. 2.29, as well as the results of Eqs. 4.43 and 4.45, one can compute the radial integral I1. Before we compute
this, it is worthwhile to study the second term in the Bessel expansion as well.
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The Second Term in the Bessel Expansion

As discussed above, our previous expression only took into account the first non-zero term of the Bessel expansion.
Before evaluating the second term, it will prove useful to study the structure of the first term to understand any
cancellations that appear. Recall that the Bessel function can be written as

g1(ρ) =
sin(ωr)

(ωr)2
− cos(ωr)

ωr
≈ ωr

3
− (ωr)3

30
(4.46)

In the non-relativistic limit, we have

f(r) ≈ R(r), g(r) ≈ R′(r)

2m
, g1(ωr)/ω ≈ r

3
(4.47)

In the previous section, we computed the matrix element using the full radial Dirac functions, but only the
first term of the Bessel function. Normally, we would expect the second term to be much smaller than the first
by a factor of (Zα)2, but there is relativistic suppression in the first term that arises due to orthogonality of
the non-relativistic radial wavefunctions. To see this, suppose the the non-relativistic wavefunctions were used
together with the lowest order Bessel expansion. Using integration by parts, we see that the first term of the
radial integral would be proportional to〈

R′f
2m

∣∣∣∣r∣∣∣∣Ri〉 =

∫
dr r3

R′f (r)

2m
Ri(r)

=
��

��
�
��*

0[
r3
Rf (r)

2m

]∞
0

− 3

∫
dr r2

Rf (r)

2m
Ri(r)−

∫
dr r3

Rf (r)

2m
R′i(r)

= −
�
��

��*
0〈

Rf

∣∣∣∣Ri〉−〈Rf ∣∣∣∣r∣∣∣∣ R′i2m

〉
(4.48)

In the last line, the first term is zero because the radial wavefunctions are orthogonal as Rf = R10 and Ri = R20.
We immediately see the radial integral for the transition vanishes〈

R′f
2m

∣∣∣∣r∣∣∣∣Ri〉+

〈
Rf

∣∣∣∣r∣∣∣∣ R′i2m

〉
= −

〈
Rf

∣∣∣∣r∣∣∣∣ R′i2m

〉
+

〈
Rf

∣∣∣∣r∣∣∣∣ R′i2m

〉
= 0 (4.49)

Hence the first term in the Bessel expansion is suppressed by relativistic corrections to the radial wavefunctions
(i.e. higher powers of Zα). Conversely, the second term contains the operator r3 instead of r, so that the integral
(denoted I2), after integration by parts in a similar manner (see below), becomes proportional to 〈Rf |r2|Ri〉 which
is non zero. Importantly, this term is non-vanishing even when the non-relativistic wavefunctions are used. It is
not suppressed by relativistic corrections to the radial function, instead it is suppressed by the additional factor
of (ωr)2 in the Bessel expansion. Hence we cannot ignore the second term in the Bessel expansion by a power
counting argument, we must also evaluate this term to understand the strengths of the different suppressions.

We now seek to evaluate the contribution from the second term in the Bessel function expansion, using the
non-relativistic expansion of the Dirac functions above.

Using the approximate Dirac functions and substituting the second term into the matrix element above yields

I2 =

[〈
R′f
2m

∣∣∣∣− ω2r3

30

∣∣∣∣Ri〉+

〈
Rf (r)

∣∣∣∣− ω2r3

30

∣∣∣∣ R′i2m

〉]
(4.50)

Integrating the first term by parts gives〈
R′f
2m

∣∣∣∣− ω2r3

30

∣∣∣∣Ri〉 = −ω
2

30

∫
dr r5

R′f (r)

2m
Ri(r)

= −ω
2

30
�
��

�
��
�*0[

r5
Rf (r)

2m

]∞
0

+
ω2

6

∫
dr r4

Rf (r)

2m
Ri(r) +

ω2

30

∫
dr r5

Rf (r)

2m
R′i(r)

=

〈
Rf

∣∣∣∣ω2r2

12m

∣∣∣∣Ri〉+

〈
Rf

∣∣∣∣− ω2r3

30

∣∣∣∣ R′i2m

〉
(4.51)

Importantly, the second non-zero term appearing from integration by parts cancels with the second term in the
matrix element. The correction to matrix element reduces to one term

I2 =
ω2

12m
〈Rf |r2|Ri〉 (4.52)

Putting both terms together yields the decay rate as

ΓM1 = 4αω3|I1 + I2|2 (4.53)
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4.1.2 The Muonic Zirconium Transition

The result derived above will be modified in our case as discussed earlier. The initial and final perturbed
wavefunctions are given by

ψi ≈ |100〉|1〉+ εi,1s|100〉|0〉+ εi,2s|200〉|0〉
ψf ≈ |100〉|1〉+ εf,1s|100〉|0〉+ εf,2s|200〉|0〉

(4.54)

In order to include this mixing in our M1 transition expression above, the matrix element is modified as

〈100|M̂ |200〉 →
(
〈0|〈100|+ εf,1s〈1|〈100|+ εf,2s〈1|〈200|

)
M̂

(
|100〉|1〉+ εi,1s|100〉|0〉+ εi,2s|200〉|0〉

)
= εf,2s〈1|〈200|M̂ |100〉|1〉+ εi,2s〈0|〈100|M̂ |200〉|0〉
= (εf,2s + εi,2s)〈100|M̂ |200〉

(4.55)

Here the operator M̂ represents the operator repsonsible for the M1 transition. Although the calculation above
is written using notation from the Schrödinger bound states, the same result holds for the Dirac bound states we
used above (as the perturbation is spherically symmetric). Hence the modification to the decay rate is simply a
multiplication by |εf,2s + εi,2s|2. Thus the decay rate of the relevant muonic zirconium M1 transition is given by

ΓM1 = 4ω3α|I1 + I2|2|εi,2s + εf,2s|2 (4.56)

4.1.3 Calculating the Decay Rate

To determine the transition energy ω as well as the energy values found in ε2s and εf,2s, we use the energies found
from numerical solutions to the Schrödinger equation. Although it may seem inconsistent to use the Schrödinger
energies with the Dirac wavefunctions, the energies found from the numerical solutions are much more accurate
than the analytic Dirac energies. The Dirac energies will be used everywhere else (e.g. in the Dirac wavefunctions
to compute the radial integral), and the difference between the perturbed Schrödinger energies and the Dirac
energies are small (see table 3.1). The biggest approximation is the use of the pointlike Dirac wavefunctions in the
radial integral I1. Since we obtained the wavefunctions via the Schrödinger equation, our numerical wavefunctions
cannot be applied here as the matrix element vanishes when non-relativistic wavefunctions are used. Therefore
we must use the pointlike Dirac wavefunctions. Our numerical Schrödinger solutions are used in computing the
radial integral I2, cf. Eq. 4.52. The relevant Schrödinger energies are given below in table 4.1.

