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Abstract

The study of algebraic varieties originates from the study of smooth manifolds. One
of the focal points is the theory of differential forms and de Rham cohomology. It’s
algebraic counterparts are given by algebraic cycles and Chow groups. Linearizing
and taking the pseudo-abelian envelope of the category of smooth projective varieties,
one obtains the category of pure motives.

In this thesis, we concentrate on studying the pure Chow motives of Severi-Brauer
varieties. This has been a subject of intensive investigation for the past twenty years,
with major contributions done by Karpenko, [Kar1], [Kar2], [Kar3], [Kar4]; Panin,
[Pan1], [Pan2]; Brosnan, [Bro1], [Bro2]; Chernousov, Merkurjev, [Che1], [Che2];
Petrov, Semenov, Zainoulline, [Pet]; Calmès, [Cal]; Nikolenko, [Nik]; Nenashev, [Nen];
Smirnov, [Smi]; Auel, [Aue]; Krashen, [Kra]; and others. The main theorem of the
thesis, presented in sections 4.3 and 4.4, extends the result of Zainoulline et al. in
the paper [Cal] by providing new examples of motivic decompositions of generalized
Severi-Brauer varieties.
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Preface

The study of algebraic geometry originates from the study of smooth manifolds. More
specifically, in the context of algebraic geometry, one wishes to establish topological
invariants of an arbitrary manifold, M , which can be expressed in the language of
abstract algebra. One of the important topological invariants of a manifold is the
presence of “holes,” often higher dimensional and difficult to detect geometrically.
One method used to detect the presence of holes requires the use of the theory of
differential forms. To classify differential forms on M , one first requires the notions
of closed and exact differential forms which form the vector spaces of closed and exact
forms, one for every positive integer graded up to the dimension of the manifold. From
these, a set of quotient spaces called the de Rham cohomology groups associated to
M , and denoted Hp

dR(M), can be formed. Although every exact form is closed, the
converse, is in general, not true. The de Rham groups measure precisely how exact
the closed forms are. Amongst other things, the de Rham groups are invariant (up
to isomorphism) under homeomorphisms and homotopy equivalence.

As the first step in the thesis, we generalize the construction of the de Rham cohomol-
ogy groups to a larger class of objects. That is, we first enlarge the classes of spaces
that we work over, generalizing first from manifolds to algebraic varieties, then from
algebraic varieties to schemes, giving precise definitions and discussing their proper-
ties in section 1.1. In doing so, we also generalize the notion of differential forms.
Thus, we introduce the concept of algebraic cycles on an arbitrary scheme, X. These
are defined as formal integral sums of classes of subschemes of X, where these cycles
play the role on schemes and varieties that differential forms do on manifolds. We
define what it means for two algebraic cycles to be rationally equivalent in section 1.3,
and form the quotient groups of cycles modulo rational equivalence. In section 1.4,
we show that rational equivalence pushes-forward for proper morphisms of schemes.
That is, for a proper morphism between two schemes there is an induced homomor-
phism between their respective groups of cycles modulo rational equivalence. We
observe the latter is nothing other than the action of a covariant functor, which we
denote by A. Moreover, having already defined the notion of the intersection mul-
tiplicity of plane curves in section 1.2, we then generalize the notion of intersection
to classes of subschemes of X, which is called an intersection pairing (or product)
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PREFACE vii

on the group of cycles. This turns the group into a commutative associative graded
ring called the Chow ring of X. In fact, given a class of varieties, B, an intersection
pairing satisfying some axioms, gives rise to an intersection theory on B, which we
present in section 1.6. We conclude chapter 1 by listing some properties of the Chow
ring and defining Chern classes.

Having generalized our tools in chapter 1, chapters 2 and 3 serve to describe the
objects we are interested in further studying, namely, Grassmannians and Severi-
Brauer varieties. Chapter 2 introduces algebraic groups and parabolic subgroups
before defining flag manifolds, of which Grassmannians are a special case. We describe
some important group actions on flags before identifying flags of the full flag manifold,
Fn, with elements of the general linear group, GL(n,C) modulo subgroups which leave
the standard flag fixed. In chapter 3, a thorough, early 20th century historical walk-
through of the theory of central simple algebras is presented. We begin by defining
algebras and some basic concepts such as the nucleus and the commutant of an algebra
in section 3.1. From section 3.2 to section 3.4, we gradually add structure to our
algebras; from division in 3.2, to simplicity in 3.3, and, among other things, criteria
on the centre in 3.4. This culminates in the definition of central simple algebras. We
explore relations among the various objects (division algebras, simple rings, etc) that
we define along the way, proving many propositions regarding them. In section 3.5,
we state and prove the very historically influential Wedderburn’s theorem. Sections
3.6 and 3.7 explore the properties of central simple algebras in the context of splitting
fields, and in section 3.8 we define the Brauer group. The Brauer group, whose group
operation is induced by the tensor product of algebras, serves to classify central simple
algebras up to an associative division algebra, which is unique up to isomorphism.
We then describe its functorial nature before reaching the main topic of the chapter
in section 3.9; generalized Severi-Brauer varieties. Most importantly, we show that
Severi-Brauer varieties are just twisted forms of Grassmannians.

As suggested by the work in chapter 1, cohomology theories are not unique. In fact,
cohomology theories with coefficients in some ring, R, correspond, roughly speaking,
to contravariant functors on subcategories of the category of algebraic varieties over
some field k into some R-linear tensor category while satisfying certain properties.
The final chapter focuses on a class of cohomology theories called oriented cohomology
theories, which are defined and explored in section 4.1. In section 4.2, we linearize the
category of smooth projective varieties over some field, k. This involves first enlarging
the class of morphisms to include ∼-correspondences, where ∼ is an equivalence
relation on the algebraic cycles. Thus, having chosen an adequate equivalence relation
∼, we obtain an oriented cohomology theory A, and we construct the category of
A-correspondences. Taking its pseudo-abelian envelope one obtains the category of
effective motives over k, denotedMoteff∼ (k). Formally inverting the Lefschetz motive,
we then obtain the category of pure motives, denoted Mot∼(k), a category through
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which any oriented cohomology theory will factor.

In this thesis, we concentrate on studying the pure Chow motives of Severi-Brauer
varieties. This has been a subject of intensive investigation for the past twenty years,
with major contributions done by Karpenko, [Kar1], [Kar2], [Kar3], [Kar4]; Panin,
[Pan1], [Pan2]; Brosnan, [Bro1], [Bro2]; Chernousov, Merkurjev, [Che1], [Che2];
Petrov, Semenov, Zainoulline, [Pet]; Calmès, [Cal]; Nikolenko, [Nik]; Nenashev, [Nen];
Smirnov, [Smi]; Auel, [Aue]; Krashen, [Kra]; and others. The main theorem of the
thesis and its proof, presented in sections 4.3 and 4.4, extends the result of Zain-
oulline et al. in the paper [Cal] by providing new examples of motivic decompositions
of generalized Severi-Brauer varieties. Specifically, we prove the following theorem.

Theorem. Let SB2(A) be a generalized Severi-Brauer variety for a central simple
k-algebra A of degree 7. Then, there is an isomorphism

M(SB2(A)) ' (SB2(A), p)⊕ (SB2(A), p)c

where p is an idempotent correspondence in CorCH(SB2(A), SB2(A)) and the super-
script c indicates the complementary object to (SB2(A), p) in the decomposition of
M(SB2(A)) in the category of pure Chow motives.

The case for degk(A) = 5 was considered in [Cal]. Our case for degree 7 is a new
result and can be viewed as a major application of our techniques.



Chapter 1

Intersection Theory

Much of the study of the intersection of plane curves begins historically with the
theorem of Bézout. Although the notion of algebraically closed fields did not exist in
his time, working over the complex numbers, the strength of the theorem was rooted
in the fact that the number of points of intersection was ultimately independent of
the curves themselves, so long as they intersected transversely. This notion became
referred to as the ‘preservation of intersection under deformation.’ The theorem,
originally over affine spaces, was later modified to be considered in the milieu of
projective spaces, to tidy up the issue caused by parallel lines, which did not intersect
in affine space but did intersect at the point at infinity in projective space. Thus the
theorem, originally stated as an upper bound for the number of points of intersection,
later became an equality.

Theorem. (Bézout’s Theorem for Curves) Let C1, C2 ⊆ P2
C, plane curves with

deg(C1) = d1 and deg(C2) = d2. If C1 t− C2, then |C1 ∩ C2| = d1 · d2.

The theorem was later generalized by replacing P2
C by any smooth projective variety X

of dimension n over an algebraically closed field k and asking whether the cardinality
of intersection of any two subvarieties Y, Z of X of complimentary codimension, which
intersected transversely, was preserved under continuous deformation in an analogous
way to the theorem for curves. The answer is yes, and is the foundation of the
development of intersection theory.

In the following sections we give a precise definition to the notion of ‘under deforma-
tion’ in the framework of rational equivalence and we further generalize the theory to
remove the requirement of complementary codimension for the intersecting subvari-
eties. We refer to [Ful] for all the details, arguments and omitted proofs of theorems,
specifically chapter 1.

1



1. INTERSECTION THEORY 2

1.1 Schemes and Algebraic Cycles

In this section we begin by introducing algebraic varieties as they were first encoun-
tered classically; as the zero sets of some systems of polynomial equations over an
algebraically closed field, called affine varieties. We define a suitable topology on the
affine algebraic varieties, namely the Zariski topology, which leads us to the notion
of the spectrum of a commutative ring. We then enlarge the theory of algebraic vari-
eties by introducing a more general class of objects called schemes. Loosely speaking,
schemes allow for the definition of varieties over any commutative ring and therefore
play a key role in unifying algebraic geometry with fields such as number theory.
Lastly, we formally define the notion of algebraic cycles on schemes as cohomological
constructs which are integral linear combinations of classes of subschemes.

We begin by defining the Zariski topology and the spectrum of a commutative ring.

Definition 1.1.1. (The Zariski Topology) Let A be a commutative ring and I an
ideal of A. Define

V (I) = {p / A | p is a prime ideal, p ⊇ I}

The sets V (I) satisfy the axioms for closed sets in a topological space. The resulting
topology generated by these sets is called the Zariski Topology.

Definition 1.1.2. (The Spectrum of a Commutative Ring) The spectrum of A,
denoted Spec(A), is the set of prime ideals of A, equipped with the Zariski topology,
for which the closed sets are the sets given by V (I) = {p ∈ Spec(A) | p ⊇ I} for any
ideal I / A.

Example 1.1.3. Let k be an algebraically closed field and A = k[x1, ..., xn], the
polynomial ring in n indeterminates with coefficients in k. Define An

k to be n-tuples
of elements of k, i.e. of the form (a1, ..., an), where ai ∈ k for all i = 1, ..., n. Elements
of A are therefore maps from An

k to k. Let T ⊆ A be any subset of A. Define the
zero locus of T to be Z(T ) = {p ∈ An

k | f(p) = 0, ∀f ∈ T}. Z(T ) is a closed subset
of An

k and these subsets generate the Zariski topology on An
k .

The subsequent definitions in what follows are prerequisite to defining the notion of
schemes. We briefly define what is necessary in this regard, observing some important
facts along the way. We begin with defining pre-sheafs and then the related concepts
of sheafs and covering spaces.

Definition 1.1.4. (Pre-Sheafs on Topological Spaces) Let X be a topological
space. A pre-sheaf on X is a contravariant functor F from the category of open
subsets of X and their natural inclusion mappings to a category C, where C may be
the category of sets, groups, rings, modules, etc.
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Formally, for each open subset U ⊆ X, the functor F assigns to each object U an
object F (U) in the category C and to each inclusion map ι : U ↪→ V of open subsets
of X a morphism F (ι) : F (V ) → F (U) where F (ι) := F V

U . The morphism FU
U is

the identity morphism in C and for U ⊆ V ⊆ W , we have FW
U = F V

U ◦FW
V . The

mappings F V
U are called restriction homomorphisms.

Definition 1.1.5. (Sheafs on Topological Spaces) A sheaf is a pre-sheaf F on
a topological space X such that for any union of open sets of X, say U =

⋃
i∈I
Ui for

some index set I, the following conditions are satisfied:

(i) If on every Ui the restrictions of two elements s, s′ ∈ F (U) coincide, then s = s′.

(ii) If si ∈ F (Ui) are such that for any pair of indices i and j the restrictions of
si and sj to Ui ∩ Uj coincide, then there exists an element s ∈ F (U) which on
each Ui has restriction coinciding with si. That is then, there exists s ∈ F (U)
such that for every i ∈ I, the map F U

Ui
: F (U)→ F (Ui) sends s 7→ s|Ui

= si.

These conditions are called locality and gluing, respectively.

Definition 1.1.6. (Coverings of Topological Spaces) Let X be a topological
space. A covering space of X is a topological space E together with a continuous
surjective map p : E � X such that for every point x ∈ X, there exists an open
neighbourhood U of x such that the inverse image of U under p, p−1(U), is a union
of disjoint open sets in E, each of which is mapped homeomorphically onto U by p.

Here, X is called the base space, E the total space, and p the covering map. More-
over, for any x ∈ X, p−1(x) is a discrete space called the fiber over x. Finally, the
neighbourhoods U of x given in the definition are called evenly covered and form an
open cover of X.

Remark. Every sheaf on X is isomorphic to the sheaf of continuous sections of a
certain covering space p : E � X over X. Therefore, it is common to represent the
sheaf with the covering space itself.

We now define ringed spaces and describe the category of ringed spaces.

Definition 1.1.7. (Ringed Spaces) A ringed space is a topological space X with
a sheaf of rings O(X), and so, is denoted by the pair (X,O(X)). The sheaf O(X) is
called the structure sheaf of the ringed space and consists of associative, commutative
rings with unity.

Definition 1.1.8. (Morphisms of Ringed Spaces) In the category of ringed
spaces, a morphism between objects (ringed spaces) (X,O(X)) and (Y,O(Y )) is a
pair (f, f#) such that f : X → Y is a homeomorphism and f# : f ∗O(Y ) → O(X)
is a homomorphism of sheaves of rings over X, where f ∗O(Y ) is the pull-back sheaf,
which transfers unit elements in the stalks to unit elements.
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Remark. Defining instead a homomorphism f# : O(Y )→ f∗O(X) of sheaves of rings
over Y , where f∗O(X) is the push-forward sheaf, which transfers unit elements to
unit elements in the stalks is equivalent to defining f#.

Next, we introduce the concept of localization of a ring.

Definition 1.1.9. (Localizations of Rings) Let A be a commutative ring with
unit, and S ⊂ A a multiplicative subset. We will assume that 1 ∈ S and 0 /∈ S. If
1 /∈ S, then use S̃ = {1} ∪ S. On A × S define an equivalence relation ∼ by setting
(a, s) ∼ (b, t) if ∃ u ∈ S such that u(at− bs) = 0.

The equivalence class of (a, s) is denoted a
s

and the set of such classes

S−1A =
{a
s
| a ∈ A, s ∈ S

}
is endowed with the structure of a ring by defining addition and multiplication as

a

s
+
b

t
=
at+ bs

st
and

a

s
· b
t

=
ab

st

respectively.

The ring homomorphism σ : A → S−1A via the identification a 7→ (a, 1) makes
A isomorphic to a subring of S−1A. Thus, S−1A, also denoted AS, along with the
homomorphism σ is called the localization of A by S.

Example 1.1.10. We have the following examples of localizations.

1. If S is the set of non-zero elements of an integral domain A, then the localization
of A by S is the field of fractions of A, denoted frac(A).

2. If p / A is a prime ideal of A, we set S = A \ p. The localization of A by S is
denoted by Ap. The unique maximal ideal of Ap is pAp.

3. Suppose f ∈ A and consider the multiplicative system {fn}n∈N0 . The localiza-
tion is constructed by inverting powers of f and is denoted Af . If f is nilpotent,
then the localization ring is trivial.

We now have the basic machinery required to define affine schemes and schemes.

Definition 1.1.11. (Affine Schemes) Let A be a commutative ring with a unit
element. An affine scheme consists of a topological space Spec(A) and a sheaf of
rings, O(Spec(A)), on Spec(A). The topological space Spec(A) is equipped with the
Zariski topology; that is, in terms of a basis of open sets D(f) = {p ∈ Spec(A)|f /∈ p},
where f runs though the elements of the ring A. The sheafO(Spec(A)) of local rings is
defined by the condition that Γ(D(f),O(Spec(A))) = Af , where Af is the localization
of the ring A with respect to the multiplicative system {fn}n∈N0 .
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Definition 1.1.12. (Morphisms of Affine Schemes) Since an affine scheme is a
locally ringed space isomorphic to Spec(A) for some commutative, unital ring A, then
a morphism of affine schemes is just a morphism of locally ringed spaces.

Definition 1.1.13. (Schemes) A scheme is a ringed space that is locally isomorphic
to an affine scheme. That is, a scheme consists of a topological space X and a sheaf
O(X) of commutative, unital rings on X with the condition that an open covering
{Xi}i∈I of X must exist such that (Xi,O(X)|Xi

) is isomorphic to the affine scheme
Spec Γ(Xi,O(X)) of the ring of sections of O over Xi.

Definition 1.1.14. (Subschemes) An open subscheme of a scheme (X,O(X)) is a
scheme (U,O(U)) whose underlying space is the subspace U ⊆ X together with an
isomorphism of the structure sheaf O(U) with the restriction O(X)|U of the structure
sheaf O(X) to the subspace U .

Definition 1.1.15. (Algebraic Schemes) An algebraic scheme over a field k is a
scheme X, together with a morphism of finite type from X to Spec(k). In other
words, X has a finite covering by affine open sets whose coordinate rings are finitely
generated k-algebras.

Finally, to conclude this section, we introduce the concept of algebraic cycles.

Definition 1.1.16. (Algebraic Cycles of Schemes) An algebraic cycle of an ar-
bitrary algebraic variety or scheme X is a finite formal sum

∑
nV [V ] of classes of

irreducible subvarieties or subschemes V of X, with integer coefficients.

The notion of what classes of irreducible subvarieties or subschemes are and how they
are defined will be formalized in the remaining sections of this chapter.

1.2 Intersection Multiplicity of Plane Curves

In this section we expand on the notions introduced in the opening remarks of the
chapter. That is, we want to formalize the notion of the number of points of inter-
section of two transversely intersecting plane curves. We also define a measure of
dimension for arbitrary commutative rings in terms of chains of prime ideals. For
irreducible affine varieties, which correspond to the zero-locus of some finite family
of polynomials which generate a prime ideal in the polynomial ring, this provides a
well-defined measure of dimension.

First, we define the criterion for irreducibility.

Definition 1.2.1. (Irreducibility in Topological Spaces) A non-empty subset Y
of a topological spaceX is irreducible if it cannot be expressed as the union Y = Y1∪Y2

of two proper subsets, each one of which is closed in Y . Otherwise, Y is said to be
reducible.
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Next, we define the notions of affine algebraic sets and affine algebraic varieties.

Definition 1.2.2. (Affine Algebraic Sets and Varieties) Let k be an algebraically
closed field. A subset Y ⊆ An

k is said to be an affine algebraic set if there exists a
subset T ⊆ k[x1, ..., xn] such that Y = Z(T ). That is, if Y is the zero-locus of T .

An affine algebraic variety over k is the zero-locus in An
k of some finite family of

polynomials in k[x1, ..., xn] that generate a prime ideal.

Remarks. We make the following remarks.

1. An affine algebraic set results from removing the condition that the family of
polynomials generate an ideal that is prime. In other words, affine algebraic
varieties are affine algebraic sets that are irreducible. Thus, irreducibility of
varieties is equivalent to the prime ideal condition.

2. A Zariski open subvariety of an affine variety is called a quasi-affine variety.

We now define the notions of regular functions and the ring of regular functions on a
quasi-affine variety.

Definition 1.2.3. (Regular Functions on Quasi-Affine Varieties) Let k be an
algebraically closed field and X a quasi-affine variety in An

k . A function f : X → k is
regular at a point p ∈ X if there exists an open neighbourhood U of p, and polynomials
g, h ∈ k[x1, ..., xn] such that both h is nowhere zero on U and f |U = ( g

h
)|U .

We say f is regular on X if it is regular at every point of X.

Definition 1.2.4. (The Ring of Regular Functions) We denote by O(X) the
ring of all regular functions on X. For p ∈ X, we define the local ring of p on X,
denoted Op,X (or alternatively, just Op when X is understood in context), to be the
ring of germs of regular functions on X near p. That is, an element of Op is a pair
(U, f) where U is an open subset of X containing p and f is a regular function on U .
We identify two such pairs (U, f) and (V, g) if f = g on U ∩ V .

Remark. Op is a local ring; its maximal ideal is the set of germs of regular functions
which vanish at p. For if f(p) 6= 0, then g(p) 6= 0 and so 1

f
= h

g
is regular in some

neighbourhood of p. Thus, f being invertible means it does not belong to the maximal
ideal of Op.
We denote this maximal ideal by Mp,X , or simply Mp. Finally, for the residue field
Op/Mp

∼= k.

Definition 1.2.5. (The Coordinate Ring of Affine Varieties) Let X be an affine
algebraic variety which is the zero locus of some prime ideal p ⊆ k[x1, ..., xn]. The
quotient ring k[x1, ..., xn]/p is called the coordinate ring of X. This ring is precisely
the set of all regular functions on X. In other words, it is the space of global sections
of the structure sheaf of X.



1. INTERSECTION THEORY 7

Next, we define the Krull dimension of a ring and the height of prime ideals.

Definition 1.2.6. (The Krull Dimension of a Ring) Let A be a commutative
ring and p0 ⊂ p1 ⊂ ... ⊂ pn be a chain of prime ideals of A. The length of this chain
is the number of strict inclusions, in this case n. The Krull dimension of A is the
supremum of the lengths of all chains of prime ideals in A.

Definition 1.2.7. (The Height of a Prime Ideal) Let A be a commutative ring
and p a prime ideal of A. The height of p, denoted ht(p), is the supremum of the
lengths of all chains of prime ideals (p0 ⊂ p1 ⊂ ... ⊂ pn = p) contained in p. In other
words, the height of p is the Krull dimension of the localization Ap.

Remark. The Krull dimension of a ring is the supremum of the heights of all the
maximal ideals of A.

Finally, we formalize the notion of the intersection multiplicity of two plane curves in
affine space over an algebraically closed field.

Definition 1.2.8. (Intersection Multiplicity of Plane Curves) Let k be an
algebraically closed field. If f, g ∈ k[x, y] are two polynomials defining affine plane
curves F and G in A2

k, then the intersection scheme Z is a subscheme of A2
k defined

by the ideal 〈f, g〉 / k[x, y] generated by f and g. If p = (a, b) ∈ A2
k is a point in affine

2-space over k, then the intersection multiplicity of F and G at p is defined to be

i(p, F ·G) = dimk(Op,Z) = dimk(Op,A2
k
/〈f, g〉)

The intersection number satisfies the following properties:

(1) i(p, F ·G) = i(p,G · F ).

(2) i(p, (F1 +F2) ·G) = i(p, F1 ·G) + i(p, F2 ·G), where F1 +F2 is the curve defined
by f1f2 with fi defining Fi.

(3) If F ′ is defined by f + gh for some h ∈ k[x, y], then i(p, F ′ ·G) = i(p, F ·G).

(4) i(p, F · G) = ∞ if F and G have a common component through p. Otherwise,
i(p, F ·G) is finite and positive.

(5) i(p, F ·G) = 0 if p /∈ F ∩G.

(6) i(p, F ·G) = 1 if f = x− a and g = y − b or more generally, if the Jacobian(
∂(f, g)

∂(x, y)

)∣∣∣∣
p

6= 0

at p.

(7) If p is a simple point on F , and F has no common component with G or H
through p, then

i(p,G ·H) ≥ min{i(p, F ·G), i(p, F ·H)}
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1.3 Cycles and Rational Equivalence

In this section we establish the fact that cycles on an arbitrary scheme (or algebraic
variety) X are finite formal integral linear combinations of classes of subschemes
(or subvarieties) of X. Moreover, any rational function r on any subscheme (or
subvariety) of X determines a cycle [div(r)]. Cycles differing by a sum of such cycles
are defined to be rationally equivalent. We conclude the section by defining the
group of k-cycles modulo rational equivalence, the algebraic counterpart to de Rham
cohomology.

We first define the order of vanishing of an invertible rational function on an algebraic
variety along a subvariety of codimension one.

Definition 1.3.1. (Order of Vanishing of Invertible Rational Functions) Let
X be an algebraic variety and V a subvariety of codimension one. The local ring
A = OV,X is a one-dimensional local domain. Let r ∈ R(X)∗, where R(X) is the
field of rational functions on X and the set of non-zero elements of this field forms
the multiplicative group R(X)∗. We will define the order of vanishing of r along V ,
denoted ordV (r), by setting

ordV (r) = lA(A/(r))

where lA denotes the length of the A-module in parentheses. This map is a group
homomorphism, i.e. it satisfies

ordV (rs) = ordV (r) + ordV (s)

for r, s ∈ R(X)∗.

Remark. As any r ∈ R(X)∗ may be written as a ratio r = a/b, for some a, b ∈ A,
then we must also have

ordV (r) = ordV (a/b) = ordV (a)− ordV (b)

The fact that ordV : R(X)∗ → Z is a well-defined group homomorphism is found in
Appendix A.3 in [Ful].

We now define k-cycles and the group of k-cycles.

Definition 1.3.2. (The Group of k-Cycles) Let X be an algebraic scheme and
k ∈ N. A k-cycle on X is a finite formal sum

∑
ni[Vi] where the Vi are k-dimensional

subvarieties of X and ni ∈ Z for all i. The coefficient ni is often referred to as the
multiplicity of Vi in V .

The set of k-cycles, denoted ZkX forms a free abelian group on the k-dimensional
subvarieties of X where to each k-dimensional subvariety V of X, we have a corre-
sponding cycle [V ] of ZkX.
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Definition 1.3.3. (Normal Rings) A normal ring is an integral domain that is
integrally closed in its field of fractions. Thus, a variety X is normal if Ox is a normal
ring for all x ∈ X.

Definition 1.3.4. (Prime Divisors on Schemes) Let X be an algebraic scheme.
A prime divisor on X is an irreducible subvariety of X of codimension 1.

We now define an important class of algebraic cycles called principal Weil divisors that
will allow us to establish the notion of rational equivalence in the group of k-cycles.

Definition 1.3.5. (Principal Weil Divisors) Let W be a (k + 1)-dimensional
subvariety of X and r ∈ R(W )∗. Define a k-cycle, [div(r)] on X called a principal
Weil divisor by setting

[div(r)] =
∑

ordV (r)[V ]

where the sum runs over all the codimension-1 subvarieties V of W and ordV is the
order function on R(W )∗ defined by the local ring OV,W .

