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Abstract 

Neonatal necrotizing enterocolitis (NEC) is one of the most severe digestive tract 

emergencies in neonates, involving bowel edema, hemorrhage, and necrosis, and can lead to 

serious complications including death. Since it is difficult to diagnose early, the morbidity and 

mortality rates are high due to severe complications in later stages of NEC and thus early detection 

is key to the treatment of NEC. In this thesis, a novel automatic image acquisition and analysis 

system combining a color and depth (RGB-D) sensor with an infrared (IR) camera is proposed for 

NEC diagnosis. A design for sensors configuration and a data acquisition process are introduced. 

A calibration method between the three cameras is described which aims to ensure frames 

synchronization and observation consistency among the color, depth, and IR images. Subsequently, 

complete segmentation procedures based on the original color, depth, and IR information are 

proposed to automatically separate the human body from the background, remove other interfering 

items, identify feature points on the human body joints, distinguish the human torso and limbs, 

and extract the abdominal region of interest. Finally, first-order statistical analysis is performed on 

thermal data collected over the entire extracted abdominal region to compare differences in thermal 

data distribution between different patient groups. Experimental validation in a real clinical 

environment is reported and shows encouraging results. 
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Chapter 1 Introduction 

1.1 Motivation 

Neonatal necrotizing enterocolitis (NEC) is a relatively common, devastating digestive 

system illness which primarily affects neonates and involves intense pain, inflammation, and even 

necrosis of the intestine. Although there is a wide spectrum of illness severity, the most severe 

cases can even be life threatening [1]. The incidence of NEC in preterm and very low birth weight 

(<1500g) infants is about 7%, however the mortality rate of severe NEC is as high as 20 to 30% 

[1,2]. In recent years, the incidence of NEC has increased along with the survival rate of very low 

birth weight infants. NEC not only increases the cost of medical care due to long-term 

hospitalization, but also increases the risk of long-term adverse outcomes, such as delayed 

development, short bowel syndrome, repeated infections, and long-term parenteral nutrition-

related liver disease. The pathogenesis of NEC is still not fully understood, further contributing to 

the difficulty in making an early, accurate diagnosis [1-3]. 

Various medical imaging technologies have been applied to the diagnosis of NEC, with 

radiographic imaging being the most widely used. Physicians use abdominal x-ray images to 

determine whether there are typical clinical features of NEC, such as bowel wall thickening, gas 

accumulation within the wall of the intestine, portal venous gas, and peritoneal effusion [4, 5]. 

This requires that physicians are highly experienced in reading x-rays and that symptoms of NEC 

must be significantly advanced to be apparent on x-rays. According to the modified Bell staging 

criteria for NEC [6], the early signs of NEC are non-specific in radiographic images. Other non-

NEC entities, such as benign feeding intolerance related to immaturity, can also present clinically 

and radiographically very similar to early stages of NEC. As a result, although x-ray imaging can 

detect more advanced stages of NEC, it is not ideal for its early detection. 

Thermal Infrared (IR) imaging technology is a non-contact, non-radiative modality that has 

been studied in early detection of NEC in recent decades by measuring the differences in 

abdominal temperature profiles in babies with and without NEC [7, 8]. Since NEC is usually 

accompanied by the intestinal ischemic injury or even necrosis of the tract [9], it is expected that 

the abdominal temperature of NEC infants will change significantly compared to healthy babies. 
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Comparing and analyzing the different distributions of data in the thermogram between NEC 

babies and normal babies, it is postulated that early detection of NEC may be feasible. 

In previous work done by our group using IR imaging in neonates [9, 10, 11], significant 

thermal distribution differences were found between normal babies and babies with NEC. This 

research, however, involved some limitations. First, the position of the IR camera was not 

standardized between patients, leading to variations in image size and quality that affect the ability 

to directly compare images. Second, the processing of the IR images involved a lot of repetitive 

work. It was time consuming when researchers needed to manually select the area of interest to 

analyze, which also introduced the possibility of biased results and a risk of missing crucial 

information. Furthermore, it is unrealistic for medical personnel in hospitals to spend much time 

on image processing. Therefore, the benefits of automatic procedures are significant as automation 

can help detecting NEC more efficiently and effectively, while also providing support for 

continuous observation of patients with IR sensors with minimal manual intervention. 

 

1.2 Objectives 

The solution proposed in this thesis attempts to provide an automated IR image acquisition 

and analysis system for NEC detection, which is more accurate, more uniform and easier to use by 

healthcare personnel. An RGB-D sensor is combined with a thermal IR camera to help provide 

additional and more accurate information that might be blurred in IR images or even missing in 

some cases. The system captures three sets of calibrated images synchronously (color and depth 

images from an RGB-D sensor, and IR images from an IR camera). It automatically segments and 

extracts regions of interest based on color and depth information, maps the selected areas to the 

corresponding IR images, and finally applies a thermal distribution analysis to help find significant 

differences in the thermal distribution over the abdominal region between groups of subjects (NEC 

vs healthy babies). In order to develop the solution, the following specific objectives are pursued: 

i.  Develop a fully integrated image acquisition system for recording image data, 

including color, depth, temperature information, and group categories, while ensuring that all the 

data are fully documented. Meanwhile, ensure that the RGB-D sensor and the IR camera operate 

with the same frame rate, as well as start and end recording at the same time. 
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ii. Design calibration and verification methods between the RGB-D sensor and IR 

camera. The geometrical correspondence among the color, depth, and IR images within the same 

set should be accurately estimated while remaining robust to varying surface shapes at different 

angles and positions. As a result, perform data alignment to ensure that images are in one-to-one 

correspondence. 

iii. Make full use of color information and depth information to automate the 

segmentation of human body images. Segmentation should accurately separate the target from the 

background, identify the difference in skin color, distinguish each part of the human body, and 

extract the human body area of interest (i.e. the abdomen in this study). The segmented region is 

meant to guide the extraction of thermograms from IR data over the entire area of interest to ensure 

data completeness. 

iv. Organize data and apply statistical analysis methodologies over the temperature 

distribution in the region of interest in order to detect significant differences between NEC babies 

and healthy babies. 

 

1.3 Thesis Organization 

Chapter 2 reviews the research work related to the use of infrared camera technology to 

detect NEC. Classical calibration and image segmentation techniques are also described. Chapter 

3 presents an overview of the entire framework and methodology used in this work, including the 

design of the image acquisition assembly, calibration between devices, image processing and 

segmentation, extraction of regions of interest, analysis, and comparison of temperature 

distributions. Chapter 4 reports on an experimental verification conducted in an actual hospital 

environment. It details the formulation and rules followed as part of the ethical protocol for data 

collection in the hospital environment and provides extensive results and analysis from the 

available sample data. Finally, Chapter 5 concludes the thesis, highlights the contributions and 

discusses potential future work.  

Appendix A provides the complete set of results for all ten normal babies considered in 

this study, where the identity of baby subjects is blurred by masking their face to address the 

privacy and confidentiality issue. 
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Chapter 2 Literature Review 

 This chapter presents a detailed introduction about the NEC disease (section 2.1), as well 

as its diagnosis methods (section 2.2), among which infrared thermography technology is 

highlighted due to converging evidence on its potential for NEC detection (section 2.3). Relevant 

work in the literature about calibration methods is also reviewed to support the manipulation of 

imaging acquisition devices (section 2.4). Furthermore, current studies on processing RGB-D and 

IR images and segmenting objects from complex background are presented and compared (section 

2.5). Following that, classical data analysis methods on thermal data extracted over the abdominal 

region are introduced, including statistical representations that describe the temperature 

distribution on the entire abdomen, and boxplots that are used to compare the different trends of 

temperature data between NEC and normal babies (section 2.6). Finally, section 2.7 summaries 

the literature review. 

 

2.1 Background Information about NEC 

The clinical manifestations of NEC are diverse, and the symptoms are not specific. The 

early signs include abdominal distension, vomiting, abdominal wall swelling, and blood in the 

stool [12]. Therefore, the diagnosis of NEC cannot be made only by clinical manifestation, 

necessitating the addition of medical imaging methods. Some imaging methods being explored for 

NEC research include radiographic imaging, ultrasound, computed tomography (CT), magnetic 

resonance imaging (MRI), and infrared (IR) imaging, among which abdominal x-ray imaging is 

the most widely used method in the clinical environment [9,13].  

According to the modified Bell’s staging criteria, NEC can be divided into three stages [6, 

14, 15]. In stage 1, the abnormal clinical and imaging findings are mostly non-specific. The early 

symptoms can be described as unstable body temperature, sudden apnea, mental state wilting, 

abdominal swelling, vomiting of bile, positive fecal occult blood, intestinal inflation, or signs of 

intestinal obstruction in x-ray images. In stage 2, there may be some mild metabolic acidosis and 

mild thrombocytopenia, with the possibility of being accompanied by the disappearance of bowel 

sounds, blood or black stool, obvious flatulence, functional bowl obstruction, and x-ray findings 

of intestinal wall thickening with air tracking into the intestinal wall (pneumatosis intestinalis). In 
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stage 3, clinical manifestations are more dramatic and include hypotension, severe apnea, severe 

respiratory, or metabolic acidosis. There are signs of peritonitis, abdominal tenderness, and severe 

abdominal distension. X-ray imaging may show signs of intestinal perforation as well as ascites. 

Although significant thickening of the intestinal wall gas accumulation within the intestinal wall, 

portal vein gas accumulation, and pneumoperitoneum can be easily seen in the middle and late 

diagnosis of NEC, they are still not evident in early stages of the disease. 

 

2.2 Methods to Diagnose NEC 

In recent years, studies have also shown that ultrasound imaging can assist in the diagnosis 

of NEC, as it is more sensitive to portal gas accumulation than x-ray images [16]. Ultrasound 

imaging can also be used to describe intestinal wall thickness and peritoneal effusion. Studies have 

shown that when ultrasound examination reveals that the intestinal wall is getting thinner and the 

blood flow is decreasing, it may indicate intestinal necrosis [17]. However, ultrasound examination 

of babies with bloating may be impaired due to the air obscuring the ultrasound signal. The 

acquisition of ultrasound images also requires the presence of an experienced technician and 

interpretation by a radiologist, who may not always be available. 

Determination of the iohexol density value in urine samples using CT imaging after the 

administration of this water-soluble iodide contrast agent in the intestine is another method that 

has been investigated for diagnosing NEC [15, 18]. This contrast material is absorbed into the 

bloodstream through the damaged intestinal wall and then excreted into the urine when NEC is 

present, however it cannot reach the bloodstream or urine in normal babies who have an intact 

intestine. Despite the ability of this modality to detect NEC, it exposes patients to contrast material 

which may lead to unintended complications. MRI imaging technology can also be used as a non-

invasive diagnostic tool for intestinal necrosis, which helps with the timing of NEC surgery and 

provides information on the location of intestinal necrosis during surgery [4], however this 

modality cannot be performed at the bedside, necessitating the transportation of very sick, unstable 

patients to the radiology suite for imaging. 

Infrared image technology has been studied in recent years for NEC detection because the 

occurrence of NEC is accompanied by inflammation of the small intestine or colon, resulting in 

abnormal abdominal temperature [8]. By analyzing the differences between the heat maps of sick 



 6 

and healthy infants, studies reveal that is possible to distinguish the occurrence of NEC disease [7, 

8, 10,11,19]. Although infrared thermal imaging technology cannot replace existing diagnostic 

methods, it brings complementary resources for the detection of NEC. 

 

2.3 Infrared Thermography 

It is known that any object in the natural world above absolute zero (equal to -273 degrees 

Celsius) radiates energy outward through ongoing molecular vibrations.  An infrared camera can 

passively collect the infrared radiation of the human body and convert this radiation information 

into an infrared thermal image that can be observed by a human. Because of the different 

anatomical structures, tissue metabolism, and blood circulation, the temperature of different body 

parts is not the same, and thus, the infrared image will form different thermal features [20]. 

Through the optical-electronic system, a thermal infrared camera converts the far-infrared 

light wave radiated by the human body into power signals through filtering aggregation. It converts 

the signal into a digital quantity after modulation and photoelectric conversion, which is processed 

by a multimedia image processing technology to display a heat map of the human body [21]. When 

there is a particular disease or functional change in a specific part of the human body, the blood 

flow and cellular metabolism change, resulting in a local temperature change, which is revealed as 

higher or lower temperature. If a person's whole body or local temperature deviates from normal 

levels, it may indicate a disease or some damage [22]. As a result, the heat maps corresponding to 

the standard level and to the abnormal level are compared to help physicians analyze and determine 

the location of the patient's lesion, the nature of the disease, and the extent of the lesion. 

As early as 1800, British astronomer William Herschel discovered the relationship between 

heat and infrared radiation [23]. The evaporative thermal imager developed by Czerny et al. [24] 

in 1929 marked the birth of infrared thermal imaging technology. Infrared thermal imaging 

emerged in the 1960s, but this advanced technology was prematurely aborted due to technical and 

other reasons [25]. In the 1990s, due to the breakthrough and practical application of uncooled 

infrared focal plane array technology, it began to be used in the civilian field, covering many 

aspects of social life [22, 26]. 

In Herry and Frize’s work [27], a computerized assessment of thermal images was applied 

to patients with nociceptive and neuropathic pain. Data of digital thermal infrared images from 
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patients from the Moncton Hospital Pain Clinic were analyzed, and the results were very promising 

when compared to normal healthy volunteers at Carleton University. Similar processing 

techniques were also successfully applied to breast thermal images to detect cases affected by 

cancer [28]. 

When applied to the field of NEC diagnosis, Rice et al. [7, 8] were the first to publish about 

using thermography for NEC detection. They used medical thermography to help detect NEC in 

newborn infants by comparing temperature distribution over abdominal segments to those of the 

chest, and found that IR imaging can accurately detect the temperature differences between these 

anatomic regions of extremely low birthweight newborns with and without NEC. Herry et al.  [29] 

compared thermal images of premature infants who were diagnosed with NEC to those of normal 

infants who did not have symptoms of intolerance. They found that the rate of change in the 

abdominal surface temperature of the two groups of infants was significantly different. During 

cooling, the abdominal temperature drop in the NEC group was slower than the other group, which 

supports the hypothesis that the IR imaging technique can be used to distinguish between NEC 

and healthy babies. Ntonfo et al. [11] manually selected a region on the abdominal temperature 

map, excluding the central area around the navel, to retrieve thermal features represented by 

sample distributions from values of the 8-bit grayscale palette. The distinction between NEC 

infants and healthy infants was made by comparing the differences in first-order statistical features 

in the sample data. In the study of Nur and Frize [9], the temperature characteristics of the baby's 

abdominal upper-to-lower (UL) region were used for detection.  The study found that there were 

significant differences in the UL region of NEC infants, whereas normal infants had no such 

characteristics in the UL region. Although existing studies have demonstrated that the thermal 

distribution map generated by the infrared imaging of the abdomen of premature infants can be 

analyzed and classified to distinguish infants with and without NEC with the help of appropriate 

statistical methods and decision trees, research to date has overlooked the limitations introduced 

by manual selection of regions of interest. This requires input from research staff rather than being 

an autonomous tool for bedside use, and can lead to important areas on the thermogram being 

missed if they are not selected by the researcher.  
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2.4 Calibration 

The purpose of camera calibration is to determine the relationship between the geometric 

position of one point on the surface in a three-dimensional space or object and its corresponding 

point in an image, and then to establish a geometric model of the imaging process. These geometric 

model parameters represent camera parameters. In a general camera model, there are three major 

coordinate systems: the world coordinates (XW, YW, ZW), the camera coordinates (XC, YC, ZC), 

and the image coordinates (u,v) [30]. Figure 2.1 illustrates the general representation. 

 

 

 

(a) world coordinates system (b) image coordinates over a camera 

coordinates system 

 

 Figure 2.1 Three major coordinates systems in a general camera model (inspired from [30]). 

 

The world coordinates, camera coordinates, and image plane coordinates systems do not 

coincide. Also, other factors influence the calibration [30, 31]: 

(1) the distortion error of the camera lens, by which the imaging position on the image 

plane deviates from the perspective transformation projection result calculated by the linear 

transformation formula; 

(2) the image coordinates unit in the computer is the number of discrete pixels in the 

memory, so the continuous coordinates on the image plane also need to be rounded; 

x 

u 

v 

Xc 

Oc 

Yc 

Zc 

y 

image coordinate system 

camera coordinate system 

Oi 

world coordinate system 



 9 

The camera's internal parameters describe the relationship between camera coordinates and 

image coordinates. The external parameters describe the position and orientation of the camera in 

the world coordinates system.  

