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Abstract 

 

Regression discontinuity designs are increasingly popular quasi-experimental research designs among 

applied econometricians desiring to make causal inferences on the local effect of a treatment, 

intervention, or policy. They are also widely used in social, behavioral, and natural sciences. Much of 

the existing literature relies on the assumption that the discontinuity point or cutoff is known a-priori, 

which may not always hold. This thesis seeks to extend the applicability of regression discontinuity 

designs by proposing a new approach towards detection of an unknown discontinuity point using 

structural-break detection and machine learning methods. The approach is evaluated on both 

simulated and real data. Estimation and inference based on estimating the cutoff following this 

approach are compared to the counterfactual scenario where the cutoff is known. Monte Carlo 

simulations show that the empirical false-detection and true-detection probabilities of the proposed 

procedure are generally satisfactory. Finally, the approach is further illustrated with an empirical 

application.  
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1 Introduction 

This thesis seeks to extend the applicability of regression discontinuity designs by proposing a new 

approach based on structural-break detection and machine learning towards detection of unknown 

cutoffs, and estimation of local average treatment effects with unknown cutoffs. Regression 

discontinuity design (RDD), introduced by Thistlethwaite and Campbell (1960), has become a widely 

used framework among applied econometricians for measuring treatment effects. There is a vast 

literature on RDD. Reviews, theoretical developments, and applications of the method can be found 

in Hahn et al. (2001), Imbens and Lemieux (2008), van der Klaauw (2008), and Lee and Lemieux (2010), 

while Volume 38 of Advances in Econometrics, edited by Cattaneo and Escanciano (2017), as well as 

the references cited therein, provides an overview of recent advancements. Lee and Lemieux (2010) 

give a comprehensive list of applications in the economic literature until 2010, and Hausman and 

Rapson (2018) provide a list of applications of RDD in a time series setting, which is referred as 

Regression Discontinuity in Time (RDiT).  

While randomized control trials (RCTs) are considered the gold standard for causal inference, such 

experiments are often not feasible due to time constraints, resource constraints, or ethical 

boundaries. For example, applying RCT to estimate the causal effect of smaller class sizes in schools 

on student outcomes can run into ethical concerns. Parent’s preference in general, is for a smaller 

class, see Angrist and Lavy (1999). Parents of children who are assigned to a larger class to serve the 

purpose of a control group of an RCT are likely to object to the fairness of such assignment, even if the 

assignment is randomized. Econometricians, therefore, often exploit “natural experiments” – 

circumstances that lead to quasi-randomization. RDD is a quasi-experimental design that estimates 

the local causal effect of a treatment/intervention in situations where the treatment assignment is 

completely determined based on the value of an observable covariate (called the score, assignment, 

forcing or running variable). If the value of the score/assignment variable for an individual/test-subject 

is above a threshold or cutoff, the individual/test-subject gets treated, otherwise, treatment is 

withheld. The identification strategy in RDD is that, under the assumptions that the characteristics of 

the individuals do not change abruptly at the cutoff, and the individuals, even while having some 

influence, cannot precisely manipulate the score/assignment variable, the variations in treatment 

status near the cutoff are as if from a randomized experiment. The average variations in the outcome 

variable in opposite sides near the cutoff, therefore, can be argued as the causal effect of the 

treatment. Lee and Lemieux (2010) argue that RDDs require fewer assumptions than most causal 

inference techniques and are arguably most similar to true-randomized experiments. 
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Usually, the cutoff is set by the policymaker and is publicly known, however often the cutoff is masked 

from the public (including econometricians) due to privacy concerns, or concerns about the individuals 

under observation trying to manipulate their treatment status. For example, in the classical 

application of RDD by van der Klaauw (2002), who estimated the effect of scholarship and financial 

aid offers on students’ enrollment decisions, the score variable is an underlying index of academic 

abilities based on various observable characteristics. In the application by van der Klaauw (2002) the 

cutoffs were known. However, to avoid manipulation by applicants or schools, the construct of such 

index and the cutoff scores used to differentiate financial offers are not publicly disclosed. Another 

example is the application by Dell and Querubin (2018) who studied the effectiveness of aerial 

bombardment, and the ‘overwhelming firepower’ strategy deployed by the United States to counter 

insurgency in the Vietnam War. The U.S. Air Force employed a Bayesian algorithm that assigned scores 

to geographic locations in Vietnam using data from 169 questions, based on which weekly aerial-

bombardment allocations were planned. The algorithm generated scores that were continuous in the 

range from 1 (very insecure) to 5 (very secure). The scores were rounded to the nearest integer for 

decision-making. The study compared places just below and above the rounding thresholds to isolate 

the causal effect of bombing. It found that the ‘overwhelming firepower’ strategy backfired, increasing 

insurgent activities and recruitment, and worsening attitudes towards the U.S. in regions that barely 

crossed the threshold to receive a bigger payload of bombs, compared to regions that barely avoided 

such fate. Dell and Querubin (2018) were able to reconstruct the algorithm and retrieve full 

information regarding the cutoffs and the assignment rules from declassified documents, whereas the 

electronic data was preserved by a lucky accident. The data tapes produced by the two IBM 360 

computers would have likely been destroyed but were saved as they were subpoenaed during an IBM 

lawsuit. Dell and Querubin (2018) were able to retrieve the tapes from the U.S. National Archives. 

However, in situations when full information regarding the cutoffs is not preserved by such 

happenstance, it is of practical use to have methods at our disposal so that RDDs can be applied even 

with unknown cutoffs.  

A variation of the RDD is Regression Kink Design (RKD), popularized by Card et al. (2008), and Card et 

al. (2012). In RKD, while the regression function may be continuous, the slope has a discontinuity at a 

threshold. In Card et al. (2008), the tipping point effect based on the Scheling (1971) model about the 

dynamic of segregation in city neighborhoods is analyzed. When the minority share in a neighborhood 

exceeds a tipping point, some whites leave, resulting in the share of whites in the neighborhood to go 

down further, resulting in more whites leaving in a cascading manner until neighborhoods become 

segregated by race. The threshold/cutoff value of such a tipping point (kink) is generally unknown. 

Another example is by Landais (2015) who studied the impact of changes in unemployment insurance 
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benefit level and benefit duration on job-search duration using kinks in the unemployment insurance 

schedule. Ganong and Jager (2018) provide a comprehensive list of applications of RKD in the 

economic literature until 2018. Hansen (2017) explored estimation and inference in a regression kink 

model with an unknown threshold, using methods for inference on non-differentiable functions. RKD 

detection methods can also have applications beyond economics, such as in the fields of ecology, 

medicine, epidemiology, and climate studies in the study of tipping-points and critical transitions.   

Detection of a kink (discontinuity in the slope of the regression function) in a traditional RDD setup 

has another useful application. Presence of a kink near the cutoff can indicate presence of a selection 

effect – indicating that the test subjects under consideration near the cutoff may have been able to 

manipulate their assignment/score variable to place themselves on the favored side of the cutoff. For 

example, in the classical application of RDD where students who score above a threshold get a 

scholarship, if some students just below the cutoff can convince teachers to “mercy pass” them, or if 

the students are allowed to re-take the exams until they are on their preferred side of the cutoff, this 

leads to selection bias as the treatment and control groups now differ, and the assignment is no longer 

random, see Lee and Lemieux (2010). Under this scenario, within a close neighborhood of the cutoff 

score, students who are more persuasive (in the first case) or have more motivation (in the second 

case) will be more likely to be just above the threshold than just below the threshold, such that the 

influence of these factors may cause the regression equation for the outcome variable on the 

assignment variable to have different slopes on both sides of the cutoff (a kink). It is, therefore, of 

practical use to be able to not only detect one or more unknown discontinuities, but also to detect 

whether a particular discontinuity is a discontinuity on the regression function in level (RDD), in slope 

(RKD), or perhaps both.  

Most existing literature on RDDs assumes that the cutoff is known. Porter and Yu (2015) were, to my 

knowledge, first to propose a two-stage approach for testing and estimation with unknown cutoffs. 

They attempted to detect the presence of treatment effects in a way that is very close to the 

nonparametric structural change test inspired by Bierens (1982). The steps involve first estimating the 

cutoff, using an estimator called the difference kernel estimator (DKE), and secondly estimating the 

treatment effect, as if the cutoff were known.  Their results indicated asymptotic-efficiency of the 

proposed method. Also, the authors checked for the presence of a kink, or discontinuity in the slope 

of the regression function, which can be thought of as, depending on the context, a tipping point, or 

selection effect. Herlands et al. (2018) recently proposed a machine learning approach for automated 

discovery of localized RDDs and estimation of treatment effect across arbitrarily high dimensional 

spaces. Their method relies on an iterative search algorithm that imposes localized nearest-

neighborhood restrictions, partitions the neighborhood in half, and searches for discontinuity using 
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log-likelihood ratio statistic. The size of the neighborhoods is iterated over and significant discontinuity 

points are retained.    

The proposed approach in my thesis relies on either Andrews’ Test by Andrews (1993) or a machine-

learning-based structural-break detection method developed by Pretis et al. (2018) for estimation of 

a `best candidate’ for the unknown discontinuity/kink point. Next, the optimal bandwidth-lengths on 

either side of the estimated cutoff are selected using the MSE-optimal bandwidth selector as 

suggested by Imbens and Kalyanaraman (2012), Calonico et al. (2014a), Calonico et al. (2018), Calonico 

et al. (2019), and Calonico et al. (2020). Afterward, the aforementioned machine-learning-based 

structural-break detection method developed by Pretis et al. (2018) is applied (again) within the 

bandwidth limit only for estimation of a statistically significant discontinuity/kink as a local average 

treatment/tipping point effect respectively. Thus, the method involves three sequential steps: 

estimation of a cutoff (cutoff detection), estimation of a bandwidth (bandwidth selection), and 

estimation of treatment or tipping effect (effect estimation).  

For estimation of a ‘best-candidate’ for the unknown discontinuity/kink point (cutoff detection), the 

structural-break detection method developed by Pretis et al. (2018) is more suitable when there is 

some knowledge on an anticipated cutoff and an associated neighborhood/interval within which the 

discontinuity/kink point may occur.  This method may also be preferred when the data is `messy’, with 

additional structural breaks and outliers apart from the discontinuity/kink point, as it allows for 

controlling for outliers and additional structural breaks, not in the area of the anticipated cutoff of 

interest. However, as multiple breakpoints can be detected using the Pretis et al. (2018) approach, 

some knowledge on the possible cutoff value of interest becomes necessary. I  demonstrate this in 

the considered empirical application.   

An advantage of the three-step proposed herein is that, while the approach in Porter and Yu (2015) 

can test for existence of a selection effect only after excluding the possibility of a nonzero treatment 

effect (the two-stage testing being sequential), my approach is not bound to such restrictions and can 

test for either selection effect (discontinuity in the slope of the regression function), or treatment 

effect (discontinuity in the levels of the regression function), or both.     

Throughout this thesis, I focus on the sharp RDD (as opposed to the fuzzy RDD) with a single 

discontinuity point, as this arrangement simplifies the demonstration of the main idea of the thesis. 

In sharp RDD the treatment assignment is deterministic whereas in fuzzy RDD it is probabilistic. In 

other words, the probability of treatment assignment is ‘0’ in one side of the cutoff and 1 on the other 

side of the cutoff in sharp RDD, whereas fuzzy RDD is a more general case where the probability of 

treatment jumps discontinuously at the cutoff.  It is worth noting that the proposed approach is 
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applicable even when there are multiple unknown discontinuity points, as long as some prior 

knowledge is available on an interval within which a particular discontinuity/kink point may reside, for 

example, as in Angrist and Lavy (1999). 

My thesis is organized as follows. In section 2, I describe my methodology, in particular the model, the 

estimation approach, and the expected properties of the procedure. In section 3, I detail the 

simulation design and present the simulation results. In section 4, I present results of an empirical 

replication study, ascertaining how my approach compares with the original study. Section 5 

concludes the thesis.   
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2 Methods 

2.1 Model 

The general model takes the form given in equation (1) where, within an interval [γ – πl , γ + πr] of 

the score variable (𝑥),  

𝑦  = 𝑧β1  + 𝑥β2  + (𝑥−γ) + β𝑘  + τβ𝑑 + ϵ   

τ = {
1, x ϵ x ≥ γ

 0, x ϵ x < γ 
  …(1) 

Here, (π) refers to a bandwidth length of the score variable (𝑥), with (πl) and (πr) referring to the 

left and the right bandwidth lengths respectively. This general setup allows for both the presence of a 

discontinuity or treatment effect (β𝑑), and/or kink or selection effect (β𝑘), around the local 

neighborhood or bandwidth [γ – πl , γ + πr] of a cutoff value (γ) of the score variable (𝑥). A matrix 

containing values of all other covariates except the score variable in the columns is denoted by (𝑧). 

The departure from ordinary RDD estimation in this setup lies in the assumption that the cutoff value 

(γ) is either not exactly known or unknown, and so needs to be estimated. The standard RDD 

assumption that all potentially relevant variables other than the treatment variable (τ) and the 

outcome variable (y) are continuous on either side of the cutoff, is retained. Hence, a violation of this 

assumption is the presence of a selection effect (the score variable not being continuous at the cutoff), 

which is captured by the kink coefficient (β𝑘) not being zero.  

This is a non-parametric (local linear regression) set-up. Non-parametric RDD has become increasingly 

popular as this provides estimates of the local causal effect of a treatment based on data closer to the 

cut-off and has been shown to have better internal validity over parametric or global RDD. If units are 

unable to perfectly ‘sort’ around this cutoff, units with scores barely below the cutoff can be used as 

a comparison group for units with scores barely above it for estimation of local causal effect according 

to Cattaneo et al. (2019). 

 The following illustrates how this general setup can accommodate four possible combinations of Data 

Generating Processes (DGPs):    

▪ β𝑑 = 0, β𝑘 = 0 – No Treatment or Selection Effect  

▪ β𝑑 ≠ 0, β𝑘 = 0 – Discontinuity, presence of a Local Average Treatment Effect (LATE) only. 

▪ β𝑑 = 0, β𝑘 ≠ 0 – Kink, presence of a tipping point effect or selection effect only. 

▪ β𝑑 ≠ 0, β𝑘 ≠ 0 – Both discontinuity and kink, presence of both a local average treatment 

effect (LATE) and a selection effect. 
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An alternate specification of the four possible combinations is given in Table 1, where, when the 

function is of the form: 𝑦  = 𝑧β1  + 𝑥β2  + ϵ = 𝑓 + ϵ. Porter and Yu (2015) showed a similar table. 

Table 1: Behavior of the regression function 𝒇 and its first derivative 𝒇′ at Cutoff  

 No (Selection/Kink)  (Selection/Kink) 

No 

(Treatment/Discontinuity) 

𝑓+ (γ) = 𝑓– (γ)   

𝑓′
+ (γ) = 𝑓′

– (γ)   

𝑓+ (γ) = 𝑓– (γ)   

𝑓′
+ (γ) ≠ 𝑓′

– (γ) 

Treatment/Discontinuity) 
𝑓+ (γ) ≠ 𝑓– (γ)   

𝑓′
+ (γ) = 𝑓′

– (γ)   

𝑓+ (γ) ≠ 𝑓– (γ)   

𝑓′
+ (γ) ≠ 𝑓′

– (γ) 

𝒇+ (γ) and 𝒇– (γ) refers to the regression function above and below the cutoff (γ) within the bandwidth  
  𝒇’+ (γ) and 𝒇’– (γ) refers to the slope of the regression function with respect to the score variable (𝑥) above 

and below the cutoff (γ) within the bandwidth  

Gelman and Imbens (2018) suggests using either a local linear or a quadratic polynomial for RDD 

estimation and argue that to control for higher-order polynomials of the assignment variable in RDD 

beyond a quadratic polynomial is a flawed approach. In contrast, Pei et al. (2018) challenged the 

superiority of local linear over higher-order polynomials and called for a computational approach to 

ascertain the optimal order of the polynomial selection. However,  Pei et al. (2018) also noted that 

reliance on local linear over higher-order estimators is increasing in practice, after surveying leading 

economics journals from 1999 to 2017. Given this, to apply my estimation approach to the simulated 

data, I consider a local linear estimator and a quadratic polynomial estimator.  It would be interesting 

to explore estimation using this approach with higher-order polynomial estimators in future research.    
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2.2 Estimation Approach 

The procedure for detecting unknown discontinuity/kink points in my thesis involves three sequential 

steps. First, a `best candidate’ point for the cutoff is estimated (cutoff detection). The second step 

involves estimating optimum bandwidth-lengths on both sides of the estimated cut-off using a 

computational approach (bandwidth estimation). The data is then restricted to ‘within the bandwidth’ 

for the final step, keeping only observations that fall within the local neighborhood of the estimated 

cutoff. In the final step, an indicator-saturation based structural-break detection method is applied in 

the aforementioned local neighborhood of the cutoff towards estimation of the discontinuity/kink 

(effect estimation).     

