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Weather derivatives are financial tools used to manage the risks related to changes

in the weather and are priced considering weather variables such as rainfall, tem-

perature, humidity and wind as the underlying asset. Some recent researches sug-

gest to model the amount of rainfall by considering the mean reverting processes.

As an example, the Ornstein Uhlenbeck process was proposed by Allen [3] to model

yearly rainfall and by Unami et al. [52] to model the irregularity of rainfall inten-

sity as well as duration of dry spells. By using the Feynman-Kac theorem and the

rainfall indexes we derive the partial differential equations (PDEs) that governs the

price of an European option. We apply the Lie analysis theory to solve the PDEs, we

provide the group classification and use it to find the invariant analytical solutions,

particularly the ones compatible with the terminal conditions.
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Chapter 1

Introduction

In general, companies activities face risks related to changes in the weather. The

agriculture and energetic industry are examples of sectors that can be influenced by

weather variables such as rainfall, snowfall, temperature, humidity and wind. For

example, the electricity supply and the crop yield can be influenced negatively by

the rain, wind. To face these risks, companies must choose according to the nature

of theirs activities, which kind of weather protections they must use. In agriculture

for example, the crop yield can depend on quantities of rainfall. There is a strong

correlation between the amount of rainfall and wheat yield [41] and [50]. A strong

correlation between the amount of rainfall and maize yield was also mentioned in

[21]. This suggest that the crop yield is dependent of an expected amount of rain-

fall. If the observed amount of rain is less or more than the amount required, the

farmers can lose or get few crop yield than expected. If they can protect themselves

against adverse weather patterns the risk will substantially decrease.

The financial instruments used to manage weather risks are called financial Weather

contract since they are related to weather variables and can take the form of a

weather derivative contract (WD) with the main purpose to cover non-catastrophic

weather events or the form of a weather insurance contract (WI) with the main

purpose to cover catastrophic weather events. Depending on the circumstances,

the flexibility and efficiency of WD make them more attractive than the WI.

As stated in [1] and [22], the WD is formulated by specifying some parameters

and among them the underlying meteorological index which can be, for example

temperature degree days (DD) and their variants "heat degree days (HHD) or cool

degree days (CDD)", rainfall. Generally for pricing WD one can use methods based

on arbitrage-free pricing principles [47], [48], equilibrium models [12] and actuarial

approach [8], since the WD underlying is not tradable asset and the Black-Scholes

methodology can not be implemented directly. The methods based on PDEs were

suggested to model temperature derivatives by Pirrong and Jermakyan [47],[48]

and posteriori adopted by other researchers, such as Alaton, Djehiche, and Still-

berger [1], Balter and Pelsser [4] and Li [36].
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I found few studies on pricing rainfall derivatives considering methods based on

PDEs and mostly are treated in the context of discrete models. This fact can be

justified by the nature of the rainfall that is observed in discrete time. But there are

some attempt to use the stochastic differential models to price also rain derivatives

such as [19]. They used the mean reverting process as a base model for rainfall and

then applied numerical integration schemes to price rainfall options derivatives

underlying to cumulative daily average amount of rain. In [52] and [3] was also

suggested a mean reverting process (Ornstein-Uhlenbeck process) as a base model

to describe the dynamics of the rainfall.

Motivated by these studies and after see how the model can fit the rainfall data con-

sidering the public rainfall data from the German weather station (www.dwd.de),

we use the Girsanov’s theorem to derive the PDE of the Ornstein-Uhlenbeck pro-

cess that govern the price of any option underlying to the rainfall. The rainfall index

is constructed by a similar principle to the degree-days indexes used to model tem-

perature derivatives and it was shown that it gives higher hedging effectiveness

[41]. We provide the analytical solutions of associated equations by applying the

Lie group analysis.

The application of the Lie group analysis, can allow to synthesize symmetries of

differential equations and construct their analytical invariant solutions. It was in-

troduced by Sophus Lie, with his work "On integration of a class of linear partial dif-
ferential equations by means of definite integrals " [37]. He identified a set of equations

which could be integrated or reduced to lower-order equations by group theoretic

algorithms and proposed the group classification of the linear seconder-order par-

tial differential equation with two independent variables. On his classification he

pointed that all parabolic equations admitting the symmetry group of the highest

order could be reduced to the heat conduction equation. The collections of his and

others results on group analysis of differential equation can be found in [31].

In financial mathematics the Lie analysis was applied firstly by Gazizov and Ibrag-

imov in [20]. They started by analyzing the complete symmetry of one dimen-

sional Black-Scholes model and showed that this equation is included in Sophus

Lie’s classification of linear second-order partial differential equation with two in-

dependents variables, and it can be reduced to the heat equation. For Jacobs-Jones

models, they carried out the classification according to their symmetry groups, pro-

viding a theoretic background for constructing exact (invariant) solutions for this

equation, since it does not admit the symmetry group of the highest order.

More research on the same direction can be found, for example in [46], provided a

Lie group classification of the Lie point symmetries for the Black-Scholes-Merton

Model for European options with stochastic volatility. The volatility was defined

following stochastic differential equation with an Ornstein-Uhlenbeck term. In this
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model, the value of the option is given by a linear (1 + 2) dimensional evolution

partial differential equation. They found that for arbitrary functional form of the

volatility, the evolution PDE always admits two Lie point symmetries in addition

to the automatic linear symmetry and the infinite number of symmetries solution.

However, for a particular value of the functional volatility and the price of the

option depending on the second Brownian motion in which the volatility is defined,

the evolutionary PDE is not reduced to the Black-Scholes-Merton equation. The

model admits five Lie point symmetries in addition to the linear symmetry and the

infinite number of symmetries solution. By applying the zero-order invariants of

the Lie symmetries they reduced the (1 + 2) dimensional evolutionary PDE to a

linear second-order ordinary differential equation. They also studied the Heston

model and the Stein-Stein model. Lo and Hui [38], applying Wei–Norman theorem

derived the analytical closed-form for pricing weather derivatives by exploiting

the dynamical symmetry of the (1+1) dimensional pricing PDE describing financial

derivatives with time-dependent parameters.

Our aim in this study is to make a Lie group classification for (1+2) dimensional

evolution PDE that govern the price of weather derivative underlyed to the weather

variable modeled by Ornstein-Uhlenbeck process with constant volatility and de-

terministic mean. By making a group classification one can realize that the PDE

can be reduced to the heat equation and if not, can use the subalgebras to find their

invariant solutions.

Some PDEs can be reduced to the heat equation by change of variables if they have

a symmetry of highest order [37]. As we know the heat equation has a known

fundamental solutions. If we are interested to find the solution for a PDE, we can

reduce it to heat equation, but some times, as illustrated in [14], if it is a boundary

value problem, the solutions produced may not be necessary a probability density.

In order to show this, they considered a problem which vanishes in the bound-

ary, but by changing the variables they found that some fundamental solutions

were not defined in the boundaries. Also by making further change of variables

they produced a problem which was more complicated than the original, show-

ing the importance of the techniques which allows to solve PDE avoiding change

of variables. One way to do so, is to consider all the symmetries admitted by the

PDEs and find the ones mapping the boundary and final conditions to the values

of the original problem. This will be the technique that we will firstly implement

in order to solve the (1+2) dimensional PDE derived from the Ornstein-Uhlenbeck

process. But, since the application of the symmetry compatible with the termi-

nal conditions in (1+2) dimensional PDE, produced an (1+1) dimensional parabolic

PDE with complicated coefficients that made impossible to compute its symmetries

directly, we use the results from [39], that allow to reduce the (1+1) dimensional

parabolic PDE to heat equation in order to use its fundamental solution to find the
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candidate to fundamental solution for the (1+1) dimensional parabolic PDE. This

fundamental solution can only be used to produce the solution compatible with ter-

minal condition for (1+1) dimensional PDE, if provided that its limit when t → T
is Dirac function [49].

This thesis is divided in six chapters. Chapter one is the introduction. The second

Chapter has two sections. We present some of the basic notions and terminologies

of stochastic calculus and financial derivatives. Chapter three is subdivided in two

section focus on the methodology of pricing weather derivatives and in the rainfall

derivative model. We show how the Ornstein-Uhlenbeck process fits the model

and we derive the corresponding PDE. The Chapter four is also subdivided in two

sections where we present a brief background of theory of one-parameter trans-

formation of the Lie group analysis and we provide a summary of concepts, main

theorems and the methodology of Lie symmetry theory for PDEs. Chapter five is

subdivided in four sections, we apply the methodology of Lie symmetries to the

PDE of the Ornstein-Uhlenbeck process. We present some basic transformations of

the PDE, the result of the infinitesimal operators and the Lie group classification of

the equation with the coefficients satisfying the restrictions σ 6= 0, k(k2 + π2) 6= 0,

showing that the dimension of the symmetry group depends on the values of the

parameters σ and k. We also present the extension of the principal Lie algebra, the

constructions of invariant solutions including the ones compatible with the termi-

nal conditions and the determination of the one dimensional optimal system. We

finalize the thesis in Chapter 6 where we present the conclusions and the future

work.
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Chapter 2

Background on financial
Mathematics

Weather derivatives are financial tools used to manage financial risks related to

the weather and are priced under consideration of some weather indexes, which

among others could be the temperature, rainfall and wind.The prices and the weather

variables evolve as stochastic processes, and in continuous time context can be

modeled by stochastic differential equations. This chapter focus on some of the ba-

sic notions and terminologies of stochastic calculus and financial derivatives which

will be used freely throughout this study, sometime without further references.

