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ABSTRACT

Given a finite set V , a convexity, C , is a collection of subsets of V that contains
both the empty set and the set V and is closed under intersections. The elements of C

are called convex sets. We can define several different convexities on the vertex set of a
graph. In particular, the digital convexity, originally proposed as a tool for processing
digital images, is defined as follows: a subset S ⊆ V (G) is digitally convex if, for every
v ∈ V (G), we have N [v] ⊆ N [S] implies v ∈ S. Or, in other words, each vertex v
that is not in the digitally convex set S needs to have a private neighbour in the
graph with respect to S. In this thesis, we focus on the generation and enumeration
of digitally convex sets in several classes of graphs. We establish upper bounds on the
number of digitally convex sets of 2-trees, k-trees and simple clique 2-trees, as well
as conjecturing a lower bound on the number of digitally convex sets of 2-trees and a
generalization to k-trees. For other classes of graphs, including powers of cycles and
paths, and Cartesian products of complete graphs and of paths, we enumerate the
digitally convex sets using recurrence relations. Finally, we enumerate the digitally
convex sets of block graphs in terms of the number of blocks in the graph, rather than
in terms of the order of the graph.



iv

Table of Contents

Supervisory Committee ii

Abstract iii

Table of Contents iv

List of Tables vi

List of Figures vii

Acknowledgements ix

1 Introduction 1

2 Notation and Background 3
2.1 Convexity in graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Properties of digitally convex sets . . . . . . . . . . . . . . . . . . . . 7
2.3 Digital convexity in trees . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Digital Convexity in k-trees 12
3.1 Generating and enumerating digitally convex sets in 2-trees . . . . . . 13

3.1.1 Upper Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.1.2 Lower Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 Digital convexity in k-trees . . . . . . . . . . . . . . . . . . . . . . . . 56
3.3 Simple clique 2-trees . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4 Cycles and Cartesian Products 78
4.1 Digitally convex sets of cycles . . . . . . . . . . . . . . . . . . . . . . 78
4.2 Cartesian Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5 Block graphs 104



v

6 Conclusion and Future Work 114

Bibliography 118

Appendix A Code: Generating Digitally Convex Sets of a Graph 121



vi

List of Tables

Table 4.1 A summary of the counting argument in Theorem 4.7 . . . . . . 98



vii

List of Figures

Figure 1.1 Smoothing of a black and white digital image using digital con-
vexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Figure 2.1 A graph G with nD(G) = 14 . . . . . . . . . . . . . . . . . . . 6
Figure 2.2 Two non-isomorphic trees of order four with different numbers

of digitally convex sets. . . . . . . . . . . . . . . . . . . . . . . 9
Figure 2.3 The star of order six and the spiderstars of orders six and seven 10

Figure 3.1 A 3-tree of order eight . . . . . . . . . . . . . . . . . . . . . . 12
Figure 3.2 Algorithm 2 generates the digitally convex sets of G using those

of G− v. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 3.3 The square of a path, P 2

n . . . . . . . . . . . . . . . . . . . . . 18
Figure 3.4 P 2

7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 3.5 D(G) = {∅, {1}, {1, 2}, {1, 2, 3}, {3}, {5}, {4, 5}, {3, 4, 5},

{1, 5}, V (G)} . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 3.6 Remove edges e1 and e2 incident with v . . . . . . . . . . . . . 22
Figure 3.7 The graph K2 +K5 . . . . . . . . . . . . . . . . . . . . . . . . 23
Figure 3.8 Construction of the 2-spiderstars, with k = dn−2

3 e and differ-
ences depending on n indicated by red edges . . . . . . . . . . 25

Figure 3.9 All 2-trees of order 4 and 5 . . . . . . . . . . . . . . . . . . . 26
Figure 3.10 Vertices v1, v2, v3 and the red edges are added to G to form G1 26
Figure 3.11 Vertices v1, v2, v3 and the red edges are added to G to form G2 27
Figure 3.12 Vertices v1, v2, v3 and the red edges are added to G to form G3 27
Figure 3.13 Vertices v1, v2, v3 and the red edges are added to G to form G4 28



viii

Figure 3.14 Vertices v1, v2, v3 and the red edges are added to G to form G5 28
Figure 3.15 Vertices v1, v2, v3 and the red edges are added to G to form G6 29
Figure 3.16 Vertices v1, v2, v3 and the red edges are added to G to form G7,

G′7 and G′′7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Figure 3.17 The vertices incident with the red edges are added to form

G8 and G′8. The vertex u and blue edges are added to form
G′8 − {v′1, v′2, v′3} . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Figure 3.18 The edges removed from G and added to form G∗ are high-
lighted in red . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Figure 3.19 All non-isomorphic 2-trees of order 6 . . . . . . . . . . . . . . 32
Figure 3.20 Algorithm 4 uses the digitally convex sets of G − {w, v} to

generate those of G− v and G . . . . . . . . . . . . . . . . . . 59
Figure 3.21 The structure described in Theorem 3.20 with k = ` = 3 . . . 62
Figure 3.22 The 3-spiderstar with 9 vertices, S3,9 . . . . . . . . . . . . . . 65
Figure 3.23 A simple clique 2-tree of order eight . . . . . . . . . . . . . . . 67
Figure 3.24 The 3-line graph G` corresponding to the SC 2-tree G . . . . . 68
Figure 3.25 The 3-line graph G` corresponding to the SC 2-tree G . . . . . 69
Figure 3.26 Base case for Theorem 3.28 . . . . . . . . . . . . . . . . . . . 69
Figure 3.27 P7 +K1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Figure 3.28 All 2-path graphs of orders 4, 5 and 6 . . . . . . . . . . . . . . 75
Figure 3.29 A 2-path of order 8 that attains the lower bound in Theorem 3.31 77

Figure 4.1 Base cases for Theorem 4.1 . . . . . . . . . . . . . . . . . . . 79
Figure 4.2 The digitally convex set S = {v4, v5} is indicated in red . . . . 80
Figure 4.3 Neither 010 nor 101 can appear as a substring . . . . . . . . . 81
Figure 4.4 The graph Ck

7 for k = 1, 2, 3 . . . . . . . . . . . . . . . . . . . 83
Figure 4.5 The digitally convex set S = {v1, v7} of C2

7 is indicated in red 88
Figure 4.6 The set {(2, 1)} ∈ D(K3�K2) is indicated in red . . . . . . . . 91
Figure 4.7 K3�K3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Figure 4.8 P3�P2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

Figure 5.1 Any digitally convex set containing u2 must also contain u1 . . 106
Figure 5.2 A digitally convex set is highlighted in red . . . . . . . . . . . 107
Figure 5.3 Both of the vertices in blocks A and B are contained in other

blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Figure 5.4 Every vertex in blocks A and B is contained in another block 112



ix

Figure 5.5 The block graph G5 of order nine . . . . . . . . . . . . . . . . 113



x

Acknowledgements

First and foremost, I would like to thank my supervisors, Dr. Kieka Mynhardt and
Dr. Ortrud Oellermann, for their advice, guidance and encouragement over the past
two years. I would also like to thank my parents, my brothers, and the rest of my
family for their constant love and support. Last but not least, I would like to thank
Helen, Felicia and Emily for being the most wonderful friends and always lifting me
up. I couldn’t have done this without any of you.



1

Chapter 1

Introduction

Digital convexity was introduced initially as a tool for processing and smoothing dig-

ital images [22]. In a black and white digital image, taking a smallest digitally convex

set of black pixels containing the black pixels in the original image is a method

of smoothing the digital image. Smoothing an image is sometimes required for

processing or storing the image, as a smoothed image often requires less memory

space to store. As an example, Figure 1.1 shows a black and white digital image in

Figure 1.1(a) and its corresponding smoothed image using digital convexity in Fig-

ure 1.1(b). The black pixels in the smoothed image form a smallest digitally convex

set containing all of the black pixels in the original image. Digital convexity has been

extended to graphs as a way of generalizing the digital image structure, which is the

focus of this thesis.

In the following chapters, we examine the generation and enumeration of the

digitally convex sets of a variety of graph classes. Enumerating the digitally convex

sets of a class of graphs corresponds to determining the number of “smoothed images”

that a given graph structure can have. In Chapter 2, we review relevant notation and

background, including the definition of digital convexity, other convexities defined on

graphs and problems that have been explored using these convexities. In Chapter 3,
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(a) A black and white digital image (b) The corresponding smoothed image

Figure 1.1: Smoothing of a black and white digital image using digital convexity

we extend previous results on the enumeration of the digitally convex sets of trees to 2-

trees and to the more general k-trees. In Chapter 4, we show how other mathematical

objects, such as binary strings and arrays, can be used to enumerate the digitally

convex sets of classes of graphs such as cycles and Cartesian products of paths. In

Chapter 5, we show how the digitally convex sets of block graphs can be enumerated

in terms of the number of blocks in the graph and how this gives more information

about the structure of the sets than enumerating them in terms of the order of the

graph. Finally, in Chapter 6, we summarize our results and suggest some directions

for future research.

For all graph theory terms and concepts not defined in this thesis, refer to [1].
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Chapter 2

Notation and Background

First, we note that throughout this thesis, we use A ⊆ B to denote that the set A is

a subset of the set B. We use A $ B to denote that A is a proper subset of B.

Given a finite set V , a collection, C , of subsets of V is called a convexity or

alignment if it contains ∅ and V and is closed under intersections. The elements of

a convexity C are called convex sets and the ordered pair (V,C ) is an aligned space.

For any subset S ⊆ V , the convex hull of S, denoted by CHC (S), is the smallest

convex set that contains S. For any S ⊆ V , if CHC (S) = S, then S is a convex set.

As an example, let V = {1, 2, 3, 4, 5}. The collection C = {∅, {1}, {1, 2}, {1, 3},

{4, 5}, {1, 2, 3, 4, 5}} is a convexity. We have CHC ({4}) = {4, 5} and CHC ({3, 4}) =

V , since {4, 5} is the smallest convex set containing {4} and the only convex set

containing {3, 4} is the entire set V . Since {1} is a convex set, we have CHC ({1}) =

{1}.

Van de Vel provides an in-depth study of abstract convex structures in [26].

2.1 Convexity in graphs

There are many convexities defined on the vertex set of a graph, many of which use

an interval notion, as does the definition of Euclidean convexity. Several of these
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convexities were studied by Farber and Jamison in [12]. A set S ⊆ V (G) is g-convex

if, for every a, b ∈ S, every vertex on some a-b geodesic, or shortest a-b path, belongs

to S. The collection of vertices that are on some a-b geodesic forms the geodesic

interval between a and b. So the definition of a g-convex set can be restated in terms

of geodesic intervals; a set S ⊆ V (G) is g-convex if it contains the geodesic interval

between a and b, for every a, b ∈ S. The collection of all g-convex sets in a graph G

forms the geodesic convexity of G.

Similar to the geodesic convexity of a graph is the monophonic convexity. A set

S ⊆ V (G) is m-convex if it contains every vertex that lies on some induced a-b path,

for every a, b ∈ S. The set of vertices that are on some induced a-b path is called the

monophonic interval between a and b. So the definition of an m-convex set can, as

with the definition of a g-convex set, be stated in terms of intervals. The collection

of all m-convex sets in a graph G forms the monophonic convexity of G.

Several other convexities have been similarly defined using paths between pairs of

vertices, including the simple path convexity [12] and the triangle path convexity [8].

Cáceres and Oellermann [6] introduced a graph convexity that uses Steiner trees

in the graph. For a connected graph G and a set X of at least two vertices of G, a

Steiner tree for X is a connected subgraph of smallest size that contains every vertex

in X. The Steiner interval for X is the set of all vertices that belong to some Steiner

tree for X. Then, for any integer k ≥ 2, a set S ⊆ V (G) is k-Steiner convex, or

gk-convex, if S contains the Steiner interval for every subset of k vertices of S. Note

that when k = 2, the Steiner interval for a pair of vertices a, b ∈ S is equivalent to

the geodesic interval between a and b, because a connected subgraph of smallest size

containing a and b must be a shortest a-b path. Therefore, a set S is g2-convex (or

2-Steiner convex) if and only if it is g-convex.

Other graph convexities defined in terms of intervals have been studied in [7, 10]
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and [19].

A graph convexity that is not defined in terms of intervals is the digital convexity,

introduced by Rosenfeld and Pfaltz in [22]. Rather than using an interval defini-

tion, the digital convexity is instead defined in terms of neighbourhoods. The open

neighbourhood of a vertex v ∈ V (G), denoted by NG(v) or N(v) when the graph G

is obvious, is defined as NG(v) = {x ∈ V (G) | xv ∈ E(G)}. Similarly, the closed

neighbourhood of v, denoted by NG[v] or N [v], is defined as NG[v] = NG(v) ∪ {v}.

For a set S ⊆ V (G), the closed neighbourhood of S, denoted by NG[S] or N [S], is

defined as NG[S] = ⋃
v∈S NG[v].

A set S ⊆ V (G) is digitally convex if NG[v] ⊆ NG[S] implies v ∈ S for every

v ∈ V (G). For a vertex v ∈ V (G) and a set S ⊆ V (G), if NG[v]−NG[S − {v}] 6= ∅,

then we say that v has a private neighbour with respect to S in G. Thus, S is digitally

convex if and only if, for every v 6∈ S, v has a private neighbour with respect to S.

In other words, either v 6∈ N [S] or there is some x ∈ N(v) with x 6∈ N [S]. Note

that private neighbours are not necessarily unique and a vertex v can be a private

neighbour for multiple vertices. For a graph G, the collection of all digitally convex

sets in G is the digital convexity of G, denoted by D(G). The number of digitally

convex sets in G is denoted by nD(G).

As an example of the digital convexity in graphs, consider the complete graph,

Kn. For any n ≥ 1, the only digitally convex sets in this graph are ∅ and V (Kn). As

each vertex is a universal vertex, the closed neighbourhood of any nonempty subset

of V (Kn) is the entire vertex set.

Consider instead the graph G in Figure 2.1. The collection of digitally convex sets

in this graph is D(G) = {∅, {1}, {2}, {3}, {4}, {5}, {6}, {1, 3}, {3, 5}, {2, 6}, {4, 6},

{2, 3, 4}, {1, 5, 6}, {1, 2, 3, 4, 5, 6}}. The set S = {1, 3}, for example, is digitally

convex because the vertex 5 is not in the neighbourhood of S, so it is a private
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5 4

3

21

6

Figure 2.1: A graph G with nD(G) = 14

neighbour for each of the vertices 2, 4, 5 and 6. The set {2, 4} is not digitally convex

in G, because N [3] = {2, 3, 4} ⊆ N [{2, 4}] = {1, 2, 3, 4, 5}. Adding the vertex 3 to

this set gives the convex hull of {2, 4}, i.e. CHD({2, 4}) = {2, 3, 4}.

There are several problems related to graph convexity that have been explored

using the various convexities described above. For example, Pfaltz and Jamison [21]

studied digital convexity in the context of closure systems. Buzatu and Cataran-

ciuc [4] and Gonzáles, Grippo, Safe and Santos [14] examined the problem of covering

graphs with convex sets, using geodesic convexity and monophonic convexity, respec-

tively. Dourado, Gimbel, Kratochvìl, Protti and Szwarcfiter [9] examined the problem

of determining the hull number, or size of a largest proper g-convex subset of V (G),

and characterized the graphs with a given hull number. Brown and Oellermann [2]

studied the graphs with a smallest possible set of g-convex or m-convex sets. The

graphs whose g-convex (m-convex) sets are exactly ∅, all singletons, all edges and

V (G) are g-minimal (resp. m-minimal). Brown and Oellermann characterized these

graphs and examined the properties of g-minimal and m-minimal graphs. More gen-

eral is the problem of enumerating the convex sets of a given graph, or class of graphs.

In the case of geodesic convexity, it can be shown that the number of g-convex sets of

a tree is equal to the number of its subtrees, a problem which is explored in [24, 25]

and [27]. Brown and Oellermann [3] determined that the problem of enumerating
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the g-convex sets of a cograph can be performed in linear time but, for an arbitrary

graph, the problem is #P-complete. Lafrance, Oellermann and Pressey examined the

reconstruction of a tree from its digitally convex sets in [16] and the enumeration of

the digitally convex sets of trees and cographs in [15].

In this thesis, we extend many of the results in [15] and enumerate the digitally

convex sets of several other classes of graphs. In the remainder of this chapter, we

state relevant properties of digitally convex sets, as well as results from [15] that will

be used in later chapters.

2.2 Properties of digitally convex sets

Digital convexity is closely related to domination in a graph. For a vertex v ∈

V (G) and a set S ⊆ V (G), if N [v] ⊆ N [S], then S is said to be a local dominating

set for v. Thus, a digitally convex set contains every vertex for which it is a local

dominating set. Cáceres, Márquez, Morales and Puertas [5] and Oellermann [20]

examine the relationship between digital convexity and other domination parameters.

In particular, in [5], the following result is given.

Theorem 2.1 (Cáceres, Márquez, Morales and Puertas [5]). Let G be a graph, let

δ(G) denote the minimum degree of G and let con(G) denote the cardinality of a

largest proper digitally convex set of V (G). Then

(a) for any v ∈ V (G), the set V (G)−NG[v] is digitally convex in G,

(b) con(G) ≥ n− k − 1 if and only if δ(G) ≤ k, and

(c) con(G) = n− δ(G)− 1.

Note that parts (b) and (c) of Theorem 2.1 follow directly from part (a) and solve

the digital convexity equivalent of the hull number problem explored in [9]. Lafrance,
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Oellermann and Pressey [15] give the following properties that aid in generating the

digitally convex sets of a graph.

Theorem 2.2 (Lafrance, Oellermann and Pressey [15]).

(a) If S is digitally convex in the graph G, the set ϕ(S) = V (G) − N [S] is also

digitally convex in G. Furthermore, ϕ defines a bijection from D(G) to itself.

(b) The graph G has an even number of digitally convex sets.

(c) A vertex v ∈ V (G) appears in at most half of the digitally convex sets of G.

(d) A vertex v ∈ V (G) appears in exactly half of the digitally convex sets of G if

and only if v is a simplicial vertex.

2.3 Digital convexity in trees

Lafrance, Oellermann and Pressey [15] developed an algorithm for generating the

digitally convex sets of a tree. This algorithm follows the construction of the tree,

beginning with a K2, whose digitally convex sets are known to be ∅ and V (K2). At

each step, a leaf is added to the tree and the digitally convex sets of the new tree are

generated using the digitally convex sets of the tree generated in the previous step.

Lafrance, Oellermann and Pressey then prove that, for any tree T , the algorithm

generates the entire collection D(T ) of digitally convex sets. The algorithm is stated

below.

Algorithm 1 (Lafrance, Oellermann and Pressey [15]). Generating the collection ST

of digitally convex sets of a tree T of order n ≥ 2.

1. If n = 2, then ST = {∅, V (T )}.
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2. Suppose n ≥ 3. Then, let v be a leaf of T and let u be its neighbour. Use this

algorithm to find the collection ST−v of all digitally convex sets of the tree T−v.

Then, for each S ∈ ST−v, generate the sets in ST as follows: Let ST = ∅.

(a) If u 6∈ S, add S to ST .

(b) If u 6∈ S and for every a ∈ NT−v[u] − S, we have NT [a] 6⊆ NT [S ∪ {v}],

add S ∪ {v} to ST .

(c) If u ∈ S, add S ∪ {v} to ST .

(d) If u ∈ S and NT−v[u] ⊆ NT−v[S − {u}], add S − {u} to ST .

Theorem 2.3 (Lafrance, Oellermann and Pressey [15]). Let T be a tree of order

n ≥ 2. Then the collection ST generated by Algorithm 1 is D(T ).

It is not obvious from Algorithm 1 how many digitally convex sets are generated

at each step. The number of digitally convex sets constructed from each case depends

mainly on the neighbour, u, of the new leaf being added. There are many choices for

this vertex u, many of which lead to non-isomorphic trees with different numbers of

digitally convex sets. Thus, other methods must be used in enumerating the digitally

convex sets of trees.

(a) nD(T1) = 6 (b) nD(T2) = 8

Figure 2.2: Two non-isomorphic trees of order four with different numbers of digitally
convex sets.

In the case of paths, there is a unique graph for a given order. Lafrance, Oeller-

mann and Pressey show that the number of digitally convex sets of a path can
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be expressed in terms of the Fibonacci numbers. Recall that the Fibonacci se-

quence f1, f2, . . . is defined recursively as follows: f1 = f2 = 1 and, for n ≥ 3,

fn = fn−1 + fn−2.

Proposition 2.4 (Lafrance, Oellermann and Pressey [15]). If Pn is the path of order

n, then nD(Pn) = 2fn.

Since non-isomorphic trees of the same order can have a different number of dig-

itally convex sets, only upper and lower bounds on the number of digitally convex

sets of trees of a given order can be constructed. Lafrance, Oellermann and Pressey

show that these bounds are attained by the stars and the spiderstars, respectively.

The star of order n is the graph K1,n−1. The spiderstar Sn of order n = 2k + 1 is

obtained from the star K1,k by subdividing each edge exactly once, and that of order

n = 2k is obtained by subdividing all but one edge exactly once. The star of order

six and the spiderstars of orders six and seven are shown in Figure 2.3.

(a) K1,5 (b) S6 (c) S7

Figure 2.3: The star of order six and the spiderstars of orders six and seven

Theorem 2.5 (Lafrance, Oellermann and Pressey [15]). Let T be a tree of order n.

Then,
for n even, 2 · 2n

2 − 2

for n odd, 3 · 2n−1
2 − 2

 ≤ nD(T ) ≤ 2n−1.

The lower bound is attained by the spiderstar, Sn, and the upper bound is attained

by the star K1,n−1.
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To prove the upper bound, Lafrance, Oellermann and Pressey showed that the

removal of an edge incident with a leaf does not decrease the number of digitally

convex sets in the graph. Thus, the number of digitally convex sets in a tree of order

n is bounded above by the number of digitally convex sets in the disjoint union of K2

and Kn−2. The proof of the lower bound, however, required the use of the following

lemmas, both proven in [15].

Lemma 2.6. Let T be a tree of order n ≥ 2 and v ∈ V (T ). Let T ′ be the tree

formed by adding two new vertices v1 and v2 to T and edges vv1 and v1v2. Then

nD(T ′) ≥ 2nD(T ) + 2.

Lemma 2.7. Let T be a tree of order n ≥ 4 containing two leaves v1 and v2, both

adjacent to the same vertex, v. Let T1 be the tree formed by deleting the edge vv2 from

T and adding the edge v1v2. Then, nD(T1) ≤ nD(T ).

We state these results on the digitally convex sets of trees here because we show,

in the following chapter, that there are analogous results on the number of digitally

convex sets of 2-trees.
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Chapter 3

Digital Convexity in k-trees

For k ≥ 1, a k-tree is a graph defined as follows: a k+ 1-clique, Kk+1, is a k-tree, and

a k-tree of order n > k+ 1 is constructed by adding a vertex v adjacent to k pairwise

adjacent vertices (i.e. the vertices of a k-clique) in a k-tree of order n− 1. Note that

the 1-trees are exactly the trees. Figure 3.1 shows a 3-tree of order eight.

Figure 3.1: A 3-tree of order eight

In this chapter, we extend the results of Lafrance, Oellermann and Pressey [15]

from trees to k-trees, generalizing both their algorithm for generating the digitally

convex sets of a tree, and the upper bound that they gave for the number of digitally

convex sets of a tree. We conjecture a lower bound on the number of digitally convex

sets of a 2-tree and give a class of 2-trees that achieve the bound, later conjecturing

a generalization to k-trees. Finally, we examine the digitally convex sets of a specific

subclass of 2-trees, the simple clique 2-trees. The upper bound on the number of

digitally convex sets of a 2-tree is no longer sharp when restricted to simple clique
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2-trees, so we establish a sharp upper bound for the number of digitally convex sets

of a simple clique 2-tree. In addition, we prove that the conjectured lower bound on

the number of digitally convex sets of a 2-tree holds for 2-paths, a subclass of simple

clique 2-trees.

3.1 Generating and enumerating digitally convex

sets in 2-trees

In Section 2.3, we stated the algorithm developed by Lafrance, Oellermann and

Pressey [15] to generate the digitally convex sets of a tree. This algorithm follows the

construction of a tree, and the digitally convex sets generated at each step depend

on the support vertex of the new leaf that is added at each step. In the construction

of a 2-tree, we add a new vertex v adjacent to two adjacent vertices u and w. So

in generating the digitally convex sets of a 2-tree, the digitally convex sets that are

constructed at each step will depend on both u and w.

Algorithm 2. Generating the collection SG of digitally convex sets of a 2-tree G of

order n ≥ 3.

1. If n = 3, then SG = {∅, V (G)}.

2. Suppose n > 3 and let v be a vertex of degree 2, with neighbours u and w. Use

the algorithm to generate SG−v. Obtain SG from SG−v as follows: Let SG = ∅.

For each S ∈ SG−v, proceed as follows.

(a) If u,w 6∈ S, then add S to SG.

(b) If u,w 6∈ S and for every a ∈ (NG−v[u] ∪NG−v[w])− S, we have NG[a] 6⊆

NG[S ∪ {v}], then add S ∪ {v} to SG.
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(c) If u ∈ S or w ∈ S, then add S ∪ {v} to SG.

(d) If u ∈ S, w 6∈ S and NG−v[u] ⊆ NG−v[S − {u}], then add S − {u} to SG.

(e) If u 6∈ S, w ∈ S and NG−v[w] ⊆ NG−v[S−{w}], then add S−{w} to SG.

(f) If u,w ∈ S and NG−v[{u,w}] ⊆ NG−v[S − {u,w}], then add S − {u,w} to

SG.

1

2 3

4
5

6

(a) G− v

1

2 3

4
5

6

v

(b) G

Figure 3.2: Algorithm 2 generates the digitally convex sets of G using those of G− v.

As an example of step 2 in Algorithm 2, refer to the 2-tree in Figure 3.2(a),

to which we add the vertex v to obtain the 2-tree in Figure 3.2(b). The digitally

convex sets of G − v are D(G − v) = {∅, {1}, {4}, {6}, {1, 2, 4}, {1, 3, 6}, {4, 5, 6},

{1, 2, 3, 4, 5, 6}}. In this case, the vertices u and w in the algorithm are the vertices

4 and 5, respectively.

The sets ∅, {1}, {6} and {1, 3, 6} all satisfy case 2(a) of Algorithm 2, so each of

these sets is added to SG.

The sets ∅ and {6} both satisfy case 2(b) of Algorithm 2, so {v} and {6, v} are

added to SG. Neither {1} nor {1, 3, 6} satisfies case 2(b) because 2 ∈ (NG−v[4] ∪

NG−v[5])− S and NG[2] ⊆ NG[S ∪ {v}] for both S = {1} and S = {1, 3, 6}.

The sets {4}, {1, 2, 4}, {4, 5, 6} and {1, 2, 3, 4, 5, 6} satisfy case 2(c) of Algorithm 2,

so {4, v}, {1, 2, 4, v}, {4, 5, 6, v} and {1, 2, 3, 4, 5, 6, v} are all added to SG.
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The set {1, 2, 4} satisfies case 2(d) of Algorithm 2, as NG−v[4] = {2, 4, 5} ⊆

NG−v[{1, 2}] = {1, 2, 3, 4, 5}. So {1, 2} is added to SG. The set {4} does not satisfy

case 2(d), as NG−v[4] 6⊆ ∅. There are no sets satisfying case 2(e).

Finally, {1, 2, 3, 4, 5, 6} satisfies case 2(f) of Algorithm 2, asNG−v[{4, 5}] = {2, 3, 4, 5, 6}

⊆ NG−v[{1, 2, 3, 6}] = V (G− v). So {1, 2, 3, 6} is added to SG. The set {4, 5, 6} does

not satisfy case 2(f) because {2, 3, 4, 5, 6} 6⊆ NG−v[{6}] = {3, 5, 6}.

Now we have SG = {∅, {1}, {6}, {v}, {1, 2}, {6, v}, {4, v}, {1, 3, 6}, {1, 2, 3, 6},

{1, 2, 4, v}, {4, 5, 6, v}, {1, 2, 3, 4, 5, 6, v}}. The following result proves that this col-

lection of digitally convex sets is exactly D(G).