Definition 1.3.6. (Cycles Rationally Equivalent to Zero) Let α be a k-cycle.
We say that α is rationally equivalent to zero, written as α ∼ 0, if there exists a finite
number of (k + 1)-dimensional subvarieties Wi of X and invertible rational functions
ri ∈ R(Wi)

∗ such that

α =
∑

[div(ri)]

Thus, if for two k-cycles α and β we have

α− β =
∑

[div(ri)]

for some ri ∈ R(Wi)
∗, then we say α and β are rationally equivalent.

Since [div(ri)
−1] = −[div(ri)], the cycles rationally equivalent to zero form a subgroup

of ZkX denoted RatkX.

We are now ready to define the key concept of this section; the group of k-cycles
modulo rational equivalence.

Definition 1.3.7. (The Group of k-Cycles Modulo Rational Equivalence)
The factor group

AkX = ZkX/RatkX

is called the group of k-cycles modulo rational equivalence.
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1.4 Push-forwards of Rational Cycles

One of the most fundamental notions of intersection theory is that rational equivalence
pushes forward. That is, for a proper morphism of schemes there is an induced
homomorphism between the groups of cycles modulo rational equivalence. In this
section we define this push-forward map, describe its functorial nature and define the
degree map on the group of rational cycles modulo rational equivalence. We also give
an alternative definition to the notion of rational equivalence in terms of dominant
morphisms over P1.

We begin with the definition of a fiber product, also referred to as the categorical
pull-back or Cartesian square.

Definition 1.4.1. (Fiber Products of Schemes) For any morphisms of schemes
X → Y and Z → Y , there exists a scheme X ×Y Z with morphisms to X and Z
making the diagram

X ×Y Z X

Z Y

pX

pZ

commute, and which is universal with that property. That is, for any scheme W
with morphisms to X and Z whose compositions to Y are equal, there is a unique
morphism from W to X ×Y Z that makes the diagram commute.

W

X ×Y Z X

Z Y

∃!
pX

pZ

As always with universal properties, if it exists, then this condition determines the
scheme X ×Y Z uniquely, up to isomorphism.

The fiber product of the morphism X → Y , for any other given morphism Z → Y ,
is the object X ×Y Z and the maps X ×Y Z → X and X ×Y Z → Z.

We next want to define proper morphisms of schemes as this will be critical in dis-
cussing push-forwards of rational cycles. We require however, some preliminary defi-
nitions.
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Definition 1.4.2. (Separated Morphisms and Schemes) Let f : X → Y be a
morphism of schemes. Write ∆ : X → X ×Y X for the diagonal morphism. The
morphism f is called separated if ∆(X) is a closed subscheme of X ×Y X; in other
words, if the diagonal map is a closed immersion.

A scheme X is called separated if the terminal morphism X → Spec(Z) is separated.

Definition 1.4.3. (Morphisms of Rings of Finite Type) A ring homomorphism
R → S is said to be of finite type if S is isomorphic to a quotient of R[x1, ..., xn] as
an R-algebra for some n ∈ N.

Definition 1.4.4. (Morphisms of Schemes of Finite Type) Let f : X → Y be
a morphism of schemes. We say that f is:

(i) of finite type at a point x ∈ X if there exists an affine open neighbourhood
Spec(S) = U ⊆ X of x and an affine open set Spec(R) = V ⊆ Y with f(U) ⊆ V
such that the induced ring map R→ S is of finite type.

(ii) locally of finite type if it is of finite type at every point of X.

(iii) of finite type if it is locally of finite type and quasi-compact.

Definition 1.4.5. (Universally Closed Morphisms of Schemes) A morphism
f : X → Y of schemes is called universally closed if for every scheme Z with a
morphism Z → Y , the projection from the fiber product X ×Y Z → Z is a closed
map of the underlying topological spaces.

We are now ready to define proper morphisms of schemes.

Definition 1.4.6. (Proper Morphisms of Schemes) A morphism of schemes is
called proper if it is separated, of finite type, and universally closed.

Definition 1.4.7. (Schemes Defined over Schemes) Let S be a scheme. We say
X is a scheme over S if X comes equipped with a morphism of schemes X → S. The
morphism X → S is sometimes called the structure morphism.

Definition 1.4.8. (The Degree of Subvarieties for Proper Morphisms) Let
f : X → Y be a proper morphism. For any irreducible subvariety V of X, the image
f(V ) = W is a closed subvariety of Y . If W has the same dimension as V , then the
induced embedding R(W ) into R(V ) is a finite field extension. We define

deg(V/W ) =

{
[R(V ) : R(W )] if dim(W ) = dim(V )

0 if dim(W ) < dim(V )

where [R(V ) : R(W )] denotes the degree of the field extension.
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We are now ready to define the push-forward map of the group of k-cycles on an
arbitrary schemeX. We then define the push-forward for principal Weil divisors which
will induce a push-forward map at the level of k-cycles modulo rational equivalence.

Definition 1.4.9. (The Push-Forward of the Group Zk(X)) The push-forward
of the group of k-cycles on X by the proper morphism f is defined by setting

f∗[V ] = deg(V/W )[W ]

and which extends to a homomorphism f∗ : ZkX → ZkY by linearity.

Remark. If g : Y → Z is also a proper morphism, then (g◦f)∗ = g∗◦f∗, which follows
from the multiplicity of degrees of field extensions. Thus, these induced homomor-
phisms exhibit the behaviour of being under the action of a covariant functor.

Proposition 1.4.10. (Push-Forwards of Principal Weil Divisors)
Let f : X → Y be a proper, surjective morphism of varieties and let r ∈ R(X)∗.
Then,

(a) f∗[div(r)] = 0 if dim(Y ) < dim(X)

(b) f∗[div(r)] = [div(N(r))] if dim(Y ) = dim(X)

where N(r) is the norm of r, i.e. the determinant of the R(Y )-linear endomorphism
of R(X) given by multiplication of r.

Theorem 1.4.11. (The Push-Forward of the Group Ratk(X)) If f : X → Y
is a proper morphism, and α is a k-cycle on X which is rationally equivalent to zero,
then f∗α is rationally equivalent to zero on Y .

Definition 1.4.12. (The Push-Forward of the Group Ak(X)) By Proposition
1.4.10, there is therefore an induced homomorphism,

f∗ : AkX → AkY

implying the action of a covariant functor for proper morphisms, which will be denoted
by A∗. This homomorphism is called the push-forward of the group of k-cycles modulo
rational equivalence.

Definition 1.4.13. (The Fundamental Cycle of a Scheme) Let X be any
scheme, and let X1, ..., Xt be the irreducible components of X. The local rings OXi,X

are all zero-dimensional (Artinian, see Chapter 4). The geometric multiplicity mi of
Xi in X is defined to be the length of OXi,X , that is;

mi = lOXi,X
(OXi,X)
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The fundamental cycle [X] of X is the cycle

[X] =
t∑
i=1

mi[Xi]

This is regarded as an element of Z∗X. However, we also write [X] for its image in
A∗X. If moreover, dim(Xi) = k for all i = 1, ..., t, then [X] ∈ ZkX. In this case
ZkX = AkX is the free abelian group on [X1], ..., [Xt].

We now define the notion of the degree of a cycle.

Definition 1.4.14. (The Degree of an Algebraic Cycle) Let X be a complete
scheme over a field K. In other words, X is proper over S = Spec(K). Furthermore,

let α =
∑
P

nP [P ] be a zero-cycle on X. The degree of α, denoted deg(α) or

∫
X

α is

defined by setting

deg(α) =

∫
X

α =
∑
P

nP [R(P ) : K]

Equivalently, let p denote the structure morphism from X to S. We could have also
defined deg(α) = p∗(α), where A0(S) = Z · [S] is identified with Z.

By Theorem 1.4.11, rationally equivalent cycles have the same degree so we can extend
the degree homomorphism to all of A∗X as∫

X

: A∗X → Z

by defining

∫
X

α = 0 if α ∈ AkX for k > 0.

Thus, for any morphism of complete schemes f : X → Y , and any α ∈ A∗X, we have:∫
X

α =

∫
Y

f∗(α)

a special case of functoriality.

Definition 1.4.15. (Dominant Morphisms of Schemes) A morphism f : X → S
of schemes is called dominant if the image of f is a dense subset of S.

Finally, we conclude this section by giving an alternative definition for the notion of
rational equivalence.
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Definition 1.4.16. (Alternative Definition of Rational Equivalence)

Let X be a scheme, and consider the Cartesian product X×P1. Let π1 : X×P1 → X
be the projection onto the first factor and π2 : X × P1 → P1 be the projection onto
the second. Let V be a (k+ 1)-dimensional subvariety of X×P1 such that π2 induces
a dominant morphism f : V → P1.

For any point p ∈ P1 that is rational over the ground field k, the scheme-theoretic
fiber f−1(p) ⊆ V is a subscheme of X × {p}, which π1 maps isomorphically to a
subscheme of X, which we denote by V (p).

Note, the push-forward of the map π1 is π1∗ : Zk(X × P1)→ ZkX and

π1∗[f
−1(p)] = [V (p)]

in ZkX. Moreover, f : V → P1 determines a rational function f ∈ R(V )∗ from which
we deduce

[f−1(0)]− [f−1(∞)] = [div(f)]

where 0 = (1 : 0) and ∞ = (0 : 1) are the usual zero and infinity points of P1.

Therefore;
[V (0)]− [V (∞)] = π1∗[div(f)]

which is rationally equivalent to zero on X.

1.5 Pull-Backs of Rational Cycles

In this section we briefly define the flat pull-back homomorphisms on the groups of
k-cycles modulo rational equivalence which are induced by flat morphisms of schemes.

First, we introduce some preliminary definitions on the concepts of exactness of se-
quences of modules, exact functors, and the flatness criterion for both modules and
ring homomorphisms.

Definition 1.5.1. (Exact Sequences and Functors) Let R be a commutative
ring.

(i) A sequence of R-modules and R-homomorphisms

. . .→Mi−1
fi−→Mi

fi+1−→Mi+1 → . . .

is said to be exact at Mi if Im(fi) = ker(fi+1). The sequence is exact if it is
exact at each Mi.

(ii) An exact functor is a functor that preserves exact sequences.



1. INTERSECTION THEORY 15

Definition 1.5.2. (Flat Modules and Ring Homomorphisms) Let R and A be
rings and M an R-module.

(i) M is flat if the functor −⊗RM : ModR → ModR is exact.

(ii) The homomorphism R→ A of rings is flat, if A is flat as an R-module.

We can now define the flatness condition and the relative dimension of a morphism
of schemes.

Definition 1.5.3. (Flat Morphisms of Schemes) Let f : X → S be a morphism
of schemes. Let F be a quasi-coherent sheaf of OX-modules.

(i) We say f is flat at a point x ∈ X if the local ring Ox,X is flat over the local ring
Of(x),S. Moreover, f is flat if it is flat at every point of X.

(ii) We say that F is flat over S at a point x ∈ X if the stalk Fx is flat as an
Of(x),S-module. Moreover, F is flat over S if F is flat over S at every point of
X.

Thus, we see that f is flat if and only if the structure sheaf OX is flat over S.

Definition 1.5.4. (The Relative Dimension of a Morphism of Schemes) Let
f : X → S be a morphism of schemes and assume f is locally of finite type. Then, we
say that f is of relative dimension d if all non-empty fibres XS are equidimensional
of dimension d.

The relative dimension of a morphism f is also sometimes referred to as the codimen-
sion of f .

We can now define the pull-back homomorphisms on the groups of k-cycles induced
by flat morphisms of schemes (or varieties).

Definition 1.5.5. (The Pull-Back of the Group Zk(X)) Let f : X → Y be a
flat morphism of relative dimension n. For any subvariety V of Y set

f ∗[V ] = [f−1(V )]

where f−1(V ) is the inverse image scheme, a subscheme of X of pure dimension equal
to dim(V ) + n, and [f−1(V )] is its cycle. This extends by linearity to pull-back
homomorphisms

f ∗ : ZkY → Zk+nX

Lemma 1.5.6. (Pull-Backs of Subschemes) If f : X → Y is flat, then for any
subscheme Z of Y

f ∗[Z] = [f−1(Z)]
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Theorem 1.5.7. (The Pull-Back of the Group Ratk(X)) Let f : X → Y be
a flat morphism of relative dimension n, and α a k-cycle on Y which is rationally
equivalent to zero. Then, f ∗α is rationally equivalent to zero in Zk+nX.

Definition 1.5.8. (The Pull-Back of the Group Ak(X)) The induced homo-
morphisms, the flat pull-backs of the group of k-cycles modulo rational equivalence,

f ∗ : AkY → Ak+nX

imply the action of a contravariant functor for flat morphisms, denoted by A∗.

1.6 Intersection Theories and the Chow Ring

We conclude the chapter by defining what it means to be an intersection theory. We
define the criteria for a suitable intersection pairing which turns the group A(X) into
a commutative associative graded ring with identity called the Chow ring of X. We
then look at the case when the given class of varieties that the theory is devised over
is the class of nonsingular quasi-projective varieties and we list some of its properties.
Finally, we define Chern classes and also list some of their properties. For definitions
of Cartier divisors, Weil divisors, and the Picard group, see Chapter 2 in [Ful]. For a
more detailed presentation of the material covered in this section see Appendix A.1,
A.2, and A.3 in [Har].

Definition 1.6.1. (Intersection Theories)

Let B be a given class of varieties. An intersection theory on B consists of giving a
pairing

∪ : Ar(X)× As(X)→ Ar+s(X)

for each r, s and for all X ∈ B, subject to the following axioms. Note, if V ∈ Ar(X)
and W ∈ As(X), we denote the intersection cycle class by V ∪W .

(A1) The intersection pairing makes A(X) into a commutative associative graded
ring with identity, for every X ∈ B. It is called the Chow ring of X.

(A2) For any morphism f : X → Y of varieties in B, f ∗ : A(Y ) → A(X) is a ring
homomorphism. If g : Y → Z is another morphism, then (g ◦ f)∗ = f ∗ ◦ g∗.

(A3) For any proper morphism of varieties f : X → Y in B, f∗ : A(X) → A(Y )
is a homomorphism of graded groups (which shifts degrees). If g : Y → Z is
another proper morphism, then (g ◦ f)∗ = g∗ ◦ f∗.

(A4) Projection Formula: Let f : X → Y be a proper morphism. If α ∈ A(X) and
β ∈ A(Y ), then

f∗(α ∪ f ∗β) = f∗(α) ∪ β
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(A5) Reduction to the Diagonal: If V1 and V2 are cycles on X, and ∆ : X → X ×X
is the diagonal morphism, then

V1 ∪ V2 = ∆∗(V1 × V2)

where ∆∗ : A(X ×X)→ A(X).

(A6) Local Nature: If V1 and V2 are subvarieties of X which intersect properly
(meaning that every irreducible component of V1 ∩V2 has codimension equal to
codim(V1) + codim(V2)), then we can write

V1 ∪ V2 =
∑

i(V1, V2;Wj)Wj

where the sum runs over the irreducible components Wj of V1 ∩ V2 and where
the integer i(V1, V2;Wj) depends only on a neighbourhood of the generic point
of Wj on X. We call i(V1, V2 : Wj) the local intersection multiplicity of V1 and
V2 along Wj.

(A7) Normalization: If V is a subvariety of X and W is an effective Cartier divisor
meeting V properly, then V ∪ W is just the cycle associated to the Cartier
divisor V ∩W on V , which is defined by restricting the local equation of W
to V . (This implies in particular that transversal intersections of non-singular
subvarieties have multiplicity 1).

Definition 1.6.2. (Properties of the Chow Ring)

For any nonsingular quasi-projective variety we now consider the Chow ring A(X),
and list some of its properties.

(A8) Since the cycles in codimension 1 are just Weil divisors, and rational equivalence
is the same as linear equivalence for them, and X is nonsingular, we have
A1(X) ∼= Pic(X).

(A9) For any affine space Am, the projection π1 : X × Am → X induces an isomor-
phism

π∗1 : A(X)→ A(X × Am)

(A10) Exactness: If V is a nonsingular closed subvariety of X, and W = X \ V , then
there is an exact sequence

A(V )
i∗−→ A(X)

j∗−→ A(W )→ 0

where i : V → X and j : W → X are the inclusion maps of V and W into X.
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(A11) Let E be a locally free sheaf of rank r on X, let P(E ) be the associated projective
space bundle, and let ξ ∈ A1(P(E )) be the class of the divisor corresponding to
OP(E )(1). Let π : P(E )→ X be the projection. Then, π∗ makes A(P(E )) into a
free A(X) module generated by 1, ξ, ξ2, ..., ξr−1.

Definition 1.6.3. (Chern Classes) Let E be a locally free sheaf of rank r on a
nonsingular quasi-projective variety X. For each i = 0, 1, ..., r, we define the ith

Chern class ci(E ) ∈ Ai(X) by the requirement that c0(E ) = 1 and

r∑
i=0

(−1)iπ∗ci(E ) ∪ ξr−i = 0

in Ar(P(E )), using the notation of (A11).

This makes sense, since by (A11), we can express ξr as a unique linear combination
of 1, ξ, ..., ξr−1, with coefficients in A(X), via π∗.

Definition 1.6.4. (Properties of the Chern Classes) The following are some
properties of the Chern classes. For convenience, we define the total Chern class as

c(E ) = c0(E ) + c1(E ) + ...+ cr(E )

and the Chern polynomial

ct(E ) = c0(E ) + c1(E )t+ ...+ cr(E )tr

(C1) If E = L (D) for a divisor D, then ct(E ) = 1 + Dt. Indeed, in this case
P(E ) = X, OP(E )(1) = L (D), so ξ = D. Thus, by definition, we have

1 ∪ ξ − c1(E ) ∪ 1 = 0

so c1(E ) = D.

(C2) If f : X ′ → X is a morphism and E is a locally free sheaf on X, then for each i,

ci(f
∗E ) = f ∗ci(E )

This follows immediately from the functoriality properties of the P(E ) construc-
tion and f ∗.

(C3) If 0 → E ′ → E → E ′′ → 0 is an exact sequence of locally free sheaves on X,
then

ct(E ) = ct(E
′) · ct(E ′′)
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(C4) We say that E splits if it has a filtration E = E0 ⊇ E1 ⊇ ... ⊇ Er = 0 whose
successive quotients are all invertible sheaves.

If E splits, and the filtration has the invertible sheaves L1, ...,Lr as quotients,
then

ct(E ) =
r∏
i=1

ct(Li)

(C5) Let E have rank r, and let F have rank s. Write

ct(E ) =
r∏
i=1

(1 + ait)

and

ct(F ) =
s∏
j=1

(1 + bjt)

where a1, ..., ar, b1, ..., bs are just formal symbols. Then, we have

ct(E ⊗F ) =
∏
i,j

(1 + (ai + bj)t)

ct(Λ
pE ) =

∏
1≤i1≤...≤ip≤r

(1 + (ai1 + ...+ aip)t)

ct(E
∨) = c−t(E )

(C6) Let s ∈ Γ(X,E ) be a global section of a locally free sheaf E of rank r on X.
Then, s defines a homomorphism OX → E by sending 1 to s. We define the
scheme of zeros of s to be the closed subscheme Y of X defined by the exact
sequence

E ∨
s∨−→ OX → OY → 0

where s∨ is the dual of the map s. Let Y also denote the associated cycle of Y .
Then, if Y has codimension r, we have cr(E ) = Y in Ar(X). This generalizes
the fact that a section of an invertible sheaf gives the corresponding divisor.

(C7) Self-Intersection Formula: Let Y be a nonsingular subvariety of X of codimen-
sion r, and let N be the normal sheaf. Let ι : Y ↪→ X be the inclusion map.
Then,

ι∗ι∗(1Y ) = cr(N )

Therefore, applying the projection formula (A4), we have

ι∗(cr(N )) = Y ∪ Y

on X.



Chapter 2

Algebraic Groups and Flag
Manifolds

In the present chapter, we briefly recall several basic facts regarding algebraic groups,
group actions, and homogeneous spaces. In particular, we are interested in transitive
group actions on flag manifolds. We also briefly define adjoint representations of Lie
and algebraic groups. A more detailed exposition of these concepts can be found in
[Knu], [Bor], [Hum], and [Mil].

2.1 Algebraic Groups and Parabolic Subgroups

In this section, we define algebraic groups and study various closely related objects;
namely affine algebraic groups, linear algebraic groups and simple algebraic groups.
We define what it means for a group to be solvable, and then define Borel subgroups of
an algebraic group. Finally, we define parabolic subgroups and homogeneous varieties.

We first define algebraic groups and group varieties.

Definition 2.1.1. (Algebraic Groups) Let k be a field. An algebraic group over
k, or algebraic k-group, is a group object in the category of algebraic schemes over k.

More precisely, let G be an algebraic scheme over k and let m : G × G → G be a
regular map. The pair (G,m) is an algebraic group over k if there exist regular maps

e : Spec(k)→ G, inv : G→ G

such that the following diagrams commute:

20
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(i) associativity

G×G×G G×G

G×G G

id×m

m×id m

m

(ii) existence of an identity element

Spec(k)×G G×G G× Spec(k)

G

e×id

'
m

id×e

'

making (G,m) a monoid in the category of algebraic schemes over k, and

(iii) existence of inverses

G G×G G

Spec(k) G Spec(k)

(inv,id)

m

(id,inv)

e e

Remark. When G is an algebraic variety, we call the pair (G,m) a group variety.

Next, we define homomorphisms of algebraic groups and algebraic subgroups.

Definition 2.1.2. (Morphisms of Algebraic Groups) Let (G,m) and (G′,m′)
be algebraic k-groups. A homomorphism of algebraic groups, φ : (G,m) → (G′,m′),
is a regular map φ : G→ G′ such that φ ◦m = m′ ◦ (φ× φ). In other words, that is
that the following diagram commutes:

G×G G

G′ ×G′ G′

φ×φ

m

φ

m′
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Definition 2.1.3. (Algebraic Subgroups) Let (G,mG) be an algebraic k-group.
An algebraic subgroup of (G,mG) is an algebraic group (H,mH) over k such that H
is a k-subscheme of G and the inclusion map is a homomorphism of algebraic groups.

We are now ready to define affine algebraic groups, linear algebraic groups, and simple
algebraic groups, providing also a basic, yet important, example along the way.

Definition 2.1.4. (Affine Algebraic Groups) An affine k-group is a representable
functor on the category of commutative associative k-algebras, G : Algk → Set to-
gether with a natural transformation m : G×G→ G such that for any k-algebra A,
the map

m(A) : G(A)×G(A)→ G(A)

is a group structure on G(A). Moreover, if G is represented by a finitely presented
k-algebra, then it is called an affine algebraic group. A homomorphism G → H of
affine k-groups is a natural transformation preserving group structures.

Definition 2.1.5. (Linear Algebraic Groups) An algebraic group, G is linear if
it admits a faithful finite-dimensional representation.

Since such a representation of G is an isomorphism of G onto a closed algebraic
subgroup of GL(V ), then an algebraic group is linear if and only if it can be realized
as an algebraic subgroup of GL(V ) for some finite-dimensional vector space V .

Definition 2.1.6. (Simple Algebraic Groups) An algebraic k-group is simple if
it is non-commutative and has no non-trivial closed connected normal subgroups.

Furthermore, for an algebraic group satisfying the above conditions, the terminology
almost simple will be used to emphasize that the group need not be simple as an
abstract group.

Example 2.1.7. The special linear group, SLn(k) is a classic example of both a
simple algebraic group and a linear algebraic group.

The next result shows that there is a one-to-one correspondence between linear alge-
braic groups and affine algebraic groups.

Theorem 2.1.8. Every linear algebraic group is affine, and since the regular rep-
resentation has a faithful finite-dimensional sub-representation, the converse is also
true. Therefore, the linear algebraic groups over k are exactly the affine algebraic
groups over k.

For a proof of this theorem see Chapter 4, section d., ‘Affine algebraic groups are
linear’, Theorem 4.9 in [Mil] and Chapter II, section 8.6, ‘Linearization of Affine
Groups’ in [Hum].

We now move to describing parabolic subgroups and homogeneous spaces. However,
we need some preliminary definitions and results on solvable groups first.
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Definition 2.1.9. (The Derived Series of an Abstract Group) Let G be an
abstract group. The derived series of G is defined inductively by setting D0G = G
and for all n ∈ N0, Dn+1G = (DnG,DnG), the commutator group of DnG with itself.

Definition 2.1.10. (Solvable Groups) An abstract group G is solvable if it is a
finite iterated extension of an abelian group by abelian groups. In other words, if
there exists a finite sequence

{1} = G0 ⊂ G1 ⊂ G2 ⊂ ... ⊂ Gk = G

in which Gj−1 is normal in Gj and Gj/Gj−1 is abelian for all j = 1, ..., k.

Equivalently, one says that G is solvable if for some n ∈ N0, we have DnG = {e}.

Proposition 2.1.11. (Solvable Algebraic Groups) Let G be an algebraic k-group.
Then, G is solvable if and only if there is a chain G = G0 ⊃ G1 ⊃ ... ⊃ Gn = {e} of
closed subgroups defined over k such that (Gi, Gi) ⊂ Gi+1 for all i = 0, 1, ..., n− 1.

For a proof, see [Bor], Chapter I, § 2.4, ‘Solvable and nilpotent groups’, Corollary 3.

Definition 2.1.12. (Complete Algebraic Varieties) Let X be an algebraic va-
riety. Then, X is a complete algebraic variety if for any variety Y , the projection
morphism X × Y → Y is a closed map.

Remark. In particular, all projective varieties are complete.

We are now ready to define Borel subgroups, parabolic subgroups and homogeneous
varieties.

Definition 2.1.13. (Borel Subgroups of Connected Algebraic Groups) Let
G be an arbitrary connected algebraic k-group. A subgroup B ⊆ G is said to be
a Borel subgroup if it is maximal, with respect to inclusion, among all the Zariski
closed connected solvable subgroups.

Definition 2.1.14. (Parabolic Subgroups of Connected Algebraic Groups)
Let G be a connected algebraic k-group. A parabolic subgroup of G is a Zariski closed
subgroup P ⊂ G, for which the quotient space G/P is a complete algebraic variety.

Proposition 2.1.15. If P is a closed subgroup of G, then G/P is a projective variety
if and only if P contains a Borel subgroup.

For a proof, see [Bor], Chapter IV, § 11, ‘Borel Subgroups’, the first Corollary on
page 148 or [Hum], Chapter VIII, section 21.3, ‘Conjugacy of Borel Subgroups and
Maximal Tori’, Corollary B.