2.1 stochastic calculus

The observations of some processes such as natural phenomenons, the prices of

stocks, commodities are depending on time t. For each fixed time ti the values of

the process are random i.e., we only known the set for which the value of the pro-

cess belongs. These phenomenons are usually called stochastic processes in con-

tinuous or discrete time. The evolution of the stochastic processes can be modeled

and the probability that their values belong to any chosen set can be calculated. The

stochastic calculus gives the tools to operate with stochastic phenomenons. In this

section we give a brief review of the basic notions and terminologies of stochastic

processes in continuous time context. The principal results of this section is the

Feynman-Kac formula, which will be used to derive the PDEs that governs the

prices of the rainfall derivatives. In order to explain these formulas we will also

present some of the keys concepts such as martingales, Markov properties, Brown-

ian motion, Itô’s formula and the Girsanov’s theorem. Further details can be found

in [32], [33], [42] and [35].
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2.1.1 Stochastic Processes

Some processes depending on the time can take random values for an fixed time, so

are random functions of time. We could be interested in modeling this uncertainty

or to model the flow of the information of the process. The stochastic process is a

mathematical model used to represent the occurrence of a random phenomenon at

each moment after the initial time. The important concept to define the stochastic

process is the concept of probability space, which represent the notion of probabil-

ity measure.

Definition 2.1.1 (of σ-algebra, measurable space, probability measure, probability

space)

If Ω is a given set, a σ-field or σ-algebra F in Ω is a collection or family of subsets

of Ω satisfying the following conditions:

• non empty: ∅ ∈ F and Ω ∈ F ,

• if A ∈ F , then Ac ∈ F , where Ac = Ω− A is the complement of A in Ω;

• if A1, A2, . . .∈ F , then
⋃∞

i=1 Ai ∈ F and
⋂∞

i=1 Ai ∈ F .

The pair (Ω,F ) is called a measurable space. A probability measure P in a measur-

able space (Ω,F ) is a function P : F → [0, 1] such that

• P(∅) = 0, P(Ω) = 1;

• if A1, A2, . . .∈ F and {Ai}∞
i=1 disjoint then P(

⋃∞
i=1 Ai) = ∑∞

i=1 P(Ai).

The triple (Ω,F , P) is called a probability space.

With a notion of measurable space and the correspondent σ-field F we can define

the stochastic process.

Definition 2.1.2 (of stochastic process)

Consider the probability space (Ω,F , P). A stochastic process is a parametrized

collection of random variables X = {Xt}0≤t<∞ on (Ω,F , P), taking values in Rn.

From the above definition, each realization also called sample path of the stochastic

process is a function of time t. The stochastic processes can be classified depending

on the time or according to its values, both cases being discrete or continuous. The

stochastic process in discrete time is considered when the values of the stochastic

process change at certain fixed points in time. In other hand when the changes

of the stochastic process occur at any time we will have continuous time stochastic

process. In term of the values that the stochastic process can take, it can be classified

as discrete if it takes only discrete values and continuous if it takes any value in any

continuous subset. If we conjugate the two classifications we found in total four
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categories

• Discrete time-discrete variable,

• Discrete time-continuous variable,

• Continuous time-discrete variable,

• Continuous time- continuous variable.

Example 1

Consider a sample point ω ∈ Ω representing the state of the weather variable such

as a rainfall, the sample path or trajectory of the process X associated with this

weather condition ω is a function t 7→ Xt(ω), t ≥ 0 which represent the quan-

tity of rainfall per unit of time (for example, day, week, month,year). In this case

Xt(ω) ∈ R+
0 . If we consider for example the day as a unit of time, it can be cate-

gorized on Discrete time-continuous variable, since the variable take values in R+
0 .

In other hand if we are interested to measure the quantity of rainfall during an in-

terval, for example 3 months, we can categorize it on continuous time-continuous

variable.

Our focus will be in stochastic calculus in continuous time since the weather vari-

ables and the weather derivatives are manly modeled by stochastic differential

equations. In order to describe the distribution and the probabilities of the un-

certain future, we require that the stochastic process has a finite-dimensional dis-

tributions, see for example [35]. We assume that the observed processes are càdlàg

(regular right-continuous) functions. In this context the stochastic processes are dif-

ferent only in sets of null measures and are called versions one of another therefore

there is no distinction between them. The next example illustrates two processes

which are versions one of another.

Example 2 (Klebaner [35],Pag.48)

Let Xt = 0 ∀t, t ∈ [0, 1], and τ be a uniformly distributed random variable in [0, 1].

Let Yt = 0 for t 6= τ and Yt = 1 if t = τ. Then for any fixed t, P(Yt 6= 0) = P(τ =

t) = 0, hence P(Yt = 0) = 1, so that all one-dimensional distributions of Xt and

Yt are the same. Similarly all finite-dimensional distributions of X and Y are the

same. However the functions Xt, t ∈ [0, 1] (the sample paths of the process X) are

continuous in t, whereas every sample path Yt, t ∈ [0, 1] has a jump at the point τ.

Additionally P(Xt = Yt) = 1, ∀t ∈ [0, 1].

Definition 2.1.3 (of the versions one of another processes)

Two stochastic process Xt and Yt are called versions (modifications) one of another
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if

P(Xt = Yt) = 1, ∀t ∈ [0, T].

Additionally if happens that P(
⋃

t∈[0,T] Xt 6= Yt) = 0, then the process are called

indistinguishable and the set N =
⋃

t∈[0,T] Xt 6= Yt is called evanescent set.

In the Example 2, P(Xt 6= Yt) = P(τ = t) = 0 for any t ∈ [0, 1]. But P(
⋃

t∈[0,1] Xt 6= Yt) =

P(τ = t for some t in [0, 1]) = 1, since the union of single sets Xt 6= Yt contains un-

countable many null sets and in this case the probability of the union set is one, the

two processes Xt and Yt are not called indistinguishable.

More generally, if two processes Xt and Yt are versions one of another and they are

also càdlàg functions, then they are indistinguishable.

Theorem 2.1.1 (conditions of existence of càdlàg versions of a stochastic process)

Let Xt, t ∈ [0, T] be an stochastic process with values in R, if

1. there existe α > 0 and ε > 0, such that for any 0 ≤ u ≤ t ≤ T,

E|Xt − Xu|α ≤ C(t− u)(1+ε), (2.1)

for some constant C, then there exists a version of X with continuous sample

paths, which are Hölder continuous of order h < ε
α ,

2. there exist C > 0, α1 > 0, α2 > 0 and ε > 0, such that for any 0 ≤ u ≤ v ≤
t ≤ T,

E(|Xv − Xu|α1 |Xt − Xv|α2) ≤ C(t− u)(1 + ε), (2.2)

then, there exists a version of Xt with paths that may have discontinuities at

any interior point, both right and left limits exist, and one-sided limits exist

at the boundaries.

Definition 2.1.4 (of the Markov process)

LetFt denote the σ-field generated by the process up to time t. X is Markov process

if for any t and s > 0, the conditional distribution of Xt+s given Ft is the same as

the conditional distribution of Xt+s given Xt, that is

P(Xt+s ≤ y|Ft) = P(Xt+s ≤ y|Xt), a.s. (2.3)

From the Markov property in Definition 2.1.4, we can understand that the future

behavior of the Markov process depends only on the present states of the process

and not on the past.

Definition 2.1.5 (of filtration)
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The filtration is defined as non-decreasing family {Ft}t≥0 of σ−field Ft ⊆ F such

that Fs ⊆ Ft ⊆ F for 0 ≤ s < t < ∞.

Definition 2.1.6 (of stochastic process adapted to Filtration)

The process X is called adapted to the filtration (Ft)t≥0 if the random variable Xt

is (Ft,F ) measurable function for each t.