While the method proposed in Porter and Yu (2015) can test for existence of a selection effect only 

after excluding the possibility of a nonzero treatment effect (the two-stage testing being sequential), 

my three-step method is not bound to such restrictions and can test for either selection effect 

(discontinuity in slope of the regression function), or treatment effect (discontinuity in levels of the 

regression function), or both. Additionally, my proposed procedure can serve the purpose of a 

robustness check of RDD when the cutoff point is known a-priori. In the case of known cutoff points, 

if the estimated cutoff (as if the cutoff were unknown) falls in a nearby interval of the known cutoff, 

and if the estimated coefficients are similar to those obtained using conventional RDD regression 

methods, this perhaps suggests stronger evidence of a significant treatment effect/tipping effect. This 

indicates that the treatment/tipping effect is perhaps sizable enough to cause a structural break and 

parameter instability at the point of the cutoff, while inconsequential effects are unlikely to be 

captured using this approach.  Details of the steps involved are as follows: 

1) The first step (cutoff detection) involves estimating a ‘best candidate’ point for the unknown 

discontinuity/kink. This is done using either Andrews’ Test by Andrews (1993), or using an indicator-

saturation method, as developed by Castle et al. (2015), Hendry et al. (2008), and Pretis et al. (2018). 

Both of these methods detect structural breaks or outliers. Andrews’ Test, which detects a single `best 

candidate’ point for a structural shift, is convenient when the structural break at the discontinuity/kink 

point is expected to be larger than any other possible structural breaks or outliers in the data. The R 

package I use to implement Andrews’ Test is `strucchange’  introduced by Zeileis et al. (2002)1. On the 

other hand, the indicator-saturation method is more applicable when the data may have sizable 

outliers and structural breaks, apart from the discontinuity/kink point, or an anticipated cutoff value 

and an associated interval-length is known a-priori and can be approximated, which is often the case 

 
1 The function I use is `Fstats’ (from the `strucchange’ package) with a least squares model specification.   
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with real-world applications even when the exact cutoff may be unknown. The advantage of the 

indicator-saturation method over Andrews’ Test in such a scenario is that it allows for controlling for 

other outliers and breaks, which may otherwise get picked as the candidate cutoff point. The R 

package I employ for the indicator-saturation based approach is ‘gets’, introduced by Pretis et al. 

(2018)2. As both methods apply to indexed/time-series data, a pseudo-index is created by ordering 

the data based on ascending values of the score variable. The simulation results I present here (Section 

3) apply Andrews’ Test for this step (as there is a single potential breakpoint by construction), while I 

apply both methods to real-world data in the empirical results section for comparison (Section 4).  

When using Andrews’ Test we have, for a parametric model indexed by parameters (β1,δ0) for t = 

t1,t2,...  

▪ H0: β1 = β0 for all t ≥ 1 for some β0 ∈ B ⊂ RP (parameter stability) 

▪ H1: β1 = β1(c) for t = t1,t2, …, tc 

     = β2(c) for t = tc+1,tc+2… for some β1(c) , β2(c)  ∈ B ⊂ RP            …(2) 

The best candidate for the change point index (c), which is unknown, is estimated.  

Indictor-saturation method tackles the challenge of detecting outliers and structural breaks in 

econometric models by starting from a general model, allowing for an outlier or shift at every point 

(hence, `indicator-saturation’) and removing all but significant ones using general-to-specific model 

selection criteria by applying an automated multi-path search algorithm, see Pretis et al. (2018). The 

types of indicators I use are: impulse-indicators or IIS for controlling distortionary influence of outliers, 

see Hendry et al. (2008), and Johansen and Nielsen (2016); step-indicators or SIS for detection of 

discontinuities, see Castle et al. (2015); and user-designed indicators or UIS for detection of kinks, see 

Pretis et al. (2016), and Schneider et al. (2017). I start with a general model allowing for a shift or 

outlier at any observation as follows:  

𝑦𝑡 =  μ +  ∑ 𝑙𝑗1(𝑡=𝑗)

n

j=1

 +  ∑ 𝑑𝑗1(𝑡≥𝑗) + 

n

j=2

 ∑ 𝑘𝑗𝑚(𝑡≥𝑗) + 

n

j=2

𝑢𝑡 

    …(3) 

Here, (n) denotes the number of observations inside a selected interval or a local neighborhood within 

which the discontinuity/kink point, if it exists, is known to occur; (n) can potentially be the number of 

observations in the whole sample when any prior knowledge of such an interval is absent. The 

 
2 The function I use is `isat’ (from the `gets’ package).  
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parameter (μ) represents the expected value of (𝑦𝑡). The first summation term provides the impulse-

indicators (for detecting outliers and controlling for their distortionary influence in cutoff detection). 

The second summation term gives the step-indicators (for detecting the discontinuity-cutoff, and also 

controlling for the distortionary influence of other structural breaks apart from the discontinuity-

cutoff). The third summation term represents user-designed indicators, which are used to detect the 

kink-cutoff.  The nominal false-detection rate of the procedure can be set manually via the `isat’ 

function before running the multi-path search algorithm, see Pretis et al. (2018). The nominal false-

detection rate in this context refers to the estimated probability of retaining a spurious indicator, in 

other words, the estimated probability of detecting a step-shift/trend-shift/outlier when there is 

none.  

It is worth mentioning that, without restricting the dataset to within a bandwidth limit around the 

cutoff, coefficient estimates of step indicators and user-defined indicators detected inside the known 

interval within which a discontinuity/kink (if exists) is anticipated (based on prior knowledge) are 

parametric/global estimates of treatment effects and tipping effects respectively. In other words, the 

magnitude of a break that is returned corresponds to a global effect and not a local effect, as it applies 

to all data points following the cutoff, not just to those points near the cutoff. However, as RDD has 

less external validity (treatment effect or tipping effect estimates based on data points far from the 

cutoff are not valid for causal inference), an optimum bandwidth length needs to be selected on both 

sides of the estimated cutoff, and the indicator-saturation methods need to be applied (again) in that 

restricted neighborhood only for a local average treatment effect interpretation. This brings us to step 

two.         

2) The second step (bandwidth selection) involves estimating an optimal bandwidth length on both 

sides of the estimated cutoff. This is estimated using an MSE-optimal bandwidth selector following 

the procedure developed in Imbens and Kalyanaraman (2012), Calonico et al. (2014a), Calonico et al. 

(2018), Calonico et al. (2019), and Calonico et al. (2020). The R package I employ is `rdrobust’3 

introduced in Calonico et al. (2015b). I adopted most of the default argument-options of the ̀ rdrobust’ 

function as detailed in the footnote. The function takes a cutoff value as input along with the model, 

and outputs both the RD regression (local average causal effect) estimates and the numerically derived 

 
3 The function I use is `rdrobust’ from the `rdrobust’ package. The estimated cutoff value from step one enters 
the function as the cutoff point argument. Default arguments used are strict RD design (as opposed to fuzzy RD 
design), local linear regression for point estimator, local quadratic regression for bias correction, and MSE 
optimal bandwidth selector. A uniform kernel, which does not assign more weight to datapoints near the cutoff 
when constructing the local polynomial estimators but assigns uniform weight, was adopted, as knowledge of 
the cutoff is not exact. The `deriv’ argument specifies the order of the derivative of the regression function to 
be estimated. The default is `0’ which returns the RDD estimates, while setting deriv=1 yields the RKD estimates. 
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optimal bandwidth lengths on both sides of the cutoff. The MSE-optimal bandwidth selector employed 

seeks to minimize the Mean Squared Error (MSE) of the local polynomial RD point estimator, given a 

choice of polynomial order (the default is a linear polynomial). The kernel function is user-specified 

with the default option being a triangular kernel, which gives more weight to observations closer to 

the cutoff.  As the cutoff is not exact, rather estimated, and is very unlikely to coincide with the true-

cutoff if there is a true cutoff, the idea of weighting data points near the estimated cutoff is unsound 

in the context of this application. Therefore, I adopt a uniform kernel, which assigns equal weight to 

all observations within the bandwidth that are used in local estimation. The choice of the kernel is 

trivial. Cattaneo et al. (2019) mention that the estimation and inference results are typically not very 

sensitive to the particular choice of the kernel used when ‘rdrobust’ package is employed, as the 

bandwidth-choice is optimized taking into consideration the particular choice of the kernel. The 

optimal bandwidth choice equation is shown in Cattaneo et al. (2019)  to be:  

ℎ𝑀𝑆𝐸 = ( 
𝑉

2(𝑝 + 1)𝐵2
)

1
2𝑝+3

  𝑛−1/(2𝑝+3) 

…(4) 

Here, (hMSE) is the computationally derived optimal bandwidth length that is obtained by minimizing 

the mean squared error (MSE) of the local polynomial RD point estimator given a choice of polynomial 

order and kernel function. In the equation, (V) represents the variance of the local polynomial RD 

point estimator, (B) represents its bias, (p) represents the polynomial order of estimation, and (n) 

denotes sample size. The optimal bandwidth length decreases with sample size (n) and bias (B) and 

increases with variance (V). Intuitively, a larger sample allows reducing the error in the approximation 

by reducing the bandwidth without paying a penalty in added variability. A large asymptotic variance 

leads to a larger MSE optimal bandwidth as it needs to include more observations for estimation. In 

contrast, a larger asymptotic bias leads to a smaller MSE-optimal bandwidth as a smaller bandwidth 

reduces approximation errors and bias of the estimator.    

Both the RDD and RKD ecoefficient estimates are also obtained by applying the ‘rdrobust’ function, 

following the procedure developed by Calonico et al. (2015b) and Cattaneo et al. (2017), based on the 

estimated cutoff. This is an alternate approach that is considered for local treatment/tipping effect 

estimation with unknown cutoff (the third step), in addition to the indicator-saturation approach. I 

refer to this as the ‘RD-regression approach’ in subsequent sections of the thesis. This approach, 

however, does not produce promising results when an estimated cutoff is used instead of a cutoff that 
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is exact and known a-priori, as this method is found to be sensitive to even small errors in cutoff 

estimation (see Section 3, simulation results and section 4, empirical results). 

3) The third step (effect estimation) involves restricting the data to within the bandwidth and effect 

estimation. The bandwidth estimates are as detailed in step two, so that this third step only works 

with data within this interval: 

[(estimated cutoff – estimated left bandwidth), (estimated cutoff + estimated right bandwidth)] 

The aforementioned automated, machine-learning based, general-to-specific indicator-saturation 

method (described in details in the first step), is applied to search for statistically significant step-shifts 

(as discontinuity/local average treatment effect) and shifts in the slope of the regression function (as 

kink/tipping effect or selection effect). As the application of indicator-saturation in this step (as 

opposed to in step 1, cutoff detection) is restricted within a local neighborhood, the estimated effect, 

therefore, has a local average treatment/tipping effect interpretation. I refer to this as the ‘Indicator-

saturation approach’. 

The aggregate of coefficients of shifts detected within the local neighborhood of the estimated cutoff 

is taken as an estimate of the treatment effect (for step-indicators) or tipping effect (for user-defined 

indicators). Monte Carlo simulation of detection and estimation results using this approach show 

promising properties (section 3). The underlying assumption in aggregating the shifts is that within the 

local neighborhood of the cutoff there is no other noteworthy discontinuity or kink except at the point 

of the cutoff (continuity assumption). This is not an additional restrictive assumption required in this 

method, rather a general assumption in RDD, see Cattaneo et al. (2019).    
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2.3 Desired Properties 

The desired properties of the procedure are that the resulting estimated probability of detecting a 

false discontinuity/kink (false-detection) is close to the nominal false-detection rate chosen, and the 

estimated probability of detecting a true discontinuity/kink (true-detection) is higher as the `signal-

to-noise’ ratio and the sample size increases. Following describes these properties further. 

▪ False-detection refers to, detection of discontinuity or kink where they (respectively) do not exist. 

I simulate this for different scenarios: 

o False-detection of a discontinuity:  

• When neither discontinuity nor kink exists. 

• When a kink exists.  

o False-detection of a kink: 

• When neither discontinuity nor kink exists. 

• When a discontinuity exists. 

 

▪ True-detection refers to, detection of discontinuity or kink where they (respectively) exist. I 

simulate this property for the following scenarios: 

o Detection of a discontinuity  

• When only a discontinuity exists. 

• When both a discontinuity and a kink exist.  

o Detection of a kink  

• When only a kink exists. 

• When both a discontinuity and a kink exist.  

 

▪ I use the term signal-to-noise ratio to refer to the ratio of the magnitude of discontinuity and the 

standard deviation of the disturbance term. When this ratio is above 2.58 (so that, the 

discontinuity is significant at the 1% level or lower when simulating a normally distributed 

disturbance term), a desired property would be a false-detection rate close to 1%, and a high true-

detection rate. As this ratio falls below 2.58, meaning that the discontinuity (treatment effect) or 

kink (tipping effect) becomes less and less discernable from random noise in the data (so that, the 

discontinuity is not significant at the nominal 1% level when simulating a normally distributed 

disturbance term), false-detection rate should increase, and true-detection rate should fall.  

Obtaining a closed-form solution to the overall size and power of the testing strategy is complicated 

by the fact that the procedure relies on three sequential steps, each of which has its own size and 
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power. Hence, I use Monte Carlo simulations to report the estimated probabilities of false-detection 

and true-detection with synthetic data. More specifically, I generate two classes of synthetic data, 

where the outcome variable is a linear function of the score variable, and where it is a quadratic 

function of the score variable. For each of these two classes, I simulate four variants of Data 

Generating Processes (DGPs) – where there is no discontinuity or kink, where there is a discontinuity 

only, where there is a kink only, and where there are both. The design of my simulation experiment 

and results from these experiments are presented in the next section.          
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3 Simulation 

3.1 Simulation Design 

Simulation of false-detection rates and true-detection rates of the procedure over a theoretical 

derivation is motivated by the fact that the method relies on a three-step procedure each of which 

has its own size and power. In simulating these estimated probabilities, given a DGP, I  focus on 

coefficient estimation (accurate detection of effects and their magnitudes) and not on the cutoff 

estimation. The reason is two-fold. First, in RDD/RKD, attention is usually on estimating the local 

average treatment effect/tipping effect, with knowledge of the cutoff value only serving as a means 

of obtaining coefficient estimates. However, inaccuracy in estimating the cutoff yields bias in the 

estimator of the effect. Hence, simulating false-detection and true-detection probabilities of the 

coefficient estimation (the terminal step), already encapsulates the effect of the cutoff estimation, a 

previous step. Second, the cutoff location estimation approach relies on structural-break detection, 

properties of which have been studied extensively in the literature, see Andrews (1993) for Andrews’ 

Test and Castle et al. (2015), Hendry et al. (2008), and Pretis et al. (2018) for indicator-saturation.  

The testing and estimation procedure are studied using four variants of DGPs (see Table 1) likely to be 

faced when dealing with real-world data (no effect, discontinuity only, kink only, both discontinuity 

and kink). For the local linear estimator, the DGPs chosen to represent each case are linearized 

adaptations of those used by Porter and Yu (2015), who used quadratic DGPs. The DGPs are:  

▪ DGP1.1: No effect 

 

y = x + e;      for (−2 < x < 3) 

 

▪ DGP1.2: Selection/kink only 

 

y = x + e;      for (−2 < x < 1) 

   = − x + 2 + e    for (1 < x < 3) 

 

▪ DGP1.3: Treatment effect/discontinuity only 

 

y = x + e;      for (−2 < x < 1)  

   = x + 1 + e;        for (1 < x < 3) 

 

▪ DGP1.4: Both selection/kink and treatment effect/discontinuity 

 

y = x + e;      for (−2 < x < 1) 

   = − x + 3 + e    for (1 < x < 3) 
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For the local quadratic estimator, the DGPs are the same as those Porter and Yu (2015) used to study 

their testing and estimation procedure:  

▪ DGP2.1: No effect 

 

y = x2 + e;      for (−2 < x < 3) 

 

▪ DGP2.2: Selection/kink only 

 

y = x2 + e;      for (−2 < x < 1) 

   = ((x−3)2 −3) + e  = x2 − 6x + 6 + e; for (1 < x < 3) 

 

▪ DGP2.3: Treatment effect/discontinuity only 

 

y = x2 + e;      for (−2 < x < 1)  

   = (x2 + 1) + e;        for (1 < x < 3) 

 

▪ DGP2.4: Both selection/kink and treatment effect/discontinuity 

 

y = x2 + e;               for (−2 < x < 1)  

   = ((x−3)2 −2) + e = x2 − 6x + 7 + e; for (1< x < 3) 

 

In each case, 1000 replications are used in each simulation experiment for each DGP,  for three 

different sample sizes (200, 500, and 1000) and varying relative magnitudes of discontinuity (as in DGP 

1.3, 2.3, & DGP 1.4, 2.4) in the range of 5, 4, 3, and 2 standard deviations of the disturbance term: [e 

~ N (0, v2), v = {0.2, 0.25, 0.33, 0.5}]. Increasing the standard deviation of the disturbance term while 

keeping the magnitude of the discontinuity/kink fixed is akin to reducing the signal-to-noise ratio of 

the treatment/tipping effect. The sample size and the number of iterations were restricted to 1000 

because the indicator-saturation method, which relies on a machine-learning based multi-path search 

algorithm, is computation-intensive, and search-time is increasing in sample size.   