Table 4.1: Numerical energies for the M1 transition

Quantum Number n (State: |n00〉|0〉 ) Numerical Energy (keV)
1 -3598.4
2 -1000.6

ENuc 1760.7

The transition energy ω is determined from the unperturbed energies between the |100〉|1〉 state and the
|100〉|0〉 state, which is just the difference in energy between the nuclear excited state and nuclear ground state,
ENuc = 1760.7keV. The mixing part of the decay rate is given by

|εf,2s + εi,2s|2 =

∣∣∣∣B × 〈200|NNuc(r)|100〉
E1 − ENuc − E2

+
B × 〈200|NNuc(r)|100〉

E1 + ENuc − E2

∣∣∣∣2
= |B|2 × |〈200|NNuc(r)|100〉|2

(
1

E1 − ENuc − E2
+

1

E1 + ENuc − E2

)2
(4.57)

Using our previous results for B and 〈200|NNuc(r)|100〉, we find that

|εf,2s + εi,2s|2 = 1.67× 10−7 (4.58)

The last thing we need is to compute the radial integral I. The parameters as well as final result are given below
in table 4.2. Note that the first section of the table gives the parameters relevant to the Dirac wavefunctions,
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Table 4.2: Numerical Values for Radial Integral

Quantity Initial State Value Final State Value

κ -1

γ 0.9564

nr 1 0

E 1.0450× 105keV 1.0105× 105keV

λ 1.5595× 104keV 3.0849× 104keV

Radial Integral, I1 8.6012× 10−8keV−1

Radial Integral, I2 −1.0935× 10−8keV−1

Radial Integral, I 7.5077× 10−8keV−1

only used in the integral I1. In particular the energies include the rest mass of the muon, in contrast to the
Schrödinger energies.

We see that the second non-zero term in the Bessel function expansion is comparable to the first term.
Combining all of our previous results, the M1 transition is

ΓM1 = 4αω3|I1 + I2|2|εf,2s + εi,2s|2

=
4(1760.71keV)3

137
(7.5077× 10−8keV−1)2(1.67× 10−7)

= 1.48× 10−13keV

(4.59)

Converting this via ~ = 6.582× 10−16eV·s gives the decay rate as

ΓM1 = 2.28× 105s−1 (4.60)

Once we have also calculated the rate of the two photon transition, we shall compare the muonic nuclear de-
excitation methods to the electronic nuclear de-excitation method (the E0 transition).

4.2 The Two Photon Transition

Recall that photon transitions arise from the modification of the momentum p → p + eA [4], so that the
Schrödinger equation contains a term proportional to (p + eA)2. In order to incorporate two photons, we can
either include a term of the form (eA)2 from the expansion (p + eA)2 or we could include 2 terms of the form
ep ·A. The (eA)2 term cannot yield this decay in non-relativistic QM (with the approximation eik·r = 1), as we
will end up with the inner product 〈R1s|R2s〉 = 0. In principle, we could use the Dirac functions to get a non-zero
result, or expand the photon wavefunction to higher order in ωr as done in the M1 transition. However as in
the M1 transition, both approaches will be suppressed by extra factors of Zα. Conversely the approach of using
two factors of ep ·A can yield a non-zero result with the non-relativistic wavefunctions and with the lowest order
expansion of the photon wavefunction. Thus we will work with the perturbation ep ·A. As each photon carries
a unit of angular momentum, it is obvious that we need a second order perturbative approach, as the first order
approximation will yield a vanishing decay rate. The transition can occur via the Feynman diagrams depicted in
figure 4.2 below.

Figure 4.2: Feynman diagrams for the 2E1 matrix element. ω and ω′ represent the energies of the two emitted
photons.

The middle line in both diagrams represents an arbitrary virtual atomic state, and to compute the matrix
element we must sum over all possible states (both bound states and continuum states), as expected from our
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discussion of second order perturbation theory above. Following Fermi’s golden rule, the differential transition
probability is given by

dΓ = 2π|V21|2
d3k

(2π)3
d3k′

(2π)3
δ(Ef + ω + ω′ − Ei) (4.61)

The two phase space factors correspond to the photons with wave vectors k and k′. Applying second order
perturbation theory to the two diagrams above yields the matrix element

V21 =

(∑
k′

V ′2kVk1
Ei − Ek − ω

+

∫
V ′2νVν1

Ei − Eν − ω
dν

)
+

(∑
k′

V2kV
′
k1

Ei − Ek − ω′
+

∫
V2νV

′
ν1

Ei − Eν − ω′
dν

)
(4.62)

In the first parenthesis (corresponding to the first diagram above) the first terms involves summing over all
intermediate atomic bound states (except for k = 2s), whereas the second term involves the integral over all
the continuum atomic states. The second set of parenthesis in the matrix element is the term from the second
diagram above, where the photon with energy ω′ is emitted second. The primes on the matrix element indicate
the interaction occurs with the photon with energy ω′. Conservation of energy dictates that the energies of the
two photon must sum to the total transition energy ω + ω′ = ω0, where ω0 ≡ E2s − E1s is the total energy
available from the transition. In the following we will suppress the continuum expressions, and work with the
sums for simplicity, although the same derivations will apply to both terms.

Each individual interaction involves a photon and two atomic states, the most dominant being the dipole
interaction since the virtual intermediate states are arbitrary. Hence we approximate the potential by the dipole
interaction potential

V = −d ·E = d · Ȧ (4.63)

Both photon energies are bounded above by the total transition energy, and hence their wavelengths are bounded
below by the wavelength corresponding to the transition energy. As before, the wavelength of the transition
energy is larger than the scale of the system by 1/(Zα) > 1. Hence we can approximate the plane wave in
the photon wavefunction as unity e−ik·r ≈ 1. Thus the photon wavefunctions are (in the three dimensionally
transverse gauge)

Ae,ω =
√

4π
e∗√
2ω
e−iωt, A′

e′,ω′ =
√

4π
e′∗√
2ω′

e−iω
′t (4.64)

and the dipole interactions takes the form

V2k = i
√

2πω(e∗ · d2k), V ′k1 = i
√

2πω(e′∗ · dk1) (4.65)

Substituting Eqs. 4.62 and 4.65 into the differential decay rate gives

dΓ = 2π

∣∣∣∣2π√ωω′(∑
k′

(e′∗ · d2k)(e∗ · dk1)

Ei − Ek − ω
+
∑
k′

(e∗ · d2k)(e′∗ · dk1)

Ei − Ek − ω′

)∣∣∣∣2 d3k

(2π)3
d3k′

(2π)3
δ(Ef + ω + ω′ − Ei)

=
ω3ω′3

(2π)3

∣∣∣∣(∑
k′

(e′∗ · d2k)(e∗ · dk1)

Ei − Ek − ω
+
∑
k′

(e∗ · d2k)(e′∗ · dk1)

Ei − Ek − ω′

)∣∣∣∣2dωdω′dΩωdΩω′δ(Ef + ω + ω′ − Ei)