Theorem 3.1. Let G be a 2-tree of order n ≥ 3. Then the collection SG generated

by Algorithm 2 is D(G).

Proof. We use induction on n. First, let n = 3. Then G ∼= K3 and it is known that

D(K3) = {∅, V (K3)}. So the algorithm correctly generates the collection of digitally

convex sets for n = 3.

Now suppose n > 3. First, we show that, for each set S ∈ SG−v, the sets added

to SG by Algorithm 2 are digitally convex in G.

(a) Suppose u,w 6∈ S. Then, v 6∈ NG[S], so v is its own private neighbour with

respect to S in G. Thus, S is digitally convex in G.

(b) Suppose u,w 6∈ S and for every a ∈ (NG−v[u]∪NG−v[w])−S, we have NG[a] 6⊆

NG[S ∪ {v}]. Then, each such vertex a has a private neighbour with respect to

S ∪ {v}. So S ∪ {v} is digitally convex in G.

(c) Suppose u ∈ S. Then, because NG[v] ⊆ NG[u], each vertex x ∈ V (G)−(S∪{v})

has the same private neighbour with respect to S ∪ {v} in G as with respect to

S in G − v. Thus, S ∪ {v} is digitally convex in G. Similarly, if w ∈ S, then

S ∪ {v} is digitally convex in G.
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(d) Suppose u ∈ S, w 6∈ S and NG−v[u] ⊆ NG−v[S − {u}]. Then, v 6∈ NG[S − {u}]

so v is a private neighbour for itself and for u with respect to S − {u} in G.

Thus, S − {u} is digitally convex in G.

(e) Suppose u 6∈ S, w ∈ S and NG−v[w] ⊆ NG−v[S − {w}]. Then, using the same

argument as in case (d), S − {w} is digitally convex in G.

(f) Suppose u,w ∈ S and NG−v[{u,w}] ⊆ NG−v[S−{u,w}]. Then, using the same

argument as in case (d), S − {u,w} is digitally convex in G.

Thus, SG ⊆ D(G).

Now we show that each digitally convex set S ∈ D(G) is in SG. In other words,

each digitally convex set in G is generated by Algorithm 2. Let S ∈ D(G).

If v ∈ S, then S satisfies one of the following two cases.

• If at least one of u or w is in S, then S−{v} is digitally convex in G− v. Each

vertex x ∈ V (G) − S has the same private neighbour with respect to S − {v}

in G − v as with respect to S in G. Thus, the set S − {v} satisfies case 2(c),

and S is added to SG by Algorithm 2.

• If u,w 6∈ S then, by definition of a digitally convex set, each vertex a ∈ (NG[u]∪

NG[w])− S has a private neighbour with respect to S. Since v ∈ S, the set of

vertices (NG[u] ∪NG[w])− S is equal to (NG−v[u] ∪NG−v[w])− (S − {v}) and

each of these vertices must have a private neighbour with respect to S − {v}

in G − v. Thus, the set S − {v} satisfies case 2(b), and S is added to SG by

Algorithm 2.

If v 6∈ S, then it must be the case that u,w 6∈ S because both u and w dominate

N [v] in G. The set S satisfies one of the following cases.
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• If v is the only private neighbour of both u and w with respect to S in G, then

NG−v[{u,w}] ⊆ NG−v[S]. This means that the set S∪{u,w} is digitally convex

in G− v. It satisfies case 2(f), and S is added to SG by Algorithm 2.

• Similarly, if v is the only private neighbour of u with respect to S, but not of

w, then the set S ∪ {u} is digitally convex in G− v. It satisfies case 2(d), and

S is added to SG by Algorithm 2.

• The same argument shows that if v is the only private neighbour of w with

respect to S, but not of u, then S ∪ {w} satisfies case 2(e). So S is added to

SG by Algorithm 2.

• Finally, if both u and w have a private neighbour with respect to S that is not

the vertex v, then they have this same private neighbour with respect to S in

G − v. Thus, S is digitally convex in G − v and satisfies case 2(a). So S is

added to SG by Algorithm 2.

Therefore SG = D(G).

As was the case with Algorithm 1, it is not clear from Algorithm 2 how many

digitally convex sets are generated for a given 2-tree. Thus, there is no closed formula

for the number of digitally convex sets of a 2-tree of a given order. We show, however,

that for a particular subclass, there is a nice recurrence.

Definition 3.2 (Bondy and Murty [1]). Given a graph G = (V,E) and a positive

integer d, the dth power of G is the graph Gd = (V,E ′), such that two vertices are

adjacent if and only if they are distance at most d apart in the graph G.

The following result describes how to enumerate the digitally convex sets in the

square of a path, P 2
n . We denote the vertices of this graph by v1, v2, . . . , vn, with
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vivi+1 ∈ E(P 2
n) and vjvj+2 ∈ E(P 2

n), for i = 1, 2, . . . , n − 1 and j = 1, 2, . . . , n − 2.

Figure 3.3 shows the graph P 2
n with n = 4, 5 and 6. Note that P 2

m is an induced

subgraph of P 2
n for any m ≤ n. Markenzon, Justel and Paciornik [17] showed that

these graphs are 2-trees and, in general, that the kth power of a path P k
n is a k-tree.

v3 v4

v1 v2

(a) n = 4

v5

v4v3

v2v1

(b) n = 5

v5 v6

v3 v4

v1 v2

(c) n = 6

Figure 3.3: The square of a path, P 2
n

Theorem 3.3. Let P 2
n be the square of the path of order n. Then nD(P 2

3 ) = 2,

nD(P 2
4 ) = 4, nD(P 2

5 ) = 6 and, for n ≥ 6, nD(P 2
n) = nD(P 2

n−1) + nD(P 2
n−3).

Proof. First, we prove the initial conditions. For n = 3, P 2
3
∼= K3 so D(P 2

3 ) = {∅,

V (P 2
3 )}. For n = 4, D(P 2

4 ) = {∅, {v1}, {v4}, V (P 2
4 )}. For n = 5, D(P 2

5 ) = {∅, {v1},

{v5}, {v1, v2}, {v4, v5}, V (P 2
5 )}. Thus, nD(P 2

3 ) = 2, nD(P 2
4 ) = 4, and nD(P 2

5 ) = 6.

Now suppose n ≥ 6. We begin by showing that nD(P 2
n) ≥ nD(P 2

n−1) + nD(P 2
n−3).

Let S ∈ D(P 2
n−1). If vn−1 ∈ S, then NP 2

n
[vn] ⊆ NP 2

n
[S]. So S∪{vn} is digitally convex

in P 2
n .

If vn−1 6∈ S and vn−3 6∈ NP 2
n−1

[S], then vn−3 6∈ NP 2
n
[S ∪ {vn}]. Then vn−3 is a

private neighbour for itself, as well as for vn−2 and vn−1 with respect to S ∪ {vn} in

P 2
n . Thus, S ∪ {vn} is digitally convex in P 2

n .

If vn−1 6∈ S and vn−3 ∈ NP 2
n−1

[S], then it must be the case that vn−3, vn−2 6∈ S

because both vertices dominate N [vn−1] in P 2
n−1. Thus, in P 2

n , the vertex vn is its

own private neighbour with respect to S, so S is digitally convex in P 2
n .
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Now, let S ∈ D(P 2
n−3). In P 2

n , the vertex vn is a private neighbour for itself, as

well as for vn−1 and vn−2 with respect to S. Thus, S is digitally convex in P 2
n . Note

that this case gives different digitally convex sets than the previous case. In P 2
n−1, if

vn−4 ∈ S or vn−5 ∈ S and vn−1, vn−2, vn−3 6∈ S, then vn−3 ∈ NP 2
n−1

[S] − S with the

vertex vn−1 as a private neighbour. These are the digitally convex sets counted in the

previous case. However, it is impossible to have a digitally convex set S in P 2
n−3 with

vn−3 ∈ NP 2
n−3

[S] − S, because N [vn−3] is dominated by both neighbours of vn−3. So

the sets counted in the previous case are not counted again here.

Each set of D(P 2
n−1)∪D(P 2

n−3) is associated in a one-to-one manner with a set in

D(P 2
n). So nD(P 2

n) ≥ nD(P 2
n−1) + nD(P 2

n−3). Now, we show the reverse inequality.

Let S ∈ D(P 2
n). If vn ∈ S, then each vertex vi ∈ V (P 2

n)−S has a private neighbour

with respect to S that is in V (P 2
n−1). Thus, S − {vn} is digitally convex in P 2

n−1.

If vn 6∈ S and vn−3 ∈ NP 2
n
[S]−S, then it must be the case that vn−3, vn−2, vn−1 6∈ S,

as the vertices vn−1 and vn−2 both dominate N [vn] in P 2
n . Thus, vn−1 6∈ NP 2

n
[S] and

is a private neighbour with respect to S in P 2
n−1 for all of the vertices in its closed

neighbourhood. So S is digitally convex in P 2
n−1.

If vn 6∈ S and vn−3 6∈ NP 2
n
[S]−S, then each vertex vi ∈ V (P 2

n)−(S∪{vn−2, vn−1, vn})

has a private neighbour with respect to S that is in P 2
n−3. The vertices vn−1 and vn−2

each dominate N [vn] in P 2
n , so they are not in S. Thus, S is also digitally convex in

P 2
n−3.

Since each set in D(P 2
n) has a corresponding set in either D(P 2

n−1) or D(P 2
n−3),

we have nD(P 2
n) = nD(P 2

n−1) + nD(P 2
n−3).

The proof of Theorem 3.3 also describes a method for generating the digitally

convex sets of P 2
n from those of P 2

n−1 and P 2
n−3, or vice versa. Here, we give an

algorithm for generating the digitally convex sets of P 2
n , which follows the proof
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above.

Algorithm 3. Generating the collection D(P 2
n) of all digitally convex sets of the

square of the path of order n ≥ 3.

1. If n = 3, then D(P 2
n) = {∅, V (P 2

n)}.

2. If n = 4, then D(P 2
n) = {∅, {v1}, {v4}, V (P 2

n)}.

3. If n = 5, then D(P 2
n) = {∅, {v1}, {v5}, {v1, v2}, {v4, v5}, V (P 2

n)}.

4. Suppose n > 5. Use the algorithm to generate D(P 2
n−3) and D(P 2

n−1). Obtain

D(P 2
n) as follows: Set Sn = ∅.

(a) For each S ∈ D(P 2
n−1)

(i) if vn−1 ∈ S, then add S ∪ {vn} to Sn.

(ii) if vn−1 6∈ S and vn−3 6∈ NP 2
n−1

[S], then add S ∪ {vn} to Sn.

(iii) if vn−1 6∈ S and vn−3 ∈ NP 2
n−1

[S], then add S to Sn.

(b) For each S ∈ D(P 2
n−3), add S to Sn.

(c) Then, D(P 2
n) = Sn.

v7

v6

v5

v4

v3

v2

v1

Figure 3.4: P 2
7

As an example of step 4 in Algorithm 3, consider P 2
7 , shown in Figure 3.4. To

generate D(P 2
7 ), we require the digitally convex sets of P 2

4 and P 2
6 .

D(P 2
4 ) = {∅, {v1}, {v4}, {v1, v2, v3, v4}}
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D(P 2
6 ) = {∅, {v1}, {v1, v2}, {v1, v2, v3}, {v6}, {v5, v6}, {v4, v5, v6}, {v1, v2, v3, v4, v5, v6}}

The digitally convex sets in P 2
6 that satisfy case 4(a)(i) are {v6}, {v5, v6}, {v4, v5, v6}

and {v1, v2, v3, v4, v5, v6}. Thus, Algorithm 3 generates, relative to these sets, the

digitally convex sets {v6, v7}, {v5, v6, v7}, {v4, v5, v6, v7}, and {v1, v2, v3, v4, v5, v6, v7}

for P 2
7 .

The digitally convex sets in P 2
6 that satisfy case 4(a)(ii) are ∅ and {v1}. Thus,

Algorithm 3 generates, relative to these sets, the digitally convex sets {v7} and {v1, v7}

for P 2
7 .

Finally, the digitally convex sets in P 2
6 that satisfy 4(a)(iii) and those of P 2

4 that

satisfy 4(b) of the algorithm give rise to the digitally convex sets {v1, v2}, {v1, v2, v3},

∅, {v1}, {v4} and {v1, v2, v3, v4} for P 2
7 .

This gives D(P 2
7 ) = {∅, {v1}, {v1, v2}, {v1, v2, v3}, {v1, v2, v3, v4}, {v7}, {v6, v7},

{v5, v6, v7}, {v4, v5, v6, v7}, {v1, v7}, {v4}, {v1, v2, v3, v4, v5, v6, v7}}.

3.1.1 Upper Bound

As with trees, it is not the case that all 2-trees of order n have the same number of

digitally convex sets. For example, the 2-tree in Figure 3.5 has ten digitally convex

sets, while P 2
6 has only eight digitally convex sets. This difference means we cannot

construct a formula for the number of digitally convex sets in a 2-tree of order n, but

we can construct upper and lower bounds on the number of digitally convex sets.

1

2
3

4

5
6

Figure 3.5: D(G) = {∅, {1}, {1, 2}, {1, 2, 3}, {3}, {5}, {4, 5}, {3, 4, 5}, {1, 5}, V (G)}
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Theorem 3.4. Let G be a 2-tree of order n. Then nD(G) ≤ 2n−2.

Proof. Let v be a vertex of degree 2 in G, with neighbours u and w. Let uv = e1 and

vw = e2, as shown in Figure 3.6.

Claim: nD(G) ≤ nD(G− {e1, e2}).

v

u w

e1 e2

(a)

v

u w

e1 e2

(b)

Figure 3.6: Remove edges e1 and e2 incident with v

We show that there is an injection from D(G) to D(G−{e1, e2}). Let S ∈ D(G).

If v ∈ S, then each vertex x ∈ V (G)− S has a private neighbour with respect to

S in G− {e1, e2}. So S is digitally convex in G− {e1, e2}.

If v 6∈ S, then u,w 6∈ S because each of these vertices dominates NG[v]. If

(NG[u] ∪ NG[w]) − {v} ⊆ NG[S], then u,w ∈ NG[S] − S and v is the only private

neighbour of u and of w with respect to S. Then the set S∪{u,w} is digitally convex in

G−{e1, e2}. Similarly, if NG[u]−{v} ⊆ NG[S] and NG[w]−{v} 6⊆ NG[S], then S∪{u}

is digitally convex in G−{e1, e2}. If NG[w]−{v} ⊆ NG[S] and NG[u]−{v} 6⊆ NG[S],

then S ∪ {w} is digitally convex in G − {e1, e2}. If both u and w have a private

neighbour in V (G)−{v} with respect to S, then S is digitally convex in G−{e1, e2}.

This completes the proof of the claim.

Thus, nD(G) ≤ nD(G − {e1, e2}). Repeat this process, removing the edges inci-

dent with a vertex of degree 2, until the remaining graph has n− 2 components: K3

and n − 3 isolated vertices. Each component has two digitally convex sets, as each

component is a clique. Overall, this gives 2n−2 digitally convex sets. Applying the
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above inequality each time a pair of edges is removed, we get nD(G) ≤ 2n−2.

In Theorem 2.5, Lafrance, Oellermann and Pressey [15] showed that nD(T ) ≤

2n−1 for a tree T of order n, a bound that is very similar to the bound for 2-trees

in Theorem 3.4. The subclass of 2-trees that attain the upper bound also have a

structure that is very similar to that of the stars, K1,n−1.

Proposition 3.5. The upper bound given in Theorem 3.4 is attained by the graph

K2 +Kn−2.

Proof. Let x, y be the vertices of the K2 and let v1, v2, . . . , vn−2 be the remaining

vertices. See Figure 3.7 for an example with n = 7. Let S $ {v1, v2, . . . , vn−2}.

x y

v1 v2 v3

v4 v5

Figure 3.7: The graph K2 +K5

Claim: S is digitally convex in K2 + Kn−2. There is some vi 6∈ S and since vivj 6∈

E(K2 +Kn−2) for i 6= j, we have vi 6∈ N [S]. This vertex vi is a private neighbour for

itself, as well as for both x and y with respect to S. Thus, S is a digitally convex set.

There are 2n−2 − 1 such sets S. Since both x and y are universal vertices, the

only digitally convex set containing either of these vertices is the set V (K2 +Kn−2).

Similarly, {v1, v2, . . . , vn−2} forms a dominating set inK2+Kn−2. So the only digitally

convex set containing all of these vertices is the entire vertex set. In total, this gives

2n−2 digitally convex sets in K2 +Kn−2.
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3.1.2 Lower Bound

In this section, we conjecture a lower bound on the number of digitally convex sets in

2-trees that is very similar to the lower bound on the number of digitally convex sets

in trees, stated in Theorem 2.5. We then describe a method of proving this conjecture

by dividing all possible 2-trees into several cases and, for each of these cases, showing

a relationship between the number of digitally convex sets in a 2-tree of order n and

the number in a 2-tree of order n − 3. Several of these relationships are stated as

lemmas, with the proofs of these lemmas given at the end of this section. However,

the relationship for three of these cases remain conjectures. Proving these remaining

cases would complete the proof of the lower bound on the number of digitally convex

sets in a 2-tree.

Recall that a spiderstar of order n = 2k+ 1 is obtained from the star K1,k by sub-

dividing each edge exactly once, and the spiderstar of order n = 2k is obtained from

K1,k by subdividing all but one edge exactly once. Before stating the main conjecture

in this section, we define a subclass of 2-trees that is similar to the spiderstars, the

2-spiderstars, S2,n. The 2-spiderstar of order n is constructed in the following way:

1. begin with a K2 with vertices x, y.

2. for i = 1, 2, . . . , bn−2
3 c, add vertices wi, ui, vi and edges xwi, ywi, xui, wiui, wivi, uivi.

3. if (n− 2) ≡ 0 (mod 3), then let k = dn−2
3 e.

4. if (n − 2) ≡ 1 (mod 3), then add a vertex vk (where k = dn−2
3 e) and edges

xvk, yvk.

5. if (n − 2) ≡ 2 (mod 3), then add vertices uk, vk (where k = dn−2
3 e) and edges

xuk, yuk, xvk, ukvk.

Figure 3.8 shows the 2-spiderstars of orders 6, 7 and 8.
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x y

v1

u1 w1

vk

(a) n ≡ 0 (mod 3)

x y

v1

u1 w1

ukvk

(b) n ≡ 1 (mod 3)

x y

v1

u1 w1

wkuk

vk

(c) n ≡ 2 (mod 3)

Figure 3.8: Construction of the 2-spiderstars, with k = dn−2
3 e and differences depend-

ing on n indicated by red edges

Conjecture 3.6. Let G be a 2-tree of order n ≥ 3. Then

nD(G) ≥


3 · 2n

3 − 4, if n ≡ 0 (mod 3)

4 · 2n−1
3 − 4, if n ≡ 1 (mod 3)

5 · 2n−2
3 − 4, if n ≡ 2 (mod 3)

Moreover, this bound is attained by the 2-spiderstars.

We now show how this conjecture might be proven by induction on n, by using

Lemmas 3.7 - 3.11, Lemma 3.15 and Conjectures 3.12 - 3.14. These lemmas and con-

jectures divide the class of 2-trees into nine subclasses. We later show, in Lemma 3.16,

that the union of these subclasses gives the full class of 2-trees. If n = 3, then G ∼= K3,

so nD(G) = 2 = 3 ·2 3
3 −4. If n = 4, then G must be the 2-tree shown in Figure 3.9(a).

So nD(G) = 4 = 4 ·2 3
3 −4. If n = 5, then G must be either the 2-tree in Figure 3.9(b)

or in Figure 3.9(c), which have six and eight digitally convex sets, respectively. So

nD(G) ≥ 6 = 5 · 2 3
3 − 4.

Now, suppose that there exists some k ≥ 6 such that the result holds for 2-trees

of order n, where 3 ≤ n < k. Let G be a 2-tree of order k. We now make use of the

following lemmas to apply the induction hypothesis to a 2-tree of order k − 3. The
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(a) n = 4 (b) n = 5 (c) n = 5

Figure 3.9: All 2-trees of order 4 and 5

proofs of these lemmas are given at the end of this section.

Lemma 3.7. Let G be a 2-tree of order at least 3 and let xy ∈ E(G). Construct the

2-tree G1 by adding the vertices v1, v2, v3 and edges xv1, yv1, xv2, v1v2, v1v3, v2v3

to G (see Figure 3.10). Then nD(G1) ≥ 2nD(G) + 4.

x

y

v1

v2

v3

Figure 3.10: Vertices v1, v2, v3 and the red edges are added to G to form G1

Lemma 3.8. Let G be a 2-tree of order at least 3 and let xy ∈ E(G). Construct the

2-tree G2 by adding the vertices v1, v2, v3 and edges v1x, v1y, v1v2, v2x, v2v3, v3x to

G (see Figure 3.11). Then nD(G2) ≥ 2nD(G) + 4.

Lemma 3.9. Let G be a 2-tree of order at least 3 and let xy ∈ E(G). Construct the

2-tree G3 by adding the vertices v1, v2, v3 and edges v1x, v1y, v1v2, v1v3, v2x, v3y to

G (see Figure 3.12). Then nD(G3) ≥ 2nD(G) + 4.
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x

y

v1

v2

v3

Figure 3.11: Vertices v1, v2, v3 and the red edges are added to G to form G2

x

y

v1

v2

v3

Figure 3.12: Vertices v1, v2, v3 and the red edges are added to G to form G3

Lemma 3.10. Let G be a 2-tree of order at least 3 and let xy ∈ E(G). Construct

the 2-tree G4 by adding the vertices v1, v2, v3 and edges v1x, v1y, v2x, v2y, v2v3, v3x

to G (see Figure 3.13). Then nD(G4) ≥ 2nD(G) + 4.

Lemma 3.11. Let G be a 2-tree of order at least 4, with x a vertex of degree 2 or 3 in

G. In the first case, let NG(x) = {y, z} and, in the second case, let NG(x) = {w, y, z}

with yz 6∈ E(G). Construct the 2-tree G5 by adding the vertices v1, v2, v3 and edges

v1v2, v1x, v2x, v2y, v3x, v3z to G (see Figure 3.14). Then nD(G5) ≥ 2nD(G) + 4.

Suppose G can be constructed from a 2-tree of order k − 3 by the addition of

vertices v1, v2, and v3 using the process described in one of Lemma 3.7 - Lemma 3.11.

Let G1 be the collection of 2-trees that can be constructed from a 2-tree of order k−3
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x

y

v2

v3

v1

Figure 3.13: Vertices v1, v2, v3 and the red edges are added to G to form G4

x

y z

v1

v2 v3

(a) dG(x) = 2

x

y zw

v1

v2 v3

(b) dG(x) = 3

Figure 3.14: Vertices v1, v2, v3 and the red edges are added to G to form G5

using the process in Lemma 3.7, let G2 be the collection of 2-trees constructed using

the process in Lemma 3.8, and so on. Then G5 is the collection of 2-trees constructed

using the process in Lemma 3.11.

Then, by the lemmas stated above, we have 2nD(G − {v1, v2, v3}) + 4 ≤ nD(G).

By the induction hypothesis, we have

nD(G) ≥ 2nD(G− {v1, v2, v3}) + 4 ≥


2(3 · 2n

3−1 − 4) + 4, if n ≡ 0 (mod 3)

2(4 · 2n−1
3 −1 − 4) + 4, if n ≡ 1 (mod 3)

2(5 · 2n−2
3 −1 − 4) + 4, if n ≡ 2 (mod 3)
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=


3 · 2n

3 − 4, if n ≡ 0 (mod 3)

4 · 2n−1
3 − 4, if n ≡ 1 (mod 3)

5 · 2n−2
3 − 4, if n ≡ 2 (mod 3)

as desired.

We now state three conjectures that, if true, would allow for the completion of

the proof of Conjecture 3.6.

Conjecture 3.12. Let G be a 2-tree of order at least 4, with x a vertex of degree 2

or 3 in G. In the first case, let NG(x) = {y, z} and, in the second case, let NG(x) =

{w, y, z} with yz 6∈ E(G). Construct the 2-tree G6 by adding the vertices v1, v2, v3

and edges v1v2, v1y, v2x, v2y, v3x, v3z to G (see Figure 3.15). Then, nD(G6) ≥

2nD(G) + 4.

x

y zv1

v2 v3

(a) dG(x) = 2

x

y zw

v1

v2 v3

(b) dG(x) = 3

Figure 3.15: Vertices v1, v2, v3 and the red edges are added to G to form G6

Conjecture 3.13. Let G be a 2-tree of order at least 5, with w a vertex of degree 2,

adjacent to a vertex x of degree at least 3 and a vertex z. Let y be another neighbour

of x.

Construct the 2-tree G7 by adding the vertices v1, v2, v3 and edges v1v2, v1y, v2y,

v2x, v3z, v3w to G (see Figure 3.16(a)).

Similarly, construct the 2-tree G′7 by adding the vertices v′1, v′2, v′3 and edges v′1v′2,

v′1x, v′2x, v′2y, v′3w, v′3z to G (see Figure 3.16(b)).
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Construct the 2-tree G′′7 by adding the vertices v′′1 , v′′2 , v′′3 and edges v′′1v′′2 , v′′1x, v′′2x,

v′′2y, v′′3x, v′′3w to G (see Figure 3.16(c)).

Then nD(G7), nD(G′7), nD(G′′7) ≥ 2nD(G) + 4.

x

y zv1

v2 w

v3

(a) G7

x

y z

v′1

v′2 w

v′3

(b) G′7

x

y z

v′′1

v′′2 w

v′′3

(c) G′′7

Figure 3.16: Vertices v1, v2, v3 and the red edges are added to G to form G7, G′7 and
G′′7

Conjecture 3.14. Let G be a 2-tree of order at least 5, with x a vertex of degree at

least 3. Let w, y and z be neighbours of x.

Construct G8 by adding the vertices v1, v2, v3 and edges v1x, v1y, v2x, v2z, v3x,

v3w to G (see Figure 3.17(a)). Then nD(G8) ≥ 2nD(G) + 4.

Construct G′8 by adding the vertices v′1, v′2, v′2 and u and edges ux, uy, v′1u, v′1y, v′2x,

v′2z, v′3x, v′3z to G (see Figure 3.17(b)). Then, nD(G′8) ≥ 2nD(G′8−{v′1, v′2, v′3}) + 4.

x

y z

v1 v2

w v3

(a) G8

x

y zv′1

u v′2

w v′3

(b) G′8

Figure 3.17: The vertices incident with the red edges are added to form G8 and G′8.
The vertex u and blue edges are added to form G′8 − {v′1, v′2, v′3}
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Now, suppose G can be constructed from a 2-tree of order k − 3 by the addition

of vertices v1, v2, and v3 using the process described in one of Conjecture 3.12 - Con-

jecture 3.14. As above, we let G6 be the collection of 2-trees that can be constructed

from a 2-tree of order k − 3 using the process described in Conjecture 3.12, G7 the

collection of 2-trees constructed using one of the processes in Conjecture 3.13, and G8

the collection of 2-trees constructed using one of the processes in Conjecture 3.14.

Then, provided each of the conjectures above holds, we have 2nD(G−{v1, v2, v3})+

4 ≤ nD(G). As above, by the induction hypothesis, we have

nD(G) ≥ 2nD(G− {v1, v2, v3}) + 4 ≥


2(3 · 2n

3−1 − 4) + 4, if n ≡ 0 (mod 3)

2(4 · 2n−1
3 −1 − 4) + 4, if n ≡ 1 (mod 3)

2(5 · 2n−2
3 −1 − 4) + 4, if n ≡ 2 (mod 3)

=


3 · 2n

3 − 4, if n ≡ 0 (mod 3)

4 · 2n−1
3 − 4, if n ≡ 1 (mod 3)

5 · 2n−2
3 − 4, if n ≡ 2 (mod 3)

as desired.

Finally, suppose G has two vertices a and b, both of degree 2, with the same open

neighbourhoods in G. Let G9 be the collection of 2-trees satisfying these conditions.

Then, we can construct another 2-tree of order k with the same vertex set and at

most nD(G) digitally convex sets using the process described in the following lemma.