Camera calibration methods are mainly divided into three categories: camera self-

calibration methods, active vision-based methods, and traditional methods.  At present, self-

calibration algorithms mainly use the constraints of camera movement, however the camera's 

motion constraints are too strong, making it impractical in practice. The use of scene constraints 

mainly refers to some parallel or orthogonal information in the scene. The intersection point of the 

spatial parallel line on the camera image plane is called the vanishing point. This is a very 

important feature in projective geometry, so many scholars have studied the camera self-

calibration method based on the vanishing point [32, 33, 34]. The self-calibration method is 

flexible and can be used to calibrate the camera online, but because it is based on the method of 

absolute quadratic curve or surface, its algorithm is not robust [35]. 

The camera calibration method based on active vision refers to the calibration of the camera 

with certain motion information of the known camera. This method does not require a calibration 

object but needs to control the camera to make some special movements, and the internal 

parameters of the camera can be calculated by using the particularity of this movement. The 

advantage of active vision-based camera calibration is that the algorithm is simple and often leads 

to linear solutions, so it is more robust. The disadvantages are high system cost, expensive 

experimental equipment, and high experimental conditions [36, 37].  

Conventional camera calibration methods use known scene structure information to 

complete calibration, where calibration blocks are commonly used. It has high calibration accuracy 

and can be used in any camera model. Although the traditional camera calibration method always 

requires a calibration object in the calibration process, and the accuracy of the calibration object's 

production will affect the calibration result, compared to the other two calibration methods, the 

traditional camera calibration method is still widely adopted [38]. 

 In 1971, Abdel-Aziz et al. [39] proposed the direct linear transformation method (DLT), 

that directly relates the linear coordinates between the world and the image coordinates of 

corresponding object points. Shapiro [40], on this basis, developed a method for the field of 3D 

high-speed photography, where two high-speed cameras were used to take points with known 

spatial coordinates in order to determine the spatial coordinates of unknown points.  The method 
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of Abdel-Aziz et al. [39] was then applied to the reduction of photogrammetric data.  It did not 

involve iterations and was therefore unaffected by computational errors due to iterations. This 

method provided good accuracy when the traditional colinear method failed due to the lack of 

unknown parameters (internal or external parameters). 

The two-step method based on a radial alignment constraint (RAC) proposed by Tsai [41] 

first uses the linear transformation method to solve the camera parameters, and then considers the 

obtained parameters as initial values. It uses a nonlinear optimization method to further improve 

the calibration accuracy by considering the distortion factor.  More recently, Deng et al. [42] 

proposed a combination of differential evolution and particle swarm optimization algorithms to 

determine the internal and external parameters of the camera with both image features and 

corresponding 3D features.  This method can better avoid local optimum and improve calibration 

precision. 

Zhang's camera calibration method [43] relies on a single-plane checkerboard. Before this 

approach was introduced, traditional calibration methods involved a three-dimensional and very 

precise calibration board, which was challenging to manufacture. Zhang’s approach overcomes 

the shortcomings of high-precision calibration while only requiring the use of a printed 

checkerboard. As a result, when compared with self-calibration, the accuracy is improved, and the 

operation made convenient. Figure 2.2 illustrates the overall flow chart of the calibration 

procedures proposed by Zhang [43]. 
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Figure 2.2 Overall flow chart of the calibration procedures proposed by Zhang (inspired from 

[43]). 

 

Zhang et al. [44] also proposed a technique for performing binocular calibration using both 

environmental and calibration object information. The method accurately estimates the available 

matching epipolar geometry from the scene and calibration objects for projective reconstruction. 

According to prior knowledge available on the calibration object, the method performs the 

calibration of the stereo device in the Euclidean space. Recently, Lu et al. [45] applied Zhang's 

camera calibration method to 3D reconstruction.  With the help of the pinhole camera model and 

the three-coordinate relationship, Zhang 's calibration method was used to figure out the internal 

and external parameter matrix of the camera, the camera distortion coefficient, radial and 

tangential distortion. This method showed higher calibration accuracy and proposed a novel way 

to seek depth from binocular stereo vision. Zhao et al. [46] took the actual pixel coordinates of the 

camera image as the input value and used the re-projection point obtained by the world coordinates 

as the output value according to Zhang's calibration method.  A "black box system" was proposed 

to build a connection between the ideal image point and the actual image point. 
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Wu et al.'s calibration method [47] uses a set of parallel circles as calibration objects.  The 

intersection of the quadratic curves on the image is calculated from the minimum number of 

parallel circles to complete the calibration based on the quasi-affine invariance of camera imaging. 

Because the method for calculating the circular point image is simple enough, and only needs to 

start from the fitted quadratic curve without any matching instead of calculating the center of the 

circle, Wu’s calibration approach has been widely applied, not only in the case of a plane, but also 

for turntable based reconstruction [47]. 

 

2.5 Segmentation 

Medical image segmentation is a complex and critical step in the field of medical image 

processing and analysis. The purpose is to segment the parts of the medical image with some 

specific meanings and extract relevant features, to provide a reliable basis for clinical diagnosis 

and pathology research, and to assist doctors in making a more accurate diagnosis. Due to the 

complexity of medical images, a series of problems such as unevenness and individual differences 

need to be resolved during the segmentation process, therefore general image segmentation 

methods are difficult to apply directly to medical image segmentation. The latter is still developing 

from manual segmentation or semi-automatic segmentation to fully automatic segmentation.  

Threshold segmentation is the most common segmentation method for parallel direct 

detection of regions [ 48 ]. If only one threshold is selected, it is called single-threshold 

segmentation, which divides the image into targets and backgrounds [49]; if multiple thresholds 

are required, it is called the multi-threshold method, and the image will be segmented into multiple 

target regions and background areas [50]. Differentiating targets requires marking each area. The 

threshold-based segmentation method is based on a hypothesis of grayscale images: the grayscale 

values between adjacent pixels in the target or background are similar, but the pixels of different 

targets or backgrounds differ in grayscale. That is, different targets and backgrounds correspond 

to different peaks when reflected in the image histogram. The threshold chosen should be in the 

valley between the two peaks to separate the peaks. The advantage of threshold segmentation is 

that it is relatively simple to implement. When the gray value or other feature values of different 

types of objects are very different, it can effectively segment the image. Threshold segmentation 

is usually used as pre-processing on medical images, and then a series of other segmentation 
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methods are applied for post-processing [51]. The disadvantage of threshold segmentation is that 

it is not suitable for multi-channel images or images with little difference in eigenvalues [52]. It is 

difficult to obtain accurate image segmentation results since there is no obvious gray difference in 

the image or the gray value range of each object has a large overlap. In addition, because it only 

considers the gray information of the image and not the spatial information of the image, threshold 

segmentation is sensitive to noise and gray unevenness. 

Most medical images are blurry, with low image quality and high noise. The fuzzy 

clustering method combines the fuzzy set theory with the clustering algorithm applied to the field 

of medical image segmentation since the fuzzy set theory has a good ability to describe the 

uncertainty of the image. This method does not rigidly divide pixels into a certain area in a "one-

size-fits-all" manner, but introduces the concept of "membership" in fuzzy theory to divide pixels 

into areas with a high degree of membership, improving the accuracy of segmentation. Currently 

the most commonly used is the fuzzy C-means algorithm (FCM) [53], which obtains the optimal 

boundary through two iterations. However, there are problems in using FCM directly for medical 

image segmentation: the segmentation result is more sensitive to the initial value, and it is easy to 

fall into a local minimum during iteration. Based on these issues, Haldar et al. [ 54 ] used 

Mahalanobis Distance (MD) to obtain the initial cluster center, which replaces the randomly 

initialized cluster center in the original algorithm and improves accuracy when processing original 

fuzzy electrocardiograms (ECG) images due to the limitations of scanning or shooting conditions.  

When it comes to IR human detection, due to the low signal-to-noise ratio and contrast of 

the infrared image, the halo effect around the target, and blurred edges, it is difficult to segment 

the human target from complicated background in the infrared image. Tan et al. [55] improved the 

background subtraction method based on the mixed Gaussian model. During the binarization phase, 

an improved pulse-coupled neural network (PCNN) was used for fine segmentation, and the multi-

modal immune evolutionary algorithm (MIEA) was used to determine the PCNN parameters 

automatically. Simulation results show that the algorithm has high accuracy in human thermal 

image segmentation. Ma et al. [56] also used the background subtraction method to segment 

infrared human targets, described multiple changing backgrounds through multiple Gaussian 

processes with weights, and updated the number of models, weights, and learning rates. Then, the 

segmented area of interest was characterized by the accumulation of oriented edge and histogram 

of oriented gradient. Finally, the support vector machine was used to realize the classification and 
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detection of human targets. Experiments show that this algorithm can correctly detect human 

targets in complex scenes, and also has a good effect on situations where multiple targets are close 

or even partially adhered. Although the background subtraction method based on the mixed 

Gaussian model can effectively solve the problem of background disturbance [ 57 , 58 ], the 

disadvantage is that it has a large computational cost. Under the Intel Xeon 5150 processor 

hardware environment, the algorithm can only process 7 frames of 640 * 480 resolution video 

images per second [59]. Model parameters (especially variances) can also be problematic in a 

noisy environment in the real world. That has led to people to using a fixed variance when 

implementing algorithms in hardware [60]. Finally, it should be noted that many natural images 

do not actually correspond to Gaussian models [61].  

Teaney et al. [62] used static human targets in single-frame infrared image as research 

objects and conducted research on human target detection techniques in complex environments. 

Firstly, based on the principle of infrared imaging and the changes of human skin temperature, an 

empirical formula for estimating the central gray level of the human target was obtained by 

statistical regression analysis. Then, based on the principle of clustering, a new target clustering 

method was proposed. This method used the gray value corresponding to the ambient temperature 

and that corresponding to the human target skin temperature as the clustering center and set the 

clustering threshold to one third of the Euclidean distance between the two clustering centers. 

Although the experimental results show that this method can quickly and effectively detect human 

targets in infrared images with complex backgrounds, the recognition of specific parts of the 

human body has not been well solved. 

Aiming at the problem of inaccurate segmentation of the human body in complex scenes 

only by infrared images, a Kinect sensor was proposed to obtain better segmentation results with 

the help of color and depth information. For the human body segmentation method based on Kinect 

depth camera, Nava et al. [63] proposed a human body segmentation algorithm combining RGB-

D and skeleton information in a graph theory optimization framework. The algorithm considers 

the mutual promotion of the color, depth, and skeleton information of the image in the 3D scene 

to obtain more accurate human segmentation results. First, the edge-guided filtering algorithm was 

used to repair low-quality depth maps to obtain high-quality depth maps. Then they used a K-

means-like clustering algorithm to cluster RGB-D data to obtain super-pixels. Finally, super-pixels 

were regarded as nodes in the graph model, and the corresponding human skeleton information 
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was combined to improve the ability to distinguish between humans and backgrounds with 

similarly colored areas. In order to pursue faster detection speed, Sun et al. [64] proposed a human 

detection algorithm based on the histogram of oriented gradients (HOG), using integral histograms 

to calculate HOG features, and training the samples with a cascaded support vector machine (SVM) 

classifier. This method, however, requires a large amount of sample data for training. Also, the 

generation process of the HOG feature descriptor is lengthy, resulting in slow training speed and 

high equipment requirements. In addition, it is difficult to deal with occlusion problems based on 

HOG features. Moreover, due to the nature of the gradient, this descriptor is quite sensitive to noise. 

The color information provided by Kinect sensor can be effectively used to detect human 

contours based on skin color. There are many problems with the skin color detection technology 

proposed in the past: the skin color model with a fixed threshold value lacks the adaptability to 

different illumination conditions and different image backgrounds [65, 66, 67]; lack of effective 

removal methods for a large number of confused backgrounds in the image, leading to an 

excessively high false detection rate of skin color [68, 69]. In response to the above problems, 

Nitsuwat [70] proposed an adaptive threshold skin color detection algorithm based on a statistical 

color model. According to the skin color probability distribution histogram of the image and four 

heuristic rules, used the artificial neural networks (ANN) algorithm to obtain the optimal threshold 

value. Also, an image relation operation was proposed to remove the confused background to a 

certain extent. Bergasa et al. [71] proposed a detection method for dynamic modeling of human 

skin color. Based on the results of face detection, a targeted human skin color model was 

established online combined with the mixed Gaussian model. Ban et al. [72] combined the skin 

color probability variance histogram and the mixed Gaussian model to remove a variety of 

confused backgrounds in the image by using a piecewise processing method. Shi et al. [73] first 

extracted skin color samples and established an adaptive Gaussian model to extract skin color 

regions, and then extracted clothing regions in HSV color space segmentation, and finally linearly 

fused the above two detection regions to achieve detection of human body regions. The skin color 

model can assist in extracting relatively accurate and complete human body regions, which is a 

crucial step for completing human body segmentation in medical images. 

After extracting the human body, many algorithms used the obtained image sequences for 

body segmentation and motion analysis.  For that matter, Chen et al. [74] proposed a skeleton 

model-based method. Leung et al. [75] proposed a two-dimensional model based on human 



 16 

contours, and Rohr [76] proposed a method based on a three-dimensional human body model 

consisting of a cylinder. To support motion analysis, low-level features, such as the position of 

each joint, were extracted from successive image frames. These features were mainly obtained by 

artificially pasting color markers on various parts of the human body. Then a correspondence 

relationship between the features of each frame was established, and finally the three-dimensional 

human body structure from the correspondence between the features was recovered. The limitation 

of these algorithms is that they can only be applied to a simple background. 

In order to improve the above problems, Fan et al. [ 77 ] proposed a joint position 

determination method based on human contours. This method first extracted the contour of the 

human body from the image, then used the energy function to extract a virtual skeleton similar to 

the real human skeleton, and then used the knowledge of human anatomy to determine the position 

of the joint. This method does not need to restrict the motion and color information of the research 

object, and also has better performance on more complex backgrounds. Junior et al. [78] proposed 

an algorithm based on a classifier and a graph structure. First, they used the edges as features to 

train the model, so that the initial distribution probability of each part can be obtained separately, 

and then they used the classifier for preliminary segmentation. After that, they extracted the 

regional features on the segmentation results obtained in the first step, retrained the model, and 

then performed positioning and segmentation procedures for each part. In this way, the edge and 

area features were combined together through the cascade of the two to complete the human 

segmentation. This method is computationally intensive because the detection templates need to 

be trained for each part and the parameters for each template need to be calculated through a 

conditional random field algorithm. More recently, Ren et al. [79] aimed at the problem of simple 

linear iterative clustering algorithm (SLIC) that needs to specify the number of pixel blocks when 

performing super pixel block segmentation. Based on the Chan-Vese (CV) energy model, an 

adaptive super-pixel block was constructed by minimizing the picture into multiple regions and 

performing level set iterative segmentation so that each super-pixel block, after the segmentation, 

fits more closely to a single-color block in the image. Then combined with the average human 

body template, the standard pose area of the human body was marked on the picture, which 

improved the anti-interference ability for complex backgrounds. Finally, a k-means clustering 

algorithm was used to cluster each super-pixel block as a node to achieve standard human image 

segmentation. This algorithm improves the segmentation accuracy of the human body's standard 



 17 

pose while ensuring the efficiency of image segmentation and has strong anti-interference ability 

for complex backgrounds with rich chromaticity. 

Although much is known about medical IR image processing and human body 

segmentation based on color and depth information, segmenting the special shape of a baby from 

the background with inputs from a variety of sources (color, depth, and IR) has remained widely 

unexplored, and untested.  

 

2.6 Statistical Analysis 

2.6.1. Statistical representation and data analysis 

In order to grasp the nature of the data as a whole, it is imperative to choose appropriate 

statistics to represent its characteristics, especially the concentration, dispersion, and distribution 

shape of the sample data, which can determine the cardinal properties of the whole data set and 

give an excellent reference for subsequent data analysis.  When applied to distinguish between the 

NEC and normal groups, due to the rarity of NEC infant cases (n < 10), some common medical 

statistical tests (such as t-test, chi-square test, and analysis of variance) can lead to biased results. 

Therefore, some basic statistics can better describe the trend and dispersion of the data [80]. 

There are three main categories in the basic statistics used to describe the data: central 

tendency, dispersion, and distribution shape.  