I show a single draw of each of the DGPs for different relative magnitudes of discontinuity in Figure 1 

& Figure 2 for linear and quadratic estimators respectively. The score variable is on the X-axis and the 

outcome variable is on the Y-axis. Going from left to right are the four variants of DGPs (no effect, a 

discontinuity cutoff only, a kink cutoff only, a cutoff that is both a discontinuity and a kink). Going from 

top to bottom, the standard deviation of the disturbance term increases so that the relative magnitude 

of discontinuity falls. In other words, the signal-to-noise ratio falls going from top to bottom.  
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Figure 1: DGPs for Linear estimator with or without selection (kink) or treatment effect (discontinuity). 
Standard Deviation of disturbance term calibrated as required to simulate detection with magnitude of discontinuity in the range of 5,4,3, and 2 S.D. of disturbance term. 
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Figure 2: DGPs for Quadratic estimator with or without selection (kink) or treatment effect (discontinuity). 
Standard Deviation of disturbance term calibrated as needed to simulate detection with magnitude of discontinuity in the range of 5,4,3, and 2 S.D. of disturbance term.  
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3.2 Simulation Results  

I consider 32 combinations of DGPs in total in my experiment; two classes based on the functional 

form of the outcome variable with respect to the score variable (linear or quadratic), four variants 

based on the existence of treatment/tipping effect (no effect, discontinuity only, kink only, or both), 

and four variants based on the signal-to-noise ratio (relative magnitude of discontinuity being 5, 4, 3, 

or 2 standard deviations of the disturbance term). First, I run a ‘single simulation’ – generating one 

synthetic dataset for each of the 32 combinations of DGPs and applying the cutoff detection and effect 

estimation procedure once on each dataset. I compare the two approaches for effect estimation when 

the cutoff is unknown: RD-regression and indicator-saturation. I compare the estimated effects 

obtained using these two approaches with both the true-effects (designed by construct in the 

synthetic data) and the estimated effects of conventional RD-regressions when the cutoff is known. 

Tables 2, 3, 4, & 5 in the following pages show the results of the single simulation. 

Results from the single simulation reveal that, while the RD-regression based method shows promise, 

more often than not detecting ‘the presence’ of a discontinuity/kink, it performs poorly in estimation. 

More specifically, there does appear to be significant biases in terms of under-estimation. A bias-

correction method may potentially be developed, which is beyond the scope of this thesis. This finding 

is perhaps not surprising because there are, of course, inaccuracies in the estimated cutoff value. The 

magnitude of the effect estimates is maximized in RD-regression when the estimated cutoff coincides 

with the true-cutoff. When this happens, effect estimation with unknown cutoff reduces down to 

effect estimation using conventional RD-regression where the cutoff is known. Hence, small departure 

in either direction from the true-cutoff results in an underestimated magnitude of effect estimates.  

In contrast, the indicator-saturation approach overcomes this problem of underestimation of effect-

coefficients because estimation is not reliant on the exact location of the estimated cutoff within the 

selected bandwidth. This showed up in the simulated outcomes, with this method performing better 

than the RD-regression method in both detecting presences of the discontinuity/kink and in 

generating effect estimates.  Furthermore, false-detection of discontinuity/kink is also rare in this 

single-simulation results. There is only one instance of a false-detection (last row of table 3) out of 24 

possible false-detections in the single-simulation result. The false-discontinuity was detected at a low 

signal-to-noise ratio of 2. At a nominal false detection rate of 1%, this behavior is not unexpected (see 

section 2.3).  
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Table 2: Results of Unknown Cutoff Detection (Single Simulation) – (Case: No Discontinuity/Kink in the DGPs) 

 

As observable from the results presented in Table 2, when there was no discontinuity and no kink in 

the true DGP, the RD-regression approach, based on the estimated cutoff point, detected no 

statistically significant discontinuity or kink when using both the linear and quadratic estimators. The 

indicator-saturation procedure also detected no discontinuity or kink at the 1% nominal false-

detection rate, suggesting that we would conclude no discontinuity or kink.    

Magnitude 

of Discontinuity (if exists)

True 

Discontinuity 

Coef

Est. 

Discontinuity 

Coef.

Known 

Cutoff

RD 

Regression 

Approach

Est. 

Discontinuity 

Coef.

(1)

Estimated 

Cutoff

RD 

Regression 

Approach

Est. 

Discontinuity 

Coef.

(2)

Estimated 

Cutoff

Indicator 

Saturation 

Approach

True 

Kink

Coef

Est. 

Kink

Coef.

Known 

Cutoff

RD 

Regression 

Approach

Est. 

Kink

Coef.

(1)

Estimated 

Cutoff

RD 

Regression 

Approach

Est. 

Kink 

Coef.

(2)

Estimated 

Cutoff

Indicator 

Saturation 

Approach

-0.001 -0.049* -0.01 -0.133

(0.033) (0.026) (0.13) (0.138)

-0.004 -0.05* 0.019 -0.212

[0.039] [0.03] [0.196] [0.208]

-0.004 -0.076* -0.035 -0.206

(0.04) (0.041) (0.164) (0.217)

-0.009 -0.079 -0.002 -0.33

[0.047] [0.047] [0.255] [0.325]

-0.011 -0.135* -0.116 -0.366

(0.054) (0.073) (0.249) (0.391)

-0.019 -0.14 -0.083 -0.586

[0.064] [0.085] [0.401] [0.582]

-0.024 -0.304* -0.309 -0.826

(0.093) (0.167) (0.478) (0.894)

-0.038 -0.315 -0.276 -1.32

[0.111] [0.195] [0.806] [1.325]

0.003 -0.048 0.115 0.537

(0.053) (0.033) (0.638) (0.444)

-0.002 -0.052 -0.388 0.115

[0.063] [0.038] [0.678] [0.478]

0 -0.075* 0.001 0.56

(0.062) (0.044) (0.606) (0.438)

-0.007 -0.081 -0.518 0.044

[0.072] [0.051] [0.663] [0.494]

-0.007 -0.134* -0.052 0.461

(0.075) (0.073) (0.576) (0.529)

-0.018 -0.141* -0.611 -0.221

[0.087] [0.084] [0.672] [0.664]

-0.021 -0.304 -0.207 0.026

(0.112) (0.165) (0.7) (0.976)

-0.041 -0.316 -0.844 -1.018

[0.133] [0.191] [0.968] [1.354]

Green: Estimated coefficient within 2 s.d. of disturbance term | Red: Estimated coefficient NOT within 2 s.d. of disturbance term

Linear DGP (DGP 1.1)  - Discontinuity = FALSE, Kink = FALSE 

Discontinuity Detection Kink Detection

5 s.d. 0 0 ††† 0 0 †††

3 s.d. 0 0 ††† 0 0 †††

4 s.d. 0 0 ††† 0 0 †††

2 s.d. 0 0 ††† 0 0 †††

0 0 †††

5 s.d. 0 0 ††† 0 0 †††

(2) Cutoff point estimated using Andrew's test ('Fstats' function of  'strucchange' package in R, with default parameters). 

       Then, optimal bandwidth around estimated cutoff estimated ('rdbwselect' function of 'rdrobust package in R, with default parameters). 

       Then, Indicator saturation applied within estimated bandwidth ('isat' function of 'gets' pacakge in R at 1% nominal false detection rate - denoted ႵႵႵ).

(1) Cutoff point estimated using Andrew's test ('Fstats' function of  'strucchange' package in R, with default parameters). 

       Then, RD  & Kink Regression run based on estimated cutoff  ('rdrobust' function of 'rdrobust' package in R, with default parameters). 

       Both  conventional & robust (bias-corrected) coefs. & std. errors reported. *, **, *** represent statisticial significance at 10%, 5%, and 1% levels.

Quadratic DGP (DGP 2.1)  - Discontinuity = FALSE, Kink = FALSE 

2 s.d. 0 0 ††† 0 0 †††

4 s.d. 0 0 ††† 0 0 †††

3 s.d. 0 0 †††
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Table 3: Results of Unknown Cutoff Detection (Single Simulation) – (Case: Kink only in the DGPs) 

 

From the outcomes reported in Table 3, when there was no discontinuity but a kink in the true DGP, 

both procedures detected no statistically significant discontinuity except when using the quadratic 

estimator with a high dispersion for the disturbance term. Presence of a kink was correctly detected 

when employing the RD-regression approach, although bias of the estimator increased as the data 

became noisier (higher dispersion for the disturbance term). The indicator-saturation method failed 

to detect the presence of a kink as the data became noisier and the ‘signal to noise ratio’ fell. 

Magnitude 

of Discontinuity (if exists)

True 

Discontinuity 

Coef

Est. 

Discontinuity 

Coef.

Known 

Cutoff

RD 

Regression 

Approach

Est. 

Discontinuity 

Coef.

(1)

Estimated 

Cutoff

RD 

Regression 

Approach

Est. 

Discontinuity 

Coef.

(2)

Estimated 

Cutoff

Indicator 

Saturation 

Approach

True 

Kink

Coef

Est. 

Kink

Coef.

Known 

Cutoff

RD 

Regression 

Approach

Est. 

Kink

Coef.

(1)

Estimated 

Cutoff

RD 

Regression 

Approach

Est. 

Kink 

Coef.

(2)

Estimated 

Cutoff

Indicator 

Saturation 

Approach

-0.001 -0.038 -2.008*** -2.003***

(0.035) (0.036) (0.132) (0.134)

-0.004 -0.041 -1.979*** -1.979***

[0.041] [0.043] [0.199] [0.202]

-0.003 -0.043 -2.031*** -2.022***

(0.042) (0.044) (0.167) (0.175)

-0.009 -0.048 -1.996*** -1.988***

[0.049] [0.052] [0.258] [0.267]

-0.011 -0.126 -2.111*** -2.168***

(0.056) (0.107) (0.255) (0.566)

-0.019 -0.137 -2.075*** -2.106***

[0.067] [0.123] [0.407] [0.787]

-0.024 -0.191 -2.298*** -2.606***

(0.096) (0.186) (0.484) (0.99)

-0.038 -0.223 -2.259** -2.661**

[0.115] [0.214] [0.812] [1.448]

0.003 0.111 -5.804 -5.579***

(0.061) (0.084) (0.634) (0.791)

0.001 0.089 -6.343 -6.083***

[0.073] [0.097] [0.68] [0.883]

0.003 0.12 -5.92*** -5.635***

(0.07) (0.092) (0.621) (0.774)

-0.004 0.097 -6.467*** -6.164***

[0.083] [0.107] [0.687] [0.886]

-0.004 0.134 -5.955*** -5.622***

(0.087) (0.11) (0.6) (0.748)

-0.015 0.112 -6.524*** -6.189***

[0.102] [0.129] [0.71] [0.908]

-0.021 0.509*** -6.154*** -4.728***

(0.128) (0.128) (0.742) (0.685)

-0.043 0.524*** -6.785*** -4.992***

[0.151] [0.158] [1.013] [1.112]

Discontinuity Detection Kink Detection

Linear DGP (DGP 1.2)  - Discontinuity = FALSE, Kink = TRUE 

5 s.d. 0 0.339 ††† -2 -2.006 †††

Quadratic DGP (DGP 2.2)  - Discontinuity = FALSE, Kink = TRUE

4 s.d. 0 0.267 ††† -2 -2.391 †††

3 s.d. 0 -0.619 ††† -2 -0.431 †††

2 s.d. 0 -0.433 ††† -2 -0.433 †††

4 s.d. 0 -0.02 ††† -6 -5.684 †††

5 s.d. 0 -0.019 ††† -6 -5.701 †††

(1) Cutoff point estimated using Andrew's test ('Fstats' function of  'strucchange' package in R, with default parameters). 

       Then, RD  & Kink Regression run based on estimated cutoff  ('rdrobust' function of 'rdrobust' package in R, with default parameters). 

       Both  conventional & robust (bias-corrected) coefs. & std. errors reported. *, **, *** represent statisticial significance at 10%, 5%, and 1% levels.

(2) Cutoff point estimated using Andrew's test ('Fstats' function of  'strucchange' package in R, with default parameters). 

       Then, optimal bandwidth around estimated cutoff estimated ('rdbwselect' function of 'rdrobust package in R, with default parameters). 

       Then, Indicator saturation applied within estimated bandwidth ('isat' function of 'gets' pacakge in R at 1% nominal false detection rate - denoted †††).

3 s.d. 0 -0.085 ††† -6 -5.455 †††

2 s.d. 0 -2.304 ††† -6 -0.554 †††

Green: Estimated coefficient within 2 s.d. of disturbance term | Red: Estimated coefficient NOT within 2 s.d. of disturbance term
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Table 4: Results of Unknown Cutoff Detection (Single Simulation) – (Case: Discontinuity only in the DGPs)  

 

From the outcomes presented in Table 4, when there was no kink but an unknown discontinuity in the 

true DGP, it seems that indicator-saturation procedure strictly dominated the RD-regression approach 

in both the linear and quadratic regressor DGPs. Both the presence and the magnitude of the 

discontinuity were accurately detected when using the indicator-saturation method, while no case of 

false-kink detection was found, even for small signal-to-noise ratio (magnitude of discontinuity being 

as low as 2 standard deviations of the disturbance term). In contrast, the RD-regression procedure 

successfully detected the presence of a discontinuity, and the detected (nonexistent) kinks were also 

not reported as statistically significant, but the coefficient values were under-estimated for the 

discontinuity and over-estimated for the kink compared to the case when the cutoff point is known.   

Magnitude 

of Discontinuity (if exists)

True 

Discontinuity 

Coef

Est. 

Discontinuity 

Coef.

Known 

Cutoff

RD 

Regression 

Approach

Est. 

Discontinuity 

Coef.

(1)

Estimated 

Cutoff

RD 

Regression 

Approach

Est. 

Discontinuity 

Coef.

(2)

Estimated 

Cutoff

Indicator 

Saturation 

Approach

True 

Kink

Coef

Est. 

Kink

Coef.

Known 

Cutoff

RD 

Regression 

Approach

Est. 

Kink

Coef.

(1)

Estimated 

Cutoff

RD 

Regression 

Approach

Est. 

Kink 

Coef.

(2)

Estimated 

Cutoff

Indicator 

Saturation 

Approach

0.999*** 0.693** -0.01 1.246

(0.033) (0.318) (0.13) (1.342)

0.996*** 0.665* 0.019 1.907

[0.039] [0.346] [0.196] [2.006]

0.996*** 0.703** -0.035 1.169

(0.04) (0.32) (0.164) (1.356)

0.991*** 0.675* -0.002 1.817

[0.047] [0.349] [0.255] [2.032]

0.989*** 0.725** -0.116 1.003

(0.054) (0.325) (0.249) (1.397)

0.981*** 0.697* -0.083 1.616

[0.064] [0.357] [0.401] [2.103]

0.976*** 0.792** -0.309 0.558

(0.093) (0.351) (0.478) (1.565)

0.962*** 0.764* -0.276 1.063

[0.111] [0.393] [0.806] [2.39]

1.003*** 0.709** 0.115 1.925

(0.053) (0.339) (0.638) (1.371)

0.998*** 0.666* -0.388 1.866

[0.063] [0.37] [0.678] [2.073]

1*** 0.719** 0.001 1.862

(0.062) (0.342) (0.606) (1.39)

0.993*** 0.676* -0.518 1.793

[0.072] [0.374] [0.663] [2.104]

0.993*** 0.742** -0.052 1.721

(0.075) (0.349) (0.576) (1.44)

0.982*** 0.699** -0.611 1.626

[0.087] [0.384] [0.672] [2.187]

0.979*** 0.808** -0.207 1.317

(0.112) (0.379) (0.7) (1.639)

0.959*** 0.766** -0.844 1.131

[0.133] [0.424] [0.968] [2.511]

Discontinuity Detection Kink Detection

Linear DGP (DGP 1.3)  - Discontinuity = TRUE, Kink = FALSE

5 s.d. 1 1.004 ††† 0 0 †††

Quadratic DGP (DGP 2.3)  - Discontinuity = TRUE, Kink = FALSE

4 s.d. 1 1.003 ††† 0 0 †††

3 s.d. 1 1.006 ††† 0 0 †††

2 s.d. 1 1.024 ††† 0 0 †††

4 s.d. 1 0.995 ††† 0 0 †††

5 s.d. 1 0.997 ††† 0 0 †††

(1) Cutoff point estimated using Andrew's test ('Fstats' function of  'strucchange' package in R, with default parameters). 