Definition 2.1.7 (of supermartingale,submartingale and martingale process)

A stochastic process {Xt, t ≤ 0} adapted to a filtration F is a supermatingale (sub-

martingale), if for any t it is integrable, E[|Xt|] < ∞, and for any s < t

E(Xt|Fs) ≤ Xs, (E(Xt|Fs) ≥ Xs). (2.4)

If E[Xt|Fs] = Xs, then the process Xt is called martingale.

The condition E[Xt|Fs] = Xs means that the expectation of the stochastic variable

is conditioned in the past values of Xt up to s. Fs is a filtration associated with the

measure space (Ω,F ) and is defined in Definition 2.1.5.

2.1.2 Brownian motion

The Brownian motion or Wiener process is a particular type of the Markov process

with mean zero and variance t.

Definition 2.1.8 (of Brownian motion)

A stochastic process B = (Bt, t ∈ R+) is called Brownian motion or Wiener process

if the following conditions are satisfied:

• it start at zero: B0 = 0,

• the function t→ Bt is almost surely continuous and non differentiable,

• it has independents increments with distribution Bt − Bs ∼ N(0, t − s) i.e.,

the random variable Bt − Bs is independent of the random variable Bu − Bv

when t > s ≥ u > v ≥ 0.

Brownian motion is a process whose movements are similar to the movement de-

scribed firstly by Robert Brown in 1828. Robert Brown described a motion of the

a pollen particle suspended in fluid that was moving describing irregular, random

continuous paths. In the figures below we can see examples of this movements.
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FIGURE 2.1: One path of realization of Brownian motion

In finance the same term was used by Lours Bachelier in 1900 in his PhD thesis to

describe the movements of the stock prices, but the mathematical foundation for

Brownian motion as a stochastic process was developed in 1931 by Norbert Wiener

and, therefor the process is also called Wiener process. Generally it is denoted by

Bt or Wt, for Brown or Wiener respectively.

Theorem 2.1.2 (Martingale property for Brownian motion)

Let Bt be a Brownian motion, then

1. Bt is a martingale,

2. B2
t − t is a martingale,

3. For any u, euBt− u2
2 t is a martingale.

The proof of this theorem is made firstly by considering that Bt is Brownian mo-

tion in Rn, so that E[|Bt|]2 ≤ E[|Bt|2] = |B|2 + nt and if s ≤ t then E[Bt|Fs] =

E[Bt − Bs + Bs|Fs] = E[Bt − Bs|Fs] + E[Bs|Fs] = E[Bt − Bs] + Bs = Bs, since

E[Bt − Bs] = 0 (Bt − Bs is independent of Fs and E[Bs|Ft] = Bs, since Bs is Fs

measurable.

Theorem 2.1.3 (Markov property for Brownian motion)

Brownian motion Bt possesses Markov property.
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The proof of this theorem can be made by using the moment generating function

to find the conditional distribution of Bt+s given Ft and by using the property that

eu(Bs+t−Bt) is independent ofFt and the Brownian increments are normal distributed

with mean 0 and variance s i.e., N(0, s) so that

E[euBt+s|Ft] = euBt E[eu(Bt+s−Bt)|Ft] = euBt E[euBt+s−Bt ] = euBt e
u2s

2 =

= euBt E[euBt+s−Bt |Bt] = E[euBt+s |Bt].

2.1.3 stochastic differential equations

Stochastic process have been proposed in many applications and the categories of

"continuous time-continuous variable" have been proved to be more commonly

used. In the definition of the Brownian motion we can see that Bt has zero mean

(drift rate) and variance t i.e., E(Bt) = 0 and Var(Bt) = t. The definition of the

Brownian motion can be extended in order to retrieve a stochastic process with any

drift rate b and variance in terms of the Brownian independent increments dBt, and

this is called generalized Wiener process or a Brownian motion and can be defined

as:

dXt = bdt + σdWt. (2.5)

In (2.5) the parameters b, σ are constants and Xt has drift rate equal to b and vari-

ance σ2 per unit time. If we consider that the expected proportional change in a

short period of time remains constant, whereas the expected absolute change in

short period vary in time and that the uncertainty regarding the magnitude of fu-

ture changes in variable is proportional to the variable, the model (2.5) take the

form

dXt = bXtdt + σXtdWt. (2.6)

The model (2.6) is called geometric Brownian motion and was mostly used to model

the stock price changes. In Geometric Brownian motion both, the drift rate and

variance rate are functions of Xt that change over the time, and the process is called

Itô process. The Itô process is the generalization of the Wiener process or Brownian

motion, b and σ being functions of the underlying variable X and time t, written in

general form as

dX(t) = b(t, X(t))dt + σ(t, X(t)dWt (2.7)

where Wt is m - dimensional Brownian motion.
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As we can see, all these equations are differential equations with the second term

being a random term (the white noise), therefore they are called stochastic differ-

ential equations. In general the stochastic differential equations are obtained by

allowing randomness coefficients σ(t, Xt)Wt in the differential equation

dXt

dt
= b(t, Xt) (2.8)

and being

dXt

dt
= b(t, Xt) + σ(t, Xt)Wt (2.9)

where Xt ∈ Rn, b(t, Xt) ∈ Rn is the drift rate of the variable X per unit time. Wt ∈
Rm denotes "white noise" and σ(t, x) ∈ Rn×m the variance rate of X or the intensity

of the noise at X per unit time. The equations (2.9) implies that the variations in the

variable in short period of time are explained by an know rate (the deterministic

term) plus an unknown rate (the "white noise").

There are various interpretations of equation (2.9), but here we will focus on the Itô

interpretation, which is given by (2.7). The Itô equation is found by replacing Wt in

(2.9) by Wt =
dBt
dt and multiplying the resultant equation by dt. In the stochastic dif-

ferential equation (2.7), the deterministic coefficient b is called the drift coefficient

and the stochastic coefficient σ is called the diffusion coefficient.

If the solution of (2.7) is thought as representation of the mathematical trajectory of

the motion of a small particle in a moving fluid, such stochastic process is called Itô

diffusions [42]. The Itô diffusions have the property of being time-homogeneous,

in the sense of the Markov property (the future behaviour of the Itô diffusion is not

influenced by the past).

2.1.4 Itô’s formula for Itô processes

The Itô formula is a main tool of the stochastic calculus and can be thought as an Itô

integral version of the chain rule. We will use the Itô formula in the demonstration

of the Feynman-Kac theorem.

First we present the notion of the integration of the stochastic differential equa-

tion. The integrator of the Itô integral is a Brownian motion Bt with an associated

filtration Ft and the integrand process X possess the following properties:

• X is adapted to the Brownian motion in [0, T],

• The integral
∫ T

0 E[X2
s ]ds < ∞.
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Definition 2.1.9 (of the Itô integrable stochastic process)

A stochastic process Xs is called Itô integrable in the interval [0, t] if Xs is adapted

for s ∈ [0, t] and
∫ t

0 [X
2
s ]ds < ∞.

The Itô integral is defined as the random variable

It(X) =
∫ t

0
XsdBs = lim

n→∞

n−1

∑
i=1

X(si)(B(si+1)− B(si)). (2.10)

The notion of Itô process presented above in terms of a differential form can also

be given rigorously in term of integral form.

Definition 2.1.10 (of Itô processes or Itô integral)

Let Bt be Brownian motion in (Ω,F , P). A Itô process (or Itô stochastic integral) is

a stochastic process Xt in (Ω,F , P) of the form

Xt = X0 +
∫ t

0
b(s, w)ds +

∫ t

0
σ(s, w)dBs (2.11)

for σ ∈ WF =
⋂

T≥0WF (0, T), WF (0, T) denotes the class of process σ(t, w) ∈ R

satisfying:

• (t, w) → σ(t, w) is B × F - measurable (B denotes the Borel σ-algebra on

[0, ∞));

• There existe an increasing family of σ-algebra F , t ≥ 0 such that Bt is a mar-

tingale with respect to Ft and σ is Ft-adapted;

•
P
[∫ t

0
σ2(s, w)ds < ∞ for all t ≥ 0

]
= 1, (2.12)

b(s, w) is Ft−adapted and

P
[∫ t

0
|b(s, w)|ds < ∞ for all t ≥ 0

]
= 1. (2.13)

The itô integral is characterized by the following properties:

1. (Filtration adapted) for each t ∈ [0, T], It is Ft−mensurable,

2. (Linearity) Given two processes X1, X2 and constants c1, c2 for t ∈ [0, T], we

have

∫ t

0
[c1X1

s + c2X2
s ]dBs = c1

∫ t

0
X1

s dBs + c2

∫ t

0
X2

s dBs,
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3. It(X) is martingale,

4. It(X) has expectations zero i.e., E[
∫ t

0 XsdBs] = 0,

5. (Continuity) It(X) is a continuous function of the upper limit of the integra-

tion t,

6. (Isometry) E[
∫ t

0 XsdBs]2 =
∫ t

0 E[X2
s ]ds.

Theorem 2.1.4 (the Itô formula)