Lemma 3.15. Let G be a 2-tree of order n ≥ 4, containing two vertices v1 and v2 of

degree 2, both adjacent to vertices x and y. Construct the 2-tree G∗ by removing the

edge yv1 from G and adding the edge v1v2 (see Figure 3.18). Then, nD(G∗) ≤ nD(G).

Once we apply the process in Lemma 3.15 to get the 2-tree G∗, either G∗ 6∈ G9

or G∗ ∈ G9 and Lemma 3.15 can be applied again until this is no longer the case.
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x

y

v1

v2

(a) G

x

y

v1

v2

(b) G∗

Figure 3.18: The edges removed from G and added to form G∗ are highlighted in red

Now, we show that if G∗ 6∈ G9, then it must be the case that G∗ ∈ Gi for 1 ≤ i ≤ 8.

Moreover, we show that any 2-tree of order k must be in one of the collections Gi

with i = 1, 2, . . . , 9.

Lemma 3.16. Let G be a 2-tree of order n ≥ 6. Then G ∈ Gi for some i = 1, 2, . . . , 9.

Proof. We prove this result by induction on n. First, suppose n = 6. Figure 3.19

shows all five non-isomorphic 2-trees of order 6. The edges highlighted in red in

Figure 3.19(a)-(e) show that G1 ∈ G1, G2 ∈ G2, G3 ∈ G3, G4 ∈ G4 and G∗ ∈ G9.

Therefore, the result holds for n = 6.

(a) G1 (b) G2 (c) G3 (d) G4 (e) G∗

Figure 3.19: All non-isomorphic 2-trees of order 6

Now suppose that there exists an ` ≥ 7 such that the statement holds for all

2-trees of order 6 ≤ n < `. Consider a 2-tree G of order `, with v a vertex of degree 2

in G. It is clear from the construction of a 2-tree that such a vertex v exists. By the
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induction hypothesis, the 2-tree G−v is in one of the collections Gi for i = 1, 2, . . . , 9.

We now consider each of these cases separately and show that any possible addition

of v to form the 2-tree G also results in a 2-tree that is in one of the collections Gi,

1 ≤ i ≤ 9.

Suppose G− v ∈ G1. Let the vertices v1, v2, v3, x, y be as in Figure 3.10. Now, we

examine each possible neighbourhood of v in G. If NG(v) = {v1, v2}, then G ∈ G9,

as both v and v3 have degree 2 and have the same open neighbourhood in G. If

NG(v) = {v2, v3}, then G ∈ G1. If NG(v) = {v1, v3}, then G ∈ G2. If NG(v) = {v2, x},

then G ∈ G3. If NG(v) = {v1, x}, then G ∈ G4. If NG(v) = {v1, y}, then G ∈ G5. For

any other neighbourhood of v, G ∈ G1, as the vertices v1, v2, v3 have the same degree

as in G− v.

Now, suppose G−v ∈ G2. Let the vertices v1, v2, v3, x, y be as in Figure 3.11. Now,

we examine each possible neighbourhood of v in G. If NG(v) = {v2, x}, then G ∈ G9,

as the vertices v and v3 are both of degree 2 and have the same open neighbourhood

in G. If NG(v) = {v3, v2}, then G ∈ G1. If NG(v) = {v3, x}, then G ∈ G2. If

NG(v) = {v2, v1}, then G ∈ G3. If NG(v) = {v1, x}, then G ∈ G4. If NG(v) = {v1, y},

then G ∈ G6. For any other neighbourhood of v, G ∈ G2, as the vertices v1, v2, v3 each

have the same degree as in G− v.

Now, suppose G−v ∈ G3. Let the vertices v1, v2, v3, x, y be as in Figure 3.12. Now,

we examine each possible neighbourhood of v in G. If NG(v) = {v1, x}, then G ∈ G9,

as the vertices v and v2 both have degree 2 and have the same open neighbourhood

in G. If NG(v) = {v1, y}, then G ∈ G9, as the vertices v and v3 both have degree 2

and have the same open neighbourhood in G. If NG(v) = {v3, y} or NG(v) = {v2, x},

then G ∈ G6. If NG(v) = {v1, v3} or NG(v) = {v1, v2}, then G ∈ G5. For any other

neighbourhood of v, G ∈ G3, as the vertices v1, v2, v3 each have the same degree as in

G− v.
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Now, suppose G− v ∈ G4. Let the vertices v1, v2, v3, x, y be as in Figure 3.13. We

examine each possible neighbourhood of v in G. If NG(v) = {v2, x}, then G ∈ G9,

as the vertices v and v3 both have degree 2 and have the same open neighbourhood

in G. If NG(v) = {v2, v3}, then G ∈ G1. If NG(v) = {v3, x}, then G ∈ G2. If

NG(v) = {v2, y}, then G ∈ G3. If NG(v) = {v1, x}, then G ∈ G5. If NG(v) = {v1, y},

then G ∈ G5. For any other neighbourhood of v, G ∈ G4, as the vertices v1, v2, v3 each

have the same degree as in G− v.

Suppose G − v ∈ G5. Let the vertices v1, v2, v3, w, x, y, z be as in Figure 3.14.

Now, we examine each possible neighbourhood of v in G. If NG(v) = {v2, x}, then

G ∈ G9, as v and v1 both have degree 2 and have the same open neighbourhood

in G. Similarly, if NG(v) = {x, z}, then G ∈ G9, as v and v3 both have degree 2

and have the same open neighbourhood in G. If NG(v) = {v1, v2}, then G ∈ G1. If

NG(v) = {v1, x}, then G ∈ G2. If NG(v) = {v2, y}, then G ∈ G3. If NG(v) = {x, y},

then G ∈ G4. If NG(v) = {v3, x}, then G ∈ G5 in the case that d(x) = 5 and G ∈ G7

in the case that d(x) = 6. If NG(v) = {v3, z}, then G ∈ G6 in the case that d(x) = 5

and G ∈ G7 in the case that d(x) = 6. In the case that d(x) = 6, then x has another

neighbour, w. If NG(v) = {x,w}, then G ∈ G8. For any other neighbourhood of v,

G ∈ G5, as the vertices v1, v2, v3 each have the same degree as in G− v.

Suppose G − v ∈ G6. Let the vertices v1, v2, v3, w, x, y, z be as in Figure 3.15.

Now, we examine each possible neighbourhood of v in G. If NG(v) = {v2, y}, then

G ∈ G9, as v and v1 both have degree 2 and have the same open neighbourhood

in G. Similarly, if NG(v) = {x, z}, then G ∈ G9, as v and v3 both have degree 2

and have the same open neighbourhood in G. If NG(v) = {v1, v2}, then G ∈ G1. If

NG(v) = {v1, y}, then G ∈ G2. If NG(v) = {v2, x}, then G ∈ G3. If NG(v) = {x, y},

then G ∈ G4. If NG(v) = {v3, x}, then G ∈ G6 in the case that d(x) = 4 and G ∈ G7

in the case that d(x) = 5. If NG(v) = {v3, z}, then G ∈ G7. In the case that d(x) = 5,
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then x has another neighbour, w. If NG(v) = {x,w}, then G ∈ G8. For any other

neighbourhood of v, G ∈ G6, as the vertices v1, v2, v3 each have the same degree as in

G− v.

Suppose G − v ∈ G7. Let the vertices v2, w, x, y, z be as in Figure 3.16. There

are two cases for the neighbourhoods of each of the vertices v1 and v3 of degree

2. In the first case for the neighbourhood of v1, we have v1v2, v1x ∈ E(G − v). If

NG(v) = {v2, x}, then G ∈ G9, as v and v1 both have degree 2 and have the same

open neighbourhood in G. If NG(v) = {v1, v2}, then G ∈ G1. If NG(v) = {v1, x},

then G ∈ G2. If NG(v) = {v2, y}, then G ∈ G3.

In the second case, we have v1v2, v1y ∈ E(G − v). If NG(v) = {v2, y}, then

G ∈ G9, as v and v1 both have degree 2 and have the same open neighbourhood

in G. If NG(v) = {v1, v2}, then G ∈ G1. If NG(v) = {v1, y}, then G ∈ G2. If

NG(v) = {v2, x}, then G ∈ G3.

Similarly, in the first case for the neighbourhood of v3, we have v3w, v3z ∈ E(G−

v). If NG(v) = {w, z}, then G ∈ G9, as v and v3 both have degree 2 and have the

same open neighbourhood in G. If NG(v) = {v3, w}, then G ∈ G1. If NG(v) = {v3, z},

then G ∈ G2. If NG(v) = {w, x}, then G ∈ G3.

In the second case, we have v3w, v3x ∈ E(G−v). If NG(v) = {w, x}, then G ∈ G9,

as v and v3 both have degree 2 and have the same open neighbourhood in G. If

NG(v) = {v3, w}, then G ∈ G1. If NG(v) = {v3, x}, then G ∈ G2. If NG(v) = {w, z},

then G ∈ G3.

For any of the above cases, if NG(v) = {x, y} or NG(v) = {x, z}, then G ∈ G4. For

any other neighbourhood of v, G ∈ G7, as the vertices v1, v2, v3 each have the same

degree as in G− v.

Now, suppose G − v ∈ G8. Let the vertices v2, v3, w, x, y, z be as in Figure 3.17.

Now, we have two cases for the neighbourhood v1. In the first case, we have v1x, v1y ∈
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E(G − v). If NG(v) = {w, x}, NG(v) = {x, y}, or NG(v) = {x, z}, then G ∈ G9,

as v and one of v1, v2, v3 have degree 2 and have the same open neighbourhood in

G. If NG(v) = {v1, x}, NG(v) = {v2, x}, or NG(v) = {v3, x}, then G ∈ G8, as v

and two of v1, v2, v3 have degree 2 and have x as a neighbour. If NG(v) = {v1, y},

NG(v) = {v2, z}, or NG(v) = {v3, w}, then G ∈ G8.

In the second case, we have a vertex u of degree 3 inG−v and edges v1u, v1y, ux, uy ∈

E(G − v). If NG(v) = {u, y}, NG(v) = {w, x}, or NG(v) = {x, z}, then G ∈ G9, as

v and one of v1, v2, v3 have degree 2 and the same open neighbourhood in G. If

NG(v) = {v1, u}, then G ∈ G1. If NG(v) = {v1, y}, then G ∈ G2. If NG(v) = {u, x},

then G ∈ G4. If NG(v) = {v3, w}, NG(v) = {v3, x}, NG(v) = {v2, x}, or NG(v) =

{v2, z}, then G ∈ G7.

For any other neighbourhood of v, in either of the above cases, G ∈ G8, as the

vertices v1, v2, v3 each have the same degree as in G− v.

Finally, suppose G−v ∈ G9. Let v1, v2, x, y be as in Figure 3.18. Now, we examine

each possible neighbourhood of v in G. If NG(v) = {v1, x}, {v1, y}, {v2, x}, or {v2, y},

then G ∈ G4. For any other neighbourhood of v, G ∈ G9, as both v1 and v2 have

degree 2 and the same open neighbourhood in G.

Thus, every 2-tree G of order k ≥ 6 satisfies the conditions of one of the cases

considered above and, provided Conjectures 3.12, 3.13 and 3.14 all hold, satisfies

nD(G) ≥


3 · 2n

3 − 4, if n ≡ 0 (mod 3)

4 · 2n−1
3 − 4, if n ≡ 1 (mod 3)

5 · 2n−2
3 − 4, if n ≡ 2 (mod 3)

Finally, we show that the 2-spiderstars attain this conjectured lower bound.
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Proposition 3.17. Let S2,n be the 2-spiderstar of order n ≥ 3. Then,

nD(S2,n) =


3 · 2n

3 − 4, if n ≡ 0 (mod 3)

4 · 2n−1
3 − 4, if n ≡ 1 (mod 3)

5 · 2n−2
3 − 4, if n ≡ 2 (mod 3)

Proof. We prove this result by constructing D(S2,n) for each n. Let the vertices x, y,

v1, v2, . . . , vk, u1, u2, . . . , uk, w1, w2, . . . , wk be as in the definition of 2-spiderstars and

as in Figure 3.8. First, we note that any digitally convex set containing a vertex ui

must also contain the vertex vi and, similarly, any digitally convex set containing wi

must also contain ui and vi. Furthermore, if a digitally convex set contains some ui,

then for each 1 ≤ j ≤ k − 1, it either contains vj and uj or neither of these vertices.

Similarly, if a digitally convex set contains some wi, then for each 1 ≤ j ≤ k − 1, it

either contains all of vj, uj and wj or none of these vertices.

For simplicity, let Vk−1 = {v1, v2, . . . , vk−1}, Uk−1 = {u1, u2, . . . , uk−1}, Wk−1 =

{w1, w2, . . . , wk−1}. Additionally, let RV be any subset of Vk−1, RU any subset of

Uk−1 and RW any subset of Wk−1.

Claim 1: The following sets are digitally convex in S2,n for any value of n.

(a) S∗1 = RV .

(b) S∗2 = RU ∪ {vi ∈ Vk−1 | ui ∈ RU}.

The vertex x 6∈ N [Vk−1], so x is a private neighbour with respect to S∗1 for each ui

and wi with vi ∈ S∗1 . Every other vertex is a private neighbour for itself with respect

to S∗1 . So S∗1 is digitally convex in S2,n.

Similarly, the vertex y 6∈ N [Uk−1], so y is a private neighbour with respect to S∗2

for x and for each wi with ui ∈ S∗2 . Every other vertex is a private neighbour for
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itself with respect to S∗2 . So S∗2 is digitally convex in S2,n. This completes the proof

of Claim 1.

There are 2k−1 possible subsets RV and 2k−1 possible subsets of RU , giving a total

of 2 · 2k−1− 1 distinct digitally convex sets of these types in S2,n for any n ≥ 3. Note

that we subtract one to avoid counting the empty set twice, as it is a subset of both

RV and RU .

Now, suppose n ≡ 0 (mod 3). Then, S2,n has a vertex vk adjacent to both x and

y.

Claim 2: The following sets are digitally convex in S2,n.

(a) S∗3 = RW ∪ {vi ∈ Vk−1, ui ∈ Uk−1 | wi ∈ RW}.

(b) S∗4 = RW ∪ {vk, x, y} ∪ {vi ∈ Vk−1, ui ∈ Uk−1 | wi ∈ RW}.

(c) S∗5 = RW ∪ {vk} ∪ {vi ∈ Vk−1, ui ∈ Uk−1 | wi ∈ RW}, if RW 6= Wk−1.

(d) S∗6 = RW ∪ {vk, y} ∪ {vi ∈ Vk−1, ui ∈ Uk−1 | wi ∈ RW}, if RW 6= Wk−1.

The vertex vk is a private neighbour for both x and y with respect to S∗3 . Every

other vertex not in S∗3 is a private neighbour for itself with respect to S∗3 . Therefore,

S∗3 is digitally convex in S2,n.

For each wi 6∈ RW , the vertex vi is a private neighbour with respect to S∗4 for

itself, as well as for wi and ui. Thus, S∗4 is digitally convex in S2,n.

There must be some wi 6∈ S∗5 , since RW 6= Wk−1, so wi is a private neighbour with

respect to S∗5 for x and y. Every other vertex is a private neighbour for itself with

respect to S∗5 . So S∗5 is digitally convex in S2,n.

Similarly, there is some wi 6∈ S∗6 . Then, ui is a private neighbour with respect to

S∗6 for wi and x. For each other wj 6∈ RW , the vertex uj is a private neighbour with

respect to S∗6 for wj. Every other vertex is a private neighbour for itself with respect

to S∗6 . So S∗6 is digitally convex in S2,n. This completes the proof of Claim 2.
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There are 2k−1 digitally convex sets S∗3 . However one of these is the empty set

so we will count only 2k−1 − 1 of these sets. There are 2k−1 digitally convex sets

S∗4 , as there are 2k−1 possible sets RW . Similarly, there are 2k−1 − 1 digitally convex

sets S∗5 and the same number of digitally convex sets S∗6 . Overall, we get a total of

nD(S2,n) = 6 · 2k−1 − 4 = 3 · 2k − 4 = 3 · 2n
3 − 4 digitally convex sets when n ≡ 0

(mod 3).

Suppose n ≡ 1 (mod 3). Then, S2,n has vertices uk and vk.

Claim 3: The following sets are digitally convex in S2,n.

(a) S∗3 = RU ∪ {vk} ∪ {vi ∈ Vk−1 | ui ∈ RU}.

(b) S∗4 = RW ∪ {vi ∈ Vk−1, ui ∈ Uk−1 | wi ∈ RW}.

(c) S∗5 = RW ∪ {uk, vk, x, y} ∪ {vi ∈ Vk−1, ui ∈ Uk−1 | wi ∈ RW}.

(d) S∗6 = RW ∪ {y} ∪ {vi ∈ Vk−1, ui ∈ Uk−1 | wi ∈ RW}.

(e) S∗7 = RW ∪ {uk, vk} ∪ {vi ∈ Vk−1, ui ∈ Uk−1 | wi ∈ RW}, if RW 6= Wk−1.

(f) S∗8 = RW ∪ {uk, vk, y} ∪ {vi ∈ Vk−1, ui ∈ Uk−1 | wi ∈ RW}, if RW 6= Wk−1.

The vertex y is a private neighbour with respect to S∗3 for itself, as well as for x,

for uk, and for every vertex wi. Every other vertex is a private neighbour for itself

with respect to S∗3 . So S∗3 is a digitally convex set in S2,n.

Similar to the proof of Claim 2(a), the vertex uk is a private neighbour with respect

to S∗4 for x and y, and every other vertex is its own private neighbour with respect

to S∗4 . So S∗4 is digitally convex in S2,n.

The proof that S∗5 is digitally convex in S2,n is identical to that of Claim 2(b).

The vertex vk is a private neighbour with respect to S∗6 for x and for uk. For each

wi 6∈ RW , the vertex ui is a private neighbour with respect to S∗6 for itself and for wi.
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Every other vertex not in S∗6 is a private neighbour for itself with respect to S∗6 . So

S∗6 is digitally convex in S2,n.

The proofs that S∗7 and S∗8 are digitally convex in S2,n are identical to those of

Claim 2(c) and Claim 2(d), respectively. This completes the proof of Claim 3.

There are 2k−1 digitally convex sets S∗3 , as each one corresponds to a subset of

RU . Similar to the above argument, there are 2k−1 digitally convex sets S∗4 , but we

will count only 2k−1 − 1 of these to avoiding double counting the empty set. There

are 2k−1 digitally convex sets S∗5 and the same number of digitally convex sets S∗6 , as

each corresponds to a possible subset of RW . Similarly, there are 2k−1 − 1 digitally

convex sets S∗7 and the same number of digitally convex sets S∗8 . Overall, we get a

total of nD(S2,n) = 8 · 2k−1 − 4 = 4 · 2k − 4 = 4 · 2n−1
3 − 4 digitally convex sets when

n ≡ 1 (mod 3).

Finally, suppose n ≡ 2 (mod 3). Then, S2,n has vertices wk, uk and vk.

Claim 4: The following sets are digitally convex in S2,n.

(a) S∗3 = RV ∪ {vk}.

(b) S∗4 = RU ∪ {uk, vk} ∪ {vi ∈ Vk−1 | ui ∈ RU}.

(c) S∗5 = RW ∪ {vi ∈ Vk−1, ui ∈ Uk−1 | wi ∈ RW}.

(d) S∗6 = RW ∪ {x, y} ∪ {vi ∈ Vk−1, ui ∈ Uk−1 | wi ∈ RW}.

(e) S∗7 = RW ∪ {vk, uk, wk, x, y} ∪ {vi ∈ Vk−1, ui ∈ Uk−1 | wi ∈ RW}.

(f) S∗8 = RW ∪ {y} ∪ {vi ∈ Vk−1, ui ∈ Uk−1 | wi ∈ RW}.

(g) S∗9 = RW ∪ {vk, uk, wk} ∪ {vi ∈ Vk−1, ui ∈ Uk−1 | wi ∈ RW}, if RW 6= Wk−1.

(h) S∗10 = RW ∪ {vk, uk, wk, y} ∪ {vi ∈ Vk−1, ui ∈ Uk−1 | wi ∈ RW}, if RW 6= Wk−1.



41

The vertex x is a private neighbour with respect to S∗3 for each wi and ui, including

wk and uk. Similarly, the vertex y is a private neighbour with respect to S∗4 for x and

for each wi. In addition, the vertex wk is a private neighbour with respect to S∗5 for

x and y. In all three cases, every other vertex is a private neighbour for itself. So S∗3 ,

S∗4 and S∗5 are all digitally convex in S2,n.

The vertex vk is a private neighbour with respect to S∗6 for itself, as well as for uk

and wk. Similarly, for any wi 6∈ S∗6 , the vertex vi is a private neighbour for itself, for

ui and for wi. Every other vertex is a private neighbour for itself with respect to S∗6 .

So S∗6 is digitally convex in S2,n.

The proof that S∗7 is digitally convex in S2,n is identical to that of Claim 2(b).

The vertex uk is a private neighbour with respect to S∗8 for itself, as well as for x

and for wk. For each wi 6∈ S∗8 , the vertex ui is a private neighbour for itself and for

wi. Every other vertex is a private neighbour for itself with respect to S∗8 . So S∗8 is

digitally convex in S2,n.

Finally, the proofs that S∗9 and S∗10 are digitally convex in S2,n are identical to those

of Claim 2(c) and Claim 2(d), respectively. This completes the proof of Claim 4.

Similar to the previous arguments, there are 2k−1 digitally convex sets S∗3 , as each

one corresponds to a possible subset of RV . There are the same number of digitally

convex sets S∗4 . There are 2k−1 digitally convex sets S∗5 , but we count only 2k−1 − 1

of these to avoid double counting the empty set. There are 2k−1 digitally convex sets

S∗6 , as each one corresponds to a possible set RW , and the same number of sets S∗7

and of sets S∗8 . There are 2k−1 − 1 digitally convex sets S∗9 and the same number of

sets S∗10. Overall, we get a total of nD(S2,n) = 10 · 2k−1 − 4 = 5 · 2k − 4 = 5 · 2n−2
3 − 4

digitally convex sets when n ≡ 2 (mod 3).
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Proofs of lemmas

We complete this section by giving the proofs of Lemmas 3.7 - 3.11 and Lemma 3.15.

Proof of Lemma 3.7. First, we show that each digitally convex set in D(G)

corresponds to two distinct digitally convex sets in D(G1). Moreover, we show that,

for two different digitally convex sets S1 and S2 in G, their corresponding digitally

convex sets in G1 are all distinct.

Let S ∈ D(G). Then, in G1, the vertex v3 is a private neighbour for itself, as well

as for v1 and v2 with respect to S. Thus, S is also digitally convex in G1.

If x 6∈ NG[S], then S ∪ {v3} is digitally convex in G1. The vertices v1 and v2 both

have x as a private neighbour, because x 6∈ NG1 [v3]. Note that, because each of these

digitally convex sets contains v3, they were not counted as digitally convex sets of G1

above. If x, y ∈ NG[S], then S ∪ {v1, v2, v3} is digitally convex in G1, as every vertex

not in S ∪ {v1, v2, v3} has the same private neighbour with respect to S ∪ {v1, v2, v3}

in G1 as with respect to S in G. Note that because these digitally convex sets of G1

contain all of v1, v2, v3, they were not counted as digitally convex sets of G1 above. If

x ∈ NG[S] and y 6∈ NG[S], then S ∪ {v2, v3} is digitally convex in G1. Neither v2 nor

v3 is adjacent to y, so y is a private neighbour for itself and for v1. Note that, because

these digitally convex sets contain v2 and v3 but not v1, they were not counted as

digitally convex sets of G1 above.

In addition to the 2D(G) digitally convex sets of G1 described above, the sets

S1 = {v2, v3}, S2 = {v1, v2, v3}, S3 = V (G) − {x} and S4 = V (G) − {x, y} are each

digitally convex in G1, as shown next. The vertex y is a private neighbour for both

x and v1 with respect to S1. As x 6∈ NG[S1 − {v2, v3}], the set S1 was not counted

above as a digitally convex set of G1. Since G is assumed to have order at least 3,

both x and y must have another neighbour that is a private neighbour with respect to

S2. Since x, y 6∈ NG[S2 − {v1, v2, v3}], the set S2 was not counted above as a digitally
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convex set of G1. The vertex v2 is a private neighbour for both x and v1 with respect

to S3. Finally, the vertex v1 is a private neighbour for both x and y with respect to

S4. Both S3 and S4 have cardinality greater than n − δ(G) − 1 so, by Theorem 2.1,

neither of S3 or S4 is digitally convex in G. Thus, neither was counted above as a

digitally convex set of G1.

Therefore, nD(G1) ≥ 2nD(G) + 4.

Proof of Lemma 3.8. First, we show that each digitally convex set in D(G)

corresponds to two distinct digitally convex sets in D(G2). Moreover, we show that,

for two different digitally convex sets S1 and S2 in G, their corresponding digitally

convex sets in G2 are all distinct.

Let S ∈ D(G). If x, y 6∈ S, then S is digitally convex in G2, as v1, v2, v3 are all

private neighbours for themselves. The set S ∪ {v3} is also digitally convex in G2,

as the vertex v1 is a private neighbour for v2 and for x. Every other vertex has the

same private neighbour in G2 as in G. Note that none of these digitally convex sets

contains x or y.

If x ∈ S or y ∈ S, then S ∪ {v1, v2, v3} is digitally convex in G2, as every vertex

not in S ∪ {v1, v2, v3} has the same private neighbour with respect to S ∪ {v1, v2, v3}

in G2 as with respect to S in G. Note that each of these digitally convex sets contains

v1, v2 and v3, as well as one of x or y. If x 6∈ S and y ∈ S, then the set S is also

digitally convex in G2, as the vertex v2 is a private neighbour for itself, v1 and x with

respect to S. Note that because each of these sets contains y, they were not counted

above as digitally convex sets of G2. If x ∈ S, then the set (S−{x})∪{v1} is digitally

convex in G2. Note that S can contain y or not. As above, the vertex v3 is a private

neighbour for itself, v2 and x with respect to (S −{x})∪ {v1}. The vertex y is either

in S or has a private neighbour with respect to S that is in V (G) − {x}. So it has
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this same private neighbour with respect to (S − {x}) ∪ {v1}. Note that these sets

contain v1 but do not contain v2 or v3, so they were not counted above as digitally

convex sets of G2.

In addition to the 2nD(G) digitally convex sets described above, the sets S1 =

{v2, v3}, S2 = {v1, v2, v3}, S3 = V (G)−{x} and S4 = V (G)−{x, y} are each digitally

convex in G2, as shown next. The vertex y is a private neighbour for both v1 and

x with respect to S1. As v1 6∈ S1, it was not counted above as a digitally convex

set of G2. Since G is assumed to have order at least 3, both x and y must have

another neighbour that is a private neighbour with respect to S2. Moreover, because

x, y 6∈ NG[S − {v1, v2, v3}], the set S2 was not counted above as a digitally convex

set of G2. The vertex v2 is a private neighbour for itself, x, v1 and v3 with respect

to S3. Finally, the vertex v1 is a private neighbour for both x and y with respect to

S4. Both S3 and S4 have cardinality greater than n − δ(G) − 1 so, by Theorem 2.1,

neither of S3 or S4 is digitally convex in G. Thus, neither was counted above as a

digitally convex set of G2.

Therefore, nD(G2) ≥ 2nD(G) + 4.

Proof of Lemma 3.9. As in the proof of the previous lemma, we begin by showing

that each digitally convex set in D(G) corresponds to two distinct digitally convex

sets in D(G3). Moreover, we show that, for two different digitally convex sets S1 and

S2 in G, their corresponding digitally convex sets in G3 are all distinct.

Let S ∈ D(G). If x, y 6∈ S, then S is digitally convex in G3, as v1, v2, v3 are

all private neighbours for themselves. Note that none of these sets contain any of

x, y, v1, v2, v3. If x ∈ S or y ∈ S, then S ∪ {v1, v2, v3} is digitally convex in G3, as

every vertex not in S ∪ {v1, v2, v3} has the same private neighbour with respect to

S ∪ {v1, v2, v3} in G3 as with respect to S in G. Note that these sets contain all of
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v1, v2, v3 and at least one of x or y.