=
ω3(ω0 − ω)3

(2π)3

∣∣∣∣(∑
k′

(e′∗ · d2k)(e∗ · dk1)

Ei − Ek − ω
+
∑
k′

(e∗ · d2k)(e′∗ · dk1)

Ei − Ek − (ω0 − ω)

)∣∣∣∣2dωdΩωdΩω′

(4.66)

In the last line we have integrated over ω′, effectively setting ω′ = ω0 − ω. In a similar manner to the
E1 transition, we can simplify the result by summing over photon polarizations and integrating over photon
directions. For simplicity, define

(D21)pq ≡
∑
k′

(d2k)p(dk1)q
Ei − Ek − ω

+
∑
k′

(d2k)q(dk1)p
Ei − Ek − (ω0 − ω)

(4.67)

where p, q = 1, 2, 3 label the cartesian coordinate components of the dipole vectors. This allows us to write the
transition rate in a much more convenient manner

dΓ =
ω3(ω0 − ω)3

(2π)3
|e∗pe′∗q (D21)pq|2dωdΩωdΩω′ (4.68)

Summing over the photon polarisations and evaluating the square yields
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∑
Polarizations

|e∗pe′∗q (D21)pq|2 =
∑
Pol.

e∗pe
′∗
q ere

′
s(D21)pq(D21)∗rs

= (δpr − npnr)(δqs − n′qn′s)(D21)pq(D21)∗rs

(4.69)

Integrating over the photon directions dΩωdΩω′ via use of∫
(δij − ninj)dΩ = 4πδij −

4π

3
δij =

8π

3
δij (4.70)

allows us to write

∫
dΩωdΩω′

∑
Polarizations

|e∗pe′∗q (D21)pq|2 =

(
8π

3

)2

δprδqs(D21)pq(D21)∗rs

=

(
8π

3

)2

(D21)pq(D21)∗pq

(4.71)

Hence the transition rate is

dΓ =
8ω3(ω0 − ω)3α2

9π
(D21)pq(D21)∗pqdω (4.72)

In order to simplify the expression, define the z-axis to be aligned with the particle (where the nucleus is at
the origin). Thus the dipole operator is just d = e(0, 0, z). We can bring out the resulting factors of e, giving an
overall factor of α2. We are left with matrix elements of the form 〈ψjs|z|ψk〉 = 〈ψjs|z|ψnlm〉, where j = 1, 2, and
we have replaced the sum over all states labeled by k to the usual labeling (of bound states) by nlm. We can
again simplify by considering the angular integral, with the use of z =

√
4π/3rY10, so that

〈ψjs|z|ψnlm〉 =

√
4π

3
〈Rjs|r|Rnl〉

∫
dΩY00Y10Ylm

=
1√
3
〈Rjs|r|Rnl〉

∫
dΩY10Ylm

=
1√
3
〈Rjs|r|Rn1〉δ1lδm0

(4.73)

The idea is essentially the same as the E1 transition, where we discover the angular selection rules for electric
dipole transitions. The computation goes through in a very similar manner for the continuum spectrum, although
the radial wavefunctions are indexed by the momentum instead of quantum number n. When we sum over all
possible intermediate states, the angular selections rules imply that only the |n10〉 states will give a contribution.
Hence the transition rate can be written as

dΓ(ω) =
8ω3(ω0 − ω)3α2

27π
|F2s,1s(ω) + F2s,1s(ω0 − ω)|2dω (4.74)

where

F2s,1s(ω) =

∞∑
n=2

〈R1s|r|Rn1〉〈Rn1|r|R2s〉
En − E2 + ω

+

∫
〈R1s|r|Rq1〉〈Rq1|r|R2s〉

Eq − E2 + ω
dq (4.75)

In this last expression, we have re-introduced the continuum states, characterized by the momentum q =√
2mE. Although the final appearance of the continuum contribution is similar to the discrete case, there are

some differences, which we shall quickly highlight. As per the E0 transition, we can expand the continuum states
as

ψq =
4π

2q

∞∑
l=0

l∑
m=−l

ileiδlRql(r)Y
∗
lm(q/q)Y ∗lm(r/r)

ψq|l=1,m=0 =
4π

2q
ieiδ1Rql(r)Y

∗
10(k/k)Y ∗10(r/r)

(4.76)

where Rql(r) are the positive energy radial Coulomb wavefunctions [6], normalized on the 2π/q scale so that
〈Rql|Rq′l〉 = 2πδ(q − q′). The parameter δl is the phase shift due to the Coulomb potential. The overall phase
ieiδl will cancel out due to contribution from the two matrix elements, one of which will give the phase shift, and
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the other its complex conjugate. In the second line we have take only the terms with orbital angular momentum
l = 1 and z component m = 0, as per the selection rule above. Since we are dealing with a continuum state, we
need to integrate over all momenta q. The contribution from the continuum states is thus∫

d3q

(2π)3
〈R1s|r|Rq1〉〈Rq1|r|R2s〉

Eq − E2 + ω

(4π)2

4q2
|Y10(q/q)|2

=

∫
q2dqdΩq

8π3

16π2

4q2
|Y10(q/q)|2 〈R1s|r|Rx1〉〈Rx1|r|R2s〉

Eq − E2 + ω

=
1

2π

∫
〈R1s|r|Rq1〉〈Rq1|r|R2s〉

Eq − E2 + ω
dq

(4.77)

Thus if we instead define the positive energy solutions Rq1 with an extra factor of 1/
√

2π, they take the same
form as the discrete sum. This change corresponds to the normalization condition 〈Rql|Rq′l〉 = δ(q − q′).

Proceeding with the calculation, it is convenient to choose units of distance such that aZ = 1 as it allows
us to apply some of our intermediate steps from the hydrogen-like transition (with an electron) to the muonic
transition. It also allows us to develop some intution on significant effects in both cases. Note that the transition
energies and momenta are now measured in units of the inverse Bohr radius. In the case of the hydrogen decay,
this implies the energy of both photon is ω0 = 3/8Zα. The bound-bound inner products have a simple closed
form for any p-wave state [29] (appendix A.1)

〈R1s|r|Rn1〉 = 24n7/2
(n− 1)n−5/2

(n+ 1)(n+5/2)

〈Rn1|r|R2s〉 = 217/2n7/2(n2 − 1)1/2
(n− 2)n−3

(n+ 2)(n+3)
, (n 6= 2)

〈Rnl|r|Rnl−1〉 = −3

2
n
√
n2 − l2

(4.78)

Analytic expressions for the continuum inner products are given in appendix A.2. Note that the inner products
below are evaluated for the positive energy solutions including the factor of 1/

√
2π as discussed above.