 

2.6.1.1 Central tendency 

 The central tendency [81] is the statistic that represents the location of the specific data 

among the whole, that is, intuitively, where does its value mostly fall when given an attribute? 

This parameter is typically represented by the mean, median and mode variables, which are defined 

as follows: 

 

 (1) Mean 

Mean, also known as the arithmetic mean, describes the data that guides the average 

position. 

𝑋̅ = (∑xi )/ n (2.1) 
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Situationally, each value in a set of data can be associated with a weight, wi, which reflects 

the importance of the attached value or the frequency of occurrence. That is termed the weighted 

arithmetic mean. 

weighted arithmetic mean = (∑(xiwi) )/ n (2.2) 

Although the mean is the most helpful statistic to describe the trend of the dataset, it is not 

always the best way to measure the data center because mean is sensitive to extreme values 

(outliers). To counteract the effects of a few extreme values, researchers also use the trimmed 

mean that is the average of data values after dropping a certain number of the extremes.  

(2) Median 

For oblique (asymmetric) data, the data center statistic is better described as its median, 

which is the median of the ordered data values. The median can keep data set from being affected 

by extreme values and measure the overall medium condition of the data. Since the median is the 

representative value of the total unit values determined by its position among all the values, it is 

not affected by the maximum or minimum value of the distribution series, thereby increasing the 

median’s representation of the distribution series to some extent. Nevertheless, in some monomial 

series of discrete variables, if the frequency distribution is skewed, the representation of the median 

will be affected. 

 (3) Mode 

Mode is the most frequently occurring value in a variable. It is often used to determine the 

mode for qualitative data. It is less reliable to use only a mode to quantify a set of data, although 

extremes rarely influence it. The mode is especially beneficial when the values or the observers do 

not have a definite order (often occurring in non-numerical data), as the arithmetic mean and 

median may not be well defined. 

 

2.6.1.2 Dispersion 

The statistics that measure the degree of data dispersion are mainly the standard deviation 

and the quartile range. 

(1) Standard deviation (or variance) 

The standard deviation is used to measure the degree of dispersion of the data distribution. 

A low standard deviation means that the data observation tends to be close to the mean, and a high 

standard deviation means that the data spread over a broad value range. 
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Standard deviation = √
1

𝑛−1
∑(𝑋𝑖 − 𝑋̅)2 (2.3) 

 

(2) Quartile range 

A quartile is a type of quantile in statistics, that is, when all values are arranged in ascending 

order and divided into four equal parts, the first quartile is recorded as Q1, also known as the 

"minor quartile", which is equal to 25% of the numbers in the sample. The second quartile (Q2), 

also known as the "median", is equal to 50% of the numbers. The third quartile (Q3), known as the 

“larger quartile”, means data on the 75th percentile. The difference between the third quartile and 

the first quartile is also called the interquartile range, which gives the range covered by the middle 

half of the data, indicating a simple measure of the degree of dispersion 

Interquartile range (IQR) = Q3 - Q1 (2.4) 

 

2.6.1.3 Distribution shape 

The distribution shape is measured using the skewness and the kurtosis coefficients. 

(1) Skewness 

Skewness is a measure of the direction and extent of statistical data skew and is a numerical 

feature of the degree of asymmetry in the distribution of statistical data. Intuitively, it is the relative 

length of the tail of the density function curve. The definition of the skewness is the third-order 

normalized moment of the sample, which is defined as follows, where k2 and k3 represent the 

second order and third order central moments, respectively: 

𝑆𝑘𝑒𝑤(𝑋) = 𝐸 [(
𝑋 − 𝜇

𝜎
)

3

] =  
𝑘3

𝜎3
=  

𝑘3

𝑘2
3/2

 (2.5) 

The skewness of a normal distribution is 0, and the lengths of the tails on both sides are 

symmetrical. Assuming that sk is used to indicate skewness, if sk<0, then the distribution has a 

negative deviation, also called the left-skewed state, where the data are mainly located on the right 

side of the mean value and less on the left side. The visual representation is that the left tail is 

longer than the right tail because there are a few variables with small values causing that the tail 

on the left side of the curve is dragged longer. If sk>0, it reveals that the distribution has a positive 

deviation, also known as the right-skewed state, in which more data are located on the left side of 

the mean than that on the right side, visually expressed as the right tail is longer relative to the left 
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tail, because there are a few variables with large values that make the tail on the right side of the 

curve drag long. If sk is close to 0, the distribution is considered symmetric. If it is noted that the 

distribution may deviate from the normal distribution in the skewness, the deviation can be used 

to test the normality of the distribution [82]. In the right deviation, arithmetic mean > median > 

mode, while in the left bias, it is the opposite such that the mode > median > mean. All three values 

are equal in the normal distribution. Figure 2.3 depicts data distributions with various skewness 

[82]. 

 

   

(a) sk < 0 (b) sk > 0 (c) sk = 0 

Figure 2.3 (a) If the skewness is negative, the dispersion on the left side of the x-mean is stronger 

than the right side; (b) If the skewness is positive, the dispersion on the left side of the x-mean 

is weaker than the right side; (c) For a normal distribution (or strictly symmetric distribution) 

skewness equals to 0 [82]. 

 

(2) Kurtosis 

 Kurtosis studies the steep or smooth distribution of data. By measuring the kurtosis 

coefficient, we can determine whether the data distribution is steeper or more gradual relative to 

the normal distribution. 

The kurtosis is contrasted with respect to the normal distribution. The kurtosis coefficient 

of the normal distribution is 0, that of the uniform distribution is -1.2, and that of the exponential 

distribution is 6 [83]. When the kurtosis > 0, it is more steep or thicker than the normal distribution 

in terms of morphology, while when the kurtosis < 0, it is more gradual than the normal distribution, 

or the tail is thinner. In the actual environment, if one part is thick tailed, this distribution tends to 

have a more substantial "quality" than the tail of the normal distribution because it contains more 

extreme values. Based on D’Agostino [82], the tail and outliers have a positive and the most 

significant impact on the kurtosis. The high probability zone also has a positive but lighter effect 

on the kurtosis, while in the mountainside position, the medium probability zone has a negative 

influence. 
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2.6.2. Box plot 

A box plot is a kind of statistical graphs used to display the data dispersion. It is mainly 

used to reflect the characteristics of the original data distribution and also to compare the 

distribution characteristics of multiple sets of data. The box plot was proposed in 1974 by Friedman 

and Tukey [84]. The box plot provides a way to make a simple summary of the data set with only 

five points, including the midpoint, Q1, Q3, and the high and low positions of the distribution state, 

and thus, it calculates the relevant statistical points with the percentile calculation method. 

An example of a boxplot is given in Figure 2.4. where the line across the box is the median 

value. The upper and lower limits of the box are the upper quartile and the lower quartile of the 

data, which means that the box contains 50% of the data. Therefore, the height of the box reflects 

the degree of fluctuation of the data to some extent. If the boxes are all relatively long, this indicates 

that the data are more discrete, while if the boxes are shorter, then the data are more concentrated. 

From this boxplot, it is clearly seen that most data are in the range of 175 to 250, with median 

around 245. In addition, the strength of the data distribution skewness can be judged according to 

the position of the median line, and the median deviation from the center position of the upper and 

lower quartiles indicates that the distribution skewness is stronger than average. Since the median 

line is closer to the upper quartile, it indicates that most of the data are on the side with larger 

values and distributed on the right side of the X-axis, the tail of the curve extends to the left, and 

the data are left-biased. Besides, the outliers are concentrated on the side of the smaller value, also 

indicating that the data distribution is left-skewed. In this example, there are not many outliers, 

indicating that the tail is light and the degree of freedom, that is, the number of freely varying 

amounts, is small; 
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Figure 2.4 An example of a boxplot. 

 

The box plot provides a standard for identifying outliers, which are defined as values less 

than Q1-1.5IQR or higher than Q3+1.5IQR. Although this standard is somewhat arbitrary, it comes 

from empirical judgment, and experience shows that it performs well in dealing with data that 

requires special attention, which is quite different from the classical method of identifying outliers. 

It is well known that the 3σ rule or the z-score method based on normal distribution presupposes 

that the data is assumed to follow a normal distribution, but the actual data often do not strictly 

obey the normal distribution. Besides,  their criteria for judging outliers are based on the mean and 

standard deviation of the data batches, but the resistances of the mean and standard deviation are 

extremely small, and the outliers themselves have a massive impact on them, so the number of 

outliers generated is no more than 0.7% of the total [85]. The application of this method to 

determine outliers in non-normally distributed data is limited in its effectiveness.  

In contrast to that, drawing box plot relies on the actual data. It is not necessary to assume 

that the data is subject to a specific distribution form, and there is no restriction on the data. It is 

only a pure and intuitive representation of the original shape of the data. On the other hand, the 
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criteria for determining the outliers of the box plot are based on quartiles and interquartile ranges. 

Quartiles have some resistance given that up to 25% of the data can be arbitrarily far without 

disturbing the quartiles, so outliers cannot make a difference on this standard, and the results to 

identify outliers are objective. Hence one can see that the box plot has certain advantages in 

identifying outliers [86]. When studying the temperature of the baby's abdomen, due to the 

complex symptoms of NEC, the appearance of abnormal values may not be obvious. Thus, 

boxplots can well avoid the interference of unknown outliers on experimental results and have 

been applied in the field of NEC detection [87]. 

On the same axis, the box plots of several batches of data can be arranged in parallel, and 

thus the comparisons of the median, tail length, outliers, and distribution intervals of several 

batches of data are manifest at a glance. In one batch of data that belongs to one group of infants, 

it is obvious to see which data points outstanding, which data points are not as reliable as usual, 

where these data points are placed in other similar groups, and so on. If the box plots of several 

batches of data of the same group are compared, the analysis and evaluation is the visual 

illustration of the norm-referenced method; if the box plot of two different groups (e.g. NEC and 

normal groups) are compared, it is the visual illustration of the validity criterion. In this thesis, the 

box plot helps the analysis process to be fast and straightforward when discriminating between 

NEC and normal babies. 

 

2.7 Summary of Literature Review 

This chapter briefly introduces the pathological background of NEC, followed by a detailed 

review of existing related infrared technologies. Also, when it comes to the calibration of sensors 

and infrared cameras, a comparison of the advantages and disadvantages of classical algorithms is 

described. Then the categorization and summary of current image segmentation techniques based 

on IR and RGB-D images are discussed. In the last section, background information on elementary 

statistical concepts and boxplots are supplied to convey some ideas related to data analysis. 
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Chapter 3 Methodology 

Based on the findings discussed in chapter 2, the purpose of the present study is to conduct 

a more nuanced examination of the distribution of thermal data over infants’ abdominal area with 

the help of a RGB-D sensor. An automated IR imaging acquisition and processing system is 

proposed to synchronously collect IR, depth, and color images of the complete infant body, then 

to segment a region of interest related with NEC disease from the complex background, and finally 

to analyze the differences between the thermograms of NEC and normal groups. 

In this study, a novel multispectral acquisition platform is designed where a Microsoft 

Kinect Xbox One sensor is bundled and calibrated with a FLIR A320 infrared (IR) camera to 

synchronously acquire information on the human body in real-time, and then to automatically 

extract more accurate abdominal area thermographic data. The Kinect sensor is used to capture 

color and depth images, while the IR camera records the temperature distribution over the human 

body. After the former is accurately calibrated with the latter, three sets of images (color, depth, 

and IR) are simultaneously acquired at the same frequency (30 frames per second). With the help 

of the Kinect sensor, the system automatically locates and extracts the relevant abdominal area 

without requiring manual intervention since symptoms of NEC disease usually only occur in the 

abdominal area. Moreover, due to the different nature of the sensors, the additional color and depth 

information succeeds to compensate for fuzzy contours that are typically observed in infrared 

images, which helps to segment the subject from the background, to clear environmental 

interferences, and to segment and extract the trunk region over the human body. As a result, the 

approach improves the accuracy of the temperature distribution analysis within the region of 

interest. 

Figure 3.1 shows a flow chart of the proposed automated multispectral acquisition and 

processing system. It consists of three main components: acquisition platform design and 

calibration, segmentation and feature extraction from multispectral images, and thermal 

distribution analysis from infrared images. After the Kinect sensor and the FLIR IR camera are 

installed at a fixed position and angle, a total of three cameras embedded in those two devices are 

calibrated to achieve simultaneous acquisition of corresponding pixels in between the three sets of 

images (color, depth, and IR). Subsequently, an algorithm is proposed for image segmentation and 

processing procedures, including background removal, skin color segmentation, human body parts 
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recognition and separation, and data extraction from the region of interest in the IR image. Finally, 

pixel values related to temperature statistics are assembled into thermal signatures and the latter 

are analyzed to find significant variations between the NEC group and the normal group, based on 

classical statistical analysis methods. 

 

 

Figure 3.1 Flow chart of the proposed automated multispectral acquisition and processing 

system. 

 

3.1 Design of Multispectral Acquisition System 

3.1.1. Microsoft Kinect Xbox One sensor 

The Kinect Xbox One sensor is a body-sensing device launched by Microsoft in 2013. 

Because it provides a simple and efficient communication interface between people and machines, 

the depth sensor has been a focal research topic since then. The sensor's core chip is designed by 

PrimeSense, which is especially qualified for complex computing and algorithm design [88]. 

The Kinect sensor consists of one USB3.0 bus interface, one color camera, one three-

dimensional depth sensor and a microphone array. Figure 3.2 shows the overall hardware 

specifications of the Kinect sensor [89], in which the one on the left is a RGB camera that collects 

1920 x 1080 color images at up to 30 frames per second. The depth sensor is made up of one IR 

camera and one IR projector, which are both placed in the middle to detect the relative position of 
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the subjects in front of the Kinect sensor. The IR projector is an infrared emitter, which emits an 

infrared signal to the surroundings, while the IR camera is an infrared receiver, which obtains the 

depth information by returning time from reflected infrared rays to estimate the surrounding scene 

depth information. During imaging, the data stream returned by the depth sensor encodes depth 

information in pixels organized in a 512 x 424 image map. By interpolation, the Kinect sensor 

provides near-synchronized color and depth images with the same resolution and aligns color with 

depth images using a simple calibration process. Table 3.1 gives the parameter information of the 

Kinect sensor in detail, which shows the Kinect sensor has a detection range of 0.5 - 4.5m while 

the depth error is only 0.002 - 0.004m, making it well suited for detecting a newborn in the 

incubator in natural scenes [90]. 

 

Figure 3.2 Overall hardware specifications of Kinect Xbox One sensor [89]. 

 

Table 3.1 Internal characteristics of Kinect Xbox One sensor [89]. 

Resolution of Color image 1920 x 1080 

Fps of Color image 30 fps 

Resolution of Depth image 512 x 424 

Fps of Depth image 30 fps 

Range of detection 0.5 - 4.5m 

Average depth accuracy error 0.002 - 0.004m 

Horizontal angle range 70° 

Vertical angle range 60° 
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The color camera of the Kinect sensor is used to capture RGB images, as seen as Figure 

3.3(a), which contains color information for human body contour detection based on skin color 

segmentation. The Kinect sensor driver can provide the synchronous RGB image stream and depth 

image stream, which helps users to acquire the primary image data. 

The Kinect sensor is unique to ordinary cameras in that it uses time-of-flight (TOF) 

technology to obtain the depth of field data to generate a depth image. Each pixel value in a depth 

image represents the distance between the Kinect sensor and the corresponding area of a pixel on 

the subject facing the camera. When taking pictures with the Kinect sensor, the requirements for 

the environment around the object to be measured are very low, which means imaging will not be 

affected by conditions such as light, shadows, object occlusion, and so on. The reason why the 

Kinect sensor has such a unique advantage is that the pixel gray value of the depth image acquired 

by the Kinect sensor is only related to the distance. In other words, the image information collected 

by the sensor is only the distance to the measured object, which is independent of other external 

factors. That makes the Kinect sensor robust enough to provide valid RDB-D data. 

Open Natural Interaction (OpenNI) is a multi-language, cross-platform framework that 

defines Application Programming Interfaces (APIs) for writing applications and leveraging their 

natural interactions [91]. The OpenNI 2.0 APIs provide a compatible depth sensor interface for 

accessing PrimeSense [92], which allows an application to initialize the sensor and to receive depth, 

color and infrared video streams from the device. The OpenNI2 class provides a static entry to the 

APIs, which is OpenNI2::initialize() [92]. This method initializes all sensor drivers and scans all 

available sensor devices in the system. All applications using OpenNI2 should call this method 

before using other APIs. Once the initialization method is completed, it is possible to use Device 

objects to interact with the real sensor hardware. The OpenNI2::enumerateDevices() method 

returns a list of available sensor devices that are already connected to the system [92]. Based on 

that, the Kinect sensor can be initialized, and the color and depth image frames can be acquired as 

shown in Figure 3.3.  
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(a) (b) 

Figure 3.3 Acquisition of color and depth images by OpenNI2: (a) original color image (1920 x 

1080); (b) original depth image (512 x 424). 