We now describe a second digitally convex set in D(G3) for each of the sets

in D(G). If x, y 6∈ S, then we consider four possible cases. If, for every vertex

a ∈ V (G) − S, we have NG[a] − {x, y} 6⊆ NG[S], then S ∪ {v1, v2, v3} is digitally

convex in G3. Every vertex not in S ∪ {v1, v2, v3}, including x and y, has a private

neighbour with respect to S in G that is not x or y. Each of these vertices has the

same private neighbour with respect to S ∪ {v1, v2, v3}. Note that these sets contain

all of v1, v2, v3 but neither of x or y, so they were not counted above as digitally

convex sets of G3.

If, for every a ∈ V (G)−S, we have NG[a]−{y} 6⊆ NG[S] and there exists at least

one vertex b ∈ V (G)−NG[S] for which NG[b]−{x} ⊆ NG[S], then S∪{v3} is digitally

convex in G3. Since NG[a]−{y} 6⊆ NG[S] for every vertex a ∈ V (G)−S, each vertex

a has a private neighbour with respect to S that is not y. Thus, a still has this same

private neighbour with respect to S ∪ {v3}. Since xv3 6∈ E(G3), each vertex that has

only x as a private neighbour with respect to S in G also has this private neighbour

with respect to S ∪ {v3} in G3. The vertex v2 is a private neighbour for itself and v1

with respect to S ∪ {v3}. Note that these sets contain v3 but not y.

If, for every a ∈ V (G)−S, we have NG[a]−{x} 6⊆ NG[S] and there exists at least

one vertex b ∈ V (G)−NG[S] for which NG[b]−{y} ⊆ NG[S], then S∪{v2} is digitally

convex in G3. Since NG[a]−{x} 6⊆ NG[S] for every vertex a ∈ V (G)−S, each vertex

a has a private neighbour with respect to S that is not x. Thus, a still has this same

private neighbour with respect to S ∪ {v2}. Since yv2 6∈ E(G3), each vertex that has

only y as a private neighbour with respect to S in G also has this private neighbour

with respect to S ∪ {v2} in G3. The vertex v3 is a private neighbour for itself and v1

with respect to S ∪ {v2}. Note that these sets contain v2 but not x.

Finally, if there exists vertices a, b ∈ V (G) − S such that NG[a] − {x} ⊆ NG[S]
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and NG[b]−{y} ⊆ NG[S], then let A be the set of vertices in V (G)−{x, y} satisfying

NG[a] − {x} ⊆ NG[S] and let B be the set of vertices in V (G) − {x, y} satisfying

NG[b] − {y} ⊆ NG[S]. Then, S ′ = S ∪ A ∪ B is digitally convex in G3, as v2 is a

private neighbour for itself, v1 and x with respect to S ′ and v3 is a private neighbour

for itself and y with respect to S ′. By definition of A and B, every other vertex z 6∈ S ′

has a private neighbour z′ with respect to S ′ that is neither x or y and also must

satisfy z′ 6∈ NG[a] for every a ∈ A and z′ 6∈ NG[b] for every b ∈ B.

If x ∈ S and y 6∈ S, then S ∪ {v2} is digitally convex in G3, as every vertex in

V (G) − S has the same private neighbour with respect to S ∪ {v2} in G3 as with

respect to S in G. The vertex v3 is a private neighbour for itself and v1. Note that

these sets contain both v2 and x, so they were not counted above as digitally convex

sets of G3. Similarly, if x 6∈ S and y ∈ S, then S ∪ {v3} is digitally convex in G3.

Since these sets all contain both y and v3, they were not counted above as digitally

convex sets of G3.

Finally, if both x, y ∈ S, then we consider three cases. If S − {y} 6∈ D(G), then

(S − {y}) ∪ {v2} is digitally convex in G3, as the vertex v3 is a private neighbour for

itself, v1 and y with respect to (S − {y}) ∪ {v2}. Every other vertex has the same

private neighbour with respect to (S − {y}) ∪ {v2} in G3 as with respect to S in G.

Note that these sets contain x and v2, but since S −{y} 6∈ D(G), these sets were not

counted above as digitally convex sets of G3.

If S−{y} ∈ D(G) and S−{x} 6∈ D(G), then (S−{x})∪{v3} is digitally convex

in G3. Similar to above, the vertex v2 is a private neighbour for itself, v1 and x with

respect to (S −{x})∪ {v3}. Every other vertex has the same private neighbour with

respect to (S − {x}) ∪ {v3} in G3 as with respect to S in G. Note that these sets

contain y and v3 but, since S − {x} 6∈ D(G), these sets were not counted above as

digitally convex sets of G3.



47

If both S − {x}, S − {y} ∈ D(G), then it must be the case that S − {x, y} ∈

D(G) since the digital convexity is closed under intersections. Then, S − {x, y}

must satisfy x, y 6∈ S −{x, y} and, for every vertex a ∈ V (G)− (S −{x, y}), we have

NG[a]−{x, y} 6⊆ NG[S−{x, y}]. If these conditions are not true, then that contradicts

S, S − {x} and S − {y} all being digitally convex in G. Then, (S − {x, y}) ∪ {v3}

is digitally convex in G3, as S − {x, y} ∈ D(G) implies that every vertex not in

S −{x, y} has a private neighbour with respect to S −{x, y} in V (G). Furthermore,

NG[a] − {x, y} 6⊆ NG[S − {x, y}] for every vertex a ∈ V (G) − (S − {x, y}) implies

that every vertex not in V (G) − (S − {x, y}) has a private neighbour in V (G) that

is neither x nor y. Thus, each vertex has the same private neighbour with respect

to (S − {x, y}) ∪ {v3} in G3 as with respect to S − {x, y} in G. The vertex v2 is a

private neighbour for itself and v1 with respect to (S − {x, y}) ∪ {v3}. Note that the

sets S − {x, y} and (S − {x, y}) ∪ {v1, v2, v3} were counted above as digitally convex

sets of G3, but (S − {x, y}) ∪ {v3} was not.

In addition to the 2nD(G) digitally convex sets of G3 described above, the sets

S1 = {v2}, S2 = V (G3) − {x, v1, v2} and S3 = V (G) ∪ {v3} − NG(w), where w ∈

NG(x) ∩NG(y), are all digitally convex in G3, as shown next. The vertex y is a pri-

vate neighbour for itself, x and v1 with respect to S1. Every other vertex in V (G3)−S1

is a private neighbour for itself with respect to S1. The vertex v2 is a private neigh-

bour for itself, v1 and x with respect to S2. Note that V (G) − {x} is not digitally

convex in G, so this set was not counted above as a digitally convex set of G3. Finally,

every vertex in NG(w) has w as a private neighbour with respect to S3, and v2 is a

private neighbour for itself and v1 with respect to S3. Note that, in particular, both x

and y have w as a private neighbour. Further note that such a vertex w must exist by

the assumption that G has order at least 3. Thus, nD(G3) ≥ 2nD(G) + 3. Moreover,

by Theorem 2.2, every graph has an even number of digitally convex sets, so it must
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be the case that nD(G3) ≥ 2nD(G) + 4.

Proof of Lemma 3.10. As in the proof of the previous lemma, we begin by showing

that each digitally convex set in D(G) corresponds to two distinct digitally convex

sets in D(G4). Moreover, we show that, for two different digitally convex sets S1 and

S2 in G, their corresponding digitally convex sets in G4 are all distinct.

Let S ∈ D(G). If x, y 6∈ S, then S is digitally convex in G4, as v1, v2, v3 are

all private neighbours for themselves with respect to S. If x ∈ S or y ∈ S, then

S ∪{v1, v2, v3} is digitally convex in G4, as every vertex not in S ∪{v1, v2, v3} has the

same private neighbour with respect to S ∪ {v1, v2, v3} in G4 as with respect to S in

G.

We now describe a second digitally convex set in D(G4) for each of the sets in

D(G). If x, y 6∈ S, then we consider four cases. If, for every vertex a ∈ V (G)− S, we

have NG[a] − {x, y} 6⊆ NG[S], then S ∪ {v1, v2, v3} is digitally convex in G4. Every

vertex not in S ∪{v1, v2, v3}, including x and y, has a private neighbour with respect

to S in G that is not x or y. Each of these vertices has the same private neighbour

with respect to S∪{v1, v2, v3}. Note that these sets contain all of v1, v2, v3 but neither

of x or y, so they were not counted above as digitally convex sets of G4.

If, for every a ∈ V (G)−S, we have NG[a]−{x} 6⊆ NG[S] and there exists at least

one vertex b ∈ V (G)−NG[S] for which NG[b]−{y} ⊆ NG[S], then S∪{v3} is digitally

convex in G4. Since NG[a]−{x} 6⊆ NG[S] for every vertex a ∈ V (G)−S, each vertex

a has a private neighbour with respect to S that is not x. Thus, a still has this same

private neighbour with respect to S ∪ {v3}. Since yv3 6∈ E(G4), each vertex that has

only y as a private neighbour with respect to S in G also has this private neighbour

with respect to S ∪ {v3} in G4. The vertex y is a private neighbour for itself, v1, v2

and x with respect to S ∪ {v3}. Note that these sets contain v3 but not x or v2.
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If, for every a ∈ V (G)−(S∪{y}), we have NG[a]−{x} 6⊆ NG[S] and NG[y]−{x} ⊆

NG[S], then S ∪ {v1} is digitally convex in G4. Since NG[a]− {x} 6⊆ NG[S] for every

vertex a ∈ V (G)− (S ∪{y}), each vertex a has a private neighbour with respect to S

that is not x. Thus, a still has this same private neighbour with respect to S ∪ {v1}.

The vertex v2 is a private neighbour with respect to S ∪ {v1} for itself, x, y and v3.

Note that these sets contain v1 but none of x, y, v2 or v3.

If there exists at least one a ∈ V (G)− (S ∪ {y}) for which NG[a]− {x} ⊆ NG[S],

then let A be the set of vertices in V (G) − {x, y} satisfying NG[a] − {x} ⊆ NG[S].

Then S ′ = S ∪ A is digitally convex in G4, as v1 is a private neighbour for itself, x

and y and v3 is a private neighbour for itself and v2 with respect to S ′. By definition

of A, every other vertex z 6∈ S ′ has a private neighbour z′ with respect to S ′ that is

not x and must satisfy z′ 6∈ NG[a] for every a ∈ A.

If x ∈ S and y 6∈ S, then (S − {x}) ∪ {v2, v3} is digitally convex in G4, as the

vertex v1 is a private neighbour for itself, x and y with respect to (S−{x})∪{v2, v3}.

Every other vertex has the same private neighbour with respect to (S−{x})∪{v2, v3}

in G4 as with respect to S in G. Note that these sets contain v2 and v3 but neither

of x or y.

If x 6∈ S and y ∈ S, then S ∪ {v1} is digitally convex in G4, as v3 is a private

neighbour for itself, v2 and x with respect to S ∪ {v1}. Every other vertex has the

same private neighbour with respect to S ∪ {v1} in G4 as with respect to S in G.

These sets each contain both v1 and y so they were not counted above as digitally

convex sets of G4.

Now, if x, y ∈ S, then we consider three possible cases. If S − {x} 6∈ D(G), then

(S − {x}) ∪ {v1} is digitally convex in G4, as v3 is a private neighbour for itself, v2

and x with respect to (S−{x})∪{v1}. In addition, since S−{x} 6∈ D(G), these sets

were not counted above as digitally convex sets of G4.
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If S − {x} ∈ D(G) and S − {y} 6∈ D(G), then (S − {x, y}) ∪ {v2, v3} is digitally

convex in G4, as v1 is a private neighbour for itself, x and y with respect to (S −

{x, y})∪ {v2, v3}. Every other vertex has the same private neighbour with respect to

(S − {x, y}) ∪ {v2, v3} in G4 as with respect to S in G. In addition, since S − {y} 6∈

D(G), these sets were not counted above as digitally convex sets of G4.

Finally, if S − {x}, S − {y} ∈ D(G), then it must be the case that S − {x, y} ∈

D(G), since the digital convexity is closed under intersections. As both S and S −

{x, y} are digitally convex, each vertex a ∈ V (G)− (S − {x, y}) must have a private

neighbour with respect to S − {x, y} that is in V (G) − {x, y}. This means that the

set (S − {x, y}) ∪ {v1, v2, v3} was counted above as a digitally convex set of G4. In

addition, the set S ′ = (S − {x, y}) ∪ {v1} is digitally convex in G4, as v2 is a private

neighbour for itself, v3, x and y with respect to S ′. This set does not contain y, so it

was not counted above as a digitally convex set of G4.

In addition to the 2nD(G) digitally convex sets described above, the sets S1 = {v3},

S2 = (V (G) − {x, y}) ∪ {v1} and S3 = (V (G) − {x, y}) ∪ {v2, v3} are each digitally

convex in G4, as shown next. The vertex y is a private neighbour for itself, v2 and x

with respect to S1. Every other vertex is a private neighbour for itself with respect

to S1. The only digitally convex sets above that contain v3 and not v2 also contain at

least one vertex in V (G), so S1 was not counted above as a digitally convex set of G4.

The vertex v2 is a private neighbour for itself, v3, x and y with respect to S2. Since

V (G)− {x, y} has cardinality n− δ(G) > n− δ(G)− 1, the set V (G)− {x, y} is not

digitally convex in G, by Theorem 2.1. In addition, neither of the sets V (G) − {x}

or V (G) − {y} is digitally convex in G, so the set S2 could only correspond to the

digitally convex set V (G) of G above. However, since V (G) − {x} is not digitally

convex in G, the set S2 was not counted as a digitally convex set of G4 above. The

vertex v1 is a private neighbour for itself, x and y with respect to S3. Similar to S2,
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since none of V (G)− {x, y}, V (G)− {x} or V (G)− {y} is digitally convex in G, the

set S3 was not counted as a digitally convex set of G4 above.

Thus, nD(G4) ≥ 2nD(G) + 3. However, by Theorem 2.2, every graph has an even

number of digitally convex sets. Therefore, nD(G4) ≥ 2nD(G) + 4.

Proof of Lemma 3.11. As in the proof of the previous lemma, we begin by showing

that each digitally convex set in D(G) corresponds to two distinct digitally convex

sets in D(G5). Moreover, we show that, for two different digitally convex sets S1 and

S2 in G, their corresponding digitally convex sets in G5 are all distinct.

Let S ∈ D(G). If x, y, z 6∈ S, then S is digitally convex in G5, as v1, v2, v3

are each private neighbours for themselves with respect to S. If x, y, z 6∈ S and

NG(y) − {x} ⊆ NG[S], then S ∪ {y, v1, v2} is digitally convex in G5, as both x and

z have v3 as a private neighbour in G5. Any other vertices in NG(y) − S have the

same private neighbour in G5 as in G. If x, y, z 6∈ S and NG(y)− {x} 6⊆ NG[S], then

S ∪ {v1, v2} is digitally convex in G5, as both x and z have v3 as a private neighbour

in G5. The vertex y has a private neighbour with respect to S in V (G) − {x, y}, so

it has this same private neighbour with respect to S ∪ {v1, v2} in G5.

If y ∈ S and x, z 6∈ S, then S is digitally convex in G5, as v1 is a private neighbour

for itself and v2 with respect to S in G5. The vertex v3 is also a private neighbour for

itself with respect to S in G5. Let A be the set of vertices a in V (G)−{x} satisfying

NG(a) − {z} ⊆ NG[S]. Then, the set S ′ = S ∪ {z, v3} ∪ A is digitally convex in G5,

as v1 is a private neighbour for itself, v2 and x with respect to S ′. Each vertex that

has only z as a private neighbour with respect to S in G has been added to A, and

every other vertex has the same private neighbour with respect to S ′ in G5 as with

respect to S in G. Note that this case is only possible when dG(x) = 3.

If z ∈ S and x, y 6∈ S, then (S − {z}) ∪ {v1} is digitally convex in G5, as v3 is a
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private neighbour for itself, z and x. Since x ∈ NG[S] − S, it must be the case that

y is a private neighbour with respect to S for x in G, so y 6∈ NG[S]. Thus, it must

also be the case that y 6∈ NG[(S − {z}) ∪ {v1}]. So y is a private neighbour for itself

and v2 with respect to (S − {z}) ∪ {v1}. In addition, the set S ∪ {v1, v3} is digitally

convex in G5, since y is a private neighbour for itself, x and v2. Note that this case

is only possible when dG(x) = 3.

If x ∈ S, then S ∪ {v1, v2, v3} is digitally convex in G5. Every vertex not in

S ∪ {v1, v2, v3} has the same private neighbour with respect to S ∪ {v1, v2, v3} in G5

as with respect to S in G. If x ∈ S and y 6∈ S or z 6∈ S, then (S − {x}) ∪ {v3}

is digitally convex in G5, as v1 is a private neighbour for x and v2. If z 6∈ S, then

z has a private neighbour with respect to S in V (G) − {x, z}. So it has this same

private neighbour with respect to (S − {x}) ∪ {v3}. If x, y, z ∈ S and S − {y} is not

digitally convex, then (S − {x, y}) ∪ {v3} is digitally convex in G5, as v2 is a private

neighbour for itself, v1, x and y. Note that we require that S − {y} is not digitally

convex so that the set (S − {x, y}) ∪ {v3} is not counted twice. Finally, if x, y, z ∈ S

and S − {y} is digitally convex, then (S − {x, z}) ∪ {v1, v2} is digitally convex in

G5, as v3 is a private neighbour for itself, x and z. Note that, because S − {y} is

also digitally convex, the vertex y has a private neighbour with respect to S −{y} in

V (G)− {x}. Then, if S − {x, y, z} is also digitally convex in G, it must be the case

that NG(y)−{x} 6⊆ NG[S−{x, y, z}]. So the digitally convex set (S−{x, z})∪{v1, v2}

contains y, v1, v2 but was not counted above.

In addition to the 2nD(G) digitally convex sets of G5 described above, the sets

S1 = {v1, v3}, S2 = V (G)− {x, y, z} and S3 = V (G)− {x, z} are all digitally convex

in G5, as shown next. The vertex y is a private neighbour for itself, x and v2 with

respect to S1. If dG(x) = 2, then y is also a private neighbour for z. If dG(x) = 3,

then w, the other neighbour of x in G, is a private neighbour for z with respect to S1.
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The vertex v3 is a private neighbour for x and z with respect to S2 and v2 is a private

neighbour for itself and y with respect to S2. Finally, v3 is a private neighbour for

itself, x and z with respect to S3 and v1 is a private neighbour for itself and for v2.

Since y, w ∈ S3 and these vertices dominate NG[x], the set S3 is not digitally convex

in G and was not counted above.

If dG(x) = 2, then S4 = {v1} is digitally convex in G5, as the vertex y is a private

neighbour for v2 and x with respect to S1. Furthermore, the vertex z dominates NG[x]

in G, so {z} is not a digitally convex set in G. So S4 was not counted above as a

digitally convex set. If dG(x) = 3, then S4 = {v1, v2, v3} is digitally convex in G5, as

the vertex w is a private neighbour for itself, x, y and z with respect to S4. Since the

only sets above containing v1, v2, v3 also contain x, the set S4 was not counted in the

2nD(G) digitally convex sets above.

Therefore, nD(G5) ≥ 2nD(G) + 4.

Proof of Lemma 3.15. First, we use D(G) to generate the digitally convex sets

of G∗. In this construction, we will have some digitally convex sets in D(G) that

correspond to two digitally convex sets in D(G∗) and some that correspond to none

of the digitally convex sets in D(G∗). We then show that, despite this, the number

of digitally convex sets in G∗ is at most nD(G).

Let SG∗ = ∅. Now, for each S ∈ D(G), proceed as follows.

1. (a) If v1, v2 ∈ S, then add S to SG∗ . Every vertex has the same private

neighbour with respect to S in G∗ as in G.

(b) If v1, v2, x, y ∈ S, then add S − {x, v1, v2} to SG∗ . The vertex v1 is a

private neighbour for itself, x and v2 with respect to S − {x, v1, v2} in G∗.

(c) If v1, v2, y ∈ S and x 6∈ S, then add S − {v1, v2} to SG∗ . The vertex v1 is

a private neighbour for itself and v2 with respect to S − {v1, v2} in G∗.
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2. (a) If v1, v2 6∈ S, then add S to SG∗ . It must be the case that x, y 6∈ S. So v2

is a private neighbour for itself, as well as for x, y and v1 with respect to

S in G∗.

(b) If v1, v2 6∈ S and y 6∈ NG[S], then add S∪{v1} to SG∗ . In G∗, yv1 6∈ E(G∗)

so y 6∈ NG∗ [S ∪ {v1}]. Thus, y is a private neighbour for itself, x and v2

with respect to S ∪ {v1} in G∗.

3. If v1 ∈ S and v2 6∈ S, then add nothing to SG∗ .

4. If v1 6∈ S and v2 ∈ S, then add nothing to SG∗ .

Note that the digitally convex sets of G that satisfy the conditions of cases 1(b)

and 1(c) also satisfy the conditions of case 1(a). So each of these corresponds to

two digitally convex sets in G∗. Similarly, the digitally convex sets satisfying the

conditions of case 2(b) also satisfy the conditions of case 2(a), so these sets correspond

to two digitally convex sets in G∗.

We have shown that SG∗ ⊆ D(G∗), so now we show that each set in D(G∗)

is added to SG∗ exactly once. There are four cases for digitally convex sets S∗ in

G∗: both v1, v2 ∈ S∗, y ∈ S∗ but x, v1, v2 6∈ S∗, x, y, v1, v2 6∈ S∗, or v1 ∈ S∗ but

v2, x, y 6∈ S∗.

In the first case with v1, v2 ∈ S∗, because x, y ∈ N [{v1, v2}] in both G and G∗, this

set S∗ is also digitally convex in G. Thus, it is added to SG∗ in step 1(a). If y ∈ S∗

but x, v1, v2 6∈ S∗ and x has a private neighbour in V (G∗)− {v1} with respect to S∗,

then x has a private neighbour with respect to S∗ ∪{v1, v2} in G. Thus, S∗ ∪{v1, v2}

is digitally convex in G and S∗ is added to SG∗ in step 1(c). If x does not have a

private neighbour in V (G∗)− {v1}, then S∗ ∪ {x, v1, v2} is digitally convex in G and

S∗ is added to SG∗ in step 1(b). If x, y, v1, v2 6∈ S∗, then v1, v2 6∈ N [S] in both G∗

and G. Thus, S∗ is digitally convex in G and is added to SG∗ in step 2(a). Finally,
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if v1 ∈ S∗ but v2, x, y 6∈ S∗, then y must be a private neighbour for both x and v2

with respect to S∗, i.e. y 6∈ NG∗ [S∗]. In G, the set S∗ − {v1} is digitally convex and

y 6∈ NG[S∗ − {v1}]. Thus, S∗ is added in step 2(b). Therefore, SG∗ = D(G∗).

Next, we show that the number of digitally convex sets satisfying the conditions

of step 1(b) or step 1(c) is equal to the number of digitally convex sets satisfying

the conditions of step 2(b). To do this, we use a restriction of the bijection ϕ in

Theorem 2.2. The sets S1 satisfying cases 1(b) and 1(c) both contain v1, v2 and

y. Thus, the sets ϕ(S1) = V (G) − N [S1] must satisfy v1, v2 6∈ ϕ(S1). They must

also satisfy y 6∈ N [ϕ(S1)], because y 6∈ ϕ(S1) by definition and y 6∈ N [S1] − S1 =

N [ϕ(S1)] − ϕ(S1). This means that these sets satisfy the conditions of step 2(b).

Now, suppose the digitally convex set S2 satisfies the conditions of step 2(b). Then

v1, v2 6∈ S2 and y 6∈ NG[S2]. Since xy ∈ E(G), it must also be true that x 6∈ S2

so v1, v2 6∈ NG[S2]. Thus, v1, v2, y ∈ ϕ(S2). If x 6∈ NG[S2], then x ∈ ϕ(S2), so

ϕ(S2) satisfies the conditions of step 1(b). Otherwise, x 6∈ ϕ(S2), so ϕ(S2) satisfies

the conditions of step 1(c). Thus, ϕ is a bijection between the digitally convex sets

satisfying the conditions of step 1(b) or 1(c) and those satisfying step 2(b).

Now we show that the number of digitally convex sets satisfying the conditions

of step 3 is at least the number that satisfy the conditions of step 2(b). Let S3 be

a digitally convex set satisfying step 2(b). Then y 6∈ NG[S] and so x 6∈ S, implying

that v2 6∈ NG[S]. Then S3 ∪ {v1} is a digitally convex set in G, since v2 is a private

neighbour for itself, x and y with respect to S3 ∪ {v1}. The set S3 ∪ {v1} satisfies the

conditions of step 3.

It is clear from the construction of D(G∗) that nD(G) is the number of digitally

convex sets satisfying steps 1(a), 2(a), 3 and 4. Furthermore, nD(G∗) is the number of

digitally convex sets produced from steps 1(a), 1(b), 1(c), 2(a) and 2(b). Evidently,

the number of digitally convex sets satisfying the conditions of step 3 is equal to the
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number satisfying step 4. From above, each of these is at least the number of convex

sets satisfying step 2(b), which is the same as the number satisfying step 1(b) or 1(c).

Thus, nD(G) is at least the number of digitally convex sets satisfying steps 1(a), 2(a),

1(b), 1(c) and 2(b), i.e. nD(G∗). Therefore, nD(G∗) ≤ nD(G).

3.2 Digital convexity in k-trees

Several of the results in Section 3.1 generalize to k-trees, linking them to the results of

Lafrance, Oellermann and Pressey [15] involving trees, stated in Chapter 2. We begin

by generalizing Algorithm 2, for generating the digitally convex sets of a 2-tree, to

generate the digitally convex sets of a k-tree, and explain how this algorithm can be

applied to chordal graphs. We then examine the digitally convex sets of the kth power

of a path, for any integer k ≥ 1, and give an upper bound on the number of digitally

convex sets in a k-tree of order n. In Theorem 3.20, we extend the recurrence relation

for the number of digitally convex sets in kth power of paths to an even more general

type of structure. Finally, we conjecture a lower bound on the number of digitally

convex sets in a k-tree, based on the lower bound for trees and the conjectured lower

bound for 2-trees.

From Algorithm 2, we can rewrite the cases of step 2 to be in terms of the vertices

in NG(v), instead of the individual vertices u and w. This will make the generalization

to k-trees more natural. The conditions for each case in Algorithm 2 can be rewritten

as follows:

(a) If NG(v) ∩ S = ∅, then add S to SG.

(b) If NG(v)∩ S = ∅ and for every a ∈ NG−v[NG(v)]− S, we have NG[a] 6⊆ NG[S ∪

{v}], then add S ∪ {v} to SG.
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(c) If NG(v) ∩ S 6= ∅, then add S ∪ {v} to SG.

(d)-(f) If NG(v)∩S 6= ∅ and NG−v[NG(v)∩S] ⊆ NG−v[S−NG(v)] then add S−NG(v)

to S . In Algorithm 2, this case is split into three cases, corresponding to the

three possible nonempty intersections of NG(v) and S: {u}, {w} and {u,w}.

For k-trees, the conditions are the same, with only a difference in the neighbour-

hood of the new vertex v. This neighbourhood contains two pairwise adjacent vertices

in Algorithm 2 and now it contains k pairwise adjacent vertices. We state Algorithm 4

in terms of the individual vertices u1, u2, . . . , uk, to keep with the formatting of Al-

gorithm 2.

Algorithm 4. Generating the collection SG of digitally convex sets of a k-tree G of

order n ≥ k + 1.

1. If n = k + 1, then SG = {∅, V (G)}.

2. Suppose n > k+1 and let v be a vertex of degree k, with neighbours u1, u2, . . . , uk.

Use the algorithm to generate SG−v. Generate SG from SG−v as follows: For

each S ∈ SG−v

(a) If ui 6∈ S for every i = 1, 2, . . . , k, then add S to SG.

(b) If ui 6∈ S for every i = 1, 2, . . . , k and for every a ∈ (∪k
i=1NG−v[ui]) − S,

we have NG[a] 6⊆ NG[S ∪ {v}], then add S ∪ {v} to SG.