〈R1s|r|Rq1〉 = 24
q1/2

(1 + q2)3/2
e−2arctan(q)/q√

1− e−2π/q

〈Rq1|r|R2s〉 = 217/2
q1/2(1 + q2)1/2

(1 + 4q2)3
e−2arctan(2q)/q√

1− e−2π/q

(4.79)

In contrast to the one-photon decays we previously studied, the photons in a two-photon decay are not mono-
energetic, the only constraint being the sum of their energies is the transition energy. In order to find the total
decay rate, we must integrate the differential cross section over the range of possible photon energies, with a
factor of 1/2 to avoid double counting the photons.

Γ2E1 =
1

2

∫ ω0

0

dΓ(ω) =
4

27π

∫ ω0

0

ω3(ω0 − ω)3α2|F2s,1s(ω) + F2s,1s(ω0 − ω)|2dω (4.80)

To evaluate the resulting integral, it is convenient to perform a change of variable of the form y = ω/ω0 =
ω/(3/8Zα). The variable y is the fractional energy carried off by one of the photons, which allows us to write
the integral in a cleaner form. Under this change of variables we have

dy =
dω

ω0

⇒ dω = ω0dy

ω3(ω0 − ω)3 = ω6
0y

3(1− y)3

(4.81)

We also bring a factor of ω out of the energies in the denominator, writing

En − E2 + ω = − 1

2n2
Zα+

1

8
Zα+ ω

= ω

[
4

3

(
1

4
− 1

n2

)
+ y

] (4.82)
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for the bound state sum, and (using aZ = 1)

Eq − E2 + ω =
q2

2m
mZα+

1

8
Zα+ ω

= ω0

(
4q2

3
+

1

3
+ y

) (4.83)

for the continuous state integral. Making these substitutions and collecting the powers of ω0 outside the integral
allows us to write the decay rate as

Γ2E1 =
4

27π
ω5
0α

2

∫ 1

0

y3(1− y)3|G2s,1s(y) +G2s,1s(1− y)|2dy (4.84)

where G2s,1s is just the dimensionless analogue of F2s,1s

G2s,1s(y) =

∞∑
n=2

〈R1s|r|Rn1〉〈Rn1|r|R2s〉
4
3 ( 1

4 −
1
n2 ) + y

+

∫ ∞
0

〈R1s|r|Rq1〉〈Rq1|r|R2s〉
4q2

3 + 1
3 + y

dq (4.85)

In order to restore natural units, we must multiply by a4Z , and also use ω0 = 3/8m(Zα)2. With these changes
in mind, the transition rate in natural units is given by

Γ2E1 =
4

27π
ω5
0α

2a4Z

∫ 1

0

y3(1− y)3|G2s,1s(y) +G2s,1s(1− y)|2dy (4.86)

As we have pulled out all relevant parameters from the remaining integral, we see that the two-photon 2E1
transition scales as

Γ2E1 ∼ ω5
0α

2a4Z ∼ m5(Zα)10α2 1

m4(Zα)4
= (Zα)6mα2 (4.87)

Evalution of the 2E1 decay rate now involves summing over the p-wave states, integrating over the continuum
states, squaring the result and integrating over the frequency of one emitted photon. It should be obvious that a
numerical approach is best suited here as it allows the inclusion of many p-wave states, and numerical integration.
As we will later be interested in generalizing this approach to the finite-size nuclear affects (where we will have
discretized the radial coordinate in order to iteratively solved the Schrödinger equation), it will be handy to use
techniques that will generalize easily. Thus we want to approximate our integrals by sums over discrete sets. For
the moment, we will use the analytic results above, and discretize the integral over the fractional photon energy
y. This is done by defining a uniformly distributed 1 x m array with values 0 ≤ y ≤ 1. As the radial matrix
elements are know (Eqs. 4.78 and 4.79), we can approximate the integral crudely as a sum of rectangles. If we
denote the integral by f(y), and our array of fractional photon energies by y(i), with 1 ≤ i ≤ m indexing array
positions, we have

Γ2E1 =
4

27π
ω5
0α

2a4Z

∫ 1

0

f(y)dy

≈ 4

27π
ω5
0α

2a4Z

m∑
i=1

f(y(i))× 1

m

(4.88)

where f(y(i)) is the value of the integrand evaluated at array position i, and 1/m is the width of the rectangle
(the discretized dy line element). For our purpose, we have taken the number of rectangles to be m = 10000, and
with reference to 4.7, we see that the curve does not change appreciably over the size 1/10 000.

We can also study how many p-wave states to include (i.e. up to a certain principal quantum number nmax).
We have evaluated the 2E1 decay rate for 1 ≤ nmax ≤ 100, with results summarized in table 4.3. The results
have been written in SI units via division by ~ in order to compare our results against those from the literature.

For large nmax, our result is similar to that quoted in Johnson, Γ2E1 = 8.2290s−1, and including only the first
4-pwave states (up to R51) gives an estimate accurate to roughly 6%.

4.3 The Two Photon Transition for the Perturbed Muonic Zirconium
State

Our muonic zirconium scenario is slightly more complicated. Firstly, the 2s state only appears in our perturbation,
so the actual energy available for the transition is the energy of nuclear excitation, which is smaller than the ususal
2s → 1s energy by a factor of ∼2. Moreover, the muonic wavefunctions are significantly altered near the origin
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Table 4.3: Two Photon transition rates for Hydrogen, varying the total number of p-wave states considered

Quantum Number ”nmax” Decay Width (s−1)
2 14.044
3 9.867
4 9.078
5 8.735
10 8.364
25 8.265
50 8.251
100 8.247

due to finite-size nuclear affects. Since the available transition energy is smaller by a factor of ∼ 2, we might
expect the result to be smaller by a factor of ∼ 25, however the ratios ω0 : En are also different, and hence
the denominator of the function F2s,1s will behave differently, so it is important to evaluate the effect. The first
effect should lessen the 2E1 transition more significantly than the M1 transition, as the 2E1 transition goes as
ω5
0 , compared to the M1 transition, which goes as ω3

0 . The second effect turns out to have order one changes to
the radial matrix elements, but the effect of the energy ratios in the denominator on the final result is harder to
estimate. We will see that the first effect has the most significant impact, and hence we expect the M1 decay
width should be larger than the 2E1 decay width. For convenience, we will refer to the usual 2s→ 1s transition in
a hydrogen-like atom as the regular two photon transition. We will also refer to the muonic zirconium transition
|100〉|1〉 → |100〉|0〉 as the muonic zirconium transition.