       Then, RD  & Kink Regression run based on estimated cutoff  ('rdrobust' function of 'rdrobust' package in R, with default parameters). 

       Both  conventional & robust (bias-corrected) coefs. & std. errors reported. *, **, *** represent statisticial significance at 10%, 5%, and 1% levels.

(2) Cutoff point estimated using Andrew's test ('Fstats' function of  'strucchange' package in R, with default parameters). 

       Then, optimal bandwidth around estimated cutoff estimated ('rdbwselect' function of 'rdrobust package in R, with default parameters). 

       Then, Indicator saturation applied within estimated bandwidth ('isat' function of 'gets' pacakge in R at 1% nominal false detection rate - denoted †††).

3 s.d. 1 1.009 ††† 0 0 †††

2 s.d. 1 0.978 ††† 0 0 †††

Green: Estimated coefficient within 2 s.d. of disturbance term | Red: Estimated coefficient NOT within 2 s.d. of disturbance term
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Table 5: Results of Unknown Cutoff Detection (Single Simulation) – (Case: Discontinuity & Kink in the DGPs) 

 

Outcomes reported in Table 5, for when there are both a discontinuity and a kink in the true DGP, 

show that the indicator-saturation based detection approach strictly dominated the RD-regression 

method for both the linear and quadratic regressor DGPs, at least for the cases I explored. The 

indicator-saturation detection procedure accurately detected both the presence and the magnitude 

of the discontinuity and the kink, even for DGPs with a small signal-to-noise ratio. The RD-regression 

approach was more often than not able to detect the presence of both the discontinuity and the kink, 

but this method systematically underestimated their magnitude compared to the case when the 

change point is known a-priori.  

Magnitude 

of Discontinuity (if exists)

True 

Discontinuity 

Coef

Est. 

Discontinuity 

Coef.

Known 

Cutoff

RD 

Regression 

Approach

Est. 

Discontinuity 

Coef.

(1)

Estimated 

Cutoff

RD 

Regression 

Approach

Est. 

Discontinuity 

Coef.

(2)

Estimated 

Cutoff

Indicator 

Saturation 

Approach

True 

Kink

Coef

Est. 

Kink

Coef.

Known 

Cutoff

RD 

Regression 

Approach

Est. 

Kink

Coef.

(1)

Estimated 

Cutoff

RD 

Regression 

Approach

Est. 

Kink 

Coef.

(2)

Estimated 

Cutoff

Indicator 

Saturation 

Approach

0.999*** 0.713** -2.008*** -0.674

(0.035) (0.303) (0.132) (1.309)

0.996*** 0.682** -1.979*** 0.042

[0.041] [0.332] [0.199] [1.976]

0.997*** 0.723** -2.031*** -0.76

(0.042) (0.306) (0.167) (1.323)

0.991*** 0.691** -1.996*** -0.068

[0.049] [0.335] [0.258] [2.003]

0.989*** 0.745** -2.111*** -0.944

(0.056) (0.312) (0.255) (1.362)

0.981*** 0.712** -2.075*** -0.306

[0.067] [0.344] [0.407] [2.073]

0.976*** 0.811** -2.298*** -1.415

(0.096) (0.34) (0.484) (1.539)

0.962*** 0.779** -2.259*** -0.917

[0.115] [0.382] [0.812] [2.37]

1.003*** 0.767*** -5.804*** -3.923***

(0.061) (0.298) (0.634) (1.235)

1.001*** 0.719** -6.343*** -3.801**

[0.073] [0.328] [0.68] [1.926]

1.003*** 0.776*** -5.92*** -4***

(0.07) (0.302) (0.621) (1.261)

0.996*** 0.728** -6.467*** -3.913**

[0.083] [0.333] [0.687] [1.967]

0.996*** 0.797*** -5.955*** -4.168***

(0.087) (0.312) (0.6) (1.329)

0.985*** 0.748** -6.524*** -4.158**

[0.102] [0.347] [0.71] [2.072]

0.979*** 0.864*** -6.154*** -4.643***

(0.128) (0.349) (0.742) (1.581)

0.957*** 0.813** -6.785*** -4.804**

[0.151] [0.395] [1.013] [2.459]

Discontinuity Detection Kink Detection

Linear DGP (DGP 1.4)  - Discontinuity = TRUE, Kink = TRUE

5 s.d. 1 1.005 ††† -2 -2.016 †††

Quadratic DGP (DGP 2.4)  - Discontinuity = TRUE, Kink = TRUE

4 s.d. 1 1.008 ††† -2 -2.016 †††

3 s.d. 1 1.015 ††† -2 -2.044 †††

2 s.d. 1 1.033 ††† -2 -2.098 †††

4 s.d. 1 1.007 ††† -6 -6.022 †††

5 s.d. 1 1.005 ††† -6 -6.014 †††

(1) Cutoff point estimated using Andrew's test ('Fstats' function of  'strucchange' package in R, with default parameters). 

       Then, RD  & Kink Regression run based on estimated cutoff  ('rdrobust' function of 'rdrobust' package in R, with default parameters). 

       Both  conventional & robust (bias-corrected) coefs. & std. errors reported. *, **, *** represent statisticial significance at 10%, 5%, and 1% levels.

(2) Cutoff point estimated using Andrew's test ('Fstats' function of  'strucchange' package in R, with default parameters). 

       Then, optimal bandwidth around estimated cutoff estimated ('rdbwselect' function of 'rdrobust package in R, with default parameters). 

      Then, Indicator saturation applied within estimated bandwidth ('isat' function of 'gets' pacakge in R at 1% nominal false detection rate - denoted †††).

3 s.d. 1 1.013 ††† -6 -6.038 †††

2 s.d. 1 1.03 ††† -6 -6.086 †††

Green: Estimated coefficient within 2 s.d. of disturbance term | Red: Estimated coefficient NOT within 2 s.d. of disturbance term
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As the indicator-saturation approach seems more promising based on the single-simulation result 

reported in the above tables, I proceed with the indicator-saturation method only in the Monte-Carlo 

simulations to explore its large-sample behavior. Tables 6 & 7 presents the results of 1000 replications 

in each simulation experiment for three sample sizes (200, 500, 1000) using the linear and quadratic 

regressor DGPs, respectively, when I aim to explore the large-sample behavior of the indicator-

saturation approach. I concentrate on reporting the estimated false-detection rates and the estimated 

true detection rates in terms of detecting the ‘presence’ of discontinuity/kink. For estimating false-

detection rates, in simulated DGPs where the true discontinuity/kink coefficient is ‘0’, coefficient 

estimate falling beyond 1.96 standard deviations of the disturbance term from ‘0’ is taken as a false-

detection. For estimating true-detection rates, in DGPs with a discontinuity/kink, coefficient estimate 

falling beyond 1.96 standard deviations of the disturbance term from ‘0’ in the direction of the true-

coefficient is taken as a true-detection. This is motivated by the fact that the disturbance terms are, 

by the design of the DGPs, normally distributed. The DGPs are generated as linear/quadratic functions 

of the score variable and an additive normally distributed disturbance term, with a possible 

kink/discontinuity/or both. All departures from the expected values once the DGPs have been 

modeled as linear/quadratic functions, therefore, come from either the stochastic disturbance term 

or the discontinuity/kink. Therefore, for estimating false-detection probabilities (in DGPs where there 

is no effect), coefficient estimates falling within 1.96 standard deviations of the disturbance term from 

‘0’ are taken as ‘random noise’, whereas estimates falling beyond that range are taken as false-signals 

(5% nominal significance level). Similarly, for estimating probabilities of true-detection (in DGPs where 

there is an effect), discontinuity/kink coefficient estimates falling beyond 1.96 standard deviations in 

the direction of the true discontinuity/kink coefficients is taken as a true-detection of effect-presence.   

While the indicator-saturation algorithm is run in this experiment at a nominal false-detection rate of 

1%, the choice of an interval of 1.96 standard deviations of the disturbance term requires further 

justification, as it corresponds to a 5% nominal significance level. This is because, while the indicator-

saturation is run at a 1% nominal false detection rate, it corresponds to the nominal false detection 

rate of the indicator-saturation algorithm only, whereas it is one of the three-steps in my procedure. 

I, therefore, expect a slightly higher false detection rate. Nevertheless, I also generate estimates of 

false-detection and true detection rates using an interval of 2.58 standard deviation of the disturbance 

term, which corresponds to a 1% nominal significance level, as a sensitivity test (see Appendix A). 

Overall, As expected, when the interval corresponding to 1% nominal significance is used, there is a 

small decrease in both rates. The exception is when the sample size is smaller (200 or 500) and signal-

to-noise ratio is smaller (3 or 2), for which there is a significant drop in true detection rates for a small 

decrease in false-detection rates in some cases, which is also as expected.  
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Table 6: Simulated False-Detection Rates & True-Detection Rates for Linear Funcitional Form DGPs 

 

n = 200 n = 500 n = 1000

False Detection - Discontinuity 

(Detecting treatment effect/discontinuity when there is none)
0.0% 0.9% 0.7%

False Detection - Kink 

(Detecting selection effect/kink when there is none)
0.0% 0.8% 0.5%

False Detection - Discontinuity 

(Detecting treatment effect/discontinuity when there is none)
0.2% 2.2% 1.2%

True Detection - Kink 

(Detecting selection effect/kink when there is one)
99.9% 98.9% 99.9%

True Detection - Discontinuity 

(Detecting treatment effect when there is one)
100.0% 100.0% 100.0%

False Detection - Kink 

(Detecting selection effect/kink when there is none)
0.0% 0.1% 0.0%

True Detection - Discontinuity 

(Detecting treatment effect when there is one)
99.9% 99.8% 100.0%

True Detection - Kink 

(Detecting selection effect/kink when there is one)
99.9% 99.9% 100.0%

False Detection - Discontinuity 

(Detecting treatment effect/discontinuity when there is none)
0.0% 1.1% 1.4%

False Detection - Kink 

(Detecting selection effect/kink when there is none)
0.0% 0.8% 0.9%

False Detection - Discontinuity 

(Detecting treatment effect/discontinuity when there is none)
0.5% 4.4% 0.9%

True Detection - Kink 

(Detecting selection effect/kink when there is one)
99.6% 97.2% 99.9%

True Detection - Discontinuity 

(Detecting treatment effect when there is one)
100.0% 100.0% 100.0%

False Detection - Kink 

(Detecting selection effect/kink when there is none)
0.3% 0.2% 0.0%

True Detection - Discontinuity 

(Detecting treatment effect when there is one)
99.9% 99.7% 99.9%

True Detection - Kink 

(Detecting selection effect/kink when there is one)
99.9% 99.7% 99.9%

False Detection - Discontinuity 

(Detecting treatment effect/discontinuity when there is none)
0.1% 2.4% 2.0%

False Detection - Kink 

(Detecting selection effect/kink when there is none)
0.0% 1.2% 1.5%

False Detection - Discontinuity 

(Detecting treatment effect/discontinuity when there is none)
0.9% 12.8% 4.6%

True Detection - Kink 

(Detecting selection effect/kink when there is one)
98.8% 82.6% 94.4%

True Detection - Discontinuity 

(Detecting treatment effect when there is one)
99.9% 99.3% 100.0%

False Detection - Kink 

(Detecting selection effect/kink when there is none)
0.5% 3.8% 1.1%

True Detection - Discontinuity 

(Detecting treatment effect when there is one)
99.2% 96.1% 99.1%

True Detection - Kink 

(Detecting selection effect/kink when there is one)
99.2% 95.5% 98.8%

False Detection - Discontinuity 

(Detecting treatment effect/discontinuity when there is none)
0.1% 4.5% 4.1%

False Detection - Kink 

(Detecting selection effect/kink when there is none)
0.1% 2.9% 2.8%

False Detection - Discontinuity 

(Detecting treatment effect/discontinuity when there is none)
0.9% 13.4% 9.5%

True Detection - Kink 

(Detecting selection effect/kink when there is one)
0.2% 24.5% 36.7%

True Detection - Discontinuity 

(Detecting treatment effect when there is one)
0.5% 54.0% 60.7%

False Detection - Kink 

(Detecting selection effect/kink when there is none)
0.2% 0.4% 0.0%

True Detection - Discontinuity 

(Detecting treatment effect when there is one)
0.8% 63.1% 82.0%

True Detection - Kink 

(Detecting selection effect/kink when there is one)
0.5% 34.5% 46.5%

DGPs (Linear) Parameter

(Indicator saturation method applied at 1% nominal false-detection rate)

DGP1.3

Discontinuity/treatment effect = TRUE

Kink/selection effect = FALSE

2 s.d

DGP1.1

Discontinuity/treatment effect = FALSE

Kink/selection effect = FALSE

DGP1.2

Discontinuity/treatment effect = FALSE

Kink/selection effect = TRUE

DGP1.3

Discontinuity/treatment effect = TRUE

Kink/selection effect = FALSE

DGP1.4

Discontinuity/treatment effect = TRUE

Kink/selection effect = TRUE

Green: False-Detection < 1% / True-Detection > 99% | Yellow - False-Detection < 5% / True-Detection > 95% | Red: False-Detection > 5% / True-Detection < 95%

signal detection interval:

1.96 s.d. of disturbance 

DGP1.4

Discontinuity/treatment effect = TRUE

Kink/selection effect = TRUE

3 s.d

DGP1.1

Discontinuity/treatment effect = FALSE

Kink/selection effect = FALSE

DGP1.2

Discontinuity/treatment effect = FALSE

Kink/selection effect = TRUE

DGP1.3

Discontinuity/treatment effect = TRUE

Kink/selection effect = FALSE

DGP1.4

Discontinuity/treatment effect = TRUE

Kink/selection effect = TRUE

DGP1.1

Discontinuity/treatment effect = FALSE

Kink/selection effect = FALSE

DGP1.2

Discontinuity/treatment effect = FALSE

Kink/selection effect = TRUE

DGP1.3

Discontinuity/treatment effect = TRUE

Kink/selection effect = FALSE

DGP1.4

Discontinuity/treatment effect = TRUE

Kink/selection effect = TRUE

5 s.d

4 s.d

DGP1.1

Discontinuity/treatment effect = FALSE

Kink/selection effect = FALSE

DGP1.2

Discontinuity/treatment effect = FALSE

Kink/selection effect = TRUE

Magnitude 

of Discontinuity (if exists)
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Table 6 reports results for simulated false-detection and true-detection rates for the indicator-

saturation approach based on 1,000 replications for each simulation experiment when the DGPs are 

linear functions of the score at signal-to-noise ratios of 2,3,4, and 5. I expect the false-detection rate 

of the three-step procedure to be slightly higher than 1% when I set a nominal false-detection rate of 

1% for the indicator-saturation algorithm (see page 24). In the table, I color-code estimated false-

detection rates below 1% in green, and above 1% but not exceeding 5% in yellow. Small false detection 

rates/large true detection rates are not expected at signal-to-noise ratios below 2.58 (see section 2.3).         

False-detection of a discontinuity or a kink when neither exists and of a kink when a discontinuity 

exists, stay less than 5% for all simulated experiments as is expected. However, false-detection of a 

discontinuity when a kink exists exceeds 5% in the particular case when the sample size is 500 and the 

signal-to-noise ratio is 3, and estimated true-detection rate, in this case, is also small. Overall, 

however, false-detection of a discontinuity when there is a kink, stays below 5% in the larger sample 

size of 1000 for all considered signal-to-noise ratios above 2, and close to 1% for all considered signal-

to-noise ratios above 3. Therefore, it seems a sample size of 1000 or more is required for the case 

when there is a kink but no discontinuity, to have a false-detection rate that is close to the nominal 

false-detection rate. Overall, the estimated false detection rates are mostly close to 1%, and generally 

falling with larger samples, albeit nonlinearly at times (increasing as the sample size goes to 500 from 

200 but decreasing as it goes to 1000 from 500). A possible explanation for the very small estimated 

false-detection rates that is not close to the nominal false-detection rate at the small sample size of 

200 is perhaps because false-detections can be driven by outliers. For this small sample size, the 

possibility of an outlier in the normally distributed disturbance term is significantly smaller.   