(c) If ui ∈ S for some i = 1, 2, . . . , k, then add S ∪ {v} to SG.

(d) For any ∅ 6= X ⊆ [k], if ui ∈ S for every i ∈ X and uj 6∈ S for j 6∈ X, and

NG−v[{ui | i ∈ X}] ⊆ NG−v[S − {ui | i ∈ X}], then add S − {ui | i ∈ X}

to SG.
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Theorem 3.18. Let G be a k-tree. Then the collection SG generated by Algorithm 4

is D(G).

We omit the full proof due to its similarity to that of Theorem 3.1, which can be

seen by generalizing the cases in step 2, as above.

Chordal Graphs

Step 2 of Algorithm 4 does not require the degree, k, of the new vertex v in G to be the

same as the vertex v′ added at the previous step to form G−v. By restating this step

to let v be a simplicial vertex of degree k with neighbours u1, u2, . . . , uk, the algorithm

can be applied to graphs in which all simplicial vertices do not necessarily have degree

k. In particular, this allows Algorithm 4 to be used to generate the digitally convex

sets of a chordal graph, using a perfect elimination ordering. Several of the classes

of graphs considered in this thesis are chordal graphs to which this algorithm can be

applied, including the k-trees in the current chapter and block graphs in Chapter 5.

As an example, consider the graph shown in Figure 3.20. The simplicial vertex w

is added to the chordal graph G−{w, v} in Figure 3.20(a) to form the chordal graph

G − v in Figure 3.20(b), followed by adding the vertex v to form the chordal graph

G in Figure 3.20(c). The digitally convex sets of G− {w, v} are as follows:

D(G− {w, v}) = {∅, {2}, {2, 5}, {7}, {3, 7}, {1, 3, 7}, {1, 2, 3, 5, 7}, {8}, {4, 6, 8},

{2, 4, 6, 8}, {2, 4, 5, 6, 8}, {7, 8}, {3, 7, 8}, {1, 2, 3, 4, 5, 6, 7, 8}}.

Now, because w is a simplicial vertex of degree 4 and v a simplicial vertex of degree

2, applying step 2 of Algorithm 4 twice, using D(G − {w, v}) above, will generate

the digitally convex sets of G − v and then of G. The neighbours of w in G − v are

the vertices 2, 4, 5 and 6, so when running step 2 of Algorithm 4, these will be the

vertices ui.
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Figure 3.20: Algorithm 4 uses the digitally convex sets of G−{w, v} to generate those
of G− v and G

The sets ∅, {7}, {3, 7}, {1, 3, 7}, {8}, {7, 8} and {3, 7, 8} all satisfy the conditions

of case (a), as they do not contain the vertices 2, 4, 5 or 6, and so they all get

added to SG−v. The only set that satisfies case (b) is ∅, so the set {w} gets added

to SG−v. The sets {2}, {2, 5}, {1, 2, 3, 5, 7}, {4, 6, 8}, {2, 4, 6, 8}, {2, 4, 5, 6, 8} and

{1, 2, 3, 4, 5, 6, 7, 8} all satisfy the conditions of case (c), as they each contain one of

the vertices 2, 4, 5, or 6. So for each of these sets S, the set S ∪ {w} is added to

SG−v. Finally, the set {1, 2, 3, 4, 5, 6, 7, 8} satisfies the conditions of case (d). The

vertices 2, 4, 5 and 6 all have w as a private neighbour in G− v with respect to the
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set S = {1, 3, 7, 8} so S gets added to SG−v. Now

D(G− v) = {∅, {7}, {3, 7}, {1, 3, 7}, {8}, {7, 8}, {3, 7, 8}, {1, 3, 7, 8}, {w}, {2, w},

{2, 5, w}, {1, 2, 3, 5, 7, w}, {4, 6, 8, w}, {2, 4, 6, 8, w},

{2, 4, 5, 6, 8, w}, {1, 2, 3, 4, 5, 6, 7, 8, w}}.

Now, we repeat step 2 of Algorithm 4 using the digitally convex sets of G − v

to generate those of G, where the vertices 4 and 8 are the neighbours of v in G.

The sets ∅, {7}, {3, 7}, {1, 3, 7}, {w}, {2, w}, {2, 5, w} and {1, 2, 3, 5, 7, w} satisfy

case (a), as none of them contain the vertices 4 or 8. So they all get added to SG.

The sets ∅, {7}, {3, 7} and {1, 3, 7} all satisfy case (b), as the vertex 6 is not in the

neighbourhood of any of these sets, or in the neighbourhood of the vertex v. Thus,

for each of these sets S, the vertex 6 can be a private neighbour for the vertices in the

closed neighbourhood of 4 and 8. So the set S ∪{v} gets added to SG. The sets {8},

{7, 8}, {3, 7, 8}, {4, 6, 8, w}, {2, 4, 6, 8, w}, {2, 4, 5, 6, 8, w} and {1, 2, 3, 4, 5, 6, 7, 8, w}

each satisfy case (c), as they each contain one of the vertices 4 or 8. So for each set S,

the set S ∪ {v} gets added to SG. Finally, {4, 6, 8, w}, {2, 4, 6, 8, w}, {2, 4, 5, 6, 8, w}

and {1, 2, 3, 4, 5, 6, 7, 8, w} each satisfy case (d). The vertices 4 and 8 each have v as

a private neighbour in G with respect to the sets {6, w}, {2, 6, w}, {2, 5, 6, w} and

{1, 2, 3, 5, 6, 7, w}, so these each get added to SG. Now

D(G) = SG = {∅, {7}, {3, 7}, {1, 3, 7}, {w}, {2, w}, {2, 5, w}, {6, w}, {2, 6, w},

{2, 5, 6, w}, {1, 2, 3, 5, 7, w}, {1, 2, 3, 5, 6, 7, w}, {v}, {7, v}, {3, 7, v}, {1, 3, 7, v}, {8, v},

{7, 8, v}, {3, 7, 8, v}, {1, 3, 7, 8, v}, {4, 6, 8, w, v}, {2, 4, 6, 8, w, v}, {2, 3, 5, 6, 8, w, v},

{1, 2, 3, 4, 5, 6, 7, 8, w, v}}

Thus, Algorithm 4 can be used to generate the digitally convex sets of both k-trees
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and chordal graphs.

Another result that extends naturally from 2-trees to the more general k-trees is

Theorem 3.3, enumerating the digitally convex sets of the square of the path of order

n. Theorem 3.3 uses the digitally convex sets of P 2
n−1 and P 2

n−3 to enumerate those

of P 2
n , as the vertex vn is not adjacent to any of the vertices in P 2

n−3. For the kth

power of a path, P k
n , the vertex vn has degree k. So it is adjacent to the vertices

vn−1, vn−2, . . . , vn−k but not adjacent to the vertex vn−k−1. So, instead, we use the

digitally convex sets of P k
n−1 and P k

n−k−1 to enumerate those of P k
n .

Theorem 3.19. If P k
n is the kth power of the path of order n, then nD(P k

n ) =

nD(P k
n−1) + nD(P k

n−k−1), for n ≥ 4 + k.

The proof of this theorem is omitted here, as it follows the same format as that of

Theorem 3.3, with the role of the graph P 2
n−3 and the vertex vn−3 being replaced with

P k
n−k−1 and vn−k−1, respectively. Base cases are not provided in Theorem 3.19, as

their number and value both differ depending on k. Note that for k = 1, these graphs

are simply the paths, and the recurrence given here matches that of Proposition 2.4.

This result can be further generalized, as the proof depends only on the vertices

vn−k−1, vn−k, . . . , vn and the structure of their neighbourhoods. The proof requires

that the vertex vn−k−1 be adjacent to a k-clique in P k
n−k−1, though if vn−k−1 has other

neighbours, then they do not affect the proof. That is, vn−k−1 is not required to

be simplicial. Denote the vertices of the k-clique by u1, u2, . . . , uk. Then, the proof

requires that for each j = 1, 2, . . . , k, the vertex vn−j be adjacent to each ui with i < j,

to the vertex vn−k−1, and to each vn−p with j < p ≤ k. Finally, the proof requires the

vertex vn to be adjacent to vn−1, vn−2, . . . , vn−k. The case with k = 3 is illustrated in

Figure 3.21. This generalization is summarized in the following theorem.

Theorem 3.20. Let G be a graph containing a k+1-clique with vertices v, u1, u2, . . . , uk,

for some k > 1. For any ` with 1 ≤ ` ≤ k, let G` be the graph formed by adding to G
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u1

u2

u3

v

x0

x1

x2

x3

Figure 3.21: The structure described in Theorem 3.20 with k = ` = 3

the pairwise adjacent vertices x0, x1, . . . , x`, forming an `+1-clique, and the edges xiv,

for i = 0, 1, . . . , `− 1, and xiuj, for i+ j < `.Then nD(G`) = nD(G) +nD(G`− x`).

Proof. First, we show that nD(G`) ≥ nD(G) + nD(G` − x`). Let S ∈ D(G). Since

x` 6∈ NG`
[S], x` is a private neighbour for the vertices x0, x1, x2, . . . , x` with respect

to S. Thus, S is digitally convex in G`.

Let S ∈ D(G` − x`).

• If x`−1 ∈ S then S ∪ {x`} is digitally convex in G`, because N [x`] is dominated

by x`−1 in G`.

• If x`−1 6∈ S and v 6∈ NG`−x`
[S], then v 6∈ NG`

[S ∪ {x`}] because vx` 6∈ E(G`).

Thus, v is a private neighbour for itself as well as for x0, x1, x2, . . . , x`−1 in G`

with respect to S ∪ {x`}. So S ∪ {x`} is digitally convex in G`.

• If x`−1 6∈ S and v ∈ NG`−x`
[S], then it must be the case that v ∈ NG`−x`

[S]−S,

as v dominates N [x`−1] in G`−x`. The vertices x0, x1, x2, . . . , x`−2 also dominate

N [x`−1] so none of these can be in S. In G`, x` 6∈ NG`
[S] so x` is a private

neighbour for itself with respect to S in G`, and the set S is digitally convex in

G`.
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Since each digitally convex set in D(G) ∪ D(G` − x`) has a corresponding set in

D(G`) and this correspondence is injective, we have nD(G`) ≥ nD(G) + nD(G` − x`).

Now, we show the reverse inequality.

Let S ∈ D(G`).

• If x` ∈ S then each vertex in V (G`) − S has a private neighbour with respect

to S that is in V (G` − x`). Thus, S − {x`} is digitally convex in G` − x`.

• If x` 6∈ S and v ∈ NG`
[S]−S, then it must be the case that x0, x1, x2, . . . , x`−1 6∈

S, as each of these dominates NG`
[x`]. Thus, x`−1 6∈ NG`

[S] and is a private

neighbour for x0, x1, x2, . . . , x`−1, v with respect to S in G`−x`. So S is digitally

convex in G` − x`.

• If x` 6∈ S and v 6∈ NG`
[S]−S, then each vertex y ∈ V (G`)−(S∪{x0, x1, x2, . . . , x`})

has a private neighbour with respect to S that is in G. Each xi 6∈ S because it

dominates NG`
[x`] for i < `. Thus, S is digitally convex in G.

Therefore, nD(G`) = nD(G) + nD(G` − x`).

We turn now to an upper bound on the number of digitally convex sets in a k-tree.

Recall that for a tree T and a 2-tree G each of order n, we have nD(T ) ≤ 2n−1 and

nD(G) ≤ 2n−2. Each of these has the form 2n−k, as trees are equivalent to k-trees

with k = 1. The following result shows that this pattern extends to k > 2.

Theorem 3.21. If G is a k-tree, then nD(G) ≤ 2n−k.

To prove this result, we use a technique identical to that of Theorem 3.4, removing

the edges e1, e2, . . . , ek incident with a vertex of degree k in G. The new graph then

satisfies the inequality nD(G) ≤ nD(G − {e1, e2, . . . , ek}). By continuing to remove

the edges incident with a vertex of degree k until the remaining graph has the n− k
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components consisting of Kk+1 and n− k− 1 isolated vertices, we obtain the desired

inequality, as each component is a clique with exactly two digitally convex sets. We

omit the full proof due to its similarity to that of Theorem 3.4. As for both trees and

2-trees, this upper bound is sharp.

Proposition 3.22. For a given integer k ≥ 1, the upper bound given in Theorem 3.21

is attained by the graph Kk +Kn−k.

The digitally convex sets are, as in the proof of Proposition 3.5, subsets S $

V (Kn−k), along with the entire vertex set V (Kk +Kn−k). So Kk +Kn−k has a total

of 2n−k digitally convex sets, for any integer k ≥ 1 and n > k.

We examine now whether a lower bound on the number of digitally convex sets in a

k-tree can be constructed using the lower bound given in Theorem 2.5 for trees and the

conjectured lower bound given in Conjecture 3.6 for 2-trees. Provided Conjecture 3.6

holds, for a tree T and a 2-tree G, each of order n, we have

nD(T ) ≥


2 · 2n

2 − 2, if n ≡ 0 (mod 2)

3 · 2n−1
2 − 2, if n ≡ 1 (mod 2)

nD(G) ≥


3 · 2n

3 − 4, if n ≡ 0 (mod 3)

4 · 2n−1
3 − 4, if n ≡ 1 (mod 3)

5 · 2n−2
3 − 4, if n ≡ 2 (mod 3)

By letting n = (k + 1)` + p, with p ∈ {0, 1, . . . , k}, each of these satisfies the more

general formula

nD(H) ≥ (k + 1 + p) · 2` − 2k

Similarly, we can generalize the graphs that attain this lower bound for trees and

conjectured lower bound for 2-trees, the spiderstars and the 2-spiderstars, to form the

k-spiderstars. The k-spiderstar of order n, Sk,n, is constructed in the following way:
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x1

x2

x3

v1,1

v2,1

v3,1

v4,1

u1,2u2,2

Figure 3.22: The 3-spiderstar with 9 vertices, S3,9

1. Begin with Kk with vertices x1, x2, . . . , xk.

2. For i = 1, 2, . . . , bn−k
k+1 c, add vertices v1,i, v2,i, . . . , vk+1,i and edges xjvh,i with j+

h ≤ k + 1 and vg,ivh,i with g < h.

3. Let p ≡ n−k (mod k+1) and b = dn−k
k+1 e. If p 6≡ 0 (mod k+1), then add vertices

u1,b, u2,b, . . . , up,b and edges xjuh,b with j + h ≤ k + 1 and ug,buh,b with g < h.

An example with n = 9 and k = 3 is given in Figure 3.22. Using either Algorithm 4

or the brute force approach given in Appendix A for generating the digitally convex

sets of a particular graph, we find that nD(S3,9) = 14 = (3 + 1 + 1) · 22 − 6. Note

that setting k = 1 gives the spiderstars, Sn, and setting k = 2 gives the 2-spiderstars

constructed in Section 3.1.

We now conjecture that the proposed generalization of the lower bounds on the

number of digitally convex sets of trees and 2-trees gives a lower bound on the number

of digitally convex sets for a k-tree with k ≥ 1. We also conjecture that the k-

spiderstars attain this lower bound for k ≥ 1.

Conjecture 3.23. Let G be a k-tree of order n = (k+1)`+p, where n ≡ p (mod k+

1). Then nD(G) ≥ (k + 1 + p) · 2` − 2k, with this lower bound attained by the k-
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spiderstars, Sk,n.

Unlike with the upper bound on the number of digitally convex sets of trees and

2-trees, there appears to be no simple extension of the lower bound for trees to 2-trees.

While the proposed outline for 2-trees is similar to that for trees and uses induction

on n, there are more cases to consider for 2-trees. Several additional lemmas are

required to apply the induction hypothesis in the case of 2-trees than are required in

the case of trees. There is not an obvious generalization to k-trees, so we leave this

lower bound as a conjecture.

3.3 Simple clique 2-trees

A subclass of k-trees for which the enumeration of digitally convex sets is not obvious

is the class of simple clique k-trees, defined by Markenzon, Justel and Paciornik [17].

In this section, we focus only on the case when k = 2. We give an upper bound on

the number of digitally convex sets in a simple clique 2-tree, which differs from the

upper bound for 2-trees when n ≥ 5, and note that a sharp lower bound likely also

differs from the conjectured sharp lower bound on the number of digitally convex sets

of 2-trees for larger values of n, though we do not give an explicit formula for such a

lower bound. We begin with the definition of a simple clique k-tree, from which it is

obvious that this graph class is a subclass of the k-trees.

Definition 3.24 (Markenzon, Justel and Paciornik [17]). For k ≥ 1, a simple clique

k-tree (or SC k-tree) is a graph defined as follows: a k + 1 clique, Kk+1, is an SC

k-tree, and an SC k-tree of order n > k + 1 is constructed by adding to an SC k-tree

of order n−1 a vertex v adjacent to a k-clique that belongs to exactly one k+1-clique

in the existing SC k-tree, and only to these vertices.
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Note that, when k = 1, the simple clique 1-trees are equivalent to the paths.

Figure 3.23 shows a simple clique 2-tree of order eight.

Figure 3.23: A simple clique 2-tree of order eight

We also include the following definition and result, as they will be useful in the

proofs in this section.

Definition 3.25 (Markenzon, Justel and Paciornik [17]). The k-line graph of a graph

G is a graph whose vertices are the cliques of size k in G. Two vertices in the k-line

graph are adjacent if and only if their corresponding cliques in G have k − 1 vertices

in common.

Theorem 3.26 (Markenzon, Justel and Paciornik [17]). A k-tree G is a simple clique

k-tree if and only if its (k + 1)-line graph is a tree.

We note that for SC 2-trees in particular, the vertices of the 3-line graph can have

degree at most 3, as a given 3-clique can share each of its edges with at most one

other 3-clique in an SC 2-tree.

In Section 3.1 we saw that, as with 2-trees, not all SC 2-trees of the same order

have the same number of digitally convex sets. This fact can be seen using the same

graphs used to show this fact for 2-trees, P 2
6 and P5 + K1 which have six and eight

digitally convex sets, respectively. In Theorem 3.4 and Proposition 3.5, we describe

the subclass of 2-trees, K2 + Kn−2, that attain the upper bound on the number of
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digitally convex sets in a 2-tree. However, these graphs are not SC 2-trees for n ≥ 5,

as the 2-clique, xy, belongs to every 3-clique in the graph. These graphs indicate

that the upper bound given in Theorem 3.4 may not be sharp for SC 2-trees. In

this section, we show that the upper bound can be improved when restricted to SC

2-trees. Before we do this, we require the following lemma.

Lemma 3.27. Let G be an SC 2-tree of order n > 4. Then G has a vertex of degree

2 adjacent to a vertex of degree 3, or G has two vertices of degree 2 with a common

neighbour of degree 4.

Proof. Let G` be the 3-line graph of G. By Theorem 3.26, we know that G` is a tree.

The leaves of G` correspond to the 3-cliques in G that contain a vertex of degree 2,

as only two vertices in the 3-clique are contained in a second 3-clique in G.

Suppose there is a leaf v` of G` adjacent to a vertex u` of degree 2 in G`. Then,

in G, v` corresponds to a 3-clique containing a vertex v of degree 2 and whose other

two vertices, say u and w, are also contained in the 3-clique corresponding to u`. The

clique corresponding to u` shares an edge with the clique corresponding to v` and

with one other clique corresponding to a vertex w` of G` (see Figure 3.24). So one of

u or w, say u, is not in the clique corresponding to w`. Then u has degree 3 in G.

w`

u`

v`

(a) G`

v

u w
v`

u`
w`

(b) G

Figure 3.24: The 3-line graph G` corresponding to the SC 2-tree G

Suppose instead that there is no leaf of G` with a neighbour of degree 2. Then,

there must be two leaves, x` and y`, both adjacent to a vertex z` of degree 3 in G`.
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Since x` and y` are leaves in G`, their corresponding 3-cliques in G each contain a

vertex, x and y, respectively, of degree 2. Then, each of the 3-cliques corresponding

to x` and y` share an edge with the 3-clique corresponding to z` (see Figure 3.25).

There is therefore a vertex z that is contained in each of the 3-cliques corresponding

to x`, y` and z`. The vertex z is a neighbour of both x and y and has two other

neighbours in the clique corresponding to z`. Thus, z is a common neighbour of x

and y with degree 4.

z`

x` y`

(a) G`

z
x y

x` y`z`

(b) G

Figure 3.25: The 3-line graph G` corresponding to the SC 2-tree G

Theorem 3.28. Let G be a simple clique 2-tree of order n ≥ 3. Then nD(G) ≤ 2fn−1,

where fn−1 is the (n− 1)th Fibonacci number, as defined in Chapter 2.

Proof. We prove this by induction on n. If n = 3, then G ∼= K3. So nD(G) = 2 =

2(1) = 2f2. If n = 4, then G is the graph in Figure 3.26. So nD(G) = 4 = 2(2) = 2f3.

Figure 3.26: Base case for Theorem 3.28

Now, suppose that there exists a k ≥ 5 such that nD(Gn) ≤ 2fn−1 for all SC

2-trees Gn of order 3 ≤ n < k. Let G be a graph of order k. By Lemma 3.27, the

graph G has a vertex of degree 2 adjacent to a vertex of degree 3, or has two vertices
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of degree 2 with a common neighbour of degree 4. We consider each of these cases

separately.

Suppose G has a vertex v of degree 2 with a neighbour u of degree 3. Let w be

the other neighbour of v in G. We now show nD(G) ≤ nD(G−{v})+nD(G−{u, v}).

To do this, we partition the digitally convex sets of G into two types. The sets S ′ of

type one are those that contain none of v, u, w or have v 6∈ S ′ and u 6∈ NG[S ′]. The

sets of type two are all of the remaining digitally convex sets of G. We now show

an injection from the digitally convex sets of G of type one to D(G − {v}) and an

injection from those of type two to D(G− {u, v}).

Let S ∈ D(G). If v, u, w ∈ S, then S − {v} is digitally convex in G − {v}, as

NG[v] is dominated by both u and w. Thus, every vertex in (G − {v}) − S has the

same private neighbour with respect to S−{v} in G−{v} as with respect to S in G.

If v 6∈ S and u 6∈ NG[S], then S is digitally convex in G − {v}, as u is a private

neighbour for itself and for w with respect to S. Every other vertex not in S has the

same private neighbour with respect to S in G− {v} as in G.

If v ∈ S and u,w 6∈ S, then S − {v} is digitally convex in G− {u, v}, as w has a

private neighbour with respect to S in G that is in V (G−{u, v}). Every other vertex

has the same private neighbour with respect to S − {v} in G− {u, v} as in G.

If v 6∈ S, u ∈ NG[S] and NG[w] ⊆ NG[S ∪ {v}], then S ∪ {w} is digitally convex

in G− {u, v}, as every vertex a ∈ NG−{u,v}[w] is also in NG−{u,v}[S]. So every vertex

not in S ∪ {w} has the same private neighbour with respect to S ∪ {w} in G−{u, v}

as with respect to S in G.

Finally, if v 6∈ S, u ∈ NG[S] and NG[w] 6⊆ NG[S ∪ {v}], then S is digitally

convex in G− {u, v}, as w has a private neighbour with respect to S in G that is in

V (G − {u, v}). Since u ∈ NG[S], u is not a private neighbour with respect to S for

any vertex in G. Every other vertex has the same private neighbour with respect to
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S in G− {u, v} as in G.

We have shown an injective mapping from the digitally convex sets of G of type

one to the digitally convex sets of G−{v} and an injective mapping from the digitally

convex sets of G of type two to the digitally convex sets of G−{u, v}. Thus, nD(G) ≤

nD(G− {v}) + nD(G− {u, v}). By the induction hypothesis, we have

nD(G) ≤ nD(G− {v}) + nD(G− {u, v})

≤ 2fn−2 + 2fn−3 = 2fn−1.

Now suppose G has two vertices x and y, both of degree 2, with a common

neighbour z of degree 4. Let x′ be the other neighbour of x and y′ the other neighbour

of y. Similar to above, we show that nD(G) ≤ nD(G − {x}) + nD(G − {x, y}). To

do this, we partition the digitally convex sets of G into two types. The sets S ′ of

type one are those that contain x and at least one of x′ or z, or do not contain x

and satisfy one of x′ 6∈ NG[S ′] or z 6∈ NG[S ′]. The sets of type two are all of the

remaining digitally convex sets of G. We now show an injection from the digitally

convex sets of G of type one to D(G− {x}) and an injection from those of type two

to D(G− {x, y}).

If x ∈ S and x′ ∈ S or z ∈ S, then S−{x} is digitally convex in G−{x}, as NG[x]

is dominated by both z and x′. So every vertex has the same private neighbour with

respect to S − {x} in G− {x} as with respect to S in G.

If x 6∈ S and x′ 6∈ NG[S] or z 6∈ NG[S], then S is digitally convex in G − {x}, as

every vertex has the same private neighbour with respect to S in G− {x} as in G.

If x ∈ S and x′, z 6∈ S, then S − {x} is digitally convex in G− {x, y}, as x′ must

have a private neighbour with respect to S, and hence S−{x}, that is in V (G−{x, y}).

It must be the case that z 6∈ NG[S − {x}], as y′ ∈ S means y ∈ S since y′ dominates
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y, but x and y together dominate z. So y ∈ S contradicts z 6∈ S. Thus, z is a private

neighbour for itself and for y′ in G− {x, y} with respect to S − {x}.

If x 6∈ S and x′, z ∈ NG[S], then it must be the case that y ∈ S, as x′ ∈ S or z ∈ S

implies x ∈ S, which is a contradiction, and y′ ∈ S implies y ∈ S. So x is the only

private neighbour of z, i.e. NG[z] ⊆ NG[S∪{x}]. If, in addition, NG[x′] ⊆ NG[S∪{x}],

then (S − {y}) ∪ {x′, z} is digitally convex in G − {x, y}. Since y ∈ S, it is not a

private neighbour for any vertex in G with respect to S. Every other vertex has the

same private neighbour with respect to (S − {y}) ∪ {x′, z} in G− {x, y} as in G.

Similarly, if x 6∈ S, x′, z ∈ NG[S] and NG[z] ⊆ NG[S ∪ {x}] but NG[x′] 6⊆ NG[S ∪

{x}], then (S − {y}) ∪ {z} is digitally convex in G − {x, y}. The vertex x′ has a

private neighbour with respect to S in G that is not x or z, so it has this same private

neighbour with respect to (S − {y}) ∪ {z} in G− {x, y}. Every other vertex has the

same private neighbour with respect to (S − {y}) ∪ {z} in G− {x, y} as in G.

As above, we have shown an injective mapping from the digitally convex sets of

G of type one to the digitally convex sets of G− {x} and an injective mapping from

the digitally convex sets of G of type two to the digitally convex sets of G − {x, y}.

Thus, nD(G) ≤ nD(G−{x}) +nD(G−{x, y}). By the induction hypothesis, we have

nD(G) ≤ nD(G− {x}) + nD(G− {x, y})

≤ 2fn−2 + 2fn−3 = 2fn−1.

Note that this upper bound matches the number of digitally convex sets of a

path, Pn−1, of order n − 1, given in Proposition 2.4. The following results show the

connection between the digitally convex sets of SC 2-trees and those of paths.
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Figure 3.27: P7 +K1

Proposition 3.29. Let G be a graph with v a universal vertex. Then nD(G) =

nD(G− v).

Proof. Let S ∈ D(G−v). If S 6= V (G−v), then there is some x ∈ V (G−v)−N [S] that

is a private neighbour of v with respect to S in G. Every other vertex y ∈ V (G−v)−S

has the same private neighbour with respect to S in G as in G−v. Thus, S is digitally

convex in G. If S = V (G − v), then S is a dominating set in G, and is therefore

not digitally convex. However, S ∪ {v} = V (G) is digitally convex in G. Thus,

nD(G) ≥ nD(G− v).

Now, let S ∈ D(G). Since v is a universal vertex, any set containing v is a

dominating set in G, so the only digitally convex set containing v is V (G). So if

S 6= V (G), then v 6∈ S. Since v ∈ N [S] for any S 6= ∅, it is not a private neighbour

for any vertex x ∈ V (G)−S. Thus, every vertex x ∈ V (G)−S has a private neighbour

in V (G−v), and so S is digitally convex in G−v. Therefore, nD(G) = nD(G−v).