Taking into account the changes discussed above means that our transition rate formula becomes

Γ2E1 =
1

2

∫ ENuc

0

dΓ(ω) =
4

27π

∫ ENuc

0

ω3(ENuc − ω)3α2|F2s,1s(ω) + F2s,1s(ω0 − ω)|2dω (4.89)

where the function F2s,1s(ω) is now given by

F2s,1s(ω) =

∞∑
n=2

〈R1s,FS |r|Rn1,FS〉〈Rn1,FS |r|R2s,FS〉
En − (E1 + ENuc) + ω

+

∫
〈R1s,FS |r|Rq1,FS〉〈Rq1,FS |r|R2s,FS〉

Eq − (E1 + ENuc) + ω
dq

≈
∞∑
n=2

〈R1s,FS |r|Rn1〉〈Rn1|r|R2s,FS〉
En − (E1 + ENuc) + ω

+

∫
〈R1s,FS |r|Rq1〉〈Rq1|r|R2s,FS〉

Eq − (E1 + ENuc) + ω
dq

(4.90)

There are two changes to the formula in the first line. We have introduced the subscript FS (Finite Size) on
all the radial wavefunctions, to indicate that they are in fact the numerical solutions incorporating the finite size
nuclear effects. Secondly, as mentioned above, our original state is actually given by ψi ≈ |100〉|1〉+εi,1s|100〉|0〉+
εi,2s|200〉|0〉+ . . . , so that the actual energy of the original state is E1 + ENuc instead of E2. In the second line,
we have replaced the finite size p-wave states by their hydrogen-like counterpart. As we previously saw, finite
size does not have a significant effect on the non s-wave states, thus we can replace them with their hydrogen-like
solutions for convenience. We also do this for the continuum p-wave states. As before, we will factor out all
energies from the differential decay rate in order to make our integrand dimensionless. The result is identical to
Eq. 4.84 with the replacement ω0 → ENuc, except that the functions G2s,1s(y) are given by

G2s,1s(y) =

∞∑
n=2

〈R1s,FS |r|Rn1〉〈Rn1|r|R2s,FS〉
1.0699− 2.5578/n2 + y

+

∫ ∞
0

〈R1s,FS |r|Rq1〉〈Rq1|r|R2s,FS〉
2.5564q2 + 1.0699 + y

dx (4.91)

The numbers in the denominators are the relevant energy quantities, normalized by the transition energy, ENuc.
For example, the discrete case has the energy factor

En − (E1 + ENuc) + ω = ENuc

(
En
ENuc

− E1

ENuc
− 1 +

ω

ENuc

)
= ENuc

(
−4503.53keV/n2

1760.71keV
− −3596.20keV

1760.71keV
− 1 + y

)
= ENuc(−2.5578/n2 + 2.0699− 1 + y)

(4.92)

where we have used En = mµ(Zα)2/2 for the energies of the p-wave states, and the numerical energies for E1.
The case for the continuum is similar. We quickly note that all intermediate p-wave states must be virtual so
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there is no possibility of resonance because there are no p-wave states with energies in between the energy of
the initial state (ψi), and the full ground state (ψf ). Had we been interested in the 2E1 transition of the actual
muonic 2s state to the ground state (both being in the nuclear ground state), then we do get a resonance term
because E1 < E2p < E2s, with E2s − E2p ≈ 125 keV. Hence in the |200〉|0〉 → |100〉|0〉 we can have a cascade
where the 2s state can decay to the 1s state via a real intermediate 2p state, that is, two distinct electric dipole
transitions 2s→ 2p→ 1s. The real intermediate 2p state is in contrast to the virtual 2p states in the treatment
done above for the 2E1 transition.

In order to compute Eq. 4.91, we discretize the radial position (r), the momentum space (q), and finally the
fractional photon energy space (y). As before we will want to work in units where aZ,µ = 1/(Zαmµ) = 1. In
order to understand how ”pixelated” our spaces should be (i.e. the step size for each space), we can gain some
intuition from the hydrogen case studied above. We need to compute three nested integrals, first over the radial
space to find the radial matrix elements, then over the momentum space, and finally over the fractional photon
energy.

We first focus on the discrete-continuum integral, given by the second term in Eq. 4.91. Although it seems
like we should first study the radial integrals, it will prove simpler to first understand the momentum integrand.
For simplicity, define

AFS(q) ≡ 〈R1s,FS |r|Rq1〉〈Rq1|r|R2s,FS〉
2.05564q2 + 1.0669 + y

APL(q) ≡ 〈R1s,PL|r|Rq1〉〈Rq1|r|R2s,PL〉
4q2

3 + 1
3 + y

(4.93)

The functions AFS(q) and APL(q) are plotted in figure 4.3 and 4.6 for 3 values of the fractional photon energy,
y. Importantly, both functions drops off significantly for momentum q ≥ 1 and is nearly vanishing for q ≥ 5.
In the analytic case, roughly 2% of the total area exists in the interval q ∈ (1,∞), whereas only 3 × 10−5% of
the area exists in the interval q ∈ (5,∞) (these numbers do not depend significantly on the values of y). Since
both curves display similar behaviour, we can impose a momentum cut-off scale at qmax = 5. There is nothing
particularly special about the cut-off scale chosen, a smaller or larger value of qmax could be chosen, as long as
the majority of the integrated curve is contained before qmax. In other words, we need

∫ qmax
0

A(q)dq to be very
small. Although finite size effects push the peak of AFS(q) further our compared to its pointlike counterpart, we
can still impose a momentum cutoff at which point the continuum states do not contribute significantly.

Figure 4.3: Analytic radial matrix elements for various values of fractional photon energy.

This also gives us a sense of the size of the discretization needed. Significant changes happen over the interval
q ∈ (0, 1), so our discretization size qs must be satisfy qs � 1. We choose to discretize the momentum line (0, 5)
into 1000 steps, so that the step size is qs = 1/200� 1.

We now study the radial integral and radial matrix element integrals. In order to properly discretize the
space, we need to understand the characteristic size of the s-wave bound states and the continuum wavefunctions.
We already know that the characteristic size of the s-wave bound states is comparable to the Bohr radius (recall
we are using units where aZ = 1). Although our numerical solutions are significantly differently near the origin,
they display similar exponential decay behaviour outside a distance comparable to the Bohr radius. A selection
of various continuum wavefunctions for 0 ≤ q ≤ 5 are displayed below

As expected, states with higher momentum oscillate more rapidly in the radial space. We need to integrate
over all possible momentum states, so naively it would seem like discretizing the radial position is impossible
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Figure 4.4: Radial wavefunctions for the continuum states, for momentum 0 ≤ q ≤ 5. We have zoomed in on the
region 0 ≤ r ≤ 5 to better show the oscillation rate of higher momentum waves.

because there are always momentum states which oscillate more rapidly than any potential radial step size.
However we also expect that when the momentum is larger enough, the oscillations occur on a radial scale much
smaller than the Bohr radius, so their contribution becomes insignificant to the momentum integral. This is where
the study of the momentum integrand APL(q) becomes useful. Recall we have seen that the analytic expression
for APL(q) is greatly suppressed for momentum q & 5. Glancing at figure 4.4, it is not obvious to see why this
is the case for momentum q & 5, since the continuous wavefunction with momentum q = 5 oscillates on a scale
comparable to the Bohr radius. We need to also consider other factors in the integrand, a factor of r from the
dipole operator, and a factor of r2 from the volume factor. Taking these factors into effect, we see the r3 factor
effectively spreads out the scale on which the non-continuum part of the integrand (i.e. r3R10(r)) is significant.
In other words, the characteristic scale of ψ1s(r)r

3 is larger than the Bohr radius, see figure 4.5a. Hence the
oscillations of the continuum wavefunctions become quick compared to the scale of the rest of the integrand,
which results in a significant suppression. For a graphical perspective, the integrand of the radial matrix element
〈R10|r|Rq1〉 is depicted in figure 4.5, comparing momentum values q = 0.5 and q = 5 (values near the peak
and far along the tail of the function APL(q), see figure 4.3). The blue curve depicts the matrix element for
a low momentum continuous wavefunction. The red curve displays the matrix element for a q = 5 momentum
continuous wavefunction, and we can see that the oscillations are much quicker than the previous case. It is easy
to see why this contribution is suppressed compared to the low momentum state, the quicker oscillations result
in the cancellations discussed above. Although this is graphically depicted for the 1s wavefunction, the 2s state
behaves in a similar manner.