 

3.1.2. FLIR A320 IR camera 

 

The FLIR A320 thermal imaging camera is designed to provide accurate thermal images 

and reproducible temperature measurements for a wide range of automation applications. It can 

establish a local area network with a personal computer through a 100 Mbps Ethernet network and 

perform operations, including camera control, configuration, detection, and data collection via 

network protocols. The A320 also provides images at 320 x 240 resolution, rendering high-

precision temperature hotspot measurements of small objects over long distances to improve data 

quality. Figure 3.4 displays the appearance of the FLIR A320 IR camera, and Table 3.2 provides 

a summary of the camera’s key features [93]. Since it can detect small temperature differences, it 

is highly effective for medical applications.  
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Figure 3.4 FLIR A320 IR camera. 

 

Table 3.2 Summary of FLIR A320 IR camera’s key features [93]. 

IR resolution 320 × 240 pixels 

Field of view (FOV) 25° × 18.8° 

Minimum focus distance 0.4 m (1.31 ft.) 

Focal length 18 mm (0.7 in.) 

Spatial resolution (IFOV) 1.36 mrad 

Image frequency 30 Hz 

Spectral range 7.5–13 µm 

Object temperature range 
–20 to +120°C (–4 to +248°F) 

0 to +350°C (+32 to +662°F) 

Accuracy ±2°C (±3.6°F) or ±2% of reading 

 

The Atlas SDK for .NET developed by the FLIR Company is applied to the system to 

enable developers to get full control of the IR camera and create applications as needed. Figure 

3.5 gives a sample of IR image obtained by the A320 camera on a baby.  
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Figure 3.5 An example of IR image on a baby. 

 

3.1.3. Multispectral acquisition platform design 

 

In response to the need for extracting the abdominal area from the original RGB-D image 

and processing the corresponding thermal distribution from the IR image, the purpose of the study 

is to design a novel custom acquisition platform consisting of both a Kinect sensor and an IR 

camera to take three sets of images (color, depth, and IR images) of the newborns in a clinical 

setting. In the neonatal intensive care units (NICU) of the Children's Hospital of Eastern Ontario 

(CHEO) and the Ottawa Hospital General campus (TOH-GC), where we recruited the eligible 

infants, the newborns usually lie in transparent closed incubators for vital signs monitoring and 

disease prevention and treatment. The incubator box is made of plexiglass and closed all around 

the baby, leaving only 1-2 access ports for the convenience of the medical staff to take care of the 

baby. Figure 3.6(a) shows one example of the incubators currently used in the CHEO and TOH-

GC NICUs. 

During the imaging process, the Kinect sensor and IR camera are designed to take images 

from above the incubators to get the complete and flat body images of the babies. Although IR 

rays can pass through glass based on common sense, in actual operation the plexiglass of the 

incubator has a non-negligible effect on the IR camera's acquisition of infrared rays, including 

affecting the incident angle of infrared light, increasing the error of detecting human temperature, 

and detrimental effects on IR camera imaging. Thus, it is required that there is no obstacle between 

the cameras and the babies, which means the incubators should be open during the imaging process. 

According to different types of incubators, there are two main ways to open them: one can only be 
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opened from the side, as shown in Figure 3.6(b); the other is to open the top directly, seen in Figure 

3.6(c). In the former case, the baby and the bed cushion can be moved slightly closer to the outside, 

so the cameras can take pictures obliquely from above the plexiglass cover; in the latter case, since 

the top cover is removed directly, the cameras can collect images directly from above. 

 

 

 

 

(a) (b) (c) 

Figure 3.6 An example of incubator and two different opening ways: (a) closed incubator; (b) 

incubator opening from the side; and (c) incubator opening from the top. 

 

In order to satisfy the imaging demands, the requirements of this design are listed below: 

1) Both imaging devices are mounted on the same stand, and the lenses point in the same 

direction and are parallel to each other; 

2) One device does not appear in the field of view of the other device； 

3) The two devices do not interfere with each other during the imaging process; 

4) The devices can be tilted slightly to cater to the side-opening incubators; 

5) The height of the devices relative to the babies should be variable to cater to different 

types of incubators and cribs; 

6) The stand is sturdy, durable and movable, suitable for easy movement between hospital 

beds. 

 

In order to meet those criteria, a steel rack was used as a stand for the Kinect sensor and 

the IR camera, which were fixed on the top, facing down towards the incubators, as shown in 

Figure 3.7(a). Since the image captured by Kinect has a broader viewing angle and a larger field 

of view than that of the IR camera, the Kinect sensor must be positioned closer to the subject 
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compared with the IR camera. A distance of 20 cm between the sensors was empirically found to 

be appropriate. Meanwhile, in order to prevent the Kinect sensor occluding parts of the subject in 

the IR images, the Kinect sensor was assembled 12 cm aside from the IR camera, as shown in 

Figure 3.7(b). Moreover, the imaging planes of the two devices need to remain parallel without 

tilt, and the optical axes of the two devices should be parallel. Also, since the Kinect depth sensor 

emits a signal in a spectral range of 827 - 850 nm while the IR camera's infrared light is sensitive 

to a spectrum range from 7.5 μm to 13 μm. As a result, the FLIR infrared sensor operation is not 

interfered by the Kinect depth sensor. Furthermore, taking into account of some side-opening 

incubators, the cameras are designed to have a 15-degree inclination to facilitate the full-body 

imaging of the baby, as seen in Figure 3.7(b). There is also a translation plate that attaches the 

Kinect sensor and IR camera to the stand, which is convenient for controlling the two devices to 

adjust the height to adapt to different types of incubators, as shown in blue in Figure 3.7(b). 

There are also four wheels mounted under the steel rack so that the whole acquisition 

platform can be moved around. All cables are included on the side of the rack to prevent 

interference with the imaging process.  
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(a) (b) 

Figure 3.7 Assembly of Kinect sensor and IR camera in a custom multispectral acquisition 

platform: (a) the assembly of the full setup; (b) detailed illustration of IR camera and Kinect 

sensor. 

 

In order to make the image acquisition process more user friendly, a companion 

multispectral acquisition software was developed based on Python and Qt that supports the real-

time acquisition of image data captured for the study. As shown in Figure 3.8, it provides an 

intuitive graphic interface for data entry and image display, which makes the acquisition system 

more convenient to use. It allows medical staff to input the subject study identification number 

and subject group (NEC or Normal) to distinguish samples in the database. Then by clicking the 

“CONNECT” button, both the Kinect sensor and IR camera are activated and start streaming at 

the same time. This step also sets the transmission conditions of the two devices, including 

synchronizing the camera frequency of the two devices to ensure the synchronization of image 
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acquisition (30 fps). The sequence numbers of the images collected by both sensors are integers 

starting from 0. And the images are mirrored to facilitate the observation. Then, a depth image, 

RGB image, and IR image are transmitted and shown on the screen, respectively. The “RECORD” 

button is used to record each subsequent frame of all three image streams (depth, RGB, and IR) 

when the subject is ready to avoid collecting too many invalid images, which would make the 

database redundant. Finally, clicking the “EXIT” button terminates the imaging process, and the 

system will shut down.  

  

 

Figure 3.8 Graphic interface of the automated multispectral acquisition system. 
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3.2 Data Processing and Multi-camera Calibration 

The proposed custom multispectral acquisition platform consists of one Kinect sensor and 

one IR camera, but the exact positions of the cameras inside these two devices are unknown, so 

the main purpose of multi-camera calibration is to derive the relative position relationship between 

the two cameras. Furthermore, since the analysis relies on comparisons between the distribution 

of thermal data among different groups, the study does not involve thermal calibration procedures 

to determine the exact correspondence between the grayscale levels encoded in IR images and the 

actual temperature in Celsius. Thus, the temperature measurement calibration is not required and 

not performed in this thesis. 

The most common method of camera calibration is Zhang’s method [43], which is 

leveraged in this research. That is, first the two cameras to be calibrated are used to take a plurality 

of checkerboard pictures at different viewing angles, from which the internal and external 

parameters of each camera are estimated. Then the rotation and translation matrices of the two 

cameras are calculated relative to the same coordinates system based on the same sets of calibration 

images. During the calibration process, there are the following requirements: 

1) The calibration checkerboard should be visible both to Kinect sensor and IR camera; 

2) The Kinect sensor and IR camera should start and end imaging at the same time; 

3) The Kinect sensor and IR camera should be adjusted to the same frequency (30fps) to 

ensure that the calibration photos are taken at the same time and that sequence numbers correspond 

one to one; 

4) The calibration images with an angle of 15-degree between the plane of the calibration 

board and the image plane should be included to simulate the actual situation of the side of the 

incubator being opened; 

5) Take enough pictures for calibration to ensure accuracy; 

 

For camera calibration, calibration checkerboards with known shapes and sizes are widely 

used [43, 44]. However, because the IR camera can only sense the temperature information and 

cannot directly obtain the texture of the calibration board like the RGB camera, it is impossible to 

use the regular checkerboard. To address this constraint, a customized checkerboard was designed 

for feature detection, as seen in Figure 3.9(a). Embedded incandescent light bulbs are integrated 
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at intersection points in the grid. They dissipate heat and form hot spots to be detected by the IR 

camera. Meanwhile, the checkerboard consists of a 13 x 9 black and white grid made of square 

areas measuring 28 x 28 mm, and where two adjacent regions are different in color, so that the 

Kinect sensor can directly detect the black and white checkerboard patterns. Moreover, in order to 

avoid mutual interference between the warmer spots, only 50% of the intersections in the grid 

receive an incandescent bulb (49 bulbs in total). Furthermore, in order to distinguish the directivity 

and the accuracy of calibration, the numbers of rows and columns of the bulb array are not equal. 

The three light bulbs in the lower right corner are closely connected to each other compared to the 

others to help orient the calibration board. In this way, feature points can be detected 

synchronously by the Kinect color sensor and the IR camera to support matching between the 

RGB-D and the IR images, thereby achieving calibration between the multispectral sensors. 

 

  

(a) (b) 

Figure 3.9 Custom multispectral calibration checkerboard made up of 13 x 9 black and white 

squares with 49 embedded incandescent light bulbs at intersection points: a) color image of 

calibration board under normal ambient lighting conditions, and b) IR image of calibration board 

with incandescent bulbs hot spots. 

 

With the help of the custom checkerboard, the multi-camera calibration process is 

completed in the following steps: 

1) Preprocessing the original images collected by the Kinect sensor, and aligning the depth 

image and the RGB image through OpenNI2 to generate a RGB-D image (section 3.2.1.1); 
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2) Calibrate the Kinect sensor based on the RGB-D image to obtain the internal parameters 

of the color camera after being aligned with the depth camera (section 3.2.1.2); 

3) Pre-process the original IR image (3.2.2.1); 

4) Calibrate the IR camera based on the IR feature map to obtain the internal parameters of 

the IR camera (section 3.2.2.2); 

5) Stereo calibration to register the IR camera with the RGB-D sensor (section 3.2.3). 

 

3.2.1. Kinect sensor calibration based on RGB-D image 

3.2.1.1 Preprocessing of original images and alignment to form RGB-D images 

 Unlike color images with a resolution of up to 1920 x 1080, depth images contain a lot of 

noise, especially at the edges of objects, as seen in Figure 3.10(a). This is because the measurement 

principle of the depth camera is TOF, which easily forms noise proportional to the square of the 

distance [94]. In view of this kind of noise characteristics, a denoising method based on a pass-

through filter is used to remove the data of the edge from the field of view, as it offers poor quality. 

 Suppose the depth map is represented as (u, v, d), where u, v represents the pixel 

coordinates of the depth map, d represents the depth, the coordinates of the center point of the 

depth map is (u0, v0), and the width of depth map is w, height is h, then we can select the depth 

value around the center of the depth image by equation (3.1) based on a pass-through filter [95]: 

  

{
𝑢0 − (𝑤/2) × 𝑟 ≤ 𝑢 ≤ 𝑢0 + (𝑤/2) × 𝑟

𝑣0 − (ℎ/2) × 𝑟 ≤ 𝑣 ≤ 𝑣0 + (ℎ/2) × 𝑟
 (3.1) 

 Where r represents the ratio of retaining the depth map, r = 1 means the entire depth value 

is retained. Assuming max represents the maximum allowed depth and min represents the 

minimum, then a valid range of depth values can be selected through min < d < max. 

 Take each depth value (ui, vi, di) in the depth map as the center of the window, select the 

window area with a window size of 3 × 3, and calculate the standard deviation, σi, over the depth, 

d, distribution in this window area. Let n = 3 × 3. 

𝜎𝑖 =
1

𝑛 − 1
√∑(𝑑𝑖𝑗 − 𝑢)2

𝑛

𝑗=0

 (3.2) 
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 Where dij represents the depth value of adjacent elements in the window centered on di. μ 

is the average value of the depth values in the window. All standard deviations are combined into 

a standard deviation set s = {σ1, σ2, ..., σk}. Thus, each depth value corresponds to a σi. Calculate 

the mean, μs, and standard deviation, σs, of this standard deviation set, as shown in the equations 

(3.3) and (3.4).  

 

𝜇𝑠 =
1

𝑛
∑ 𝜎𝑖

𝑘

𝑖=0

 (3.3) 

𝜎𝑠 =
1

𝑛 − 1
√∑(𝜎𝑖 − 𝜇𝑠)2

𝑘

𝑖=0

 (3.4) 

𝜇 − 𝑡 × 𝜎 < 𝜎 < 𝜇 + 𝑡 × 𝜎 (3.5) 

 

Keep the corresponding depth value that satisfies the variance of formula (3.5), where t is 

a threshold defined as a floating-point number. Finally, the denoised depth image is shown in 

Figure 3.10(b). It is clearly seen that in the denoised depth image, the edges of the objects are 

smoother and more complete, and the outlines of the persons are clearer while the depth details on 

the edges of the objects and the junction areas are well retained, compared to the original depth 

image. 
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(a) (b) 

Figure 3.10 Denoising of depth images: (a) original depth image; (b) depth image after 

denoising. 

 

In order to register the color image and depth images to obtain a RGB-D image, a point 

cloud is often used to perform the back-projection from the depth image space to the camera space. 

However, if back-projection is performed point by point, the cost of space and time is too large, 

which affects the real-time performance of the imaging process. Therefore, the Coordinate 

mapping class in OpenNI2 is used to help align the depth and RGB images. The Coordinate 

mapping class mainly accomplishes two functions: 1) project the coordinates in the 3D camera 

coordinates space to the 2D depth map, or back-project from the depth map to the camera 

coordinates space; 2) find the correspondence of pixel positions between the depth map and the 

color map. With these two functions, the depth map is mapped to the color map, that is, for a pixel 

on the depth map, a corresponding pixel on the color map is found. The specific steps are as follows: 

1) Obtain a depth frame and save the depth data to an array; 

2) Get the coordinate mapper; 

3) Traversing the pixels of the color image.  

If the mapping is correct, that is, the coordinates of the point mapped to the depth image 

are valid in the depth map, the color pixel value of the point is assigned to the corresponding pixel 

in the depth array and displayed. 

Therefore, the alignment result of the color map and the depth map is actually the 

appearance of a broken color map, where the pixels displayed indicate where the alignment is 
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successful, and the black pixels indicate locations where the alignment failed. As shown in Figure 

3.11(c), the incomplete areas in the RGB-D image mainly come from the incompleteness of the 

depth map (such as the black hole in the center of the table). In addition, all the color information 

in the range of the depth map is basically retained in the RGB-D image. Hence, the RGB-D image 

can be drawn with the same size as the depth image, as it covers a narrower field of view than the 

color image. Figure 3.11 shows an example of alignment between an original color image and a 

depth image to form an RGB-D image. 

 

 
  

(a) (b) (c) 

Figure 3.11 Acquisition of raw RGB-D image: (a) original color image (1920 x 1080); (b) depth 

image (512 x 424); and (c) aligned RGB-D image (512 x 424). 