Using this result, we can easily construct an SC 2-tree that attains the bound

given in Theorem 3.28, using the fact that nD(Pn−1) = 2fn−1.

Proposition 3.30. The upper bound on the number of digitally convex sets in a

simple clique 2-tree, given in Theorem 3.28, is attained by the graph Pn−1 +K1.

This is easily shown by applying Proposition 3.29 to the graph Pn−1 +K1 to show

that it has the same number of digitally convex sets as Pn−1. By Proposition 2.4,
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nD(Pn−1) = 2fn−1, as desired. Figure 3.27 shows P7+K1, which has 2f7 = 26 digitally

convex sets.

Since the SC 2-trees form a subclass of the 2-trees, the lower bound on the number

of digitally convex sets conjectured in Conjecture 3.6 also holds for SC 2-trees if it

holds for 2-trees. However, 2-spiderstars are not SC 2-trees for larger values of n, as

their 3-line graphs are not trees when n ≥ 9. Therefore, as with the upper bound,

the lower bound in Conjecture 3.6 may not be sharp for SC 2-trees.

2-Path graphs

Of particular interest are the 2-trees that contain exactly two vertices of degree 2.

These are called 2-path graphs, denoted 2Pn and form a subclass of the simple clique

2-trees [17]. Note that the 3-line graph of a 2-path graph must be a path, as it must

be a tree with two leaves, one for each of the 3-cliques containing a vertex of degree

2. An example of a 2-path graph of order n is the square of the path of order n, P 2
n .

We now show that the lower bound on the number of digitally convex sets in a 2-tree,

conjectured in Conjecture 3.6, holds for 2-path graphs, but is not sharp for 2-path

graphs of order n = 9.

Theorem 3.31. Let G be a 2-path graph of order n ≥ 4. Then,

nD(G) ≥


3 · 2n

3 − 4, if n ≡ 0 (mod 3)

4 · 2n−1
3 − 4, if n ≡ 1 (mod 3)

5 · 2n−2
3 − 4, if n ≡ 2 (mod 3)

Proof. We prove this result using induction on n. Figure 3.28 shows all 2-path

graphs of orders 4, 5 and 6. If n = 4, then nD(G) = 4 = 4 · 2 4−1
3 − 4. If n = 5, then

nD(G) = 6 = 5 · 2 5−2
3 − 4. If n = 6, then nD(G) ≥ 8 = 3 · 2 6

3 − 4. Therefore, the result
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holds for 4 ≤ n ≤ 6.

(a) nD(G) = 4 (b) nD(G) = 6 (c) nD(G) = 8 (d) nD(G) = 10

Figure 3.28: All 2-path graphs of orders 4, 5 and 6

Now, suppose there exists a k ≥ 7 such that the result holds for 2-path graphs Gn

of order n, with 4 ≤ n < k. Now, suppose G is a 2-path graph of order k.

Claim: The graph G has a vertex v of degree 2, adjacent to two vertices u and w of

degree 3 and 4, respectively, or G has a vertex b of degree 3 with neighbours a and c

of degree 2 and 3, respectively.

Let G` be the 3-line graph of G. Then G` must be a path of order n − 2 [17].

So G` has vertices x`, y` and z` such that x` is a leaf of G`, d(y`) = d(z`) = 2 and

x`y`, y`z` ∈ E(G`). The vertex x` in G` corresponds to a 3-clique in G with a vertex

x1 of degree 2. The other two vertices, x2 and x3, in the 3-clique corresponding to x`

are both also contained in the 3-clique corresponding to y`. Let y be the other vertex

in the 3-clique corresponding to y`. Now, y and one of x2 or x3, say x2, are also in

the 3-clique corresponding to z`, since y` has degree 2 in G`. Thus, x3 has degree 3 in

G. Moreover, z` has degree 2 in G` so the 3-clique corresponding to z` in G shares an

edge with a second 3-clique, w`. Exactly one of x2 or y is in w`. If x2 is in w`, then

y is only in the 3-cliques y` and z` and thus has degree 3 in G. If y is in w`, then x2

is only in the 3-cliques x`, y` and z` and this has degree 4 in G. This completes the

proof of the claim.

Now, if G has a vertex v of degree 2, adjacent to two vertices u and w of degree

3 and 4, respectively, then we can apply the inequality in Lemma 3.7. So nD(G) ≥
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2nD(G− {u, v, w}) + 4. By the induction hypothesis,

nD(G) ≥ 2nD(G− {u, v, w}) + 4 ≥


2(3 · 2n

3−1 − 4) + 4, if n ≡ 0 (mod 3)

2(4 · 2n−1
3 −1 − 4) + 4, if n ≡ 1 (mod 3)

2(5 · 2n−2
3 −1 − 4) + 4, if n ≡ 2 (mod 3)

=


3 · 2n

3 − 4, if n ≡ 0 (mod 3)

4 · 2n−1
3 − 4, if n ≡ 1 (mod 3)

5 · 2n−2
3 − 4, if n ≡ 2 (mod 3)

as desired.

Similarly, if G has a vertex b of degree 3 with neighbours a and c of degree 2

and 3, respectively, then we can apply the inequality in Lemma 3.8. So nD(G) ≥

2nD(G− {a, b, c}) + 4. By the induction hypothesis,

nD(G) ≥ 2nD(G− {a, b, c}) + 4 ≥


2(3 · 2n

3−1 − 4) + 4, if n ≡ 0 (mod 3)

2(4 · 2n−1
3 −1 − 4) + 4, if n ≡ 1 (mod 3)

2(5 · 2n−2
3 −1 − 4) + 4, if n ≡ 2 (mod 3)

=


3 · 2n

3 − 4, if n ≡ 0 (mod 3)

4 · 2n−1
3 − 4, if n ≡ 1 (mod 3)

5 · 2n−2
3 − 4, if n ≡ 2 (mod 3)

as desired.

As shown in the proof above, this lower bound is sharp for 2-path graphs of

order n ≤ 6. The square of the path of order 7, P 2
7 , also attains this bound. From

Theorem 3.3, we have nD(P 2
7 ) = 12 = 4 · 2 7−1

3 − 4. The 2-path G of order 8 shown in

Figure 3.29 satisfies nD(G) = 16 = 5 · 2 8−2
3 − 4.
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Figure 3.29: A 2-path of order 8 that attains the lower bound in Theorem 3.31

When n = 9, however, the lower bound in Theorem 3.31 is no longer sharp. Every

2-path of order 9 has at least 22 > 20 = 3 ·2 9
3 −4 digitally convex sets. This indicates

that the lower bound on the number of digitally convex sets of a 2-path can likely be

improved.
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Chapter 4

Cycles and Cartesian Products

In Chapters 2 and 3, we saw that the digitally convex sets of paths, as well as of

powers of paths, satisfy recurrence relations that make it possible to enumerate the

digitally convex sets using only the number of digitally convex sets in those graphs

of smaller orders. In this chapter, we examine other classes of graphs whose digitally

convex sets can be counted using recurrence relations, including cycles and Cartesian

products of paths. We show that, for some of these graph classes, their digitally

convex sets can be counted directly or using the digitally convex sets of graphs of

smaller orders while, for others, we use a bijection between the digitally convex sets

and other mathematical objects whose enumeration satisfies the same recurrence.

4.1 Digitally convex sets of cycles

Throughout this section, for a cycle Cn, we denote the vertices by v1, v2, . . . , vn with

vivi+1 ∈ E(Cn) for i = 1, 2, . . . , n− 1 and v1vn ∈ E(Cn).

A cycle of order n, unlike a path of order n, does not contain a cycle of a smaller

order as an induced subgraph. Despite this, the number of digitally convex sets of

the cycle Cn can be computed using the number of digitally convex sets in the cycles

Cn−1, Cn−2 and Cn−4, as we show in the following result.
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Theorem 4.1. Let Cn be the cycle of order n. Then nD(C3) = 2, nD(C4) =

6, nD(C5) = 12, nD(C6) = 20 and, for n ≥ 7,

nD(Cn) = 2nD(Cn−1)− nD(Cn−2) + nD(Cn−4).

Proof. We first prove the initial conditions, shown in Figure 4.1. If n = 3, then the

only digitally convex sets are ∅ and V (C3), so nD(C3) = 2. If n = 4, then the digitally

convex sets are ∅, V (C4) and {vi} for 1 ≤ i ≤ 4, so nD(C4) = 6. If n = 5, then the

digitally convex sets are ∅, V (C5), {vi} for 1 ≤ i ≤ 5 and {vj, vk} for vjvk ∈ E(C5).

So nD(C5) = 12. Finally, if n = 6, then the digitally convex sets are ∅, V (C6), {vi}

for 1 ≤ i ≤ 6, {vj, vk} for vjvk ∈ E(C6) and {vi, vj, vk} for vivj, vjvk ∈ E(C6). So

nD(C6) = 20.

(a) nD(C3) = 2 (b) nD(C4) = 6 (c) nD(C5) = 12 (d) nD(C6) = 20

Figure 4.1: Base cases for Theorem 4.1

Now, suppose n ≥ 7 and consider Cn. To show the recurrence, we show a bijection

between the digitally convex sets of the cycle Cn and the number of cyclic binary n-bit

strings with no alternating substring of length greater than 2 (i.e. 101 and 010 are not

substrings). These cyclic binary n-bit strings satisfy the same recurrence, which is the

On-Line Encyclopedia of Integer Sequences (OEIS) sequence A007039 [23]. To start,

we label the edges of the cycle by assigning label i to the edge vivi+1, for 1 ≤ i < n,

and label n to the edge v1vn.

Given a digitally convex set S ∈ D(Cn), we get a corresponding cyclic binary

n-bit string S∗ by setting the ith bit to be 1 if edge i is incident with a vertex in the

set S and 0 otherwise. As an example, the digitally convex set S = {v4, v5}, shown



80

in Figure 4.2, corresponds to the cyclic binary string (0011100), as the edges 3, 4 and

5 are incident with vertices in S.

v1 v7

v6

v5

v4

v3

v2

1
7

6

5
43

2

Figure 4.2: The digitally convex set S = {v4, v5} is indicated in red

Now, we show that the cyclic binary n-bit string S∗ has no alternating substring

of length greater than 2. Note that if any edge label or vertex index (e.g. i + 1 or

i−1) is not in {1, 2, . . . , n}, then we consider that label or index mod n. Suppose the

binary substring of S∗ corresponding to positions i− 1, i, i+ 1 is 010. Then edge i is

incident with a vertex in the set S, but neither edges i− 1 or i+ 1 are. The vertices

incident with edge i are vi and vi+1, indicated in red in Figure 4.3(a). So one of these

must be in S. However, each of these is incident with one of the edges i− 1 or i+ 1.

So neither vertex can be in S, which is a contradiction. Suppose the binary substring

of S∗ corresponding to positions i− 1, i, i+ 1 is 101. Then edge i is not incident with

a vertex in the set S, so vi, vi+1 6∈ S. The edges i− 1 and i+ 1 are each incident with

a vertex in S, so vi−1, vi+2 ∈ S, indicated in red in Figure 4.3(b). However, then the

vertices vi and vi+1 have no private neighbour with respect to S, contradicting the

fact that S is digitally convex. Thus, neither 010 nor 101 can appear as a substring

of S∗.

We now reverse this process to show a bijection. Given a cyclic binary n-bit

string S∗ without an alternating substring of length greater than 2, we construct the
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vi−1

vi
vi+1

vi+2
0

1
0

(a) 010

vi−1

vi
vi+1

vi+2
1

0
1

(b) 101

Figure 4.3: Neither 010 nor 101 can appear as a substring

corresponding subset S of vertices in the cycle in the following way. If bits i and i+1

are both 1, then add vertex vi+1 to the set S, for 1 ≤ i < n. If bit 1 and bit n are both

1, then add the vertex v1 to S. Since S∗ does not contain the substring 010, each 1

in S∗ is either preceded by a 1 or followed by a 1. So each substring of k consecutive

1’s in S∗ corresponds to k − 1 consecutive vertices being added to S, for k < n, or

all n vertices being added to S in the case that k = n. This means that there is a

one-to-one map from the cyclic n-bit binary strings without alternating substrings of

length greater than 2 to the family of sets of vertices S on the n-cycle. It remains to

be shown that S is a digitally convex set in Cn.

Suppose S is not digitally convex. Then there is some vi 6∈ S such that N [vi] ⊆

N [S]. So at least one of vi−1 and vi+1 is in S. Also, if vi−1 6∈ S, then vi−2 ∈ S and if

vi+1 6∈ S, then vi+2 ∈ S.

If vi−1, vi+1 ∈ S then, in S∗, bits i−2, i−1, i and i+1 must all be 1. Then, in the

construction of S, since both bits i− 1 and i are 1, the vertex vi is added to S, which

is a contradiction. If vi+1 6∈ S and vi−1, vi+2 ∈ S, then, in S∗, bits i− 2, i− 1, i+ 1

and i + 2 must all be 1, and bit i must be 0. However, the bits i − 1, i, i + 1 then

form a substring 101, which is forbidden in S∗, so we have a contradiction. Similarly,

if vi−1 6∈ S and vi−2, vi+1, then, in S∗, the bits i − 1, i, i + 1 form a substring 101,

which is a contradiction.

Thus, the set S is digitally convex in Cn, and we have a bijection between the
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digitally convex sets of Cn and the cyclic binary n-bit strings with no alternating

substring of length greater than 2, which satisfy the desired recurrence [23].

The number of digitally convex sets in a cycle satisfies the same recurrence as the

number of cyclic binary n-bit strings with no alternating substring of length greater

than 2, so the two sequences have the same generating function [23]

2x(1 + x)(1− 2x+ 2x2)
(1− x+ x2)(1− x− x2) .

Notice that this expands to

2x+ 2x2 + 2x3 + 6x4 + 12x5 + 20x6 + 30x7 + 46x8 + 74x9

+122x10 + 200x11 + · · ·+ 1362x15 + · · ·+ 15126x20 + · · ·+ 103684x24

+167762x25 + · · ·+ 1149852x29 + 1860500x30 + . . .

indicating that C5 is the smallest cycle with more than ten digitally convex sets, C10 is

the smallest cycle with more than 100, C15 is the smallest cycle with more than 1000,

and C20 is the smallest cycle with more than 10 000. However, C24, not C25, is the

smallest cycle with more than 100 000 digitally convex sets and, similarly, C29 is the

smallest cycle with more than 1 000 000. This pattern suggests that nD(C5k) ≥ 10k,

but not that C5k is the smallest such cycle satisfying this inequality.

Just as with paths, we can generalize the recurrence for the number of digitally

convex sets of a cycle to the number of digitally convex sets of the kth power of

a cycle. Figure 4.4 shows the first three powers of the cycle C7. Note that for

3 ≤ n ≤ 2k + 1, Ck
n is a complete graph. A vertex vi in Ck

2k+1 is adjacent to

the vertices vi−k, vi−k+1, . . . , vi−1, vi+1, vi+2, . . . , vi+k, taking each subscript mod n if

necessary so that it falls in the set {1, 2, . . . , n}. Thus, each vertex has 2k distinct



83

neighbours and Ck
2k+1
∼= K2k+1.

(a) k = 1 (b) k = 2 (c) k = 3

Figure 4.4: The graph Ck
7 for k = 1, 2, 3

To enumerate the digitally convex sets of a power of a cycle, we identify a bijection

between the digitally convex sets and cyclic binary strings avoiding blocks (maximal

runs of 0’s or 1’s) of certain lengths, as in the proof of Theorem 4.1.

For k ≥ 2, we let Bk,n be the set of cyclic binary strings of length n in which each

block (maximal run of 0’s or 1’s) has length at least k, if n ≥ k, or length exactly n,

if n < k. Let ak(n) = |Bk,n|. Note that B2,n is the set of cyclic binary strings with

no alternating substring of length greater than 2, used in the proof of Theorem 4.1.

Thus, a2(n) is the number of digitally convex sets in Cn. Now, before we show a

bijection between the digitally convex sets of the kth power of a cycle and the cyclic

binary strings in Bk,n, we first establish a recurrence relation satisfied by ak(n).

Munarini and Salvi [18] use the Schützenberger symbolic method to do this for

k = 2. Symbolic methods used to enumerate combinatorial objects are described in

detail in [13]. In particular, symbolic methods provide a way of breaking down a cyclic

binary string into substring components to facilitate enumeration. Munarini and Salvi

break the cyclic binary strings into the substrings 01, 10 and the remaining substrings

of consecutive 0’s and 1’s. For example, the cyclic binary string 0011000011111 can be

represented as (0)(01)(10)(00)(01)(1111). Then, from [13], the generating function

for cyclic binary strings is the product of the generating functions for each of the
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substring components. We now use this method to generalize the result of Munarini

and Salvi to any k ≥ 2.

Lemma 4.2. For some k ≥ 2, ak(i) = 2 for 3 ≤ i ≤ 2k− 1, ak(j) = 2 + j(j− 2k+ 1)

for 2k ≤ j ≤ 2k + 2 and, for n ≥ 2k + 3,

ak(n) = 2ak(n− 1)− ak(n− 2) + ak(n− 2k).

Proof. First, we show the initial conditions. If 3 ≤ n < k, then the only cyclic binary

strings of length n with each block of length exactly n are clearly (00 . . . 0) and

(11 . . . 1). Thus, ak(n) = 2 for 3 ≤ n < k. Now suppose k ≤ n ≤ 2k − 1. Any cyclic

binary string with at least two blocks must have one block of length ` ≤ n
2 ≤

2k−1
2 < k.

So the only strings in Bk,n are (00 . . . 0) and (11 . . . 1) when k ≤ n ≤ 2k − 1.

If 2k ≤ n ≤ 2k + 2, then clearly both (00 . . . 0) and (11 . . . 1) are cyclic binary

strings in Bk,n. The remaining strings in Bk,n are those with two blocks, one of length

`, with k ≤ ` ≤ n − k, and the other of length n − `. Without loss of generality,

let the block of length ` be ` consecutive 1’s. There are n distinct cyclic shifts of

these two blocks, giving n distinct cyclic binary strings with ` consecutive 1’s. There

are n − 2k + 1 possible values of `, so there are n(n − 2k + 1) cyclic binary strings

in Bk,n with exactly two blocks. Overall, we have ak(n) = 2 + n(n − 2k + 1) for

2k ≤ n ≤ 2k + 2. Therefore, the initial conditions hold.

Now, we find the generating function to show the desired recurrence. To do this,

we uniquely decompose the strings in Bk,n into the smaller strings (0 . . . 0), (1 . . . 1),

(01), and (10). The latter two types of strings will be called principal blocks. Then,

the strings in Bk,n containing a principal block can be decomposed in one of the

following ways:

(0 . . . 0)(01)(1k1∗)(10)(0k2∗) . . .

(1 . . . 1)(10)(0k1∗)(01)(1k2∗) . . .
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where ki∗ ≥ k − 2 and an exponent of ki∗ means that the indicated bit is repeated a

total of ki∗ times. So each principal block (01) that does not appear at the beginning

of the string must be preceded by a string of type (0ki∗) and followed by a string of

type (1ki+1∗), and, similarly, each principal block (10) must be preceded by a string

of type (1kj∗) and followed by a string of type (0kj+1∗). Now, we can break these

two cases down further into those containing an even number of principal blocks and

those containing an odd number. The strings in Bk,n containing 2` > 0 principal

blocks have one of the forms

(0p1)(01)(1k1∗)(10)(0k2∗) . . . (01)(1k2`−1∗)(10)(0p2)

(1q1)(10)(0k1∗)(01)(1k2∗) . . . (10)(0k2`−1∗)(01)(1q2)

where each ki∗ ≥ k − 2, p1 + p2 ≥ k − 2 and q1 + q2 ≥ k − 2.

Similarly, the strings in Bk,n containing 2` + 1 principal blocks have one of the

forms

(0r1)(01)(1k1∗)(10)(0k2∗) . . . (01)(1r2)

(1s1)(10)(0k1∗)(01)(1k2∗) . . . (10)(0s2)

where, as above, each ki∗ ≥ k − 2, and r1, r2, s1, s2 ≥ k − 1.

Then, we can express Bk, the set of all cyclic binary strings with all blocks of

length at least k, using the symbolic method described above. First, we let 0∗ =

{ε, 0, 00, . . . } (ε denotes the empty string), 1∗ = {ε, 1, 11, . . . }, 0+ = 0∗ − {ε} and

1+ = 1∗ − {ε}. Then,
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Bk = 0+ ∪ 1+
k−2⋃
p=0

( ∞⋃
`=1

0p(01)1k−21∗(10)0k−20∗ . . . (01)1k−21∗(10)0k−2−p0∗︸ ︷︷ ︸
2` principal blocks

)
∞⋃

`=1
0∗0k−2(01)1k−21∗(10)0k−20∗ . . . (01)1k−21∗(10)0∗︸ ︷︷ ︸

2` principal blocks

k−2⋃
q=0

( ∞⋃
`=1

1q(10)0k−20∗(01)1k−21∗ . . . (10)0k−20∗(01)1k−2−q1∗︸ ︷︷ ︸
2` principal blocks

)
∞⋃

`=1
1∗1k−2(10)0k−20∗(01)1k−21∗ . . . (10)0k−20∗(01)1∗︸ ︷︷ ︸

2` principal blocks

∞⋃
`=0

0∗0k−1(01)1k−21∗(10)0k−20∗ . . . (01)1k−11∗︸ ︷︷ ︸
2`+1 principal blocks

∞⋃
`=0

1∗1k−1(10)0k−20∗(01)1k−21∗ . . . (10)0k−10∗︸ ︷︷ ︸
2`+1 principal blocks

Note that we divide the strings with 2` principal blocks into two cases: those beginning

with fewer than k − 1 0’s (or k − 1 1’s) and those beginning with at least k − 1 0’s

(resp. 1’s). We divide in this way because, in the first case, there is a minimum

number of 0’s (resp. 1’s) that must be at the end of the string so that it is contained

in Bk,n. There is no such minimum in the second case.

Now, we can use the symbolic method to find the generating function for ak(n).

The generating function for a string 0∗ or 1∗ is 1
1−x

, the generating function for a

string 0i or 1i is xi, and the generating function for a principal block (01) or (10)

is x2. From [13], we multiply the generating functions for the substrings to get a
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generating function for ak(n), using the same deconstruction as above.

B(x) =
∞∑

n=0
ak(n)xn = 2 x

1− x

+
k−2∑
p=0

∞∑
`=1

(
xpx

k−2−p

1− x (x2)2` (xk−2)2`−1

(1− x)2`−1

)
+
∞∑

`=1

(
xk−1

1− x
1

1− x(x2)2` (xk−2)2`−1

(1− x)2`−1

)

+
k−2∑
q=0

∞∑
`=1

(
xqx

k−2−q

1− x (x2)2` (xk−2)2`−1

(1− x)2`−1

)
+
∞∑

`=1

(
xk−1

1− x
1

1− x(x2)2` (xk−2)2`−1

(1− x)2`−1

)

+
∞∑

`=0

(
(x2)2`+1 (xk−2)2`

(1− x)2`

(xk−1)2

(1− x)2

)
+
∞∑

`=0

(
(x2)2`+1 (xk−2)2`

(1− x)2`

(xk−1)2

(1− x)2

)

= 2x
1− x + 2

k−2∑
p=0

∞∑
`=1

(
x2k

(1− x)2

)`

+ 2x
1− x

∞∑
`=1

(
x2k

(1− x)2

)`

+ 2x2k

(1− x)2

∞∑
`=0

(
x2k

(1− x)2

)`

Each series in terms of ` in B(x) is a geometric series. So we can write the function

in closed form and simplify.

B(x) = 2x
1− x + 2

k−2∑
p=0

( x2k

(1−x)2

1− x2k

(1−x)2

)
+ 2x

1− x

( x2k

(1−x)2

1− x2k

(1−x)2

)
+ 2x2k

(1− x)2

(
1

1− x2k
(1−x)2

)

= 2x
1− x +

k−2∑
p=0

(
2x2k

1− 2x+ x2 − x2k

)
+ 2x2k+1

(1− x)(1− 2x+ x2 − x2k) + 2x2k

1− 2x+ x2 − x2k

= 2x
1− x + 2(k − 1)x2k

1− 2x+ x2 − x2k
+ 2x2k+1

(1− x)(1− 2x+ x2 − x2k) + 2x2k

1− 2x+ x2 − x2k

= 2x− 4x2 + 2x3 + 2kx2k − 2kx2k+1

(1− x)(1− 2x+ x2 − x2k)

= 2x− 2x2 + 2kx2k

1− 2x+ x2 − x2k
.

From the form of the generating function, we know that

ak(n)− 2ak(n− 1) + ak(n− 2)− ak(n− 2k) = 0.

Rearranging this, we get the desired recurrence.
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Theorem 4.3. Let Ck
n be the kth power of the cycle Cn, k ≥ 1. Then nD(Ck

i ) = 2

for 3 ≤ i ≤ 2k + 1, nD(Ck
j ) = 2 + j(j − 2k − 1) for 2k + 2 ≤ j ≤ 2k + 4 and, for

n ≥ 2k + 5,

nD(Ck
n) = 2nD(Ck

n−1)− nD(Ck
n−2) + nD(Ck

n−2k−2).

Proof. To prove the recurrence, we show a bijection between the digitally convex sets

in D(Ck
n) and the cyclic binary n-bit strings in Bk+1,n. If n < k + 1, then these are

the cyclic binary strings with blocks of length exactly n, i.e. (0 . . . 0) and (1 . . . 1).

Clearly, since k + 1 ≤ 2k + 1, there are exactly two digitally convex sets in Ck
n when

n < k + 1, the sets ∅ and V (Ck
n). These sets get mapped to (0 . . . 0) and (1 . . . 1),

respectively.

Now, suppose n ≥ k + 1. Then Bk+1,n is the set of cyclic binary n-bit strings

whose maximal blocks each have length at least k + 1. Given a digitally convex set

S ∈ D(Ck
n), we get a corresponding cyclic binary n-bit string S∗ in the following way.

For each vertex vi ∈ S, set bits i, i+ 1, . . . , i+ k in S∗ to be 1, taking the index mod

n if i+ j > n. After repeating this for each vertex in S, set the remaining bits in S∗

to 0. As an example, the digitally convex set S = {v1, v7} in C2
7 , shown in Figure 4.5,

corresponds to the cyclic binary string S∗ = (1110001).

v5 v4

v3

v2

v1

v7

v6

Figure 4.5: The digitally convex set S = {v1, v7} of C2
7 is indicated in red

It is clear from the construction of S∗ that each block of 1’s must have length at
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least k + 1. We show now that each block of 0’s in S∗ must also have length at least

k+1. Suppose that there is a block of 0’s with length ` ≤ k, say bits i, i+1, . . . , i+`−1.

Then, the vertex vi 6∈ S, since bit i is 0 in S∗ and vi+` ∈ S, since bit i + ` is 1 in

S∗. In Ck
n, we must have vivi+` ∈ E(Ck

n), as ` ≤ k, as well as vi+jvi+` ∈ E(Ck
n) for

j = 1, 2, . . . , `− 1. In S∗, bit i− 1 is also 1. So, by the construction of S∗, the vertex

vi−k−1 ∈ S. This vertex is adjacent to the vertices vi−k, vi−k+1, . . . , vi−1 in Ck
n. Thus,

N [vi] ⊆ N [{vi+`, vi−k−1}] ⊆ N [S], contradicting the fact that S is digitally convex in

Ck
n.

We now show that there is an injective map from Bk+1,n to the set of digitally

convex sets of the kth power of Cn. Let S∗ ∈ Bk+1,n. If S∗ = (00 . . . 0), then let S = ∅.

If S∗ = (11 . . . 1), then let S = V (Ck
n). Both of these are clearly digitally convex.

Otherwise, let B1, B2, . . . , Br be the distinct blocks of at least k + 1 1’s in S∗. Say

bits i, i+ 1, . . . , i+ k + `− 1 are the bits of B1. Then, let S1 = {vi, vi+1, . . . , vi+`−1}.