Definition 2.1.16. (Homogeneous Varieties) Let G be a linear algebraic k-group
and P a parabolic subgroup of G. A homogeneous variety is an algebraic variety of
the form G/P , which is a smooth projective variety.
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2.2 Adjoint Representations of Lie (or Algebraic)

Groups

In this short section, we define adjoint representations of Lie and algebraic groups.
That is, given any Lie or algebraic group, G, we want a construction which assigns
to every element g ∈ G, an element of the automorphism group of the Lie algebra, g,
associated to G.

Definition 2.2.1. (Adjoint Representations of Lie or Algebraic Groups)

Let G be a Lie (or algebraic) group and Aut(G) the automorphism group of G. Let

Ψ : G→ Aut(G)

be the mapping defined by g 7→ Ψg, where for each g ∈ G, Ψg ∈ Aut(G) is an
automorphism of Lie (or algebraic) groups

Ψg : G→ G

given by the inner automorphism Ψg(h) = ghg−1 for all h ∈ G.

Let X be a vector field on G, or in other words, a section of the map π : TG → G,
where TG is the tangent bundle of G. That is, the map X : G → TG is defined by
setting h 7→ Xh := X(h) ∈ ThG ⊆ TG. We have the following commutative diagram:

TG TG

G G

dΨg

Ψg

X X

That is, dΨg(Xh) = X(Ψg(h)) for all h ∈ G. Now, let e be the identity element of the
group G and consider TeG, the tangent space of G at e, where we denote g := TeG
and call it the Lie algebra g of G. If we consider the pair (G, e), then for each g ∈ G,
we obtain a commutative diagram:

TeG TeG

(G, e) (G, e)

(dΨg)e

Ψg

X X
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fixing base points since Ψg(e) = geg−1 = e and Xe ∈ TeG, and depending only on the
vector field X.

Furthermore, for each g ∈ G, define Adg to be the derivative of Ψg at the identity,
i.e.

Adg := (dΨg)e : TeG→ TeG

Since Ψg is an automorphism of Lie Groups then Adg is a Lie algebra automorphism.
That is, Adg is an invertible linear transformation of g to itself that preserves the Lie
bracket. The map

Ad : G→ Aut(g)

defined by sending g 7→ Adg is a group representation called the adjoint representation
of G. Finally, since Aut(g) is a closed Lie subgroup of GL(g), then the map Ad is a
Lie Group homomorphism.

2.3 Transitive Actions on Flag Manifolds

In the present section we first introduce the notion of group actions on sets. Then, we
discuss how this group action, called a G-action on the set X induces an equivalence
relation. The classes formed by this equivalence relation are called orbits and we
specify what it means for these actions to be transitive. Finally, we formalize group
actions on manifolds, and in particular, on flag manifolds.

We first define group actions on sets and the natural equivalence relation induced by
the action.

Definition 2.3.1. (Group Actions on Sets) Let X be a non-empty set and G a
group. A left-action of G on X is a map

G×X → X

(g, x) 7→ g · x

such that e · x = x, where e is the identity element of G, and (g1g2) · x = g1 · (g2 · x)
for all x ∈ X and for all g1, g2 ∈ G.

We call the left group action on X, a left G-action on X, for short.

Definition 2.3.2. (Orbits Induced by Group Actions) A G-action on X induces
an equivalence relation on X given by

x ∼ y ⇐⇒ ∃ g ∈ G such that g · x = y

These equivalence classes are called orbits of X and are denoted

Ox = {y ∈ X|x ∼ y} = {g · x|g ∈ G}
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We now introduce transitive group actions and what it means for a set X to be a
homogeneous G-space.

Definition 2.3.3. (Transitive Group Actions) Let G be a left group action on
X. Then, G is said to be a transitive group action on X if for all x, y ∈ X, there
exists g ∈ G such that y = g · x.

Definition 2.3.4. (Homogeneous Spaces) Let X be a non-empty set and G a
group. Then, equipped with the action of G on X, we call X a G-space. A homoge-
neous space is a G-space, X, on which G acts transitively.

Remark. Note that G acts bijectively on the set X. If X belongs to some category,
then G acts on X by automorphisms in the same category.

Example 2.3.5. We have the following examples regarding the remark.

(i) If X is a topological space, then the elements of the group G act as home-
omorphisms on X. The structure of a G-space is a group homomorphism
ϕ : G→ Homeo(X) into the homeomorphism group of X.

(ii) If X is a vector space over a field, then G acts by linear automorphisms and we
obtain a representation of G (or a G-representation).

For an example of a transitive group action, consider the following.

Example 2.3.6. The general linear group GL(2,R) acts transitively on R2 \{0}. To
see why this is the case, take any nonzero v = (a, b) ∈ R2. We show that we can find
a matrix A ∈ GL(2,R) such that Ae1 = v, where e1 = (1, 0) is the standard basis
vector in R2. That is, if a 6= 0, then set

A =

[
a 0
b 1

]
If, on the other hand, a = 0, then b 6= 0, so set

A =

[
a 1
b 0

]
It is easy to verify that both of these matrices are invertible and each map e1 7→ v.

As the next step we recall the definition, followed by some basic examples of flag
manifolds.
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Definition 2.3.7. (Complete and Partial Flags) Let V be a finite dimensional
vector space over a field k. A flag is a proper increasing sequence of non-zero subspaces
of V . Thus, we have:

0 6= V1 ⊂ V2 ⊂ ... ⊂ Vn = V

Denoting dim(Vi) = di, naturally we obtain:

0 < d1 < d2 < ... < dn = dim(V )

where because each subspace is proper, we have n ≤ dim(V ).

A flag is called a complete flag or full flag if di = i for all 1 ≤ i ≤ n, otherwise it is
called a partial flag. The signature of a flag is the sequence (d1, d2, ..., dn).

Definition 2.3.8. (Flag Varieties) A flag variety is a homogeneous space whose
points are flags of a finite-dimensional vector space V over a field k.

Remark. When k = R (or C), a flag variety is a smooth real (or complex) manifold,
and is called a real (or complex) flag manifold.

Example 2.3.9. We have the following examples.

(i) The complex full flag manifold, Fn, is the space consisting of all complete flags

V1 ⊂ V2 ⊂ ... ⊂ Vn = Cn,

where Vj is a complex linear subspace of Cn and dim(Vj) = j for all j = 1, ..., n.

(ii) Fix 1 ≤ d ≤ n. The Grassmannian, Gr(d, n), is the manifold consisting of all
complex linear subspaces V ⊂ Cn with dim(V ) = d.

(iii) Fix 1 ≤ k1 < k2 < ... < kp ≤ n. The space Fk1,k2,...,kp consisting of all sequences
V1 ⊂ V2 ⊂ ... ⊂ Vp ⊆ Cn, where Vj is a complex linear subspace of Cn and
dim(Vj) = kj for all j = 1, ..., p is called a complex flag manifold of which
examples (i) and (ii) are special cases.

We are now ready to discuss transitive group actions on flag manifolds.

Definition 2.3.10. (Standard Full Flags) The standard full flag of Cn, which we
will denote by E•, is the sequence

span{e1} ⊂ span{e1, e2} ⊂ ... ⊂ span{e1, e2, ..., en} = Cn

where {e1, e2, ..., en} is the standard orthonormal unit vector basis of Cn. Notice,
E• ∈ Fn.
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Remark. The general linear group, GL(n,C) acts transitively on Fn. That is, for any
sequence

V• := V1 ⊂ V2 ⊂ ... ⊂ Vn = Cn

there exists an element g ∈ GL(n,C) such that gE• = V•. Formally, we can associate
to g its matrix representation, and g(span{e1, e2, ..., ej}) = Vj for all j = 1, ..., n.

If we further restrict the choice of the matrix g so that {ge1, ge2, ..., gen} forms an
orthonormal basis of Cn with respect to the standard Hermitian product 〈 , 〉 on Cn,
then g ∈ U(n) since 〈gζ, gξ〉 = 〈ζ, ξ〉 for all ζ, ξ ∈ Cn.

Example 2.3.11. Flags of Fn can be identified with elements of the group GL(n,C)
(respectively, U(n)), modulo their subgroups which leave the standard flag fixed.
Indeed,

(i) for GL(n,C), the subgroup Bn, which consists of all invertible upper triangular
matrices, leaves E• fixed.

(ii) for U(n), the subgroup T n, which consists of all diagonal matrices in U(n),
leaves E• fixed.

Elements of T n are of the form Diag(z1, z2, ..., zn), where zj ∈ C and |zj| = 1 for all

j = 1, ..., n. That is, T n '
n∏
i=1

S1 as groups, and so, T n is appropriately called the

n-torus. As such, we obtain:

Fn ' GLn(C)/Bn ' U(n)/T n.



Chapter 3

Severi-Brauer Varieties

In 1907, J. H. Maclagan Wedderburn would submit his doctoral thesis, titled “On
Hypercomplex Numbers,” in which he classified all finite-dimensional simple and
semisimple algebras. His thesis, [Wed], appearing in the Proceedings of the Lon-
don Mathematical Society the following year, elegantly characterized every finite-
dimensional simple algebra as a matrix algebra over some division ring. Richard
Brauer, one of the key mathematicians picking up on this work, showed in 1932,
[Bra1], that the isomorphism classes of these algebras can be used to form an abelian
group, which was later termed the Brauer group. The properties of the Brauer group,
in turn, gave back tremendous insight into the structure of simple algebras and was
used, in particular, to prove the longstanding conjecture that every rational division
algebra is cyclic over its centre. The Wedderburn theorem was later generalized to
classify all semisimple Artinian rings in the Artin-Wedderburn theorem.

In the following sections we classify central simple algebras and define the Brauer
group, including its modern mathematical formalism in terms of category theory.
Along the way, we introduce an assortment of concepts, keeping in mind the goal of
this chapter, which is to define Severi-Brauer varieties and their close relationship to
Grassmannians, as these varieties are the objects of focus in Chapter 4.

3.1 Preliminaries on Algebras

In this section we introduce some basic preliminary notions for the study of algebras.
We begin by providing two different definitions for what an algebra is, along with
examples according to each definition. We then show that these definitions coincide
under certain criteria. Finally, we introduce the notion of an opposite algebra, a
natural object that will play a key role later in this chapter.

We begin with the notion of an algebra as a module with bilinear product, followed

29
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by some examples.

Definition 3.1.1. (Algebras) Let R be a commutative ring and A an R-module.
Define an additional binary operation ∗ : A×A→ A by (x, y) 7→ x ∗ y, often referred
to as multiplication in A. Then, A is an algebra over R (or simply an R-algebra) if
the multiplication operation is an R-bilinear product on A. In other words, that is if
∀x, y, z ∈ A and ∀r ∈ R:

(x+ y) ∗ z = (x ∗ z) + (y ∗ z)

x ∗ (y + z) = (x ∗ y) + (x ∗ z)

(r · x) ∗ y = r · (x ∗ y) = x ∗ (r · y)

To be unambiguous, we often denote an R-algebra by the pair (A, ∗).
Remark. Although it is not required, when the operation ∗ is also associative, A is
endowed with the structure of a ring.

Remark. When the commutative ring R is replaced with a field k, one obtains the
familiar notion of a k-algebra as a vector space with an additional bilinear product.

Example 3.1.2. R3 with the cross product × : R3×R3 → R3 is an R-algebra which
is neither associative, nor commutative. To see why it is not associative, take any
non-zero v1, v2 ∈ R3 such that v1 ⊥ v2. Then, (v1 × v1)× v2 = 0× v2 = 0 but v1 × v2

is non-zero and perpendicular to v1, so v1 × (v1 × v2) 6= 0.

Example 3.1.3. Let V be a non-trivial vector space over a field k and denote by
End(V ), the set of all linear transformations of V to itself. Then, End(V ) with
multiplication defined by ◦ : End(V )×End(V )→ End(V ) sending (T1, T2) 7→ T1 ◦T2

(the usual composition of functions) is an associative, unital k-algebra.

The following examples are of particular interest since they allow us to construct new
algebras from existing ones.

Example 3.1.4. Let (A, ∗A) and (B, ∗B) be R-algebras. Then, A⊕B and A⊗RB with
respective multiplicative products defined by (a+ b) ∗A⊕B (a′ + b′) = a ∗A a′ + b ∗B b′
and (a ⊗ b) ∗A⊗RB (a′ ⊗ b′) = a ∗A a′ ⊗ b ∗B b′ (extended to non-simple tensors by
distributivity of ∗A⊗RB over addition), are also R-algebras.

We now define the nucleus, the commutant, and the center of an algebra.

Definition 3.1.5. (The Nucleus of an Algebra) Let A be an R-algebra. Define
the associator on A to be the R-trilinear map [·, ·, ·] : A × A × A → A sending
(x, y, z) 7→ [x, y, z] = (x ∗ y) ∗ z − x ∗ (y ∗ z). The set of all associative elements of A

N(A) = {x ∈ A | [x, y, z] = [y, x, z] = [y, z, x] = 0 for all y, z ∈ A}

is called the associative center or nucleus of A. Note that A is an associative algebra
whenever N(A) = A.
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Definition 3.1.6. (The Commutant of an Algebra) Let A be an R-algebra.
Define the commutator on A to be the R-bilinear map [·, ·] : A × A → A sending
(x, y) 7→ [x, y] = x ∗ y − y ∗ x. The set of all commutative elements of A denoted

C(A) = {x ∈ A | x ∗ y = y ∗ x for all y ∈ A}

is called the commutant or centralizer of A and A is commutative whenever C(A) = A.

Definition 3.1.7. (The Center of an Algebra) Let A be an R-algebra. Define
the centre of A as the intersection

Z(A) = N(A) ∩ C(A) = {x ∈ N(A) | x ∗ y = y ∗ x for all y ∈ A}

The centre is precisely the subset of all the associative, commutative elements of A,
and is an associative, commutative sub-algebra of A.

Next, we proceed by providing an alternate definition to the notion of an algebra in
the sense of a homomorphism of rings. We then give some examples according to this
definition.

Definition 3.1.8. (Alternative Definition of an Algebra) Let R be a commu-
tative ring with unity. An R-algebra is a ring A (with unity), together with a ring
homomorphism f : R→ A such that:

(1) f(1R) = 1A

(2) f(R) ⊆ Z(A)

The pair (A, f) will also be called an R-algebra.

Remark. All algebras satisfying this definition are associative unital algebras.

Example 3.1.9. Let A be any ring and R ⊆ Z(A) a subring of the centre of A. Then,
(A, ι) is an R-algebra, where ι : R ↪→ A is the inclusion of R into A. In particular,
this says that every ring is an associative algebra over its centre.

Example 3.1.10. Any ring A with unity is a Z-algebra by the following construction.
Define f : Z→ A by setting f(n) = n · 1A = 1A + ...+ 1A︸ ︷︷ ︸

n times

for all n ∈ Z.

Proposition 3.1.11. The definitions of an algebra in 3.1.1 and 3.1.8 are equivalent
in the case of associative unital algebras, that is, when the binary operation in 3.1.1
is also associative and unital.



3. SEVERI-BRAUER VARIETIES 32

Proof: ( =⇒ ) : Suppose that (A, ∗) is an R-algebra as in the first definition and
that the binary operation is associative and unital. For any a ∈ A and r ∈ R, denote
the R-action on A by (r, a) 7→ r · a. Now define f : R→ A by f(r) = r · 1A.

(i) f is a ring homomorphism as both:

f(rs) = 1A ∗ f(rs)

= 1A ∗ ((rs) · 1A)

= 1A ∗ (r · (s · 1A))

= r · 1A ∗ s · 1A
= f(r) ∗ f(s)

and

f(r + s) = (r + s) · 1A
= (r · 1A) + (s · 1A)

= f(r) + f(s)

(ii) f(1R) = 1R · 1A = 1A by the properties of the R-action on A
(iii) finally, f(R) ⊆ Z(A) since for any a ∈ A and any r ∈ R we have:

a ∗ f(r) = a ∗ (r · 1A) = r · (a ∗ 1A) = r · (1A ∗ a) = (r · 1A) ∗ a = f(r) ∗ a

where (i) and (iii) use the fact that ∗ : A×A→ A is a bilinear mapping to move the
scalars around as needed.

( ⇐= ) : Conversely, let f : R → A be a ring homomorphism such that f(1R) = 1A
and f(R) ⊆ Z(A) as in the second definition. Define the R-action on A by sending
(r, a) 7→ r · a = f(r) ∗ a, where ∗ is the multiplicative operation in the ring A. We
verify that this operation makes A an R-module. That is, for all a, b ∈ A, for all
r, s ∈ R, we have:

(i)

r · (a+ b) = f(r) ∗ (a+ b)

= (f(r) ∗ a) + (f(r) ∗ b)
= (r · a) + (r · b)

(ii)

(r + s) · a = f(r + s) ∗ a
= (f(r) + f(s)) ∗ a
= (f(r) ∗ a) + (f(s) ∗ a)

= (r · a) + (s · a)
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(iii)

(rs) · a = f(rs) ∗ a
= (f(r) ∗ f(s)) ∗ a
= f(r) ∗ (f(s) ∗ a)

= f(r) ∗ (s · a)

= r · (s · a)

(iv)

1R · a = f(1R) ∗ a
= 1A ∗ a
= a

which verifies (A, ·) is a left R-module. However, since f(r) ∈ Z(A), then for all
r ∈ R and all a ∈ A, we have r · a = f(r) ∗ a = a ∗ f(r) = a · r, so (A, ·) is a two-sided
R-module.

Finally, multiplication in A is R-bilinear since ∀a, b, c ∈ A and ∀r ∈ R, we have both

(i)
(a+ b) ∗ c = a ∗ c+ b ∗ c

(ii)
a ∗ (b+ c) = a ∗ b+ a ∗ c

by distributivity of multiplication over addition in the ring structure of A, and

(iii)

(r · a) ∗ b = (f(r) ∗ a) ∗ b
= f(r) ∗ (a ∗ b)
= r · (a ∗ b)
= f(r) ∗ a ∗ b
= a ∗ f(r) ∗ b
= a ∗ (f(r) ∗ b)
= a ∗ (r · b)

using the fact that A is associative in its ring structure and f(R) ⊆ Z(A).
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We conclude this section by defining opposite algebras, showing the opposite of an
algebra A is isomorphic to the A-linear homomorphisms of A as k-algebras and then
proving a key proposition on opposite matrix algebras that will be used later in the
chapter in the proofs of some deeper results.

Definition 3.1.12. (Opposite Algebras) Let k be a field and A an algebra over
k. Define Aop to have the same vector space structure as A but with multiplication
∗op : A× A→ A defined by a ∗op b = b ∗ a, where ∗ is the multiplication in A.

Proposition 3.1.13. If A is associative, unital or commutative, then so is Aop.

Proof: For all a, b, c ∈ A:

(i) if A is associative, then Aop is also associative since

a ∗op (b ∗op c) = a ∗op (c ∗ b) = (c ∗ b) ∗a = c ∗ (b ∗a) = (b ∗a) ∗op c = (a ∗op b) ∗op c

(ii) if A is unital with unit element 1A, then Aop is also unital with unit element 1A
since

a ∗op 1A = 1A ∗ a = a = a ∗ 1A = 1A ∗op a

(iii) if A is commutative, then Aop is also commutative since

a ∗op b = b ∗ a = a ∗ b = b ∗op a

Proposition 3.1.14. Let A be a unital algebra over k. Then, Aop ' HomA(A,A) as
k-algebras, where HomA(A,A) is the set of A-linear k-algebra homomorphisms from
A to itself.

Proof: Let φ ∈ HomA(A,A). Notice that φ is completely determined by φ(1A)
since for any a ∈ A, we have φ(a) = φ(a ∗ 1A) = a ∗ φ(1A). Now define a map
τ : Aop → HomA(A,A) by sending a 7→ Ra, where Ra(1A) = a and in general, Ra is
right multiplication by a.

We first show that the map τ is a homomorphism of vector spaces. That is, for all
a, b ∈ Aop and all λ ∈ k, we have:

(i) τ(a+ b) = Ra+b = Ra +Rb = τ(a) + τ(b)

since Ra+b(1A) = a+ b = Ra(1A) +Rb(1A) = (Ra +Rb)(1A), and

(ii) τ(λ · a) = Rλ·a = λ ·Ra = λ · τ(a)



3. SEVERI-BRAUER VARIETIES 35

since Rλ·a(1A) = λ · a = λ · Ra(1A) = (λ · Ra)(1A). Thus, τ is a homomorphism of
vector spaces.

We now show τ is an isomorphism. Suppose that for some a, b ∈ Aop we have
τ(a) = τ(b). That is, Ra = Rb. But, from rearranging, we obtain

0 = τ(a)− τ(b) = τ(a− b) = Ra−b

where 0 is the homomorphism R0, since R0 is the map sending 1A 7→ 0, i.e. for
any a ∈ A, R0(a) = a ∗ R0(1A) = a ∗ 0 = 0. However, Ra−b = R0 as A-linear
homomorphisms of A if and only if

Ra−b(1A) = a− b = 0 = R0(1A)

That is, if and only if a = b. So τ is one to one.

Now suppose φ ∈ HomA(A,A), and say, φ(1A) = a, for some a ∈ A, which completely
determines φ. Notice that φ(b) = φ(b ∗ 1A) = b ∗ φ(1A) = b ∗ a for any b ∈ A, and
therefore, φ = Ra = τ(a). Hence, τ is also onto which makes τ is an isomorphism of
vector spaces over k.

Finally, for all a, b ∈ Aop, we have

τ(a ∗op b) = τ(b ∗ a) = Rb∗a = Ra ◦Rb = τ(a) ◦ τ(b)

since Ra ◦Rb(1A) = Ra(b) = b ∗ a = Rb∗a(1A).

Corollary 3.1.15. In particular, if A is also associative, then A is an A-module and
Aop ' EndA(A) as k-algebras.

Proof: Using the premises and notation from the previous proposition, we need
only show that composition of k-algebra homomorphisms in HomA(A,A) is associa-
tive. That is, for any a, b, c ∈ A, we have

Ra ◦ (Rb ◦Rc) = τ(a) ◦ (τ(b) ◦ τ(c))

= τ(a) ◦ τ(b ∗op c)

= τ(a ∗op (b ∗op c))

= τ((a ∗op b) ∗op c)

= τ(a ∗op b) ◦ τ(c)

= (τ(a) ◦ τ(b)) ◦ τ(c)

= (Ra ◦Rb) ◦Rc
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Proposition 3.1.16. For any ring R, Mn(Rop) = Mn(R)op.

Proof: Let ∗op be the multiplication in Rop and ∗op
M the multiplication in Mn(R)op.

Consider the transpose map t : Mn(R)op → Mn(Rop) sending A 7→ At. Clearly,
(αA)t = αAt and (A+B)t = At +Bt. Finally, when we consider the matrices At and
Bt as matrices over Rop, then we also have the following. Since

AB =

( n∑
l=1

ail ∗ blj
)

1≤i,j≤n

then
n∑
l=1

ail ∗ blj being the (i, j)th entry in AB is the (j, i)th entry in (AB)t. Moreover,

the (j, i)th entry of BtAt is
n∑
l=1

blj∗opail =
n∑
l=1

ail∗blj. Thus, (B∗op
MA)t = (AB)t = BtAt.

Hence, t is an isomorphism of R-algebras.

3.2 Associative Division Algebras

In this section we introduce the concept of an associative division algebra. As the
name suggests, we consider algebras as those from the previous section which are
associative and are also endowed with a division-like structure. We follow this by a
series of propositions which establish the proximity of division algebras to familiar
concepts from ring theory, i.e. we ask the question “how close are division algebras to
such things like domains and division rings,” establishing precisely what is required
for these notions to coincide. Finally, we characterize associative division algebras
over the real numbers and over fields which are algebraically closed.

We begin by defining the notion of an associative division algebra.

Definition 3.2.1. (Associative Division Algebras) Let k be a field and D a non-
zero k-algebra. Then, we say D is an associative division algebra if D is associative
and for any a, b ∈ D with b 6= 0 we have that there exists unique elements x, y ∈ D
such that a = b ∗ x and a = y ∗ b.

We proceed by relating associative division algebras to ring-based structures with
several propositions in this regard.

Proposition 3.2.2. Let k be a field and A an algebra over k. Then, A is a unital
associative division algebra if and only if it is a division ring, that is, if for all non-zero
x ∈ A, there exists y ∈ A such that xy = 1 = yx.
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Proof: ( ⇐= ) : Suppose A is a division ring. That is, A is unital, associative,
and for all non-zero x ∈ A, there exists a unique y ∈ A such that xy = 1 = yx. We
want to show that A is an associative division algebra. So take any a, b ∈ A with
b 6= 0. Since b 6= 0, there exists a unique c ∈ A such that bc = 1 and cb = 1. Thus,
by multiplying the first equation by a from the right and the second equation by a
from the left we obtain bca = a and acb = a, respectively. Since A is associative, then
b(ca) = a and (ac)b = a where the elements x = ca and y = ac are unique.

( =⇒ ) : Suppose A is a unital associative division algebra. That is, for any a, b ∈ A
with b 6= 0 there exist unique x, y ∈ A such that a = bx and a = yb. In particular,
1 ∈ A (as A is unital) and so, for all non-zero b ∈ A there exist unique x, y ∈ A such
that 1 = bx and 1 = yb. We show that x = y. That is,

x = 1x = (yb)x = y(bx) = y1 = y

using the fact that A is associative. Hence, bx = 1 = xb and so A is a division ring.

Corollary 3.2.3. Wedderburn’s little theorem states that every finite division ring is
commutative, therefore is a finite field. Thus, any finite unital associative division
algebra over k is a finite field.

Proposition 3.2.4. An associative division algebra A over k is a domain, that is, A
has no zero divisors.

Proof: Assume the contrary. That is, assume that for some non-zero a, b ∈ A
we have ab = 0. But if this is the case, then for 0, b ∈ A with b 6= 0, the element a
satisfying 0 = ab is not unique. That is, we also have that 0 = 0b. Since a 6= 0, this
is a contradiction to the fact that A is an associative division algebra.

Proposition 3.2.5. Let A be a finite-dimensional unital k-algebra. Then, A is an
associative division algebra if and only if it is a domain.

Proof: ( =⇒ ) : By Proposition 3.2.4, if A is an associative division algebra, then
A is a domain. Moreover, since A is unital, then by Proposition 3.2.2, it is in fact
more than a domain, it is a division ring.