 

3.2.1.2 Color camera calibration based on RGB-D image 

The calibration procedure for the RGB camera calibration can be described as follows: 

1) Acquire a number of checkerboard images by pointing to the calibration target from 

various angles, as shown in Figure 3.12. It is known from Zhang's calibration method [43] that at 

least three images are required to make the internal parameter formula have a unique solution. It 

is empirically known that the number of images is usually about 10 for a better calibration result. 

Conversely, the impact of acquiring too many images on accuracy is not as great as expected [96]. 

The most important aspect to pay attention to in this process is the relative position of the 

calibration checkboard and the camera in the image. Generally, the calibration board must be 

facing up, looking down, left and right, and so on. 
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Figure 3.12 Ten checkerboard RGB calibration images from various angles. 

 

2) Extract grid corners with actual window size, which is a 11 x 7 grid. Considering the 

corner where three incandescent light bulbs are closely connected as the origin, the short side of 

the board is in the X direction, and the long side is in the Y direction, according to the number of 

corner points in each row and column of the board, the coordinates of the corner points can be 

obtained. As can be seen from Figure 3.13, red crosses represent the extracted feature corners. 
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Figure 3.13 Extracted grid corners 

 

3) Estimate calibration parameters after initialization using the OpenCV:calibrateCamera() 

function and then calculate intrinsic parameters (including distortion coefficients) of RGB-D 

camera according to Zhang’s method [42] (Table 3.3). Table 3.4 shows intrinsic parameters of 

both the color and depth cameras from Burrus’s work [97], where the calibration results based on 

RGB-D images are closer to that of the depth camera because the RGB-D imaging principle fills 

color information into the corresponding position of the depth image, which makes the calibration 

feature points read in the RGB-D image actually in the position of the depth image. The calibration 

parameters based on the RGB-D images can be seen as that on the visible depth images, and the 

comparison of the calibration results of the Kinect sensor's depth camera shows that the intrinsic 

parameters are basically consistent and reasonable. 
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Table 3.3 Intrinsic calibration results of RGB-D camera after optimization. 

Focal Length fc = [ 349.81558   350.99530 ] +/- [ 37.53429   38.18605 ] 

Principal point cc = [ 244.21208   201.39782 ] +/- [ 8.57758   23.25039 ] 

Skew 
alpha_c = [ 0.00000 ] +/- [ 0.00000  ]   => angle of pixel axes = 

90.00000 +/- 0.00000 degrees 

Distortion 
kc = [ 0.07345   -0.04673   0.01521   -0.00662  0.00000 ] +/- 

[ 0.08630   0.18522   0.01595   0.00691  0.00000 ] 

Pixel error err = [ 0.84874   0.82762 ] 

 

Table 3.4 Intrinsic calibration parameters of Kinect sensor reported in Burrus’s work [97] 

 Color camera Depth camera 

Focal Length 
fc = [ 1094.03583   1087.37528 ] 

+/- [ 55.02816   51.42175 ] 

fc = [ 379.40726   378.54472 ] +/- 

[ 40.73354   34.75290 ] 

Principal point 
cc = [ 942.00992   530.35240 ] +/- 

[ 13.00131   31.27892 ] 

cc = [ 263.73696   201.72450 ] +/- 

[ 9.17740   30.29723 ] 

Skew 

alpha_c = [ 0.00000 ] +/- 

[ 0.00000 ]   => angle of pixel axes 

= 90.00000 +/- 0.00000 degrees 

alpha_c = [ 0.00000 ] +/- 

[ 0.00000  ]   => angle of pixel axes 

= 90.00000 +/- 0.00000 degrees 

Distortion 

kc = [ 0.06857   -0.10542   0.00233   

0.00092  0.00000 ] +/- [ 0.02206   

0.02884   0.00379   0.00492 ] 

0.00000 ] 

kc = [ 0.03377   -0.04195   0.00519   

0.00734  0.00000 ] +/- [ 0.07368   

0.25678   0.01111   0.00965  

0.00000 ] 

Pixel error err = [ 0.49343   0.67737 ] err = [ 0.88997   0.92779 ] 

 

3.2.2. IR camera calibration 

 

3.2.2.1 Pre-processing of IR feature images 

A typical IR image of the individual calibration target is shown in Figure 3.14(a), in which 

the areas in red indicate the positions of higher temperature incandescent bulbs, while the regions 

in yellow are the surface areas radiated by the incandescent bulbs, and the areas in blue correspond 
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to the background where the temperature is lower. The purpose of preprocessing procedures is to 

identify accurate feature points (incandescent light bulbs) without interference from the board 

surface that is simultaneously heated. In order to input valid feature points to the calibration 

procedure, pre-processing of the raw image ought to be carried-out: 

1) Apply a gray-level threshold within the grayscale representation of the original IR image, 

as shown in Figure 3.14(b); 

2) Erode the highlighted areas of the image to eliminate noise, segment out individual 

image elements and connect adjacent elements in the image (Figure 3.14(c)); 

3) Detect lines of the calibration checkerboard using Hough line transform after applying 

Canny edge detection [98]. It can be seen in Figure 3.14(e) that estimated lines are drawn with a 

blue or red color that represents two different perpendicular sets connecting intersection points on 

the calibration checkerboard that correspond to hot spots formed by the embedded incandescent 

bulbs; 

4) For each line of the red group, traverse its intersection with each line of the blue group 

and record all the points of intersection within the image range; Figure 3.14(f) shows a total of 49 

points corresponding to 49 incandescent lights. 

5) Given that incandescent lights are embedded only at every second corner of the black-

and-white checkboard pattern, and with the aim of achieving one-to-one correspondence between 

feature points in the RGB-D image and those in the IR image, the remaining feature points are 

supplemented by finding the midpoint of any two adjacent points (Figure 3.14(g)). 
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(a) (b) (c) 

   
(d) (e) (f) 

 

  

(g)   

Figure 3.14 Pre-processing procedures of IR images for calibration with RGB-D sensor: (a) 

original IR image of the individual calibration target; (b) after applying a gray-level threshold; 

(c) erosion of the highlighted areas; (d) draw one estimated line; (e) draw all the estimated lines 

in blue or red; (f) recognition of 49 feature points; (g) supplement feature points to match all the 

RGB-D feature points. 

 

3.2.2.2 IR camera calibration with RGB-D sensor 

The procedure above converts the IR image into a registration map that can be detected by 

the calibration tool. Thereafter, a set of input images corresponding to RGB-D images is processed 

the same way as shown in section 3.2.1.2 for the purpose of IR camera calibration, as depicted in 

Figure 3.15. The results obtained for the initial calibration parameters are summarized in Table 

3.5. It can be seen that the focal length from IR images is about 690 pixels. Since the cell size of 



 46 

each pixel is about 26mm [99], the focal length of the FLIR IR camera is calculated as in equation 

(3.6): 

Focal length = fc x cell size = 0.026 mm/pixel x 690 pixels = 17.94 mm (3.6) 

According to the parameters given in Table 3.2, where the focal length of the IR camera 

provided by the manufacturer is 18 mm, it indicates that the calibration results obtained from 

processed IR feature maps are reasonable. 

    

    

  

  

Figure 3.15 Ten IR calibration images for IR camera calibration. 

 

Table 3.5 Intrinsic calibration results of IR camera after optimization. 

Focal Length fc = [689.96207   783.84902 ] +/- [ 18.46342   20.98384 ] 

Principal point cc = [281.66859   424.07136 ] +/- [ 0.00000   0.00000] 

Skew 
alpha_c = [ 0.00000 ] +/- [ 0.00000  ]   => angle of pixel axes = 90.00000 

+/- 0.00000 degrees 

Distortion 
kc = [-0.06006   0.04283   -0.01687   -0.00447  0.00000 ] +/- [ 0.06991   

0.11585   0.01462   0.00178  0.00000] 

Pixel error err = [0.85692   1.04921] 
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3.2.3. Stereo calibration 

Stereo calibration is done to calculate the relative pose between the two camera coordinates 

systems, that is, on the premise of the obtained intrinsic parameter matrix for each camera, solve 

the relative relationship between the RGB-D and IR cameras by calculating IR camera’s translation 

vector, T, and rotation matrix, R, relative to the RGB-D camera. 

Figure 3. 16 shows the coordinates system setting of the relative position of IR camera and 

Kinect sensor. With the IR camera as the center, the direction away from the stand horizontally is 

the positive X-axis direction, the direction parallel to the body of the Kinect sensor and facing 

away in the image is the positive Y-axis direction, and the vertical downward direction is the 

positive Z-axis direction. 

 

Figure 3.16 The coordinates system settings for the relative positions of the IR camera and the 

Kinect sensor. 

 

Set 𝑃𝑟𝑔𝑏𝑑  as the 3D spatial coordinates of a point in the RGB-D camera, 𝑝𝑟𝑔𝑏𝑑  as the 

projection coordinates of the point on the depth plane (the units of (x, y) are pixels, and z is equal 

to the depth value whose unit is mm), and 𝐻𝑟𝑔𝑏𝑑  as the intrinsic parameter matrix of the RGB-D 

camera (Table 3.3). From the pinhole camera model, the following relationships are established: 

𝑝𝑟𝑔𝑏𝑑 =  𝐻𝑟𝑔𝑏𝑑𝑃𝑟𝑔𝑏𝑑 (3.7) 

𝑃𝑟𝑔𝑏𝑑 =  𝐻𝑟𝑔𝑏𝑑
−1 𝑝𝑟𝑔𝑏𝑑  (3.8) 

Also, let’s consider 𝑃𝑖𝑟 as the 3D spatial coordinates of the same point in the IR camera, 

𝑝𝑖𝑟  as the projection coordinates of the point on the IR image plane, and 𝐻𝑖𝑟  as the intrinsic 

parameter matrix of the camera (Table 3.5). Since the coordinates of the RGB-D camera and the 

O 
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coordinates of the IR camera are different, they can be linked by a geometrical transformation, 

namely: 

𝑃𝑖𝑟 =  𝑅𝑃𝑟𝑔𝑏𝑑 + 𝑇 (3.9) 

where R is the rotation matrix, and T is the translation vector. Finally, use 𝐻𝑖𝑟 to project 

the 3D point  𝑃𝑖𝑟 to the IR image plane and estimate its IR image coordinates: 

𝑝𝑖𝑟 =  𝐻𝑖𝑟𝑃𝑖𝑟 (3.10) 

It should be noted that both 𝑝𝑟𝑔𝑏𝑑  and 𝑝𝑖𝑟 use homogeneous coordinates, so when 

constructing 𝑝𝑟𝑔𝑏𝑑 , the original pixel coordinates (x, y) should be multiplied by the depth value, 

and the final pixel coordinates must be divided by 𝑝𝑟𝑔𝑏𝑑 , i.e. (x/z, y/z). The value of z is the 

distance (in millimeters) from the point to the RGB-D camera. 

Moreover, to determine the rotation matrix and the translation vector of the two coordinate 

systems, the external parameters of the two sensors are used. The external parameter matrix is 

composed of a rotation matrix 𝑅𝑟𝑔𝑏𝑑(𝑅𝑖𝑟 ) and a translation vector 𝑇𝑟𝑔𝑏𝑑(𝑇𝑖𝑟 ), which means that 

the point P in a global coordinate system is transformed into the camera coordinate systems of the 

depth camera and the IR camera respectively. If it is satisfied, then: 

𝑃𝑟𝑔𝑏𝑑 = 𝑅𝑟𝑔𝑏𝑑𝑃 + 𝑇𝑟𝑔𝑏𝑑 (3.11) 

𝑃𝑖𝑟 = 𝑅𝑖𝑟𝑃 + 𝑇𝑖𝑟 (3.12) 

Then (3.11) and (3.12) lead to: 

𝑃𝑖𝑟 = 𝑅𝑖𝑟𝑅𝑟𝑔𝑏𝑑
−1 𝑃𝑟𝑔𝑏𝑑 + 𝑇𝑖𝑟 − 𝑅𝑖𝑟𝑅𝑟𝑔𝑏𝑑

−1 𝑇𝑟𝑔𝑏𝑑 (3.13) 

Given that 

𝑃𝑖𝑟 = 𝑅𝑃𝑟𝑔𝑏𝑑 + 𝑇 (3.14) 

Thus, 

𝑅 = 𝑅𝑖𝑟𝑅𝑟𝑔𝑏𝑑
−1  (3.15) 

𝑇 = 𝑇𝑖𝑟 − 𝑅𝑖𝑟𝑅𝑟𝑔𝑏𝑑
−1 𝑇𝑟𝑔𝑏𝑑 = 𝑇𝑖𝑟 − 𝑅𝑇𝑟𝑔𝑏𝑑  (3.16) 

Consequently, we only need to obtain the external matrix of the checkerboard relative to 

the RGB-D camera and IR camera in the same scene. Then we can calculate the transformation 

matrix that connects the two sensor coordinate systems. Since all rotation matrices are orthogonal 

arrays, transposition operation instead of inverse operation can be directly applied. Although the 

external parameter matrices obtained in different acquisition procedures are slightly different, 

resulting in different calculated R and T, using several calibration images of different views of the 
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target and then calculating the average value can generate better results according to the actual 

experimental results. The stereo calibration results are listed in Table 3.6: 

 

Table 3.6 Extrinsic parameters (position Kinect depth sensor of wrt IR camera): 

Rotation vector R = [ -0.11806   0.09681  0.00154] ± [ 0.00729   0.00818  0.00015 ] rad 

Translation vector 
T = [-117.23159  14.68501   188.79907  ] ± [ 6.67013   2.11307  

16.07277 ] mm 

 

The T matrix describes the relative relationship between the origins of the two device 

coordinates. According to the coordinates system of pre-set relative positions of the two devices 

(Figure 3.16) and the actual physical distances between them (Figure 3.7(b)) , the stereo calibration 

results show the actual x-direction is approximately -120mm, measured as -117 ± 7mm; the z-

direction is approximately 200mm, measured as 189 ± 16mm; the Y-direction is measured as 15 

± 2mm. Although the specific position of the depth camera inside the Kinect sensor is unknown, 

it can be seen that it is near the centerline of the Kinect sensor, and since the centerline of the IR 

camera and Kinect sensor is the same when installed, so the Y-direction data can be inferred to be 

accurate. The accuracy of the data in the three directions also basically meets the requirements. 

The R matrix describes the relative orientation relationship between the two camera coordinates 

systems. Since the orientation of the experimental camera coordinates systems are almost the same, 

the results are reasonable. 

 

3.3 Automated Region of Interest Extraction 

With the custom acquisition system described above, three sets of RGB-D, depth, and IR 

data are collected to extract a meaningful representation to help detect NEC. In the previous studies 

[9, 10, 11], the IR images were usually manually segmented directly by research staff based on the 

usual anatomical landmarks of the abdomen. However, there are certain problems with this 

dependency, such as being time-consuming, reliance on research staff input to complete the 

imaging, potentially missing important areas involved in the NEC process, and segmentation 

inaccuracy due to the subtle variations in temperature of the human body and surrounding area. 

Thus, it is challenging to directly extract the region of interest in a single IR image. Hence, a 
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segmentation method for automated region of interest extraction is proposed and detailed in this 

section, which relies on the extra color and depth information to distinguish body parts. 

The segmentation procedure starts from a depth threshold applied of the D channel of the 

registered images collected over a subject. The objective is first to isolate the body from the 

background, which is the bedding surface since the acquisition of baby images requires that the 

cameras face down to take a full body image of the baby, as described in section 3.1.3. 

Segmentation is then refined using a skin color retrieval process to remove any visible apparatus 

such as probes, tubes, wires, and clothes. Next, skeleton data is extracted and analyzed to locate 

the joints that connect different parts of the baby’s body. Finally, the region-of-interest area is 

mapped from the RGB-D image to the IR image to retrieve the temperature distribution only over 

a specific area, which is meant to reduce bias in the thermal distribution analysis that may result 

from considering only subparts of the torso, as in previous research [9, 11], or including 

background items in the considered thermal map. The whole process is illustrated in Figure 3.1. 