Define S2, S3, . . . , Sr similarly. Finally, let S = S1 ∪ S2 ∪ · · · ∪ Sr. It is clear that S

would be mapped to S∗ using the above mapping. For example, if S∗ = (1110001)

and k = 2, then bits 7, 1, 2, 3 are the bits of the only block of 1’s. This string would

be mapped to the set of vertices {v7, v1}, reversing the example of the mapping shown

earlier in the proof. We show now that each such set S is a digitally convex set in

D(Ck
n). Suppose otherwise, i.e. that S is not digitally convex. Then, there must be

some vj 6∈ S such that N [vj] = {vj−k, vj−k+1, . . . , vj, vj+1, . . . , vj+k} ⊆ N [S].

Since vj 6∈ S and vj−k ∈ N [S], we must have one of the vertices in N [vj−k]− {vj}

in S, say vj−k+m for some m ∈ {−k,−k + 1, . . . , k − 1}. Then, by definition of

S, the bits j − k + m, j − k + m + 1, . . . , j + m are all 1 in S∗. None of these

vertices is adjacent to vj+k, so one of the vertices in N [vj+k]−{vj} is in S, say vj+k+p,

for some p ∈ {−k + 1,−k + 2, . . . , k}. So, again by definition, the bits j + k + p,

j + k + p+ 1, . . . , j + 2k + p are each 1 in S∗. In addition, these two vertices can be
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chosen so that each of the vertices vj−k, vj−k+1, . . . , vj, vj+1, . . . , vj+k appears in the

closed neighbourhood of vj−k+m or vj+k+p. Thus, the maximum possible difference

between j − k + m and j + k + p is 2k + 1. Then, the longest block of 0’s in S∗

between bits j + m and j + k + p has length at most k, contradicting the fact that

S∗ ∈ Bk+1,n. Therefore, S is digitally convex in Ck
n.

We now have a bijection between the digitally convex sets in D(Ck
n) and the cyclic

binary strings in Bk+1,n. So they satisfy the same recurrence. Therefore, nD(Ck
n) =

2nD(Ck
n−1) − nD(Ck

n−2) + nD(Ck
n−2(k+1)), with nD(Ck

i ) = 2, for 3 ≤ i ≤ 2(k + 1) − 1,

and nD(Ck
j ) = 2 + j(j − 2(k + 1) + 1), for 2(k + 1) ≤ j ≤ 2(k + 2). Simplifying, we

get the desired recurrence.

4.2 Cartesian Products

For some graph parameters, knowing their value for graphs G and H gives their value

for a product of G and H. For other parameters, such a relationship is not known.

In this section, we examine the digitally convex sets of the Cartesian products of

complete graphs and of paths. In both of these cases, we see that there is not an

obvious relationship between the digitally convex sets in the product and in the

constituent graphs. We begin by giving the definition of the Cartesian product.

Definition 4.4. Let G and H be graphs. Then, the Cartesian product, G�H, is the

graph with vertex set V (G�H) = V (G)× V (H) and an edge (u, v)(x, y) ∈ E(G�H)

if and only if u = x in G and vy ∈ E(H), or ux ∈ E(G) and v = y in H.

A digitally convex set in the Cartesian product G�H is not necessarily digitally

convex when restricted to G or to H. In other words, if S ∈ D(G�H) then the

set SG = {x ∈ V (G) | (x, y) ∈ S} is not necessarily digitally convex in G. As an
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(1, 1)

(2, 1)

(3, 1)

(1, 2)

(2, 2)

(3, 2)

Figure 4.6: The set {(2, 1)} ∈ D(K3�K2) is indicated in red

example, the set {(2, 1)}, shown in Figure 4.6, is digitally convex in K3�K2 but

{2} 6∈ D(K3) and {1} 6∈ D(K2), as the only digitally convex sets in a complete graph

are the empty set and the entire vertex set. This example shows that, even in small

graphs, the digitally convex sets of a Cartesian product of graphs G and H cannot be

obviously computed from those of G and H. We begin by examining the number of

digitally convex sets in the Cartesian product of complete graphs, Kn�K2, to show

how different this number is from the number of digitally convex sets in either of the

constituent graphs of the product.

Proposition 4.5. For any n ≥ 1, nD(Kn�K2) = 2n+1 − 2.

Proof. First, we denote the vertices of Kn�K2 by v1, v2, . . . , vn, u1, u2, . . . , un, with

vivj ∈ E(Kn�K2) and uiuj ∈ E(Kn�K2) for all i 6= j and viui ∈ E(Kn�K2) for

each i = 1, 2 . . . , n.

For any i, j, the set {vi, uj} is a dominating set for Kn�K2, so the only dig-

itally convex set containing both of these vertices is V (Kn�K2). The rest of the

digitally convex sets must be subsets of {v1, v2, . . . , vn} or of {u1, u2, . . . , un}. Since

{v1, v2, . . . , vn}, and similarly {u1, u2, . . . , un}, is a dominating set for Kn�K2, it is
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not digitally convex. Consider S $ {v1, v2, . . . , vn}. Then, for any vj 6∈ S, we have

uj 6∈ N [S], so uj is a private neighbour for vj and for every ui. Therefore, S is a

digitally convex set. There are 2n − 1 such digitally convex sets.

Similarly, any set S $ {u1, u2, . . . , un} is a digitally convex set. However, the

empty set was counted in the previous case, so here we get only 2n − 2 additional

digitally convex sets.

Overall, this gives nD(Kn�K2) = 1 + 2n − 1 + 2n − 2 = 2n+1 − 2.

By taking the Cartesian product of two larger complete graphs, the number of

digitally convex sets quickly increases, while the number of digitally convex sets of

a single complete graph is independent of the order of the graph. As an example,

the product K3�K2, in Figure 4.6, has 24 − 2 = 14 digitally convex sets. The graph

K3�K3, however, has 38 digitally convex sets, as we show below, which is more than

twice the number in K3�K2.

1,1

2,1

3,1

1,2

2,2

3,2

1,3

2,3

3,3

Figure 4.7: K3�K3

To find the digitally convex sets of K3�K3, let ∅ 6= S1 $ {1, 2, 3} and ∅ 6= S2 $

{1, 2, 3}. Then, the set S = {(x, y) | x ∈ S1, y ∈ S2} is digitally convex. There are

(23 − 2)(23 − 2) = 36 such sets. These sets, along with ∅ and V (K3�K3), form the

38 digitally convex sets in K3�K3. This method of generating digitally convex sets
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extends to the Cartesian product of two complete graphs of any order, giving the

following result.

Theorem 4.6. For any m,n ≥ 1, nD(Kn�Km) = 2 + (2n − 2)(2m − 2).

Proof. We begin by denoting the vertices of Kn�Km by (vi, uj) for i = 1, 2, . . . , n

and j = 1, 2, . . . ,m.

Now, let ∅ 6= S1 $ {v1, v2, . . . , vn} and ∅ 6= S2 $ {u1, u2, . . . , um}. Then, S = S1×

S2 = {(vi, uj) | vi ∈ S1, uj ∈ S2} is digitally convex inKn�Km. Consider (vx, uy) 6∈ S.

If vx 6∈ S1 and uy 6∈ S2, then (vx, uy) 6∈ N [S]. If vx ∈ S1 and uy 6∈ S2, then there is

some vz 6∈ S1 such that (vx, uy)(vz, uy) ∈ E(Kn�Km) and (vz, uy) 6∈ N [S]. If vx 6∈ S1

and uy ∈ S2, then there is some uw 6∈ S2 such that (vx, uy)(vx, uw) ∈ E(Kn�Km) and

(vx, uw) 6∈ N [S]. Thus, (vx, uy) has a private neighbour with respect to S, and so S

is digitally convex. There are (2n − 2)(2m − 2) such sets S.

Any set of vertices containing a set of type {(v1, ui1), (v2, ui2), . . . , (vn, uin)}, where

each ij ∈ {1, 2, . . . ,m}, is a dominating set in Kn�Km. Similarly, any set of ver-

tices containing a set of type {(vj1 , u1), (vj2 , u2), . . . , (vjm , um)}, where each jk ∈

{1, 2, . . . , n}, is a dominating set. Therefore, the only digitally convex set containing

any of these sets of vertices is V (Kn�Km).

Two vertices (vx, uy) and (vw, uz) dominate the neighbourhoods of both of the

vertices (vx, uz) and (vw, uy). So any digitally convex set containing the former pair

of vertices must also contain the latter pair. Therefore, every nonempty digitally

convex set in Kn�Km must be V (Kn�Km) or must take on the form S1× S2, where

S1 and S2 are defined as above.

Therefore, along with the empty set, the graph Kn�Km has a total of 2 + (2n −

2)(2m − 2) digitally convex sets.

We turn now to the Cartesian product of paths, beginning with Pn�P2. As an
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example, consider P3�P2, shown in Figure 4.8, which has the following collection of

16 digitally convex sets:

D(P3�P2) = {∅, {v1}, {v2}, {v3}, {u1}, {u2}, {u3}, {v1, v3}, {v1, u1}, {v3, u3},

{u1, u3}, {v1, v2, u1}, {v1, u1, u2}, {v2, v3, u3}, {v3, u2, u3}, V (P3�P2)}

v1

v2

v3

u1

u2

u3

Figure 4.8: P3�P2

As with the Cartesian product of complete graphs, many of the digitally convex

sets in the product of paths are no longer digitally convex when restricted to one of

the constituent graphs. Thus, there is no obvious method of using the digitally convex

sets of the constituent graphs to generate those of the product. We can, however, use

the digitally convex sets of the graphs Pn−1�P2, Pn−2�P2 and Pn−3�P2 to determine

those of Pn�P2.

Theorem 4.7. Let Pn be the path of order n. Then nD(P1�P2) = 2, nD(P2�P2) = 6

and nD(P3�P2) = 16 and, for n ≥ 4,

nD(Pn�P2) = nD(Pn−1�P2) + 3nD(Pn−2�P2) + 2nD(Pn−3�P2).

Proof. First, we denote the vertices of Pn�P2 by v1, v2 . . . , vn, u1, u2, . . . , un, with

vivi+1 ∈ E(Pn�P2) and uiui+1 ∈ E(Pn�P2) for i = 1, 2, . . . , n − 1 and vjuj ∈

E(Pn�P2) for j = 1, 2, . . . , n.
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Now, we prove the initial conditions. Since P1�P2 ∼= K2, we have nD(P1�P2) =

nD(K2) = 2. Similarly, P2�P2 ∼= C4, so nD(P2�P2) = nD(C4) = 6. Finally, the 16

digitally convex sets of P3�P2 are listed above. So nD(P3�P2) = 16.

Suppose n ≥ 4. We begin by showing nD(Pn�P2) ≥ nD(Pn−1�P2)+3nD(Pn−2�P2)+

2nD(Pn−3�P2). We now construct three pairwise disjoint families Di, i = 1, 2, 3, of

digitally convex sets in D(Pn�P2) such that |Di| = cinD(Pn−i�P2), where c1 = 1, c2 =

3, c3 = 2.

To construct D1, let S ∈ D(Pn−1�P2). If vn−1, un−1 6∈ S, then S is digitally convex

in Pn�P2, because the vertices vn and un are each a private neighbour for themselves

with respect to S. Then, we add S to D1. If vn−1 ∈ S or un−1 ∈ S, then S ∪ {vn, un}

is digitally convex in Pn�P2, because each vertex in V (Pn−1�P2) − S must have a

private neighbour with respect to S in V (Pn−1�P2) − {vn−1, un−1}, which is also a

private neighbour with respect to S ∪ {vn, un} in Pn�P2. Then, we add S ∪ {vn, un}

to D1. Note that |D1| = nD(Pn−1�P2), as desired.

To construct D2, let S ∈ D(Pn−2�P2). If vn−2, un−2 ∈ S, then S is digitally convex

in Pn�P2, because the vertices un and vn are private neighbours for themselves, as

well as for vn−1 and un−1, with respect to S in Pn�P2. Then, we add S to D2. This

set is not digitally convex in Pn−1�P2, as the vertices vn−1 and un−1 have no private

neighbours with respect to S. The set S ∪ {vn−1} is also digitally convex in Pn�P2,

because the vertex un is a private neighbour for itself, vn and un−1 with respect to S

in Pn�P2. Then, we add S ∪ {v1} to D2. Similarly, S ∪ {un−1} is digitally convex in

Pn�P2, so we add it to D2.

If vn−2 ∈ S and un−2 6∈ S, then S ∪ {vn} is digitally convex in Pn�P2, because

the vertex un−1 is a private neighbour for itself, vn−1 and un with respect to S ∪{vn}

in Pn�P2. Then, we add S ∪ {vn} to D2. The set S ∪ {vn−1} is also digitally convex

in Pn�P2, because the vertex un is a private neighbour for itself, vn and un−1 with



96

respect to S ∪ {vn−1}. Then, we add S ∪ {vn−1} to D2. Similarly, S ∪ {un−1} is

digitally convex in Pn�P2, so we add it to D2.

If vn−2 6∈ S and un−2 ∈ S then, by the same argument as above, S ∪ {vn−1},

S ∪ {un−1} and S ∪ {un} are all digitally convex in Pn�P2. We add them all to D2.

If vn−2, un−2 6∈ S, then S ∪ {vn} is digitally convex in Pn�P2 because the vertex

un−1 is a private neighbour for itself, un and vn−1 with respect to S ∪{vn} in Pn�P2.

Then, we add S ∪ {vn} to D2. Similarly, S ∪ {un} is digitally convex in Pn�P2, so

we add it to D2. If, in addition, vn−3, un−3 6∈ S, then S ∪ {vn, un} is digitally convex

in Pn�P2, because both un−2, vn−2 6∈ N [S ∪ {vn, un}] in Pn�P2. So un−2 and vn−2

are private neighbours for un−1 and vn−1 with respect to S ∪ {vn, un}. Then, we add

S ∪ {vn, un} to D2. If vn−3 ∈ S and un−3 6∈ S, then S ∪ {vn−1} is digitally convex

in Pn�P2, because the vertex un−2 is a private neighbour for itself and for vn−2, and

the vertex un is a private neighbour for itself, vn and un−1 with respect to S ∪{vn−1}

in Pn�P2. Then, we add S ∪ {vn−1} to D2. Similarly, if vn−3 6∈ S and un−3 ∈ S,

then S ∪ {un−1} is digitally convex in Pn�P2. So we add it to D2. Now, we have

|D2| = 3nD(Pn−2�P2), as desired.

Finally, to construct D3, let S ∈ D(Pn−3�P2). If vn−3, un−3 6∈ S, then S ∪ {vn−1}

is digitally convex in Pn�P2, because the vertex un−2 is a private neighbour for itself,

vn−2 and un−1, and the vertex un is a private neighbour for itself and vn with respect

to S ∪ {vn−1}. Then, we add S ∪ {vn−1} to D3. Similarly, S ∪ {un−1} is digitally

convex in Pn�P2, so we add it to D3.

If vn−3 ∈ S or un−3 ∈ S, then S ∪{vn−2, vn} is digitally convex in Pn�P2, because

the vertex un−1 is a private neighbour for itself, un−2, vn−1 and un with respect to

S∪{vn−2, vn} in Pn�P2. Then, we add S∪{vn−2, vn} to D3. Similarly, S∪{un−2, un}

is digitally convex in Pn�P2, so we add it to D3. Now, we have |D3| = 2nD(Pn−3�P2),

as desired.
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Now, we have Di ∩ Dj = ∅ for i 6= j, and each Di, i = 1, 2, 3, is a subset of

D(Pn�P2). Thus nD(Pn�P2) ≥ |D1|+ |D2|+ |D3| = nD(Pn−1�P2)+3nD(Pn−2�P2)+

2nD(Pn−3�P2).

Now, to show the reverse inequality, let S ∈ D(Pn�P2).

(a) Suppose vn, un ∈ S. If vn−1 ∈ S or un−1 ∈ S, then each x 6∈ S has a pri-

vate neighbour with respect to S in V (Pn−1�P2). Thus, S − {vn, un} is dig-

itally convex in Pn−1�P2. If vn−1, un−1 6∈ S, then vn−2, un−2 6∈ N [S]. Thus,

vn−3, un−3 6∈ S and S − {vn, un} is digitally convex in Pn−2�P2.

(b) Suppose vn ∈ S and un 6∈ S. Then, un−1 6∈ N [S], so vn−1, un−1, un−2 6∈ S. If

vn−2 ∈ S and vn−3, un−3 6∈ S, then it must be the case that un−3 6∈ N [S]. So

S−{vn} is digitally convex in Pn−2�P2. If vn−2 ∈ S and vn−3 ∈ S or un−3 ∈ S,

then S − {vn, vn−2} is digitally convex in Pn−3�P2. If vn−2 6∈ S, then at most

one of vn−3 and un−3 can be in S. So either vn−2 6∈ N [S] or un−2 6∈ N [S]. Then,

S − {vn} is digitally convex in Pn−2�P2.

(c) Suppose vn 6∈ S and un ∈ S, then vn−1 6∈ N [S], so vn−1, un−1, vn−2 6∈ S. If

un−2 ∈ S and vn−3, un−3 6∈ S, then S − {un} is digitally convex in Pn−2�P2. If

un−2 ∈ S and vn−3 ∈ S or un−3 ∈ S, then S − {un, un−2} is digitally convex in

Pn−3�P2. If un−2 6∈ S, then S − {un} is digitally convex in Pn−2�P2.

(d) Suppose vn, un 6∈ S. Then, at most one of vn−1 and un−1 can be in S. If

vn−1 ∈ S and at least one of vn−2 and un−2 is in S, then S − {vn−1} is digitally

convex in Pn−2�P2. If vn−1 ∈ S and vn−2, un−2 6∈ S, then it must be the case

that un−2 6∈ N [S]. So un−3 6∈ S. If vn−3 ∈ S, then S−{vn−1} is digitally convex

in Pn−2�P2. If vn−3 6∈ S, then S − {vn−1} is digitally convex in Pn−3�P2.

Similarly, if un−1 ∈ S and at least one of vn−2 and un−2 is in S, then S−{un−1}

is digitally convex in Pn−2�P2. If un−1 ∈ S, vn−2, un−2 6∈ S and un−3 ∈ S, then
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S − {un−1} is digitally convex in Pn−2�P2. If un−1 ∈ S, vn−2, un−2 6∈ S and

un−3 6∈ S, then S − {un−1} is digitally convex in Pn−3�P2.

Each digitally convex set in Pn−1�P2 has been counted here at most once, each

digitally convex set in Pn−2�P2 at most three times, and each digitally convex set

in Pn−3�P2 at most twice. Refer to Table 4.1 for a summary of which digitally

convex sets in Pn−2�P2 and Pn−3�P2 are counted in each part of the above argument.

Therefore, nD(Pn�P2) ≤ nD(Pn−1�P2) + 3nD(Pn−2�P2) + 2nD(Pn−3�P2).

Pn−2�P2

vn−2 un−2

vn−3 un−3

(a), (b), and (c)

vn−2 un−2

vn−3 un−3

(b), and twice in (d)

vn−2 un−2

vn−3 un−3

(c), and twice in (d)

vn−2 un−2

vn−3 un−3

and vn−2 un−2

vn−3 un−3

(b), (c), and (d)
Pn−3�P2

vn−3 un−3 and vn−3 un−3 and vn−3 un−3
(b) and (c)

vn−3 un−3
twice in (d)

Table 4.1: A summary of the counting argument in Theorem 4.7
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From the proof of Theorem 4.7, we get an algorithm for generating the digitally

convex sets of Pn�P2.

Algorithm 5. Generating the collection D(Pn�P2) of all digitally convex sets of

Pn�P2 for n ≥ 1.

1. If n = 1, then D(P1�P2) = {∅, V (P1�P2)}.

2. If n = 2, then D(P2�P2) = {∅, {v1}, {v2}, {u1}, {u2}, V (P2�P2)}

3. If n = 3, then D(P3�P2) = {∅, {v1}, {v2}, {v3}, {u1}, {u2}, {u3}, {v1, v3}, {v1, u1},

{v3, u3}, {u1, u3}, {v1, v2, u1}, {v1, u1, u2}, {v2, v3, u3}, {v3, u2, u3}, V (P3�P2)}

4. Suppose n ≥ 4. Use this algorithm to generate the collections D(Pn−1�P2),

D(Pn−2�P2) and D(Pn−3�P2). Obtain D(Pn�P2) as follows: Set Sn = ∅.

(a) For each S ∈ D(Pn−1�P2)

i. if vn−1 ∈ S or un−1 ∈ S, then add S ∪ {un, vn} to Sn.

ii. if vn−1, un−1 6∈ S, then add S to Sn.

(b) For each S ∈ D(Pn−2�P2)

i. if vn−2, un−2 ∈ S, then add S ∪ {vn−1}, S ∪ {un−1} and S to Sn.

ii. if vn−2 ∈ S and un−2 6∈ S, then add S∪{vn−1}, S∪{un−1} and S∪{vn}

to Sn.

iii. if vn−2 6∈ S and un−2 ∈ S, then add S∪{vn−1}, S∪{un−1} and S∪{un}

to Sn.

iv. if vn−2, un−2, vn−3, un−3 6∈ S, then add S ∪ {vn}, S ∪ {un} and S ∪

{vn, un} to Sn.

v. if vn−2, un−2, un−3 6∈ S and vn−3 ∈ S, then add S ∪{vn}, S ∪{un} and

S ∪ {vn−1} to Sn.
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vi. if vn−2, un−2, vn−3 6∈ S and un−3 ∈ S, then add S ∪{vn}, S ∪{un} and

S ∪ {un−1} to Sn.

(c) For each S ∈ D(Pn−3�P2)

i. if vn−3 ∈ S or un−3 ∈ S, then add S ∪ {vn−2, vn} and S ∪ {un−2, un}

to Sn.

ii. if vn−3, un−3 6∈ S, then add S ∪ {vn−1} and S ∪ {un−1} to Sn.

(d) Then, D(Pn�P2) = Sn.

The number of digitally convex sets of Pn�P2 follows the OEIS sequence A217631,

which is also the number of n× 2 arrays of the minimum value of corresponding ele-

ments and their horizontal and vertical neighbours in a random n×2 binary array [23].

Examples of these are given below. This sequence has the generating function

2x+ 4x2 + 4x3

1− x− 3x2 − 2x3 .

More generally, given a set A of n × m binary arrays, we let A ∗ be the set of

arrays obtained as follows. For each array A in A , construct a new array A∗ by

taking the minimum value of corresponding elements of A and their horizontal and

vertical neighbours. In other words, each element of A∗ is the minimum value over

the closed neighbourhood of the corresponding element of A.

As an example, consider the following array A

1 1 0

1 1 1

0 1 1.

Each of the entries on the diagonal have value 1, as does each of their horizontal

and vertical neighbours. The entries off the diagonal each either have value 0 or have
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a neighbour of value 0. Taking the minimum over the closed neighbourhood of each

element in the array produces the array A∗:

1 0 0

0 1 0

0 0 1.

Note that in this process, two distinct arrays A1 and A2 can produce the same

array A∗. Consider the following two 3× 2 arrays.

1 1

1 0

1 0

1 1

1 0

0 1.

In both of these arrays, only the element in the first row and column has a closed

neighbourhood with minimum value 1. Each other entry either has value 0 or has

a neighbour with value 0. Thus, for both of the above arrays, taking the minimum

value over the closed neighbourhood of each element will produce the array:

1 0

0 0

0 0.

By letting A3,2 be all 3 × 2 binary arrays, we see that A ∗
3,2 contains 16 distinct

arrays. Each of these arrays corresponds to a digitally convex set in P3�P2, with

the 1’s in the array indicating the vertices contained in the digitally convex set. For
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example, the array
1 1

1 0

0 0

corresponds to the digitally convex set {v1, u1, v2} in P3�P2. The same correspon-

dence exists between the digitally convex sets of Pn�Pm and distinct arrays in A ∗
n,m,

where An,m is the set of all n×m binary arrays.

Theorem 4.8. Let An,m be the set of all n×m binary arrays. Then, nD(Pn�Pm) =

|A ∗
n,m|.

Proof. First, we label the vertices of the product Pn�Pm. Let the vertices of Pn be

u1, u2, . . . , un, with uiui+1 ∈ E(Pn) for i = 1, 2, . . . , n − 1, and let the vertices of Pm

be v1, v2, . . . , vm, with vjvj+1 ∈ E(Pm) for j = 1, 2, . . . ,m − 1. Then, the vertices of

Pn�Pm have the form (ui, vj).

Now we show a bijection between the digitally convex sets in D(Pn�Pm) and

the arrays in A ∗
n,m. Let A∗ ∈ A ∗

n,m and consider the set S = {(ui, vj) | a∗i,j = 1}.

Each vertex (ux, vy) 6∈ S corresponds to an entry a∗x,y that has value 0 in A∗. Then,

either the corresponding entry in A also has value 0, or it has value 1 and has a

horizontal or vertical neighbour with value 0. In the first case, every entry in the

closed neighbourhood of a∗x,y also has value 0 in A∗. In Pn�Pm, this means that none

of the vertices in N [(ux, vy)] is in S, so (ux, vy) is its own private neighbour. In the

second case, there is an entry aw,z in the closed neighbourhood of ax,y which has value

0 in A. Then, in A∗, every entry in the closed neighbourhood of a∗w,z has value 0,

including a∗x,y. In Pn�Pm, this means that none of the vertices in N [(uw, vz)] is in

S and (uw, vz)(ux, vy) ∈ E(Pn�Pm), so the vertex (uw, vz) is a private neighbour for

(ux, vy) with respect to S. Therefore, S is digitally convex in Pn�Pm.

It is clear from the construction of S that this mapping from A ∗
n,m to D(Pn�Pm)
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is injective. It remains to be shown that the mapping is surjective. Consider S ∈

D(Pn�Pm) and let B be the n × m array with bi,j = 1 if (ui, vj) ∈ S and bi,j = 0

otherwise. Then, let C be the n×m array whose entries are the maximum over the

closed neighbourhood of the corresponding entry in B. In other words, ci,j = 1 if any

of the entries in the closed neighbourhood of bi,j has value 1, and ci,j = 0 otherwise.

Clearly, C ∈ A and now we show that C∗ = B. By construction of C, each entry of

C∗ whose corresponding entry in B has value 1 also has value 1 in C∗. So if C∗ 6= B,

then there is some i, j with c∗i,j = 1 and bi,j = 0. This means that, in C, each entry

in the closed neighbourhood of ci,j has value 1. However, the entries in C are defined

to be 1 because their corresponding entry in B has a 1 in its closed neighbourhood.

In other words, the entries in the closed neighbourhood of bi,j each either have value

1 or have a horizontal or vertical neighbour with value 1. In terms of the set S, this

corresponds to a vertex (ui, vj) with every vertex in N [(ui, vj)] in N [S], i.e. (ui, vj) has

no private neighbour with respect to S in Pn�Pm. This contradicts S being digitally

convex and thus C∗ = B.

It is clear that B gets mapped to the digitally convex set S, using the mapping

described above. Therefore, nD(Pn�Pm) = |A ∗
n,m|.

The number of digitally convex sets of Pn�Pm follows the OEIS sequence A217637 [23].

The OEIS notes an observation from Andrew Howroyd that this sequence also enu-

merates the maximal independent sets in the graph Pn�Pm�P2. Euler, Oleksik and

Skupień [11] prove this equivalence for m = 2 and for m = 3. However, the cor-

respondence between the maximal independent sets in Pn�Pm�P2 and the digitally

convex sets in Pn�Pm is not clear, even for very small values of n and m.
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Chapter 5

Block graphs

In this chapter, we return to a class of graphs that is closely related to trees. The class

of block graphs, graphs in which every biconnected component is a clique, contains

the trees as a subclass. Every edge in a tree, along with its endpoints, is a block and,

in fact, a 2-clique, and these are the only blocks in trees. In this chapter, we give an

upper bound on the number of digitally convex sets in a block graph and enumerate

the digitally convex sets of some subclasses of block graphs. We then conjecture a

lower bound on the number of digitally convex sets in a block graph and a subclass

of block graphs that attains it.

Throughout this chapter, we enumerate the digitally convex sets of a block graph

in terms of the number of blocks it contains, instead of in terms of the order of the

graph. The reason for this difference is that the upper and lower bounds on the

number of digitally convex sets of a block graph of order n are trivial if they are

given in terms of n. Both the complete graph Kn and its complement Kn are block

graphs. The former gives a lower bound on the number of digitally convex sets and

the latter gives an upper bound. So for a block graph G of order n, we obtain the

bounds 2 ≤ nD(G) ≤ 2n. However, these bounds give very little information on the

structure of the digitally convex sets of a block graph if its number of digitally convex
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sets falls between the upper and lower bounds. The following upper bound, stated in

terms of the number of blocks, gives an indication of how to generate digitally convex

sets of a block graph.