( ⇐= ) : Now suppose A is a domain. Take any non-zero x ∈ A and suppose x
is not invertible. Since A is a finite-dimensional vector space over k, then for some
N ∈ N, the elements 1, x, x2, ..., xN are linearly dependent. In fact, there can be at
most dimk(A) linearly independent powers of x. Let n be the minimal integer for
which the relation xn+a1x

n−1 + ...+an = 0 holds for some ai ∈ k not all zero. Notice
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that if an = 0, then (xn−1 + a1x
n−2 + ... + an−1)x = 0. Since A is a domain, then

either xn−1 + a1x
n−2 + ...+ an−1 = 0 or x = 0. But xn−1 + a1x

n−2 + ...+ an−1 6= 0 by
the minimality of n and x 6= 0 by assumption, so this would imply a contradiction to
the fact that A is a domain. Hence, an 6= 0. As such, we can rewrite the equation
as −an = xn + a1x

n−1 + ... + an−1x = (xn−1 + a1x
n−2 + ... + an−1)x. Since k is a

field, −an is invertible and we have 1 = −a−1
n (xn−1 +a1x

n−2 + ...+an−1)x. Therefore,
x−1 = −a−1

n (xn−1 + a1x
n−2 + ...+ an−1), a contradiction.

Thus, A is a division ring and by Proposition 3.2.2, it is a division algebra.

Corollary 3.2.6. Let A be a finite-dimensional unital k-algebra. Then, A is a domain
if and only if it is a division ring.

Example 3.2.7. The Frobenius Theorem characterizes all finite-dimensional asso-
ciative division algebras over the real numbers up to isomorphism. They are:

• R - the real vector space as a dimension 1 space over itself

• C - the complex numbers as a dimension 2 real vector space

• H - the quaternions as a dimension 4 real vector space

Finally, we consider finite-dimensional associative division algebras over algebraically
closed fields.

Proposition 3.2.8. The only finite-dimensional associative division algebra over an
algebraically closed field k is k itself.

Proof: Let D be a finite-dimensional associative division algebra over k. As in
the proof of Proposition 3.2.5 let n be the minimal integer for which the relation
αn + a1α

n−1 + ...+ an = 0 holds for some ai ∈ k not all zero. Notice, since ai ∈ k for
all i = 1, ..., n, then f(x) = xn + a1x

n−1 + ... + an ∈ k[x] is a polynomial of minimal
degree for which α is a root. Moreover, as k is an algebraically closed field, then there
exists λ ∈ k such that f(λ) = 0 and thus, f factors uniquely as f(x) = (x − λ)g(x)
where the degree of g is n−1. Notice that since the degree of f is minimal, g(α) 6= 0.
But then, 0 = f(α) = (α − λ)g(α), where because D is a division algebra, (α − λ)
is the unique element of D such that (α − λ)g(α) = 0. Since it is also the case that
0g(α) = 0, then we must have α−λ = 0. Thus, α = λ ∈ k for all α ∈ D, so D = k.
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3.3 Simple Structures and Schur’s Lemma

This section is devoted to the study of simple structures such as simple rings, simple
modules and simple algebras. We define all three and prove some important facts
related to these concepts. The major result presented in this section is Schur’s Lemma
which is a powerful result that characterizes the set of homomorphisms between any
two simple modules over a ring.

We begin with the definitions of simple rings and simple algebras.

Definition 3.3.1. (Simple Rings) A simple ring is a non-zero ring that has no
two-sided ideals besides the zero ideal and itself.

Definition 3.3.2. (Simple Algebras) An algebra A is simple if it contains no two-
sided ideals besides the zero ideal and itself, and the multiplication operation is not
zero, that is, A2 = {a ∗ b | a, b ∈ A} 6= {0}.

Next, we show some of the characteristics of simple rings through the following series
of propositions.

Proposition 3.3.3. Let R be a unital commutative ring. Then, R is simple if and
only if R is a field.

Proof: (⇐= ) : Since R is commutative, all ideals are two-sided. Moreover, since
R is a field, the only ideals of R are (0) and R itself. Thus, R is trivially simple.

( =⇒ ) : Conversely, let R be a simple unital commutative ring. By commutativity,
every ideal of R is a two-sided ideal. Moreover, since R is simple, it has no non-trivial
two-sided proper ideals. That is, its only two-sided ideals are (0) and R. Since R is
unital, then for all non-zero a ∈ R, for the ideal generated by a, we have (a) = (1).
Therefore, there exists b ∈ R such that ab = 1 = ba. Thus, R is a field.

Proposition 3.3.4. Any quotient of a ring by a maximal ideal is a simple ring.

Proof: Suppose m is a maximal ideal of a ring R and let π : R � R/m be the
projection map. Let J be a non-zero ideal in R/m. Then, π−1(J) is an ideal of R
strictly containing m. Since m is maximal in R, then π−1(J) = R. Hence, J = R/m.
Thus, R/m is simple.

Proposition 3.3.5. If R is a simple ring, then so is Mn(R) for any n ∈ N.
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Proof: We first show that every ideal of Mn(R) is of the form Mn(J) for some
unique ideal J / R. (Note that, here, ideal is used to mean two-sided ideal).

Uniqueness. Suppose J is an ideal of Mn(R) and that J1 and J2 are two ideals of
R for which both J = Mn(J1) and J = Mn(J2). By definition, A ∈ Mn(J) if and
only if Ai,j ∈ J for all 1 ≤ i, j ≤ n. Now, if J1 6= J2, then there exists an x ∈ R
for which x ∈ J1 \ J2 or x ∈ J2 \ J1. But then, there exists a matrix A containing
x as its (i, j)th entry (that is, x = Ai,j and zeros elsewhere, for example) for which
A ∈Mn(J1)\Mn(J2) or A ∈Mn(J2)\Mn(J1), a contradiction, since Mn(J1) = Mn(J2)
implies both of these sets are empty.

Existence. Suppose J is an ideal of Mn(R). Let

J(i, j) = {x ∈ R | x = Ai,j for some A ∈ J }

where 1 ≤ i, j ≤ n. We first show that J(i, j) is an ideal of R. That is, for all r ∈ R
and j1, j2 ∈ J(i, j), where j1 = Ai,j for some A ∈ J and j2 = Bi,j for some B ∈ J ,
we have

(i) j1 + j2 ∈ J(i, j) since j1 + j2 = Ai,j +Bi,j for A+B ∈ J
(ii) rj1 ∈ J(i, j) since rj1 = rAi,j for (rIn)A ∈ J

(iii) j1r ∈ J(i, j) since j1r = Ai,jr for A(rIn) ∈ J

Thus, J(i, j) is an ideal of R. Moreover, since for any matrix A ∈ J we can apply
permutation matrices on both the left and right and still get an element of J , then
it follows that J(i, j) is independent of the choices of i and j. Denote

J = J(1, 1) = J(1, 2) = ... = J(n, n)

We claim that J = Mn(J).

Denote by Ei,j the matrix with 1 in entry (i, j) and zeros elsewhere. For all matrices
A ∈ Mn(R) and for all 1 ≤ i, j, k, l ≤ n, we have Ei,jAEk,l = Aj,kEi,l. If moreover
A ∈ J , then Aj,kEi,l ∈ J and so Aj,k ∈ J(i, l) = J . But this is for all 1 ≤ j, k ≤ n,
so A ∈Mn(J). Thus, J ⊆Mn(J).

Conversely, let A ∈Mn(J). By definition of Mn(J), for any (i, l), Ai,l ∈ J . Moreover,
by definition of J , there exists a matrix M ∈ J such that M1,1 = Ai,l ∈ J = J(1, 1).

Now, Ai,lEi,l = M1,1Ei,l = Ei,1ME1,l ∈ J . Thus, A =
n∑
i=1

n∑
l=1

Ai,lEi,l ∈ J , and so

Mn(J) ⊆ J .

Now if R is a simple ring, then the only two-sided ideals of R are (0) and itself. Thus,
the only two-sided ideals of Mn(R) are Mn((0)) = (0) and Mn(R) itself. Hence,
Mn(R) is simple.
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Proposition 3.3.6. Any division ring is a simple ring, but not vice versa.

Proof: Let R be a division ring. However, assume on the contrary that R is not
simple. That is, there exists a non-trivial two-sided proper ideal I / R. Since I is
non-trivial, then ∃a ∈ I such that a 6= 0. Moreover, since R is a division ring, then
∃b ∈ R such that ab = 1 = ba. But a ∈ I implies both ab ∈ I and ba ∈ I, and thus
that 1 ∈ I, a contradiction to the fact that I 6= R.

For an example of a simple ring which is not a division ring take Mn(R) where R is
simple and n ≥ 2.

We now examine some of the characteristics of simple algebras.

Theorem 3.3.7. Every unital associative k-algebra can be embedded into a simple
algebra with the same unit element.

For a proof of this theorem see [Mik], Chapter 4, in the section titled ‘Embeddings
into simple associative algebras’ on page 108 and [Bok], Chapter 1, pages 13 and 14
leading up to Theorem 1.3.9.

Proposition 3.3.8. Every unital associative division algebra A over k is simple.

Proof: We know that every unital associative division algebra A over k is a divi-
sion ring. Now apply Proposition 3.3.6.

We are now ready to define simple modules. We show some equivalences to the
property of being simple before stating and proving Schur’s Lemma. We then conclude
the section with an important proposition regarding left Mn(D)-modules, where D
is a division ring, which will be used in the proofs of theorems presented later in the
chapter.

Definition 3.3.9. (Simple Modules) Let R be a ring with unity. A left R-module
M is simple if it is non-zero and does not admit a proper non-zero R-submodule.

Theorem 3.3.10. Let R be a ring with unity and M a left R-module. Then, the
following are equivalent:

(i) M is simple

(ii) Rm = M for every non-zero m ∈M

(iii) M ' R/m for some maximal left ideal m / R.
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Proof: (i) =⇒ (ii) : By contrapositive. If for some non-zero m ∈ M we have
Rm 6= M , (i.e. Rm ⊂M), then Rm is a proper non-zero R-submodule of M since for
all r ∈ R and all m1,m2 ∈ Rm where m1 = r1m and m2 = r2m for some r1, r2 ∈ R
we have

(i) m1 +m2 = r1m+ r2m = (r1 + r2)m ∈ Rm
(ii) rm1 = r(r1m) = (rr1)m ∈ Rm

However, this contradicts the fact that M is simple.

(ii) =⇒ (iii) : Consider R as a left module over itself and define the left R-module
homomorphism φm : R�M by setting r 7→ rm for some fixed non-zero m ∈M . By
the first isomorphism theorem for modules, we have R/ker(φm) 'M . Now, if ker(φm)
is not a maximal left ideal, then ker(φm) ⊂ m for some maximal left ideal m / R and
in such a case, the quotient ring m/ker(φm) is a left ideal of R/ker(φm). That is,
m/ker(φm) is a left R-submodule of R/ker(φm). Thus, m/ker(φm) is isomorphic to its
image, a left R-submodule of M which we denote by N . But then, for any non-zero
n ∈ N , Rn = M , so either N = M or N = 0. That is, either m = R or m = ker(φm),
in either case a contradiction. Thus, ker(φm) must be maximal, and we obtain the
result.

(iii) =⇒ (i) : We know from Proposition 3.3.4 that R/m is a simple ring because in
particular, there are no non-zero proper left ideals in the quotient ring R/m. More-
over, left R-submodules of R coincide with left ideals of R since in both instances
we have, by definition, RI ⊆ I for a subgroup I of R. Thus, if we again consider
R as a left module over itself, then m is an R-submodule of R and therefore, R/m
is the quotient of the left R-module R by the left R-submodule m. This results in
a quotient left R-module R/m that contains no non-zero proper left R-submodules.
That is, M ' R/m is a simple module.

Lemma 3.3.11. (Schur’s Lemma) Let M and N be simple R-modules. Then:

(i) if M 6' N , then HomR(M,N) = 0.

(ii) EndR(M) is a division ring.

Proof: (i) By the contrapositive statement suppose that HomR(M,N) 6= 0. That
is, there exists a non-zero R-module homomorphism f : M → N . Since ker(f)
is an R-submodule of M , and the only R-submodules of M are 0 and itself (since
M is simple), then ker(f) = 0 as ker(f) = M would contradict the fact that f is
a non-zero R-module homomorphism. Similarly, since im(f) is an R-submodule of
N , and the only R-submodules of N are 0 and itself (since N is also simple), then
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im(f) = N , as im(f) = 0 would also contradict the fact that f is a non-zero R-
module homomorphism. But then, ker(f) = 0 and im(f) = N implies that f is an
isomorphism between M and N .

(ii) Let f ∈ EndR(M) such that f 6= 0. By (i) f is an isomorphism and thus, is
invertible in EndR(M).

Proposition 3.3.12. Let D be a division ring. Then, any simple left Mn(D)-module
is isomorphic to Dn.

Proof: First, pick j ∈ {1, ..., n} and fix the column Cj in the ring of matrices
Mn(D). Identify each element v ∈ Dn with the matrix having Cj = v and zeros else-
where. It is important to note that the reasoning in the proof is independent of the
choice of j as all of the resulting identifications of Dn are isomorphic via a permutation
of the columns. Identified in this way, Dn is a minimal left ideal of Mn(D). Therefore,
Dn is a simple left Mn(D)-module. Now let M be any simple left Mn(D)-module.
By Theorem 3.3.10 part (ii), M is generated by every non-zero m ∈ M . That is,
say, M = Mn(D) ·m for some non-zero m ∈M . Moreover, Dn 'Mn(D) · e1,1 where
e1,1 is the first standard basis element of Mn(D). The Mn(D)-module homomorphism
φ : M → Dn sending m 7→ e1,1 is non-zero, so by Schur’s Lemma, is an isomorphism.

Remark. Just as all the simple left Mn(D)-modules are isomorphic, so too, are all the
simple right Mn(D)-modules.

3.4 Central Simple Algebras

In this section, we introduce the notion of central simple algebras. We then state
and prove a series of propositions which serve to further characterizes their properties
and introduce a very important class of examples of such objects: the generalized
quaternions. Central simple algebras and their classification will then be the focus of
most of the remainder of the chapter.

We begin by defining central simple algebras and exploring some of their character-
istics.

Definition 3.4.1. (Central Simple Algebras) A central simple algebra over a field
k is a finite-dimensional simple unital associative k-algebra which has center k.

Remark. We often use the abbreviations C.S.A or CSA when referring to central
simple algebras.
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Proposition 3.4.2. Any field is a central simple algebra over itself.

Proof: Let k be any field. As a vector space over itself, the dimension of k is 1,
thus finite-dimensional. Moreover, since k is a field, its multiplication is associative
and unital, it is simple, and Z(k) = k.

Proposition 3.4.3. Any k-central finite-dimensional unital associative division al-
gebra A over k is a CSA over k.

Proof: Clearly, A is finite-dimensional and has centre k. Since A is also a unital
associative division algebra over k, then A is a division ring and thus, simple.

Remark. The requirement of k-central is not only sufficient, but necessary as C is a
dimension 2 associative unital division algebra over R, is simple, but has Z(C) = C.

Proposition 3.4.4. The algebra of n× n matrices with entries in k, namely Mn(k)
is a CSA over k.

Proof: Since k is simple, then so is Mn(k). Moreover, dimk(Mn(k)) = n2, thus
finite-dimensional. The multiplication in Mn(k) is associative and finally, the centre
of Mn(k) is k ∗ In which is isomorphic to k, thus Z(Mn(k)) = k.

Proposition 3.4.5. More generally, if A is a CSA over k, then so is Mn(A).

Proof: From Proposition 3.3.5, Mn(A) is a simple ring. Moreover, it is finite-
dimensional as dimk(Mn(A)) = n2 · dimk(A). The multiplication in Mn(A) is asso-
ciative as the entries of a matrix which is the product of matrices in Mn(A) are just
sums of products of elements of A, which is associative. Thus, by regrouping the mul-
tiplication in each entry, we can regroup the multiplication of the matrices (relatively
easy, but tedious exercise). Finally, Z(Mn(A)) = {a · In ∈ Mn(A) | a ∈ Z(A)} since
if a /∈ Z(A), then there exists b /∈ Z(A) for which ab 6= ba. Thus, we would have

(a · In) ∗ (b · In) = (ab) · In 6= (ba) · In = (b · In) ∗ (a · In)

Therefore, Z(Mn(A)) ' Z(A). Since A is k-central, then so is Mn(A). Thus, Mn(A)
is a CSA over k.
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Proposition 3.4.6. If A is a CSA over k, then so is Aop.

Proof: By Proposition 3.1.13, Aop is associative and unital. Moreover, Aop is
finite-dimensional over k since dimk(A

op) = dimk(A). As any left (respectively, right)
ideal of A is a right (respectively, left) ideal of Aop, then any two-sided ideal of A
is a two-sided ideal of Aop. Therefore, as A is simple, then so, too, is Aop. Finally,
we show that Z(A) = Z(Aop). That is, if a ∈ Z(A), then for any b ∈ Aop, we have
a ∗op b = b ∗ a = a ∗ b = b ∗op a. Hence, a ∈ Z(Aop) and Z(A) ⊆ Z(Aop). Conversely,
if a ∈ Z(Aop), then for any b ∈ A, we have a ∗ b = b ∗op a = a ∗op b = b ∗ a. Hence,
a ∈ Z(A) and Z(Aop) ⊆ Z(A). Therefore, Z(Aop) = Z(A) = k, so Aop is k-central.
Thus, Aop is a CSA over k.

We now establish some key facts regarding algebras over a field in order to show that
the tensor product of CSA’s is also a CSA.

Proposition 3.4.7. Let A and B be two finite-dimensional unital k-algebras. Then:

(i) Z(A⊗k B) = Z(A)⊗k Z(B)

(ii) If A and B are simple and Z(A) = k, then A ⊗k B is also simple with center
Z(B).

Proof: (i) Let α ∈ Z(A), β ∈ Z(B) so that α ⊗ β ∈ Z(A) ⊗k Z(B). For any
a⊗ b ∈ A⊗k B, we have

(α⊗ β) ∗⊗ (a⊗ b) = (α ∗A a)⊗ (β ∗B b) = (a ∗A α)⊗ (b ∗B β) = (a⊗ b) ∗⊗ (α⊗ β)

where ∗⊗ is the multiplication in A⊗kB and where, by linearity of ∗⊗ over k, we can
extend to non-simple tensors in A⊗kB. Hence, we have that α⊗β ∈ Z(A⊗kB) and
thus, Z(A)⊗k Z(B) ⊆ Z(A⊗k B).

Conversely, as B is finite-dimensional over k, say of dimension n, let β1, ..., βn be a
k-basis for B. Then,

A⊗k B = A⊗k
( n⊕

i=1

k · βi
)
'

n⊕
i=1

(A⊗k βi)

as vector spaces over k. Thus, any element ξ ∈ A ⊗k B can be uniquely written
as ξ = a1 ⊗ β1 + ... + an ⊗ βn where ai ∈ A for all i = 1, ..., n. In particular, if
ξ ∈ Z(A⊗k B), then for any a ∈ A, we have

(a⊗ 1B) ∗⊗ ξ = ξ ∗⊗ (a⊗ 1B)
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That is;

0 = (a⊗ 1B) ∗⊗ ξ − ξ ∗⊗ (a⊗ 1B)

= (a⊗ 1B) ∗⊗ (a1 ⊗ β1 + ...+ an ⊗ βn)− (a1 ⊗ β1 + ...+ an ⊗ βn) ∗⊗ (a⊗ 1B)

=
n∑
i=1

(a ∗A ai)⊗ (1B ∗B βi)−
n∑
i=1

(ai ∗A a)⊗ (βi ∗B 1B)

=
n∑
i=1

(a ∗A ai)⊗ βi −
n∑
i=1

(ai ∗A a)⊗ βi

=
n∑
i=1

(a ∗A ai − ai ∗A a)⊗ βi

and so, a∗Aai−ai∗Aa = 0 for all i = 1, ..., n by the uniqueness of the representation of
the element 0. Thus, a∗Aai = ai∗Aa which implies that ai ∈ Z(A), for all i = 1, ..., n.
Thus, ξ ∈ Z(A)⊗k B. Reproducing the proof, letting α1, ..., αr be a k-basis of A, we
obtain ξ ∈ Z(A⊗k B) =⇒ ξ ∈ A⊗k Z(B). Combining these results, one obtains

ξ ∈ Z(A⊗k B) =⇒ ξ ∈ (Z(A)⊗k B) ∩ (A⊗k Z(B)) = Z(A)⊗k Z(B)

Thus, Z(A⊗k B) ⊆ Z(A)⊗k Z(B).

(ii) Let I be a non-zero two sided ideal of A ⊗k B. Suppose first that there exists a
non-zero simple tensor a⊗ b ∈ I. Since A is simple, then the ideal generated by a is

equal to A, that is (a) = (1A). Thus, there exists ai, a
′
i ∈ A such that

n∑
i=1

aiaa
′
i = 1A.

Thus,

1A ⊗ b =
n∑
i=1

(ai ⊗ 1B) ∗⊗ (a⊗ b) ∗⊗ (a′i ⊗ 1B) ∈ I

Reversing the roles of A and B, we conclude that 1A ⊗ 1B ∈ I. Thus, I = A⊗k B.

Now suppose there exists a non-zero, non-simple tensor ξ = a1⊗ b1 + ...+ an⊗ bn ∈ I
for which n ∈ N is minimal. We may assume that the bi are linearly independent over
k. Otherwise, if say, bn = λ1b1 + ... + λn−1bn−1 where λi ∈ k for all i = 1, ..., n − 1,
then we could write ξ = (a1 + λ1an)⊗ b1 + ...+ (an−1 + λn−1an)⊗ bn−1, contradicting
the minimality of n. By the same reasoning, we may also assume that the ai are also
linearly independent over k. Moreover, applying the reasoning from the special case
above, we can also assume that a1 = 1A.

Now suppose n > 1. We have a2 /∈ k, since otherwise a1 and a2 would be linearly
dependent over k. Since Z(A) = k, there exists an a ∈ A such that a ∗A a2 6= a2 ∗A a.
Consider

(a⊗ 1B) ∗⊗ ξ − ξ ∗⊗ (a⊗ 1B) =
n∑
i=2

(a ∗A ai − ai ∗A a)⊗ (1B ∗B bi) ∈ I
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Since the bi are linearly independent over k and a ∗A a2 − a2 ∗A a 6= 0, then this
element we’ve produced is a non-zero element of I, which contradicts the minimality
of n. Therefore, n = 1 and by the special case, we are done.

Finally, to see why A⊗k B has centre equal to Z(B), just apply part (i).

Corollary 3.4.8. Let A and B be CSA’s over k. Then, A⊗k B is a CSA over k.

Proposition 3.4.9. Let A be a CSA over k. Then, A⊗k Aop ' Endk(A).

Proof: For each a ∈ A define La : A→ A as the map given by left multiplication
by a, that is, for all b ∈ A, La(b) = a∗b. Similarly, define Ra : A→ A by Ra(b) = b∗a
for all b ∈ A, right multiplication by a.

By this construction we have the injective algebra homomorphisms σ : A→ Endk(A)
sending a 7→ La and τ : Aop → Endk(A) sending b 7→ Rb. Notice that for any a, b ∈ A,
La and Rb commute, as for all c ∈ A we have,

La ◦Rb(c) = La(c ∗ b) = a ∗ (c ∗ b) = (a ∗ c) ∗ b = Rb(a ∗ c) = Rb ◦ La(c)

Thus, we get a k-algebra homomorphism

φ : A⊗k Aop → Endk(A)

where a⊗ b 7→ La ◦Rb = Rb ◦La and extending to elements of the form
∑
λi(ai⊗ bi),

where λi ∈ k for all i, by linearity. That is,
∑
λi(ai ⊗ bi) 7→

∑
λi(Lai ◦ Rbi). This

map is well-defined since φ(λ · a⊗ b) = Lλ·a ◦ Rb = La ◦ Rλ·b = φ(a⊗ λ · b). That is,
for all c ∈ A, we have

Lλ·a ◦Rb(c) = Lλ·a(c ∗ b)
= (λ · a) ∗ (c ∗ b)
= a ∗ (c ∗ (λ · b))
= La(c ∗ (λ · b))
= La ◦Rλ·b(c)

In fact, φ(λ · a⊗ b) = φ(λ · (a⊗ b)) = φ(a⊗ λ · b) as

(λ · (La ◦Rb))(c) = λ · (La ◦Rb)(c)

= λ · La(c ∗ b)
= λ · (a ∗ (c ∗ b))
= (λ · a) ∗ (c ∗ b)
= a ∗ (c ∗ (λ · b))
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It preserves multiplication since

φ((a⊗ b) ∗A⊗kAop (a′ ⊗ b′)) = φ(a ∗ a′ ⊗ b ∗op b′)

= La∗a′ ◦Rb∗opb′

= La∗a′ ◦Rb′∗b

= (La ◦Rb) ◦ (La′ ◦Rb′)

= φ(a⊗ b) ◦ φ(a′ ⊗ b′)

since for all c ∈ A, we have

La∗a′ ◦Rb′∗b(c) = La∗a′(c ∗ b′ ∗ b)
= a ∗ a′ ∗ c ∗ b′ ∗ b
= (La ◦Rb)(a

′ ∗ c ∗ b′)
= (La ◦Rb) ◦ (La′ ◦Rb′)(c)

Moreover, since 1A⊗ 1A 7→ L1A ◦R1A = R1A ◦L1A = idA, then ker(φ) 6= A⊗k Aop. As
A⊗Aop is simple, and ker(φ) is an ideal of A⊗k Aop, then ker(φ) = (0). So φ is one
to one.

Finally, dimk(A⊗k Aop) = (dimk(A))2 = dimk(Endk(A)), so φ is an isomorphism.

Proposition 3.4.10. Let A be a CSA over k. Then, for every field extension k′ ⊇ k,
A⊗k k′ is a CSA over k′.

Proof: Let A be a CSA over k and k′ ⊇ k a field extension. We want to show
that A⊗k k′ is a CSA over k′.

First, notice that A⊗k k′ is finite-dimensional over k′ as

dimk′(A⊗k k′) = dimk(A)

Moreover, A⊗k k′ is simple by Proposition 3.4.7 part (ii), noting that we can consider
k′ as a k-algebra and that the proof does not require B (k′ in our case) to be finite-
dimensional over k.

Now clearly,
Z(A)⊗k Z(k′) = k ⊗k k′ = k′ ⊆ Z(A⊗k k′)

For the other inequality, suppose that

ξ =
n∑
i=1

ai ⊗ bi ∈ Z(A⊗k k′)
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where we can always arrange the sum so that the bi are part of a k-basis for k′ and
thus, that the elements 1A⊗bi are part of a basis for A⊗kk′ viewed as a free A-module.