Now that we have more understanding of the characteristic size of the continuum wavefunctions, we are in
a position to discretize the radial space. We have just seen that there is a oscillatory suppression in the radial
matrix elements for larger momentum values, and we have imposed a momentum cut-off at q = 5. Hence the
smallest scale of interest results from the integrand containing the q = 5 continuum radial wavefunction, depicted
in figure 4.5b. We see the oscillations occur on the scale r ∼ 1 hence our radial step size rs should satisfy rs � 1.
From our numerical solutions to the finite nuclear size, the muon wavefunction values extend out to r ≈ 40. With
this in mind, we choose the discretize the radial space in 1000 steps, so that the step size is rs = 1/25 � 1.
Although it may seem like we should choose a smaller step size to get more accurate results, we will find that
this approximation will be suitable (later we estimate this contributes a 2% error to the total decay rate). One
reason not to choose a significantly smaller step size is that computation requires evaluating a hypergeometric
function (part of the continuum radial wavefunctions) on an already 1000 x 1000 array (over q and r discrete
values), which takes some time in MATLAB.

We can perform the radial integral and plot the resulting momentum spectrum, comparing it to the analytic
results we had previously studied. It is important to note that these are displayed for the regular 2s → 1s
transition in the hydrogen-like atom. The curves do not match exactly (as depicted in figure 4.6a), but are very
close. Although a smaller radial step size would bring these curves closer together, it is an extremely small effect.

The equivalent curve for the excited muonic zirconium two-photon transition displays similar behaviour,
although the shape is slightly different near the tail due to the finite nuclear size effects of the s-wave wavefunctions,
and also the ratio of the energies as compared to the transition energy. The muonic curve is also significantly
smaller than the regular two photon curve, this is primarily due to the energy ratios.
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(a) Factors in the radial integrand (b) The full radial integrand

Figure 4.5: The first figure (left) displays the ”spreading” effect of the r3 term on the muonic 1s wavefunction, and
compares the size of the resulting function to the size of two continuum radial wavefunctions. The second figure
(right) displays the oscillatory behaviour of the radial integrand for the same two continuum radial wavefunctions.
The momentum values are chosen so that the resulting value of the integral is near the peak (q = 0.5) of the
spectrum in figure 4.3, where as the other is far out on the tail to the right (q = 5)

(a) Analytic and computational momentum integrand
APL(q) for the pointlike nuclear two photon decay

(b) Computational momentum integrand AFS(q) for the two
photon decay in muonic zirconium

Figure 4.6: The first figure (left) displays the comparison between the analytic and computational methods used
to compute the momentum integrand, APL(q) for a few different values of the fractional photon energy y. Note
that the analytic results are the same as those displayed above in figure 4.3, and we have now included the
computational results derived using the discretization discussed above. We have only shown momentum values
q ∈ (0, 1) to better display the differences between the analytic and computational results. The second figure
(right) displays the same momentum integrand, but as applied to the muonic zirconium transition, AFS(q). The
differences arise due to the different energy ratio that appears in the denominator (cf. Eq. 4.93) and the fact that
we are using the finite size s-wave states. We show the integrand for momentum values q ∈ (0, 2) to highlight the
differences, since the integrand displays similar suppression for q ≥ 2 as in the regular two photon case.
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Once these integrals are done, we also have to discretize the fractional photon energy space. The resulting
differential photon energy distribution, f(y) ≡ y3(1− y)3|G2d,1s(y) +G2d,1s(1− y)|2 (the dimensionless integrand
appearing in Eqs. 4.91 and 4.84) is plotted for the regular hydrogen-like 2s→ 1s and the muonic zirconium two
photon transitions in figure 4.7. Note that both these curves were generated by only taking into account the first
4 p-wave states.

Figure 4.7: Dimensionless differential decay rate for the regular hydrogen-like 2s→ 1s and muonic zirconium two
photon transition, using intermediate p-wave bound states up to n = 5 (nmax = 5)

Both curves are symmetric about y = 0.5 due to the symmetry of y → (1 − y) which leaves the integrand
invariant. There are two important features of the muon curve that are different from the regular 2s → 1s two
photon curve, the maximum height of the curve, and its behaviour near the endpoints. Both arise from the same
consideration: the energy ratios appearing in the original matrix element (Eq. 4.62). In the regular case, the
contribution of the 2p states are very important. The energy of the intial 2s and intermediate 2p state are equal in
the pointlike analysis (hence the factor of 1/4− 1/n2 in Eq. 4.84), so for small y the function |G2s,1s(y)|2 behaves
as 1/y2. Near the origin, the other important factor is the y3 factor, which yields linear behaviour. However in the
muonic case, the initial energy is due to the muonic ground state and the nuclear excitation energy, which does
not cancel with the energy of the 2p state (the energy difference is 1.0699 − 2.5578/n2 6= 0 in Eq. 4.91). Hence
for small y the contribution of the 2p state (and all p-wave states) is just a constant, so the function behaviour
is mainly due to the y3 term, which is reflected in the cubic behaviour of the muon curve (more suppression at
the origin). The fact that the total height of the curve is smaller is likely due to the same reason, together with
a difference in the radial matrix elements. To see this, the contribution to the regular curve at midpoint y = 0.5
from only the 2p bound state is given by

〈R1s|r|R21〉〈R21|r|R2s〉
E2p − E2s + 0.5

≈ −13.4 (4.94)

whereas the contribution to the muonic curve is at the same point is given by

〈R1s,FS |r|R21〉〈R21|r|R2s,FS〉
E2p − (E1s + ENuc) + 0.5

≈ −9.4 (4.95)

We see the point on the regular curve is larger by 13.4/9.4 ≈ 1.4. A similar decrease by a factor of roughly 2.7 is
observed in the continuous Coulomb wave contribution, as seen in figure 4.6. From figure 4.7, we see the regular
curve is larger by approximately 5/3 ≈ 1.7, which is probably a weighted average of the two contributions.