Let Xt be an Itô process given by

dXt = b(t, xt)dt + σ(t, Xt)dBt. (2.14)

If f (t, x) is twice continuously differentiable on [0, ∞) × R, then Yt = f (t, Xt) is

again an Itô process, and the stochastic differential equation of the process exists

and is given by

dYt =
∂ f
∂t

(t, Xt)dt +
∂ f
∂x

(t, Xt)dXt +
1
2

∂2 f
∂x2 (t, Xt)(dXt)

2 (2.15)

where (dXt)2 = (dXt)(dXt) is computed according to the following rules

dtdt = dtdBt = dBtdt = 0, dBtdBt = dt. (2.16)

Following the definition of an Itô process, one can prove that the process f (t, Xt)

admits the following representation

f (t, Xt) = f (0, X0) +
∫ t

0
σs

∂ f
∂x

(s, Xs)dBs +

+
∫ t

0

(
∂ f
∂s

(s, Xs) + bs
∂ f
∂x

(s, xs) +
σ2

s
2

∂2 f
∂x2 (s, Xs)

)
ds. (2.17)

The proof can be made by substitution (2.14) in (2.15) and with application of the

rules (2.16) we get an Itô process in the sense of Definition 2.11 i.e., (2.17), where

bs = b(s, w), σs = σ(s, w). The idea is to assume that the functions f , ∂ f
∂t , ∂ f

∂x , ∂2 f
∂x2 are

bounded. The assunption is suported by the fact that generally f can be approxi-

mated by functions fn ∈ C2, such that fn, ∂ fn
∂t , ∂ fn

∂x , ∂2 fn
∂x2 are bounded for each n and

converge uniformly to f , ∂ f
∂t , ∂ f

∂x , ∂2 f
∂x2 respectively in a compact subsets of R+

0 ×R.

In addition, the functions b(t, Xt) and σ(t, Xt) are elementary functions so that, can

be approximated respectively by functions bn and σn. The interval [0, t] is divided

by n equals sub-intervals and, the increment f (t, Xt) − f (0, X0) is represented as

∑n−1
0 ( f (tj+1, Xtj+1) − f (tj, Xtj)) so that, the function f (t, Xt) is approximated by

the Taylor expansion up to the second order derivatives terms and is evaluated

at points (tj, Xtj). Applying the assumption that b and σ are elementary functions
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and after substituting (∆Xj)
2 by (bj∆tj + σj∆Bj)

2, the limit is taken when ∆tj → 0.

More details can be found in [42].

The Itô formula can be used to calculate the values of the stochastic integrals as we

illustrate in the following example.

Example 3

Suppose that we choose Xt = Bt and f (t, x) = x2 where Bt is the Brownian motion.

The first and second derivatives of f (t, x) are respectively f ′t (t, x) = 0, f ′x(t, x) = 2x
and f ′′xx(t, x) = 2. So, Yt = f (t, Bt) = B2

t . The Itô formula will be

dYt =
∂ f
∂t

(t, Xt)dt +
∂ f
∂x

(t, Xt)dXt +
1
2

∂2 f
∂x2 (t, Xt) · (dXt)

2

= 0dt + 2BtdBt + (dBt)
2 = 2BtdBt + dt

hence

d(B2
t ) = 2BtdBt + dt.

In the integral form, for s ∈ [0, t] we will have

B2
t = 2

∫ t

0
BsdBs + t,

from the last representation we can deduce that

∫ t

0
BsdBs =

B2
t

2
− t

2

By the Itô formula we can see that there is a link between the stochastic process and

a second order partial differential equation. This link usually is defined in terms of

the generators defined as bellow.

Definition 2.1.11 (of generator of Itô diffusion)

Let Xt be a (time-homogeneous) Itô diffusion in Rn. The (infinitesimal) generator

L of Xt is defined by

L f (x) = lim
t↓0

Ex[ f (Xt)]− f (x)
t

; x ∈ Rn. (2.18)

The set of functions f : Rn → R such that the limit exists at x is denoted by DL(x),
while DL denotes the set of functions for which the limit exists for all x ∈ Rn.

The deduction of the generator formula L for an Itô diffusion process can be found

detailed in [42], but the principal idea is to consider that the expectation Ex[ f (Xt)]
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in (2.18) can be calculated by

Ex[ f (Xt) = f (x) + ∑
ik

Ex[σik
∂ f
∂xi

(X)dBk] +

+Ex

[∫ t

0

(
∑

i
bi

∂ f
∂xi

(X) +
1
2 ∑

ij
(σσT)ij

∂2 f
∂xi∂xj

(X)

)
ds

]
(2.19)

in addition we assume that f is bounded Borel function, so that the limit of the

second term in (2.19) can be vanished and any Itô diffusion process Xt in Rn will

alwalys be associeted with the generator L given by

L f = ∑
i

bi
∂ f
∂xi

+
1
2 ∑

ij
(σσT)ij

∂2 f
∂xi∂xj

; f = f (x) ∈∈ C2
0(R

n). (2.20)

2.1.5 Girsanv’s theorem for Brwnian motion

The Girsanov’s theorem plays an important role in the stochastic analysis. Named

after Igor Vladimirovich Girsanov, tells how the dynamics of the stochastic process

changes when the original measure is changed to an equivalent measure. When

pricing derivatives, the underlying asset measure is usually converted from the

real measure to the risk-neutral measure.

Two measures P and Q in a probabilistic space (Ω,F , P) are equivalent if they have

the same null sets. If it happens, there exists a random variable M, called Radon-

Nikodym derivative

M =
dQ
dP

such that the probabilities under Q are given by

Q(A) =
∫

A
MdP, ∀A ∈ F .

By the Girsanov’s theorem we find the form of M.

Theorem 2.1.5 (Girsanov’e theorem)

Let Bt, t ∈ [0, T], be a Brownian motion under probability measure P. Consider

Wt = Bt + λt. Define the measure Q by the stochastic process

Mt =
dQ
dP

(Bt) = e(λBt− 1
2 λ2t), t ∈ [0, T]. (2.21)

Q is equivalent to P, and Wt is a Q− Brownian motion.

dP
dQ

(Wt) = e(λWt− 1
2 λ2t), t ∈ [0, T]. (2.22)
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The proof is made using the Levy’s characterization of the Brownian motion, as a

continuous martingale with quadratic variation process t. Quadratic variation is

the same under P and Q, by convergence in probability (on the result of the general

Bayes formula). Since λt is a smooth function it has no contribution to the quadratic

variation, therefore

[Wt, Wt] = [Bt + λt, Bt + λt] = [Bt, Bt] = t

To prove that Wt is Q−martingale we consider that Mt = EP(M|Ft) and one can

show that MtWt is P - martingale by direct calculations i.e.,

EP(Wt Mt|Ft) = EP((Bt + λt)e(−λBt− 1
2 λ2t)|Ft) = Wt Mt.

2.1.6 Feynman-Kac formula

In many applications a stochastic process Xt can be associated to a second order

partial differential operator L in the sense that L is the generator of the process Xt.

The Feynman-Kac theorem allow the probabilistic representation of the solutions

of the PDEs whose their infinitesimal operators are associated with the stochastic

process. The connection between the Markov property of Xt and the PDE is made

by applying the Itô’s formula on the martingale term.

Let Xt be a diffusion process satisfying the following SDE

dXt = b(Xt, t)dt + σ(Xt, t)dBt and Xs = x. (2.23)

Theorem 2.1.6 (Feynman-Kac Formula)

For given bounded functions r(x, t) and g(x) let

V(x, t) = E
(

e−
∫ T

t r(Xu,u)dug(XT)|Xt = x
)

(2.24)

assume that there is a solution to a Cauchy problem

∂ f
∂t

(x, t) + Lt f (x, t) = r(x, t) f (x, t), with f (x, T) = g(x) (2.25)

then the solution is unique and equal to V(x, t).

The principal item in the Feynman-Kac theorem is the Itô formula associated to

solutions of the linear SDE. By applying the Itô formula in the solution of (2.25) we
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get

d f (Xt, t) =
(

∂ f
∂t

(Xt, t) + Lt f (Xt, t)
)

dt +
∂ f
∂x

(Xt, t)σ(Xt, t)dBt. (2.26)

The last term is a martingale term, so it can be write as dMt. Substituting the first

equation of (2.25) into (2.26) we obtain the linear SDE

d f (Xt, t) = r(Xt, t) f (Xt, t)dt + dMt (2.27)

Integrating this SDE between t and T, and using T ≥ t as a time variable and t as

the origin we get

f (XT, T) = f (Xt, t)e
∫ T

t r(Xu,u)du + e
∫ T

t r(Xu,u)du
∫ T

t
e
∫ T

t r(Xu,u)dudMs. (2.28)

By substituting the terminal conditions f (XT, T) = g(XT) of the Cauchy problem

(2.25) into (2.28) and rearranging, we get

g(XT)e−
∫ T

t r(Xu,u)du = f (Xt, t) +
∫ T

t
e
∫ T

t r(Xu,u)dudMs. (2.29)

Now we take the expectation of (2.29) given Xt = x.

