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Abstract

Vibration Assisted Machining (VAM) refers to a non-conventional machining process where
high-frequency micro-scale vibrations are deliberately superimposed on the motion of the
cutting tool during the machining process. The periodic separation of the tool and workpiece
material, as a result of the added vibrations, leads to numerous advantages such as reduced
machining forces, reduction of damages to the material, extended tool life, and enabling the
machining of brittle materials.

Vibration Assisted Drilling (VAD) is the application of VAM in drilling processes. The
added vibrations in the VAD process are usually generated by incorporating piezoelectric
transducers in the structure of the toolholder. In order to increase the benefits of the added
vibrations on the machining quality, the structural dynamics of the VAD toolholder and its
coupling with the dynamics of the piezoelectric transducer must be optimized to maximize
the portion of the electrical energy that is converted to mechanical vibrations at the cutting
edge of the drilling tool.

The overall dynamic performance of the VAD system depends of the dynamics of its
individual components including the drill bit, concentrator, piezoelectric transducer, and
back mass. In this thesis, a substructure coupling analysis platform is developed to study
the structural dynamics of the VAD system when adjustments are made to its individual
components. In addition, the stiffness and damping in the joints between the components of
the VAD toolholder are modelled and their parameters are identified experimentally. The
developed substructure coupling analysis method is used for structural modification of the
VAD system after it is manufactured. The proposed structural modification approach can be
used to fine-tune the dynamics of the VAD system to maximize its dynamic performance
under various operational conditions. The accuracy of the presented substructure coupling
method in modeling the dynamics of the VAD system and the effectiveness of the proposed
structural modification method are verified using numerical and experimental case studies.
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Chapter 1

Introduction

Vibration Assisted Machining (VAM) has attracted a great industrial interest in recent years
due to its numerous advantages. In VAM, micro-vibrations with high frequency (around
20kHz) are superimposed on to the cutting motion of the tool during the machining process.
A schematic of VAM is depicted in Fig.1.1.

Vibrations in feed direction

Vibrations in cutting direction

Cutting velocity

Tool motion trajectory

Fig. 1.1 Superposition of small-amplitude of vibrations in VAM [5]

The addition of the micro-vibrations to the material removal process has shown to
significantly reduce the generated forces, heat, tool wear, and machining-induced damages to
the workpiece. The extent of the effectiveness of the superposed vibrations depends on their
frequency and amplitude as well as the cutting speed in the machining process[3, 10, 2]. The
velocity of vibrations is proportional to its amplitude and frequency.

1



P/D
1

0.8

0.6

0.4

0.2

0 0.2 0.4 0.6 0.8 1

10

4
2

1
0.5

Ineffectiveness of vibration

Vibro-impact loading

Continuous impact-free loading

P v D

Fig. 1.2 Effect of vibration parameters on VAM process[3]

If the vibration velocity is greater than the cutting speed, the tool intermittently loses
contact with the material, converting the chip generation mechanism from continuous impact-
free to a vibro-impact process [3]. In vibro-impact regime, because the tool is only in contact
with the workpiece in a small portion of time, the average of machining forces decreases.
Figure 1.2 represents a model for explaining the effect of superimposed vibrations on the
process of plastic deformation. It also contains information about the overall outcome
of different values of effective parameters in a VAM process. In this figure, P stands for
the average machining force, D for yield strength of the workpiece material, k0 for static
stiffness, v for cutting velocity, a for amplitude and ω for frequency of vibration. The overall
displacement of the tool is described by u(t) = vt +a∗ sin(ωt). It illustrates that an increase
in either amplitude (a) or frequency (ω) of vibration shifts the operational condition state to
the left hand-side of the plot which is followed by higher drop in machining forces (P) and
increasing the efficiency of VAM [3].

This intermittent cutting phenomena leads to important improvements in various machin-
ing operation. Vibration Assisted Drilling (VAD) refers to the application of VAM in drilling
operation. These advantages in VAD include a reduction in the drilling thrust force and
torque[13, 16, 10, 2] as shown in Fig.1.3, elimination of burr formation [20, 7, 10], increase
in material removal rate [3], increasing tool life, improvement in the surface finish, [10] and
the elimination of the damages and and deformations to the workpiece during the machining
operation. In drilling composite materials, using VAD reduces delamination and fiber pullout
compared to conventional drilling [23, 4]. A case in which VAD has reduced delamination is
shown in Fig.1.5.
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The reduction in the drilling thrust force provides the ability of drilling thin workpieces
without unwanted deformations as shown in Fig.1.4 [3]. VAM is also a promising approach
for rock sampling in space which is done by surface rovers drilling and retrieving the samples
for analysis. Since the gravity in space is not sufficient to provide required thrust force for
rock drilling, VAM is a suitable approach [6].

Full drill bit engagement

Full drill bit engagement
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Fig. 1.3 The influence of VAD in reduction of drilling thrust force and torque compared to
Conventional Drilling (CD)[13]

According to Fig.1.2, vibro-impact regime can be achieved by reducing the cutting speed,
increasing the vibration velocity, or its frequency. Since reducing the cutting speed results
in the reduction of productivity, vibro-impact regime is usually generated by exciting the
high-frequency resonance modes of the VAD system. Also, the VAD system should be
designed so that the highest amplitude of vibration is generated at the tip of the drill bit,
where the cutting process occurs.
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1.1 Research Objectives

(a) (b)

Fig. 1.4 Reduction in deformation of thin plates in VAD [3]

Typical components of a VAD system are schematically shown in Fig.1.6. Vibrations
are generated by providing electrical voltage to the piezoelectric transducers. The generated
vibrations are amplified by the concentrator. This component has been designed in various
shapes. Concentrators typically have a reducing cross-section toward the drill bit which
magnifies the amplitude of vibration at the tip of the drill bit. Concentrator not only mag-
nifies the amplitude of vibrations but also can transform part of the axial vibrations into a
torsional motion in axial-torsional VAD system, generating vibrations in both cutting and
feed directions. [6, 8, 17, 1, 12]. The back mass is a cylindrical component attached to the
rear side of the tool holder. Since the tool holder operates in its first free-free axial mode, a
heavy rear part leads to a high amplitude of vibration at the tip of the drill bit. Therefore, in a
proper design of a VAD tool holder, the highest amplitude of vibrations corresponds to the
tip of the drill bit.[14, 3]

1.1 Research Objectives

The overall dynamic performance of a VAD system is influenced by the dynamics of its
individual components and the interactions between them. The primary objective of this
project is to develop a computationally efficient method based on substructure analysis that
can predict the overall dynamics of the VAD system based on the dynamic characteristics
of the its components including the drill bit, concentrator, piezoelectric transducer as an
electro-mechanical system, and the back-mass. Such substructure analysis framework will
provide an efficient design platform that enables studying the sensitivity of the dynamics of
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1.1 Research Objectives

Fig. 1.5 Comparing delamination of composite materials in cases of VAD and conventional
drilling [23]

the VAD assembly to variations in the design parameters of each substructure.

In addition to the dynamics of the individual components of the VAD, the dynamics at
their interactions also influence the overall dynamics. Despite the significant effect that the
stiffness and damping in the joint interfaces between the various components of the VAD may
have on its overall dynamic performance, the joint compliance is usually neglected in the
design process of VAD systems. In the presented substructure framework, the joint interfaces
between VAD components are modelled and their damping and stiffness parameters are
determined experimentally.

Although the design parameters of the VAD systems are tuned to maximize its dynamic
response at the drill-tip, because of the manufacturing errors and un-modelled parameters
such as joint stiffness and damping, the dynamic performance of the manufactured VAD
system is usually sub-optimal. To enhance the performance of the manufactured VAD, the
developed substructure analysis framework will be used for structural modification of the
manufactured VAD by tuning its mechanical and electrical substructures.

5



1.2 Contributions

Concentrator Piezoelectric
transducer

Back mass
Drill bit

Workpiece Joints

Fig. 1.6 Components of a VAD tool holder [3]

1.2 Contributions

The main contributions of this project are summarized as follows:

• A new electro-mechanical substructure analysis framework is presented to be used in
designing axial and axial-torsional VAD systems with optimum dynamic performance

• The effect of damping and stiffness in the joints of the VAD system on its overall
dynamics is considered in modeling

• The presented substructure analysis method is used for structural modification of
the VAD system by adjusting the parameters of its mechanical as well as electrical
components

1.3 Thesis organization

In Chapter 2, theoretical material required for modeling of substructures, coupling by RCSA
and modeling of piezoelectric materials are discussed. Chapter 3 contains step-by-step
coupling of substructures for cases of axial and axial-torsional VAD tool holders. Chapter 4
is devoted to model updating, electric current formulation and structural modification. The
effect of changing drill bit overhang and active structural modification through electric circuit
adjustment are studied.
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Chapter 2

Background Theory

2.1 Introduction

In this chapter, the concept of Receptance Coupling Substructure Analysis (RCSA), which
refers to coupling the dynamics of individual components to predict the dynamic response of
the assembled system, is introduced. A VAD system is an assembly of several mechanical
and electro-mechanical components. The RCSA method will be used in the next chapter to
couple the receptances of the individual components to predict the overall response of the
VAD systems at the drill tip.

Based on the geometry of tool holder components, different methods are used for com-
puting their Frequency Response Functions (FRF). Modeling through continuous system
theory and finite element methods are explained.

The last part of the chapter is about introducing piezoelectric materials, their constitutive
equations, and presenting a model for the piezoelectric transducer. The model is based on a
mechanical perspective.

7



2.2 Coupling substructures by RCSA

2.2 Coupling substructures by RCSA

2.2.1 Axial receptance coupling

The aim of using RCSA method is to predict the FRF of a multi-component system by
coupling the FRFs of their individual components [22].

The simplest case of substructure coupling is for rigid coupling of two substructures in
one direction.

Fig. 2.1 Axial coupling of substructures a and b.

Consider the general structure ab consisting of two substructures, a and b, connected
rigidly in one end as shown in Fig.2.1. Each substructure is characterized by two Degrees-Of-
Freedom (DOF) (x1i and x2i, i = a,b). The receptance FRF of the individual substructures
map the displacement responses at their two DOFs to the dynamic forces applied on them, as
follows: {

x1a(ω)

x2a(ω)

}
=

[
h1a1a(ω) h1a2a(ω)

h2a1a(ω) h2a2a(ω)

]{
f1a(ω)

f2a(ω)

}
(2.1)

{
x1b(ω)

x2b(ω)

}
=

[
h1b1b(ω) h1b2b(ω)

h2b1b(ω) h2b2b(ω)

]{
f1b(ω)

f2b(ω)

}
(2.2)

where fi(ω) and xi(ω), i = 1a,2a,1b,2b, are the forces applied at the DOF i, and the
corresponding displacements, respectively. Each receptance hi j(ω) is a complex-valued

8



2.2 Coupling substructures by RCSA

function of frequency (ω) that maps the displacement at DOF i to the force at the DOF j.
Similarly, the receptance FRFs of the assembled system, ab, maps the displacement response
at its DOFs (i.e. 1ab,2ab) to the forces applied on them, as follows:{

x1ab(ω)

x2ab(ω)

}
=

[
h1ab1ab(ω) h1ab2ab(ω)

h2ab1ab(ω) h2ab2ab(ω)

]{
f1ab(ω)

f2ab(ω)

}
(2.3)

The force and displacement in the real world are real-valued and functions of time which can
be converted to the frequency domain using the following Fourier transform

f j(ω) =
1√
2π

+∞∫
−∞

f̂ j(t)e−iωtdt (2.4)

x j(ω) =
1√
2π

+∞∫
−∞

x̂ j(t)e−iωtdt (2.5)

Where f̂ j(t) and x̂ j(t) are force and displacement corresponding to DOF j in time domain,
respectively. Note that all of the displacement, force, and FRF parameters in this chapter are
functions of frequency, which is omitted from notations for simplicity.

Substructure FRFs can be determined by a theoretical model or experimental measure-
ment, and the objective in RCSA is to determine the receptance FRFs of the assembly ab in
terms of the receptance FRFs of its substructure.