For any a ∈ A, we have (a⊗ 1k′) ∗⊗ ξ = ξ ∗⊗ (a⊗ 1k′), and so

0 = (a⊗ 1k′) ∗⊗ ξ − ξ ∗⊗ (a⊗ 1k′)

= (a⊗ 1k′) ∗⊗
( n∑

i=1

ai ⊗ bi
)
−
( n∑

i=1

ai ⊗ bi
)
∗⊗ (a⊗ 1k′)

=
n∑
i=1

(a ∗A ai)⊗ (1k′ ∗k′ bi)−
n∑
i=1

(ai ∗A a)⊗ (bi ∗k′ 1k′)

=
n∑
i=1

(a ∗A ai)⊗ bi −
n∑
i=1

(ai ∗A a)⊗ bi

=
n∑
i=1

(a ∗A ai − ai ∗A a)⊗ bi

Hence, we have a∗A ai−ai ∗A a = 0 for all i = 1, ..., n. Since this is for all a ∈ A, then
ai ∈ Z(A) = k for all i = 1, ..., n. Moreover, as the tensor product is k-linear, then we
can simplify ξ and write ξ = 1A⊗ b for some b ∈ k′. So ξ ∈ 1A⊗k k′ ⊆ Z(A)⊗k Z(k′).
Thus, Z(A⊗k k′) = Z(A)⊗k Z(k′) = k′.

Therefore, A⊗k k′ is a CSA over k′.

We conclude the section by introducing arguably the most famous example of a central
simple algebra, namely Hamilton’s quaternions, and generalizing this construct.

Proposition 3.4.11. The Quaternions (H), an R-algebra of dimension 4, with basis
{1, i, j, ij} which satisfy i2 = −1, j2 = −1 and ij = −ji, is a CSA over R.

Proof: H is finite-dimensional as a vector space over R and its multiplication is
associative. Moreover, H is a division ring, thus it is simple. Finally, Z(H) = R.

Theorem 3.4.12. (Generalized Quaternions) Let k be any field of characteristic
not equal to 2. Take any non-zero a, b ∈ k and let (a, b)k be the k-algebra with basis
{1, i, j, ij} such that i2 = a, j2 = b, and ij = −ji. Then, (a, b)k is a CSA over k.

Notice, for the special case of quaternions, H = (−1,−1)R.

For a proof of this theorem, see [Lam], section 3, Proposition 1.1.
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3.5 Wedderburn’s (Original) Theorem

In this section we state and prove the famous result from Wedderburn’s 1907 thesis,
[Wed], now known as Wedderburn’s theorem.

We first require some preliminaries which includes defining Artinian rings and showing
that every CSA is Artinian.

Definition 3.5.1. (The Descending Chain Condition for Posets) A partially
ordered set P , is said to satisfy the descending chain condition if every strictly de-
scending sequence of elements eventually terminates, i.e., there is no infinite descend-
ing chain. Equivalently, one can say every descending sequence, a1 ≥ a2 ≥ a3 ≥ . . .
of elements of P , eventually stabilizes.

Definition 3.5.2. (Artinian Rings) An Artinian ring is a ring that satisfies the
descending chain condition on ideals (ordered by inclusion).

Proposition 3.5.3. Let A be an associative algebra over a field k. If dimk(A) is
finite, then A is Artinian.

Proof: First notice that because A is associative, it is a ring. Moreover, every left
(and equivalently, right) ideal of A, by definition, is a k-subalgebra of A. Thus, any
strictly descending chain of left (or right) ideals (ordered by inclusion) corresponds
to a strictly descending chain of subalgebras. As A is finite-dimensional over k, then
all such sequences must terminate. Thus, A is Artinian.

Corollary 3.5.4. Any CSA over k is Artinian.

Proposition 3.5.5. Let D be a division ring. Then, Mn(D) is left-Artinian.

Proof: Let Li be the set of all n × n matrices in Mn(D) whose entries are all 0
outside of the ith column. Then, Li is a minimal left ideal for each i = 1, ..., n. As

Mn(D) =
n⊕
i=1

Li, then Mn(D) (as a left module over itself) has composition series

0 ( L1 ( L1 ⊕ L2 ( ... ( L1 ⊕ ...⊕ Ln = Mn(D)

unique up to permutation of indices.

Remark. By Proposition 3.1.16, Mn(D) is also right-Artinian.

We are now ready to state and prove Wedderburn’s theorem.
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Theorem 3.5.6. (Wedderburn’s Theorem) Let A be a CSA over a field k. Then,
there exists a unique n ∈ N and a unital associative division algebra D over k, unique
up to isomorphism, such that

A 'Mn(D)

as k-algebras.

Note that D must be finite-dimensional over k and is k-central since

Z(D) ' Z(Mn(D)) ' Z(A) = k

In fact, by Proposition 3.2.2, D is a division ring. Moreover, D is uniquely determined,
up to isomorphism, by setting D = EndA(I) for any non-zero minimal left ideal I of
A (which are all isomorphic to Dn by Proposition 3.3.12).

Proof: By Corollary 3.5.4, we know that A is Artinian and therefore, every strictly
descending chain of ideals has a minimal element. Let I be any minimal non-zero
left ideal of A and let D = EndA(I). Since I is a minimal non-zero ideal of A, then
I is simple as a left A-module. Thus, by applying Schur’s Lemma, we have that
D = EndA(I) is a division ring.

We can also consider I as a vector space over D by defining the scalar multiplication
to be φ · x = φ(x) for all φ ∈ D and x ∈ I. Since there is a natural embedding
D = EndA(I) ↪→ Endk(I) 'Mdimk(I)(k), then

dimk(D) = dimk(EndA(I)) ≤ dimk(Endk(I)) = dimk(Mdimk(I)(k)) = (dimk(I))2 <∞

As both dimk(I) and dimk(D) are finite, then dimD(I) is also finite, say dimD(I) = n.
Then, I ' Dn (non-canonically since it depends on the choice of a basis) and so,
EndD(I) 'Mn(D).

Consider the map ρ : A → EndD(I) given by a 7→ La where La : I → I denotes left
multiplication by a. The map La is indeed D-linear as

La(φ · x) = La(φ(x)) = a ∗ φ(x) = φ(a ∗ x) = φ · (La(x))

for all φ ∈ D and for all x ∈ I.

We now show that ρ is a ring homomorphism. That is, for all a, b ∈ A and all λ ∈ k:

ρ(a+ b) = La+b = La + Lb = ρ(a) + ρ(b)

since for all x ∈ I, we have

La+b(x) = (a+ b) ∗ x
= a ∗ x+ b ∗ x
= La(x) + Lb(x)

= (La + Lb)(x)
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Moreover,
ρ(a ∗ b) = La∗b = La ◦ Lb = ρ(a) ◦ ρ(b)

since for all x ∈ I, we have

La∗b(x) = (a ∗ b) ∗ x
= a ∗ (b ∗ x)

= a ∗ Lb(x)

= La(Lb(x))

= (La ◦ Lb)(x)

Finally,
ρ(λ · a) = Lλ·a = λ · La = λ · ρ(a)

since for all x ∈ I, we have

Lλ·a(x) = (λ · a) ∗ x
= λ · (a ∗ x)

= λ · La(x)

= (λ · La)(x)

Now, since ker(ρ) is an ideal of A, and A is simple, then ker(ρ) = {0}. Otherwise,
ker(ρ) = A would imply that the operation of left-multiplication in A is zero. That
is, La = 0 as maps, for all a ∈ A, or in other words, La(b) = a ∗ b = 0 for all a, b ∈ A,
which would contradict the fact that A is a simple algebra. Hence, ρ is injective.

We are left to show that ρ is surjective. Since the unit element L1A of EndD(I) is in
ρ(A), it is enough to show that ρ(A) is a left ideal of EndD(I).

We first show that ρ(I) is a left ideal of EndD(I). Before showing this, notice that for
any fixed y ∈ I, the map Ry : I → I sending x 7→ x ∗ y is an A-linear endomorphism
of I as for any a ∈ A, we have

Ry(a ∗ x) = (a ∗ x) ∗ y = a ∗ (x ∗ y) = a ∗Ry(x)

Thus, Ry ∈ EndA(I). Moreover, since every element in ρ(I) is of the form Lx, for
some x ∈ I, then for any Lx ∈ ρ(I), any φ ∈ EndD(I), and any y ∈ I, we have

φ ◦ Lx(y) = φ(x ∗ y) = φ(Ry(x)) = Ry(φ(x)) = φ(x) ∗ y = Lφ(x)(y)

since Ry ∈ D and φ is D-linear. Thus, φ ◦ Lx = Lφ(x) as elements of EndD(I). Since
φ(x) ∈ I for all x ∈ I, then Lφ(x) ∈ ρ(I). Hence, φ ◦ Lx ∈ ρ(I) for all φ ∈ EndD(I)
and Lx ∈ ρ(I). Therefore, ρ(I) is a left ideal of EndD(I).
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Now consider the two-sided ideal IA of A. Since A is simple, then IA = A. Thus,
we have that ρ(A) = ρ(IA) = ρ(I)ρ(A) is also a left ideal of EndD(I). Thus, ρ is
surjective and therefore, A ' EndD(I) 'Mn(D).

Finally, by Proposition 3.3.12, all minimal left ideals I of A are isomorphic, and
therefore, D is uniquely determined, up to isomorphism, by setting D = EndA(I).

As an important consequence, we obtain the following.

Corollary 3.5.7. If k is an algebraically closed field, then every central simple algebra
A over k is isomorphic to Mn(k).

Proof: By Proposition 3.2.8, the only finite-dimensional associative division al-
gebra over an algebraically closed field k is k itself. Thus, applying Wedderburn’s
theorem, we have that D = k and so, A 'Mn(k).

Finally, we provide a result characterizing all CSA’s over the real numbers.

Proposition 3.5.8. The only CSA’s over R are matrix rings over R or H.

Proof: Frobenius’ theorem tells us that the only finite-dimensional associative
division algebras over R are R, C and H. However, C is not R-central as Z(C) = C.
Combining this with Wedderburn’s Theorem, we obtain the result.

3.6 Splitting Fields for CSA’s

In this section we define the notion of a splitting field for a central simple algebra. We
follow this by some important propositions regarding splitting fields, in particular,
showing that for any CSA a splitting field always exists. This then allows us to
characterize the dimension of any CSA.

We begin by defining splitting fields for a CSA and then showing that for every CSA
one always exists.

Definition 3.6.1. (Splitting fields for CSA’s) Let A be a CSA over k. A splitting
field for A is a field extension k′ ⊇ k such that A⊗k k′ 'Mn(k′).

Proposition 3.6.2. Splitting fields always exist. In particular, the algebraic closure
k is always one.
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Proof: Let k be a field and k its algebraic closure. Since A is a CSA over k, then
by Proposition 3.4.10, A ⊗k k is a CSA over k. By the Corollary to Wedderburn’s
theorem (Corollary 3.5.7), A⊗k k 'Mn(k).

We now show that every field extension of a splitting field is also a splitting field.

Proposition 3.6.3. Let A be a CSA over k. If an extension k′ ⊇ k splits A, then so
does every field extension of k′.

Proof: Suppose k′ ⊇ k splits A and let l ⊇ k′ be a field extension of k′. We have

A⊗k l ' (A⊗k k′)⊗k′ l 'Mn(k′)⊗k′ l 'Mn(k′ ⊗k′ l) 'Mn(l)

The next proposition shows that we can determine if a unital, associative k-algebra
is a CSA over k, simply by knowing whether it splits over some field extension of k.

Proposition 3.6.4. Let A be a unital associative k-algebra. If there exists an exten-
sion k′ ⊇ k splitting A, then A is a CSA over k.

Proof: Suppose that k′ ⊇ k splits A. That is, A⊗k k′ 'Mn(k′) for some n ∈ N. If
I /A is a two sided ideal of A, then I⊗k k′ is a two-sided ideal of A⊗k k′ 'Mn(k′) of
dimension equal to dimk(I) · dimk(k

′). In particular, I is proper if and only if I ⊗k k′
is proper. Since A⊗k k′ is simple (as it is isomorphic to Mn(k′)), then it follows that
A has no proper ideals and is therefore also simple.

By Proposition 3.4.7 part (i), we know that Z(A)⊗kZ(k′) ⊆ Z(A⊗kk′), (which applies
here as this inequality does not require that the algebras be finite-dimensional, see
its proof) where Z(k′) = k′ and

Z(A⊗k k′) ' Z(Mn(k′)) = {α · In | α ∈ k′} ' k′ ' 1A ⊗k k′

Now clearly, k ⊆ Z(A). If, however, there exists a ∈ Z(A) such that a /∈ k, then for
any λ ∈ k′,

a⊗ λ /∈ 1A ⊗k k′ ' Z(A⊗k k′),
a contradiction. So Z(A) = k.

Finally, as A⊗k k′ 'Mn(k′), then,

dimk(A) · dimk(k
′) = dimk(A⊗k k′) = dimk(Mn(k′)) = n2 · dimk(k

′)

That is, dimk(A) = n2. Thus, A is a CSA over k.
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We can now characterize the dimension of CSA’s.

Proposition 3.6.5. The dimension of a CSA over a field is always a square.

Proof: Let k be a field, k its algebraic closure, and A a CSA over k. Then

dimk(A) = dimk(A⊗k k)

By Wedderburn’s theorem, the latter is isomorphic to Mn(k), for some n, which has
dimension n2 over k.

Remark. If A is a CSA over k of dimension n2, then we say the degree of A over
k is equal to n. Moreover, we say that the Schur index of a CSA is the degree
of the unique (up to isomorphism) associative division algebra D over k attributed
to A by Wedderburn’s theorem. Notationally, we write degk(A) =

√
dimk(A) and

indk(A) = degk(D) =
√

dimk(D).

We now relate the splitting field for a central simple algebra to the associative division
algebra attributed to it by Wedderburn’s theorem.

Proposition 3.6.6. Let A be a CSA over k. Then, l is a splitting field for A if and
only if l is a splitting field for D, where D is, up to isomorphism, the unique unital
associative division algebra over k for which A 'Mn(D).

Proof: (⇐= ) : Suppose l splits D. That is, D ⊗k l = Mm(l). Then,

A⊗k l 'Mn(D)⊗k l 'Mn(D ⊗k l) 'Mn(Mm(l)) 'Mmn(l)

Therefore, l splits A.

( =⇒ ) : Suppose l splits A. That is, A⊗k l = Mm(l). Then,

Mm(l) ' A⊗k l 'Mn(D)⊗k l 'Mn(D ⊗k l)

By Proposition 3.4.10, D ⊗k l is a CSA over l. Applying Wedderburn’s theorem, we
have that D ⊗k l ' Mp(D

′) for some unique p ∈ N and unique, up to isomorphism,
division algebra D′. But then,

Mn(D ⊗k l) 'Mn(Mp(D
′)) 'Mnp(D

′)

Now, by Proposition 3.4.5, Mn(D⊗k l) is a CSA over l. Since Wedderburn’s theorem
says that the given natural number is unique and the division algebra is unique up
to isomorphism, then m = np and D′ ' l. Therefore, D⊗k l 'Mp(l), so l splits D.
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The next goal of this section is to present a theorem relating splitting fields of central
simple algebras to separable field extensions. We first define separable polynomials
and separable field extensions.

Definition 3.6.7. (Separable Polynomials) Let k be an arbitrary field. An irre-
ducible polynomial f(x) ∈ k[x] is separable over k if and only if it has distinct roots
in any field extension of k, that is, if and only if it can be factored into a product of
distinct linear factors over an algebraic closure of k.

Definition 3.6.8. (Separable Field Extensions) Let l ⊇ k be an algebraic field
extension. We say that such an extension is separable if for every α ∈ l, the minimal
polynomial of α over k, denoted minpolyk(α)(x) ∈ k[x] is a separable polynomial.

We are now ready to present the theorem.

Theorem 3.6.9. Let A be a CSA over k. Then, there exists a splitting field k′ ⊇ k
for A which is separable over k.

For a proof of this theorem, see [Gil], Proposition 2.2.5.

We conclude this section by defining subfields of algebras, including maximal subfields,
and presenting a theorem which characterizes the degree of maximal subfields for
unital associative division algebras.

Definition 3.6.10. (Subfields of an Algebra) Let A be a k-algebra. A subfield
of A is a k-subalgebra which is also a field. A maximal subfield is a subfield F of A
such that there does not exist any subfield L of A with F ( L ( A.

Theorem 3.6.11. Let D be a unital associative division algebra over a field, k. Then,
D is a division ring and thus, the centre of D is a field. In fact, k → Z(D), by the
second definition of an algebra, or where for any a ∈ k we have a ∗ 1A ∈ Z(D), in the
first algebra definition, so Z(D) is a field extension of k.

Now, denote the dimension of a maximal sub-field L of D over its centre by [L : Z(D)].
If the dimension of the algebra over its centre, [D : Z(D)] is finite, then

[D : Z(D)] = [L : Z(D)]2

Note: If Z(D) = k, then we say D is a k-central associative division algebra.

For a proof of this theorem, see [Pie], section 31.1, ‘Maximal Subfields’, Corollary b.
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3.7 Semisimple Structures and the Wedderburn-

Artin Theorem

The main purpose of this section is to generalize Wedderburn’s theorem to semisimple
rings and semisimple algebras. This is the so-called Wedderburn-Artin theorem. We
define the notions of semisimple rings and algebras, along with semisimple modules
and semiprime rings. We also state and prove Brauer’s Lemma.

We begin by defining the Jacobson radical of a ring and semisimple algebras. We
then give the definition of a semisimple module in the form of a series of equivalent
characterizations.

Definition 3.7.1. (The Jacobson Radical of a Ring) Let R be a ring. The
Jacobson Radical of R, denoted Jl(R) (or Jr(R) for right, as the notion is left-right
symmetric) is the intersection of all the maximal left ideals of R. That is,

Jl(R) =
⋂
i∈Ωl

mi

where mi is a maximal left ideal of R and the intersection is taken over the set of all
maximal left ideals, Ωl. We define Jr(R) similarly, over the set of all maximal right
ideals, Ωr.

Remark. The Jacobson Radical is itself an ideal, and it consists precisely of those
elements which annihilate any simple left R-module (or any simple right R-module).

Definition 3.7.2. (Semisimple Algebras) A semisimple algebra is an artinian
associative algebra over a field k which has trivial Jacobson radical (only the zero
element of the algebra is in the Jacobson radical).

Theorem 3.7.3. A module is semisimple if it satisfies any of the following equivalent
conditions:

(i) it is a sum of simple submodules

(ii) it is a direct sum of simple submodules

(iii) every submodule has a complement

Proof: (ii) =⇒ (i): This is obvious.

(i) =⇒ (iii): Let M be a sum of simple submodules and let N be a submodule of M .
By Zorn’s lemma, we can choose a submodule P of M which is maximal with respect
to the following two properties: it is the sum of simple modules and it intersects
N trivially. If N ⊕ P ( M , then there is a simple submodule S of M not entirely
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contained in N + P . In fact, by the simplicity of S, we have S ∩ (N + P ) = 0. As
N ⊂ N + P , then S ∩ N = 0. Hence, N ∩ (P + S) = 0. Since P ( P + S and
P +S is the sum of simple modules, then this contradicts the maximality of P . Thus,
N ⊕ P = M and since N ∩ P = 0, then P = N⊥.

(iii) =⇒ (ii): Suppose every submodule of M has a complement. Choose, by Zorn, a
maximal collection C of simple submodules of M whose sum is their direct sum, and
denote this sum by N . Suppose that N (M . Take any non-zero x ∈ N and consider
the submodule generated by it, 〈x〉. Choose, by Zorn, a maximal submodule P of 〈x〉
and let S be the complement to P in 〈x〉. The existence of S follows from the fact
that P is also a submodule of M . That is, since by hypothesis every submodule of M
has a complement, then there exists a submodule P⊥ ⊆ M such that P ⊕ P⊥ = M .
Therefore,

〈x〉 = M ∩ 〈x〉 = (P ⊕ P⊥) ∩ 〈x〉 = (P ∩ 〈x〉)⊕ (P⊥ ∩ 〈x〉) = P ⊕ (P⊥ ∩ 〈x〉)

and so, S = P⊥∩〈x〉 is a submodule complement to P in 〈x〉. Since S ' 〈x〉/P , then
it is simple. However, as S is simple, its existence is a contradiction to the maximality
of the collection C.

Having defined semisimple modules, we can now define semisimple rings. We briefly
characterize them through a few theorems and propositions.

Definition 3.7.4. (Semisimple Rings) A ringR is left semisimple if it is semisimple
as a left module over itself, or equivalently, if every left R-module is semisimple.

Remark. The distinction between left and right in the previous definition is unneces-
sary as a left semisimple ring is also right semisimple.

Theorem 3.7.5. Let R be a ring. Then, R is semisimple if and only if it is simple
and left-Artinian.

For a proof of this theorem, see [Gri], Chapter 9, section 3, ‘The Artin-Wedderburn
Theorem’, Theorem 3.8.

Proposition 3.7.6. Let R be a ring. Then, R is semisimple if and only if every left
R-module is semisimple.

Proof: (⇐= ) : By the definition of a semisimple ring.

( =⇒ ) : If R is semisimple, then in particular, R is semisimple as a left module over
itself. Therefore, every free left R-module,

M '
⊕
ω∈Ω

Rω
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where Ω is some index set, is also semisimple. Finally, every left R-module is semisim-
ple since it is isomorphic to a quotient module of a free module.

Proposition 3.7.7. Let R be a semisimple ring. Then, every finitely generated R-
module is semisimple.

Proof: We first show that every cyclic R-module is semisimple. So suppose
M = Rm for some non-zero m ∈ M . Then, the homomorphism of left R-modules
given by Rm : R→M sending r 7→ rm is surjective. Since R is semisimple (as a left
module over itself), then R =

∑
i∈I
Si where I is an index set and each Si is a simple

R-submodule. Thus, we can write:

M = Rm

(∑
i∈I

Si

)
=
∑
i∈I

Rm(Si)

Now, consider the map Rm restricted to Si. That is, (Rm)|Si
: Si � Rm(Si). Since the

kernel of (Rm)|Si
is an R-submodule of Si, and Si is simple, then we have that either

ker((Rm)|Si
) = {0} or ker((Rm)|Si

) = Si. That is, either Rm(Si) ' Si or Rm(Si) = 0,
so in either case Rm(Si) is simple. Since this is true for all i ∈ I, we have that
M =

∑
i∈I
Rm(Si) is a sum of simple R-modules, thus semisimple.

Now suppose M is finitely generated. That is, M = Rm1 + ... + Rmn for some
m1, ...,mn ∈M . Since each Rmi is semisimple, then, so too is M .

We can now state and prove the following useful result.

Proposition 3.7.8. Let D be a division ring. Then, every finitely generated left
Mn(D)-module, M is isomorphic to a direct sum of copies of Dn. That is, M ' (Dn)s

for some s ∈ N.

Proof: By Proposition 3.3.5, Mn(D) is a simple ring. Since by Proposition 3.5.5,
Mn(D) is also left-Artinian, then it is a semisimple ring by Theorem 3.7.5. By Propo-
sition 3.7.7, every finitely generated left Mn(D)-module is semisimple, that is, it is
a sum of simple left Mn(D)-submodules. As any simple left Mn(D)-module is iso-
morphic to Dn, Proposition 3.3.12, then every finitely generated Mn(D)-module is
isomorphic to (Dn)s for some s ∈ N.

Next, we define semiprime rings and then state and prove Brauer’s Lemma.
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Definition 3.7.9. (Semiprime Rings) Let R be a ring. Then, R is semiprime if
I2 6= 0 for every non-zero ideal I / R.

Lemma 3.7.10. (Brauer’s Lemma) Let R be a ring and I /R a minimal left ideal
such that I2 6= 0. Then, I = Re = 〈e〉 where e2 = e ∈ R and eRe is a division ring.

Proof: Since I2 6= 0, then for some non-zero x ∈ I, Ix 6= 0. Now 0 ⊆ Ix ⊆ I,
and as I is minimal and Ix 6= 0, then Ix = I. Thus, for some e ∈ I, we have ex = x.
If y ∈ I, then ye − y ∈ annI(x) = {a ∈ I | ax = 0}. Now annI(x) is a left ideal
and 0 ⊆ annI(x) ⊆ I. Since e /∈ annI(x) as ex = x 6= 0, then annI(x) 6= I. As I
is minimal, this implies annI(x) = 0. Thus, ye = y for all y ∈ I, and in particular,
e2 = e. Clearly, I = 〈e〉 = Re.

Now take any non-zero z ∈ eRe. Then, 0 6= Rz ⊆ ReRe = Re. Since Re is minimal,
then Rz = Re = 〈e〉. Then, e = rz for some r ∈ R. Noting that e is the identity
element of eRe, we have,

(ere)z = er(ez) = er(z) = e(rz) = e2 = e

so z has a left inverse in eRe. As ere is a non-zero element of eRe, it, too, has a left
inverse in eRe, say er′e. That is, (er′e)(ere) = e. However,

z = ez = ((er′e)(ere))z = (er′e)((ere)z) = (er′e)e = er′e

so the element ere is both a left and a right inverse to z in eRe. As this is for all
non-zero z ∈ eRe, it follows that eRe is a division ring.

Corollary 3.7.11. Every non-zero left ideal in a semiprime, left-Artinian ring con-
tains a non-zero idempotent.

Proof: Let R be a semiprime, left-Artinian ring. If J is a non-zero left ideal of R,
then there exists a minimal left ideal I ⊆ J . Now, multiplying I by R on the right to
obtain a two sided ideal IR, and using the fact that R is semiprime, then (IR)2 6= 0.
Thus, 0 6= (IR)2 = IRIR ⊆ I2R implies that I2 6= 0. Now apply Brauer’s Lemma.

Theorem 3.7.12. (Wedderburn-Artin Theorem)

(i) If R is a semiprime left-Artinian ring, then

R ' Matn1(D1)× · · · ×Matnm(Dm)

where each Di is a division ring, unique up to isomorphism, ni ∈ N and the
pairs (Di, ni) are unique up to permutation.
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(ii) If A is a semisimple k-algebra, then

A ' Matn1(D1)× · · · ×Matnm(Dm)

where each Di is an associative division algebra, unique up to isomorphism,
ni ∈ N and the pairs (Di, ni) are unique up to permutation.

For a proof of this theorem, see [Nic].

3.8 The Brauer Group

In this section we define an equivalence relation for central simple algebras which we
call similarity. Taking the group of central simple algebras modulo similarity, one
obtains a group of equivalence classes of central simple algebras called the Brauer
group. We define the Brauer group and show that the multiplication in the group is
induced by the tensor product of central simple algebras, which also makes the group
abelian. Furthermore, we prove some interesting results regarding central simple
algebras from the perspective of the Brauer group.

We begin by defining what it means for two central simple algebras to be similar.
Then, for any field, we show that the field is similar to all matrix algebras over it.

Definition 3.8.1. (Similarity of CSA’s) Let A and B be CSA’s over a field k.
Then, A and B are called similar, denoted A ∼ B, if

A⊗k Mm(k) ' B ⊗k Mn(k)

for some m,n ∈ N.

An equivalent characterization is given by the following. We call the associative
division algebra D, attributed to the CSA by Wedderburn’s theorem, the division ring
component of A. Thus, the CSA’s A and B are similar if their respective attributed
division rings are k-isomorphic (a k-isomorphism is a ring isomorphism that fixes k).