 

3.3.1. Background removal and fine-tuning of the detected 

human body regions 

As mentioned earlier, each point of the RGB-D image is expressed by a vector of 

coordinates (x,y,z), in which z means the distance from the subject to the depth sensor. Figure 

3.17(b) shows the corresponding histogram of a depth map in Figure 3.17(a). According to the 

prior information about the imaging conditions given in section 3.1, the baby's body area is always 

closer to the camera than the background, as highlighted in the red box in Figure 3.17 (b), while 

the depth data larger than this area belongs to the background areas (bed, ground) that are farther 

away from the camera. Also, there is a small part of the data on the left side of the red box that 

represents some accidental interference items such as the arms and hands of the nurse who holds 

the baby. However, considering that the proportion of these interference terms is low, and the 

depth value is significantly smaller, they can be easily excluded. In addition, there are several data 

with the value of 0 that correspond to pixels where the sensor is unable to collect depth information, 

as illustrated by black areas in Figure 3.17(a). The latter do not affect the thresholding as long as 

all relevant data are successfully collected. 
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(a) (b) 

Figure 3.17 Depth maps and their corresponding histogram: (a) original depth images; (b) 

histograms of the depth maps, where the red box highlights the threshold range of the target 

human body. 

 

By applying a distance threshold based on the largest cluster with smallest value, it is easy 

to remove background information from the original image. The original RGB-D image and 

background removal image are displayed below in Figure 3.18(a) and (b) for a typical scene 

created with a baby doll. 
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(a) (b) (c) 

Figure 3.18 Results of background removal and fine-tuning of the human body contour: (a) 

original RGB-D image; (b) background removal image; (c) after applying skin color detector. 

 

Skin color is one of the most prominent features of the body surface, which is the least 

sensitive to positions of the body, rotation of the image, and any other changes, so it has advantages 

in body detection. Three predominant color spaces widely considered in computer vision are RGB, 

HSV, and YCbCr. By comparing those three spaces, it is well known that other objects or 

illumination interfere less significantly with the YCbCr and HSV spaces. However, the conversion 

from RGB to HSV space is more complicated than that from RGB to YCbCr. Therefore, the 

YCbCr color representation is chosen as the skin color segmentation model [100]. The flow chart 

of the YCbCr skin color-based filter is given in Figure 3.19. 

 

 

Figure 3.19 Flow chart of a YCbCr skin color-based filter. 

 

This method mainly uses statistical principles, assuming that the random samples of skin 

color conform to the normal distribution and satisfy a Gaussian distribution [101] . The Gaussian 

model composes the continuous data information by calculating the probability value of the pixels 
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and obtains a skin color probability map, leading to confirming the skin color. A two-dimensional 

Gaussian function can be written as: 

𝑃(𝐶𝑟, 𝐶𝑏) = exp [−0.5(𝑥 − 𝑚)𝑇𝐶−1(𝑥 − 𝑚)] (3.17) 

where x is the value of the sample pixel in the YCbCr space, which only emphasizes the 

chromaticity: Cb, Cr, and not the intensity, Y, resulting in less sensitivity to illumination: 

x = [Cb,Cr]T (3.18) 

M is the mean of samples of the skin color in the YCbCr space: 

M = E(x) (3.19) 

and C is the covariance matrix of the skin color similarity model: 

𝐶 = 𝐸((𝑥 − 𝑀)(𝑥 − 𝑀)𝑇) (3.20) 

To determine the parameters in the function, a large number of skin color samples need to 

be collected, on which the statistical characteristics are calculated in order to estimate the values 

of M and C. Tan et al. [102] offer a human skin detection dataset that contains human skin data 

randomly downloaded from Google under different illumination conditions and complex 

backgrounds. Phung et al. [103] created the face and skin detection database made up of over 4000 

images of four skin types: 1) whitish, pinkish; 2) yellowish, light brownish; 3) reddish, darkish, 

dark brownish; 4) other skin types. Both databases were used as the skin color samples to make 

the skin color filter robust to different illumination, multiple skin colors, and complex backgrounds. 

M and C are then substituted into (3.17) to find each 𝑃(𝐶𝑟, 𝐶𝑏) value and to normalize by using: 

𝑃𝑖(𝐶𝑏, 𝐶𝑟)/max (𝑃𝑖(𝐶𝑏, 𝐶𝑟)) (3.21) 

Considering this quotient as the similarity value of the point, in order to view the similarity 

image, we can convert the scale [0,1] to [0, 255] by applying: 

𝑃𝑖(𝐶𝑏, 𝐶𝑟)

max(𝑃𝑖(𝐶𝑏, 𝐶𝑟))
∗ 255 (3.22) 

 As shown in Figure 3.20, color information helps adjust the regions of the body parts, 

where three different skin color levels (whitish, yellowish, dark brownish) do not affect the 

filtering results, as well as different levels of clothing. And as seen from Figure 3.20 (e) and (f), 

the wires lying on the chest are rejected by the skin color filter as expected. 
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(a) (b) 

  

(c) (d) 

  

(e) (f) 

Figure 3.20 Fine-tuning of the human body regions: (a), (c), (e): baby body after applying the 

depth thresholding; and (b), (d), (f): after applying the skin-color filter. 
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3.3.2. Body parts detection with skeleton data 

Anatomical knowledge defines how the human body's bones are connected into a whole 

through joints, muscles, ligaments and other tissues, and support the body. As a result, the bones 

form the scaffold of the human body, dividing it in different parts. For this reason, a skeleton model 

can well represent the connectivity and topology of the shape of the object, and the human skeleton 

data supported by a depth sensor can be used to recognize body joints and to describe relevant 

information about different areas of the human body.  

Inspired by the work of Zhi-guo et al. [104], a skeleton recognition method based on depth 

images is proposed. However, the work of Zhi-guo et al. relies on three-dimensional human motion 

data or scan data, which leads to problems including ineffective skeleton extraction, lack of the 

original topology of the body, and redundant skeletons when data are lacking. The proposed 

method rather extracts the external contours of the human body from the depth image, and uses 

polygonal approximation algorithms and detailed bone extraction constraints to extract human 

skeleton information in external polygons. Based on these segments, the abdominal region of 

interest that we intend to automatically retrieve over the baby is defined as the intersection of a 

quadrilateral area, bounded by the two feature points of the elbows and two feature points of the 

hips, with the segmented area obtained with skin color filters described previously. The resulting 

area of interest is shown in yellow in Figure 3.21(b). 

 

  

(a) (b) 

Figure 3.21 Skeleton models and definition of the abdominal region: (a) extracted skeleton 

models; (b) the abdominal region of interest defined in yellow. 
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The skeleton recognition method includes the following steps: 

(1) Retrieve the depth image of the subject after applying background removal and 

fine-tuning of the human body region operations (Figure 3.22(a)); 

(2) Starting from the edge of the image, use Halcon template matching function [105] 

to find the closest round part, considered as the baby’s head, which is marked in blue circle in 

Figure 3.22(b); 

(3) Detect all contours by Canny edge detection in the depth image (Figure 3.22(c)); 

(4) Discretize the external contour curve into an external polygon using a polygonal 

approximation algorithm, which proceeds as follows; 

 (a) Connect a straight-line AB between the two points A and B at the beginning 

and end of the curve, which is the chord of the curve, as shown with the yellow line in 

Figure 3.22(d); 

(b) Obtain the point C on the curve with the largest distance from the straight-line 

segment, and calculate its distance d from AB; 

(c) Compare the distance with a predetermined threshold range. If it is within the 

threshold range, the straight-line segment is used as an approximation of the curve, and the 

curve is processed; if it is smaller, then discard it; 

(d) If the distance is greater than the threshold range, use C to divide the curve into 

two sections AC and BC, as shown with the blue line in Figure 3.22(d), and perform (a)-

(c) on the two sections of the curve, respectively; 

(e) When all the curves have been processed, the polylines formed by connecting 

the divided points in turn can be used as an approximation of the curve (Figure 3.22(e)). 

(5) Select a point p within the external polygon and two points 𝑞1, 𝑞2 on the external 

polygon closest to p (𝑞1, 𝑞2 are on different sides) to determine their local maximum. As shown 

in Figure 3.23, the dotted line is the central axis (skeleton) of the long side of the rectangle. There 

is also a horizontal solid line that intersects vertically at the intersection point c. The horizontal 

solid line and the two vertical edges of the rectangle also intersect perpendicularly, and the 

intersection points are r1 and r2. Another four points a, b, c, and d are on the solid line in order. 

According to the definition of the Euclidean distance transformation, the Euclidean distance of 

point a is the length of a to r1 | ar1 |, and the distance of point b is | br1 |. The distance of point c is 

| cr1 | = | cr2 |. Point d to the right of point c has the closest background point to r2, so its Euclidean 
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distance is | dr2 |, and e is | er2 |. The Euclidean distance values of all 5 points are shown in Figure 

3.23(b). Therefore, in the horizontal direction, point c has experienced a local maximum, and point 

c is the point on the central axis, which is the skeleton point, so all the skeleton points have this 

property. However, because of the uncertainty of the shape, size, and orientation of the skeleton to 

be extracted, the skeleton points are different from the regular graphics in that they experience a 

local maximum distance in a certain direction but are local maxima in an irregular direction. The 

skeleton points can be determined by this property [106], which is that if p satisfies the following 

equations (3.23) and (3.24), then p is the skeleton point (Figure 3.22(f)): 

{
𝐷2(𝑞1, 𝑝) − 𝐷2(𝑞2, 𝑝) ≤ max(‖𝑥1 − 𝑥2‖, ‖𝑦1 − 𝑦2‖)

𝐷(𝑝, 𝑞0) ≤ 𝐷(𝑞1, 𝑞2)
 (3.23) 

{
𝐷(𝑞1 ,̅̅ ̅̅  𝑞2̅̅ ̅) >  𝑇1

𝐿1 ∩ 𝐿2 = ∅
, 𝑖𝑓 𝑞1 ∈  𝑃𝑒, 𝑞2 ∈  𝑃𝑒 (3.24) 

 Where 𝑞0  represents the midpoint of 𝑞1  and 𝑞2 ; D() represents the Euclidean distance; 

𝐿1,𝐿2 respectively represent the edge of the polygon where 𝑞1, 𝑞2 is located; if 𝑞1 is the vertex of 

the polygon, then 𝑞1  ̅̅ ̅̅  equals to the vertex 𝑞1 while if 𝑞1is not the vertex of the polygon, then 𝑞1  ̅̅ ̅̅  

equals to 𝐿1; similarly, if 𝑞2 is the vertex, then 𝑞2̅̅ ̅ equals to 𝑞2, otherwise 𝑞2̅̅ ̅ equals to 𝐿2; 𝑇1 is a 

preset parameter;  

(6) Consider the baby’s head part determined in step (2) as one anatomical point, and 

the remaining skeleton lines are further optimized by the polygonal approximation algorithm to 

keep the bone lines in the largest connected domain and remove the other noise bone branches, as 

shown in Figure 3.22(g); 

(7) Consider the endpoints of the bone lines as joint points. Combined with the baby 

doll’s color image shown in Figure 3.22 (h), the complete skeleton data and joint point distribution 

can be shown in Figure 3.22 (i). Among them, the number of each joint point is marked from the 

head. The rules for serial numbers are: 

(a) Mark the serial number from 1, where 1 is always the head position; 

(b) Find the next unlabeled joint point adjacent to the joint point of which each 

serial number is located in sequence; 

(c) For multiple joint points adjacent to the same joint point, the joint point to the 

left or above the line between the joint point number 1 and the current joint point takes 

precedence, to the right or below joint point is next, and the joint point opposite to the 



 58 

direction in which the current joint point points to the joint point numbered 1 has the lowest 

priority; 

(8) Define the initial abdominal region as the quadrilateral areas surrounded by the four 

feature points 6, 7, 10, 11, as shown in yellow in Figure 3.22(j), which still include some 

background areas that do not belong to the body. So, the final segmentation is the intersection of 

the initial segmented abdominal area defined by joints 6,7, 10, 11, and the skin color filter result 

described previously, as shown in Figure 3.22(k). 

 

  

（a） （b） 

  

(c) (d) 
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(e) (f) 

  

(g) (h) 

  

(i) (j) 
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(k)  

Figure 3.22 Segmentation results performed over a mock baby doll: (a) depth image after 

applying background removal and fine-tuning of the human body region operations; (b) find the 

closest round part from the edge of image, considered as the baby’s head within the blue circle; 

(c) Canny edge detection; (d) polygonal approximation algorithm; (e) discretize the external 

contour curve into an external polygon; (f) find skeleton points based on local maximum 

algorithm; (g) keep the skeleton lines in the largest connected domain and remove the other 

noise bone branches; (h) original color image of the baby doll; (i) the complete skeleton data 

and joint points distribution with order numbers; (j) initial definition of the abdominal region; 

and (k) final segmentation result of the abdominal region of interest. 

 

 

 

(a) (b) 

Figure 3.23 Local maximum definition: (a) the positions of the 5 points; (b) Euclidean distance 

of those 5 points. 
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3.3.3. Mapping of region-of-interest between RGB-D image and 

IR image 

Since the resolutions of the RGB-D and IR images are not the same, the segmentation 

results in the RGB-D image obtained previously cannot directly be used to extract the 

corresponding region in the IR image. Based on the relationship between pixels in the region of 

interest, the mapping operation is completed by calculating the proportional relationship between 

the RGB-D image and the IR image. The procedure is defined as follows: 

We use a regular checkerboard pattern (such as a calibration target mentioned in section 

3.2) to measure the ratio of the length of the same side in the RGB-D map and the IR map.  As 

seen from Figure 3.24, for the same segment length, the abscissa difference in the RGB-D image 

is 268 - 144 = 124, and the ordinate difference is |44 - 144| = 100; while in the IR image, the 

abscissa difference is 190 - 78 = 112, and the ordinate difference is |7 - 144| = 137. Therefore, the 

ratio of the abscissas between the IR and RGB-D images is : IRab : RGB-Dab = 0.9032 : 1, and the 

ratio of ordinates is: IRor : RGB-Dor = 1.37 : 1. In order to obtain more accurate ratio value, the 

final ratio of the RGB-D and the IR images is estimated by averaging several sets of data, which 

results in the following experimental scaling ratios, which are then used to support the projection 

of the extracted region of interest from the RGB-D map to the IR map: 

 

IRab : RGB-Dab = 0.9053 : 1 (3.25) 

IRor : RGB-Dor = 1.3674 :1 (3.26) 
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(a) (b) 

Figure 3.24 Ratio of the length of the same side in the RGB-D map and the IR map: (a) same 

length in the RGB-D map with resolution of 512 x 424; (b) same length in the IR map with 

resolution of 320 x 240. 

 

Figure 3.25 illustrates a segmentation result obtained by applying the methods proposed in 

this chapter over a sample infrared image acquired on the baby doll. It can be seen that the method 

reliably extracts a temperature distribution map over the region of interest to detect NEC from a 

complete human body. It properly removes the areas that may create interference in thermal data 

analytics, such as clothing, background, hands of nurses assisting in the image collection process, 

etc., that have a similar temperature to the baby’s body. Therefore, it maintains the original shape 

structure of the body, making the segmentation results more accurate, complete and robust in 

comparison to previous unconstrained IR imaging approaches [9, 11]. 
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(a) (b) (c) 

Figure 3.25 Illustration of segmentation and region of interest extraction results projected over 

an IR image of a baby while considering scaling factors; (a) original IR image; (b) mapping of 

segmented area from RGB-D image to IR image; and (c) extracted abdominal area of interest 

from IR image. 

 

3.4 Thermal Distribution Analysis and NEC Detection  

After the region of interest is extracted, the temperature values collected within the entire 

region are directly analyzed. The IR image is first converted to a grayscale image representing the 

temperature distribution of the abdominal region. Then first-order statistics (mean, median, 

variance, standard deviation, quartile range, etc.) and box plots are used to compare temperature 

distribution differences between different groups, as in Ntonfo et al.’s previous work [11]. Based 

on known physiology, it is sufficient to describe and distinguish between NEC and normal infants 

by analyzing the thermal differences statistically because, under normal circumstances, infants in 

the NICU rarely have a fever. Even if they do, they are usually due to severe diseases such as 

sepsis, in which case they will be excluded from our research.  

In order to fully illustrate the methodology, a comparison of thermal distributions was 

initially performed in a laboratory environment on a mock baby doll with artificially generated 

abdominal temperatures. One sample was considered a “normal” baby doll and was warmed to 

body temperature by holding it in human hands to allow it to be detected by the IR camera. The 

other sample represented a baby doll with “simulated NEC” which was reproduced by first 

warming the doll in human hands to bring it to body temperature, and then heating its abdomen 

with an incandescent bulb for 3 seconds prior to data acquisition. Although this cannot replicate 

the actual temperature distributions seen in a normal baby and one with NEC, it was an attempt to 

create a simulated situation where one subject had a different abdominal temperature compared to 
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the other case, to allow for testing of the proposed methodology. Figure 3.26 and Table 3.7 shows 

the results of the two different samples, using Matlab [107] for data analysis. It is important to 

mention that the values presented refer to grayscale levels in the IR image, and not to absolute 

temperature.  