There is another effect which could cause the suppression of the muonic curve. In the regular hydrogen-like
case, there is destructive interference between the 2p and other p-wave states. The 2p state is so dominant because
(as mentioned above) there is a cancellation between energy factors in the denominator. In the muon case, we
do not have this cancellation, so it is suspected that the 2p contribution is not as dominant, and the interference
from the other p-wave states would be more significant, causing the curve to be lower.

In order to evaluate the integral over the photon energy, we discretize the fractional photon energy into 10
000 steps, since this integral is computationally simple. It should be clear that this produces a step size ys that
is smaller than any scale appearing in figure 4.7. Writing

I =

∫ 1

0

y3(1− y)3|G2s,1s(y) +G2s,1s(1− y)|2dy (4.96)
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and referring back to Eqs. 4.84 and 4.91, we have the 2E1 decay rate as

Γ2E1 =
4

27π
ω5
0α

2a4Z,µ × I (4.97)

where we have converted back to natural units by multiplying by a4Z . We now need to add the perturbative
mixing depicted in figure 4.1. In a similar manner to the M1 transition, this modifies the decay rate by an
additional factor of |εf,2s + εi,2s|2 = 1.67 × 10−7. Evaluating the integral using the techniques developed above
gives I = 1.3616. Substituting ENuc = 1760.71keV and other relevant parameters gives the decay rate as

Γ2E1 =
4

27π

(1760.71keV)5

1372
1374

(40× 105658keV)4
× 1.67× 10−7 × 1.3616

= 1.0732× 10−14keV

(4.98)

Converting this via ~ = 6.582× 10−16eV·s gives the decay rate as

Γ2E1 = 1.63× 104s−1 (4.99)

Comparing this to the M1 transition, we see it is about an order of magnitude smaller

ΓM1

Γ2E1
=

2.28× 105s−1

1.63× 104s−1
≈ 14 (4.100)

4.3.1 Improvements on the Calculation

There are several sources of error that could be addressed.

• Firstly, one could include more p-wave bound states, since we have only summed over the first four. With
reference to Table 1, including up to 100 p-wave states would decrease the decay rate by roughly 6%
(assuming the higher p-wave states affect the muonic transition by a similar amount).

• Secondly, one could increase the number of steps in the discretization of the radial space, with the goal of
more accurately matching the curves in figure 4.6a. As the approximate curve is larger, the contribution from
the continuum states is overestimated. This continuum intermediate state integral destructively interferes
with the bound-state sum, so it is difficult to understand how much this error contributes. Comparing the
integrals of the analytic and approximate functions for fractional photon energies y = 0.1,0.2,...1 gives the
average approximate integral to be roughly 10% larger than the analytic integral. For the hydrogen-like
case, ignoring the continuum states gives a decay rate of approximately 10s−1, compared to the true decay
rate of approximately 8s−1. This leads us to believe that the effect of the continuum states decreases the
overall decay rate by approximately 20%. Multiplying these factors together yields the naive estimate that
the discretization error would increase the decay rate by approximately 0.2× 10% = 2%.

• In our derivation, we made the approximation eikr ≈ 1, which is valid for 1/(Zα) >> 1. For muonic
zirconium, Z = 40, so 1/(Zα) ≈ 3.4. Therefore other terms in the exponential expansion could also
contribute.

• One could also numerically solve the Schrödinger equation for the positive energy Coulomb wavefunctions
using the finite size potential. This effect is likely insignificant compared to the others, since only the p-wave
positive energy solutions are used, which are not effected significantly by the finite size effect.

• Lastly, one could do this computation using the relativistic framework. Johnson [36] notes that the rela-
tivistic treatment decreases the 2E1 decay rate for hydrogen-like atoms by approximately 7.4% (for Z=40,
using linear interpolation between the Z = 38 and Z = 42 results).

Since all these errors contribute less than 10% each, they would not change the result of the 2E1 transition
rate being a factor of ∼ 10 smaller than the M1 transition rate.

4.4 Comparison to the Electron Electric Monopole Transition

We have been considering the muonic zirconium atom as if the muon is the only orbiting particle, because its Bohr
radius is significantly smaller then the electronic Bohr radius, so the presence of the electrons is not appreciably
felt by the muon. However there are still 2 electrons which occupy the |100〉|1〉 state which means there are four
competing methods we have considered for nuclear de-excitation:

1. E0 transition due to electrons
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2. Electron-Positron pair production

3. M1 transition due to the muon

4. 2E1 transition due to the muon

There is actually another way the muonic atom in the nuclear ground state can be destroyed, via weak muon
capture. The muon can interact with a proton via a W+ boson, converting the proton to a neutron and the muon
into a muon neutrino. For the case of zirconium, the experimental lifetime for weak muon capture is 110.4ns [37],
which is roughly twice as large as the lifetime of the excited nuclear state, so this does not pose a significant issue.

We have the decay rate for each of the above transitions, so we can compare them to determine their relative
probabilities. Before doing this, we quickly note that due to screening, the electronic E0 transition in this case is
not the same as in the previous case. The probability that the muon is within the electron Bohr radius is given
by (assuming Schrödinger wavefunctions) is given by

P =

∫ aZ,e

0

|R10,µ(r)|2r2dr

=
4

aZ,µ

∫ aZ,e

0

r2 exp(−2r/aZ,µ)dr

= 1− e−2mµ/me
[
1 + 2

mµ

me
+ 2

m2
µ

m2
e

]
= 1− 2× 10−175

(4.101)

The nuclear charge is effectively screened by the entire muon charge, so the orbiting electron feels a charge of
Zeff = 39. Since the E0 transition behaves as Z3 in its most simple form (plane wave Schrödinger approximation,
see section 2.2), we will modify the E0 decay rate by a factor of (Zeff/Z)3 = (39/40)3 = 0.9269. Screening also
affects the electron-positron pair production ratio. Based on the work of Thomas [22], as well as Soff et al. [38],
the pair production rate approximately increases linearly with atomic charge, so the pair production decay rate
would be modified by a factor of Zeff/Z = 39/40 = 0.975

This transition rates are thus

ΓE0,e,Zeff=39 = 0.9269ΓE0,e,Z=40 = 1.05× 107s−1

ΓPP,e,Zeff=39 = 0.975ΓPP,e,Z=40 = 4.34× 106s−1

ΓM1,µ = 2.28× 105s−1

Γ2E1,µ = 1.63× 104s−1

ΓT = ΓE0,e,Zeff=39 + ΓPP,e,Zeff=39 + ΓM1,µ + Γ2E1,µ = 1.51× 107s−1

(4.102)

Note that both the electronic transitions produce unbound electrons (and positrons in the pair production
case). The muon decay also produces electrons and neutrinos. The E0 transition would give a sharp spectrum
with ejected electron having energy Ef = 1739keV, whereas the pair production would give a continuous spectrum
with maximum energy of 717keV.

In contrast, both the muon transitions involve emitted photons. The M1 transition would give a sharp
spectrum at 1760.71keV, whereas the two photon transition would give a continuous spectrum with a maximum
photon energy 1760.71keV, and a peak at 880.34keV. Since we want to make a measurement of a muonic transition,
the ideal observable would be the M1 photon since it is mono-energetic and it corresponds to the most probable
muonic transition.