We denote the equivalence class of A under the relation ∼ by [A]. Later, we will refer
to two central simple algebras over k that are similar as being Brauer-equivalent.

Proposition 3.8.2. For any field k, k ∼Mn(k) for all n ∈ N.

Proof: Just choose Mns(k) and Ms(k). Thus, k ⊗k Mns(k) ' Mn(k) ⊗k Ms(k)
which are both isomorphic to Mns(k).

We are now ready to formally define the Brauer group. After doing so, we then prove
that the construction of Brauer groups is functorial.
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Proposition 3.8.3. The set of equivalence classes of CSA’s over k forms an abelian
group Br(k), called the Brauer group of k with multiplication induced by the tensor
product of algebras with identity [k] and inverses given by [A]−1 = [Aop].

Proof: We know that if A and B are CSA’s over k, then A⊗kB is also a CSA over
k. Thus, we have a well-defined multiplication of classes given by [A][B] = [A⊗k B].
This operation is associative since

([A][B])[C] = [A⊗k B][C]

= [(A⊗k B)⊗k C]

= [A⊗k (B ⊗k C)]

= [A][B ⊗k C]

= [A]([B][C])

and commutativity follows from the fact that A ⊗k B ' B ⊗k A, which implies
[A ⊗k B] = [B ⊗k A]. Moreover, since [A][k] = [A ⊗k k] = [A] = [k ⊗k A] = [k][A],
the identity element in Br(k) is [k]. Finally, we show that [A]−1 = [Aop]. Since by
Proposition 3.4.9, we have that A⊗k Aop ' Endk(A) 'Mdimk(A)(k), then

[A][Aop] = [A⊗k Aop] = [Endk(A)] = [Mdimk(A)(k)] = [k]

as required.

Theorem 3.8.4. Br() : Fields→ Ab is a covariant functor from the category of fields
to the category of abelian groups by assigning to every field k, the abelian group Br(k)
and to every morphism of fields (i.e. field extension) ι : k ↪→ l the homomorphism of
abelian groups Br(ι) : Br(k)→ Br(l) which sends [A] 7→ [A⊗k l].

Proof: We first show that Br(ι) is indeed an abelian group homomorphism. That
is:

Br(ι)([A][B]) = Br(ι)([A⊗k B])

= [(A⊗k B)⊗k l]
= [(A⊗k l)⊗l (B ⊗k l)]
= [A⊗k l][B ⊗k l]
= Br(ι)([A])Br(ι)([B])
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Moreover,

Br(ι)([A]−1) = Br(ι)([Aop])

= [Aop ⊗k l]
= [(A⊗k l)op]

= [A⊗k l]−1

= (Br(ι)([A]))−1

Now, for every field k, Br(idk) = idBr(k) since for every [A] ∈ Br(k) we have:

Br(idk)([A]) = [A⊗k k] = [A] = idBr(k)([A])

Finally, for all ι1 : k ↪→ k′, ι2 : k′ ↪→ l (i.e. for well-defined compositions ι2◦ι1 : k ↪→ l),
we have for all [A] ∈ Br(k):

Br(ι2 ◦ ι1)([A]) = [A⊗k l]
= [(A⊗k k′)⊗k′ l]
= Br(ι2)([A⊗k k′])
= Br(ι2)(Br(ι1)([A]))

= (Br(ι2) ◦Br(ι1))([A])

Thus, Br(ι2 ◦ ι1) = Br(ι2) ◦Br(ι1).

The rest of this section is devoted to studying some of the properties of Brauer groups.
We do this by stating and proving the following propositions.

Proposition 3.8.5. If k is algebraically closed, then Br(k) is trivial.

Proof: Let A be any CSA over an algebraically closed field k. By Corollary 3.5.7,
A ' Mn(k), where n is the degree of A over k. Since [Mn(k)] = [k] for any n ∈ N,
then Br(k) = {[k]}.

Proposition 3.8.6. H ' Hop.

Proof: Since Br(R) ' Z2, then [H] has order 2 in Br(R). Thus, [H][H] = [R] and
so [H] = [Hop] implying H ' Hop.

Proposition 3.8.7. If [A] = [B] in Br(k) and dimk(A) = dimk(B), then A ' B.
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Proof: Because [A] = [B] in Br(k), then the respective division rings attributed
to each by Wedderburn’s theorem are isomorphic. Let A 'Mn(D) and B 'Mr(D

′),
where D ' D′. We have,

dimk(A) = dimk(Mn(D)) = n2dimk(D) = r2dimk(D
′) = dimk(Mr(D

′)) = dimk(B)

which implies n = r. But then, Mn(D) 'Mn(D′), so A ' B.

Proposition 3.8.8. Let k′ ⊇ k be an extension of fields. Denote the kernel of the
map Br(k)→ Br(k′) by Br(k′/k). Then, Br(k/k) = Br(k), where k is the algebraic
closure of k.

Proof: If A is a CSA over k, then by Proposition 3.4.10, A ⊗k k is a CSA over
k. By Corollary 3.5.7, A⊗k k ' Mn(k), where n is the degree of A over k. As every
[A] ∈ Br(k) is mapped to [A⊗kk] = [Mn(k)] = [k] ∈ Br(k), then Br(k/k) = Br(k).

Proposition 3.8.9. [A] ∈ Br(k′/k) if and only if k′ splits A.

Proof: ( =⇒ ) : Suppose [A] ∈ Br(k′/k). Thus, [A] 7→ [k′] under the map
Br(k) → Br(k′). That is, [A ⊗k k′] = [k′] = [Mn(k′)], where n2 = dimk(A). Hence,
A⊗k k′ 'Mn(k′), so k′ splits A.

(⇐= ) : Suppose A⊗k k′ 'Mn(k′). Then, [A] 7→ [A⊗k k′] = [Mn(k′)] = [k′]. Hence,
[A] ∈ Br(k′/k).

Discussion 3.8.10. Let A be a CSA over k. By Wedderburn’s Theorem, we know
that A ' Mn(D) for some unique n ∈ N and associative division algebra D, unique
up to isomorphism. Let M be a finitely generated left A-module. By Proposition
3.7.8, M ' (Dn)s for some s ∈ N and we have,

dimk(M) = dimk((D
n)s)

= ns · dimk(D)

= ns · degk(D)2

= ns · degk(D) · indk(A)

= s · degk(A) · indk(A)

Moreover, we can consider M by the left Mn(D)-module isomorphism M 'Mn,s(D)
so that the Mn(D)-action on M is realized as left matrix multiplication.
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Definition 3.8.11. (Reduced Dimension of Modules over CSA’s) The reduced
dimension of M , the left A-module from the previous discussion is defined as:

rdimA(M) =
dimk(M)

degk(A)
= s · indk(A)

Proposition 3.8.12. Let A be a CSA over k. Every left A-module, M of finite type
has a natural structure of right module over E = EndA(M), so that M is therefore an
A-E-bimodule. If M 6= {0}, then the algebra E is also a CSA over k Brauer-equivalent
to A. Moreover;

(i) degk(E) = rdimA(M)

(ii) rdimE(M) = degk(A), and

(iii) A = EndE(M)

Conversely, if A and E are Brauer-equivalent CSA’s over k, then there exists an
A-E-bimodule M 6= {0} such that (i), (ii), and (iii) hold and E = EndA(M).

Proof: As the endomorphisms of left modules are written on the right of the
arguments, the first statement is clear. Now, by Wedderburn, A ' Mn(D) for some
unique n ∈ N and some associative division algebra D, unique up to isomorphism.
As a result of Proposition 3.3.12, every minimal left ideal of A ' Mn(D), i.e. every
simple left Mn(D)-module is isomorphic to Dn and thus, D ' EndA(Dn). Moreover,
since M is a left Mn(D)-module of finite type, then by Proposition 3.7.8, M ' (Dn)s

for some s ∈ N. Therefore,

E = EndA(M) ' EndA((Dn)s) 'Ms(EndA(Dn)) 'Ms(D)

Thus, E is a CSA over k, Brauer-equivalent to A. Moreover,

degk(E) = degk(Ms(D)) = s · degk(D) = s · indk(A) = rdimA(M)

Hence,

rdimE(M) =
dimk(M)

degk(E)
=
ns · dimk(D)

s · degk(D)
= n · degk(D) = degk(A)

Since M is an A-E-bimodule, then there is a natural embedding A ↪→ EndE(M)
sending a 7→ La, left multiplication by a. We show that La is indeed an element
of EndE(M), i.e. that it is indeed E-linear. Recalling that endomorphisms of the
right module ME can now go to the left of the argument, then for any endomorphism
φ ∈ E = EndA(M), for any m ∈M , we have:

La((m)φ) = a · ((m)φ)

= (a ·m)φ since φ is A-linear

= (La(m))φ
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Finding the degree of EndE(M) as we did for degA(M), we obtain

degk(EndE(M)) = degk(A)

Hence, this natural embedding is surjective and so A ' EndE(M).

To help visualize all of what’s going on, we first make the following identifications:
M ' Mn,s(D), A ' Mn(D), and as was proven above, E = EndA(M) ' Ms(D).
Identify the action of A on M by matrix multiplication from the left by Mn(D) and
identify the action of E on M by matrix multiplication from the right by Ms(D). A
rough illustration which abuses notation by representing the generality of the entries
as the division ring D itself, could be viewed as:

A M ED . . . D
...

. . .
...

D . . . D


D . . . . . . D

...
. . .

...
...

D . . . . . . D



D . . . . . . D
...

. . . . . .
...

...
...

. . .
...

D . . . . . . D


n× n n× s s× s

To describe EndA(M), one seeks to identify the ring of all endomorphisms of M which
are A-linear. Clearly, any matrix which multiplies M from the right is indeed trivially
A-linear since matrix multiplication is associative. That is, for all α ∈ A, µ ∈ M ,
and ε ∈ E, we have (αµ)ε = α(µε), which when considering ε as an endomorphism
of M is exactly the condition for A-linearity. Similarly, to describe EndE(M), one
seeks to identify the ring of all endomorphisms of M which are E-linear. Clearly, any
matrix which multiplies M from the left is trivially E-linear, so it is no surprise that
EndE(M) ' A. We now return to the proof.

For the converse, suppose that A and E are Brauer-equivalent CSA’s over k. Thus,
for some division algebra D, we have A ' Mn(D) and E ' Ms(D) for some unique
n, s ∈ N, respectively. Let M = Mn,s(D), the group of n× s matrices over D. Matrix
multiplication by A from the left and E from the right, respectively, endows M with
an A-E-bimodule structure. Thus, we have natural embeddings:

(i) A ↪→ EndE(M)

(ii) E ↪→ EndA(M)

Since dimk(M) = ns · dimk(D), then

rdimE(M) =
dimk(M)

degk(E)
=
ns · dimk(D)

s · degk(D)
= n · degk(D) = degk(A)

rdimA(M) =
dimk(M)

degk(A)
=
ns · dimk(D)

n · degk(D)
= s · degk(D) = degk(E)
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The first part of the proposition then yields

degk(EndE(M)) = rdimE(M) = degk(A)

degk(EndA(M)) = rdimA(M) = degk(E)

Hence, A ' EndE(M) and E ' EndA(M).

3.9 Generalized Severi-Brauer Varieties

In the final section of this chapter, we arrive at the objects we are most interested
in studying; generalized Severi-Brauer varieties of central simple algebras. We define
these objects and provide some criteria characterizing when these objects have a
rational point. Finally, we show that these generalized Severi-Brauer varieties are
indeed, just twisted forms of Grassmannians.

We begin the section by defining Severi-Brauer varieties and generalized Severi-Brauer
varieties for central simple algebras. For a more detailed exposition of these objects
see [Châ], [Gil], [Kar1], and [Knu].

Definition 3.9.1. (Severi-Brauer Varieties) A Severi-Brauer variety over a field
k is a projective algebraic variety X over k such that the base extension Xl := X×k l
becomes isomorphic to Pn−1

l for some finite field extension l ⊇ k. The field l is called
a splitting field for X.

Definition 3.9.2. (The Severi-Brauer Variety of a CSA) Let A be a CSA over
k of dimension n2. Among the n-dimensional subspaces of A are the right ideals I /A,
subspaces of A which are invariant under right multiplication by A.

Denote the collection of right ideals of A which are n-dimensional over k by SB1(A),
called the Severi-Brauer variety of A.

Definition 3.9.3. (The Generalized Severi-Brauer Variety of a CSA) Let A
be a CSA over k of degree n. Then, for any 1 ≤ d ≤ n, the dth generalized Severi-
Brauer variety of A, denoted SBd(A), is the variety of right ideals of dimension nd
over k in A. For an ideal I ∈ SBd(A), the integer d is called the reduced dimension
of I. Thus, SBd(A) is the variety of right ideals of A of reduced dimension d.

Example 3.9.4. In reduced dimension 1, the Severi-Brauer varieties are conics. In
particular, let A = (a, b)k, a generalized quaternion algebra. Then,

SB1(A) ' {ax2 + by2 − z2 = 0} ⊆ P2
k
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For a more detailed exposition of this fact, see [Gil], Example 5.2.4.

We now characterize precisely when a generalized Severi-Brauer variety over some
field has a rational point (over some field extension of that field).

Proposition 3.9.5. Let A be a CSA over k of degree n and let k′ ⊇ k be an extension
of fields. Then, SBd(A) has a rational point over k′ if and only if ind(A ⊗k k′) | d.
In particular, SB1(A) has a rational point over k′ if and only if k′ splits A.

Proof: ( =⇒ ) : By the definition of SBd(A), it follows that SBd(A) has a
k′-rational point if and only if A ⊗k k′ contains a right ideal of reduced dimension
d. Since the reduced dimension of any finitely generated right A ⊗k k′-module is a
multiple of indk(A⊗k k′), then it follows that indk(A⊗k k′) divides d if SBd(A) has
a rational point over k′.

(⇐= ) : Suppose that d = m·ind(A⊗kk′) for some integer m and let A⊗kk′ 'Mr(D)
for some unique r ∈ N and some division algebra D, unique up to isomorphism. The
set of matrices in Mr(D) whose bottom r − m rows are all zero is a right ideal of
reduced dimension d, hence SBd(A) has a rational point over k′.

Before heading to the main result of the chapter, we first formally define what it
means for two quasi-projective varieties to be twisted forms of one another.

Definition 3.9.6. (Twisted Quasi-Projective Varieties)

Let k be a field and let X and Y be quasi-projective varieties over k. Let l ⊇ k be
any field extension. Then, X and Y are twisted forms of each other with respect to
the field extension l ⊇ k if, as quasi-projective varieties,

X ×k l ' Y ×k l

Finally, we arrive at the main result of the chapter. That is, we state and prove the
following theorem which shows that generalized Severi-Brauer varieties are simply
twisted forms of Grassmannians.

Theorem 3.9.7. Let V be a finite-dimensional vector space over a field k. For
A = Endk(V ), there is a natural isomorphism SBd(A) ' Gr(d, V ). In particular, for
d = 1, we have SB1(A) ' P(V ).

Proof: Let V be a vector space of dimension n over k and let V ∗ = Homk(V, k)
be the dual space of V . Under the natural isomorphism, A := Endk(V ) ' V ⊗k V ∗,
the multiplication in A is defined by setting (v ⊗ φ) ∗ (w ⊗ ψ) = (v ⊗ ψ)φ(w), and
extending to arbitrary tensors by linearity.
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The right ideals of reduced dimension d in A are of the form Homk(V, U) ' U ⊗k V ∗
where U is a d-dimensional subspace of V .

We now show that the correspondence U ↔ Homk(V, U) between d-dimensional sub-
spaces of V and right ideals of reduced dimension d in A induces an isomorphism of
varieties Gr(d, V ) ' SBd(A).

For any vector space W of dimension p over k, there is a morphism

Gr(d, V )→ Gr(dp, V ⊗k W )

sending U 7→ U ⊗k W where U ⊆ V is a vector subspace of dimension d, and so
U⊗kW ⊆ V ⊗kW is a vector subspace of dimension dp. In particular, when W = V ∗,
we get a morphism

Φ : Gr(d, V )→ SBd(A)

which maps U 7→ Homk(V, U) ' U ⊗k V ∗.
Now, consider the affine covering of Gr(d, V ) where for each subspace S ⊆ V of
codimension d, we assign a set

US = {U ⊆ V | U ⊕ S = V }

of subspaces complementary to S. The set US is an affine open subset of Gr(d, V ) as
each element in US is a d-dimensional subset of V . In other words, if U0 is a fixed
complimentary subspace of S, there is an isomorphism:

Ψ : Homk(U0, S)→ US
which sends f ∈ Homk(U0, S) to Uf = {x+ f(x) | x ∈ U0}.
Analogously, we may also consider US⊗kV ∗ ⊆ Gr(dn,A). The image of Φ restricted
to US is

Φ(US) = {U⊗kV ∗ ⊆ V ⊗kV ∗ | (U⊗kV ∗)⊕(S⊗kV ∗) = V ⊗kV ∗} = US⊗kV ∗∩SBd(A)

Moreover, there is a commutative diagram:

US US⊗kV ∗

Homk(U0, S) Homk(U0 ⊗k V ∗, S ⊗k V ∗)

Φ|US

' '

φ

where φ(f) = f ⊗ IdV ∗ . Since φ is linear and injective, it is an isomorphism of
varieties between Homk(U0, S) and its image. Therefore, the restriction of Φ to US is
an isomorphism US ' US⊗kV ∗ ∩ SBd(A).

Since the open sets US form a covering of Gr(d, V ), it follows that Φ is an isomor-
phism.



Chapter 4

Motives

The study of algebraic geometry involves many different cohomology theories. Often,
it is the case that these theories share common properties. A cohomology theory
with coefficients in a ring R is given by a contravariant functor from the category of
algebraic varieties over an arbitrary field k (or subcategories such as smooth, projec-
tive, or quasi-projective varieties, etc.) to a R-linear tensor category. The functor,
which we will denote by A, should satisfy certain properties, but most importantly,
algebraic cycles on the variety X should map to elements in A(X), and the intersec-
tion product of cycles on X should be reflected in the structure of A(X). Examples
of such cohomology theories includes De Rham cohomology, Étale cohomology and
Betti cohomology, among others.

The commonality of these cohomology theories led Grothendieck to the idea of a
universal cohomology theory, and as such, to the formulation of the theory of motives.
This theory involves constructing a contravariant functor H from the category of
algebraic varieties over k to a category M(k) through which any cohomology theory
will factor. Thus, for any oriented cohomology theory A, there should be a realization
functor ΥA defined on M(k) such that for any algebraic variety X, the following
equality A(X) = ΥA(H(X)) holds.

The following will focus on motives of smooth projective varieties over an arbitrary
base field k, called pure motives. The construction of the category of pure motives
depends however, on the choice of an equivalence relation on the algebraic cycles on
varieties over k. Thus, beginning with such an equivalence relation, denoted by ∼,
satisfying certain properties, one first enlarges the class of morphisms in the category
of smooth projective varieties over k to include ∼-correspondences. This linearizes the
category of smooth projective varieties over k to an additive category Cor∼. Taking
the pseudo-abelian envelope of Cor∼, one obtains the category of effective motives
over k, denoted Moteff∼ (k). The tensor product structure in Moteff∼ (k) is induced
by the product of cycles in the category of smooth projective varieties over k, where

70
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the identity 1k corresponds to Spec(k). Finally, the projective line P1
k decomposes

in Moteff∼ (k) as 1k ⊕ Lk, where Lk is the Lefschetz motive. The category of pure
motivesMot∼(k) is obtained from the categoryMoteff∼ (k) by formally inverting Lk.

4.1 Oriented Cohomology Theories

In this section we introduce a class of cohomology theories called oriented cohomology
theories. We mainly follow the constructions presented in [Nen], [Pan1], and [Pan2].

We first introduce the category of smooth pairs before defining a contravariant functor
into the category of Z-graded abelian groups as in [Nen], section 2.1.

Definition 4.1.1. (The Category of Smooth Pairs)

Let k be any field. Let SmP denote the category of smooth pairs. Objects of SmP
are pairs (X,U) consisting of a smooth quasi-projective variety X over k and an open
subset U ⊆ X. A morphism from an object (X,U) to another object (X ′, U ′) in
SmP is a morphism of pairs, i.e. a morphism of smooth quasi-projective varieties
f : X → X ′ such that f(U) ⊆ U ′.

Remark. We make the following remarks.

1. The category of smooth quasi-projective varieties over k embeds into the cate-
gory of smooth pairs, SmP by sending X 7→ (X, ∅).

2. The terminal object in SmP is (Spec(k), Spec(k)), which will be denoted sim-
ply by pt = Spec(k).

Definition 4.1.2. (Pull-Back Morphisms of the Graded Components of A∗)
Let A∗ : SmPop → AbZ be a contravariant functor from the category of smooth pairs
over a field k to the category of Z-graded abelian groups. Let Ai denote the ith graded
component of A∗. Note that for a given morphism in the category of smooth pairs,
f : (X,X \ Z)→ (X ′, X ′ \ Z ′) the induced map f ∗ : Ai(X ′, X ′ \ Z ′)→ Ai(X,X \ Z)
is called a pull-back morphism and that pull-backs preserve grading.

Next, we define the notion of a ring cohomology theory as in [Nen], section 2.2.

Definition 4.1.3. (Ring Cohomology Theories)

A ring cohomology theory is a contravariant functor A∗ : SmPop → AbZ together
with a functorial morphism of degree +1

∂ : A∗(U, ∅)→ A∗+1(X,U)
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and a cup-product

∪ : Ai(X,X \ Z)× Aj(X,X \ Z ′)→ Ai+j(X,X \ (Z ∩ Z ′))

with usual properties (see [Pan1], Definition 2.13) which turns A∗(X) into a Z-graded
commutative ring. That is, given homogeneous elements α, β ∈ A∗(X), we have

α ∪ β = (−1)deg(α)deg(β)β ∪ α

We now define transversal squares as in [Pan2], Definition 2.1, and thereafter, the
notion of integration on a ring cohomology theory, which Panin refers to as a trace
structure, [Pan2], section 2.

Definition 4.1.4. (Transversality of Squares in the Category of Schemes)

Let i : X ↪→ Y be a closed embedding of smooth varieties. Consider the following
Cartesian square consisting of smooth varieties (in the category of schemes):

X̃ Ỹ

X Y

ĩ

ϕ̃ ϕ

i

That is, X̃ ' Ỹ ×Y X. Let N and Ñ be the normal bundles to X in Y and X̃ in
Ỹ respectively. Then, this square is called transversal if the canonical morphism of
normal bundles ϕ̃∗(N)→ Ñ is an isomorphism.

Definition 4.1.5. (Integrations on a Ring Cohomology Theory)

Let A∗ be a ring cohomology theory. An integration on A∗ is a rule assigning to every
projective morphism of smooth varieties f : X → Y of codimension c a two-sided
A∗(X)-module operator:

f∗ : A∗(X)→ A∗+c(Y )

satisfying the following properties:

1. For any projective morphisms f : X → Y and g : Y → Z of smooth varieties
(g ◦ f)∗ = g∗ ◦ f∗

2. Given the transversal square from the previous section, the following diagram
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commutes:

A∗(X̃) A∗+(ñ−m̃)(Ỹ )

A∗(X) A∗+(n−m)(Y )

ĩ∗

ϕ̃∗

i∗

ϕ∗

where m = dim(X), n = dim(Y ), m̃ = dim(X̃) and ñ = dim(Ỹ ).

3. For any morphism of smooth varieties f : X → Y , the following diagram
commutes:

A∗(Pn × Y ) A∗(Pn ×X)

A∗−n(Y ) A∗−n(X)

(pY )∗

(id×f)∗

(pX)∗

f∗

4. Normalization: For any smooth variety X, (idX)∗ = idA(X)

5. Localization: For any closed embedding of smooth varieties i : Y ↪→ X where
m = dim(X) and n = dim(Y ) and the inclusion j : X \ Y ↪→ X, the following
sequence

A∗(Y )
i∗−→ A∗+(m−n)(X)

j∗−→ A∗+(m−n)(X \ Y )

is exact. Note that this sequence is often referred to as a Gysin sequence.

Remark. We make the following remarks.

1. Every morphism between smooth projective varieties is projective.

2. The notation AiZ(X) will be used in place of Ai(X,X \ Z) henceforth.

We are now ready to define what it means to be an orientation of a ring cohomology
theory as in [Pan1], section 3, and [Pan2], Definition 1.9.

Definition 4.1.6. (Orientations of a Ring Cohomology Theory)

An orientation of a ring cohomology theory A∗ is a rule assigning to each smooth
quasi-projective variety X and closed subset Z ↪→ X and each vector bundle E/X
of rank r an operator thEZ : A∗Z(X) → A∗+rZ (E) which is a two-sided A∗(X)-module
isomorphism and satisfies the following properties:
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1. Invariance: For every isomorphism of rank r vector bundles ϕ : E → F , the
following diagram commutes:

A∗Z(X) A∗+rZ (F )

A∗Z(X) A∗+rZ (E)

thFZ

id∗X ϕ∗

thEZ

2. Base change: For every morphism of pairs, f : (X ′, X ′ \ Z ′) → (X,X \ Z) in
SmP , with Z ↪→ X and Z ′ ↪→ X ′ closed subsets and every vector bundle E/X
(with say, rank r), for its pull-back E ′ over X ′ and the projection morphism
g : E ′ = E ×X X ′ → E the following diagram commutes:

A∗Z(X) A∗+rZ (E)

A∗Z′(X
′) A∗+rZ′ (E ′)

thEZ

f∗ g∗

thE
′

Z′

3. Additive property: For all vector bundles p : E → X and q : F → X of rank r
and s respectively, the following diagram commutes:

A∗Z(X) A∗+rZ (E)

A∗+sZ (F ) A
∗+(r+s)
Z (E ⊕ F )

thEZ

thFZ th
p∗(F )
Z

th
q∗(E)
Z

and both compositions coincide with the operator thE⊕FZ .

The operators thEZ will be referred to as Thom isomorphisms. The theory A∗ is called
orientable if there exists an orientation of A∗. If an orientation is chosen and fixed,
then A∗ is called an oriented cohomology theory.

Remark. There are several examples of oriented cohomology theories, but we are
particularly interested in Chow groups, K-theory, and motivic cohomology.



4. MOTIVES 75

The following is a list of some, but not all, of the important properties of an oriented
cohomology theory. These properties are further described in [Nen], sections 2.3-2.9,
and [Pan1], sections 2 and 3.

Definition 4.1.7. (Properties of Oriented Cohomology Theories)

(i) Integration Structure: For every oriented cohomology theory A∗, there exists a
unique integration structure. That is, for any projective morphism of smooth
varieties f : Y → X of codimension c there is a given two-sided A∗ (X)-module
operator

f∗ : A∗(Y )→ A∗+c(X)

called a push-forward of f satisfying properties listed in Definition 4.1.5.