 

Table 3.7 Statistical analysis of the abdominal temperature (grayscale levels in IR image) 

distribution over a mock baby doll. 

 Simulated NEC Normal 

Mean 157.1 157.4 

Median 172 168 

Standard deviation 24.2 29.5 

Min 81 71 

Max 180 190 

Skewness -1.2 -0.5 

Median absolute deviation 20.0 27.3 

Interquartile range 30 57 

Kurtosis 3.2 1.6 
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Figure 3.26 Box plot of grayscale distribution over abdominal region of baby model. 

 
From this case, we can observe that the mean of the abdominal temperature grayscale 

values are similar, with the median value of the “simulated NEC” doll slightly higher than that of 

the “normal” case, which is coherent with the heating process. The minor differences in between 

the two groups are related to the imperfection in the simulation of the actual temperature 

distributions that can be observed in a normal baby and one with NEC. Furthermore, by observing 

the length of the box plots, it can be seen that the data distribution of the “simulated NEC” case is 

more concentrated, while the “normal” case is more dispersed. Although the median lines of both 

“normal” and “simulated NEC” dolls are closer to the upper quartile, suggesting the data 

distributions are both left-biased, it is clear to see that the “simulated NEC” data is more left-biased, 

which can also be quantified from the skewness value in Table 3.7. This simulation of thermal 

distribution analysis cannot accurately replicate what might be seen in the case of NEC in an actual 

baby, but rather it is an attempt to assess the proposed methodology’s ability to distinguish two 
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different groups by their central tendency, dispersion, and distribution shape. More realistic testing 

scenarios, performed in a clinical environment on real subjects, are reported in Chapter 4. 

 

3.5 Summary of Methodology 

Chapter 3 details the design and implementation of a custom acquisition platform that 

meets specific requirements for NEC detection and the operational environment in the clinical 

setting by medical personnel who have limited time and are not trained in image processing and 

statistical analysis. Based on this set-up, a calibration method between individual multi-spectral 

sensors is proposed. An adaptive RGB-D based human body areas segmentation method with 

experimental results is also presented, as well as the projection mechanism of the region of interest 

over a corresponding thermal IR image map that supports abdominal temperature distribution 

analysis needed to detect NEC in newborns.  

 

  



 67 

Chapter 4 Experimental Validation 

Beyond the development phase detailed in chapter 3, this chapter reports on an 

experimental validation of the acquisition platform, data processing and analytics that was 

performed on a number of live babies acquired in clinical settings. Section 4.1 introduces the 

recruitment of eligible normal and NEC babies in this research and the essential ethical 

considerations. Then the standard image data acquisition process is completed on babies 

accompanied by medical staff (section 4.2). Afterwards, section 4.3 illustrates data analysis and 

presents experimental results obtained on the two groups of babies. Finally, section 4.4 

summarizes the findings in this chapter. 

 

4.1 Ethical Protocol 

4.1.1. Subject population 

According the protocol submitted for ethics approval, a sample size of 10 normal babies 

was recruited to form the normal group, who were at 26+0 - 42+0 weeks corrected gestational age 

(GA) without any clinical, radiological or pathological signs commonly associated with NEC. 

They had no diagnosis of clinical sepsis or hypotension and were  in stable condition (with respect 

to respiratory status, heart rate, blood pressure, oxygen saturation, and pain control) as determined 

by the bedside and study physicians. The participants were recruited at the Children’s Hospital of 

Eastern Ontario (CHEO) and the Ottawa Hospital General Campus (TOH-GC) neonatal intensive 

care units (NICU), in close collaboration with Dr. Bariciak, who is affiliated with both units. 

Since there are limited patients diagnosed with NEC each year at both NICUs, and 

considering that the estimated consent rate of eligible babies with NEC is about 75%, the target 

enrollment of NEC Group was five babies who were between 26+0 - 42+0 weeks corrected 

gestational age, diagnosed with signs and symptoms of definitive NEC and Bell’s stage 2 or higher 

x-ray findings [10]. Of note, the occurrence of NEC was very low in both NICUs during the 

experimental validation phase of this study, and thus only 2 babies with NEC were enrolled. 
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4.1.2. Inclusion and exclusion criteria 

For both groups, any baby with a known congenital anomaly involving the intra-abdominal 

organs, with umbilical lines, tapes, or dressings applied to the abdomen, with active suspected or 

proven sepsis, and any baby deemed to be clinically unstable by the bedside nursing/physician 

team or the study physician are excluded from enrollment. 

 

4.1.3. Ethical considerations 

Under the ethics approval obtained, the following considerations were taken into account. 

(1) Known or possible risks and benefits to subjects 

There are no known risks associated with thermography and infrared-based range imaging. 

Thermal imaging modality is non-invasive and non-ionizing. It does not send any electromagnetic 

waves to the subject. It merely records the infrared radiation emitted naturally by all bodies. A 

Kinect sensor is equipped with a passive color camera and an active range sensor that uses low 

power infrared light-emitting diodes to obtain the depth information of the surrounding scene by 

estimating signal travel time to and from the subject. The technology has been developed by the 

gaming industry and is dedicated initially to perform motion capture over human beings. Therefore, 

it represents no risk to the baby. 

However, the population considered in this study is typically cared for in an incubator, 

often involving an overbed warmer, as shown in Figure 3.6.  Plexiglas walls do not let infrared 

radiation pass to reach the thermal camera; therefore, it is necessary to remove the subjects from 

the incubator, as discussed in section 3.1.  The heat being emitted by the overbed warmer may also 

interfere with the recording of infrared radiation emitted from the baby. Thus, the warmer is turned 

off while recording the images, of which the overall process should not exceed two minutes. The 

brief period during which the subject is outside of the protective environment of an incubator or 

overbed warmer could induce a decrease of the subject’s body temperature if appropriate 

precautions are not taken. The brief removal of the subject from the incubator may also increase 

the subjects’ stress level but not more than during regular medical care.  Handling may cause 

transient changes in heart rate, blood oxygen saturation, or blood pressure. However, there is no 

evidence that these changes are significant or harmful during brief gentle handling in stable babies. 
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The procedure will not be performed or will be immediately discontinued in any baby who 

manifests any signs of instability. 

There are no immediate medical benefits for the subjects involved in this study, as this is a 

further study to improve the infrared imaging tools used in the assessment and management of 

NEC. Being able to understand better the physiological mechanisms associated with NEC could, 

however, lead to improved management of the disease and reduce the mortality and morbidity 

rates in the future.   

(2) Precautions taken to deal with known or possible risks 

The entire procedure takes place in the neonatology care unit and under the immediate 

supervision of medical personnel. The overall process outside the incubator/with the heater turned 

off takes approximately 2 minutes: 60 seconds for cooling and 60 seconds for imaging. Nurses 

assess the pain level of the babies during the imaging procedure. 

Neonatal health care specialists are present at all times to ensure that the subject’s vital 

signs are within acceptable limits. Any degradation of a subject’s vital signs results in the 

immediate stopping of the imaging procedure, and the health care staff attend to the baby at that 

time. 

The investigators provided in-service the nursing staff before the study.  NICU nurses are 

familiar with signs of instability. However, as a precaution, a list of specific changes that require 

discontinuation of the procedure were drawn up to include changes in respiratory status, heart rate, 

blood pressure, color, and oxygen saturation particularly. Additionally, the nurse’s decision to 

discontinue for any other reason, including her/his perception that the baby is not tolerating the 

procedure, will be final.  

 (3) Subject recruitment procedures, information to be collected and sources of information 

The research physician identified the subjects who fit the criteria for inclusion in our study 

and approached the parents with a preliminary outline of the study and its purpose only.  The 

research physician and any person not at arm’s length from the clinical care of the infants were not 

otherwise involved in subject recruitment. If the parents indicated to the research physician that 

they are not interested in receiving any further information about the study, no further attempts to 

recruit the subject were made. If the parents indicated a willingness to see or hear further 

information, an investigator who does not have any relation to the subject then approached the 

potential subject’s parents. He/she gave all the information necessary for the parents to make an 
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informed decision on whether or not to participate in this study. This process of informing the 

parents included declaring all the concerns proposed by parents, notifying the parents that 

declining the study does not have any effects on the baby’s care. Moreover, the staff gave as much 

time as possible for the parents to consider when presenting the consent. No information 

concerning the subject were collected unless the parents expressly agreed to it and the consent 

form had been signed.  Parents were also assured that they can withdraw their baby from the study 

at any time without explanation and that this does not in any way compromise the baby’s care. 

(4) Conditions under which a baby would be withdrawn from the study 

Any baby who appeared not to tolerate the imaging procedure was withdrawn. Babies who 

were already physiologically unstable were not imaged unless and until stability returned. Babies 

who went to the operating room for abdominal surgery were also withdrawn to ensure no 

unnecessary handling of the abdominal wound, because the incision generates inflammation and 

heat, thus rendering thermographic images uninterpretable. Babies in whom a non-treatment 

decision was made by the parents and team were also withdrawn.   

 

4.2 Data Acquisition 

The following information was collected for each imaged subject in the database: 

• Subject Study Identification number 

• Subject Group: NEC vs. Normal 

• RGB-D and IR images sequence of baby’s whole body lasting 1 minute 

• GA at birth, days of life, and corrected GA 

• Weight at birth and current weight 

• Presence of feed intolerance, stool changes, abdominal distention, apnea, lethargy, 

metabolic acidosis, thrombocytopenia (clinical indicators of NEC) 

• Timing of last feed 

• Timing of last bowel movement 

• Radiographic changes suggestive of NEC, including date and time of x-ray and regions 

where pneumatosis is seen and regions where bowel thickening is seen 

• Subject’s skin temperatures from incubator/warmer bed probe 

• Other comments 
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Permission was obtained from some parents to take photographs of the babies, that would 

be de-identified using pixilation of the head region, and used for study reporting purposes.  

 

4.2.1. Data collection 

The proposed experimental acquisition setup used to collect data is described in Section 

3.1. Medical thermography requires a period of slight cooling of the subject in order to stabilize 

the body’s surface temperature.  The room temperature was maintained slightly below 

thermoneutrality, as is usually the case in a neonatal intensive care unit, to ensure accurate imaging 

without inducing any sustained cold stress.  Before imaging, all clothing was removed except for 

clothes covering extremities such as the head, hands, or feet. While imaging, the baby was removed 

out of the incubator by medical staff for less than or equal to 60 seconds. The distance from the 

baby was determined to about 60 cm, which is the shortest distance that ensures both Kinect sensor 

and IR camera can collect valid information. The baby was lying flat, imaged with the camera 

facing downward, as shown in Figure 4.1. During the 60 sec imaging process, the clothes and 

beddings were removed from the baby’ abdomen, avoiding the interference with subsequent 

segmentation operations. No attempts were made to relocate probes and wires that are within the 

main imaging area as the goal of this new technology is to detect and remove those areas from the 

thermal datasets automatically. 
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Figure 4.1 Data collection at the TOH-GC NICU. 

 

As seen from Figure 4.1, all sensors are mounted on a single tripod rack that can be rolled 

over the incubator. Once the apparatus height is set and is positioned over the location where the 

baby is to be imaged, the thermal, color, and depth images are displayed to fine-tune the position 

of the sensors. Then, the images start recording for 60 seconds after the over bed warmer is shut 

off and the bedside nurse lifts the hood of the incubator or pulls out the mattress on which the baby 

lies for a brief time. After approximately 60 seconds, the recording is stopped. Then, the mattress 

is pushed back into the incubator, the hood is closed, or the overbed heater is turned back. The 

bedside nurse also records an axillary temperature before and after the imaging to ensure the baby’s 

temperature has not decreased significantly. 

 

4.2.2. Confidentiality and privacy protection 

The images and non-identified data collected during the study are stored on protected 

recordable media and a password protected, secure personal computer for analysis.  An 

independent study number was assigned to each subject, and the link between the subject and the 

study number is kept in separate encrypted, password protected databases at TOH-GC and CHEO. 

Informed consent forms are kept separately from the data and are stored in a locked office at the 
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respective hospital where the subject was enrolled.  Only the research physician has access to the 

link and the consent forms.  Moreover, only the researchers directly involved in the study have 

access to the images and other data collected. In this thesis, regions of images depicting a subject 

have been blurred manually to also ensure privacy and confidentiality. 

 

4.3 Data Analysis and Experimental Results  

4.3.1. Segmentation and region of interest extraction 

In this section, three different sets of results from subjects Normal2, Normal3, and Normal4 

are presented as an illustration of performance and relative robustness of the proposed solution 

with respect to different baby positions, postures, and overlying clothing/monitoring equipment in 

the normal group. First, the original RGB-D images are presented in Figure 4.2(a), followed by 

background removal results after applying an adaptive depth threshold in Figure 4.2(b). During 

this process, it is clearly seen that besides the baby’s body, which we are interested in, there is also 

some bedding, clothing, probes, and wires remaining, which may affect the body parts recognition 

because their temperature as they sit near the body is similar to that of the body itself, making it 

difficult to segment in the IR image. 

The skin color filter procedure was performed on each image to remove the other 

interferences such as clothing, bedding, tubes, probes, etc. (Figure 4.2(c)). Afterward, the skeleton 

recognition method based on depth image was applied to recognize the skeleton distribution and 

15 joint points on the baby’s body (Figure 4.2(d)). The latter were then used to isolate the relevant 

abdominal area bounded by blue quadrilaterals, as shown in Figure 4.2(e).  

As can be seen from subject Normal2, who exhibits a relatively complete and regular body 

posture, the procedure reliably detects all the skeleton distribution and relevant anatomical joints 

as was seen for the baby model described in Chapter 3. However, processing data from the 

Normal3 baby produces an incomplete skeleton map due to the legs being covered by beddings 

and clothes. Although the covered parts bring some difficulties for leg recognition, the four joints 

used to locate the potential abdominal area are not affected, resulting in a consistent segmentation 

result in the end. The Normal4 baby is another special case because of his raised arms. In this case, 

the midpoints of the line segment connecting the elbow joints and the ipsilateral hips are 

considered as feature points to form the blue quadrilaterals instead of the actual elbow joints, 
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resulting in the initial segmentation shown in Figure 4.2(f). Since the initial segmentation is 

restricted by four anatomical joints, it contains some erroneous areas which are not part of the 

human body, leading to segmentation of extra parts in the IR image that do not belong to the region 

of interest. Therefore, it is necessary to refine the initial results with the skin color filter. 

The intersection region of blue quadrilateral and skin color filtered segment was extracted 

as the final region of the abdomen, as seen in Figure 4.2(g), leading to much more accurate 

extraction of only surfaces belonging to the baby’s abdomen and dropping any remaining 

background regions that may have been retained in the initial segmentation from anatomical 

feature points only. The final segmentation results are then mapped onto the corresponding IR 

image for each subject, (Figure 4.2(h), to generate the extracted thermal map over only the 

abdominal region of interest, shown in Figure 4.2(i). The latter will be analyzed using first-order 

statistics in the following section. Appendix A provides the complete set of results for the other 

seven normal babies considered in this study. 

 

Normal2 Normal3 Normal4 

   
(a) 

   
(b) 
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(c) 

   
(d) 

   
(e) 

   
(f) 

   
(g) 
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(h) 

   
(i) 

Figure 4.2 Segmentation and region of interest extraction results on multispectral data collected 

on real normal babies in a clinical environment, for three representative cases: (a) original RGB-

D images; (b) background removal results; (c) after applying skin color filter; (d) recognized 

anatomical joints; (e) potential abdominal area restricted by blue quadrilaterals; (f) initial 

estimation of abdominal region; (g) refined extracted region of abdomen with skin filter 

segment; (h) original IR images; (i) final region of interest extracted in IR images. 