The compatibility of displacements in Fig.2.1, requires the same physical displacements
for the coupling points of 2a and 1b, as written below

x2a = x1b (2.6)

In addition to the compatibility of displacements at the coupling point, the force equilibrium
at this point also requires the following:

f2a + f1b = 0 (2.7)

By applying the defined compatibility and equilibrium conditions, the direct (h1ab1ab

and h2ab2ab) and cross (h1ab2ab and h2ab1ab) FRFs of the system (ab) are computed from the
FRFs of the individual components, as follows:

h1ab1ab = h1a1a −h1a2a(h2a2a +h1b1b)
−1h2a1a (2.8)

9



2.2 Coupling substructures by RCSA

h1ab2ab = h1a2a(h2a2a +h1b1b)
−1h1b2b (2.9)

h2ab1ab = h2b1b(h1b1b +h2a2a)
−1h2a1a (2.10)

h2ab2ab = h2b2b −h2b1b(h1b1b +h2a2a)
−1h1b2b (2.11)

The detailed derivations of applying compatibility and equilibrium conditions to obtain
equations 2.8 to 2.11 is provided in Appendix A.

10



2.2 Coupling substructures by RCSA

2.2.2 Axial-torsional receptance coupling

As will be described in the next chapter, both the axial and torsional deflections of the
substructures of VAD systems are coupled. Therefore, substructure coupling formulation
should be extended to consider the simultaneous coupling of the axial and torsional DOFs.
[21].

Fig. 2.2 Axial-torsional coupling of subsystems a and b

In Fig.2.2, xi represents axial displacement, θi torsional displacement, fi axial force, and
ti torsional torque at DOF i, where i = 1a,2a,1b, and 2b. All of these parameters are scalar
functions of frequency (ω).

In axial-torsional coupling, defining displacement and force in a vector form will simplify
RCSA formulations. Displacement and force vectors are defined as follows:

{Xi}=

{
xi

θi

}
;{Fj}=

{
f j

t j

}
(2.12)

where i, j are 1a,2a for subsystem a, 1b,2b for subsystem b, and 1ab,2ab for the assembled
system ab. The receptance FRF matrix, mapping the displacement vector at DOF i to the
force vector at DOF j, is denoted by [Hi j] and defined as follow:{

xi

θi

}
=

[
hx f

i j hxt
i j

hθ f
i j hθ t

i j

]{
f j

t j

}
→{Xi}=

[
Hi j

]{
Fj
}

(2.13)

The FRFs written in lower-case letters represent scalar functions of frequency. The hx f
i j stands

for the frequency response of the axial displacement xi to the excitation force f j, hxt
i j for

11



2.2 Coupling substructures by RCSA

the frequency response of the axial displacement xi to the excitation torque t j, hθ f
i j for the

frequency response of torsional displacement θi to the excitation force f j, and hθ t
i j for the

frequency response of the torsional displacement θi to the excitation torque t j.
For the sake of simplicity, curly and square brackets are omitted from the notations, so the

capital-uppercase letter notations of Xi, Fj and Hi j are considered for the displacement vector
of DOF i, the force vector of DOF j and the 2×2 FRF matrix mapping them, respectively.

The FRF matrices of subsystems a and b in the vector-form notation are as follows:{
X1a

X2a

}
=

[
H1a1a H1a2a

H2a1a H2a2a

]{
F1a

F2a

}
(2.14)

{
X1b

X2b

}
=

[
H1b1b H1b2b

H2b1b H2b2b

]{
F1b

F2b

}
(2.15)

And similarly for the FRF matrix of the assembled system ab:{
X1ab

X2ab

}
=

[
H1ab1ab H1ab2ab

H2ab1ab H2ab2ab

]{
F1ab

F2ab

}
(2.16)

In the axial-torsional coupling of subsystems a and b in Fig.2.2, the compatibility con-
dition is defined by the same displacement vector for the coupling points of 2a and 1b, as
written below

X2a = X1b (2.17)

The equilibrium condition leads to the following equation for the force vectors at the coupling
point:

F2a +F1b = 0 (2.18)

By applying the defined compatibility and equilibrium conditions, the direct (H1ab1ab and
H2ab2ab) and cross (H1ab2ab and H2ab1ab) FRFs of the system ab are computed from the FRFs
of the individual components, as follows:

H1ab1ab = H1a1a −H1a2a(H2a2a +H1b1b)
−1H2a1a (2.19)

H1ab2ab = H1a2a(H2a2a +H1b1b)
−1H1b2b (2.20)

H2ab1ab = H2b1b(H1b1b +H2a2a)
−1H2a1a (2.21)

H2ab2ab = H2b2b −H2b1b(H1b1b +H2a2a)
−1H1b2b (2.22)

12



2.2 Coupling substructures by RCSA

The FRF matrix of the system ab defined in Eq.2.16 is now obtained from the FRF matrices
of individual components and is written below:

Hab =

[
H1ab1ab H1ab2ab

H2ab1ab H2ab2ab

]
4×4

=

[
H1a1a −H1a2a(H2a2a +H1b1b)

−1H2a1a H1a2a(H2a2a +H1b1b)
−1H1b2b

H2b1b(H1b1b +H2a2a)
−1H2a1a H2b2b −H2b1b(H1b1b +H2a2a)

−1H1b2b

]
4×4

(2.23)

The detailed derivations of applying compatibility and equilibrium conditions to obtain the
FRF matrix of system ab is provided in Appendix A.
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2.3 Theoretical modeling of substructures

2.3 Theoretical modeling of substructures

In the preceding section, it was assumed that direct and cross FRFs of each substructure are
available. In this section, theoretical models are introduced for modeling the substructures
and computing their FRFs. Modeling cylindrical components through an analytical approach
is presented in Section 2.3.1. Modeling through a numerical approach using the finite element
method is also considered in Section 2.3.2.

2.3.1 Axial and torsional modeling of cylindrical components

Modeling of circular rod through an analytical solution is considered in this section [18] . In
order to model a rod for axial vibrations, let’s consider the elastic rod with the length of l,
Young’s modulus of E, density of ρ and cross-section area of A as shown in Fig.2.3.

Fig. 2.3 Vibration of a rod as a continuous system

The partial differential equation describing axial vibrations of a rod is [18]

EA
∂ 2u
∂x2 (x, t) = ρA

∂ 2u
∂ t2 (x, t) (2.24)

where u is axial displacement of the location x. Solving this partial-differential equation
requires boundary conditions determined. By applying the free-free boundary conditions of

∂u
∂x

(0, t) = 0;
∂u
∂x

(l, t) = 0 (2.25)

The natural frequency of the nth mode is computed from the equation below

ωn =
nπ

√
E
ρ

l
(2.26)

14



2.3 Theoretical modeling of substructures

and the mode shape of the corresponding mode from the relation below

Un(x) =Cn cos
nπx

l
(2.27)

Mode shape can be scaled by any arbitrary coefficient. The mass-normalized mode shape
is the one which should be used in FRF computation. The modal mass of the nth mode is
computed using the following equation

ma
n =

l∫
0

ρ(x)A(x)U2
n (x)dx (2.28)

where ma
n is the modal mass of the nth axial mode. The modal mass corresponding to nth

mode shape will be computed by substituting Eq.2.27 in Eq.2.28

ma
n =

l∫
0

ρ(x)A(x)C2
ncos2(

πnx
l

)dx = ρAC2
n

l∫
0

cos2(
πnx

l
)dx =

1
2

ρAC2
n

l∫
0

[1+ cos(
2πnx

l
)]dx

(2.29)
For the rigid body mode where n = 0, the modal mass is

ma
0 =

1
2

ρAC2
0

l∫
0

[1+ cos(0)]dx =ρAC2
0 l (2.30)

By setting ma
0 = 1, the normalized mode shape corresponding to rigid body mode is found

U0(x) =
1√
ρAl

(2.31)

For flexible modes where n is non-zero, the modal mass is

ma
n =

1
2

ρAC2
n

l∫
0

[1+ cos(
2πnx

l
)]dx =

1
2

ρAC2
n l (2.32)

By setting the modal mass to be 1, the normalized mode shape corresponding to mode
n(n ̸= 0) is found as below

Un(x) =

√
2

ρAl
cos

nπx
l

(2.33)
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2.3 Theoretical modeling of substructures

The axial FRF between points xi and x j will be computed using the following equation

hx f
i j (xi,x j,ω) =

Nm

∑
n=0

Un(xi)Un(x j)

−ω2 +ω2
n

(2.34)

In order to model a rod for torsional vibrations, consider the same elastic rod in Fig.2.3
with the length of l, modulus of rigidity of G, the density of ρ and polar moment of inertia of
J.

The partial differential equation describing torsional vibrations of the rod is

GJ
∂ 2θ

∂x2 (x, t) = I0
∂ 2θ

∂ t2 (x, t) (2.35)

where I0 = ρJ and θ is torsional displacement of the location x. By applying the free-free
boundary conditions of

∂θ

∂x
(0, t) = 0;

∂θ

∂x
(l, t) = 0 (2.36)

The natural frequency of the nth mode is computed from the equation below

ωn =
nπ

√
G
ρ

l
(2.37)

and the mode shape of the corresponding mode from the relation below

Θ(x) =Cn cos(
πnx

l
) (2.38)

Mode shape can be scaled by any arbitrary coefficient. The mass-normalized mode shape
is the one which should be used in FRF computation. The modal mass of the nth mode is
computed using the following equation

mt
n =

l∫
0

ρ(x)J(x)U2
n (x)dx (2.39)

where mt
n stands for modal mass of the nth torsional mode. The modal mass corresponding

to nth mode shape will be computed by substituting Eq.2.27 in Eq.2.39

mt
n =

l∫
0

ρ(x)J(x)C2
ncos2(

πnx
l

)dx = ρJC2
n

l∫
0

cos2(
πnx

l
)dx =

1
2

ρJC2
n

l∫
0

[1+ cos(
2πnx

l
)]dx

(2.40)
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2.3 Theoretical modeling of substructures

For the rigid body mode where n = 0, the modal mass is

mt
0 =

1
2

ρJC2
0

l∫
0

[1+ cos(0)]dx =ρJC2
0 l (2.41)

By setting mt
0 = 1, the normalized mode shape corresponding to rigid body mode is found

Θ0(x) =
1√
ρJl

(2.42)

For flexible modes where n is non-zero, the modal mass is

mt
n =

1
2

ρJC2
n

l∫
0

[1+ cos(
2πnx

l
)]dx =

1
2

ρJC2
n l (2.43)

By setting the modal mass to be 1, the normalized mode shape corresponding to mode n is
found as below

Θn(x) =

√
2

ρJl
cos(

πnx
l

) (2.44)

The torsional FRF between points xi and x j will be computed using the following equation

hθ t
i j (xi,x j,ω) =

Nm

∑
n=0

Θn(xi)Θn(x j)

−ω2 +ω2
n

(2.45)

Finally, the FRF matrix including axial and torsional FRFs between the two ends a
rod component, where xi and x j are corresponding to x = 0 and x = l respectively, will be
obtained as follow

Hr =

[
H1r1r H1r2r

H2r1r H2r2r

]
=


hx f

1r1r(0,0,ω) 0 hx f
1r2r(0, l,ω) 0

0 hθ t
1r1r(0,0,ω) 0 hθ t

1r2r(0, l,ω)

hx f
2r1r(l,0,ω) 0 hx f

2r2r(l, l,ω) 0
0 hθ t

2r1r(l,0,ω) 0 hθ t
2r2r(l, l,ω)


(2.46)
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2.3.2 Axial and torsional modeling using finite element method

Axial-torsional disk element

Finite element method is commonly used in cases of complex geometries. In this work,
rod elements [18] are used to model the dynamics of conical parts. Figure 2.4 shows a rod
element with axial and torsional flexibility.

Fig. 2.4 Axial-torsional rod (disk) element

In this simple cylinder geometry, axial and torsional modes are uncoupled. Therefore,
by considering a linear shape function for the axial deformation, the following mass and
stiffness matrices will be obtained when the element displacement vector is defined as
{ua}= [x1,x2]

T .

[ma] =
ρAl

6

[
2 1
1 2

]
; [ka] =

EA
l

[
1 −1
−1 1

]
(2.47)

Considering a linear shape function for the torsional deformation will lead to the computation
of mass and stiffness matrices for torsional displacement vector of {ut}= [θ1,θ2]

T .

[mt ] =
ρIpl

6

[
2 1
1 2

]
; [kt ] =

GJ
l

[
1 −1
−1 1

]
(2.48)

Although in the case of simple cylinder, shown in Fig,2.4, there is no coupling between axial
and torsional modes of vibration, they should be considered together. This is necessary for
the case of axial-torsional coupling. The mass matrix of the element considering axial and
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torsional degrees of freedom at the same time will become in the following form

[m] =
ρl
6


2A 0 A 0
0 2Ip 0 Ip

A 0 2A 0
0 Ip 0 2Ip

 (2.49)

Which is written by considering that the element displacement vector is {u}= [x1,θ1,x2,θ2]
T .