E
(

g(XT)e−
∫ T

t r(Xu,u)du|Xt = x
)
=

= E
[(

f (Xt, t) +
∫ T

t
e
∫ T

t r(Xu,u)dudMs

)
|Xt = x

]
, (2.30)

applying the linearity property of expectation in (2.30) we get

E
(

g(XT)e−
∫ T

t r(Xu,u)du|Xt = x
)
=

= E ( f (Xt, t)|Xt = x) + E
(∫ T

t
e
∫ T

t r(Xu,u)dudMs|Xt = x
)

. (2.31)

Note that the last term is an integral of a bounded function with respect to martin-

gale, it is itself a martingale with zero mean, then

E
(

g(XT)e−
∫ T

t r(Xu,u)du|Xt = x
)
= E ( f (Xt, t)|Xt = x) (2.32)

So, that V(x, t) = f (x, t).

Note also that if r is constant, the quantity e−
∫ T

t rduE (g(XT)|Xt = x) is well known

and represent in finance the discounted expected payoff.
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2.2 Financial derivatives

This section provide an overview of financial tools used to manage financial risks.

We give the concepts used for evaluation of financial derivatives which will be used

during this study. Our principal focus will be in weather derivatives. More details

about financial derivatives can be found in [2], [25], [24], [28], [40], [7], [13] and [15].

2.2.1 Products and fundamentals

For the companies survive and prosper there will always be a risk to handle. These

risks can be equity risks such as interest rates, exchange rates, commodities prices

or in less traditional markets can be weather risk, energy price risk, and insurance

risks. In general the companies have no expertise to predict such variables and as

a solution they prefer to hedge the risks associated with their activities. The funda-

mental idea is that by hedging they can avoid unpleasant surprises and concentrate

only on their production. There is also the idea of the existence of the trade-off be-

tween the risk and return, since the higher expected returns can only be achieved

by taking higher risks. The risk management is a principal tool to understand the

portfolio of risks currently taken and the risks planed to take in the future. In the

financial market there are many financial tools that can be used to manage the fi-

nancial risk and they are called contingent claims.

Definition 2.2.1 (of contingent claims)

Contingent claim-T or T-claim is a contract which pays to the holder a stochastic

amount X at time T. The random variable X is FT-measurable and T is called

exercise time of the contingent claim or maturity of the contract.

The common characteristic of the contingent claims is that they a defined in terms

of the underlying asset and according to the nature of the financial products to be

exchanged, and can define specifics financial markets such as:

• Stock markets: familiar notion of stock exchange markets such as New York,

London, Tokyo, Milan;

• Bond markets: products with fixed return, usually issued by the central banks;

• Currency markets or foreign exchange: currencies and their prices are deter-

mined;

• Commodities markets: commodities prices such as oil, gold, are fixed;

• Future, forward, swaps, options markets: derivatives products based on one

or more other underlying products typically of the previous markets.
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Also into futures and options markets one can consider sub-markets according to

the specific underlying asset such as, power derivative, oil derivatives, weather

derivatives. The underlying asset are respectively the power, oil and weather.

Derivatives are contracts applied to financial products and can be in form of stan-

dard products or plain vanilla products, structured or exotics products. The last

group is designed to meet particular needs of the corporate treasure. The most

traded plain vanilla products are options, future, swaps and forward contracts.

• Forward contract

Is an agreement made between two parties to buy an asset in the future at a

certain price. One of the parties assumes a long position (i.e., agrees to buy

the underlying asset at a certain specified future date for a certain specified

price) and the other party assumes a short position (i.e., agrees to sell the

asset in the same date for the same price). These contracts are traded usually

over-the-counter market (OTC).

The OTC markets is not a organized market. The term of the contract do not

have to be those specified by an exchange and the market participants are

free to negotiate any mutually attractive deal. In contrast of over-the-counter

market, we have the exchange-traded market, which is a organized market

where the contracts and the trading among the participants are respectively

defined and organized by the exchange so that the traders can be sure that

the trades they agree to, will be honored.

• Futures Contracts

Like forwards contracts the futures contracts are agreement to buy an asset

at a future time. But unlike forward contracts, futures are traded on an ex-

change. This means that the contracts are standardized. The exchange de-

fines the amount of the underlying asset of the contract, when delivery can

be made, what can be delivered, and so on. This contract can be closed before

the delivery month is reached.

• Swaps

Is an agreement between two companies to exchange cash flows in the future.

The agreement defines the dates when the cash flows are to be paid and the

way in which they are to be calculated. The forward contracts can be viewed

as swap in the sense that they lead to exchange of cash flows on just one

future date whereas the swaps lead to cash flow exchanges taking place on

several future dates.

• Options

Are financial contracts that are traded on both exchanges and OTC markets,

in two types, a call option and a put option. A call option gives to the holder

the rights to buy the underlying asset at a certain date for certain price. A
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put option gives the holder the rights to sell the underlying asset at a certain

date for a certain price. The price in the contract is called exercise price or

strike price, the date is called expiration date or maturity. In the point of view

of the exercise date the options can be splited into two types, American option
and European options. American options can be exercised at any time up to the

expiration date, whereas the European options can be exercised only on the ex-

piration date. In contrast to the forward or futures contracts, the option gives

the holder the rights, with no obligation to sell or buy the underlying asset

and there is a cost to take position on these contracts. On the exercise date the

option can be in one of the three different situations, at-the-money, out-of-the
money and in-the-money. An at-the-money option is an option where the strike

price is close to the price of the underlying asset. An out-of-the-money option is

call option where the strike price is above of the price of the underlying asset

or a put option where the strike price is below this price. An in-the money option
is a call option where the strike price is below the price of the underlying asset

or a put option where the strike price is above to this price.

Futures and forwards contracts provide a hedger an exposure at one particular

time. The use of future contracts sub-intend that the holder intend to close the con-

tract prior to maturity and as a result the hedge performance is reduced somewhat

because there is uncertainty about the difference between the futures price and the

spot price on the close-out date, called basis risk. The swaps contracts can provide

a hedge for cash flows that will occur in a regular basis over a period of time. But

option are different type of hedging instrument from forwards, futures, and swap.

Whereas this last consider the prices for future sales or purchases of an asset, an

option provides an insurance.

With this, contingent claims are expected that to catch up the price in the market,

but it will be worth depending on the time t and on the price S(t) of the underlying

asset. The requirement X ∈ FT in the Definition 2.2.1 means that, at maturity T it

will be possible to determine the value to be paid. The associated payoff function

f (·) is usually calculated at point ST (the final value of the asset price at maturity).

Bellow we present a payoff function of the European option, f (x) = (x−K, 0)+ for

a call, and f (x) = (K− x, 0)+ for a put. Here K represent the strike price.
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FIGURE 2.2: The payoff functions of call and put options.

From the Figure 2.2, we can see that the holder of a call option will make a profit

if the spot price at maturity ST is higher than the strike price K = 50m.u so that, if

ST = 55m.u we will have (ST −K, 0)+ = (55m.u− 50m.u, 0)+ = 5m.u. Otherwise if

ST − K ≤ 0 we will have (ST − K, 0)+ = 0. In other hand the holder of a put option

will make a profit if the spot price at maturity is lower than the strike price K so

that if ST = 45m.u we have (K− ST, 0)+ = (50m.u− 45m.u, 0)+ = 5m.u. Otherwise

K− ST ≤ 0, we will have (K− ST, 0)+ = 0.

The main problem is to determine a fair price for the contingent claim correspond-

ing to the price process St. Under some assumptions, the Black-Scholes formula

gives the unique price of the option. Although these assumptions are not generally

true in the real world, they determine the start point to investigate the practical

problems. The principal assumption is that the market is efficient in the sense that

it is free of arbitrage possibilities. The arbitrage concept and among others which

we define bellow, are some of the keys concepts on the theory of financial invest-

ments. More details can be found in [7].

Definition 2.2.2 (of self financing portfolio)

Consider price process {S(t), t ≥ 0}.