Conversely, an integration on a ring cohomology theory gives rise to an orien-
tation and these two constructions are inverse to each other.

Note that this fact is stated as Theorem 2.5 in section 2.1 in [Pan2] and its
proof constitutes all of section 2.

(ii) Projective Bundle Theorem: Let X be a smooth variety and Z ↪→ X a closed
subset. Let E/X be a vector bundle of rank n+ 1 over X. The map

(1, ξ, ..., ξn) ∪ − :
n⊕
i=0

A∗−iZ (X)→ A∗P(EZ)P(E)

is an isomorphism, where ξ = c(OE(−1)) and EZ = E |Z is the restriction of E
to Z.

(iii) Projection Formula: Let f : Y → X be a projective morphism of smooth
varieties. Then, for any α ∈ A(Y ) and any β ∈ A(X), we have:

f∗(α ∪ f ∗(β)) = f∗(α) ∪ β

(iv) Localization Sequence: Let X be a smooth variety and let Z ↪→ Y ↪→ X be
closed subsets, respectively. Then, there is an exact sequence of A∗(pt)-modules

...→ A∗Z(X)→ A∗Y (X)→ A∗Y \Z(X \ Z)
∂−→ A∗+1

Z (X)

(v) Strong Homotopy Invariance: Let X be a smooth variety and Z ↪→ X a closed
subset. Let p : E → X be an affine bundle over X. Then, the pull-back
p∗ : A∗Z(X)→ A∗p−1(Z)(E) is an isomorphism.

Remark. Properties (iv) and (v) still hold if A∗ is simply a ring cohomology theory.
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4.2 Constructing the Category of A-Motives

By fixing an adequate equivalence relation ∼ for the algebraic cycles on a variety, we
can linearize the category of smooth projective varieties over a field k. Since cycles
modulo this chosen equivalence relation form an abelian group, and correspondences
between varieties possess all the formal properties of morphisms, constructing a cat-
egory whose objects are smooth projective varieties over k, but whose morphisms are
correspondences will make it such that it is an additive category. In this section, we
construct the category of A-motives following such a recipe.

We begin by defining the category of A-correspondences, as in [Nen], section 5.1,
where A is an oriented cohomology theory.

Definition 4.2.1. (The Category of A - Correspondences)

Let k be a field, A an oriented cohomology theory, and let CorA denote the category
of A-correspondences defined as follows. The objects of CorA are just smooth pro-
jective varieties over k and the set of morphisms from X to Y is defined by setting
CorA(X, Y ) = A(X × Y ). Thus, an element from the ring A(X × Y ) is called a
correspondence between X and Y . Consider first the following maps:

p1,2 : X × Y × Z → X × Y
p1,3 : X × Y × Z → X × Z
p2,3 : X × Y × Z → Y × Z

which induce the following pull-backs and push-forwards:

p∗1,2 : A(X × Y )→ A(X × Y × Z)

p∗2,3 : A(Y × Z)→ A(X × Y × Z)

(p1,3)∗ : A(X × Y × Z)→ A(X × Z)

Then, for any correspondences α ∈ A(X×Y ) and β ∈ A(Y ×Z), the correspondence
given by the composition of the morphisms α and β

β ◦ α = (p1,3)∗(p
∗
1,2(α) ∪ p∗2,3(β)) ∈ A(X × Z) = CorA(X,Z)

is called the correspondence product of the cycles α and β.

Remark. We make the following remarks about A-correspondences.

1. The push-forward (p1,3)∗ exists, since A is oriented.

2. Since the theory A is also Z-graded, we can decompose morphisms in CorA
into graded components by setting CordA(X, Y ) = Adim(X)+d(X × Y ). Thus,
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a correspondence α is said to have degree d if it is an element of the group
CordA(X, Y ).

In particular, if α ∈ CorrA(X × Y ) and β ∈ CorsA(Y × Z) are homogeneous
correspondences of degree r and s respectively, then β ◦ α ∈ Corr+sA (X × Z).

3. Let X and Y be smooth projective varieties over k. Consider the decomposition
of X into irreducible components:

X =
∐
i∈I

Xi

Then,

CorrA(X, Y ) =
⊕
i∈I

Ar+di(Xi × Y )

where di = dim(Xi) for each i ∈ I.

4. The identity morphism in CorA(X,X) is the class of the image of the diagonal
morphism [∆X ] ⊆ A(X×X). That is, for any other morphism α ∈ CorA(X, Y ),
we have:

α ◦ [∆X ] = (p1,3)∗(p
∗
1,2([∆X ]) ∪ p∗2,3(α))

= (p1,3)∗([∆X ]× 1Y ∪ 1X × α)

= α ∈ A(X × Y ) = CorA(X, Y )

and any other morphism β ∈ CorA(W,X), we have:

[∆X ] ◦ β = (p1,3)∗(p
∗
1,2(β) ∪ p∗2,3([∆X ]))

= (p1,3)∗(β × 1X ∪ 1W × [∆X ])

= β ∈ A(W ×X) = CorA(W,X)

Note that when the context is understood, [∆X ] may be written as just ∆X .

We now describe some of the properties of CorA, following [Nen], sections 5.2-5.5. In
particular, we show that CorA is self-dual and we describe the induced tensor product
structure on CorA.

Definition 4.2.2. (Self-Duality of CorA)

The category CorA is a self-dual category, by acknowledging the following construc-
tion. Let α ∈ CorA(X, Y ) and consider the twisting map A(X × Y ) → A(Y × X).
The image of α under this map is called the transpose of α and is denoted by αt.
Clearly, αt ∈ CorA(Y,X) and (αt)t = α. Moreover, if α has degree d, then αt has
degree dim(X) + d− dim(Y ).
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Definition 4.2.3. (Tensor Product Structure on CorA)

For any α ∈ CorA(X1, X3) and any β ∈ CorA(X2, X4), the correspondence α × β,
called the product of α and β, is given by

α× β = p∗1,3(α) ∪ p∗2,4(β) ∈ CorA((X1 ×X2), (X3 ×X4))

where p∗1,3 and p∗2,4 are respectively induced by

p1,3 : X1 ×X2 ×X3 ×X4 → X1 ×X3

p2,4 : X1 ×X2 ×X3 ×X4 → X2 ×X4

Observe that the product of varieties and correspondences induces a tensor product
structure on CorA where X ⊗ Y := X ×k Y and α⊗ β := α× β.

Definition 4.2.4. (The Functor c : SmProjop→ CorA)

Let f : X → Y be a morphism of smooth projective varieties. The graph of f is the
image of the morphism

Γf : X
(f,idX)−−−−→ Y ×X

which is a closed embedding. Notice here that the notation Γf is used to represent two
notions. Firstly, Γf = (f, idX) as morphisms and Γf = im(f, idX) = Γf (X) ⊆ Y ×X
as varieties, and both of these will be referred to as the graph of f in various contexts.

We define the contravariant functor c : SmProjop → CorA from the category of
smooth projective varieties to the category of A-correspondences by assigning X 7→ X
and f 7→ c(f) = (Γf )∗(1A(X)) ∈ A(Y ×X). Notice (Γf )∗ : A∗(X)→ A∗+n(Y ×X) is
well-defined as Γf is a projective morphism, where n = dim(Y ).

We now show that oriented cohomology theories factor through CorA.

Proposition 4.2.5. (Oriented Cohomology Theories Factor Through CorA)

Let α ∈ CorA(Y,X). Define the realization of α as the map A(α) : A(Y ) → A(X)
with the following construction. Identify A(Y ) with A(pt × Y ) = CorA(pt, Y ), A(X)
with A(pt×X) = CorA(pt, X) and A(Y ×X) with A(pt×Y ×X) = CorA(pt, Y ×X).
Setting A(α)(β) = α ◦ β for all β ∈ A(pt × Y ), where the correspondence product of
α and β is given by α ◦ β = (pX)∗(p

∗
Y (β) ∪ α) ∈ A(pt×X) = A(X), where

pX : pt× Y ×X → pt×X
pY : pt× Y ×X → pt× Y

This yields a covariant functor CorA → AbZ which is also denoted by A. Thus, the
functor A restricted to projective varieties factors through CorA and we obtain the
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following diagram of functorial maps:

SmProjop CorA

AbZ

c

A
A

which commutes.

Proof: For every morphism of smooth projective varieties f : X → Y and corre-
spondence β ∈ A(pt× Y ), we have:

A(c(f))(β) = A((Γf )∗(1A(X)))(β)

= (Γf )∗(1A(X)) ◦ β
= (pX)∗(p

∗
Y (β) ∪ (Γf )∗(1A(X)))

= (pX)∗((Γf )∗(1A(X) ∪ Γ∗f (p
∗
Y (β))))

= (pX)∗((Γf )∗(Γ
∗
f (p
∗
Y (β))))

Now notice the commutative diagrams,

X Y ×X

Y

pY ◦Γf=f

Γf=(f,id)

pY and

X Y ×X

X

pX◦Γf=idX

Γf=(f,id)

pX

respectively induce the following diagrams, which are also commutative,

A(Y ) A(Y ×X)

A(X)

p∗Y

(pY ◦Γf )∗=f∗
Γ∗f and

A(X) A(Y ×X)

A(X)

(Γf )∗

(pX◦Γf )∗=(idX)∗
(pX)∗

Thus, by placing the latter set of diagrams together, and associating A(Y ) with
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A(pt× Y ), and so on as above:

A(pt× Y ) A(pt× Y ×X)

A(pt×X) A(pt× Y ×X)

A(pt×X)

p∗Y

f∗
Γ∗f

(Γf )∗

idA(X)

(pX)∗

we see that for any β ∈ A(pt× Y ), we have:

(pX)∗((Γf )∗(Γ
∗
f (p
∗
Y (β)))) = idA(X)(f

∗(β)) = f ∗(β) ∈ A(pt×X)

Hence, A(c(f)) = f ∗.

We now define what it means for a category to be pseudo-abelian. Moreover, we show
that additive categories may be given a pseudo-abelian completion.

Definition 4.2.6. (Pseudo-Abelian Categories)

Let C be an additive category. Then, C is called pseudo-abelian if for any projector
p ∈ HomC(X,X), there exists a kernel, ker(p), and the canonical homomorphism

ker(p)⊕ ker(idX − p)→ X

is an isomorphism. Notice that idX − p is also a projector element in HomC(X,X).

Definition 4.2.7. (The Pseudo-Abelian Completion of Additive Categories)

Let C be an additive category. The pseudo-abelian completion of C is the category
C̃ defined as follows. The objects in C̃ are pairs (X, p) where X ∈ Ob(C) and the
morphism p ∈ HomC(X,X) is a projector. The morphisms in C̃ are given by

HomC̃((X, p), (Y, q)) =
{α ∈ Hom(X, Y ) | α ◦ p = q ◦ α}
{α ∈ Hom(X, Y ) | α ◦ p = q ◦ α = 0}

That is, the category C̃ is obtained by formally adding kernels of idempotent endo-
morphisms in C. The composition of morphisms in C̃ is induced from the composition
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of morphisms in C. The functor ΨC : C → C̃ sending an object X 7→ (X, idX) and a
morphism f ∈ HomC(X, Y ) to its class in HomC(X, Y )/(0) is fully faithful.

Moreover, given any category C, one can always construct a pseudo-abelian category
C̃ into which C embeds fully faithfully via a functor ΨC : C → C̃ which is universal
with that property. That is, given any additive functor F : C → D, where D is
a pseudo-abelian category, there exists an additive functor F̃ : C̃ → D for which
F̃ ◦ΨC = F . In other words, F factors through C̃.

Remark. If p0, p1, ..., pn ∈ HomC(X,X) are projectors such that pi ◦ pj = 0 for all

i 6= j and
n∑
i=0

pi = IdX , then in the category C̃, we have:

(X, IdX) '
n⊕
i=0

(X, pi)

We are now ready to define the category of degree 0 correspondences.

Definition 4.2.8. (The Category of Degree 0 Correspondences, Cor0
A)

As seen from the remarks following Definition 4.2.1, the composition of degree 0
correspondences is degree 0. Cor0

A is therefore the category whose objects are smooth
projective varieties over k and whose morphisms are degree 0 correspondences.

The category Cor0
A has direct sums defined by X ⊕ Y = X

∐
Y and tensor products

defined by X ⊗ Y = X ×k Y . Most importantly, it is an additive category.

The rest of the section is devoted to constructing the category of pure motives. We
begin by defining the category of effective motives.

Definition 4.2.9. (The Category of Effective Motives, Moteff∼ (k))

The category of effective motives, denoted Moteff∼ (k) is the pseudo-abelian com-
pletion of the category CorA. By construction, Moteff∼ (k) is also a k-linear tensor
category. Notice that its objects are pairs, (X, p), where X is a smooth projective
variety over k and p ∈ CorA(X,X) = A(X × X) is an idempotent correspondence.
Since for any such idempotent, we have:

X = ker(p)⊕ ker(∆X − p)

inMoteff∼ (k), then we see that effective motives over k are just direct sums of smooth
projective varieties over k. Finally, for any two objects (X, p) and (Y, q), the mor-
phisms in Moteff∼ (k) are given by

HomMoteff∼ (k)((X, p), (Y, q)) = {α ∈ CorA(X, Y ) | α ◦ p = α = q ◦ α}
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We now formally introduce the Lefschetz motive and decompose the projective line,
P1
k in the category of effective motives.

Definition 4.2.10. Fix an equivalence relation, ∼, on the algebraic cycles on smooth
projective varieties over a field k. Choose a rational point in P1

k and denote by e its
class modulo ∼. Then,

A(P1
k) = Z⊕ Ze

Remark. Later on, we will denote the class of a rational point simply by [pt] or even
pt when the context is understood.

Proposition 4.2.11. Consider P1
k. Then, the correspondences 1 × e and e × 1 in

A(P1
k × P1

k) are idempotent.

Proof: By a straight-forward calculation,

(1× e) ◦ (1× e) = (p1,3)∗(p
∗
1,2(1× e) ∪ p∗2,3(1× e))

= (p1,3)∗((1× e× 1) ∪ (1× 1× e))
= (p1,3)∗(1× e× e)
= 1× e

and

(e× 1) ◦ (e× 1) = (p1,3)∗(p
∗
1,2(e× 1) ∪ p∗2,3(e× 1))

= (p1,3)∗((e× 1× 1) ∪ (1× e× 1))

= (p1,3)∗(e× e× 1)

= e× 1

where the pull-back and the push-forward morphisms are induced by the projection
maps pi,j : P1

k × P1
k × P1

k → P1
k × P1

k onto the ith and jth copies of P1
k.

Proposition 4.2.12. The effective motives (P1
k, e × 1) and 1k = (Spec(k),∆Spec(k))

are isomorphic.

Proof: By the construction outlined in Definition 4.2.4, the structure morphism
P1
k → Spec(k) gives rise to a correspondence α ∈ CorA(Spec(k),P1

k). On the other
hand, the rational point e is a morphism Spec(k) → P1

k which gives rise to a corre-
spondence β ∈ CorA(P1

k, Spec(k)).

Now, β◦α = ∆Spec(k) ∈ CorA(Spec(k), Spec(k)) and the composition α◦β corresponds
to the graph of the composition P1

k → Spec(k) → P1
k, which is the element e × 1 in

CorA(P1
k,P1

k). As

α = α ◦∆Spec(k) = α ◦ (β ◦ α) = (α ◦ β) ◦ α = (e× 1) ◦ α
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and
β = ∆Spec(k) ◦ β = (β ◦ α) ◦ β = β ◦ (α ◦ β) = β ◦ (e× 1)

then, we have that

α ∈ HomMoteff∼ (k)((Spec(k),∆Spec(k)), (P1
k, e× 1))

and
β ∈ HomMoteff∼ (k)((P

1
k, e× 1), (Spec(k),∆Spec(k)))

are mutually inverse morphisms.

Definition 4.2.13. (The Lefschetz Motive)

We define the Lefschetz motive over k to be the effective motive given by

Lk := (P1
k, 1× e)

Proposition 4.2.14. P1
k = 1k ⊕ Lk in Moteff∼ (k), where 1k = (Spec(k),∆Spec(k)).

Proof: As e×1 ∈ A(P1
k×P1

k) is an idempotent correspondence, then inMoteff∼ (k),
(P1

k,∆P1
k
) = (P1

k, e× 1)⊕ (P1
k,∆P1

k
− e× 1) = 1k ⊕ Lk as ∆P1

k
= 1× e+ e× 1.

Remark. More generally,
Pnk = 1k ⊕ L1

k ⊕ ...⊕ Lnk
where Lik = Lk ⊗ ...⊗ Lk︸ ︷︷ ︸

i times

.

We now formally invert the Lefschetz motive and subsequently define the category of
pure motives.

Definition 4.2.15. (Inversion of the Lefschetz Motive)

Taking the tensor product with regards to the Lefschetz motive induces a functor,
which is fully faithful, from the category of effective motives to itself, sending objects
(X, p) 7→ (X, p)⊗ Lk and morphisms α 7→ α ⊗ idLk

, where idLk
= 1× e. The tensor

product of the objects is given by

(X, p)⊗ Lk = (X ⊗ P1
k, p⊗ (1× e)) = (X × P1

k, p× (1× e))

where p× (1× e) = p∗1,3(p)∪ p∗2,4(1× e) ∈ CorA((X×P1
k), (X×P1

k)) and the pull-back
morphisms p∗1,3 and p∗2,4 are induced by the corresponding projections

p1,3 : X × P1
k ×X × P1

k → X ×X
p2,4 : X × P1

k ×X × P1
k → P1

k × P1
k
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respectively. Moreover, for any α ∈ HomMoteff∼ (k)((X, p), (Y, q)) the tensor product of
the morphisms is given by

α⊗ (1× e) = α× (1× e) = p∗1,3(α) ∪ p∗2,4(1× e) ∈ CorA((X × P1
k), (Y × P1

k))

such that (α× (1× e)) ◦ (p× (1× e)) = α× (1× e) = (q × (1× e)) ◦ (α× (1× e)).
In particular, given two effective motives (X, p) and (Y, q), and integers m,n,N such
that m,n ≤ N , the k-space

HomMoteff∼ (k)((X, p)⊗ LN−mk , (Y, q)⊗ LN−nk )

is independent of the choice of N . Therefore, in this way, we can formally invert Lk.

Definition 4.2.16. (The Category of Pure Motives, Mot∼(k))

Define the category of pure motives, denotedMot∼(k), as the category whose objects
are triples (X, p, n), where the pair (X, p) is an effective motive, where n ∈ Z, and
whose morphisms are given by

HomMot∼(k)((X, p,m), (Y, q, n)) = HomMoteff∼ (k)((X, p)⊗ LN−mk , (Y, q)⊗ LN−nk )

where m,n ≤ N .

Remark. We make the following remarks.

(i) The category Mot∼(k) has a tensor product structure given by

(X, p,m)⊗ (Y, q, n) = ((X, p)⊗ (Y, q),m+ n) = (X × Y, p× q,m+ n)

(ii) We can embed the category of effective motives into the category of pure motives
by sending (X, p) 7→ (X, p, 0).

(iii) For the pure motive (X,∆X , 0), we will use the shorthand notation M(X).

We conclude the section by defining the Tate motive and Tate twisting.

Definition 4.2.17. (The Tate Motive)

Let T1
k := (1k,−1) ∈ Mot∼(k). More generally, for any n ∈ Z, write Tnk = (1k,−n).

Then, T0
k = 1k, and there is a canonical isomorphism T−1

k ' Lk. The object T1
k is

called the Tate motive.

Definition 4.2.18. (Tate Twisting)

Let (X, p) ∈ Moteff∼ (k) and n ∈ Z. By the embedding Moteff∼ (k) ↪→ Mot∼(k), we
can send (X, p) 7→ (X, p, 0). Define the operation of Tate twisting to be the tensor
product (X, p)(n) := (X, p, 0)⊗ Tnk ∈Mot∼(k).

Remark. By construction, any pure motive can be written as the direct sum of Tate
twists of some effective motives with corresponding integers.
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4.3 Motivic Decomposition of SB2(A)

For the remainder of this chapter, we fix the equivalence relation ∼ to be rational
equivalence as described in section 1.3. In this case, the oriented cohomology theory
A corresponds to Chow cohomology and is denoted by CH. By definition, for any two
smooth projective varieties X and Y over k, we have CorCH(X, Y ) := CH(X × Y ),
and after taking the pseudo-abelian completion and formally inverting the Lefschetz
motive, the resulting category Motrat(k) is the category of pure Chow motives.

We are now ready to state our main result.

Theorem 4.3.1. Let SB2(A) be a generalized Severi-Brauer variety for a central
simple k-algebra A of degree 7. Then, there is an isomorphism

M(SB2(A)) ' (SB2(A), p)⊕ (SB2(A), p)c

where p is an idempotent correspondence in CorCH(SB2(A), SB2(A)) and the super-
script c indicates the complementary object to (SB2(A), p) in the decomposition of
M(SB2(A)) in the category of pure Chow motives.

The case for a central simple k-algebra A of degree 5 was considered in [Cal]. Our
case for degree 7 is a new result. The rest of this section is devoted to building up
the tools necessary for proving this theorem, and its proof will be presented in the
next section.

We begin by defining relative cellular spaces as in [Kar3] and describing some prop-
erties of their Chow rings.

Definition 4.3.2. (Relative Cellular Spaces)

Let X be a smooth projective variety over a field k. Then, we say that X is a relative
cellular space if there exists a finite increasing filtration by closed (not necessarily
smooth) subvarieties

∅ = X−1 ⊂ X0 ⊂ ... ⊂ Xn−1 ⊂ Xn = X

such that for each complement Xi\i−1 := Xi \ Xi−1 there is a map pi : Xi\i−1 → Yi
for some smooth projective variety Yi over k over which Xi\i−1 is an affine bundle.

The varieties Yi are called the bases of the cells of X and the union

Y =
n∐
i=0

Yi

is called the total base of X.



4. MOTIVES 86

Theorem 4.3.3. (Chow Decomposition of G-Homogeneous Varieties)

Let G be a split linear algebraic group over a field k and X a projective G-homogeneous
variety. That is, X = G/P , where P is a parabolic subgroup of G. Then, X has a
cellular filtration and the generators of the Chow groups of the bases of this filtration
correspond to the free additive generators of CH(X).

For a proof of this theorem, we refer the reader to [Köc].

Definition 4.3.4. (Correspondence Products for Homogeneous Varieties)

Let X and Y be two projective homogeneous varieties over a field k. Then, the variety
X × Y also has a cellular filtration and moreover, CH∗(X × Y ) ' CH∗(X)⊗CH∗(Y )
as graded rings. In such a case, the formula for the correspondence product of two
cycles α = αX × αY ∈ CH(X × Y ) and β = βY × βX ∈ CH(Y ×X) is given by

β ◦ α = (βY × βX) ◦ (αX × αY ) = deg(αY · βY )(αX × βX) ∈ CH(X ×X)

where deg : CH(Y )→ CH({pt}) = Z is the degree map.

For further details, see [Bon], specifically Lemma 5.

We now define as in [Cal] rational cycles in the Chow ring of the varietyXS := X×kkS.
Then, we state a few versions of the Rost Nilpotence Theorem in varying contexts
emphasizing some of its corollaries in the context of projective homogeneous varieties.

Definition 4.3.5. (Rational Cycles on CH(X ×k k
sep))

Let X be a projective variety over a field k with separable closure ksep. Consider
the variety XS := X ×k ksep constructed by extending scalars, where the morphism
between projective varieties pX : XS → X induces the pull-back homomorphism
between graded rings p∗X : CH(X) → CH(XS). Then, we say that a cycle class
α ∈ CH(XS) is rational if α ∈ im(p∗X).

Remark. We make the following remarks.

(i) Linear combinations, intersections, and correspondence products of rational cy-
cles are rational.

(ii) The class of the diagonal morphism ∆XS
is a rational cycle on CH(XS ×XS).

Theorem 4.3.6. (Rost Nilpotence Theorem)

Let k be a field with algebraic closure k̄. Suppose Q is a smooth quadric over k and let
f ∈ End(M(Q)) be an endomorphism of its integral Chow motive. Then, if f⊗ k̄ = 0
in End(M(Q⊗ k̄)), f is nilpotent.

For a proof of this theorem, we refer the reader to [Bro1].
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Theorem 4.3.7. (Rost Nilpotence for Projective Homogeneous Varieties)

Let X be a projective homogeneous variety over a field k. Then, for every field exten-
sion l/k, the kernel of the natural ring homomorphism End(M(X))→ End(M(Xl))
consists of nilpotent correspondences.

For a proof of this theorem, we refer the reader to [Che1], Theorem 8.2.

Corollary 4.3.8. (Existence of Projectors in End(M(X)))

Let X be a projective homogeneous variety over a field k. Suppose that for a field
extension l/k, the image of the ring homomorphism End(M(X)) → End(M(Xl))
sending f → fl = f ⊗k l, contains a projector (idempotent) q. Then, there exists a
projector p ∈ End(M(X)) such that p⊗k l = q.

For a proof of this corollary, we refer the reader to [Che1], Corollary 8.3.

Corollary 4.3.9. (Existence of Rational Projectors in CHn(X×X))

In particular, let pS be a non-trivial rational projector (idempotent correspondence)
in CHn(XS ×XS). That is, pS ◦ pS = pS. Then, there exists a non-trivial projector
(idempotent correspondence) p ∈ CHn(X ×X) such that p×k ksep = pS.

Remark. The existence of a non-trivial rational projector pS in CH(XS×XS) induces
the decomposition of the pure Chow motive of X, where

M(X) ' (X, p)⊕ (X,∆X − p)

Next, we define isomorphisms between twisted motives.

Definition 4.3.10. (Isomorphisms Between Twisted Motives)

An isomorphism between the twisted motives (X, p,m) and (Y, q, l) is given by cor-
respondences j1 ∈ CHdim(X)−l+m(X × Y ) and j2 ∈ CHdim(Y )−m+l(Y ×X) such that

j1 ◦ p = q ◦ j1

j2 ◦ q = p ◦ j2

p = j2 ◦ j1 and q = j1 ◦ j2

Proposition 4.3.11. If X and Y lie in the categoryM(G,Z), then by the Rost nilpo-
tence theorem, it suffices to give rational j1 and some j2 satisfying these conditions
over separable closure. (Note that j2 will automatically be rational).

For a proof of this Proposition, we refer the reader to [Pet], section 2, specifically
Proposition 2.6 and Lemma 2.10.