The stiffness matrix of the axial-torsional displacement vector is

[k] =
1
l


EA 0 −EA 0
0 GJ 0 −GJ

−EA 0 EA 0
0 −GJ 0 GJ

 (2.50)

As can be seen in Eq.2.49 and Eq.2.50, half of matrix elements are zero which is due to
decoupling of axial and torsional modes of the simple cylinder.

Drill bit element

Due to the pre-twisted geometry of the drill bit, its axial and torsional deflections are coupled,
which is a different case than the rod element shown in Fig.2.4. As can be seen in Fig.2.5,
when an axial force is applied to the drill bit element, axial and torsional deformations happen
at the same time. The same happens when a torsional torque is applied to the element.

Fig. 2.5 Deformations of a drill bit element under a) an axial force b) a torsional torque
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2.3 Theoretical modeling of substructures

In the case of a drill bit, the cross section rotates continuously with respect to the
longitudinal axis. The twisted geometry of the drill bit creates a coupling between its axial
and torsional deformations. In this work, Rosen’s model [19] of the coupled nonlinear
deflection of pre-twisted bars is used to describe the dynamics of the drill-bit. Assuming that
the total deformation of the pre-twisted bar is a superposition of Saint-Venant torsion and
an axial motion of each cross-section, Rosen developed the following equation to describe
the relationship between the applied force and torque and the resulting axial and torsional
deformations:

f = EAε +ESϕ +
1
2

EIpϕ
2 (2.51)

t = ESε +(GJs +EK)ϕ +EIpεϕ +
3
2

EDϕ
2 +

1
2

EFϕ
3 (2.52)

Where f stands for axial force, t for torsional torque, ε for axial strain, ϕ for change in
torsional displacement per unit length , E for modulus of elasticity, G for modulus of rigidity,
A for cross section area ,Ip for polar moment of inertia of the cross section, S, Js, K, D and F
for section integrals which depends on wrapping function of the cross section[19].

Jin and Koya [9] showed that, for typical drill-bit deflections, the values of the nonlinear
terms are less than 1% of the linear terms. Therefore, the effect of the nonlinear terms can be
neglected which leads to the following linear equations:

f = EAε +ESϕ (2.53)

t = ESε +(GJs +EK)ϕ (2.54)

The assumptions made in Rosen’s work [19] require a uniform axial strain (ε) and twist per
unit length (ϕ). As a result, the deformation of a drill bit element with the length l, the case
shown in Fig.2.5, the variables ε and ϕ are computed as follows:

ε =
∆x
l

;ϕ =
∆θ

l
(2.55)

By substituting these values in Eq.2.53 and Eq.2.54, the following relations are obtained:

f =
EA
l

∆x+
ES
l

∆θ (2.56)

t =
ES
l

∆x+(
GJs +EK

l
)∆θ (2.57)

Equations 2.56 and 2.57 illustrate that the drill bit element can be approximated with a linear
axial-torsional spring. The stiffness coefficients of this spring are kx f = EA/l, kθ f = ES/l,
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2.3 Theoretical modeling of substructures

kxt = ES/l and kθ t = (GJs +EK)/l which are proportional to the modulus of elasticity E and
inversely proportional to the element length l. This statement can be written in the following
form for the drill bit element in Fig.2.5:

f = kx f
∆x+ kθ f

∆θ (2.58)

t = kxt
∆x+ kθ t

∆θ (2.59)

Various methods have been used in the literature to determine the section integral parameters,
S, Js, K, D and F , and subsequently the stiffness parameters. For example, a numerical
method based on a 2D FE solution was used in [9]. In this work, a curve-fitting method
is used to obtain relations for the stiffness coefficients. A drill bit element is modeled in
the commercial finite element software COMSOL Multiphysics. The stiffness coefficients
are obtained by applying axial force and torsional torque to the element and measuring the
deformations.

From the case a in Fig.2.5 where only axial force is applied and no torque is applied, the
following equations are obtained:

f = kx f
∆x1 + kθ f

∆θ1 (2.60)

0 = kxt
∆x1 + kθ t

∆θ1 (2.61)

and from the case b shown in Fig.2.5 where only torsional torque is applied and no force is
applied, the following equations are obtained:

0 = kx f
∆x2 + kθ f

∆θ2 (2.62)

t = kxt
∆x2 + kθ t

∆θ2 (2.63)

By solving Eq.2.60 to Eq.2.63, the values of stiffness coefficients of kx f , kθ f , kxt and kθ t will
be determined. These stiffness coefficients are computed for a specific dimension of the drill
bit. To make the model general for all diameters of typical drill bits, this process is repeated
for a few different diameters and corresponding stiffness coefficients are collected. Each data
set of these stiffness coefficients is approximated by a cubic polynomial:

kx f = 765.6d3 +1.125×105d2 +1.499105d −3.089×105

kθ f = 13.38d3 +0.8516d2 −0.6822d −4.749
kxt = 14.75d3 −30.09d2 +213d −432.7
kθ t = 0.1071d3 −1.209d2 +5.622d −8.954

(2.64)
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where d is drill bit diameter in mm. This relations are obtained for typical types of drill bit
available in the market with 30 degrees of helix angle, so the relations are only functions of
the drill bit diameter. The cubic polynomials are plotted versus the data points collected from
the finite element software (which are shown by the star signs) in the following figures:

Fig. 2.6 Cubic polynomial of kx f and data points
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Fig. 2.7 Cubic polynomial of kθ f and data points

Fig. 2.8 Cubic polynomial of kxt and data points
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Fig. 2.9 Cubic polynomial of kθ t and data points

Now that the stiffness coefficients are determined, the stiffness matrix of the drill bit
element is known. The material considered for obtaining the cubic polynomials is Tungsten
Carbide with modulus of elasticity of EWC and for a unit length of the element. As mentioned
before, the stiffness coefficients are proportional to the modulus of elasticity E and inversely
proportional to the element length l. Therefore, the stiffness matrix for a material with the
modulus of elasticity of Ê and the element length of l, will be as follow:

[k] =
Ê

lEWC


kx f kθ f −kx f −kθ f

kxt kθ t −kxt −kθ t

−kx f −kθ f kx f kθ f

−kxt −kθ t kxt kθ t

 (2.65)

The mass matrix of the drill bit element is as follow:

[m] =


m
3 0 m

6 0
0 I

3 0 I
6

m
6 0 m

3 0
0 I

6 0 I
3

 (2.66)

where m and I are mass and inertia of the element, respectively.
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Equations of motion of the complete system of finite elements

So far, the mass and stiffness matrices of either rod element or drill bit element are for one
element in the local coordinate system. The global mass and stiffness matrices of a body
which is the assemblage of Ne number of elements will be a (2Ne +2)× (2Ne +2) matrix.
The global mass matrix is computed using following equation

[M] =
Ne

∑
e=1

[Ae]
T [m][Ae] (2.67)

And the global stiffness matrix using the following equation

[K] =
Ne

∑
e=1

[Ae]
T [k][Ae] (2.68)

where [Ae] is a 4× (2Ne +2) matrix which has all zero elements except a unity matrix [I]4×4

is replaced for the elements between the columns 2e−1 and 2e+2.
The equation describing free vibration of the body is

[M]{ẍ}+[K]{x}= 0 (2.69)

This equation can also written in an alternative form as written below

[−ω
2[I]+ [M]−1[K]]{x}= 0 (2.70)

which is in physical domain and includes (2Ne + 2) dependent equations. This coupling
between equations come from the matrix [M]−1[K]. Using eigenvalue decomposition for this
matrix will provide matrices of natural frequencies and mode shapes.

[Λ] =


ω2

1 0 · · · 0
0 ω2

2 · · · 0
...

... . . . ...
0 0 . . . ω2

(2Ne+2)

 (2.71)

[Φ] =
[
{φ1} {φ2} · · ·

{
φ(2Ne+2)

} ]
(2.72)

and the matrix [Φ] is mass normalized i.e.

[Φ]T [M] [Φ] = [I] (2.73)
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[Φ]T [K] [Φ] = [Λ] (2.74)

The FRF of the body can be computed using the following formula

h jk(ω) =
x j

fk
=

(2Ne+2)

∑
r=1

φ jrφkr

ω2
r −ω2 (2.75)

where x j stands for jth degree of freedom, which is axial displacement in case of odd numbers
and torsional displacement in case of even numbers of j, and fk stands for a load on kth

degree of freedom, which is axial force in case of odd numbers and torsional torque in case
of even numbers of k. The FRF matrix of this system will be

Hs =

[
H1s1s H1s2s

H2s1s H2s2s

]
=

h1,1(ω) h1,2(ω) h1,(2Ne+1)(ω) h1,(2Ne+2)(ω)

h2,1(ω) h2,2(ω) h2,(2Ne+1)(ω) h2,(2Ne+2)(ω)

h(2Ne+1),1(ω) h(2Ne+1),2(ω) h(2Ne+1),(2Ne+1)(ω) h(2Ne+1),(2Ne+2)(ω)

h(2Ne+2),1(ω) h(2Ne+2),2(ω) h(2Ne+2),(2Ne+1)(ω) h(2Ne+2),(2Ne+2)(ω)

 (2.76)
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2.4 Introduction to piezoelectric materials

A piezoelectric ceramic is made of specific crystals which are mostly oriented in the same
direction through a process called poling process. Poling process refers to polarizing crystals
in a high temperature condition under the effect of a strong electric field. A crystal structure
of a piezoelectric ceramic, before and after polarization is depicted in Fig. 2.10.[15]

Pb Oxygen Ti, Zr

+

-

a) Before polarization b) After polarization

Fig. 2.10 Crystalline structure of a piezoelectric ceramic [15]

The constitutive equations describing the piezoelectric property are based on the assump-
tion that the total strain in the transducer is the sum of mechanical strain by the mechanical
stress and the strain caused by the applied electric field.

The describing electromechanical equations for the piezoelectric materials are given as
follows [15]

{εi}=
[
SE

i j
]{

σ j
}
+[dmi]{Em} (2.77)

{Dm}= [dim]{σi}+[ξ σ
ik ]{Ek} (2.78)

where {εi} ∈ ℜ6 stands for strain vector (m/m),
{

σ j
}
∈ ℜ6 for mechanical stress vector

(N/m2), {Em} ∈ ℜ3 for vector of applied electric field (V/m),
[
ξ σ

ik

]
∈ ℜ3×3 for permitivity

(F/m) measured in a constant stress condition, [dmi]∈ ℜ6×3 for matrix of piezoelectric strain
constants (m/V ),

[
SE

i j

]
∈ ℜ6×6 for matrix of compliance coefficients (m2/N) measured in

a constant electric field condition, {Dm} ∈ ℜ3 for vector of electric displacement (C/m2),
and indexes i, j = 1,2, ...,6 and m,k = 1,2,3 refer to different directions within the material
coordinate system.

Equation 2.77 expresses the converse piezoelectric effect, which describes the situation
when the device is being used as an actuator. Equation 2.78, on the other hand, expresses the
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direct piezoelectric effect, which deals with the case when the transducer is being used as a
sensor.

According to the constitutive relation of piezoelectric actuators in Eq.2.77, the deforma-
tion {εi} is a linear combination of the deformation caused by mechanical stress and the
additional deformation by the converse piezoelectric effect. In chapter 3, the piezoelectric
transducer will be assumed to be a simple material with no piezoelectric effect. Instead,
a pair of opposite mechanical forces denoted by Fext will be considered as the converse
piezoelectric effect.

These equations will be simplified as Eq.2.79 and Eq.2.80 for the transducer of the VAD
tool holders. The reason for the simplification is that all stresses, stains and electrical fields
are applied in the same axial direction.