• A portfolio strategy is any Ft− adapted N−dimensional process

{h(t), t ≥ 0}
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where hi(t) is the number of shares of the type i holded during the period

[t, t + ∆t];

• The value process Vh corresponding to the portfolio h is given by

Vh(t) =
N

∑
i=1

hi(t)Si(t), (2.33)

where Si(t)is a stock price of the underlying asset to the share i at time t;

• A consumption process is any Ft−adapted one- dimensional process;

• A portfolio-consumption pair (h, c) is called self-financing if the value Vh sat-

isfies the condition

dVh(t) = h(t)dS(t)− c(t)dt. (2.34)

Definition 2.2.3 (of risk free asset)

The price process S is a risk free asset if it has the dynamics

dS(t) = r(t)S(t)dt (2.35)

where r is any adapted process.

The definition of the risk free asset suggest that the dynamics of the asset is not

driven by stochastic term. It can correspond to a bank deposit with the short inter-

est rate r, or for deterministic constant rate r, a price of a bond.

Definition 2.2.4 (of arbitrage)

An arbitrage possibility on a financial market is a self-financing portfolio h such

that

Vh(0) = 0, P(Vh(T) ≥ 0) = 1, P(Vh(T) > 0) > 0. (2.36)

A market is arbitrage free if there are no arbitrage possibilities (absence of arbi-

trage).

The arbitrage possibilities can be interpreted as a possibilities of making a positive

values of money without taking any risk. This is a serious problem in the financial

market and generally is assumed that the market is efficient if there is no arbitrage

possibilities, although is not generally true in the real world.

Theorem 2.2.1 (condition for no arbitrage)

Suppose that there exist a self-financing portfolio h such that the value process Vh

has the dynamics

dVh(t) = k(t)Vh(t)dt, (2.37)
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where k is an adapted process. Then k(t) = r(t) for all t, or there exists arbitrage

possibilities.

The proof of this theorem can be found in [7], but the principal idea is to consider

that for k > r, we can borrow money from the bank at the rate r and immediately

invest in the portfolio strategy h and it will grow at the rate k so that, from zero

initial investment we get profit at any time t > 0 (it mean that we have the possibil-

ities of arbitrage). If in other hand we consider r > k, we sell the portfolio h (short)

and we immediately invest the money in the bank, and again there are arbitrage

possibilities.

2.2.2 Weather derivatives

Many companies activities face risks related to changes in the weather and it can

adversely influence their performance. The weather risks are managed by using

the financial instruments, and they are called financial Weather contract. Following

Dischel and Barrieu in [17], we can define a financial weather contract as a weather

contingent contract whose payoff is determined by a future weather events and

the settlement value of these weather events is determined from a weather index

expressed as values of a weather variable measured at a stated location. The com-

monly underlying weather indexes are

• Temperature,

• Rainfall,

• Humidity,

• Wind,

• Snowfall.

The financial weather contract can take the form of a WD or of a WI contract.

The significant difference between the Weather derivatives and weather insurance

contracts as appointed in [21] and [50], following on regulatory and legal point of

views are:

• the insurance contracts cover only high risks, with low probability of occur-

rence, whereas weather derivatives also cover low risks, with high probability

of occurrence;

• the WI usually are more expensive and require a demonstration of loses whereas

the WD are cheaper and do not depend on loses, it only depend on the obser-

vation of the weather indexes;

• the payoff on weather derivatives must be proportional to the magnitude of
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the phenomena whereas on weather insurance contracts, it can only depend

on the amount of losses.

Depending on the circumstances, the flexibility and efficiency of WD make them

more attractive than the WI. WD belong to the group of less traditional markets in

early stage of development, where usually are considered the risks such as weather

risk, energy price risk, and insurance risks.

The main purpose of using WD is to cover non-catastrophic weather events. As

example the rainfall derivatives can be used by the companies to protect them-

selves against fluctuation on their revenues caused by frequent rains or dry peri-

ods. In agriculture for example, the crop yield can depend on quantities of rainfall.

As shown, for example in [41] and [50] there is a strong correlation between the

amount of rainfall and wheat yield. Also in [21] is showed that there is a strong

correlation between the amount of rainfall and maize yield. Then the crop yield

will depend on an expected(normal) amount of rainfall. If the observed amount of

rain is less or more than the amount required, the farmers can lose or get few crop

yield than expected. If the farmers can protect themselves against adverse rain-

fall patterns during the critical stages of growth, the crop yield risk will substan-

tially decrease. Geyser proposed in [21] some possible rainfall options strategies for

maize yield. She suggested a options risk protection strategy called long strangle,

where a long call and a long put are combined. This combination provides to the

farmer a hedge traditionally associated in the financial markets with high volatility

of the underlying risk exposure.

The first weather derivative was executed in the United State of America in 1997,

between two energy companies (Koch Industries and Enron), using a swap on

temperature indexes to hedge against warm days in winter. Two years later, the

expansion of the climatic contracts gave birth to an organized electronic platform

launched by the Chicago Mercantile Exchange (CME) [34]. The first contracts traded

were essentially degree days in temperature contracts. In 2003, the CME opened at

two subsidiary respectively in Europe and in Japan. In Africa, few countries started

to offer weather derivatives contracts and in very small volume. Morocco and

South Africa have launched a few OTC contracts. Other initiatives by the World

Bank associated with private companies to reduce natural extreme weather risks in

developing countries have shown to be very important demanded by small farm

holders notably for example in Ethiopia. The proportion of all type of climatic con-

tracts negotiated was appointed in [34] to be more significantly on CME market in

2005, with 95% of contracts against 5% of OTC contracts.
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2.2.3 Complete and Incomplete markets

The concept of completeness of a system of markets is related to existence of enough

commodities in the markets. A market is complete when any asset can be replicated

into a portfolio. But in the real world such markets does not exist, since the time and

the uncertainty are included in the definition of the complete market. Can happen

that some commodities are not tradable and the market is said to be incomplete.

The notion of completeness is very important because it can allow to assess the in-

efficiency of a particular market so that we can use specifics mechanism in order

to make such markets less incomplete. In the incomplete markets the no-arbitrage

theory of valuation based in the principle of self-financing replicating portfolio is

not applicable since the martingale measure is not unique as in complete markets

[7]. Details about completeness can be found in [15] and [7].

The identification of completeness of markets can be made via the Meta-theorem

as follow:

Theorem 2.2.2 (Meta-theorem)

Let M denote the number of underlying assets in the model excluding the risk

free asset, and R denote the number of random sources. Generically the following

relations are valid

1. The model is arbitrage free if and only if M ≤ R,

2. The model is complete if and only if M ≥ R,

3. The model is complete and arbitrage free if and only if M = R.

In the meta-theorem the concepts of completeness and absence of arbitrage (arbi-

trage free) works in opposite directions. The idea is, if we fix the number of the

random sources and we increase the number of underlying assets we will create

an arbitrage portfolio, therefore to avoid an arbitrage free market the number of

underlying asset must be small than the number of random sources. On the other

hand, by adding new underlying asset to the model, gives us new possibilities

of replicating a given contingent claim. The completeness requires the number of

the underlying assets to be greater than the number of the random sources. This

theorem is also used in the problems of untradable assets. As an example, in the

Black-Scholes model we have one underlying asset with one risk asset (M = 1).

The model is driven by one Wiener process (R = 1), so that we have the number of

the underlying asset equal the number of random sources. By the meta-theorem we

can conclude that the Black-Scholes model is in a arbitrage free as well as complete

market.
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Theorem 2.2.3 (First fundamental theorem in mathematical finance)

A necessary and sufficient condition for the absence of arbitrage opportunities is

the existence of the martingale measure of the underlying asset process.

The proof of this theorem is made in two parts namely, the necessity and the suf-

ficiency. In the necessity is proved that the absence of arbitrage implies existence

of equivalent martingale measure. The demonstration is made by assuming that

all asset price process are bounded in order to guarantee the integrability so that,

the arbitarge is viewed in the sence of "bounded arbitrage". By the Girsanov theo-

rem, we have to prove the existence of a Radon-Nikodyn derivative L in FT which

will transform the P−measure into a Q martingale measure. This is made by con-

sidering that L ∈ L1 = L1(Ω,FT, P) and the existence of the duality between the

spaces L1 and Lm = L∞(Ω,FT, P) although, this assumption is not generally true

(the detailed discussion can be found in [7]). Furthermore we define the sets

K = K0 ∩ L∞,

L∞
+ = the set of non-negative random variables in L∞, (2.38)

C = K− L∞
+ ,

whereK0 is the space of all claims which can be reached by a self financing portfolio

at zero initial cost, K consist of all bounded claims which are reachable by a self

financing portfolio at zero initial cost, and C consist of claims in K that can be

reached by self financing portfolio with zero initial cost if the investor also allow

himself to throw away the money. By absence of arbitrage assumption we deduce

that C ∩ L∞
+ = {0} and both C and L∞

+ are convex sets in Lm with only one common

point. The nonzero random variable L ∈ L1 such that

(a) : EP[LX] ≥ 0, ∀X ∈ L∞
+ and

(b) : EP[LX] ≤ 0, ∀X ∈ C (2.39)

is guaranted by the convex separtion. From (2.39(a)) one can deduce that in fact

L ≥ 0 and by scaling one can choose L such that EP[L] = 1 so that, one can use L as

a Radon-Nikodym derivative to define a new measure Q by dQ = LdP in FT and

Q is a natural candidate as a martingale measure.