We now shift our attention to describing Grassmann varieties. We begin by defining
the Segre map and Segre varieties, followed by Segre embeddings. This will allow us
to emded the product of Grassmannians into another Grassmannian.
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Definition 4.3.12. (The Segre Map and Segre Varieties)

The Segre map σ : Pm × Pn → P(m+1)(n+1)−1 is defined as the map which sends

([x0 : ... : xm], [y0 : ... : yn]) 7→ [x0y0 : x0y1 : ... : x0yn : x1y0 : ... : xmyn]

The image of σ is called a Segre variety and is denoted Σm,n. Denoting the homoge-
neous coordinates of P(m+1)(n+1)−1 as zi,j, the variety Σm,n is given as the zero set of
polynomials of the form za,bzc,d− zc,bza,d = 0 as a, b, c, d vary. Thus, the Segre variety
is an example of a determinantal variety, i.e. it is the zero-locus of the set of 2 × 2
minors of the matrix (zi,j).

Definition 4.3.13. (Segre Embeddings) Let k be a field and U, V vector spaces
over k. There is a natural way to map the Cartesian product U × V to the tensor
product U ⊗ V given by φ : U × V → U ⊗ V where φ(u, v) = u⊗ v.

In general, this map is not injective as for any u ∈ U , v ∈ V , and c ∈ k× we have:

φ(u, v) = u⊗ v = cu⊗ c−1v = φ(cu, c−1v)

However, for the underlying projective spaces P(U) and P(V ), the map

σ : P(U)× P(V )→ P(U ⊗ V )

is a morphism of varieties. That is, it is a closed immersion since one can give a set
of equations for its image. The morphism σ is called the Segre embedding.

Remark. The Segre embedding allows us to construct products of varieties explicitly.
That is, if V1 and V2 are quasi-projective varieties (they can be affine, projective,
open subsets of either, etc.), then V1 ⊆ Pm and V2 ⊆ Pn for some m,n ∈ N. Hence,
the image of the Segre embedding restricted to V1×V2 is a quasi-projective variety in
P(m+1)(n+1)−1 which can be described explicitly by a set of equations and is isomorphic
to V1 × V2. Thus, in particular, products of quasi-projective varieties exist and are
also quasi-projective. In light of this fact, σ : Pm × Pn → Σm,n is an isomorphism of
projective varieties.

We now formalize the notion of universal quotient bundles on Grassmannians.

Definition 4.3.14. (Universal Quotient Bundles on Grassmannians)

Let k be a field and Gr(d, n) be the Grassmannian of d-dimensional subspaces of kn.
There is an obvious vector bundle of rank n on Gr(d, n), namely On := Gr(d, n)×kn
whose fiber at every point is the vector space kn.

Define the vector bundle τd on Gr(d, n) as the rank d subbundle of On whose fiber
at a point V ∈ Gr(d, n) is the subspace V itself. τd is called the universal subbundle
on Gr(d, n), but it is also often referred to as the tautological bundle.
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The rank n−d quotient bundle Qn−d = On/τd is called the universal quotient bundle
on Gr(d, n) and there is an exact sequence

0→ τd → On → Qn−d → 0

Proposition 4.3.15. Let k be a field and consider the Grassmann variety Gr(d, n+1),
where 1 ≤ d ≤ n. That is, consider the space of all d-planes contained in the affine
space An+1

k . A twisted form of Gr(d, n + 1) is a generalized Severi-Brauer variety
SBd(A) for a central simple k-algebra A of degree n+ 1, as shown in Theorem 3.9.7.

Then, for any 1 ≤ d, d′ ≤ n, there is a fiber product diagram (as in Definition 1.4.1)

Gr(d, n+ 1)×Gr(d′, n+ 1) Gr(dd′, (n+ 1)2)

SBd(A)× SBd′(A
op) SBdd′(A⊗ Aop)

Seg

Seg

where the horizontal arrows are the Segre embeddings given by the tensor product
of ideals (respectively, linear subspaces) and the vertical arrows are canonical maps
induced by the scalar extension ksep/k.

Moreover, the fiber product diagram induces via the pull-back homomorphisms, Defi-
nition 1.5.8, the following commutative diagram of rings

CH(Gr(d, n+ 1)×Gr(d′, n+ 1)) CH(Gr(dd′, (n+ 1)2))

CH(SBd(A)× SBd(A
op)) CH(SBdd′(A⊗ Aop))

Seg∗

res

Seg∗

' res

Note that there is an isomorphism on the right as A⊗ Aop splits, Proposition 3.4.9.

Now consider a vector bundle E over Gr(dd′, (n + 1)2). The total Chern class of
E is c(E ) ∈ CH(Gr(dd′, (n + 1)2)). Notice, that Seg∗(c(E )) is a rational cycle on
CH(Gr(d, n+ 1)×Gr(d′, n+ 1)) ' CH(Gr(d, n+ 1))⊗ CH(Gr(d′, n+ 1)), that is,
Seg∗(c(E )) is an element of im(res) = res(CH(SBd(A)) × SBd′(A

op)). This is clear
as Seg∗(c(E )) = res(Seg∗(res−1(c(E )))).

In particular, if E = τdd′ is the tautological bundle of Gr(dd′, (n+ 1)2), then the total
Chern class c(pr∗1(τd) ⊗ pr∗2(τd′)) of the tensor product of the pull-back bundles over
Gr(d, n + 1) × Gr(d′, n + 1) of the tautological bundles τd and τd′ over Gr(d, n + 1)
and Gr(d′, n+ 1) respectively, is rational.
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Proof: The pull-back bundles pr∗1(τd) and pr∗2(τd′) are given by the commutative
diagrams

pr∗1(τd) τd

Gr(d, n+ 1)×Gr(d′, n+ 1) Gr(d, n+ 1)

π2

π1 ρ

pr1

and

pr∗2(τd′) τd′

Gr(d, n+ 1)×Gr(d′, n+ 1) Gr(d′, n+ 1)

π′2

π′1 ρ′

pr2

where all the arrows in both diagrams are projection maps and where

pr∗1(τd) = {((V,W ), V ) ∈ (Gr(d, n+ 1)×Gr(d′, n+ 1))× τd | pr1(V,W ) = ρ(V )}

and

pr∗2(τd′) = {((V,W ),W ) ∈ (Gr(d, n+ 1)×Gr(d′, n+ 1))× τd′ | pr2(V,W ) = ρ′(W )}

Now, the tensor product of the vector bundles pr∗1(τd) and pr∗2(τd′) is the bundle over
Gr(d, n + 1) × Gr(d′, n + 1) whose fiber over any point is the tensor product of the
vector spaces of its respective fibers in pr∗1(τd) and pr∗2(τd′). That is,

pr∗1(τd)⊗ pr∗2(τd′) = {((V,W ), V ⊗W ) ∈ (Gr(d, n+ 1)×Gr(d′, n+ 1))× τdd′}

which is nothing other than the pullback bundle of τdd′ to Gr(d, n+ 1)×Gr(d′, n+ 1)
by the map Seg given by the commutative diagram

Seg∗(τdd′) = pr∗1(τd)⊗ pr∗2(τd′) τdd′

Gr(d, n+ 1)×Gr(d′, n+ 1) Gr(dd′, (n+ 1)2)

π′′2

π′′1 ρ′′

Seg

From this, we obtain that c(pr∗1(τd) ⊗ pr∗2(τd′)) = c(Seg∗(τdd′)) = Seg∗(c(τdd′)) and
thus, c(pr∗1(τd)⊗ pr∗2(τd′)) = res(Seg∗(res−1(c(τdd′)))) by commutativity of the second
diagram in the proposition. Therefore, c(pr∗1(τd)⊗ pr∗2(τd′)) is rational.
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4.4 Decomposition of M(SB2(A)) for deg(A) = 7

We are now ready to prove Theorem 4.3.1. That is, we provide an example of the
motivic decomposition of SB2(A) where A is a CSA over k with degk(A) = 7. Thus,
we restrict our focus to the case where n = 6, d = 2, and d′ = 1 from Proposition
4.3.15. This means we are considering the Grassmannian Gr(2, 7) and the projective
space P6 = Gr(1, 7).

First, we need to describe the Chow ring CH(Gr(2, 7)). We follow the methods in
[Ful] in the section on Schubert Calculus, section 14.7. The reader should take note
of the fact that Gr(d+ 1, n+ 1) = Gr(d, n) for Grassmannians of projective spaces as
per the notation in Fulton’s book. The Chow ring CH(Gr(2, 7)) is generated (as a
ring with some relations) by the special Schubert Cycles corresponding to the Chern
classes σm = cm(Q) for m = 1, 2, ..., 5 where Q = O7/τ2 is the universal quotient
bundle of rank 5 over Gr(2, 7).

Moreover, the Schubert cycles ∆λ(σ) that are parameterized by the set of partitions
λ = (λ0, λ1) where 5 ≥ λ0 ≥ λ1 ≥ 0 form a Z-module basis for CH(Gr(2, 7)). Using
the formula

{λ0, λ1} = ∆λ(σ) = det(σλi+j−i)0≤i,j≤1 =

∣∣∣∣ σλ0 σλ0+1

σλ1−1 σλ1

∣∣∣∣
and recalling that σ0 = 1 and σr = 0 for r /∈ {0, 1, ..., 5}, we obtain the following
Schubert classes for CH(Gr(2, 7)):

{0, 0} = ∆(0,0) = Gr(2, 7) {1, 1} = ∆(1,1) = σ2
1 − σ2

{1, 0} = ∆(1,0) = σ1 {2, 1} = ∆(2,1) = σ2σ1 − σ3

{2, 0} = ∆(2,0) = σ2 {3, 1} = ∆(3,1) = σ3σ1 − σ4

{3, 0} = ∆(3,0) = σ3 {4, 1} = ∆(4,1) = σ4σ1 − σ5

{4, 0} = ∆(4,0) = σ4 {5, 1} = ∆(5,1) = σ5σ1

{5, 0} = ∆(5,0) = σ5

{2, 2} = ∆(2,2) = σ2
2 − σ1σ3 {3, 3} = ∆(3,3) = σ2

3 − σ2σ4

{3, 2} = ∆(3,2) = σ3σ2 − σ1σ4 {4, 3} = ∆(4,3) = σ4σ3 − σ2σ5

{4, 2} = ∆(4,2) = σ4σ2 − σ1σ5 {5, 3} = ∆(5,3) = σ5σ3

{5, 2} = ∆(5,2) = σ5σ2

{4, 4} = ∆(4,4) = σ2
4 − σ3σ5 {5, 5} = ∆5,5 = [pt]

{5, 4} = ∆(5,4) = σ5σ4



4. MOTIVES 92

We use the following shorthand notation:

1 = Gr(2, 7) = {0, 0} σ1 = {1, 0} g2 = {1, 1} h4 = {3, 1} k6 = {5, 1}
pt = {5, 5} σ2 = {2, 0} g3 = {2, 1} h5 = {4, 1}

σ3 = {3, 0} g4 = {2, 2} h6 = {4, 2}
σ4 = {4, 0} g5 = {3, 2} h7 = {5, 2}
σ5 = {5, 0} g6 = {3, 3} h8 = {5, 3}

g7 = {4, 3}
g8 = {4, 4}
g9 = {5, 4}

where the lower index is indicative of the codimension of the Schubert class. In fact,
these generating cycles correspond to the vertices in the Hasse diagram of Gr(2, 7):

pt g9

h8

g8

g7

h7

g6

h6

k6

g5

h5

σ5

g4

h4

σ4

g3

σ3

g2

σ2

σ1 Gr(2, 7)

10 9 8 7 6 5 4 3 2 1 0
codimension of cycle

The multiplication of classes in CH(Gr(2, 7)) is determined by Pieri’s formula:

∆(λ0,λ1) · σm =
∑
µ

∆µ

where the sum is taken over all partitions µ = (µ0, µ1) such that

5 ≥ µ0 ≥ λ0 ≥ µ1 ≥ λ1 ≥ 0 and |µ| = |λ|+m

where |µ| = µ0 + µ1 and |λ| = λ0 + λ1.
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Example 4.4.1. For example, we show the calculation of g3 · σ2. We have:

g3 · σ2 = ∆(2,1) · σ2

=
∑
µ

∆µ where 5 ≥ µ0 ≥ 2 ≥ µ1 ≥ 1 and |µ| = |λ|+m = 5

= ∆(4,1) + ∆(3,2)

= h5 + g5

For a complete set of multiplicative products of the Schubert classes of Gr(2, 7), see
Appendix A.

We now determine the Chern classes of the tautological bundle of Gr(2, 7) and find
some relations among the special Schubert classes. Notice that CH(Gr(2, 7)) is not a
domain, i.e. it contains zero divisors. However, whenever two classes have non-empty
intersection, we have that a codimension l1 class and a codimension l2 class intersect
to form a class of codimension l1 + l2. In particular, pairs of special Schubert classes
always intersect non-trivially. We can determine the total Chern class of τ2 as follows:

c(τ2) = c(Q)−1 =
1

1 + c1(Q) + ...+ c5(Q)

=
1

1− (−σ1 − ...− σ5)

=
∞∑
n=0

(−1)n(σ1 + ...+ σ5)n

= 1− σ1︸︷︷︸
c1(τ2)

+ σ2
1 − σ2︸ ︷︷ ︸
c2(τ2)

− σ3
1 + 2σ1σ2 − σ3︸ ︷︷ ︸

c3(τ2)

+ σ4
1 − 3σ2

1σ2 + 2σ1σ3 + σ2
2 − σ4︸ ︷︷ ︸

c4(τ2)

− σ5
1 + 4σ3

1σ2 − 3σ2
1σ3 + 2σ1σ4 − 3σ1σ

2
2 + 2σ2σ3 − σ5︸ ︷︷ ︸

c5(τ2)

+ ...

Since cm(τ2) = 0 for m > 2, we have the following relations:

σ3 = 2σ1σ2 − σ3
1

σ4 = 2σ1σ3 − 3σ2
1σ2 + σ2

2 + σ4
1

σ5 = 2σ1σ4 + 2σ2σ3 − 3σ2
1σ3 − 3σ1σ

2
2 + 4σ3

1σ2 − σ5
1

and most importantly, the Chern classes:

c1(τ2) = −σ1

c2(τ2) = σ2
1 − σ2 = g2
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To describe the Chow ring CH(P6), we can identify P6 with the factor ring Z[H]/(H7)
where H = c1(O(1)) is the class of a hyperplane section. Thus, the first Chern class
of the tautological bundle of P6 is equal to c1(τ1) = c1(O(−1)) = −H.

Using the formula, (Example 3.2.2 following Remark 3.2.3 (b) in [Ful])

cp(E ⊗L ) =

p∑
i=0

(
q − i
p− i

)
ci(E )c1(L )p−i

for the pth Chern class of the tensor product of a vector bundle E of rank q and line
bundle L , we have the following rational cycles in the Chow ring CH∗(Gr(2, 7)×P6):

r = c1(pr∗1(τ2)⊗ pr∗2(τ1)) =
1∑
i=0

(
2− i
1− i

)
ci(pr∗1(τ2))c1(pr∗2(τ1))1−i

= 2c1(pr∗2(τ1)) + c1(pr∗1(τ2))

= 2pr∗2(c1(τ1)) + pr∗1(c1(τ2))

= 2pr∗2(−H) + pr∗1(−σ1)

= 2(−1×H) + (−σ1 × 1)

= −2×H + (−σ1 × 1)

ρ = c2(pr∗1(τ2)⊗ pr∗2(τ1)) =
2∑
i=0

(
2− i
2− i

)
ci(pr∗1(τ2))c1(pr∗2(τ1))2−i

= c1(pr∗2(τ1))2 + c1(pr∗1(τ2))c1(pr∗2(τ1)) + c2(pr∗1(τ2))

= pr∗2(c1(τ1))2 + pr∗1(c1(τ2))pr∗2(c1(τ1)) + pr∗1(c2(τ2))

= pr∗2(−H)2 + pr∗1(−σ1)pr∗2(−H) + pr∗1(g2)

= (−1×H)2 + (−σ1 × 1)(−1×H) + (g2 × 1)

= 1×H2 + σ1 ×H + g2 × 1

Notice that there is also an equivalence relation on cycles in CH(Gr(2, 7)× P6). For
two cycles α and β we shall write α ≡ β if there exists a cycle γ such that α−β = 7γ.
The equivalence relation ≡ preserves rationality.
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We have the following rational cycles in CH(Gr(2, 7)× P6):

ρ2 = (1×H2 + σ1 ×H + g2 × 1)2

= (1×H2)2 + (σ1 ×H)2 + (g2 × 1)2 + 2(1×H2)(σ1 ×H)

+ 2(1×H2)(g2 × 1) + 2(σ1 ×H)(g2 × 1)

= (1×H4) + (σ2
1 ×H2) + (g2

2 × 1) + (2σ1 ×H3) + (2g2 ×H2) + (2g2σ1 ×H)

= (1×H4) + (2σ1 ×H3) + (σ2 + 3g2 ×H2) + (2g3 ×H) + (g4 × 1)

ρ3 = [(1×H4) + (2σ1 ×H3) + (σ2 + 3g2 ×H2) + (2g3 ×H) + (g4 × 1)]

· [(1×H2) + (σ1 ×H) + (g2 × 1)]

= (1×H6) + (σ1 ×H5) + (g2 ×H4) + (2σ1 ×H5) + (2σ2
1 ×H4) + (2g2σ1 ×H3)

+ (σ2 + 3g2 ×H4) + (σ2σ1 + 3g2σ1 ×H3) + (g2σ2 + 3g2
2 ×H2) + (2g3 ×H3)

+ (2g3σ1 ×H2) + (2g3g2 ×H) + (g4 ×H2) + (g4σ1 ×H) + (g4g2 × 1)

≡ (1×H6) + (3σ1 ×H5) + (3σ2 + 6g2 ×H4)

+ (σ3 + g3 ×H3) + (6g4 + 3h4 ×H2) + (3g5 ×H) + (g6 × 1)

ρ5 ≡ ρ3 · ρ2

≡ (5σ4 + g4 + 3h4 ×H6) + (σ5 + 5g5 + 3h5 ×H5) + (g6 + 3h6 + 5k6 ×H4)

+ (5g7 + 3h7 ×H3) + (g8 + 3h8 ×H2) + (5g9 ×H) + (pt× 1)

Now consider the correspondence product (ρ3)t ◦ ρ5 ∈ CH(Gr(2, 7)×Gr(2, 7)) where
(ρ3)t denotes the rational correspondence obtained from the transpose map. We
calculate, recalling that deg(α) = 0 for α ∈ CHj(P6) such that j 6= dim(P6). That
is, we only write terms in the expansion with factors of deg(ηH6) where η ∈ Z.

(ρ3)t ◦ ρ5

≡ [(H6 × 1) + (H5 × 3σ1) + (H4 × 3σ2 + 6g2) + (H3 × σ3 + g3)

+ (H2 × 6g4 + 3h4) + (H × 3g5) + (1× g6)] ◦ [(5σ4 + g4 + 3h4 ×H6)

+ (σ5 + 5g5 + 3h5 ×H5) + (g6 + 3h6 + 5k6 ×H4) + (5g7 + 3h7 ×H3)

+ (g8 + 3h8 ×H2) + (5g9 ×H) + (pt× 1)]

≡ deg(H6 · 1)(pt× 1) + deg(H5 ·H)(5g9 × 3σ1)

+ deg(H4 ·H2)(g8 + 3h8 × 3σ2 + 6g2) + deg(H3 ·H3)(5g7 + 3h7 × σ3 + g3)

+ deg(H2 ·H4)(g6 + 3h6 + 5k6 × 6g4 + 3h4)

+ deg(H ·H5)(σ5 + 5g5 + 3h5 × 3g5) + deg(1 ·H6)(5σ4 + g4 + 3h4 × g6)

≡ (pt× 1) + (g9 × σ1) + (3g8 − 5h8 × σ2 + 2g2) + (5g7 − 4h7 × σ3 + g3)

+ (3g6 − 5h6 + k6 × 2g4 + h4) + (3σ5 + g5 + 2h5 × g5) + (5σ4 + g4 + 3h4 × g6)
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We show that the rational cycle (ρ3)t ◦ ρ5 ∈ CH10(Gr(2, 7) × Gr(2, 7)) is indeed a
projector (idempotent correspondence). For this case, we omit terms in the expansion
containing deg(α) for which α ∈ CHj(Gr(2, 7)), j 6= dim(Gr(2, 7)) = 10. That is;

((ρ3)t ◦ ρ5) ◦ ((ρ3)t ◦ ρ5)

≡ [(pt× 1) + (g9 × σ1) + (3g8 − 5h8 × σ2 + 2g2) + (5g7 − 4h7 × σ3 + g3)

+ (3g6 − 5h6 + k6 × 2g4 + h4) + (3σ5 + g5 + 2h5 × g5) + (5σ4 + g4 + 3h4 × g6)]

◦ [(pt× 1) + (g9 × σ1) + (3g8 − 5h8 × σ2 + 2g2) + (5g7 − 4h7 × σ3 + g3)

+ (3g6 − 5h6 + k6 × 2g4 + h4) + (3σ5 + g5 + 2h5 × g5) + (5σ4 + g4 + 3h4 × g6)]

≡ deg(pt · 1)(pt× 1) + deg(g9 · σ1)(g9 × σ1)

+ deg((3g8 − 5h8) · (σ2 + 2g2))(3g8 − 5h8 × σ2 + 2g2)

+ deg((5g7 − 4h7) · (σ3 + g3))(5g7 − 4h7 × σ3 + g3)

+ deg((3g6 − 5h6 + k6) · (2g4 + h4))(3g6 − 5h6 + k6 × 2g4 + h4)

+ deg((3σ5 + g5 + 2h5) · g5)(3σ5 + g5 + 2h5 × g5)

+ deg((5σ4 + g4 + 3h4) · g6)(5σ4 + g4 + 3h4 × g6)

≡ deg(pt)(pt× 1) + deg(pt)(g9 × σ1) + deg(pt)(3g8 − 5h8 × σ2 + 2g2)

+ deg(pt)(5g7 − 4h7 × σ3 + g3) + deg(pt)(3g6 − 5h6 + k6 × 2g4 + h4)

+ deg(pt)(3σ5 + g5 + 2h5 × g5) + deg(pt)(5σ4 + g4 + 3h4 × g6)

≡ (pt× 1) + (g9 × σ1) + (3g8 − 5h8 × σ2 + 2g2) + (5g7 − 4h7 × σ3 + g3)

+ (3g6 − 5h6 + k6 × 2g4 + h4) + (3σ5 + g5 + 2h5 × g5) + (5σ4 + g4 + 3h4 × g6)

≡ ((ρ3)t ◦ ρ5)

Since ((ρ3)t◦ρ5) is an integral rational projector (over Z) in CH10(Gr(2, 7)×Gr(2, 7)),
then by Corollary 4.3.9, it has the form pS := p ×k ksep, where p is a projector in
CH10(SB2(A) × SB2(A)) and therefore, also in End(M(SB2(A))). Hence, we have
an object (SB2(A), p) in the category M(G,Z), and thus,

M(SB2(A)) ' (SB2(A), p)⊕ (SB2(A), p)c



Appendix A

Schubert Multiplication Table

The following tables give the complete set of multiplicative products of the Schubert
classes of Gr(2, 7).

· 1 σ1 σ2 σ3 σ4 σ5 g2 g3 g4

1 1 σ1 σ2 σ3 σ4 σ5 g2 g3 g4

σ1 σ1 σ2 + g2 σ3 + g3 σ4 + h4 σ5 + h5 k6 g3 g4 + h4 g5

σ2 σ2 σ3 + g3 σ4 + g4 + h4 σ5 + g5 + h5 h6 + k6 h7 h4 g5 + h5 h6

σ3 σ3 σ4 + h4 σ5 + g5 + h5 g6 + h6 + k6 g7 + h7 h8 h5 h6 + k6 h7

σ4 σ4 σ5 + h5 h6 + k6 g7 + h7 g8 + h8 g9 k6 h7 0
σ5 σ5 k6 h7 h8 g9 pt 0 0 0
g2 g2 g3 h4 h5 k6 0 g4 g5 g6

g3 g3 g4 + h4 g5 + h5 h6 + k6 h7 0 g5 g6 + h6 g7

g4 g4 g5 h6 h7 0 0 g6 g7 g8

g5 g5 g6 + h6 g7 + h7 h8 0 0 g7 g8 + h8 g9

g6 g6 g7 h8 0 0 0 g8 g9 pt
g7 g7 g8 + h8 g9 0 0 0 g9 pt 0
g8 g8 g9 0 0 0 0 pt 0 0
g9 g9 pt 0 0 0 0 0 0 0
h4 h4 g5 + h5 g6 + h6 + k6 g7 + h7 h8 0 h6 g7 + h7 h8

h5 h5 h6 + k6 g7 + h7 g8 + h8 g9 0 h7 h8 0
h6 h6 g7 + h7 g8 + h8 g9 0 0 h8 g9 0
h7 h7 h8 g9 pt 0 0 0 0 0
h8 h8 g9 pt 0 0 0 0 0 0
k6 k6 h7 h8 g9 pt 0 0 0 0
pt pt 0 0 0 0 0 0 0 0
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· g5 g6 g7 g8 g9 h4 h5 h6 h7 h8 k6 pt

1 g5 g6 g7 g8 g9 h4 h5 h6 h7 h8 k6 pt
σ1 g6 + h6 g7 g8 + h8 g9 pt g5 + h5 h6 + k6 g7 + h7 h8 g9 h7 0
σ2 g7 + h7 h8 g9 0 0 g6+h6+k6 g7 + h7 g8 + h8 g9 pt h8 0
σ3 h8 0 0 0 0 g7 + h7 g8 + h8 g9 pt 0 g9 0
σ4 0 0 0 0 0 h8 g9 0 0 0 pt 0
σ5 0 0 0 0 0 0 0 0 0 0 0 0
g2 g7 g8 g9 pt 0 h6 h7 h8 0 0 0 0
g3 g8 + h8 g9 pt 0 0 g7 + h7 h8 g9 0 0 0 0
g4 g9 pt 0 0 0 h8 0 0 0 0 0 0
g5 pt 0 0 0 0 g9 0 0 0 0 0 0
g6 0 0 0 0 0 0 0 0 0 0 0 0
g7 0 0 0 0 0 0 0 0 0 0 0 0
g8 0 0 0 0 0 0 0 0 0 0 0 0
g9 0 0 0 0 0 0 0 0 0 0 0 0
h4 g9 0 0 0 0 g8 + h8 g9 pt 0 0 0 0
h5 0 0 0 0 0 g9 pt 0 0 0 0 0
h6 0 0 0 0 0 pt 0 0 0 0 0 0
h7 0 0 0 0 0 0 0 0 0 0 0 0
h8 0 0 0 0 0 0 0 0 0 0 0 0
k6 0 0 0 0 0 0 0 0 0 0 0 0
pt 0 0 0 0 0 0 0 0 0 0 0 0
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