ε = SE
σ +dE (2.79)

D = dσ +ξ
σ E (2.80)

In this stage, it is assumed that there is no electric field applied to the piezoelectric material
meaning that E in Eq.2.79 is set to zero. What remains from the equation describes elasticity
of a non-piezoelectric material with Young’s modulus of 1/SE . According to the model
presented for the rod using continuous system theory, a model for axial vibration of a rod
considering the rigid-body and 1st longitudinal models for the piezoelectric transducer will
be as follow

hx f
i j (xi,x j,ω) =

Nm

∑
n=0

C2
n cos(πnxi

l )cos(πnx j
l )

−ω2 +ω2
n

=
1

−ρAlω2 +
C2

1 cos(πxi
l )cos(πx j

l )

−ω2 +ω2
1

(2.81)

where ω1 =
π

l

√
1

ρSE , C1 =
√

2
ρAl , ρ is piezoelectric density, SE piezoelectric compliance, A

and l are transducer cross-section area and thickness, respectively.
The transducer is assumed to be rigid in a torsional direction. Therefore, the FRF matrix

only includes the torsional rigid-body mode.

hθ t
i j (xi,x j,ω) =

Nm

∑
n=0

C2
n cos(πnxi

l )cos(πnx j
l )

−ω2 +ω2
n

=
1

−ρJlω2 (2.82)

where J is polar moment of inertia of the transducer per unit length.
Axial direct and cross FRFs for the piezoelectric transducer are obtained as follows

hx f
1p1p = hx f

1p1p(0,0,ω) =
1

−ρAlω2 +
2

−ρAlω2 + π2A
lSE

(2.83)
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hx f
1p2p = hx f

1p2p(0, l,ω) =
1

−ρAlω2 −
2

−ρAlω2 + π2A
lSE

(2.84)

hx f
2p1p = hx f

2p1p(l,0,ω) =
1

−ρAlω2 −
2

−ρAlω2 + π2A
lSE

(2.85)

hx f
2p2p = hx f

2p2p(l, l,ω) =
1

−ρAlω2 +
2

−ρAlω2 + π2A
lSE

(2.86)

where DOFs 1p and 2p refer to the DOFs at the two ends of the piezoelectric transducer.
Writing the FRFs in a matrix form leads to the FRF matrix of the piezoelectric transducer
in Eq.2.87. Since the transducer has a simple rod geometry, axial and torsional modes are
independent which is the reason for the matrix to include several zero elements.

Hp =

[
H1p1p H1p2p

H2p1p H2p2p

]
=


hx f

1p1p 0 hx f
1p2p 0

0 hθ t
1p1p 0 hθ t

1p2p

hx f
2p1p 0 hx f

2p2p 0
0 hθ t

2p1p 0 hθ t
2p2p

 (2.87)

The transducer only generates axial vibrations. Axial displacements of the piezoelectric
transducer have the following relations with mechanical forces

x1p = hx f
1p1p f1p +hx f

1p2p f2p (2.88)

x2p = hx f
2p1p f1p +hx f

2p2p f2p (2.89)

The deformation caused by mechanical forces is the difference between the two axial degrees
of freedom of the transducer:

x1p − x2p = (hx f
1p1p −hx f

2p1p) f1p +(hx f
1p2p −hx f

2p2p) f2p

=
4

−ρAlω2 + π2A
lSE

f1p −
4

−ρAlω2 + π2A
lSE

f2p =
4

−ρAlω2 + π2A
lSE

( f1p − f2p) (2.90)

According to the constitutive equation of converse piezoelectric effect presented in Eq.2.79,
the total deformation of a piezoelectric material is superposition of the deformations caused
by mechanical forces and electric field. Involving the effect of electric field in the deformation
of the transducer, the total deformation becomes

x1p − x2p =
4

−ρAlω2 + π2A
lSE

( f1p − f2p)+d
V
l

l (2.91)
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2.4 Introduction to piezoelectric materials

As mentioned before, in coupling substructures by RCSA, the transducer will be consider
as a simple material with no piezoelectric property. The converse piezoelectric effect will be
considered as a pair of opposite-direction forces denoted by Fext . The aim is to find a relation
between Fext and the voltage applied to the transducer. Equation 2.91, can be written in the
following form

x1p − x2p =
4

−ρAlω2 + π2A
lSE

( f1p − f2p +
−ρAdlω2 + π2Ad

lSE

4
V ) (2.92)

By splitting the voltage term between mechanical forces, this equation can be written as

x1p−x2p =
4

−ρAlω2 + π2A
lSE

(( f1p−
ρAdlω2 − π2Ad

lSE

8
V )−( f2p+

ρAdlω2 − π2Ad
lSE

8
V )) (2.93)

Therefore, the relation between Fext and the excitation voltage to the piezoelectric transducer,
which agrees with the RCSA formulation of VAD tool holders, will be as follow:

Fext =

{
Ad
8 (ρlω2 − π2

lSE )V
0

}
(2.94)
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Chapter 3

Substructure Coupling and Numerical
Simulations

3.1 Introduction

A VAD tool holder consists of several mechanical and electro-mechanical components. The
performance of the assembled system is the result of the cooperation of all the components.
Therefore, studying the effect of substructures on the dynamic of assembled system provides
the ability to modify the system by tuning properties of substructures. The approach used in
this study is dividing the system into several segments with relatively simpler geometry and
then step-by-step coupling using the RCSA coupling method.

Tightening Bolt

Back Mass

Axial Concentrator Drillbit

Piezoelectric Transducer

Fig. 3.1 Exploded view of axial toolholder

Two different types of VAD tool holders are studied: Axial tool holder and Axial-torsional
tool holder. Axial tool holder refers to a VAD system with a type of concentrator that has
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3.1 Introduction

independent axial and torsional modes of vibration and there is no coupling between them.
An exploded view of the axial tool holder is available in Fig.3.1.

In the axial-torsional tool holder, the type of concentrator used has a specific geometry
which couples axial and torsional modes of vibration. An exploded view of the axial-torsional
tool holder is shown in Fig.3.2.

Tightening Bolt

Back Mass

Piezoelectric Transducer

Axial-torsional Concentrator

Drillbit

Fig. 3.2 Exploded view of axial-torsional toolholder

In this chapter, the axial and axial-torsional tool holders and their components are
introduced and models of the assembled systems are developed through receptance coupling
of their substructures. In the final section, the receptances computed by the models obtained
from substructure coupling are compared to the receptances of the tool holder assembly
simulated in a finite element software for validation.
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3.2 Model development through substructure coupling

3.2 Model development through substructure coupling

The VAD tool holders consist of several main components: drill bit, axial concentrator or
axial-torsional concentrator, back mass, tightening bolt, and piezoelectric transducer. The
components are shown in Fig.3.1 and Fig.3.2 for the axial tool holder and the axial-torsional
tool holder, respectively. Substructures are divided into segments with simple geometries
that efficient models are available for and are coupled using the RCSA method.

3.2.1 Modeling of back mass

One of the components of the VAD tool holder is the back mass. The back mass has three
segments: two hollow cylinders with a truncated cone in between. The cylindrical parts are
modeled using continuous system theory of rods and their FRF matrices are computed. For
the truncated cone a finite element model consisting of 20 rod (disk) elements introduced in
Chapter 2 is considered.

The first step is coupling the smaller hollow cylinder denoted as subsystem s and the
truncated cone denoted as subsystem t.

2s
1s

1t
2t

(1st)

(2st)

Fig. 3.3 Coupling of subsystems s (gray) and t (blue)

The two subsystems s and t are connected as shown in Fig.3.3. In this coupling, subsystem
s at DOF 2s has the same physical displacement as subsystem t at DOF 1t. The compatibility
condition is

X2s = X1t (3.1)

The equilibrium condition in this coupling is as follow:

F2s +F1t = 0 (3.2)
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3.2 Model development through substructure coupling

The compatibility and equilibrium conditions of coupling subsystems s and t are the same
as coupling subsystems a and b which was discussed in Chapter 2. Considering subsystem
s as subsystem a and subsystem t as subsystem b, the FRF matrix of assembled system st
becomes as follows:

Hst =

[
H1st1st H1st2st

H2st1st H2st2st

]
4×4

=

[
H1s1s −H1s2s(H2s2s +H1t1t)

−1H2s1s H1s2s(H2s2s +H1t1t)
−1H1t2t

H2t1t(H1t1t +H2s2s)
−1H2s1s H2t2t −H2t1t(H1t1t +H2s2s)

−1H1t2t

]
4×4

(3.3)

The third segment of the back mass is a hollow cylinder. This subsystem is denoted as
subsystem l. The model for the back mass denoted as system m is the outcome of coupling
subsystems st and l. The coupling is shown in Fig.3.4.

2st
1st

1l

(1m)

2l

(2m)

Fig. 3.4 Coupling of subsystem st (gray) and subsystem l (blue)

In this coupling, subsystem st at DOF 2st has the same physical displacement as subsys-
tem l at DOF 1l. The compatibility condition is

X2st = X1l (3.4)

The equilibrium condition in this coupling is as follow:

F2st +F1l = 0 (3.5)
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3.2 Model development through substructure coupling

The compatibility and equilibrium conditions of coupling subsystems st and l are the same
as coupling subsystems a and b from Chapter 2. Considering subsystem st as subsystem a
and subsystem l as subsystem b, the FRF matrix of assembled system m becomes as follows:

Hm =

[
H1m1m H1m2m

H2m1m H2m2m

]
4×4

=

[
H1st1st −H1st2st(H2st2st +H1l1l)

−1H2st1st H1st2st(H2st2st +H1l1l)
−1H1l2l

H2l1l(H1l1l +H2st2st)
−1H2st1st H2l2l −H2l1l(H1l1l +H2st2st)

−1H1l2l

]
4×4

(3.6)

3.2.2 Coupling of back mass and tightening bolt

The next step is coupling the back mass (subsystem m) to the tightening bolt which is denoted
as subsystem b. The tightening bolt is modeled using the continuous system model of a rod.
Fig.3.5 shows how these two subsystems are in contact.

1m

1b

(1mb)

2b

(2mb)

2m

Fig. 3.5 Coupling of subsystem m (gray) and subsystem b (blue)

The subsystem m at DOF 1m is connected to the subsystem b at DOF 1b. The compati-
bility condition is

X1m = X1b (3.7)

In addition, in the coupling point the equilibrium condition is as follow:

F1b +F1m = 0 (3.8)
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3.2 Model development through substructure coupling

Displacement vector of X2m is a function of excitation at points 1m and 2m:

X2m = H2m1mF1m +H2m2mF2m (3.9)

Considering the compatibility condition in Eq.3.7 and the equilibrium condition from Eq.3.8,
the relation for F1m will be as follow

X1m = X1b → F1m = (H1m1m +H1b1b)
−1H1b2bF2b − (H1m1m +H1b1b)

−1H1m2mF2m (3.10)

In this stage, by substituting the relations of F1m and F1b (which is already known due to
equilibrium condition of Eq.3.8), the displacement vector of point 2m from Eq.3.9 can be
written as a function of excitation at points 2m and 2b.

X2m = (H2m2m −H2m1m(H1m1m +H1b1b)
−1H1m2m)F2m +H2m1m(H1m1m +H1b1b)

−1H1b2bF2b

(3.11)
The point 2mb in the system mb is the same point of 2b in subsystem b. Displacement

vector of X2b is a function of excitation at points 1b and 2b:

X2b = H2b1bF1b +H2b2bF2b (3.12)

Considering the compatibility condition in Eq.3.7 and the equilibrium condition from Eq.3.8,
the relation for F1b will be as follow

X1m = X1b → F1b = (H1b1b +H1m1m)
−1H1m2mF2m − (H1b1b +H1m1m)

−1H1b2bF2b (3.13)

In this stage, by substituting the relations of F1b and F1m (which is already known due to
equilibrium condition of Eq.3.8), the displacement vector of point 2b from Eq.3.12 can be
written as a function of excitation at points 2m and 2b.

X2b = H2b1b(H1b1b +H1m1m)
−1H1m2mF2m +[H2b2b −H2b1b(H1b1b +H1m1m)

−1H1b2b]F2b

(3.14)
As mentioned before, the assembled subsystem of mb has degrees of freedom at points 1mb
and 2mb which have the same values as 2m and 2b, respectively. Therefore, the equations
describing the assembled subsystem are obtained as follows

X1mb = [H2m2m−H2m1m(H1m1m +H1b1b)
−1H1m2m]F1mb+[H2m1m(H1m1m +H1b1b)

−1H1b2b]F2mb

(3.15)
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3.2 Model development through substructure coupling

X2mb = [H2b1b(H1b1b +H1m1m)
−1H1m2m]F1mb+[H2b2b−H2b1b(H1b1b +H1m1m)

−1H1b2b]F2mb

(3.16)
According to the Eq.3.15 and Eq.3.16, the direct and cross FRFs of the assembled system mb
in a matrix form are

Hmb =

[
H1mb1mb H1mb2mb

H2mb1mb H2mb2mb

]
4×4

=

[
H2m2m −H2m1m(H1m1m +H1b1b)

−1H1m2m H2m1m(H1m1m +H1b1b)
−1H1b2b

H2b1b(H1b1b +H1m1m)
−1H1m2m H2b2b −H2b1b(H1b1b +H1m1m)

−1H1b2b

]
4×4

(3.17)

3.2.3 Coupling back mass and tightening bolt with piezoelectric trans-
ducer

The piezoelectric transducer consists of two piezoelectric rings and both of them are used as
actuator which means they convert the applied alternative voltage to mechanical vibrations. In
this application in VAD tool holder, the transducer only generates axial vibrations. Therefore,
the effect of voltage on deformation of piezoelectric transducer is considered as external
mechanical forces which applies at the two ends of piezoelectric transducer with opposite
directions.