True-detection of a discontinuity, irrespective of whether a kink exists or not, remains above 95% at 

this nominal false detection rate of 1% for all signal-to-noise ratios above 2, and above 99% for all 

signal-to-noise ratios above 3, for all three sample sizes. This estimated rate seems to increase as the 

sample size increases and as the signal-to-noise ratio increases. True detection of a kink irrespective 

of whether a discontinuity exists or not shows similar high true-detection rates, except in the specific 

case when the sample size is 500 and the signal-to-noise ratio is 3. As most econometric applications 

of RDD are interested in estimating the treatment effect and most real-world data seems to exhibit 

linear behavior at least in the local neighborhood of the treatment, and as the linear functional form 

for RDD is increasingly becoming popular in empirical econometric applications in place of higher-

order polynomials of the score variable, see Pei et al. (2018), the simulation results presented here 

are promising for treatment effect estimation with unknown cutoff. Kink (tipping effect) detection 

results are also encouraging, for which larger sample size (1000 or more) seems warranted.   
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Table 7: Simulated False-Detection Rates & True-Detection Rates for Quadratic Functional Form DGPs 

 

n = 200 n = 500 n = 1000

False Detection - Discontinuity 

(Detecting treatment effect/discontinuity when there is none)
0.9% 0.7% 0.3%

False Detection - Kink 

(Detecting selection effect/kink when there is none)
0.8% 0.7% 0.3%

False Detection - Discontinuity 

(Detecting treatment effect/discontinuity when there is none)
15.6% 34.5% 23.6%

True Detection - Kink 

(Detecting selection effect/kink when there is one)
92.5% 84.7% 89.9%

True Detection - Discontinuity 

(Detecting treatment effect when there is one)
100.0% 100.0% 100.0%

False Detection - Kink 

(Detecting selection effect/kink when there is none)
7.5% 0.1% 0.0%

True Detection - Discontinuity 

(Detecting treatment effect when there is one)
94.9% 98.9% 100.0%

True Detection - Kink 

(Detecting selection effect/kink when there is one)
97.2% 99.8% 100.0%

False Detection - Discontinuity 

(Detecting treatment effect/discontinuity when there is none)
1.6% 0.5% 0.9%

False Detection - Kink 

(Detecting selection effect/kink when there is none)
1.4% 0.2% 0.7%

False Detection - Discontinuity 

(Detecting treatment effect/discontinuity when there is none)
19.1% 31.8% 28.2%

True Detection - Kink 

(Detecting selection effect/kink when there is one)
90.6% 86.3% 86.1%

True Detection - Discontinuity 

(Detecting treatment effect when there is one)
99.8% 100.0% 100.0%

False Detection - Kink 

(Detecting selection effect/kink when there is none)
12.8% 1.0% 0.2%

True Detection - Discontinuity 

(Detecting treatment effect when there is one)
94.3% 98.4% 99.9%

True Detection - Kink 

(Detecting selection effect/kink when there is one)
97.1% 99.7% 99.8%

False Detection - Discontinuity 

(Detecting treatment effect/discontinuity when there is none)
2.0% 2.4% 2.3%

False Detection - Kink 

(Detecting selection effect/kink when there is none)
1.7% 1.6% 0.9%

False Detection - Discontinuity 

(Detecting treatment effect/discontinuity when there is none)
27.7% 35.0% 30.1%

True Detection - Kink 

(Detecting selection effect/kink when there is one)
82.4% 78.3% 80.8%

True Detection - Discontinuity 

(Detecting treatment effect when there is one)
94.2% 99.3% 99.5%

False Detection - Kink 

(Detecting selection effect/kink when there is none)
18.8% 4.6% 1.7%

True Detection - Discontinuity 

(Detecting treatment effect when there is one)
85.2% 96.9% 99.4%

True Detection - Kink 

(Detecting selection effect/kink when there is one)
94.4% 98.8% 99.1%

False Detection - Discontinuity 

(Detecting treatment effect/discontinuity when there is none)
4.6% 3.9% 4.2%

False Detection - Kink 

(Detecting selection effect/kink when there is none)
2.8% 2.5% 2.3%

False Detection - Discontinuity 

(Detecting treatment effect/discontinuity when there is none)
56.3% 44.4% 43.8%

True Detection - Kink 

(Detecting selection effect/kink when there is one)
40.2% 41.9% 49.4%

True Detection - Discontinuity 

(Detecting treatment effect when there is one)
39.6% 47.6% 52.5%

False Detection - Kink 

(Detecting selection effect/kink when there is none)
11.2% 2.6% 1.0%

True Detection - Discontinuity 

(Detecting treatment effect when there is one)
39.6% 48.7% 55.9%

True Detection - Kink 

(Detecting selection effect/kink when there is one)
64.2% 82.0% 89.5%

(Indicator saturation method applied at 1% nominal false-detection rate)

5 s.d

DGP2.1

Discontinuity/treatment effect = FALSE

Kink/selection effect = FALSE

DGP2.2

Discontinuity/treatment effect = FALSE

Kink/selection effect = TRUE

DGP2.3

Discontinuity/treatment effect = TRUE

Kink/selection effect = FALSE

DGP2.4

Discontinuity/treatment effect = TRUE

Kink/selection effect = TRUE

4 s.d

DGP2.1

Discontinuity/treatment effect = FALSE

Kink/selection effect = FALSE

DGP2.2

Discontinuity/treatment effect = FALSE

Kink/selection effect = TRUE

DGP2.3

Discontinuity/treatment effect = TRUE

Kink/selection effect = FALSE

DGP2.4

Discontinuity/treatment effect = TRUE

Kink/selection effect = TRUE

DGP2.4

Discontinuity/treatment effect = TRUE

Kink/selection effect = TRUE

Green: False-Detection < 1% / True-Detection > 99% | Yellow - False-Detection < 5% / True-Detection > 95% | Red: False-Detection > 5% / True-Detection < 95%

DGP2.4

Discontinuity/treatment effect = TRUE

Kink/selection effect = TRUE

2 s.d

DGP2.1

Discontinuity/treatment effect = FALSE

Kink/selection effect = FALSE

DGP2.2

Discontinuity/treatment effect = FALSE

Kink/selection effect = TRUE

DGP2.3

Discontinuity/treatment effect = TRUE

Kink/selection effect = FALSE

3 s.d

DGP2.1

Discontinuity/treatment effect = FALSE

Kink/selection effect = FALSE

DGP2.2

Discontinuity/treatment effect = FALSE

Kink/selection effect = TRUE

DGP2.3

Discontinuity/treatment effect = TRUE

Kink/selection effect = FALSE

signal detection interval:

1.96 s.d. of disturbance Magnitude 

of Discontinuity (if exists)
DGPs (Quadratic) Parameter
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Table 7 presents outcomes for simulated false-detection and true-detection rates based on 1,000 

replications for each experiment when the DGPs are of quadratic functional form. As in Table 6, three 

sample sizes and four integer-valued signal-to-noise ratios are considered. We see that false detection 

of a discontinuity or a kink, when neither exists, is estimated at less than 5% for all cases, as is the case 

for the linear functional forms of DGPs. However, estimated false-detection rates of a discontinuity 

when only a kink exists, are very high, for example, 23.6% even when the sample size is 1,000 and 

signal-to-noise ratio is 5, which is the maximum studied in this experiment. We see that estimated 

true-detection rates of a kink also are small whenever there is only a kink but no discontinuity (for 

example 89.9% at the sample size of 1,000 and signal-to-noise ratio of 5). The procedure, therefore, 

does not seem to perform well in detecting kinks only when there is no discontinuity (pure tipping 

effects). Nevertheless, estimated false-detection rates in this case seem to be falling in larger sample 

sizes and larger signal-to-noise ratios, while true-detection rates seem to be rising.   

For all cases considered other than the kink-only case, I find estimated false-detection rates below 5% 

and estimated true-detection rates above 95% for sample sizes of 500 and 1,000 at signal-to-noise 

ratios of 3 and above.  

Overall, in both linear and quadratic functional forms of the DGPs,  estimated false-detection rates are 

small and as expected for large sample sizes for treatment effect estimation (irrespective of whether 

there is a kink or not), and true-detection rates are also large (above 95%). Thus, the simulation results 

are satisfactory. The simulated results on false-detection rates and true-detection rates for this 

procedure when the sample size is large seem slightly more encouraging in the case of the linear 

functional form of the score variable over the quadratic functional form, considering that the 

estimation with quadratic functional form performed poorly (large false detection rates, small true-

detection rates) when there is only a kink in the DGPs, which is a pure tipping effect with no treatment 

effect. Also, for the linear functional form, estimated false-detection rates are small and true-

detection rates are large even when the sample size is only 200.  

As the use of the linear estimator for RDD dominates applications and seems to be becoming more 

popular, over higher-order polynomial estimations, (the regression function in the local neighborhood 

is linear or can be approximated using a linear function even though it may be nonlinear from a global 

point of view), the simulation results for the linear functional forms are particularly promising.  

It is noteworthy that, when simulating the experiment 1000 times, it ran into an issue and stopped 

after completing arbitrary number of iterations (about 100). In closer look, the issue was being caused 

by the bandwidth selector function in case of kink-only DGPs. The computational procedure in 

obtaining optimum bandwidth length around a given cutoff makes use of an intermediate matrix 
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which needs to be positive definite. When this requirement is violated, the bandwidth selector 

function generates an error. Changing the kernel function used in solving for the optimum bandwidth 

length resolves the issue (the options supported in the ‘rdrobust’ function are uniform, triangular, and 

epanechnikov kernels).  As mentioned in the methodology section, the choice of the kernel is trivial 

when ‘rdrobust’ function is used to generate optimum bandwidth length, see Cattaneo et al. (2019), 

as the estimation and inference results are not very sensitive and almost invariant. This is because the 

bandwidth-choice is optimized taking into consideration the particular choice of the kernel. However, 

to maintain consistency in the method used to generate 1000 replications of the experiment, choice 

of kernel function was kept the same. Instead, data obtained up to the number of successfully 

terminated iteration were stored, and the experiment was reinitiated using a seed equals to the serial 

number of the iteration at which it ran into the error, plus one. The result of 1000 replications, 

therefore, are stitched together.       

It is also worth noting that there are alternate approaches to evaluating properties of a procedure, for 

example, a Mean Squared Error (MSE) measure of the estimator, that is not included in this thesis. 

However, distributions of the estimated coefficients are presented graphically which indicates, 

overall, bias and variance of the estimators are falling in larger sample sizes and larger signal to noise 

ratios.    

Figures 3, 4, 5, 6, 7, 8, 9, and 10 depict the estimated bias-behavior based on 1000 replications in each 

simulation experiment. More specifically, I present the distributions of the estimated discontinuity 

and kink coefficients for the 32 combinations of DGPs. From these figures, we can see that the 

estimated bias diminishes, and the estimated coefficients become more and more centered on the 

true coefficient value as the sample size increases and as the signal-to-noise ratio increases, which is 

a desired property. In other words, larger effects that are more discernible from random noise in the 

data are estimated more accurately, smaller variance in the disturbance term results in a more 

accurate estimation of coefficients, and larger sample size yields more accurate estimates.  

In each of these figure panels, the black vertical line represents the true-coefficient. Red, green, and 

blue lines represent the distributions of the estimated effect coefficients at sample sizes of 200, 500, 

and 1000. Signal-to-noise ratio (relative magnitude of discontinuity if it exists as a multiple of the 

standard deviation of the disturbance term) increases going from top to bottom along the panels. The 

signal-to-noise ratios of 5,4,3, and 2 corresponds to standard deviation values of 0.2, 0.25, 0.33, and 

0.5 for the disturbance terms respectively.
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Linear DGPs – (Discontinuity = FALSE, Kink = FALSE) 

 
 

Figure 3: Simulated Bias when neither Discontinuity nor Kink exists – Linear Functional Form DGPs 
(Standard Deviation of the disturbance term decreases going from top to bottom) 
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Quadratic DGPs – (Discontinuity = FALSE, Kink = FALSE) 

 
 

Figure 4: Simulated Bias when neither Discontinuity nor Kink exists – Quadratic Functional Form DGPs 
(Standard Deviation of the disturbance term decreases going from top to bottom) 
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Linear DGPs – (Discontinuity = FALSE, Kink = TRUE) 

 
 

Figure 5: Simulated Bias when only a Kink exists – Linear Functional Form DGPs 
(Standard Deviation of the disturbance term decreases going from top to bottom) 
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Quadratic DGPs – (Discontinuity = FALSE, Kink = TRUE) 

 
 

Figure 6: Simulated Bias when only a Kink exists– Quadratic Functional Form DGPs 
(Standard Deviation of the disturbance term decreases going from top to bottom) 
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Linear DGPs – (Discontinuity = TRUE, Kink = FALSE) 

 
 

Figure 7: Simulated Bias when only a Discontinuity exists– Linear Functional Form DGPs 
(Standard Deviation of the disturbance term decreases going from top to bottom) 
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Quadratic DGPs – (Discontinuity = TRUE, Kink = FALSE) 

 
 

Figure 8: Simulated Bias when only a Discontinuity exists – Quadratic Functional Form DGPs 
(Standard Deviation of the disturbance term decreases going from top to bottom) 



36 
 

Linear DGPs – (Discontinuity = TRUE, Kink = TRUE) 

 
 

Figure 9: Simulated Bias when both a Discontinuity and a Kink exist – Linear Functional Form DGPs 
(Standard Deviation of the disturbance term decreases going from top to bottom) 
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Quadratic DGPs – (Discontinuity = TRUE, Kink = TRUE) 

 
 

Figure 10: Simulated Bias when both a Discontinuity and a Kink exist – Quadratic Functional Form DGPs 
(Standard Deviation of the disturbance term decreases going from top to bottom) 



38 
 

4 Empirical Results 

In this section, I apply my proposed approach to regression discontinuity detection with an unknown 

cutoff on a data set from a published paper. Specifically, I chose to replicate the work of Meyersson 

(2014). Cattaneo et al. (2019) also use this dataset in their book, which is written as a practitioners’ 

guide, to illustrate the application of RDDs using the `rdrobust’ package in R. Overall, my proposed 

method produces treatment effect estimates that are congruent with those of Meyersson (2014) and 

Cattaneo et al. (2019), even when the exact cutoff is assumed to be ‘not known a-priori.    

Meyersson (2014) applied RDD to explore whether Islamic political controls affect women’s 

empowerment and whether a poor woman’s rights situation, often exhibited by constituencies with 

Islamic political control, reflect a causal relationship or a spurious one. More specifically, using RDD, 

he compared municipalities in Turkey where an Islamic-party affiliated mayor barely won or lost 

elections. In 1994, Turkey experienced a political shift in local elections when the pro-Islamic Refah 

Party became the second-largest party in terms of votes, winning 12% of municipalities.  Meyersson 

found that, despite overall negative raw correlations, over a period of six years, municipalities run by 

Islamic-party affiliated mayors increased female secular high-school education (positive causal effect 

of about 3% which is a 20% relative increase) and decreased adolescent marriages, with this effect 

remaining persistent up to 17 years after. Corresponding effects for men were found to be 

systematically smaller and less precise. He concluded this was consistent with the explanation that 

the Islamic party in question was effective in overcoming barriers to entry for females among the poor 

and pious (e.g.,  refusal of the party to uphold the headscarf bans in educational institutions). 

In the context of my work, the vote-margin of the Islamic party, which ranges from -100 to 99.051, is 

the score or assignment variable based on which the treatment (incumbency of an Islamic-party 

affiliated Mayor) is assigned. The known cutoff is at ‘0’, as above ‘0’, the Islamic-party wins the 

majority of votes, thereby ruling in that municipality. The outcome variable for my replication study is 

the high-school completion rate of women aged 15-20 by the year 2000. The dataset has 2629 

municipalities. This is arguably sufficiently large based on the outcomes of my simulation experiments.  

Figure 11 presents two scatter plots, the raw comparison of means (left panel) versus local comparison 

of means in the neighborhood of the cutoff (right panel) in female high school completion rate, with 

the margin of victory of the Islamic party reported on the X-axis.  
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Figure 11: Female High School Completion Rate & Islamic Party’s Margin of Victory4 

The scatter plots show that, despite the overall slightly negative slope on either side of the cutoff (left 

panel), in the neighborhood of the cutoff, the effect of election victory of an Islamic party affiliated 

mayor on high school completion rate of women seems positive (right panel). In the right panel, an 

estimated 4th-order global polynomial is used to approximate the population conditional mean 

functions for control and treated units. Although a global polynomial approach does not deliver good 

point estimators and inference procedures with good properties for the RD treatment effect 

estimation, Cattaneo et al. (2019) argue that, for a visual inspection of potential treatment effect, the 

global approach with higher-order polynomials of the score variable is appropriate.   