The sufficiency is proved from the fact that the existence of a martingale measure

implies absence of arbitrage, for that we assume the existence of martingale mea-

sure Q and then, we apply the Girsanov theorem so that, all price process can be

expressed with zero drift under Q. Furthermore, the no arbitrage possibility is
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proved by assume the existence some self financing process h which is also uni-

formly bounded and satisfy

P(V(T, h) ≥ 0) = 1 ∧ P(V(T, h) > 0) > 0, (2.40)

where V(T, h) is value of the process h at maturity T. Since, the condition (2.40)

can suggest h as potential arbitrage portfolio, we have to show that V(0, h) > 0 in

order to guarantee the absence of arbitrage. This is made by considering that from

Q ∼ P we also get the condition (2.40) under Q. In the other hand, since h is self

financing and bounded it is shown that V(t, h) is Q−martingale so that, V(0, h) =
EQ[V(T, h)] and V(0, h) > 0 since (2.40) under Q imply that EQ[V(T, h)] > 0.

Theorem 2.2.4 (Second fundamental theorem in mathematical finance)

Assume the absence of arbitrage opportunities. Then a necessary and sufficient

condition for the completeness of the market is the uniqueness of the martingale

measure.

This theorem is also proved in two steps. In the sufficiency we assume that the

martingale measure Q is unique, then M = {Q} so Q is trivially an extremal point

of M thus, every Q−martingale M can be represented by the stochastic integral of

the form

M(t) = x +
N

∑
i=1

∫ t

0
hi(s)dZi(s). (2.41)

This imply that M can be hedged in the S− economy therefore the model is com-

plete. The necessity is obtained by considering that if the market is complete then,

every claim X can be replicated so that, for hedging portfolio h

V(t, h) = EQ[e−
∫ T

t r(s)dsX|Ft].

More details about the demonstration of the first and second fundamental theorems

in Mathematical Finance can be found in [7]. From these two theorems, one can

determine the conditions of arbitrage free and completeness of the financial market

in the point of view of martingale approach. So if we consider a complete market

and the assumption of arbitrage free principle, the unique price π(S) of a risk free

contigent claim S is determined by

π(S) = EQ[e−rTS] (2.42)

where Q is the unique martingale measure and r is the interest rate of the risk free

asset. In the case where the market satisfies the no-arbitrage assumption but does
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not satisfy the completeness assumption, the price π(S) is supposed to belong to

the interval

π(S) ∈
[
in fQ∈MEQ[e−rTS], supQ∈MEQ[e−rTS]

]
, (2.43)

whereM is the set of all equivalent martingale measures.
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Chapter 3

Weather derivative pricing

As appointed in [2], the market is still relatively illiquid while practitioners and

risk management companies keep WD data private and do not publish their mod-

els making difficulty to develop pricing models for weather risks. There is no gen-

eral framework for pricing weather derivatives. The companies mostly use histor-

ical analysis pricing methodology [18] because of the simplicity in terms of its im-

plementation. Some researchers, for example in [9] argued that this methodology

gives inaccurate results. In recent years the continuous model have been proposed.

The evolution of the weather variables are described by the dynamics models and

these are used to price weather derivatives.

3.1 Overview on pricing weather derivatives

The determination of the price is made in two principal steps. First the develop-

ment of the model for dynamics of the weather variable and, in the second step the

dynamics of the weather variable are used to price WD. More generally the WD

can be formulated as in [54] specifying the following parameters:

• Contract type, if it is European or American option, Future, Swap, among

others;

• Contract period, usually 1 month or 6 months (Six months corresponds to

hedging either the winter or summer season);

• The referential point, from which the meteorological data is obtained;

• The underlying index of the contract (can be, Temperature DD and their vari-

ants "HHD or CDD", rainfall, etc) for each commodity;

• Pre-negotiated threshold or strike level for weather index (S);

• Tick or constant payment for a linear or binary payment scheme ”τ” (translate

the payoff into monetary terms), and

• The premium.
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In the WD market the underlying is not tradable asset, then weather models do not

follow Geometric Brownian motion [1], therefore Black-Scholes methodology can

not be implemented directly. Alternative methods based on arbitrage-free pricing

methods [47], [48], equilibrium models [12] and actuarial approach [8] was pro-

posed. The methods based on PDEs were suggested to model temperature deriva-

tives in [47], [48] and posteriori adopted by other researchers in [1], [4] and [36].

Since the underlying is non-tradable asset the price is determined under the theory

of incomplete markets, where the risk neutral equivalent probability is not nec-

essarily unique as in theory of the Black Scholes framework ( the underlying is

tradable asset). The claims can not be hedged by the principle of self-financing

portfolio. They have suggested to calculate the arbitrage-free price of weather op-

tion by using the market price of risk extracted from the quotations of the weather

futures and the price of the weather option determined as discounted conditional

expectation

V = E
[
e−
∫ T

t r(u)duV(T, XT, YT)|Xt = x, Yt = y
]

. (3.1)

The Feynman-Kac theorem allow to derive the PDE that governs the price of the

WD under a risk neutral probability Q. If V(t, Xt, Yt) is a solution of the PDE,

such market price of risk λ extracted from the quotations minimize the following

objective function [22]

Minλ

M

∑
t=1

(V(t, Xt, Yt)−Vθ
t )

2. (3.2)

The market price of risk is the difference between the expected rate of return of

the underlying and the risk-less interest rate reported to the quantity of risk mea-

sured by the volatility [22]. Since the risk has to be extracted from quotations of the

weather futures, the arbitrage-free pricing method is applicable only when quota-

tions are available for the weather contracts in order to extract a risk-neutral distri-

bution or to infer market prices.

3.2 Rainfall derivative model

The rainfall derivative are not commonly investigated by researchers, the reason

can come from the fact that they are not frequently traded in the market and their

complexity of the treatment from the fact that the rainfall is a local weather event. It

can happen that in two closed location the rainfall is not correlated [19]. Tradition-

ally the rainfall derivatives are treated in a context of discrete models, maybe by the

nature of the rainfall that tend to be observed in discrete time. But there are some

attempt to use the stochastic differential models to price rainfall derivatives so that

the continuous models for rainfall must be considered. The mean reverting process

model was proposed to model rainfall in [19]. They were based on the fact that as
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well as the other Weather variables the rainfall exhibits seasonal patterns and usu-

ally reverts to the mean. Additionally the value of the mean is dependent on the

time of the year and does not grow or fall indefinitely. The Ornstein-Uhlenbeck pro-

cess was applied in [52]. The simplest realization of the mean reversion property

as a model to assessing drought and flood risks. The same model is also referred in

[3] as a model for annual rainfall at a certain location over a period of decades.

3.2.1 The Ornstein-Uhlenbeck process on modelling Rainfall dynamics

In [19] the empirical studies showed that the precipitation dynamics can be charac-

terized by being

• stochastic,

• high in volatility,

• in fluctuation about a mean,

• seasonal in their effects.

Four mean reverting process were tested namely, mean reversion with constant

mean, mean reversion with deterministic mean, both driven by standardized Brow-

nian motion. The other two processes were obtained refining the previous two,

replacing the Brownian motion by the fractional Brownian motion to allow a long

term relationship. The precipitation dynamics exhibits long-range temporal depen-

dencies in the sense that the present weather condition is influenced significantly

by the previous weather conditions. Moving averages do not strongly start from

the mean, sometimes the medium term average is above or below the long term

mean. The Ornstein-Uhlenbeck process was proposed by many authors to model

weather variables possessing the same charateristics and mostly for temperature

variable. But in more recent studies it has been used to model drought and flood

risks. For example in [52] the Ornstein-Uhlenbeck process was proposed to model

the point rainfall evolving with cumulative rainfall depth. The variable becomes

smaller or larger during a drought or a flood but reverts to an average when such

an event ends. They suggested the mean reverting Ornstein-Uhlenbeck process as

the simplest model having this property of mean reversion. The same model was

referred before in [3] as a model for the annual rainfall at certain locations over a

period of decades.

Its clear that more studies still need to be made on the evolution of rainfall process

by mean reverting Ornstein-Uhlenbeck process. Motivated by the previous studies

we consider the most general Ornstein-Uhlenbeck process with deterministic mean

as a model for monthly rainfall over a period of one year.