Theorem 5.1. Let G be a block graph with blocks B1, B2, . . . , Bk. Then nD(G) ≤ 2k.

Proof. We show that any digitally convex set in G has the form V (G) − ⋃{V (Bi) |

Bi ∈ B} for some B ⊆ {B1, B2, . . . , Bk}. Let S ∈ D(G) and let {u1, u2, . . . , ur} =

V (G) − S. We now describe, for each uj, 1 ≤ j ≤ r, a (possibly empty) family Bj

of blocks such that no vertex in any of the blocks in Bj belongs to S and such that

S = V (G)− ⋃{V (Bj) | Bj ∈
⋃r

j=1 Bj}.

If uj is not a cut vertex in G, then N [uj] is a clique, i.e. N [uj] = V (Bj) for some

j ∈ {1, 2, . . . , k}. Since each neighbour of uj dominates N [uj], it must be the case

that N [uj] ∩ S = ∅ or, equivalently, V (Bj) ∩ S = ∅. In this case, let Bj = {Bj}. As

an example, in Figure 5.1, if u1 6∈ S, then B1 = {B}, as N [u1] = V (B).

If uj is a cut vertex in G, then let Bj1 , Bj2 , . . . , Bj`
be the blocks containing uj, so

that N [uj] = ⋃`
i=1 V (Bji

). If uj 6∈ N [S], then it must be the case that V (Bji
)∩S = ∅

for each i = 1, 2, . . . , `. In this case, let Bj = {Bji
| 1 ≤ j ≤ `}. If uj ∈ N [S],

then there is at least one block Bji
containing a vertex uji

6∈ N [S]. In this case,

uj ∈ V (Bji
) and Bji

∈ Bji
. In this case, let Bj = ∅. As an example, in Figure 5.1, if

u2 6∈ S, then B2 = {A,B} if u2 6∈ N [S], and B2 = ∅, otherwise.

Now, let B = ⋃r
j=1 Bj and VB = ⋃{V (Bi) | Bi ∈ B}. It is clear from construction

that uj ∈ VB for each j = 1, 2, . . . , r and that S∩VB = ∅. Therefore, S = V (G)−VB =

V (G)− ⋃{V (Bi) | Bi ∈ B}, where B = ⋃r
j=1 Bj ⊆ {B1, B2, . . . , Bk}.

There are 2k possible subsets of {B1, B2, . . . , Bk}, so there can be at most 2k dis-

tinct digitally convex sets of G.

Note that this upper bound matches those for the number of digitally convex sets
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u2

u1
A B

Figure 5.1: Any digitally convex set containing u2 must also contain u1

of subclasses of block graphs that we examined in previous chapters. A complete

graph has one block and satisfies nD(Kn) ≤ 21 = 2. Similarly, the complement of a

complete graph has n blocks and satisfies nD(Kn) ≤ 2n. A tree T has n − 1 blocks

and satisfies nD(T ) ≤ 2n−1, as stated in Theorem 2.5. For these subclasses, this upper

bound is sharp. The following result gives a more general subclass of block graphs

for which this upper bound on the number of digitally convex sets is sharp.

Theorem 5.2. Let G be a block graph with blocks B1, B2 . . . , Bk. For 1 ≤ i ≤ k,

let V ∗(Bi) be the set of vertices in the block Bi that are not cut vertices of G. If

V ∗(Bi) 6= ∅ for each i = 1, 2, . . . , k, then nD(G) = 2k.

Proof. As shown in the proof of Theorem 5.1, each digitally convex set SB of G has

the form SB = V (G)−⋃{V (Bi) | Bi ∈ B} for some B ⊆ {B1, B2, . . . , Bk}. We show

first that, for every subset B of {B1, B2, . . . , Bk}, the set V (G)−⋃{V (Bi) | Bi ∈ B}

is digitally convex. We then show that for two different subsets, B1 and B2, of

{B1, B2, . . . , Bk}, we have SB1 6= SB2 .

Let B ⊆ {B1, B2, . . . , Bk} and consider S = V (G) − ⋃{V (Bi) | Bi ∈ B}. Let

v 6∈ S. Then v ∈ V (Bi) for some block Bi ∈ B. If v ∈ V ∗(Bi), then N [v] = V (Bi)

and V (Bi)∩S = ∅. So v 6∈ N [S]. If v 6∈ V ∗(Bi), then there exists some u ∈ N [v] with

u ∈ V ∗(Bi), since V ∗(Bi) 6= ∅. As shown above, u 6∈ N [S] so u is a private neighbour

for v with respect to S. Therefore, S is digitally convex in G.

Now, let B1,B2 ⊆ {B1, B2, . . . , Bk} with B1 6= B2, and consider SB`
= V (G)−
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⋃{V (Bi) | Bi ∈ B`} for ` = 1, 2. So either B1\B2 or B2\B1 is nonempty, say the

former. Let Bj ∈ B1\B2 and let z ∈ V ∗(Bj). Then z 6∈ Bp for any p 6= j because

blocks intersect only at cut vertices. So z ∈ (⋃{V (Bi) | Bi ∈ B1}) \ (⋃{V (Bi) | Bi ∈

B2}). Equivalently, z ∈ SB2\SB1 , so SB1 6= SB2 .

Therefore, the collection D(G) of all digitally convex sets SB (as defined above)

contains 2k distinct digitally convex sets.

As an example, consider the block graph G shown in Figure 5.2. Each of the five

blocks, labelled with the letters A through E, contains at least one vertex that is not

a cut vertex of the graph. Thus, by Theorem 5.2, nD(G) = 25 = 32. As shown in the

proof of Theorem 5.2, a digitally convex set S can be generated by taking a subset B

of the set of blocks, {A,B,C,D,E}, and removing from V (G) the vertices contained

in the blocks of B. For example, taking B = {B,E} results in the digitally convex

set indicated in red in Figure 5.2. The vertex in B that is not a cut vertex is a private

neighbour for all of the vertices in this block, and similarly for E.

A

x

B
C

E

D

Figure 5.2: A digitally convex set is highlighted in red

However, removing only the vertex x from G reduces the number of digitally

convex sets without reducing the number of blocks. Then, the remaining vertices in

the block B no longer have a private neighbour with respect to the set S, highlighted

in red in Figure 5.2. All vertices in B are cut vertices so, using the notation of

Theorem 5.2, V ∗(B) = ∅. Thus, the set B = {B,E} does not correspond to a
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digitally convex set in G.

Furthermore, the sets B1 = {A,C,D,E} and B2 = {A,B,C,D,E} both give

the same digitally convex set, SB1 = ∅ = SB2 . The following result gives a formula

for the number of digitally convex sets in a graph with one block of order 2 whose

vertices are both cut vertices of the graph.

Theorem 5.3. Let G be a block graph with blocks B1, B2, . . . , Bk. For 1 ≤ i ≤ k, let

V ∗(Bi) be the set of vertices in the block Bi that are not cut vertices of G. Suppose

for i = 1, 2, . . . , k − 1, we have V ∗(Bi) 6= ∅, and suppose that Bk
∼= K2 with vertices

x and y contained in k1 > 0 and k2 > 0 other blocks, respectively (i.e. V ∗(Bk) = ∅).

Then, nD(G) = 2k − 2k−(k1+k2+1)[(2k1 − 1)(2k2 − 1) + ((2k1 − 1) + (2k2 − 1)− 1)].

Proof. Let Bx1 , Bx2 , . . . , Bxk1
be the blocks, along with Bk, that contain x and

By1 , By2 , . . . , Byk2
be the blocks, along with Bk, that contain y. From the proofs

of Theorem 5.1 and Theorem 5.2, we know that all digitally convex sets in G are of

the form S = V (G)−⋃{V (Bi) | Bi ∈ B}, for some B ⊆ {B1, B2, . . . , Bk}. We count

the number of these sets B that give digitally convex sets in G.

First, suppose thatBk ∈ B, {Bx1 , Bx2 , . . . , Bxk1
}∩B = ∅ and {By1 , By2 , . . . , Byk2

} 6⊆

B. Consider S1 = V (G)−⋃{V (Bi) | Bi ∈ B}. Since Bk ∈ B, we have x, y 6∈ S1. We

show that N [x] ⊆ N [S1], i.e. x has no private neighbour with respect to S1. There

exists a block Byi
6∈ B with V ∗(Byi

) 6= ∅, so there is a vertex yi ∈ V ∗(Byi
) ⊆ S1

with yi adjacent to y in G. Thus, y ∈ N [S1]. For 1 ≤ j ≤ k, we have Bxj
6∈ B

and V ∗(Bxj
) 6= ∅. So there exists a vertex xj ∈ V ∗(Bxj

) ⊆ S1 and N [xj] = V (Bxj
).

Since N [x] =
(⋃k1

j=1 V (Bxj
)
)⋃{y}, we have N [x] ⊆ N [S1], and thus S1 is not dig-

itally convex in G. There are 2k−(k1+k2+1)(2k2 − 1) such sets B, since there are

2k2 − 1 ways to choose at least one set Byi
to omit from B and 2k−(k1+k2+1) ways

to choose any number of blocks not containing x or y to omit from B. Similarly,

there are 2k−(k1+k2+1)(2k1 − 1) sets B with Bk ∈ B, {By1 , By2 , . . . , Byk2
} ∩ B = ∅
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and {Bx1 , Bx2 , . . . , Bxk1
} 6⊆ B such that S2 = V (G) − ⋃{V (Bi) | Bi ∈ B} is not

digitally convex in G. However, the 2k−(k1+k2+1) sets B containing Bk and none of

Bx1 , Bx2 , . . . , , Bxk1
, By1 , By2 , . . . , Byk2

are counted in both cases. So there is a total

of 2k−(k1+k2+1)[(2k1 − 1) + (2k2 − 1)− 1] sets B satisfying one of these two cases.

Suppose now thatBk 6∈ B, {Bx1 , Bx2 , . . . , Bxk1
}∩B 6= ∅ and {By1 , By2 , . . . , Byk2

}∩

B 6= ∅. Consider S3 = V (G)− ⋃{V (Bi) | Bi ∈ B}. There exist blocks Bxi
and Byj

,

with 1 ≤ i ≤ k1 and 1 ≤ j ≤ k2, with Bxi
, Byj

∈ B. Since x ∈ Bxi
and y ∈ Byj

,

we have x, y ∈ ⋃{V (B`) | B` ∈ B}. Thus, ⋃{V (B`) | B` ∈ B} = ⋃{V (B`∗) |

B`∗ ∈ B ∪ {Bk}}. So S3 = V (G) − ⋃{V (B`∗) | B`∗ ∈ B ∪ {Bk}}. There are

2k−(k1+k2+1)(2k1 − 1)(2k2 − 1) such sets B, as there are 2k1 − 1 and 2k2 − 1 ways to

choose nonempty subsets of {Bx1 , Bx2 , . . . , Bxk1
} and of {By1 , By2 , . . . , Byk2

}, respec-

tively. As before, there are 2k−(k1+k2+1) ways to choose any number of the blocks not

containing x or y to omit from B. Thus, to avoid double counting, we subtract these

2k−(k1+k2+1)(2k1 − 1)(2k2 − 1) sets from the 2k possible digitally convex sets of G.

Now we show that each of the other possibilities for B ⊆ {B1, B2, . . . , Bk} corre-

sponds to a digitally convex set S4 = V (G)− ⋃{V (Bi) | Bi ∈ B} in G.

If Bk ∈ B, {Bx1 , Bx2 , . . . , Bxk1
} ∩ B 6= ∅ and {By1 , By2 , . . . , Byk2

} ∩ B 6= ∅,

then there exist blocks Bxi
and Byj

, with 1 ≤ i ≤ k1 and 1 ≤ j ≤ k2, such that

Bxi
, Byj

∈ B. Since V ∗(Bxi
) 6= ∅ and V ∗(Byj

) 6= ∅, there exist vertices vi ∈ V ∗(Bxi
)

and vj ∈ V ∗(Byj
), so vi, vj 6∈ N [S4]. Thus, vi is a private neighbour for every vertex in

Bxi
, including x. Similarly, vj is a private neighbour for every vertex in Byj

, including

y. In every other block B` ∈ B, the vertices in V ∗(B`) 6= ∅ are private neighbours

for all vertices in V (B`) with respect to S4. Thus, for the sets B described above, S4

is digitally convex in G.

If Bk ∈ B, {Bx1 , Bx2 , . . . , Bxk1
} ⊆ B and {By1 , By2 , . . . , Byk2

} ∩ B = ∅, then

x 6∈ N [S4], since all of the blocks containing x are in B. So x is a private neighbour
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for itself, for y and for all vertices in V (Bxi
), with i = 1, 2, . . . , k1. For every other

B` ∈ B, the vertices in V ∗(B`) 6= ∅ are private neighbours for the vertices in V (B`).

Thus, S4 is digitally convex in G. Similarly, if Bk ∈ B, {Bx1 , Bx2 , . . . , Bxk1
} ∩B = ∅

and {By1 , By2 , . . . , Byk2
} ⊆ B, then y 6∈ N [S4] and S4 is digitally convex in G.

Finally, if Bk 6∈ B and {Bx1 , Bx2 , . . . , Bxk1
} ∩B = ∅, then we consider two cases.

In the first case, if {By1 , By2 , . . . , Byk2
} ∩B = ∅, then x, y ∈ S4. In the second case,

if {By1 , By2 , . . . , Byk2
} ∩B 6= ∅, then there is some vi ∈ V ∗(Byi

) with Byi
∈ B. So

vi 6∈ N [S4]. In the latter case, y 6∈ S4 and vi is a private neighbour for y with respect

to S4. As above, for every other B` ∈ B, the vertices in V ∗(B`) 6= ∅ are private

neighbours for the vertices in V (B`). Thus, S4 is digitally convex in G. Similarly, if

Bk 6∈ B, {Bx1 , Bx2 , . . . , Bxk1
} ∩B 6= ∅ and {By1 , By2 , . . . , Byk2

} ∩B = ∅, then S4 is

digitally convex in G.

This gives a total of 2k−2k−(k1+k2+1)[(2k1−1)(2k2−1)+((2k1−1)+(2k2−1)−1)]

digitally convex sets in G.

The cases in this proof depend only on the blocks in G that contain the vertices

x and y. If there are multiple blocks Bi containing no cut vertices and satisfying the

condition Bi
∼= K2, then the principle of inclusion-exclusion can be used to count the

digitally convex sets, provided that there is no block containing vertices from at least

two of these blocks Bi. We state this result without proof, due to its similarity to

that of Theorem 5.3.

Theorem 5.4. Let G be a block graph with blocks B1, B2, . . . , Bk, and let m ≥ 0. For

1 ≤ i ≤ k, let V ∗(Bi) be the set of vertices in the block Bi that are not cut vertices

of G. Suppose that for i = 1, 2, . . . ,m, Bi
∼= K2 with vertices xi and yi, and for

j = m + 1,m + 2, . . . , k, we have V ∗(Bj) 6= ∅. Suppose, for each 1 ≤ i ≤ m, that xi

and yi are contained in ki1 > 0 and ki2 > 0 other blocks, respectively (i.e. V ∗(Bi) = ∅),
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and that for every p = 1, 2, . . . , k, we have V (Bp) ∩ V (Bq) 6= ∅ for at most one

q ∈ {1, 2, . . . ,m}. Let Mi = (2ki1 − 1)(2ki2 − 1), Aj = (2ki1 − 1) + (2ki2 − 1)− 1, and

ki = ki1 + ki2. Then

nD(G) =
∑

S⊆[m]
(−1)|S|2k−|S|−(

∑
i∈S

ki)
[ ∑

T⊆S

(∏
i∈T

Mi

∏
j∈S−T

Aj

)]
.

a1 a2
b1 b2

A

B

Figure 5.3: Both of the vertices in blocks A and B are contained in other blocks

As an example, consider the block graph G in Figure 5.3. This graph has a total

of nine blocks, with every block except for A and B containing a vertex that is not

a cut vertex of G. The vertices a2 and b2 are each contained in one other block, the

vertex b1 is contained in two other blocks, and the vertex a1 is contained in three

others. Thus, by Theorem 5.4,

nD(G) = 29 − 24(14)− 25(6) + 20(84) = 180.

However, when there are larger blocks whose vertices are all contained in other

blocks, or when these blocks share vertices, the calculations quickly get very compli-

cated. For example, in the graph in Figure 5.4, each of the vertices in the blocks A

and B is a cut vertex. If we use the arguments above to determine which subsets

B of the set of blocks, {A,B,C,D,E}, correspond to a digitally convex set, we see

that the restrictions can become complicated and hard to generalize. In this case,
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A

B
C D

E

Figure 5.4: Every vertex in blocks A and B is contained in another block

we cannot have A ∈ B without also having one of B or C in B. However, to have

B ∈ B, one of A, D or E must be in B. By increasing the size or number of these

blocks that need special consideration, the number of cases that need to be considered

would make any formula for the number of digitally convex sets very complicated.

Similar to the upper bound on the number of digitally convex sets in a block

graph, we can use the lower bound on the number of digitally convex sets in a tree in

Theorem 2.5, as well as the fact that a tree has n− 1 blocks, to identify a potential

lower bound on the number of digitally convex sets in a block graph. Note that, as in

Theorem 2.5, we consider two cases: when the number of blocks k is even and when

it is odd.

Conjecture 5.5. Let G be a block graph with k blocks. Then

nD(G) ≥


2 · 2 k+1

2 − 2, if k is odd

3 · 2 k
2 − 2, if k is even

We now construct a subclass of block graphs Gk that contains the spiderstars and

attains the conjectured lower bound. We begin with the spiderstar Sk+1, which has

k blocks. Let u be a leaf in Sk+1 and let u′ be its neighbour in Sk+1. Then, we add

the remaining n− k − 1 vertices v1, v2, . . . , vn−k−1 and edges vivj for every i 6= j, uvi

and u′vi for every i = 1, 2, . . . , n− k − 1 to form Gk. Figure 5.5 shows the graph G5
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of order nine.

u′

uv1

v2

v3

Figure 5.5: The block graph G5 of order nine

To show that the graphs Gk attain the lower bound, we show that Gk of order

n ≥ k + 1 has the same number of digitally convex sets as the spiderstar Sk+1. Let

S ∈ D(Sk+1). If u ∈ S, then S ∪ {v1, v2, . . . , vn−k−1} is digitally convex in Gk, since

NGk
[{v1, v2, . . . , vn−k−1}] = NGk

[u]. If u 6∈ S, then S is also digitally convex in Gk,

since it must be the case that u 6∈ NG[S]. So v1, v2, . . . , vn−k−1 6∈ NGk
[S]. Note

that any digitally convex set containing any of v1, v2, . . . , vn−k−1 must also contain

u, as each vertex vi dominates NGk
[u]. Moreover, since u′ dominates NGk

[vi] for

each i = 1, 2, . . . , n− k − 1, any digitally convex set not containing v1, v2, . . . , vn−k−1

cannot contain u′ and therefore must also be digitally convex in Sk+1. Thus, nD(Gk) =

nD(Sk+1). By Theorem 2.5, the spiderstars attain the bound in Conjecture 5.5. So

the graphs Gk attain this bound as well.
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Chapter 6

Conclusion and Future Work

In this thesis, we have explored the generation and enumeration of digitally convex

sets in various classes of graphs. In Chapter 3, we extended several of the results of

Lafrance, Oellermann and Pressey [15] from trees to k-trees. We gave an algorithm

for generating the digitally convex sets of a k-tree and provided an upper bound on

the number of digitally convex sets in a 2-tree and then generalized the upper bound

to k-trees. Furthermore, we conjectured a lower bound on the number of digitally

convex sets in a 2-tree and then conjectured a generalization to k-trees. In Chapter 4,

we used the enumeration of other mathematical objects, such as cyclic binary strings

and binary arrays, to enumerate the digitally convex sets of cycles, powers of cycles,

and Cartesian products of complete graphs and of paths. Finally, in Chapter 5, we

enumerated the digitally convex sets of block graphs, in terms of the number of blocks

instead of the number of vertices. Several of the proofs given in this thesis also provide

algorithms for generating the collection of digitally convex sets for the corresponding

class of graphs.

We conclude with a discussion of directions for future research in this area. In

Chapter 3, there are several bounds on the number of digitally convex sets in k-

trees and simple clique 2-trees that we conjecture or are unknown. We conjecture a
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generalization of the lower bound on the number of digitally convex sets of trees [15]

to 2-trees and then to k-trees. In the case of 2-trees, we provided an outline of

a possible proof of the lower bound. Completion of the proof of this lower bound

requires a proof of Conjectures 3.12, 3.13 and 3.14. In the case of simple clique 2-

trees, considered in Section 3.3, the lower bound on the number of digitally convex

sets of an SC 2-tree of order n only matches that of a 2-tree of order n for n < 10.

For n ≥ 10, that of an SC 2-tree appears to be larger. This was calculated using a

brute force approach. The code for this brute force approach is given in Appendix

A. The problem of finding a sharp lower bound on the number of digitally convex

sets of SC 2-trees and, specifically, for the subclass of 2-path graphs remains an open

problem, as does the problem of finding both upper and lower bounds on the number

of digitally convex sets of SC k-trees.

In Chapter 4, we enumerate the digitally convex sets of Cartesian products of

complete graphs and of paths. Although there does not appear to be an obvious

connection between the digitally convex sets of a graph product G�H and those of its

constituent graphs, a possible direction for future research is to find an exact formula,

or upper/lower bounds on nD(G�H) in terms of the number of digitally convex sets

in the constituent graphs, i.e. nD(G) and nD(H). Another possible direction is to do

the same for other graph products, such as the strong product or categorical product.

In Chapter 5, we showed an upper bound on the number of digitally convex sets

in a block graph with k blocks. This upper bound is both sharp and matches the

upper bound on the number of digitally convex sets in a tree, which has n− 1 blocks.

We then conjectured a lower bound on the number of digitally convex sets in a block

graph in terms of the number of blocks. As with the upper bound, the conjectured

lower bound for block graph matches the lower bound on the number of digitally

convex sets in a tree, given in Theorem 2.5. The proof of Conjecture 5.5 remains
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open.

There are several other problems related to the digital convexity that remain

unexplored. It is known that a graph G of order n has at least 2 and at most 2n

digitally convex sets, and that nD(G) must be even. However, it is not obvious for

a given value of n whether, for each even integer 2k between 2 and 2n, there exists

a graph G such that nD(G) = 2k. The same question can be posed for particular

classes of graphs. For example, for each even integer 2k between 2 and 2n, does there

exist a cograph G of order n such that nD(G) = 2k? If this is not the case, then for

which even integers 2k does there exist a cograph G such that nD(G) = 2k? The

same question can be asked for trees, with a restriction to even integers between the

lower and upper bounds given in Theorem 2.5.

A digitally convex set is defined in terms of the neighbourhoods of the vertices

in the graph, so there is the question of whether the number of digitally convex sets

in a graph is changed when the edge set of the graph is altered. In the case of a

complete graph Kn, the removal of any single edge e = uv results in a graph that has

nD(Kn − e) = 4 digitally convex sets: ∅, V (Kn − e), {u} and {v}. In other words,

removing any single edge from a complete graph increases the number of digitally

convex sets. A possible direction for future research would be to identify other graphs

for which the removal of any edge increases the number of digitally convex sets.

However, in the graph P4, the removal of the edge that is incident with the two

vertices of degree 2 results in the disjoint union of two K2’s, a graph that has four

digitally convex sets. It is known that nD(P4) = 6 so, in this case, the removal of an

edge from the graph decreases the number of digitally convex sets. If an edge incident

with a leaf in P4 is removed instead, the resulting graph is the disjoint union of P3

and K1, which has eight digitally convex sets. Thus, the removal of a single edge

from P4 may increase or decrease the number of digitally convex sets, depending on
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which edge is removed. Whether there exists a graph for which the removal of any

single edge decreases the number of digitally convex sets remains an open problem,

as does a method of identifying whether the removal of a given edge will increase or

decrease the number of digitally convex sets in the graph.

In [16], Lafrance, Oellermann and Pressey explore the problem of reconstructing

a tree from its collection of digitally convex sets. They show that any tree T can be

uniquely reconstructed from the sets in D(T ). However, it is unknown whether this is

possible for any general graphG, or for any class of graphs other than trees, or whether

there are any two non-isomorphic labelled graphs G1 and G2 with D(G1) = D(G2).

This area would be useful to research, as the ability to reconstruct a graph or class

of graphs from its digitally convex sets may give valuable information about the

structure of the graph or class of graphs.
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Appendix A

Code: Generating Digitally Convex

Sets of a Graph

// ****************************************************************
// Generates the number of digitally convex sets in a given graph,
// with the option to print the digitally convex sets.
//
// Input: - int n indicating the number of vertices in the graph
// - n x n x k array of integers with the first two dimensions
// containing the adjacency matrix for the desired graph. The 3rd
// dimension allows the function to be easily implemented in a
// loop to generate the number of digitally convex sets in a
// collection of graphs.
// - int tree indicating which adjacency matrix in adj should
// be used. Set tree to be 0 if only one graph is being used.
// - boolean print indicates whether the digitally convex sets
// should be printed. If true, the digitally convex sets will be
// printed with one set per line and a space between each element.
// Vertices are labeled from 1 to n.
//
// Output: int indicating the number of digitally convex sets in
// adj[][][tree]
// ****************************************************************

public class twotrees {
public static int numDigConv(int n, int[][][] adj, int tree,

boolean print)
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{
if (n < 1)
{

return 1;
}
int num = 0;

// Stores the current potential convex set
int[] current = new int[n];

// Generate each subset of [n]
for (int i = 0; i < (1 << n); i++)
{

int k = 0;
int m = 1;
for (int j = 0; j < n; j++)
{

if ((i & m) > 0)
{

current[k] = j;
k++;

}
m = m << 1;

}
boolean convex = true;

// Stores the neighbours of vertices in current[]
// Some vertices may be added multiple times
int[] nbr_current = new int[n*n];
int nbr_k = 0;
// Find neighbourhood of vertices in current[]
for (int p = 0; p < k; p++)
{

nbr_current[nbr_k] = current[p];
nbr_k++;
for (int q = 0; q < current[p]; q++)
{

if (adj[q][current[p]][tree] == 1)
{

nbr_current[nbr_k] = q;
nbr_k++;

}
}
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for (int q = current[p]+1; q < n; q++)
{

if (adj[current[p]][q][tree] == 1)
{

nbr_current[nbr_k] = q;
nbr_k++;

}
}

}
for (int v = 0; v < n; v++)
{

boolean priv_nbr = false;

// Check if each vertex has a private neighbour
for (int x = 0; x < k; x++)
{

// If vertex is in the set, doesn’t need a private nbr
if (v == current[x])
{

priv_nbr = true;
}

}

// Find closed neighbourhood of a vertex
if (!priv_nbr)
{

int[] nbr_v = new int[n];
nbr_v[0] = v;
int v_k = 1;
for (int y = 0; y < v; y++)
{

if (adj[y][v][tree] == 1)
{

nbr_v[v_k] = y;
v_k++;

}
}
for (int y = v+1; y < n; y++)
{

if (adj[v][y][tree] == 1)
{

nbr_v[v_k] = y;
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v_k++;
}

}

// Check neighbours of vertex to see if they’re private
for (int a = 0; a < v_k; a++)
{

boolean nbr = false;
for (int b = 0; b < nbr_k; b++)
{

if (nbr_v[a] == nbr_current[b])
{

nbr = true;
}

}
if (!nbr)
{

priv_nbr = true;
}

}
}

// Sets convex to be false if vertex doesn’t have private nbr
if (!priv_nbr)
{

convex = false;
}

}
if (convex)
{

// Prints current convex set
if (print)
{

for (int b = 0; b < k; b++)
{

System.out.print(current[b] + 1 + “ ”);
}
System.out.println();

}
// Increase count if set is convex
num++;

}
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}
return num;

}
}