In the context of this data, it is not conceivable to have an unknown cutoff, as a positive margin of 

victory results in the party winning that municipality, hence the known cutoff is at ‘0’. Therefore, at 

first, I apply only the 2nd and 3rd step of the three-step procedure (bandwidth selection and effect 

estimation), omitting the cutoff-detection step and taking ‘0’ as the known cutoff instead. This allows 

us to examine the treatment effect estimation component of the procedure in isolation from the 

cutoff detection component. Table 8 presents comparisons of the resulting causal effect estimates 

with those of Meyersson (2014) and those obtained using RD regression along with MSE optimal 

bandwidth described in  Cattaneo et al. (2019).  

  

 
4 Plot generated using codes of Cattaneo et al. (2019). 

Raw Comparison of Means  Local Comparison of Means  
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Table 8: Estimated Local Treatment Effect with Known Cutoff – Comparison with Meyersson (2014) 

 

Bandwidth

Covariates (Control) no

Polynomial Order
linear

(1)

linear

(2)

quadratic

(3)

cubic

(4)

Est. Treatment Effect

(Meyersson, 2014)

0.032***

(0.010)

0.028***

(0.007)

0.028***

(0.011)

0.043***

(0.016)

Est. Treatment Effect

(RD Regression with Robust s.e.)
1

0.032**

(0.016)

0.03**

(0.015)

0.033*

(0.017)

0.031

(0.021)

Est. Treatment Effect

(Indicator Saturation - 1% nominal false detection)2,4 0.024 ††† 0.027 ††† 0.019 ††† 0.028 †††

Est. Treatment Effect

(Indicator Saturation - 5% nominal false detection)
2,5 0.021 †† 0.033 †† 0.030 †† 0.023 ††

Est. Bandwidth Interval (MSE Optimal) 

(Score variable - Margin of Victory)
[-15.45, 15.45] [-12.87, 12.87] [-19.56, 19.56] [-21.84, 21.84]

Bandwidth Coverage 

(% of Data Covered)
27.6% 23.6% 33.3% 36.3%

Effective No. of Observations  

(Below Cutoff + Above Cutoff)

725

(474 + 251)

619

(390 + 229)

875

(597 + 278)

952

(666 + 286)

Known Cutoff Location - Local (within Bandwidth)

(No. of Observation)
475 391 598 667

Detected Cutoff Location - Local (within Bandwidth)

(Step-shift nearest to Known Cutoff)2,3 369 †† 399 †† 606 †† 675 ††

Total Interval Length 

(Score variable - Margin of Victory)
[-100, 99.05] [-100, 99.05] [-100, 99.05] [-100, 99.05]

Total Number of Observations - Global

(below cutoff + Above Cutoff)

2629

(2314 + 315)

2629

(2314 + 315)

2629

(2314 + 315)

2629

(2314 + 315)

Known Cutoff Location - Global

(No. of Observation)
2315 2315 2315 2315

Detected Cutoff Location - Global

(Step-shift nearest to Known Cutoff)2,3 2209 †† 2323 †† 2323 †† 2323 ††

Known Cutoff Value  0 0 0 0

Detected Cutoff Value 

(step-shift nearest to known cutoff) 
-10.00 0.36 0.36 0.36

Known Cutoff Location - Global 2315 2315 2315 2315

1) *, **, *** represent statisticial significance at 10%, 5%, and 1% levels for RD regression (robust s.e.).

2) †, ††, ††† represent statisticial significance at nominal false-detection rate of 10%, 5%, and 1% levels for Indicator saturation method.

3) For cutoff location detection, Indicator saturation method applied at 1% false-detection rate first, if no effect is found near the known cutoff, false-

detection rate relaxed to 5% to increase power. Step indicator (to detect structural shifts) has been used.Cutoff location refers to the no. of observation 

where cutoff is found after the data has been reordered by ascending values of the Score variable. This creates a pseudo-time index, making the data 

amenable to time series methods (i.e. indicator saturation, Andrew's test). 

4) For effect estimation, At 1% nominal false detection rate, power is relatively small (compared to 5%), Probability of detection of break in the immediate 

neighbourhood of cutoff diminishes. Hence, within the bandwidth, Coefficients of step indicators above the known cutoff were aggregated and subtracted 

from aggregate of coefficients of step indicators below the known cutoff to produce an estimate of the local avg. treatment effect. 

5) At 5% nominal false detection rate, size is relatively large (compared to 1%). risk of spurious break detection increases. Hence, coefficients of step 

indicator cluster nearest to the known cutoff were aggregated to produce an estimate of the local avg. treatment effect.

MSE Optimal (Local)

yes
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We can see from the outcomes reported in Table 8 that the estimated local average treatment effects 

using the proposed indicator-saturation method when the cutoff is known are similar, under the 

different model specifications, to those obtained by Meyersson (2014) and those that can be obtained 

by applying robust RD regression with computationally derived optimal bandwidth.  The effect 

estimate from using the indicator-saturation approach is particularly close to that obtained by 

Meyersson (2014) in the case of the linear estimator with covariates as controls, which is the main 

model explored by Meyersson (2014). This finding suggests that the procedure developed in this thesis 

may serve as an additional robustness-check to RD regression, even when the cutoff is known.   

It is to be noted that, while the indicator-saturation method detects a structural shift near the cutoff 

at a 5% nominal false-detection rate, it does not detect any such shift at a lower, 1% false-detection 

rate. This is in congruence with the results obtained from the simulation experiments, where we saw 

that the indicator-saturation approach, at a 1% false-detection rate, only detects local treatment 

effects that are sufficiently large and sufficiently indistinguishable from random noise in the data. This 

highlights that some knowledge of an expected location of the cutoff is necessary for this approach to 

distinguish a small treatment effect from other structural shifts that may be present in the data.  

In applying indicator-saturation method, step-indicators (to detect structural shifts) have been used 

only for discontinuity detection since plotting the data (see Figure 11) did not reveal any symptom of 

a kink to warrant testing for a kink. For the detected cutoffs reported in Table 8, I first applied the 

indicator-saturation method at a 1% nominal false-detection rate, then, if no effect was found near 

the known cutoff, the false-detection rate was relaxed to 5% to increase the power of the procedure. 

The ‘cutoff location’ reported in the table refers to the index (serial number) of the observation where 

the cutoff is found, after the data has been reordered by ascending values of the score variable. This 

reordering creates a pseudo-time index, making the data amenable to time series methods.  

For effect magnitude estimation, at a 1% nominal false-detection rate for the indicator-saturation 

algorithm, the true-detection rate is relatively small (compared to at a 5% nominal false-detection 

rate), the estimated probability of detection of a break in the immediate neighborhood of the cutoff 

diminishes. Hence, within the bandwidth (restricted data), estimated coefficients of step-indicators 

above the known cutoff were aggregated, and subtracted from the aggregate of estimated coefficients 

of step-indicators below the known cutoff, to produce an estimate of the local average treatment 

effect. At a 5% nominal false-detection rate, however, the risk of a spurious break detection increases. 

Hence, estimated coefficients of the step-indicator cluster that is nearest to the known cutoff only 

were aggregated to produce an estimate of the local avg. treatment effect.  
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As the point estimate of treatment effect are generated in this method through aggregation of 

multiple step-shifts, this complicates obtaining estimates for associated standard error, even though 

each detected step-shift coefficient has its own standard error reported by the indicator saturation 

algorithm. Applying propagation of error method, which is summing squared standard errors of the 

aggregated step-shifts and taking square root of the sum as standard error estimate, would assign 

larger standard error estimate to treatment effect point estimates that are broken down into many 

intermediate step-shifts within the bandwidth over those that are broken down into few, hence would 

be a biased approach. Therefore, multiple point estimates of treatment effect are generated under 

different model specifications, such as under additional covariates and different polynomial orders of 

the score variable used, to see whether they concur or not.     

Next, the procedure is applied as if the cutoff were unknown. Detection of an estimated cutoff point 

and the resulting causal effect estimation is reported under different assumptions on a-priori 

knowledge on a score interval within which a cutoff may reside (namely, full dataset, 50%, and 25% of 

the score range centered around the true cutoff). To further illustrate, when the range is the full 

dataset, the assumption is that there is no a-priori knowledge at all on an interval within which the 

cutoff does not reside so that no interval-restriction can be applied. This assumption is too restrictive 

and often unrealistic. To provide a hypothetical example, if students are allocated to remedial classes 

(a treatment) based on exam-scores which range from 1-100, and if the exact cutoff is unknown, one 

would reasonably search for a cutoff in the lower score ranges and not on the entire score-range. If 

the cutoff value is expected to be in the range of 25 to 75, this range is 50% of the total score range.       

Figure 12 provides the distribution of the score variable and the distribution within a 50% and 25% 

score range centered around the true cutoff.  

 

Figure 12: Distribution of the Score Variable 

We see from Figure 12 that the distribution is negatively skewed (the party lost more municipalities 

than it won). Thus, retaining data within a 50% interval centered on the true cutoff only for application 

of the three-step procedure, in this case, results in about 83% of the data being retained. 
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In Table 9, results are shown for cutoff detection and effect estimation, as if the cutoff was unknown, 

under different assumptions on the a-priori knowledge on a score interval within which a cutoff may 

reside (full dataset, 50%, and 25% of the score range centered around the true cutoff). I compare the 

results of cutoff detection using both Andrews’ Test and indicator-saturation (step 1). I also compare 

application of conventional RD regression and indicator-saturation for effect estimation (step 2 & 3). 

Table 9: Estimated Local Treatment Effect with Unknown Cutoff – Comparison with Meyersson (2014) 

 

A-priori Knowledge on Potential Cutoff 

(Knowledge of Interval within which the Cutoff Score may reside, 

centered on True Cutoff)

100% 

interval 

length

50% 

interval

length

25%

interval 

length

Covariates (Control) yes yes yes

Polynomial Order linear linear linear

True Cutoff Score 0 0 0

Detected Cutoff Score - Andrew's Test1 -8.46*** -0.84*** -0.52***

Detected Cutoff Score - Indicator Saturation at 1% False Detection Rate
2,4 -39.38 ††† 9.85 ††† 9.85 ††† 

Detected Cutoff Score - Indicator Saturation at 5% False Detection Rate2,4 -28.76 †† 9.85 †† 0.36 ††

Detected Cutoff Score - Indicator Saturation at 10% False Detection Rate2,4 3.82 † 0.36 † 0.36 †

True Cutoff Location (No of Observation) 2314 2314 2314

Detected Cutoff Location - Andrew's Test1 2065*** 2297*** 2301***

Detected Cutoff Location - Indicator Saturation at 1% False Detection Rate2,4 948 ††† 2505 ††† 2505 ††† 

Detected Cutoff Location - Indicator Saturation at 5% False Detection Rate2,4 1420 †† 2505 †† 2325 ††

Detected Cutoff Location - Indicator Saturation at 10% False Detection Rate
2,4 2400 † 2325 † 2325 †

Retained Observations

(% of Observations)

2629

(100%)

2177

(82.81%)

1049

(39.9%)

Est. Treatment Effect

(Meyersson, 2014)

Est. Treatment Effect -  (RD Regression with Robust s.e.)
3 

based on known Cutoff 

Est. Treatment Effect  - (RD Regression with Robust s.e.)3

based on estimated Cutoff from Andrew's Test

-0.031**

(0.013)

0.018

(0.013)

0.024

(0.02)

Est. Treatment Effect  - (RD Regression with Robust s.e.)3

based on estimated Cutoff from Indicator Saturation at 10% False Detection Rate

0.003

(0.015)

0.033*

(0.013)

0.033*

(0.013)

Est. Treatment Effect -  (Indicator Saturation - 1% nominal false detection)2,5 

based on known Cutoff 

Est. Treatment Effect  -  (Indicator Saturation - 1% nominal false detection)2,5 

based on estimated Cutoff from Andrew's Test
0 ††† 0.016 ††† 0.016 ††† 

Est. Treatment Effect  -  (Indicator Saturation - 1% nominal false detection)
2,5 

based on estimated Cutoff from Indicator Saturation at 10% False Detection Rate
-0.028 ††† 0.012 ††† 0.012 ††† 

Est. Treatment Effect -  (Indicator Saturation - 5% nominal false detection)2,6 

based on known Cutoff 

Est. Treatment Effect  -  (Indicator Saturation - 5% nominal false detection)2,6 

based on estimated Cutoff from Andrew's Test
-0.018 †† 0.02 †† 0.02 †† 

Est. Treatment Effect  -  (Indicator Saturation - 5% nominal false detection)2,6 

based on estimated Cutoff from Indicator Saturation at 10% False Detection Rate
-0.02 †† 0.031 †† 0.031 †† 

0.028***

(0.007)

0.030**

(0.015)

0.027***

0.033**

1) *, **, *** represent statisticial significance at 10%, 5%, and 1% levels for Andrew's test.

2) †, ††, ††† represent statisticial significance at nominal false-detection rate of 10%, 5%, and 1% levels for Indicator saturation method.

3) *, **, *** represent statisticial significance at 10%, 5%, and 1% levels for RD regression (robust s.e.).

4) For cutoff location detection, Indicator saturation method applied at 1% false-detection rate first, if no effect is found near the expected cutoff, false-detection 

rate relaxed to 5% and 10% to increase power. Step indicator (to detect structural shifts) has been used. Cutoff location refers to the no. of observation where 

cutoff is found after the data has been reordered by ascending values of the Score variable. This creates a pseudo-time index, making the data amenable to time 

series methods (i.e. indicator saturation, Andrew's test). 

5) For effect estimation, At 1% nominal false detection rate, power is relatively small (compared to 5%), Probability of detection of break in the immediate 

neighbourhood of cutoff diminishes. Hence, within the bandwidth, Coefficients of step indicators above the known cutoff were aggregated and subtracted from 

aggregate of coefficients of step indicators below the known cutoff to produce an estimate of the local avg. treatment effect. 

6) At 5% nominal false detection rate, size is relatively large (compared to 1%). risk of spurious break detection increases. Hence, coefficients of step indicator 

cluster nearest to the known cutoff were aggregated to produce an estimate of the local avg. treatment effect.

Green: Est. cutoff score rounds up or down to true cutoff / Est. treatment effect has the same sign as that found in (Meyersson, 2014)  

Red: Est. cutoff score does NOT round up or down to true cutoff / Est. treatment effect has different sign than that found in (Meyersson, 2014)  
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Results using both Andrews’ Test and indicator-saturation are compared for the case of unknown 

cutoff detection. It is to be noted that the required assumptions regarding a-priori knowledge of the 

cutoffs are necessarily different between these two approaches. When using Andrews’ Test for cutoff 

detection, a-priori knowledge on a suspected cutoff value/location is not required, only a potential 

score-range is needed. I have chosen to center the score range on the true cutoff in this application 

(as reported in Table 9). However, this is without loss of generality. As long as the restricted interval 

contains the true-cutoff, and the true-cutoff is not near the two boundaries of the interval, the 

detection results are reasonably expected to be invariant to whatever score value it is centered on. 

On the other hand, when using the indicator-saturation method for unknown cutoff detection, both 

a-priori knowledge of an anticipated cutoff value/location and a potential score-range is required. This 

is because, without any knowledge of an expected location/value of the cutoff, a structural shift 

induced by the treatment is indistinguishable from other structural shifts that may be present in the 

data away from the cutoff. 

The downside to using Andrews’ Test for cutoff detection is that it may detect other structural breaks 

apart from the treatment cutoff, with this risk increasing when there are many outliers and step-shifts, 

other than the one occurring near the cutoff.  However, this risk is reduced with more precise a-priori 

knowledge on a possible range within which the cutoff may reside. The results provided in Table 9 

show, without imposing an assumption of any a-priori knowledge on a potential interval (using 100% 

of the data), the detected cutoff value is -8.461, which is far off from the true cutoff. Looking at the 

scatter plots given in Figure 11, there does appear to be possible outliers and potential structural 

breaks away from the cutoff, which may explain this result.  Several municipalities falling to the left of 

the cutoff have very high female high-school completion rates compared to other municipalities with 

similar levels of Islamic party’s vote shares. However, not surprisingly, the accuracy increases as an 

assumption is imposed on the knowledge of a potential interval. When I adopt a 50% interval length, 

the detected cutoff value is -0.838, whereas, with a 25% interval length, it is – 0.52, both of which are 

reasonably accurate as they round up to the true cutoff.  