Unfortunately, the M1 decay occurs rarely in comparison to the electron decays. Compounded with the
probability of populating the |100〉|1〉 state being roughly 5 × 10−6%, we would need a significant experimental
run time to achieve reasonable statistics.

4.5 A Quick Note on Parity Violating Effects

We previously mentionned that forbidden M1 transitions are interested due to parity violating effects. Having
developed the perturbative mechanics necessary to describe the muonic system, we are now in a position to
elaborate further. Recall that the nuclear excited state and full ground states only admitted mixing with other
muonic s-wave state, see figure 4.1. This was due to the orthogonality of the spherical harmonics, relying on
parity. If O is a parity violating operator arising from neutral currents, then the initial and final states will be

ψi ≡ |100〉|1〉+ εi,1s|100〉|0〉+ εi,2s|200〉|0〉+ εi,2p|210〉|0〉+ · · ·
ψf ≡ |100〉|0〉+ εf,1s|100〉|1〉+ εf,2s|200〉|1〉+ εf,2p|210〉|1〉 · · ·

(4.103)
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where εi,f,2p are the perturbative mixing parameters induced by the operator O. Since we now have mixing
involve p-wave states, it is now possible to have en electric dipole transition, with matrix element

(εi,2p + εf,2p)〈100|r|210〉 (4.104)

Although the perturbative mixings εi,f,2p will be small because parity violating operators are already constrained,
the E1 transition is significantly faster than the other modes of nuclear de-excitation. Observations (or lack
thereof) of this E1 transition would give constraints on the operator O.
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Chapter 5

Transition Energy Variation due to
Excited Nuclear Charge Radius

In the analysis above, we discussed the observable photon radiation from the M1 transition, with photon energy
equal to the nuclear de-excitation energy. In both the initial and final states, the muon is in the 1s state, so the
only energy available comes from the nuclear de-excitation. This is only an approximation, however, because the
binding energy is not only dependent on the total charge, but also on the charge radius of the nucleus as we saw
in Chapter 3. In the initial state, the muon’s binding energy will change slightly if the charge radius of the excited
nuclear is different than the charge radius of the ground state. In particular a larger charge radius will yield a
lower binding energy. This follows from our numerical finite nuclear size binding energies which are lower than
the corresponding pointlike nuclear binding energies. The final state muon state is bound to the nuclear ground
state, and hence its binding energy is as calculated above (see table 3.1). Hence the actually transition energy
would be modified slightly from ENuc to something slightly larger. We expect the nuclear excited state would
have a slightly larger charge radius, implying a smaller binding energy for the intial state, and hence a transition
energy which is slightly larger than the nuclear de-excitation energy. If we can observe a difference, the size of
the difference will be able to give us information on the nuclear charge radius of the excited state.

We want to investigate the change in the transition energy for a small change in the charge radius. Quanti-
tatively, we want to find the coefficient C in the expression

C
dE

dRNuc
=
ENuc
RNuc

(5.1)

Since we dont have an analytic expression for the binding energy, we will approximate this by solving the
Schrödinger equation using a charge distribution with a nuclear radius given by R′Nuc = RNuc + ∆R, and
finding a ground state energy of E′1s = E1s + ∆E. In the previous expressions, the superscript ′ denotes param-
eters corresponding to the nuclear excited state. As discussed above, ∆R is a positive quantity, and because the
binding energy is smaller, ∆E is positive (since E1s is negative). Rearranging our previous expression yields

C =
ENuc
RNuc

∆R

∆E
(5.2)

Using ∆E = E′1s − E1s, and ∆R = R′Nuc −RNuc, we can solve for the coeffcient C via

C =
ENuc

E′1s − E1s

∆R

RNuc

=
ENuc

E′1s − E1s

R%

100

(5.3)

where R% = ∆R/RNuc× 100% is the percentage increase in the nuclear charge radius. Solving this relation with
a one percent increase in the nuclear charge radius (R% = 1%) yields the coefficient

C = 2.24 (5.4)

Note that this implies a 1% change in the nuclear radius gives a binding energy change of ∆E = 7.86keV, or
a 0.45% change. In principle, we could introduce this change in energy to the de-excitation calculations done in
the previous section, however the effect would not be significant. We can also use this to determine how sensitive
observations are to an increase in the nuclear radius. If an experiment is sensitive to changes in photon energy
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of ∆E, then the smallest percent change in the nuclear charge radius is given by

R% = C
∆E

ENuc
100%

= 2.24
∆E

1760.71keV
100%

= 0.127%
∆E

keV

(5.5)

Experiments which are less sensitive to photon energy changes are less sensitive to changes in the nuclear
radius, as expected. Typical Germanium detectors have a photon resolution on the order of a few keV [39], which
means they would be sensitive to changes in the nuclear radius on the order of 0.2-0.5%.

The High Intensity Proton Accelerator (HIPA) facility at the Paul Scherrer Institute (PSI) typically produces
order 104 muons/s [39], but is capable of producing 106 muons/s. Since the probability of a muonic atom
populating the nuclear excited state and subsequently undergoing the M1 transition is roughly 10−9, we would
obtain an M1 photon once every 103s ≈ 17 minutes, or approximately 10 M1 photons every 3 hours, at 106

muons/s.
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Chapter 6

Conclusion

We began by studying the electron undergoing an electric monopole transition in zirconium in order to develop a
perturbative approach to treat the muonic atom. We compared our E0 perturbative model to the more common
approach, highlighting why our model was better suited to treat the muonic atom. We then studied how to
populate the muonic excited nuclear state, starting from the 2p or 3p muonic states. After a quick calculation
using the pointlike nuclear approximation, we found that finite nuclear size effects caused a significant decrease
in the branching ratios by nearly 2 orders of magnitude, with the final branching ratios on the order of 10−8.
We then studied the decay channels of the excited nuclear state to gain insight into what the common signals
associated with muonic transitions. We found that the mono-energetic M1 transition was the most significant
muonic transition, followed by the two photon transition. Both muonic transitions involved photons, compared to
the other transitions involving ejected electrons or electron-positron pairs, which made the signal easier to detect.
However the M1 transition has a small chance of occurring, increasing the time necessary to run an experiment
which produces a fixed number of muonic zirconium atoms per second. Lastly we studied the sensitivity of the
physical transition energy to the charge radius of the excited state. We found that Germanium detectors, with a
photon sensitivity of a few keV, would be able to detect a change in the nuclear charge radius as small as a few
tenths of a percent.

In the present case the PSI experiment has the best experimental setup to perform this measurement, with
Germanium photon detectors sensitive to 2-3keV and the experiment is capable of producing up to 106 muons/s.
This yields approximately 10 M1 photons every 3 hours of experimental run time. Ultimately the low probability
of populating the excited nuclear state results in current experiments requiring a long run time to get good
statistics.
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