Since the effect of voltage will be involved as equivalent external forces, the set of two
rings can be modeled as a regular material with no piezoelectric effect. This subsystem is in
parallel contact with the assembly of back mass and tightening bolt which is considered as
subsystem mb.

1mb

1p
(1mbp)

2p
(2mbp)

2mb

Fig. 3.6 Coupling of subsystem mb (gray) and subsystem p (blue)
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3.2 Model development through substructure coupling

Figure 3.6 shows coupling between subsystem mb and the subsystem p, the piezoelectric
transducer. As shown in Fig.3.6, the point 1mb of subsystem mb has the same displacement as
the point 1p of subsystem p. Also, the point 2mb of subsystem mb has the same displacement
as the point 2p of subsystem p. Therefore, the compatibility conditions are

X1mb = X1p

X2mb = X2p
(3.18)

Regarding the equilibrium conditions, the following equations hold

F1mbp = F1mb +F1p

F2mbp = F2mb +F2p
(3.19)

According to the compatibility conditions in Eq.3.18, each one of the displacement vectors
can be written as a function of the excitation forces acting on each subsystem

X1mb = X1p → H1mb1mbF1mb +H1mb2mbF2mb = H1p1pF1p +H1p2pF2p

X2mb = X2p → H2mb1mbF1mb +H2mb2mbF2mb = H2p1pF1p +H2p2pF2p
(3.20)

In this type of coupling which subsystems are in parallel contact, the following matrix
formation will simplify RCSA computations. For the subsystem mb{

X1mb

X2mb

}
=

[
H1mb1mb H1mb2mb

H2mb1mb H2mb2mb

]{
F1mb

F2mb

}
→Hmb =

[
H1mb1mb H1mb2mb

H2mb1mb H2mb2mb

]
(3.21)

and for the subsystem p{
X1p

X2p

}
=

[
H1p1p H1p2p

H2p1p H2p2p

]{
F1p

F2p

}
→ Hp =

[
H1p1p H1p2p

H2p1p H2p2p

]
(3.22)

where FRF matrices of Hmb and Hp are 4×4 matrices containing direct and cross FRFs of
axial and torsional modes of subsystem mb and p, respectively.

In parallel coupling, the assembled system has the same displacement vectors as the
individual subsystems: {

X1mbp

X2mbp

}
=

{
X1mb

X2mb

}
=

{
X1p

X2p

}
(3.23)

where each one of the displacement vectors are 4×1 vectors consist of axial and torsional
displacements of the two coupling points of each subsystem. The equlibrium condition
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3.2 Model development through substructure coupling

mentioned in Eq.3.19 in this matrix format is{
F1mbp

F2mbp

}
=

{
F1mb

F2mb

}
+

{
F1p

F2p

}
= H−1

mb

{
X1mb

X2mb

}
+H−1

p

{
X1p

X2p

}
(3.24)

and by considering the Eq.3.23{
F1mbp

F2mbp

}
= (H−1

mb +H−1
p )

{
X1mbp

X2mbp

}
(3.25)

At the end, the FRF matrix of the assembled system mbp will be

Hmbp = (H−1
mb +H−1

p )−1 (3.26)

where Hmbp is a 4×4 matrix containing direct and cross FRFs of axial and torsional modes
of the system mbp.

3.2.4 Coupling of concentrator and drill bit

The difference between axial tool holder and axial-torsional tool holder is the type of their
concentrators. The FRF matrix of the axial concentrator has independent axial and torsional
modes while the FRF matrix of the axial-torsional concentrator includes coupled axial and
torsional modes. Nevertheless, from the RCSA coupling perspective, they will be treated
the same and are considered as subsystem c. The FRF matrices of each concentrator are
computed using a 3D model in finite element software. The drill bit is denoted as subsystem
d. The FRF matrix of the drill bit is obtained from the finite element method presented in
Chapter 2.

The concentrator and drill bit are assembled as depicted in Fig.3.7 and Fig.3.8 for axial
tool holder and axial-torsional tool holder, respectively.

In this coupling, subsystem c at DOF 2c has the physical displacement as subsystem d at
DOF 1d. This defines the compatibility condition as follow:

X2c = X1d (3.27)

and the following equilibrium condition holds:

F2c +F1d = 0 (3.28)
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3.2 Model development through substructure coupling

1c

1d

(1cd)

2d

(2cd)

2c

Fig. 3.7 Coupling of axial concentrator and drill bit

1c

1d

(1cd)

2d

(2cd)

2c

Fig. 3.8 Coupling of axial-torsional concentrator and drill bit

The coupling of subsystems c and d is similar to the case discussed in Chapter 2. Con-
sidering subsystem c as a and d and b, the FRF matrix of assembled system cd becomes as
follow:

Hcd =

[
H1cd1cd H1cd2cd

H2cd1cd H2cd2cd

]
4×4

=

[
H1c1c −H1c2c(H2c2c +H1d1d)

−1H2c1c H1c2c(H2c2c +H1d1d)
−1H1d2d

H2d1d(H1d1d +H2c2c)
−1H2c1c H2d2d −H2d1d(H1d1d +H2c2c)

−1H1d2d

]
4×4

(3.29)
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3.2 Model development through substructure coupling

3.2.5 Assembly model of VAD tool holders

In the previous steps, different components of the VAD tool holder are coupled into the two
subsystems of mbp and cd. In this step, these two subsystems will be coupled and the model
for the axial tool holder and also axial-torsional tool holder will be completed.

1mbp

1cd
2cd

2mbp

Fig. 3.9 Completed assembly of axial tool holder

1mbp

1cd
2cd

2mbp

Fig. 3.10 Completed assembly of axial-torsional tool holder

In this coupling step, subsystem mbp at DOF 2mbp is connected to the subsystem cd
at DOF 1cd. Figure 3.11 contains a schematic model describing the final coupling step to
achieve the assembly model of axial and axial-torsional tool holders.
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3.2 Model development through substructure coupling

(mbp)
(cd)

Fext Fext

1mbp 2mbp
1cd 2cd

Fig. 3.11 Schematic coupling model of subsystems mbp and cd

Subsystem mbp at DOF 2mbp is connected to the subsystem cd at DOF 1cd. The
pair of opposite-direction forces of Fext represents the effect of the voltage applied to the
piezoelectric transducer. The relation between Fext and the voltage is mentioned in Eq.2.94.
The compatibility condition is as follow

X2mbp = X1cd (3.30)

The following relations hold for equilibrium condition of the forces

F1mbp = Fext

F2mbp +F1cd =−Fext
(3.31)

The point of interest in this formulation is the tip of the drill bit which is denoted as the
DOF 2cd. Considering the subsystem cd, the displacement vector 2cd is computed through
the following equation

X2cd = H2cd1cdF1cd (3.32)

In Eq.3.32, the force vector of F1cd should be replaced as a function of Fext . Using the
compatibility condition from Eq.3.30, the value of F1c will be as follow

X2mbp = X1cd → H2mbp1mbpF1mbp +H2mbp2mbpF2mbp = H1cd1cdF1cd

→ F1cd = (H1cd1cd +H2mbp2mbp)
−1(H2mbp1mbp −H2mbp2mbp)Fext (3.33)

By substituting F1cd from Eq.3.33 into Eq.3.32, the final equation which relates the displace-
ment vector of the drill tip to the force Fext will be written as follow

X2cd = H2cd1cd(H1cd1cd +H2mbp2mbp)
−1(H2mbp1mbp −H2mbp2mbp)Fext (3.34)
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3.3 Validation of VAD tool holder models

3.3 Validation of VAD tool holder models

In the previous sections, models for axial and axial-torsional tool holders were developed
through receptance coupling of substructures. This section aims to investigate the validation
of the models developed earlier. For this purpose, the receptance FRFs at the drillbit’s tip
obtained from the RCSA models are compared to the ones obtained using a 3D finite element
model developed in a commercial software. A tool holder assembly is modeled in COMSOL
Multiphysics software using structural modeling interface. The type of mesh used is free
tetrahedral with 169208 number of elements for the axial tool holder shown in Fig.3.12 and
177040 number of elements for the axial-torsional tool holder shown in Fig.3.13.

Fig. 3.12 Excitation and measurements of axial tool holder in COMSOL Multiphysics
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3.3 Validation of VAD tool holder models

Fig. 3.13 Excitation and measurements of axial-torsional tool holder in COMSOL Multi-
physics

As can be seen in Fig.3.12 and Fig.3.13, the excitation to the assembly is a pair of
opposite-direction distributed forces applied at the two DOFs of the piezoelectric transducer.
This forces are shown by the red color arrows. The axial displacement is measures at the tip
of the drill bit which is shown by the vector x. The torsional displacement of the drill bit tip
is computed by measuring the tangential displacements of y1 and y2 and substituting in the
following equation:

θ =
y1 + y2

d
(3.35)

Where d is the diameter of the drill bit. The tangential displacement is influenced by torsional
modes and also bending modes. In order to eliminate the effect of the bending modes, the
tangential displacements are measured at two opposite locations at the tip of the drill bit.

3.3.1 Validation of the axial tool holder model

In order to validate the model developed through the RCSA approach, the system responses
at the drill bit tip are compared to results obtained from the 3D finite element model. For this
simulation, the pair of Fext forces are considered as the excitation to the system and the axial
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3.3 Validation of VAD tool holder models

displacement (DOFs x) and torsional displacement (DOF θ ) at the drill bit tip are considered
as the responses of the system as shown in Fig.3.14.

Fext Fext
x

Fig. 3.14 Axial tool holder assembly model

The assembly’s axial receptance at the drill bit tip obtained from the RCSA model is
plotted versus the axial receptance of the 3D model computed by the finite element software
in the semi-logarithmic plot shown in Fig.3.15.
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Fig. 3.15 Axial receptance at drill tip for axial tool holder
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3.3 Validation of VAD tool holder models

The semi-logarithmic plot shown in Fig.3.16, contains the assembly’s torsional receptance
obtained from the RCSA model and the 3D model in the finite element software for the DOF
θ at the drill bit tip.

The results presented in Fig.3.15 and Fig.3.16 shows that the RCSA approach can predict
the dynamics of the axial tool holder with a good accuracy. The required computation time
for the RCSA model was in the order of a few seconds while the finite element software
required around one hour.
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Fig. 3.16 Torsional receptance at drill tip for axial tool holder

3.3.2 Validation of axial-torsional tool holder model

In order to validate the model of axial-torsional tool holder developed through the RCSA
approach, the system responses at the drill bit tip are plotted versus the results obtained from
the 3D finite element model. For this simulation, the pair of Fext forces are considered as
the excitation to the system and the axial displacement (DOFs x) and torsional displacement
(DOF θ ) at the drill bit tip are considered as the responses of the system as shown in Fig.3.17.
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3.3 Validation of VAD tool holder models

Fext Fext
x

Fig. 3.17 Axial-torsional tool holder assembly model

The assembly’s axial receptance at the drill bit tip obtained from the RCSA model is
plotted versus the axial receptance of the 3D model computed by the finite element software
in the semi-logarithmic plot shown in Fig.3.18.
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Fig. 3.18 Axial receptance at drill tip for axial-torsional tool holder
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3.3 Validation of VAD tool holder models

The semi-logarithmic plot shown in Fig.3.19, contains the assembly’s torsional receptance
obtained from the RCSA model and the 3D model in the finite element software for the DOF
θ at the drill bit tip.
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Fig. 3.19 Torsional receptance at drill tip for axial-torsional tool holder

The results presented in Fig.3.18 and Fig.3.19, show that the RCSA approach can predict
the dynamics of the axial-torsional tool holder with a good accuracy. Similar to the axial tool
holder, the required computation time for the RCSA model was in the order of a few seconds
while the finite element software required around one hour.
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Chapter 4

Experimental Results and Structural
Modification

4.1 Introduction

In this chapter, the presented RCSA approach is used to determine the axial and torsional
receptances of a VAD system with axial concentrator. In addition, the substructure analysis
method is extended to include the stiffness and damping at the joint interfaces between
the components of the VAD system. After experimentally validating the accuracy of the
presented RCSA approach in modeling the dynamics of the VAD system, this model is used
to change the dynamic characteristics of the built VAD system by adjusting the overhang
length of the drill bit and the electrical components of the piezoelectric transducer.
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4.2 Experimental setup

4.2 Experimental setup

The experimental setup consisting of the VAD and data acquisition systems is described
in this section. The piezoelectric transducer needs an AC voltage to excite the operational
mode of the tool holder on its resonant frequency. The AC voltage is generated by a function
generator. A schematic view of the powering circuit of the VAD toolholder is depicted in
Fig.4.1.