The advantage of the indicator-saturation based approach to cutoff detection is that it can handle the 

presence of sizable additional possible structural breaks and outliers, apart from the 

discontinuity/kink point, as long as an expected cutoff value is also known a-priori with some degree 

of confidence, in addition to an expected interval within which the cutoff may reside. This assumption 

is arguably not too restrictive, as applied researchers, in most circumstances, most likely have at least 
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some knowledge of an expected cutoff score, even when the precise cutoff score is not known. This 

knowledge helps distinguish a structural break near the expected cutoff from other structural breaks.  

Results of cutoff detection using indicator-saturation as provided in Table 9, are obtained by first 

applying the indicator-saturation method with a 1% nominal false-detection rate. Score variable value 

at the retained step-indicator that is nearest to the expected cutoff is taken as the best approximation 

of the cutoff. Then, increasing the nominal false-detection rate to 5% and 10%, I see whether the 

approximated cutoff becomes nearer to the expected cutoff. The nearest of the approximated cutoffs 

is then taken forward as the estimated cutoff for steps 2 and 3. The cutoff detection was accurate 

(rounds up to the true cutoff) in this approach at a 5% false-detection rate with a 25% interval length, 

and at a 10% false-detection rate with a 50% interval length. Detection accuracy is found to be 

increasing in the nominal false-detection rate, and increasing as the interval-length is reduced within 

which a cutoff is expected to reside.    

Based on the estimated cutoffs from using both the Andrews’ Test and the indicator-saturation 

approach, I report the local treatment effect estimates. We see that these effect estimates are of the 

same sign as those reported by Meyersson (2014), whenever the cutoff detection was reasonably 

accurate, either rounding up or down to the true cutoff. The cutoff detection was reasonably accurate 

whenever some knowledge is assumed of an interval-length of the score variable within which the 

cutoff may reside. It is to be noted that, ‘exact’ detection of cutoff using this approach is an 

impossibility because there is no data point with a value of the score variable that is exactly ‘0’ – which 

is the true cutoff in this application. The cutoff detection in this application is reasonably accurate in 

all cases except in the particular case when it is assumed that even knowledge of a score-interval 

within which the cutoff does not reside is unavailable. Such an assumption is unrealistic and 

unnecessarily restrictive for most real-world situations where an RDD might be used, as some interval-

range of the score variable can be readily ruled out (see page 42). In this application, the cutoff 

detection was reasonable even at a high 50% interval length, or even when we know a 50% score-

range of the total score-range within which the cutoff may reside, which is a wide range.  

Overall, compared to the 2.8% positive local average treatment effect estimate reported by 

Meyersson (2014), my procedure, developed in this thesis, found a 2.7%-3.3% effect when the cutoff 

was taken as ‘known’, and a 1.2% – 3.1% effect when the cutoff was taken as ‘unknown’ and estimated 

under different parameter choices. The slight loss of precision when the exact cutoff value/location is 

taken as ‘unknown’ is expected, as precise knowledge of the cutoff is additional information that is 

expected to add value in both estimation and causal inference.   
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5 Conclusion 

This thesis introduced a three-step procedure based on structural-break detection and machine 

learning towards discerning unknown discontinuity points in regression discontinuity designs (RDDs) 

and regression kink designs (RKDs). I also illustrated using this approach to enable effect estimation.   

The main idea is that, for sizable treatment effects/tipping effects, the cutoff score, if unknown, might 

be detectable, as it may coincide with a structural break – once the data has been ordered in ascending 

values of the score variable, appropriate controls are added, and an indicator-saturation based break 

detection method is applied, provided some prior knowledge exists as to a potential/expected 

location/range of the cutoff. Local estimation of the treatment effect, once a cutoff has been 

estimated, then relies on restricting the data within computationally derived optimal bandwidth 

lengths on both sides of the cutoff and applying the indicator-saturation method again within the 

bandwidth only. Retained step-indicator coefficients on either side of the estimated cutoff are then 

aggregated. Subtracting the aggregate of step-indicator coefficients below the estimated cutoff from 

the aggregate of step-indicator coefficients above the estimated cutoff yields the effect estimates. For 

tipping effect detection, instead of a step-indicator, I propose a user-defined indicator that can 

capture a step-shift in the slope of the regression function, with the other steps remaining the same.              

Large and small sample properties (false-detection rates and true-detection rates) are simulated 

suggesting that the approach may work well.  I also illustrated my proposed method using an empirical 

application. Nicely for researchers, my proposed procedure can serve as an additional robustness 

check, even when the cutoff is known. In such a case, the treatment effect (or tipping effect) being 

picked up, without imposing its location based on a-priori knowledge, can indicate that the effect is 

sizable enough to be detected as a structural break in parameter stability, and is therefore of practical 

significance. This can further bolster evidence in favor of a treatment effect (or tipping effect), as the 

effect is sufficiently large to be detected using machine learning methods without imposing it on the 

data based on a-priori knowledge.  

An advantage of my proposed three-step procedure is that it can enable testing for either an unknown 

selection effect/tipping effect, which is a discontinuity in the slope of the regression function, or an 

unknown treatment effect, which is a discontinuity in the levels of the regression function, 

independently as well as simultaneously. Also, both the cutoff detection step and the effect estimation 

step offer convenient alternatives. The cutoff detection step can make use of either the indicator-

saturation method or Andrews’ Test for parameter instability. Taken together I showed that the 

approach robustly handles the possible presence of outliers and other step-shifts away from the true 

cutoff, as well as different ranges of certainty as to the location of an expected cutoff. The estimation 
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step of my procedure can conveniently accommodate different nominal false-detection rates when 

using the indicator-saturation approach. Finally, this step can also make use of a conventional RD 

regression method (e.g., the `rdrobust’ package in R) taking the estimated cutoff as an input, which 

serves as an additional layer of robustness checks.  However, when undertaking this, it is important to 

keep in mind that the simulation results suggested a downward bias in the estimated effect 

coefficients when estimated cutoffs are used in conventional RD regression instead of the exact 

cutoffs. Together, these flexible options allow for a wide range of robustness checks for RDD and RKD 

with unknown cutoffs, thus extending the applicability of regression discontinuity designs.  

There are some interesting areas unexplored in this thesis. First, due to the long computation time 

required which is increasing in sample size and number of replications, Monte Carlo simulation was 

restricted to 1000 replications, and a maximum sample size of 1,000 was studied. A sample size of 

1,000 was found to be sufficient in this simulation to produce estimated false-detection rates that are 

close to the nominal false-detection rate chosen, and true-detection rates that are high, except in the 

particular case when quadratic functional form of DGPs was studied that had a kink but no 

discontinuity; perhaps a larger sample size will produce false-detection rates close to the nominal 

false-detection rate chosen and high true-detection rates in this case as well. This can be studied in 

future research. Second, linear and quadratic functional forms of DGPs were studied that were ‘well-

behaved’ and simple under five integer-valued signal-to-noise ratios. Future research can study false-

detection and true-detection properties under additional simulated adverse conditions such as 

unobserved variables, model misspecification, and substantial noise in the form of presence of many 

outliers and other structural breaks not occurring at the point of the cutoff. Also, Monte-Carlo 

simulation in this thesis was confined to studying the linear and the quadratic functional form of DGPs 

as they represent the majority of RDD applications in the literature. However, higher-order polynomial 

functional forms are also used, albeit rarely. Besides, in many applications of RDDs where the linear 

and quadratic functional forms are applied as the main model, higher-order polynomial functional 

forms are also applied as robustness-checks. Small and large sample properties of this method when 

higher-order polynomials of the score variable are used therefore, is another area of future research. 

Finally, while the method produced satisfactory results when applied to the particular empirical data 

that is examined in this thesis, additional exploration with more real-world datasets is necessary, 

which can be taken up in future research.      
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Appendix A 

Extended Table 6 - Simulated False-Detection Rates & True-Detection Rates for Linear DGPs 

(Results when signal detection Interval of 2.58 standard deviation of disturbance term used are included) 

 

 

n = 200 n = 500 n = 1000 n = 200 n = 500 n = 1000

False Detection - Discontinuity 

(Detecting treatment effect/discontinuity when there is none)
0.0% 0.9% 0.7% 0.0% 0.7% 0.4%

False Detection - Kink 

(Detecting selection effect/kink when there is none)
0.0% 0.8% 0.5% 0.0% 0.6% 0.2%

False Detection - Discontinuity 

(Detecting treatment effect/discontinuity when there is none)
0.2% 2.2% 1.2% 0.1% 1.7% 0.6%

True Detection - Kink 

(Detecting selection effect/kink when there is one)
99.9% 98.9% 99.9% 99.9% 98.3% 99.9%

True Detection - Discontinuity 

(Detecting treatment effect when there is one)
100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

False Detection - Kink 

(Detecting selection effect/kink when there is none)
0.0% 0.1% 0.0% 0.0% 0.1% 0.0%

True Detection - Discontinuity 

(Detecting treatment effect when there is one)
99.9% 99.8% 100.0% 99.9% 99.8% 100.0%

True Detection - Kink 

(Detecting selection effect/kink when there is one)
99.9% 99.9% 100.0% 99.9% 99.8% 100.0%

False Detection - Discontinuity 

(Detecting treatment effect/discontinuity when there is none)
0.0% 1.1% 1.4% 0.0% 0.4% 0.7%

False Detection - Kink 

(Detecting selection effect/kink when there is none)
0.0% 0.8% 0.9% 0.0% 0.5% 0.5%

False Detection - Discontinuity 

(Detecting treatment effect/discontinuity when there is none)
0.5% 4.4% 0.9% 0.5% 2.5% 0.4%

True Detection - Kink 

(Detecting selection effect/kink when there is one)
99.6% 97.2% 99.9% 99.6% 95.0% 99.6%

True Detection - Discontinuity 

(Detecting treatment effect when there is one)
100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

False Detection - Kink 

(Detecting selection effect/kink when there is none)
0.3% 0.2% 0.0% 0.3% 0.2% 0.0%

True Detection - Discontinuity 

(Detecting treatment effect when there is one)
99.9% 99.7% 99.9% 99.9% 99.7% 99.9%

True Detection - Kink 

(Detecting selection effect/kink when there is one)
99.9% 99.7% 99.9% 99.8% 99.6% 99.6%

False Detection - Discontinuity 

(Detecting treatment effect/discontinuity when there is none)
0.1% 2.4% 2.0% 0.0% 1.2% 1.4%

False Detection - Kink 

(Detecting selection effect/kink when there is none)
0.0% 1.2% 1.5% 0.0% 0.9% 0.9%

False Detection - Discontinuity 

(Detecting treatment effect/discontinuity when there is none)
0.9% 12.8% 4.6% 0.4% 4.2% 1.0%

True Detection - Kink 

(Detecting selection effect/kink when there is one)
98.8% 82.6% 94.4% 0.9% 78.0% 92.4%

True Detection - Discontinuity 

(Detecting treatment effect when there is one)
99.9% 99.3% 100.0% 99.3% 94.8% 98.7%

False Detection - Kink 

(Detecting selection effect/kink when there is none)
0.5% 3.8% 1.1% 0.2% 0.2% 0.0%

True Detection - Discontinuity 

(Detecting treatment effect when there is one)
99.2% 96.1% 99.1% 99.2% 95.8% 99.1%

True Detection - Kink 

(Detecting selection effect/kink when there is one)
99.2% 95.5% 98.8% 99.1% 90.9% 97.3%

False Detection - Discontinuity 

(Detecting treatment effect/discontinuity when there is none)
0.1% 4.5% 4.1% 0.1% 2.9% 2.6%

False Detection - Kink 

(Detecting selection effect/kink when there is none)
0.1% 2.9% 2.8% 0.0% 1.7% 1.6%

False Detection - Discontinuity 

(Detecting treatment effect/discontinuity when there is none)
0.9% 13.4% 9.5% 0.2% 2.8% 2.4%

True Detection - Kink 

(Detecting selection effect/kink when there is one)
0.2% 24.5% 36.7% 0.1% 23.7% 36.1%

True Detection - Discontinuity 

(Detecting treatment effect when there is one)
0.5% 54.0% 60.7% 0.2% 0.7% 0.1%

False Detection - Kink 

(Detecting selection effect/kink when there is none)
0.2% 0.4% 0.0% 0.2% 0.2% 0.0%

True Detection - Discontinuity 

(Detecting treatment effect when there is one)
0.8% 63.1% 82.0% 0.5% 61.7% 81.4%

True Detection - Kink 

(Detecting selection effect/kink when there is one)
0.5% 34.5% 46.5% 0.4% 0.7% 0.8%

DGPs (Linear) Parameter

(Indicator saturation method applied at 1% nominal false-detection rate)

DGP1.3

Discontinuity/treatment effect = TRUE

Kink/selection effect = FALSE

2 s.d

DGP1.1

Discontinuity/treatment effect = FALSE

Kink/selection effect = FALSE

DGP1.2

Discontinuity/treatment effect = FALSE

Kink/selection effect = TRUE

DGP1.3

Discontinuity/treatment effect = TRUE

Kink/selection effect = FALSE

DGP1.4

Discontinuity/treatment effect = TRUE

Kink/selection effect = TRUE

Green: False-Detection < 1% / True-Detection > 99% | Yellow - False-Detection < 5% / True-Detection > 95% | Red: False-Detection > 5% / True-Detection < 95%

signal detection interval:

1.96 s.d. of disturbance 

signal detection interval

2.58 s.d. of disturbance 

DGP1.4

Discontinuity/treatment effect = TRUE

Kink/selection effect = TRUE

3 s.d

DGP1.1

Discontinuity/treatment effect = FALSE

Kink/selection effect = FALSE

DGP1.2

Discontinuity/treatment effect = FALSE

Kink/selection effect = TRUE

DGP1.3

Discontinuity/treatment effect = TRUE

Kink/selection effect = FALSE

DGP1.4

Discontinuity/treatment effect = TRUE

Kink/selection effect = TRUE

DGP1.1

Discontinuity/treatment effect = FALSE

Kink/selection effect = FALSE

DGP1.2

Discontinuity/treatment effect = FALSE

Kink/selection effect = TRUE

DGP1.3

Discontinuity/treatment effect = TRUE

Kink/selection effect = FALSE

DGP1.4

Discontinuity/treatment effect = TRUE

Kink/selection effect = TRUE

5 s.d

4 s.d

DGP1.1

Discontinuity/treatment effect = FALSE

Kink/selection effect = FALSE

DGP1.2

Discontinuity/treatment effect = FALSE

Kink/selection effect = TRUE

Magnitude 

of Discontinuity (if exists)
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Extended Table 7 - Simulated False-Detection Rates & True-Detection Rates for Quadratic DGPs 

(Results when signal detection Interval of 2.58 standard deviation of disturbance term used are included) 

 

 

 

n = 200 n = 500 n = 1000 n = 200 n = 500 n = 1000

False Detection - Discontinuity 

(Detecting treatment effect/discontinuity when there is none)
0.9% 0.7% 0.3% 0.6% 0.6% 0.3%

False Detection - Kink 

(Detecting selection effect/kink when there is none)
0.8% 0.7% 0.3% 0.5% 0.5% 0.3%

False Detection - Discontinuity 

(Detecting treatment effect/discontinuity when there is none)
15.6% 34.5% 23.6% 13.9% 31.0% 22.6%

True Detection - Kink 

(Detecting selection effect/kink when there is one)
92.5% 84.7% 89.9% 92.4% 84.3% 89.7%

True Detection - Discontinuity 

(Detecting treatment effect when there is one)
100.0% 100.0% 100.0% 99.9% 100.0% 100.0%

False Detection - Kink 

(Detecting selection effect/kink when there is none)
7.5% 0.1% 0.0% 7.0% 0.1% 0.0%

True Detection - Discontinuity 

(Detecting treatment effect when there is one)
94.9% 98.9% 100.0% 94.8% 98.6% 100.0%

True Detection - Kink 

(Detecting selection effect/kink when there is one)
97.2% 99.8% 100.0% 97.2% 99.8% 100.0%

False Detection - Discontinuity 

(Detecting treatment effect/discontinuity when there is none)
1.6% 0.5% 0.9% 1.1% 0.1% 0.5%

False Detection - Kink 

(Detecting selection effect/kink when there is none)
1.4% 0.2% 0.7% 1.0% 0.1% 0.4%

False Detection - Discontinuity 

(Detecting treatment effect/discontinuity when there is none)
19.1% 31.8% 28.2% 15.2% 27.7% 26.3%

True Detection - Kink 

(Detecting selection effect/kink when there is one)
90.6% 86.3% 86.1% 89.7% 85.4% 86.0%

True Detection - Discontinuity 

(Detecting treatment effect when there is one)
99.8% 100.0% 100.0% 98.0% 99.9% 100.0%

False Detection - Kink 

(Detecting selection effect/kink when there is none)
12.8% 1.0% 0.2% 11.7% 0.8% 0.1%