 

Additionally, Figure 4.3 illustrates the complete segmentation and region of interest 

extraction results for the two subjects in the NEC group. Unlike those shown in Figure 4.2, both 

NEC cases were imaged with the hands and arms of the medical staff who helped secure the babies’ 

position. Since the nurse’s hands are basically at the same depth as the baby’s body, the hands are 

retained in Figure 4.3(b). They are also kept after applying the skin color filter in Figure 4.3(c), as 

expected. However, the interferences do not actually affect the skeleton points recognition because 

the nurse’s hands and arms are either connected to the baby’s body so that they are considered an 

extension of the baby’s body, or are separated from the baby’s body and then abandoned during 

the identification process, as seen in Figure 4.3(d). In the former case, the number of the established 

skeleton points has not changed before extending to the hands, so the four certain skeleton points 

used to restrict the initial abdominal region are still reasonable and feasible, as shown in Figure 
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4.3(e). The final results are similar with that obtained on the normal group, as seen from Figure 

4.3(f) to (i). 

 

NEC1 NEC2 

  

(a) 

  

(b) 

  

(c) 

  

(d) 
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(e) 

  

(f) 

  

(g) 

  

(h) 
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(i) 

Figure 4.3 Segmentation and region of interest extraction results on multispectral data collected 

on real NEC babies in a clinical environment: (a) original RGB-D images; (b) background 

removal results; (c) after applying skin color filter; (d) recognized anatomical joints; (e) potential 

abdominal area restricted by blue quadrilaterals; (f) initial estimation of abdominal region; (g) 

refined extracted region of abdomen with skin filter segment; (h) original IR images; (i) final 

region of interest extracted in IR images. 

 

4.3.2. Thermal distribution analysis  

 

For each individual subject in the normal and NEC groups, there were six segmented IR 

images selected randomly to minimize the overall impact of biased data. Then the grayscale values 

were computed from the combined data, which contain all pixels within the region of interest from 

the six selected sample IR images corresponding to a given subject. Table 4.1 lists first-order 

statistical estimates extracted from the IR data over only the previously segmented region of 

interest for each of the ten normal babies on whom data was acquired at CHEO and TOH 

(documented in Section 4.3.1 and Appendix A). Table 4.2 lists similar statistics for the two NEC 

babies. After comparing the data of the individual subjects (grayscale pixel values for 6 images 

per subject were combined and then analyzed) in the normal group and that in the NEC group 

respectively (Figure 4.4 and 4.5), we observed that the grayscale distribution range within a same 

group is similar, as well as the distribution trend of the individual subjects as measured by median 

values.  

In order to further synthesize the data of the normal and NEC groups\, we then 

amalgamated the data of all subjects within each group to formulate representations for the overall 

normal and NEC groups. The amalgamated first-order statistics of the normal and NEC groups, 
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respectively, and corresponding boxplots are presented in Table 4.3 and Figure 4.6 to support the 

analysis. While the estimated mean and median values exhibit similar trends, median values are 

closely examined in this study rather than mean values given that data distribution is not 

necessarily normal. 

 

Table 4.1 Individual first-order statistics over ten samples of babies in the group of Normals. 

 Mean Median 
Standard 

deviation 
Min Max Skewness 

Median 

absolute 

deviation 

Interquartile 

range 
Kurtosis 

Normal2 129.7 151 48.1 26 175 -0.7 42.9 92 1.9 

Normal3 134.7 158 45.1 35 174 -0.8 39.7 78 2.1 

Normal4 116.2 147 62.5 1 173 -0.7 55.6 101 2.0 

Normal5 131.4 158 46.5 27 175 -0.7 41.7 77 2.0 

Normal6 128.6 152 48.8 18 175 -0.8 43.0 85 2.2 

Normal7 126.8 144 49.0 24 173 -0.7 42.6 87 2.0 

Normal8 126.8 150 50.8 16 174 -0.7 44.7 90 2.1 

Normal9 128.6 156 49.4 17 175 -0.7 43.8 82 2.1 

Normal10 130.6 157 47.7 30 175 -0.7 42.9 85 1.9 

Normal11 131.5 155 45.6 33 175 -0.7 40.6 77 2.1 

 

Table 4.2 Individual first-order statistics over two samples of babies in the group of NECs. 

 Mean Median 
Standard 

deviation 
Min Max Skewness 

Median 

absolute 

deviation 

Interquartile 

range 
Kurtosis 

NEC1 162.3 180 38.9 27 195 -1.4 30.9 42 3.8 

NEC2 159.5 180 39.1 26 194 -1.2 32.4 54 3.4 
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Figure 4.4 Distribution of individual grayscale level representing temperature over abdominal 

region of the normal group. 

 

Figure 4.5 Distribution of individual grayscale level representing temperature over abdominal 

region of the NEC group. 
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Table 4.3 Amalgamated first-order statistics over the normal and NEC groups. 

 Mean Median 
Standard 

deviation 
Min Max Skewness 

Median 

absolute 

deviation 

Interquartile 

range 
Kurtosis 

Normal 128.6 153 49.9 1 175 -0.8 44.0 86 2.2 

NEC 160.6 180 39.1 26 195 -1.3 31.8 52 3.5 

 

 

Figure 4.6 Boxplot of temperature distribution, represented by grayscale levels, over abdominal 

region of the NEC and normal groups. 

As can be seen above, the median grayscale values are higher on the NEC group than on 

the normal (red lines in Figure 4.6), potentially representative of intestinal inflammation in the 

NEC babies, which triggers a rise in abdominal temperature. The box of the NEC group is also 

shorter than that of the normal one, showing that the temperature distribution throughout the 

abdomen is more concentrated in general, which may reflect that the abdominal temperature rise 

due to inflammation elevates the temperature of the entire NEC abdominal region vs the normal 



 83 

abdomen which may have some more varied temperature distribution across the various 

underlying structures. Additionally, it can be seen from the NEC group that the median is closer 

to the upper quartile, revealing that most data are distributed on the right side of the X-axis, the 

tail of the curve extends to the left, and the data are left-biased, which is also seen for the normal 

group, but is less pronounced. The degree of left-biased can also be quantified from the skewness 

value in Table 4.3, indicating that the data distribution of NEC group is more left-biased than that 

of normal groups. 

In order to compare the results above with that obtained when using the methodology 

proposed in a previous study by Ntonfo et al. [11], a rectangular area surrounding the umbilical 

stump was manually selected over each RGB-D image, and then mapped to the corresponding 

thermal image, as shown in Figure 4.7. As there were no specific protocols provided in the previous 

study, we hypothesized that the size and orientation of the rectangle do not affect the results, and 

related experimental error can be ignored. Table 4.4 and Figure 4.8 detail the statistical analysis 

performed using manually segmented thermal maps of the abdominal region of the same two NEC 

and ten normal babies, in accordance with the segmentation method used by Ntonfo et al. [11]. 
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(a) (b) (c) (d) 

    

(e) (f) (g) (h) 

    

(i) (j) (k) (l) 

Figure 4.7 Rectangular areas manually selected over the abdominal regions on IR images 

acquired with the proposed imaging system, respectively on: (a) Normal2; (b) Normal3; (c) 

Normal4; (d) Normal5; (e) Normal6; (f) Normal7; (g) Normal8; (h) Normal9; (i) Normal10; (j) 

Normal11; (k) NEC1; and (l) NEC2. 

 

Table 4.4 Amalgamated first-order statistics over normal and NEC groups based on previous 

segmentation method proposed in [11]. 

 Mean Median 
Standard 

deviation 
Min Max Skewness 

Median 

absolute 

deviation 

Interquartile 

range 
Kurtosis 

Normal 131.7 161 50.6 1 175 -1.0 44.2 75 2.7 

NEC 150.8 180 55.1 1 195 -1.3 44.9 69 3.5 

 



 85 

 

Figure 4.8 Box plot of temperature distribution, represented by grayscale levels, over abdominal 

region of the NEC and normal groups based on previous segmentation method [11]. 

  

As shown in Figure 4.8, when using the previously described segmentation and analysis 

method, the median of grayscale values distribution over the abdominal region of the NEC group 

is also higher than that of the normal group, and both two groups are left-biased as well. However, 

the spread of the grayscale distribution for each group is less pronounced compared to the results 

from the method proposed in this thesis. The relative positional relationship between the median 

and the quartile also does not show a large difference between the two groups either from the 

boxplot or the skewness values.  

Furthermore, when compared to Ntonfo’s work [11], our study has yielded conflicting 

findings on the overall differences in grayscale values between the two groups, where the median 

grayscale value of NEC group is higher than that of normal group in the present dataset but the 

median grayscale value of NECs is lower than that of normals based in Ntonfo’s work. The reasons 
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can be related to limited number of subjects studied and differences in the IR thermal cameras. 

Considering that there was only one normal and one NEC baby reported on in Ntonfo’s work [11] 

and there are ten normal and two NEC babies in this study, it is possible that the babies recruited 

in each study had different stages of NEC, with the babies in Ntonfo’s study possibly having 

necrosis and dead tissue which has less inflammation and heat generation than tissue in earlier 

stages of NEC that has not died. Moreover, the different IR thermal cameras with different imaging 

principles and different resolutions used in the two studies could affect the collection of grayscale 

values of the IR images, which then could result in the inverted thermal data direction (higher-

lower median temperature) reported.  

Although there is ambiguity in the use of grayscale values to describe data from the 

different datasets, it still can be concluded that statistical analysis is feasible and attainable and 

show differences between NEC and normal groups in both Ntonfo’s [11] and this work. However, 

the limited number of subjects makes it impossible to quantitatively summarize whether the 

comparison of data between the two studies is significantly different. Further study on an extended 

dataset are needed. Meanwhile, the present method provides a completely automated and more 

standardized segmentation process for extracting thermal data of the abdominal region compared 

with Ntonfo’s method [11], which ensures full use of all available and relevant information while 

minimizing manual interference. 

 

4.4 Summary and Discussion 

Chapter 4 starts with a detailed description of the study protocol, as approved by the 

research ethics boards, that has been used for recruitment and data collection. Next, experimental 

results with the segmentation and region of interest extraction method proposed in Chapter 3 are 

presented. It was demonstrated that the proposed multi-spectral acquisition and automated analysis 

approach has improved the application of IR-based detection of NEC while operating in a real 

clinical environment. Several situations, such as interference from the bedside nurse’s hands and 

arms, pieces of medical equipment in the field of view, or a baby lying in a variety of 

configurations are properly handled by the image processing framework. As such, data acquisition 

can take place quickly and without imposing severe constraints on the bedside team or the patient 

during the data acquisition process. As such, the method has been demonstrated to be robust in a 
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variety of representative clinical conditions, however for optimal results, it remains that it is ideal 

for babies to be well-positioned and naked without other additional human body parts within the 

sensors’ field of view. Finally, an analysis of the available sample data is presented to show how 

a classification between NEC and healthy subjects could be performed, with minimal intervention 

from the medical personnel. While the dataset acquired for this study remains limited, clear trends 

in the first-order statistics have been observed. Furthermore, a comparison between the proposed 

automated segmentation and abdominal region of interest extraction method and alternative ways 

to manually retrieve information directly for IR thermal maps suggests that the automated method 

may be more effective. 
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Chapter 5 Conclusion  

5.1 Summary 

In this study, a combined multispectral sensor system is proposed in response to the need 

for automating the image processing and analysis procedures to support IR imaging-based NEC 

detection in newborns. The research also aims at filling an existing research gap by providing 

insight into leveraging RGB-D sensor data to further refine IR medical imaging technology.  

A novel design of a multispectral imaging platform is introduced, as well as the 

corresponding calibration process for three sets of RGB, depth, and IR images collected from 

different viewing angles and resolutions. Calibration procedures among three sensors are 

customized to achieve correspondence between the different image coordinate systems and in 

preparation for subsequent segmentation and data alignment. The additional data channels 

provided by color and depth information are fully utilized to increase accuracy on segmentation 

compared to the traditional direct segmentation of IR images. The skeleton data inherently 

supported by the depth information is leveraged to extract the abdominal region of interest from 

the entire body image by means of anatomical joints recognition. To achieve this, an innovative 

skeleton points recognition method is introduced based on separate images from each frame 

instead of a sequence of images. As an outcome of automated segmentation, a complete 

temperature distribution analysis over the entire abdominal area replaces a more restricted and 

error prone analysis over manually selected regions in thermal maps, as proposed in earlier work, 

with the goal to increase accuracy of NEC detection. The new method provides the means to avoid 

missing key information regarding NEC. 

Experiments validated the proposed framework on mock baby subjects in the laboratory as 

well as with representative sample data collected on real babies in the clinical environment of the 

CHEO and TOH-GC hospitals’ NICUs. Experiments demonstrated that the proposed acquisition 

system and automated multispectral image processing methods offer the potential to improve 

detection of NEC and are adapted for operation in realistic clinical conditions with minimal 

imaging experience required from the medical personnel, and while minimizing the introduction 

of bias from manual operation, as observed in previous studies. 
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5.2 Contributions 

This research contributes to the field of biomedical instrumentation for the detection of 

NEC with IR imaging technology integrated in a multispectral imaging approach with data 

amalgamation from RGB-D sensors. There are four main contributions described in this thesis: 

i. The design of a novel multispectral acquisition platform composed of a calibrated 

thermal IR camera and Kinect sensor that work synchronously to collect color, depth and IR 

images. 

ii. A custom calibration process to align data between the RGB and depth sensors with 

that of the IR camera, involving the use of a dedicated type of calibration target and preprocessing 

method for IR features extraction. 

iii. A novel automated segmentation and region of interest extraction method that uses 

data amalgamation between color, depth, and IR information, leading to a more accurate and 

comprehensive extraction of relevant thermal information distribution when compared to manual 

selection as found in previous studies.  A specific skeleton joints recognition approach was 

introduced to achieve this goal. 

iv. An experimental study was conducted on real data collected in a clinical 

environment to demonstrate the feasibility of the approach, its robustness to realistic operational 

constraints, and potential benefits for medical personnel. An exclusive and new dataset containing 

rich color, depth and IR thermal data on 10 normal babies and 2 babies with NEC emerged from 

this research, which can be of benefit to future studies and other researchers. 

 

This research led so far to two publications [19, 108]. 

 

5.3 Future work 

Experimental results obtained with the proposed imaging framework suggest that the 

automated multispectral imaging approach works well, demonstrating the potential of an 

innovative way for detection of NEC. In consequence, future work will involve further thermal 

data analysis associated with NEC cases. More subjects with NEC symptoms should be recruited 

when available and consenting to participate in order to extend the sample database. Moreover, 
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subjects from various ethnicities should be recruited as well to supplement the database. 

Furthermore, more comprehensive data analytics methods can be selected to optimize the 

extraction of subtle variations in thermal data distribution between the normal and the NEC groups, 

in the pursuit to find ways to detect NEC in patients who are experiencing minimal clinical 

symptoms in the earliest phases of the disease. Besides, it will be desirable to compare and analyze 

the temperature distribution between relative parts of the body within the baby itself for future 

work.  Further study involving machine learning could also provide unique insights. Although a 

large population of NEC and normal babies will be required during the learning process, should a 

machine learning-based solution be investigated, it is still worthy of exploring this path in the next 

phases of the research given the accuracy that can be achieved in data analysis, strong robustness 

to noise, and the potential to distinguish among subtle nuances in complex nonlinear relationships. 
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Appendix A 
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(i) 

Figure A.1 Segmentation and region of interest extraction results on multispectral data collected 

on real normal babies (subjects 5-7) in a clinical environment, for three representative cases: (a) 

original RGB-D images; (b) background removal results; (c) after applying skin color filter; (d) 

recognized anatomical joints; (e) potential abdominal area restricted by blue quadrilaterals; (f) 

initial estimation of abdominal region; (g) refined extracted region of abdomen with skin filter 

segment; (h) original IR images; and (i) final region of interest extracted in IR images. 
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(i) 

Figure A.2 Segmentation and region of interest extraction results on multispectral data collected 

on real normal babies (subjects 8-10) in a clinical environment, for three representative cases: 

(a) original RGB-D images; (b) background removal results; (c) after applying skin color filter; 

(d) recognized anatomical joints; (e) potential abdominal area restricted by blue quadrilaterals; 

(f) initial estimation of abdominal region; (g) refined extracted region of abdomen with skin 

filter segment; (h) original IR images; and (i) final region of interest extracted in IR images. 
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Normal11 
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(g) (h) (i) 

Figure A.3 Segmentation and region of interest extraction results on multispectral data collected 

on a real normal baby (11) in a clinical environment: (a) original RGB-D image; (b) background 

removal results; (c) after applying skin color filter; (d) recognized anatomical joints; (e) potential 

abdominal area restricted by blue quadrilaterals; (f) initial estimation of abdominal region; (g) 

refined extracted region of abdomen with skin filter segment; (h) original IR images; and (i) 

final region of interest extracted in IR images. 
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