Function Generator

Axial Toolholder

Fig. 4.1 Powering VAD tool holder by function generator

The input to this system is the excitation voltage applied by the function generator and
the outputs are axial displacement and torsional displacement of the drill bit tip as well as the
electric current flowing through the circuit. In order to experimentally identify the dynamics
of the physical system, the data corresponding to the input and the outputs of the system
must be collected. The system is fed with a sine sweep signal in the frequency range of 15 to
24.5 kHz.

Data collection is done using a Data Acquisition Card (DAQ). As mentioned, the input to
the system is the voltage applied to the piezoelectric transducer. This voltage is in the range
of -11 to +11 volts. The DAQ card only can tolerate voltages in the range of -5 to +5 volts.
Therefore, the piezoelectric transducer terminals cannot be directly connected to the DAQ
card channels for voltage measurement. In order to bring this voltage to the range of DAQ
card measurement, a voltage divider circuit is employed.

The circuit used as the voltage divider is shown in Fig.4.2. In this figure, piezoelectric
voltage is denoted by Vp which will damage the DAQ card if connected directly. The voltage
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4.2 Experimental setup

Piezoelectric

Transducer

Function
Generator

DAQ

Channel 0

DAQ

Channel 1

Vs Vp

Vm

Fig. 4.2 Measuring Voltage and Current of piezoelectric transducer

measured by the DAQ card is Vm which is computed using the following relation of voltage
dividers:

Vm =
R1

R1 +R2
Vp →Vm =

10
10+56

Vp =
1

6.6
Vp (4.1)

Considering Eq.4.1, Vp which was in the range of -11 to +11 volts is now mapped to the
range of -1.67 to +1.67 volts of Vm. This range of voltage is safe to be connected to Channel
0 of the DAQ card.

As shown in Fig.4.2, Channel 1 of the DAQ card is measuring the voltage drop by the
Rc resistor, which is connected in series to the piezoelectric transducer. Therefore, the same
current taken by the piezoelectric transducer passes through the Rc resistor. Using Ohm’s
law, the current can easily be computed through the voltage data collected by Channel 1 of
the DAQ card.

Ip =
Vs −Vp

Rc
(4.2)

The current is valuable data for the reason that can be measured easily even through the
machining process. This data will be used for model updating and can be used for online
process monitoring. As mentioned before, piezoelectric materials have a coupling between
their mechanical and electrical properties. The direct piezoelectric effect is the concept for
piezoelectric sensors and the converse effect for piezoelectric actuators.
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4.2 Experimental setup

The converse piezoelectric effect determines the relation between the excitation voltage
and the mechanical deformation generating mechanical vibrations and, at the same time,
the direct piezoelectric effect determines how much current is taken by the piezoelectric
transducer in that operational condition. Therefore, the current data contains valuable
information about the structural dynamics of the assembly and the parameters influencing
their dynamics.

The equipment used for measuring vibration is accelerometers. The data collected using
accelerometers is converted to displacement by integration in frequency-domain. Since the
drill bit tip does not have flat surfaces to attach accelerometers on, an adaptor is designed
and attached to the tip of the drill bit as shown with a blue color in Fig.4.3. This figure also
shows the positions where the accelerometers are installed. The accelerometer measuring
axial acceleration is connected to channel 1 of the DAQ card. Two accelerometers located at
the two sides are for measuring tangential acceleration and are connected to channels 2 and 3
of the DAQ card. The reason for using two accelerometers is to cancel the effect of bending
modes and measure torsional acceleration of the drill bit tip with higher accuracy.

DAQ
Channel 3DAQ

Channel 2

DAQ
Channel 1

Fig. 4.3 Measuring axial and torsional displacements of drill bit tip

In the model development process, there was no consideration of boundary conditions. In
other words, the model has free-free boundary conditions. The free-free boundary condition
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4.3 Electric current modeling through RCSA

is attempted to be provided to the physical system by hanging the tool holder by rubbers
from a top support. A picture of the experimental setup is provided in Fig. 4.4.

Accelerometers

Rubbers are supported from top

connected to DAQ card

Piezoelectric Transducer
connected to function generator

Fig. 4.4 Experimental setup

4.3 Electric current modeling through RCSA

The converse piezoelectric effect was studies in the previous sections for modeling the
actuation role of the piezoelectric transducer in exciting the structure of VAD systems at their
resonant frequency. The direct piezoelectric effect also can be used simultaneously which
enables the ability of using the piezoelectric transducer as a sensor at the same time being
used as an actuator. The constitutive equation describing the direct piezoelectric effect is
provided in Eq.2.78 and the simplified form of Eq.2.80 for the VAD tool holder transducer.
Rewriting the Eq.2.79 for mechanical stress leads to the relation below

σ =
ε −dE

SE (4.3)

By substituting Eq.4.3 into Eq.2.80, the relation of electric displacement as a function of
strain and electric field is written as

D =
d

SE ε +(ξ σ − d2

SE )E (4.4)

In order to achieve a relation for the electric charge, the parameters of Eq.4.4 should be
substituted by the following relations: the relation between electric displacement (D) and
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4.3 Electric current modeling through RCSA

electric charge (q) of D = q/A, where A stands for the cross-section area of the piezoelectric
transducer; the mechanical strain (ε) relation with axial displacement of ε = (x1p − x2p)/l,
where x1p and x2p are axial displacements at the two DOFs of the piezoelectric transducer;
the relation for electric field (E) caused by the applied voltage (V ) of E =V/l, where l is
the thickness of piezoelectric transducer. Note that all of the displacement, force, voltage,
current, electric charge and FRF parameters are functions of frequency, which is omitted
from notations for simplicity.

q =
Ad
lSE (x1p − x2p)+(

ASEξ σ −Ad2

lSE )V (4.5)

Electric current is defined as the rate of change in electric charge over time. This
description in the frequency domain is expressed as I = ( jω) ∗ q. Therefore, the electric
current relation is obtained as follow

I =
Ad
lSE jω(x1p − x2p)+(

ASEξ σ −Ad2

lSE jω)V (4.6)

The relations for x1p and x2p should be obtained through the model developed by the
RCSA approach. In the final coupling step in Chapter 3, subsystems mbp and cd were
coupled to obtain the model of the VAD tool holder assembly. Figure 3.11 shows a schematic
of the final coupling to obtain a model for the completed assembly. The same compatibility
condition of Eq.3.30 and equilibrium condition of Eq.3.31 hold here as well.

Since the system mbp was the result of parallel coupling of subsystems p and mb, the
displacement vector X1p has the same value as X1mbp. X1p is written as a function of the
forces applied to the subsystem mbp as follow

X1p = X1mbp = H1mbp1mbpF1mbp +H1mbp2mbpF2mbp (4.7)

By substituting the equilibrium condition from Eq.3.31, X1p becomes

X1p = (H1mbp1mbp −H1mbp2mbp)Fext −H1mbp2mbpF1cd (4.8)

Equation 3.33 illustrates the relation of F1cd and Fext . By substituting Eq.3.33 in Eq.4.8, the
following relation between X1p and Fext will be the obtained

X1p = [H1mbp1mbp −H1mbp2mbp−
H1mbp2mbp(H1cd1cd +H2mbp2mbp)

−1(H2mbp1mbp −H2mbp2mbp)]Fext (4.9)
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4.3 Electric current modeling through RCSA

By substituting Eq.2.94 in Eq.4.9, the relation between X1p and the voltage will be derived
as follows

X1p = [H1mbp1mbp −H1mbp2mbp−

H1mbp2mbp(H1cd1cd +H2mbp2mbp)
−1(H2mbp1mbp −H2mbp2mbp)]

{
Ad
8 (ρlω2 − π2

lSE )V
0

}
(4.10)

The displacement vector X2p is also the same as the displacement vector X2mbp because
of the parallel coupling of subsystems p and mbp. X2p can also be written as a function of
the forces applied to the subsystem mbp as follow

X2p = X2mbp = H2mbp1mbpF1mbp +H2mbp2mbpF2mbp (4.11)

Considering the equilibrium condition presented in Eq.3.31, X2p is written as

X2p = (H2mbp1mbp −H2mbp2mbp)Fext −H2mbp2mbpF1cd (4.12)

By substituting the relation between F1cd and Fext from Eq.3.33 in Eq.4.12, the following
relation between X2p and Fext will be derived

X2p = [H2mbp1mbp −H2mbp2mbp−
H2mbp2mbp(H1cd1cd +H2mbp2mbp)

−1(H2mbp1mbp −H2mbp2mbp)]Fext (4.13)

By substituting Eq.2.94 in Eq.4.13, the relation between X2p and the voltage will be derived
as follows

X2p = [H2mbp1mbp −H2mbp2mbp−

H2mbp2mbp(H1cd1cd +H2mbp2mbp)
−1(H2mbp1mbp −H2mbp2mbp)]

{
Ad
8 (ρlω2 − π2

lSE )V
0

}
(4.14)

Through the RCSA approach, the displacement vectors X1p and X2p are obtained in
Eq.4.10 and Eq.4.14 as functions of voltage, respectively. As mentioned in Chapter 2, the
displacement vectors contain both axial and torsional displacements i.e. X1p = [x1p,θ1p]

T

and X2p = [x2p,θ2p]
T . Therefore, axial displacements x1p and x2p are determined as functions

of V .
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4.3 Electric current modeling through RCSA

When both piezoelectric rings are used as actuators, which is the case for the VAD
system shown in Fig.4.1, V and l in Eq.4.6 should be substituted by the effective voltage
to the piezoelectric transducer of 2Vp and the total thickness of 2lp, respectively. Vp is the
voltage applied to the piezoelectric transducer and lp is the thickness of a single piezoelectric
ring.Therefore, the equation describing the electric current Ip as a function of Vp will be as
follow

Ip =
Ad

2lpSE jω(x1p − x2p)+(
ASEξ σ −Ad2

2lpSE jω)2Vp (4.15)

The current FRF HIp is defined as follow

HIp =
Ip

Vp
(4.16)

where HIp , Ip and Vp are complex-valued functions of frequency.
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4.4 Model updating and joint identification

4.4 Model updating and joint identification

The theoretical model developed through substructure coupling is not necessarily representa-
tive of the physical model dynamics. In the theoretical model, it was assumed that the system
is undamped and all substructures are coupled rigidly. These assumptions may not apply to
the physical system. In order to make the model a better representative of the physical model,
springs and dampers are places in the joints shown in Fig. 4.5. These are the connections
that are more probable to behave non-rigidly.