True Detection - Discontinuity 

(Detecting treatment effect when there is one)
94.3% 98.4% 99.9% 93.6% 98.2% 99.5%

True Detection - Kink 

(Detecting selection effect/kink when there is one)
97.1% 99.7% 99.8% 96.5% 99.6% 99.8%

False Detection - Discontinuity 

(Detecting treatment effect/discontinuity when there is none)
2.0% 2.4% 2.3% 1.3% 1.1% 0.9%

False Detection - Kink 

(Detecting selection effect/kink when there is none)
1.7% 1.6% 0.9% 1.1% 0.7% 0.7%

False Detection - Discontinuity 

(Detecting treatment effect/discontinuity when there is none)
27.7% 35.0% 30.1% 22.3% 28.2% 26.7%

True Detection - Kink 

(Detecting selection effect/kink when there is one)
82.4% 78.3% 80.8% 81.4% 78.0% 80.1%

True Detection - Discontinuity 

(Detecting treatment effect when there is one)
94.2% 99.3% 99.5% 78.8% 94.0% 97.1%

False Detection - Kink 

(Detecting selection effect/kink when there is none)
18.8% 4.6% 1.7% 8.6% 1.1% 0.4%

True Detection - Discontinuity 

(Detecting treatment effect when there is one)
85.2% 96.9% 99.4% 77.2% 94.4% 97.7%

True Detection - Kink 

(Detecting selection effect/kink when there is one)
94.4% 98.8% 99.1% 92.1% 98.8% 99.0%

False Detection - Discontinuity 

(Detecting treatment effect/discontinuity when there is none)
4.6% 3.9% 4.2% 2.1% 2.5% 2.8%

False Detection - Kink 

(Detecting selection effect/kink when there is none)
2.8% 2.5% 2.3% 1.8% 1.8% 1.3%

False Detection - Discontinuity 

(Detecting treatment effect/discontinuity when there is none)
56.3% 44.4% 43.8% 45.8% 34.2% 36.1%

True Detection - Kink 

(Detecting selection effect/kink when there is one)
40.2% 41.9% 49.4% 34.3% 39.6% 48.5%

True Detection - Discontinuity 

(Detecting treatment effect when there is one)
39.6% 47.6% 52.5% 8.8% 1.1% 0.6%

False Detection - Kink 

(Detecting selection effect/kink when there is none)
11.2% 2.6% 1.0% 5.7% 0.7% 0.6%

True Detection - Discontinuity 

(Detecting treatment effect when there is one)
39.6% 48.7% 55.9% 17.0% 12.2% 11.1%

True Detection - Kink 

(Detecting selection effect/kink when there is one)
64.2% 82.0% 89.5% 59.4% 79.4% 89.2%

(Indicator saturation method applied at 1% nominal false-detection rate)

5 s.d

DGP2.1

Discontinuity/treatment effect = FALSE

Kink/selection effect = FALSE

DGP2.2

Discontinuity/treatment effect = FALSE

Kink/selection effect = TRUE

DGP2.3

Discontinuity/treatment effect = TRUE

Kink/selection effect = FALSE

DGP2.4

Discontinuity/treatment effect = TRUE

Kink/selection effect = TRUE

4 s.d

DGP2.1

Discontinuity/treatment effect = FALSE

Kink/selection effect = FALSE

DGP2.2

Discontinuity/treatment effect = FALSE

Kink/selection effect = TRUE

DGP2.3

Discontinuity/treatment effect = TRUE

Kink/selection effect = FALSE

DGP2.4

Discontinuity/treatment effect = TRUE

Kink/selection effect = TRUE

DGP2.4

Discontinuity/treatment effect = TRUE

Kink/selection effect = TRUE

Green: False-Detection < 1% / True-Detection > 99% | Yellow - False-Detection < 5% / True-Detection > 95% | Red: False-Detection > 5% / True-Detection < 95%

DGP2.4

Discontinuity/treatment effect = TRUE

Kink/selection effect = TRUE

2 s.d

signal detection interval

2.58 s.d. of disturbance 

DGP2.1

Discontinuity/treatment effect = FALSE

Kink/selection effect = FALSE

DGP2.2

Discontinuity/treatment effect = FALSE

Kink/selection effect = TRUE

DGP2.3

Discontinuity/treatment effect = TRUE

Kink/selection effect = FALSE

3 s.d

DGP2.1

Discontinuity/treatment effect = FALSE

Kink/selection effect = FALSE

DGP2.2

Discontinuity/treatment effect = FALSE

Kink/selection effect = TRUE

DGP2.3

Discontinuity/treatment effect = TRUE

Kink/selection effect = FALSE

signal detection interval:

1.96 s.d. of disturbance Magnitude 

of Discontinuity (if exists)
DGPs (Quadratic) Parameter
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Appendix B 

R Codes – Monte Carlo Simulation 

Following code generates the 1,000 replications of the simulation for the linear functional forms of 

DGPs:   

#Select a Sample Size  
# n <- 200 
# n <- 500 
n <- 1000 
 
#Create empty table for storing data 
disc.tbl <- array(0, dim = c(1000, 4, 4)) 
kink.tbl <- array(0, dim = c(1000, 4, 4)) 
 
#Define function 
isatfun <- function(i){ 
   
  #generate the DGPs 
  set.seed(k) 
  e   <- rnorm(n,0,(1/i)^2) 
  x   <- runif(n,-2,3) 
  xsq <- x^2 
  sl  <- seq(1,n,1) 
  y1 <- x + e 
  y2 <- ifelse((x<1 & x>=-2),(x + e),(-x + 2  + e))  
  y3 <- ifelse((x<1 & x>=-2),(x + e),(x + 1 + e))  
  y4 <- ifelse((x<1 & x>=-2),(x + e),(-x + 3 + e)) 
  dgp <- cbind(x, xsq, y1, y2, y3, y4) 
   
  #create ordering in the data for application of time-series based methods 
  dgp <- dgp[order(dgp[,1]),]  
  dgp <- cbind(sl,dgp) 
  dgp <- as.data.frame(dgp) 
 
  #discontinuity detection using Andrews’ test 
  a1 <- Fstats(dgp$y1 ~ 1 + dgp$x, from = 0.15, to = 0.85) 
  d1 <- a1$breakpoint 
  c1 <- dgp$x[d1] 
   
  a2 <- Fstats(dgp$y2 ~ 1 + dgp$x, from = 0.15, to = 0.85) 
  d2 <- a2$breakpoint 
  c2 <- dgp$x[d2] 
 
  a3 <- Fstats(dgp$y3 ~ 1 + dgp$x, from = 0.15, to = 0.85) 
  d3 <- a3$breakpoint 
  c3 <- dgp$x[d3] 
 
  a4 <- Fstats(dgp$y4 ~ 1 + dgp$x, from = 0.15, to = 0.85) 
  d4 <- a4$breakpoint 
  c4 <- dgp$x[d4] 
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  #RD regressions based on estimated discontinuity point 
  r1e <- rdrobust(y1,x, c=c1, kernel = “uni”) 
  r2e <- rdrobust(y2,x, c=c2, kernel = “uni”) 
  r3e <- rdrobust(y3,x, c=c3, kernel = “uni”) 
  r4e <- rdrobust(y4,x, c=c4, kernel = “uni”) 
   
  #Bandwidth estimation 
  lb1 <- r1e$N_h[1] 
  lb2 <- r2e$N_h[1] 
  lb3 <- r3e$N_h[1] 
  lb4 <- r4e$N_h[1] 
 
  rb1 <- r1e$N_h[2] 
  rb2 <- r2e$N_h[2] 
  rb3 <- r3e$N_h[2] 
  rb4 <- r4e$N_h[2] 
   
  #Restricting the dataframe to bandwidth interval only and running indicator saturation  
  act.dgp <- dgp[(d1-lb1):(d1+rb1),] 
  T <- nrow(act.dgp) 
  x.sim <- sim(T)*act.dgp[,2] 
  colnames(x.sim) <- paste("x.sim", 2:nrow(x.sim), sep="") 
  reg <- as.matrix(act.dgp[,2]) 
  m1 <- isat(act.dgp[,4], sis = 1, mxreg = reg, uis = x.sim, t.pval = 1/(2*T), mc = 0,  
             parallel.options = 4, print.searchinfo=0) 
   
  act.dgp <- dgp[(d2-lb2):(d2+rb2),] 
  T <- nrow(act.dgp) 
  x.sim <- sim(T)*act.dgp[,2] 
  colnames(x.sim) <- paste("x.sim", 2:nrow(x.sim), sep="") 
  reg <- as.matrix(act.dgp[,2]) 
  m2 <- isat(act.dgp[,5], sis = 1, mxreg = reg, uis = x.sim, t.pval = 1/(2*T), mc = 0,  
             parallel.options = 4, print.searchinfo=0) 
 
  act.dgp <- dgp[(d3-lb3):(d3+rb3),] 
  T <- nrow(act.dgp) 
  x.sim <- sim(T)*act.dgp[,2] 
  colnames(x.sim) <- paste("x.sim", 2:nrow(x.sim), sep="") 
  reg <- as.matrix(act.dgp[,2]) 
  m3 <- isat(act.dgp[,6], sis = 1, mxreg = reg, uis = x.sim, t.pval = 1/(2*T), mc = 0, 
             parallel.options = 4, print.searchinfo=0) 
 
  act.dgp <- dgp[(d4-lb4):(d4+rb4),] 
  T <- nrow(act.dgp) 
  x.sim <- sim(T)*act.dgp[,2] 
  colnames(x.sim) <- paste("x.sim", 2:nrow(x.sim), sep="") 
  reg <- as.matrix(act.dgp[,2]) 
  m4 <- isat(act.dgp[,7], sis = 1, mxreg = reg, uis = x.sim, t.pval = 1/(2*T), mc = 0, 
             parallel.options = 4, print.searchinfo=0) 
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#store results 
  return(list(m1$mean.results, m2$mean.results, m3$mean.results, m4$mean.results)) 
  }  
 
for (k in 1:1000){ 
  simul <- lapply(5:2, isatfun) 
  for (j in 1:4){ 
    for (i in 1:4){ 
      temp.sistbl <- simul[[i]][[j]] %>% tibble::rownames_to_column() %>% 
                     dplyr::filter(grepl("sis", rowname)) 
      temp.simtbl <- simul[[i]][[j]] %>% tibble::rownames_to_column() %>% 
                     dplyr::filter(grepl("sim", rowname)) 
      disc.tbl[k,i,j] <- sum(temp.simtbl$coef) + sum(temp.sistbl$coef) 
      kink.tbl[k,i,j] <- sum(temp.simtbl$coef) 
    } 
  } 
} 
 
#Save simulation results in tables 
dgp1.disc <- as.data.frame(disc.tbl[,,1]) %>% magrittr::set_names(c("5sd", "4sd", "3sd", "2sd")) 
dgp2.disc <- as.data.frame(disc.tbl[,,2]) %>% magrittr::set_names(c("5sd", "4sd", "3sd", "2sd")) 
dgp3.disc <- as.data.frame(disc.tbl[,,3]) %>% magrittr::set_names(c("5sd", "4sd", "3sd", "2sd")) 
dgp4.disc <- as.data.frame(disc.tbl[,,4]) %>% magrittr::set_names(c("5sd", "4sd", "3sd", "2sd")) 
 
dgp1.kink <- as.data.frame(kink.tbl[,,1]) %>% magrittr::set_names(c("5sd", "4sd", "3sd", "2sd")) 
dgp2.kink <- as.data.frame(kink.tbl[,,2]) %>% magrittr::set_names(c("5sd", "4sd", "3sd", "2sd")) 
dgp3.kink <- as.data.frame(kink.tbl[,,3]) %>% magrittr::set_names(c("5sd", "4sd", "3sd", "2sd")) 
dgp4.kink <- as.data.frame(kink.tbl[,,4]) %>% magrittr::set_names(c("5sd", "4sd", "3sd", "2sd")) 
 
dgp1.sis <- dgp1.disc - dgp1.kink 
dgp2.sis <- dgp2.disc - dgp2.kink 
dgp3.sis <- dgp3.disc - dgp3.kink 
dgp4.sis <- dgp4.disc - dgp4.kink 
 
#Save Data Environment 
# save.image("D:\\Google Drive\\UVic MA Economics\\Thesis\\1. RDD Break 
Detection\\Work\\Data\\linear.1-1000.200.rds") 
# save.image("D:\\Google Drive\\UVic MA Economics\\Thesis\\1. RDD Break 
Detection\\Work\\Data\\linear.1-1000.500.rds") 
save.image("D:\\Google Drive\\UVic MA Economics\\Thesis\\1. RDD Break 
Detection\\Work\\Data\\linear.1-1000.1000.rds") 
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R Codes – Application on Empirical Data 
 
if(!require(pacman))install.packages("pacman") 
pacman::p_load(tidyverse, strucchange, gets, rdrobust) 
 
setwd("D:\\Google Drive\\UVic MA Economics\\Thesis\\Reference Papers\\Replication") 
data <- read.csv("CIT_2019_Cambridge_polecon.csv") 
# https://sites.google.com/site/rdpackages/replication/cit-2019-cup 
 
#Plot 
Y = data$Y 
X = data$X 
rdplot(Y, X, nbins = c(2500, 500), p = 0, col.lines = "red", col.dots = "black", title = "",  
       x.label = "Islamic Party's Margin of Victory", y.label = "Female High School Completion Rate", 
y.lim = c(0,70), cex.axis = 1.5, 
       cex.lab = 1.5) 
rdplot(Y[abs(X) <= 50], X[abs(X) <= 50], nbins = c(2500, 500), p = 4, col.lines = "red", col.dots = 
"black", title = "",  
       x.label = "Islamic Party's Margin of Victory", y.label = "Female High School Completion Rate", 
y.lim = c(0,70), cex.axis = 1.5, 
       cex.lab = 1.5) 
 
#Detection when 50% Interval-Length is used 
print("Using 50% cutoff score interval centered on true cutoff") 
print("-------------------------------------------------------") 
act.data <- data[order(data$X),] 
cut.data3.2 <- act.data %>% filter(X >= -50) %>% filter(X <= 50) 
paste0("No of observations = ", nrow(cut.data3.2)) 
a3.2 <- Fstats(Y ~ 1 + X + vshr_islam1994 + partycount + lpop1994 +  
                 merkezi + merkezp + subbuyuk + buyuk, data = cut.data3.2) 
d3.2 <- a3.2$breakpoint 
c3.2 <- cut.data3.2$X[d3.2] 
paste0("estimated cutoff location = ",d3.2) 
paste0("true cutoff location = ", cut.data3.2 %>% filter(X < 0) %>% nrow()) 
paste0("estimated cutoff value = ", c3.2) 
paste0("true cutoff value = ", 0) 
sctest(a3.2) 
 
T <- nrow(cut.data3.2) 
reg = as.matrix(cut.data3.2[,c(1,6,9,10,11,12,17,18)]) 
m3.2 <- isat(cut.data3.2[,2], iis = 0, sis = 1, mxreg = reg, t.pval = 10/(T), mc = 1,  
           parallel.options = 4, print.searchinfo=0) 
m3.2 
cut.data3.2$X[1874] #estimated cutoff location using indicator saturation method.  
 
#Bandwidth Restriction 
#c = c3.2  #from Andrew's Test 
c = 0.36  #from isat 
out3.2 = rdrobust(Y, X, covs = Z, c = c, p = 1, kernel = "uniform", bwselect = "mserd", all = 1) 
summary(out3.2) 
 

https://sites.google.com/site/rdpackages/replication/cit-2019-cup
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lb <- out3.2$N_h[1] 
rb <- out3.2$N_h[2] 
cut.data <- cut.data3.2[(d3.2-lb):(d3.2+rb),] #cutoff at 220(Andrew's)/257(isat) 
 
#Effect estimation 
nrow(cut.data) 
T <- nrow(cut.data) 
reg = as.matrix(cut.data[,c(1,6,9,10,11,12,17,18)]) 
m3.2_1 <- isat(cut.data[,2], iis = 0, sis = 1, mxreg = reg, t.pval = 1/(T), mc = 1,  
           parallel.options = 4, print.searchinfo=0) 
m3.2_1 
 
m3.2_5 <- isat(cut.data[,2], iis = 0, sis = 1, mxreg = reg, t.pval = 5/(T), mc = 1,  
           parallel.options = 4, print.searchinfo=0) 
m3.2_5 
 
#using Andrew's cutoff 
#sum(m3.2_1$coefficients[10:13])  
#sum(m3.2_5$coefficients[13:14])  
 
#using isat cutoff 
sum(m3.2_1$coefficients[12:15])-sum(m3.2_1$coefficients[10:11]) 
sum(m3.2_5$coefficients[15:16]) 