Fig. 4.5 RCSA model with joint flexibility and damping

The joint between concentrator and drill bit which will be considered as subsystem
jd has both axial and torsional flexibility and dissipation. This joint is considered as a
thin weightless cylindrical element coupled with the drill bit as shown in Fig.4.6. This
flexible cylindrical element is modeled by the rod model developed in Section 2.3.1. Young’s
modulus (E jd) and modulus of rigidity (G jd) of the joint element are complex numbers which
respectively represent axial and torsional flexibility and damping of the joint. Their values
should be identified experimentally. Identifying the complex-valued parameter of E jd leads
to compute Ka

jd and Ca
jd . Similarly, identifying the complex-valued parameter of G jd leads to

compute Kt
jd and Ct

jd .
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4.4 Model updating and joint identification

Drillbit

Joint of Drillbit
Subsystem (jd)

Subsystem (d)

Fig. 4.6 Coupling drill bit and subsystem jd

According to the formulation for coupling subsystems in Section 2.2.2, the FRF matrix
of the system of coupled d (equivalent of subsystem a) and jd (equivalent of subsystem b),
denoted as subsystem d′ will be as follow

Hd′ =

[
H1d′1d′ H1d′2d′

H2d′1d′ H2d′2d′

]
4×4

=

[
H1 jd1 jd −H1 jd2 jd(H2 jd2 jd +H1d1d)

−1H2 jd1 jd H1 jd2 jd(H2 jd2 jd +H1d1d)
−1H1d2d

H2d1d(H1d1d +H2 jd2 jd)
−1H2 jd1 jd H2d2d −H2d1d(H1d1d +H2 jd2 jd)

−1H1d2d

]
4×4

(4.17)

The joint between the concentrator and the piezoelectric transducer has flexibility and
damping in the axial direction. This joint will be considered as subsystem jc. This joint
is also considered as a thin weightless cylindrical element coupled with the concentrator
as shown in Fig.4.7. Young’s modulus (E jc) of the joint element is a complex number
that represents axial flexibility and damping of the joint. Its value should be identified
experimentally. Identifying the complex-valued parameter of E jc leads to computing Ka

jc and
Ca

jc.
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4.4 Model updating and joint identification

Axial Concentrator

Joint of Concentrator
Subsystem (jc)

Subsystem (c)

Fig. 4.7 Coupling concentrator and subsystem jc

According to the formulation for coupling subsystems in Section 2.2.2, the FRF matrix
of the system of coupled c (equivalent of subsystem a) and jc (equivalent of subsystem b),
denoted as subsystem c′ will be as follow

Hc′ =

[
H1c′1c′ H1c′2c′

H2c′1c′ H2c′2c′

]
4×4

=

[
H1 jc1 jc −H1 jc2 jc(H2 jc2 jc +H1c1c)

−1H2 jc1 jc H1 jc2 jc(H2 jc2 jc +H1c1c)
−1H1c2c

H2c1c(H1c1c +H2 jc2 jc)
−1H2 jc1 jc H2c2c −H2c1c(H1c1c +H2 jc2 jc)

−1H1c2c

]
4×4

(4.18)

Subsystems c′ and d′ are connected with the same arrangement as subsystems c and d, as
shown in Fig.3.7. FRF matrix of the system c′d′ will be as follow
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4.4 Model updating and joint identification

Hc′d′ =

[
H1c′d′1c′d′ H1c′d′2c′d′

H2c′d′1c′d′ H2c′d′2c′d′

]
4×4

=

[
H1c′1c′ −H1c′2c′(H2c′2c′ +H1d′1d′)−1H2c′1c′ H1c′2c′(H2c′2c′ +H1d′1d′)−1H1d′2d′

H2d′1d′(H1d′1d′ +H2c′2c′)
−1H2c′1c′ H2d′2d′ −H2d′1d′(H1d′1d′ +H2c′2c′)

−1H1d′2d′

]
4×4

(4.19)

An schematic view of coupling the substructures for the system shown in Fig.4.5, is
provided in Fig.4.8. It is the result of coupling subsystems mbp and c′d′.

(mbp)
(c’d’)

Fext Fext

1mbp 2mbp
1c’d’ 2c’d’

Fig. 4.8 Coupling subsystems c′d′ and mbp

The result of coupling subsystem c′d′ and mbp, has the same formulation of coupling
subsystems mbp and cd as presented in Eq.3.34. Therefore, the displacement vector for the
DOF 2c′d′ at the tip of the drill bit will be as follow

X2c′d′ = H2c′d′1c′d′(H1c′d′1c′d′ +H2mbp2mbp)
−1(H2mbp1mbp −H2mbp2mbp)Fext (4.20)

As mentioned before, joint stiffness and damping are the parameters which should be
identified experimentally. In this work, an optimization algorithm is used to determine the
joint parameters that would lead to minimum difference between predicted and measured
FRFs. Usually this model updating method is implemented by using displacement to force
FRFs, which requires the installation of accelerometers on the setup to measure the FRFs. To
avoid the practical complexities involved in the installation of accelerometers in an industrial
setup, in this work the FRF between the transducer current and the supplied voltage is used
for model updating. A sine sweep voltage is applied to the system and the resulting current
is measured using the setup described in Section 4.2.

Joints are identified through an optimization algorithm whose objective is to minimize the
difference between the magnitudes of the current FRF obtained from the theoretical model
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4.4 Model updating and joint identification

and experimental data. The frequency range chosen for the optimization algorithm is the
half-power bandwidth of the system in the operating mode. The half-power bandwidth is
a range of frequency in which the magnitude of the current FRF is not less than

√
2 of the

magnitude of current FRF at the resonant frequency.[18] This bandwidth is shown in Fig.4.9.
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Fig. 4.9 Half-power bandwidth of the system [18]

The objective is elimination of the difference between 1) natural frequencies of the model
and experimental data 2) magnitude of current FRF in the frequency range of the half-power
bandwidth. The objective function satisfying these criteria would be as follow

fob j(E jd,G jd,E jc) =

(ωn −ω
exp
n )2 +

1
Nω

Nω/2

∑
i=−Nω/2

(
∣∣HIp(ωn + iδω,E jd,G jd,E jc)

∣∣− ∣∣∣Hexp
Ip

(ωexp
n + iδω)

∣∣∣)2
(4.21)

where HIp is the current FRF computed by the RCSA approach in Section 4.3 and is influenced
by the joint parameters (E jd , G jd and E jc), Hexp

Ip
is current FRF measured experimentally,

ωn is the natural frequency computed by the RCSA model, ω
exp
n is the natural frequency

measured experimentally, δω is the frequency resolution and Nω is the number of data points
in the bandwidth computed using following equation

Nω =
ω2 −ω1

δω
(4.22)
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4.4 Model updating and joint identification

Figure 4.10 shows that after convergence of the optimization algorithm, the current FRF
magnitude has approached to the current FRF magnitude measured experimentally. The
outcome of the optimization algorithm is the computation of the joint parameters values.
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Fig. 4.10 Current FRF magnitude for 27.5 mm clamped length

Through this identification process the values for axial and torsional stiffness and damping
of the joints are computed as follows

Ka
jd = 1.9224e+09[N/m];Ca

jd = 9.6203e+07[N.s/m]

Kt
jd = 7.1503e+02[N/m];Ct

jd = 1.4994e+02[N.m.s]
Ka

jc = 7.5839e+10[N/m];Ca
jc = 3.1325e+10[N.s/m]

(4.23)

Using the identified joint parameters the axial and torsional receptances of the drill bit
tip are computed and plotted alongside with the experimentally measured receptances in
Fig.4.11 and Fig.4.12, respectively. The agreement between predicted and measured data
shows that joint identification using current FRF data is a promising approach.
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Fig. 4.11 Axial receptance magnitude for 27.5 mm clamped length
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Fig. 4.12 Torsional receptance magnitude for 27.5 mm clamped length
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4.5 Structural modification by tuning drillbit clamped length

Tuning the overhang length of the drill bit is one of the techniques that can be used for
structural modification of the VAD systems. The case presented in Fig.4.10, Fig.4.11 and
Fig.4.12 were for the case of clamping 27.5 mm of the shank length inside the collet.

For the other case, 30 mm of shank length is clamped inside the collet. Joint parameters
are identified using current FRF data. Figure 4.13 shows the convergence of current FRF
magnitude to the experimental measurement data after convergence of the optimization
algorithm.
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Fig. 4.13 Current FRF magnitude for 30 mm clamped length

The joint parameters computed through the optimization algorithm are as follow

Ka
jd = 1.5436e+09[N/m];Ca

jd = 6.1777e+07[N.s/m]

Kt
jd = 6.0086e+02[N.m];Ct

jd = 1.2600e+02[N.m.s]
Ka

jc = 7.5839e+10[N/m];Ca
jc = 3.1325e+10[N.s/m]

(4.24)

Axial and torsional receptances of the drill bit tip are computed using the identified values
for the joints. The predicted receptances are plotted versus the experimental data in Fig.4.14
and Fig.4.15.
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Fig. 4.14 Axial receptance magnitude for 30 mm clamped length
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Fig. 4.15 Torsional receptance magnitude for 30 mm clamped length
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4.5 Structural modification by tuning drillbit clamped length

The case in which 35 mm of shank length is clamped inside the collet is considered. Joint
parameters are identified using current FRF data. Figure 4.16 shows with the computed joint
parameters, the predicted current FRF and the measured one are in a good agreement.
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Fig. 4.16 Current FRF magnitude for 35 mm clamped length

The identified joint parameters are as follows

Ka
jd = 2.8416e+09[N/m];Ca

jd = 1.1373e+08[N.s/m]

Kt
jd = 4.5666e+02[N.m];Ct

jd = 9.5759e+01[N.m.s]
Ka

jc = 7.5839e+10[N/m];Ca
jc = 3.1325e+10[N.s/m]

(4.25)

Axial and torsional receptances of the drill bit tip are computed using the identified values
for the joints. The predicted receptances are plotted versus the experimental data in Fig.4.17
and Fig.4.18.
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Fig. 4.17 Axial receptance magnitude for 35 mm clamped length
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Fig. 4.18 Torsional receptance magnitude for 35 mm clamped length
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4.6 Structural modification by electric circuit adjustment

Structural modification by mechanical adjustments in substructures may not be so practical
because of assembly limitations. The electro-mechanical coupling of piezoelectric materials
enables us to tune mechanical behaviour of the transducer by adjusting electric circuit. In
structural modification using electric circuit adjustment [11], this coupling is employed to
tune mechanical stiffness of one of the piezoelectric rings while using the other one as an
actuator. Fig.4.19 shows how this system is implemented.

Tightening Bolt

Back Mass

Axial Concentrator Drillbit

Piezoelectric Transducer

Power Source

Fig. 4.19 Tool holder with electric circuit adjuster

The RCSA model developed in Chapter 3 needs some modification to be suitable for this
application. The subsystem m in this case will be replaced by subsystem m′ which is the
result of coupling subsystems m and a as shown in Fig.4.20.
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4.6 Structural modification by electric circuit adjustment

2m
1m

1a

(1m’)

2a

(2m’)

Fig. 4.20 Coupling back mass and adjustable piezoelectric ring

The FRF matrix of subsystem m′, according coupling formulation of Section 2.2.2, will
become as follows.

Hm′ =

[
H1m′1m′ H1m′2m′

H2m′1m′ H2m′2m′

]
4×4

=

[
H1m1m −H1m2m(H2m2m +H1a1a)

−1H2m1m H1m2m(H2m2m +H1a1a)
−1H1a2a

H2a1a(H1a1a +H2m2m)
−1H2m1m H2a2a −H2a1a(H1a1a +H2m2m)

−1H1a2a

]
4×4

(4.26)

where FRFs of the subsystem a is obtained using a rod model with a mechanical compliance
adjustable by the electrical components. This adjustable mechanical compliance is denoted
by Sad j. In order to find Sad j, a model for the electric circuit shown in Fig.4.19 is required.
Consider the circuit in Fig.4.21.

Fig. 4.21 RLC circuit
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4.6 Structural modification by electric circuit adjustment

According to Kirchhoff’s voltage law, the governing equation of the circuit shown in
Fig.4.21 in the frequency domain is

Ve = Le( jω)Ie +ReIe +
1

Ce

Ie

( jω)
(4.27)

where Ve is voltage applied to the RLC circuit and Ie is the current passing through the circuit
which are functions of frequency. In Fig.4.21, Le, Ce and Re are inductance (H), capacitance
(F) and resistance (Ω), respectively. The current FRF He is obtained as follow

He =
Ie

Ve
=

jω
−Leω2 +Re jω + 1

Ce

(4.28)

There is another circuit representative of the piezoelectric capacitance denoted as C0 that is
in parallel with the external circuit as shown in Fig.4.19. Being in parallel means that the
same voltage Ve will be applied to both circuits. The current FRF of this circuit denoted by
H0, which only includes the capacitor C0, is similar to Eq.4.28 but by neglecting the terms
corresponding to the inductor and resistor as follow

H0 =
I0

Ve
=

jω
1

C0

(4.29)

The constitutive equation of piezoelectric materials mentioned in Eq.2.79 and 2.80, in case
of considering piezoelectric capacitance as an external capacitor will be simplified to

ε = SE
σ +dE (4.30)

D = dσ (4.31)

Writing Eq.4.31 for electric charge by substituting D = q/A becomes

q = Adσ (4.32)

As mentioned before, the electric current is rate of change in electric charge per time. By
substituting the electric charge in Eq.4.32 by the current formulation for two circuits in
parallel of q = (Ie + I0)/( jω), the following equation is derived

Ie + I0

jω
= Adσ (4.33)
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4.6 Structural modification by electric circuit adjustment

By substituting the corresponding current FRF from Eq.4.28 and Eq.4.29 into Eq.4.33,
voltage can be described as a function of the mechanical stress applied to the piezoelectric
material

(He +H0)Ve = jωAdσ →Ve =
jωAd

He +H0
σ (4.34)

By considering the relation between electric field and voltage of E =V/l and substituting
Eq.4.34 in Eq.4.30, the following equation will be obtained that describes a relation between
mechanical stress and mechanical strain:

ε = (SE − jωAd2

(He +H0)l
)σ (4.35)

Therefore, the mechanical compliance of the piezoelectric ring used as the adjustable subsys-
tem a , which is modified by the electric circuit dynamics, will be obtained as follow

Sad j = SE − jωAd2

(He +H0)l
(4.36)

The effect of tuning each electrical component on the dynamic response of the VAD tool
holder assembly is studied.

In Fig.4.22 and Fig.4.23, the effect of tuning Re is on dynamics of the assembly is studied.
Inductor (Le) and capacitor (Ce) are neglected. As can be seen in the corresponding figures,
by increasing the external resistance, the resonant frequency of the assembly will increase
slightly in a limited range of frequency which is less than 200 Hz.

In Fig.4.24 and Fig.4.25, the effect of tuning the inductor Le with a fixed capacitor value
of Ce = 1nF is considered. As can be seen in the corresponding figures, by increasing the
external inductance, the resonant frequency of the assembly will decreases in a wider range
of frequency, in a range of more than 2 kHz. The inductor has been observed to have the
most significant effect on the dynamics of the tool holder structure.

In Fig.4.26 and Fig.4.27, the effect of tuning capacitor value of Ce with a fixed inductor
value of Le = 50mH is presented. As can be seen in the corresponding figures, by increasing
the external capacitance, the resonant frequency of the assembly will decrease in a range of
frequency which is about 2 kHz.
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4.6 Structural modification by electric circuit adjustment
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Fig. 4.22 Effect of tuning resistance on the axial receptance of the assembly

Fig. 4.23 Effect of tuning resistance on operational frequency of the Assembly
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Fig. 4.24 Effect of tuning inductance on the axial receptance of the assembly
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Fig. 4.25 Effect of tuning inductance on operational frequency of the Assembly
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4.6 Structural modification by electric circuit adjustment

Frequency (kHz)

A
xi

al
re

ce
pt

an
ce

m
ag

ni
tu

de
(m

/V
)

Capacitance (nF)

Fig. 4.26 Effect of tuning capacitance on the axial receptance of the assembly
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Fig. 4.27 Effect of tuning capacitance on operational frequency of the Assembly
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Chapter 5

Conclusions and Future Work

In this thesis, the dynamics of the VAD tool holders were studied in a substructure coupling
platform. Analytical models suitable for the geometry of each individual component were
employed which increased the computational efficiency of the model. Also, experimental
identification of the stiffness and damping of the joints between substructures was the other
advantage of a substructure modeling. It was shown that the model can also predict the
electric current FRF of the piezoelectric transducer, which is the most convenient way of
monitoring the dynamics of the tool holder. The electro-mechanical coupling of piezoelectric
material enables us to adjust its mechanical compliance through the RLC circuit tuning which
provides the active structural modification ability.

The developed substructure coupling analysis method can be used to fine-tune the dy-
namics of the VAD system to maximize the performance of the VAD machining process in
various machining conditions. It was shown that the model can accurately predict axial and
torsional receptances of the drill-tip and also the electric current FRF of the VAD system. It
was shown that the model, whose joint parameters are identified using the electric current
FRF, can predict the axial and torsional receptance of the system with a good accuracy. This
shows that the electric current data is a promising approach for assessments of the system
which facilitates experiments, saves time and requires inexpensive equipment. The modeling
with consideration of the individual components provided the ability of modifying the overall
system dynamics by either mechanical or electrical adjustments to the substructures after the
tool holder was manufactured.
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Summary

The following is the summary of this thesis:

• An electro-mechanical substructure analysis was presented which provides the ability
of designing axial and axial-torsional VAD systems with optimal dynamic performance.

• The stiffness and damping of the joints were considered and identified using experi-
mental data.

• Modification of the VAD system by adjusting the parameters of mechanical and
electrical components was the other advantage provided by the substructure analysis
platform.

Potential Future Research Topics

• Prediction of cutting forces by electric current measurement
The machining forces are typically measured using dynamometers. Using dynamome-
ters are expensive and is subject to some limitations by the machine fixture. Electric
current can easily been measured during the machining process. Since the model can
provide information about electric current FRF, a model can be developed based on
that to predict machining forces from the electric current measurements.

• Automatically adjusting electric circuit
A VAD system is originally designed to have the best performance with a particular
drill bit. However, the design and manufacturing VAD tool holders for each drill bit is
not affordable. Developing a method to automatically adjust the electric components
of the VAD system, will make the tool holder to be used for several different drill bits
with the highest efficiency.

• Real-time updating of stability lobe diagrams
Stability lobe diagrams are used to predict stable machining conditions. In developing
a stability lobe diagram, the dynamics of the machining tool and workpiece plays the
most important role. In the machining process, since the material is being removed
from the workpiece and machining condition changes, the stability lobe diagram may
not be accurate for the new machining condition. Having an accurate stability lobe
diagram can determine the machining condition with the highest productivity. The
electric current measurement from the VAD tool holder provides the ability of updating
the dynamics of the machining structure which leads to real-time updating of the
stability lobe diagram and maintains the machining process in the highest productivity.
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Appendix A

Receptance Coupling Formulation

A.1 Axial receptance coupling

Coupling receptances of subsystems to obtain the receptance of the assembled system using
RCSA approach was introduces in Chapter 2. The detailed derivation of RCSA formulation
with the approach by Tony Schmitz is presented. [22].

In the simplest case of substructure coupling for rigid coupling of two substructures
in one direction as shown in Fig.2.1, has the compatibility and equilibrium conditions as
mentioned in Eq.2.6 and Eq.2.7, respectively.

Let’s assume that displacement of the coupled system at the point of 1ab is desired. This
DOF has the same value of 1a. This displacement can be caused by the forces applied directly
at 1ab or the forces applied at 2ab. Considering subsystem a, this displacement is a function
of the forces applied to the subsystem a at 1a and the coupling location 2a. The following
equation describes this relation

x1a = h1a1a f1a +h1a2a f2a (A.1)

Since the displacement of the coupling DOF is not of interest, the displacements of the
assembled system should be only functions of forces applied to non-coupling DOFs. Eq.A.1
in the assembled system coordinate system will be written as follows

x1ab = h1a1a f1ab +h1a2a f2a (A.2)

which includes the force applied to the subsystem a at the coupling DOF. This force f2a

should be replaced by the force applied at DOF 2ab. The goal at this stage is to find a relation
between f2a and f2ab while f2ab = f2b. By substituting the displacements in Eq.2.6, the
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A.1 Axial receptance coupling

following equation is obtained

h2a1a f1a +h2a2a f2a = h1b1b f1b +h1b2b f2b (A.3)

The substitution of the equilibrium condition from Eq.2.7 and rearranging enable solving for
f2a:

f2a =−(h2a2a +h1b1b)
−1h2a1a f1a +(h2a2a +h1b1b)

−1h1b2b f2b (A.4)

By substituting the relation of f2a from Eq.A.4 in Eq.A.2 and considering that f1ab = f1a and
f2ab = f2b, the displacement x1ab will be determined.

x1ab = [h1a1a−h1a2a(h2a2a +h1b1b)
−1h2a1a] f1ab+[h1a2a(H2a2a +h1b1b)

−1h1b2b] f2ab (A.5)

Following the same procedure leads to a relation for the displacement at DOF 2ab . This
DOF has the same displacement as 2b. This displacement can be caused by forces applied
directly on the same DOF or forces applied on other DOFs. Considering subsystem b, this
displacement is a function of the forces applied to the subsystem b at 2b and coupling DOF
1b. The following equation describes this relation

x2b = h2b1b f1b +h2b2b f2b (A.6)

The displacements of the assembly should be only functions of forces applied to non-coupling
DOFs. Eq.A.6 in the assembled system coordinate system will be written as follows

x2ab = h2b1b f1b +h2b2b f2ab (A.7)

which includes the force applied to the subsystem b at the coupling DOF 1b that does not
exists in the assembled system. So, the force f1b should be replaced by the force applied at
1ab. The goal at this stage is to find a relation between f1b and f1ab, which is the same force
of f1a acting on subsystem a. By substituting the displacements in Eq.2.6, the following
equation is obtained

h2a1a f1a +h2a2a f2a = h1b1b f1b +h1b2b f2b (A.8)

The substitution of the equilibrium condition from Eq.2.7 and rearranging it enables solving
for f1b:

f1b = (h1b1b +h2a2a)
−1h2a1a f1a − (h1b1b +h2a2a)

−1h1b2b f2b (A.9)

80



A.2 Axial-torsional receptance coupling

By substituting the relation of f1b in Eq.A.7 and considering that f1ab = f1a and f2ab = f2b,
the displacement x2ab will be determined.

x2ab = [h2b1b(h1b1b +h2a2a)
−1h2a1a] f1ab +[h2b2b −h2b1b(h1b1b +h2a2a)

−1h1b2b] f2ab

(A.10)
According to Eq.A.5 and Eq.A.10, the direct (h1ab1ab and h2ab2ab) and cross (h1ab2ab and

h2ab1ab) FRFs of the assembly ab are obtained as follows:

h1ab1ab =
x1ab

f1ab
= h1a1a −h1a2a(h2a2a +h1b1b)

−1h2a1a (A.11)

h1ab2ab =
x1ab

f2ab
= h1a2a(H2a2a +h1b1b)

−1h1b2b (A.12)

h2ab1ab =
x2ab

f1ab
= h2b1b(h1b1b +h2a2a)

−1h2a1a (A.13)

h2ab2ab =
x2ab

f2ab
= h2b2b −h2b1b(h1b1b +h2a2a)

−1h1b2b (A.14)

A.2 Axial-torsional receptance coupling

In axial-torsional coupling of subsystems a and b shown in Fig.2.2 the compatibility and
equilibrium conditions were mentioned in Eq.2.17 and Eq.2.18, respectively.

In order to compute the displacement vector at 1ab which has the same displacement
vector as 1a, it needs to be written as a function of force vectors applied to the subsystem a.

X1a = H1a1aF1a +H1a2aF2a (A.15)

The force F2a should be replaced by the force applied at 2ab. The goal at this stage is to find
a relation between F2a and F2ab, which is the same force of F2b acting on subsystem b. By
substituting the displacement vectors in Eq.2.17, the following equation is obtained

H2a1aF1a +H2a2aF2a = H1b1bF1b +H1b2bF2b (A.16)

The substitution of the equilibrium condition from Eq.2.18 and rearranging for F2a,

F2a =−(H2a2a +H1b1b)
−1H2a1aF1a +(H2a2a +H1b1b)

−1H1b2bF2b (A.17)
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A.2 Axial-torsional receptance coupling

By substituting the relation of F2a in Eq.A.15 and considering that F1ab = F1a and F2ab = F2b,
the displacement vector X1ab will be determined.

X1ab = [H1a1a −H1a2a(H2a2a +H1b1b)
−1H2a1a]F1ab +[H1a2a(H2a2a +H1b1b)

−1H1b2b]F2ab

(A.18)
Following the same procedure leads to a relation for the displacement vector at 2ab :

X2b = H2b1bF1b +H2b2bF2b (A.19)

By substituting the displacement vectors in Eq.2.17, the following equation is obtained

H2a1aF1a +H2a2aF2a = H1b1bF1b +H1b2bF2b (A.20)

The substitution of the equilibrium condition from Eq.2.18 and rearranging, F1b is computed

F1b = (H1b1b +H2a2a)
−1H2a1aF1a − (H1b1b +H2a2a)

−1H1b2bF2b (A.21)

By substituting the relation of F1b in Eq.A.19 and considering that F1ab = F1a and F2ab = F2b,
the displacement vector X2ab will be determined.

X2ab = [H2b1b(H1b1b +H2a2a)
−1H2a1a]F1ab +[H2b2b −H2b1b(H1b1b +H2a2a)

−1H1b2b]F2ab

(A.22)
The direct (H1ab1ab and H2ab2ab) and cross (H1ab2ab and H2ab1ab) FRF matrices of the assem-
bled system obtained from Eq.A.18 and Eq.A.22 as follows:

H1ab1ab = H1a1a −H1a2a(H2a2a +H1b1b)
−1H2a1a (A.23)

H1ab2ab = H1a2a(H2a2a +H1b1b)
−1H1b2b (A.24)

H2ab1ab = H2b1b(H1b1b +H2a2a)
−1H2a1a (A.25)

H2ab2ab = H2b2b −H2b1b(H1b1b +H2a2a)
−1H1b2b (A.26)
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