If Xt represent the total rainfall at time t, the possible changes in the total rainfall
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over a very small interval of time dt, can be assumed to be represented by the

deterministic mean reverting Ornstein-Uhlenbeck process given by

dXt = [k(θ(t)− Xt) + θ′(t)]dt + σtdWt (3.3)

where k is the rate of the mean reversion, θ(t) is the long term mean of the process,

as in [19] it is given by

θ(t) = m + Σn
i=0αi sin

(
(2i + 1)2π(t− ν)

12

)
. (3.4)

Here m is the mean of the sine curve, α determines the oscillation and ν represent

the shift of the X − axis (to scale up to months we divide by 12). σt is the volatility

of the rainfall and dWt represent the Brownian increment under the real probability.

The number of sine terms can be found individually by analyzing the data from

the weather station which will be used to estimate the parameters. The appropriate

choice is n = 3 [19]. For simplicity we will consider the case when n = 0 (one sine

term). Then the deterministic function θ(t) is defined as

θ(t) = m + α sin
(

π(t− ν)

6

)
. (3.5)

The derivative of θ(t) is

θ′(t) =
π

6
α cos

(
π(t− ν)

6

)
. (3.6)

In order to test this model, the public rain data was obtained from www.dwd.de.

The data refer to the weather in a German weather service (Deutscher Wetterdienst,

DWD). We consider the Schleswig weather station with the complete data between

1947 and 2017. Below the figures show the dynamics of rain considering month as

units of time and period of one year. In total we have 71 periods.
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FIGURE 3.1: Monthly rain at Schleswig, 1947-2017.
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FIGURE 3.2: Monthly rain at Schleswig, 2008-2017.

From the visual inspection on the above figure we can see the suggested charac-

teristics described for rainfall variable. There are strong suspicious that it can be

modeled by the Ornstein-Uhlenbeck process (3.3). As proposed in [1], the choice

of the wienner process for noise also can be justified by the good fit to the normal

distribution of daily rainfall differences, as shown in the figure below.
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FIGURE 3.3: The density of the monthly rain differences

3.2.2 Parameter estimation and simulated path

The problem of parameter estimation for diffusion processes based on discrete ob-

served data has been studied by several authors and can be solved into different

schemes, depending on the properties of the observed data. The principal proper-

ties of the observations can be summarized as in [29]:

• Large sample scheme: the most natural, the time lag between consecutive ob-

servations is fixed and the number of observations increases as well as the

path(window) of observations [0, n ∗ lag = T]. The assumptions of stationar-

ity and/or ergodicity are required on the underlying continuous model. The

ergodicity or positive recurrent means that the process is recurrent and ad-

mits a stationary distribution i.e., the expected time that the process hit a ball

around any point y ∈ Rn after leaving from start point x ∈ Rn is finite.
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• High-frequency scheme: the path(window) of observation is fixed and the lag

goes to zero as n increases.

• Rapidly increasing design: the lag of observations goes to zero as n increases,

but the path(window) of observations also increase as n grows. In addition,

the condition of stationarity or ergodicity is required. The rapidly conver-

gence rate for lag is defined by n ∗ lagk
n → 0, k ≥ 2. Otherwise, for high

values of k is considered the slowly convergence of the lag between observa-

tions.

There are many schemes that can be applied such as least square approach, maxi-

mum likelihood estimation, adapative Bayes estimation. But in general each model

will require an adaptation to the specific situation of at least one of the elements:

drifts parameters, diffusion parameters, high dimension of parameter space, non-

ergodic case, non stationary case, etc. For high dimension of the parameter space,

the combinations estimating functions is applied. Here we apply the combinations

of estimating schemes proposed in [1] to estimate the parameter of the temperature

model as governed by Ornstein-Uhlenbeck process. Three schemes were used to

estimate the parameters of the model, namely: method of least square to estimate

parameter of the mean function, quadratic variation to estimating the volatility and

martingale estimation functions to estimate the mean reverting parameter. On the

last method the estimator is obtained as an adaptation of the estimator obtained by

replacing the Lebesgue and Itô integral on the continuous time likelihood functions

by Riemann-Itô sums, for the cases when the time between observations is bounded

away from zero. Since the estimators based only on Riemann-Itô approach, works

well when the observation time are closely spaced as stated in [6]. They also pro-

posed and proved the efficiency of the adapted estimators that are improved by

constructing a martingale estimating function from the Riemann-Itô approxima-

tion of the likelihood function. The estimation were performed with software R.

Drift parameters

The drift parameters m, α and ν in the mean function θ(t) (3.8) were estimated

by the least-square method, applying numerical schemes the Gauss-Newton al-

gorithm. For referred data and considering one sine terms we got the values of

parameter m̂ = 74.6736mm, α̂ = 19.6698 and ν̂ = 6.4262 by minimising

min
·,m,α,ν

‖Θ(·, m, α, ν)− D(·)‖ (3.7)

with

Θ(·, m, α, ν) = m + α sin
(

π(t− ν)

6

)
(3.8)
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and

D(j) =
1
N

N

∑
i=1

R(j, i), (3.9)

N = 71 is a number of periods (years) to be considered and is given by N =

T − t0 + 1 = 2017 − 1947 + 1. The quantity R(j, i) means quantity of rainfall in

month j and in year i when j = 1, . . . , 12.

Thus if the corresponding estimated value for θ is found to be θ̂ = 74.67mm, it

means that there was an average precipitation of 74.67mm per m2 at the weather

station Schleswig during the years 1947-2017.
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FIGURE 3.4: Monthly average vs θ(t): Schleswig, data series (1947-
2017)

The mean function with one sine terms does not cover all monthly average curve,

the approximation become more closely to the real average if we consider more

than one sine terms, Figure 3.5.
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FIGURE 3.5: Monthly average vs θ(t): Schleswig, data series (1947-
2017)-Aproximation with 1,2,3,4 and 5 sine terms

Volatility

To estimate the volatility σ we follow [1]. They analysed two estimators, namely

the quadratic variation proposed in [5] and the second derived by discretizing the

process proposed in [10], where they found that the use of second estimator can

induce an error in the price of the derivative because it under-estimate the value of

the mean-reversion parameter k. The estimator based on quadratic variation of Xt

is given by

σ̂2
µ =

1
Nµ

Nµ−1

∑
j=0

(Xj+1 − Xj)
2. (3.10)

The volatility σt is considered constant over the year. The output result of the

volatility based in the quadratic variation is 54.8156.

Mean-reversion Parameter

A martingale estimation functions method was applied in [1] to estimate k. Justified

by the fact that the lag between observation is not close to zero (one day). Based in

collated data over n days, the efficient estimator k̂n for k is obtained as a root of the

equation

Gn(k̂n) = 0 (3.11)
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where

Gn(k̂n) =
n

∑
i=1

ḃ(Xi−1, k)
σ2

i−1
{Xi − E[Xi|Xi−1]} (3.12)

and ḃ(Xi, k) is the derivative of the drift term of the process (3.3), written on k and

given by

ḃ(Xi, k) = θ(t)− Xt. (3.13)

Note that θ(t) is the mean function given by

θ = m + α sin
(

π(t− ν)

6

)
.

By solving the equation, the unique estimator (unique zero of equation) is given by

k̂n = −log
[

∑n
i=1 Yi−1(Xi − θ(i))

∑n
i=1 Yi−1(Xi−1 − θ(i− 1))

]
(3.14)

with

Yi−1 ≡
θ(i− 1)− Xi−1

σ2
i−1

, i = 1, 2, . . . , n. (3.15)

Based on the discretized score function

˙̃ln(k) =
n

∑
i=1

ḃ(Xi−1, k)
σ2

i−1
(Xi − Xi−1)−

n

∑
i=1

b(Xi−1; k′)ḃ(Xi−1; k)
σ2

i−1
, (3.16)

from where we have the equation ˙̃ln(k) = 0 given by

n

∑
i=1

Yi−1(Xi − Xi−1)−
n

∑
i=1

Yi−1(θ
′(i− 1) + k′(θ(i− 1))− Xi−1) = 0. (3.17)

The estimator of k (which is unique solution of (3.17)), is

k̂n =
∑n

i=1 Yi−1[Xi − Xi−1 − π
6 α cos(π(t−ν)

6 )]

∑n
i=1 Yi−1[θ(i− 1)− Xi−1]

(3.18)

where Yi−1 is defined in (3.15). Next we calculate the value of the mean reverting

parameter applying the quadratic variation approach, which is found to be k̂ =

3.3759.

Simulated tragectory of Ornstein-Uhlenbeck process

The figure 3.6 represent one simulated trajectory of Ornstein-Uhlenbeck process

(3.3). We use the public rainfall data from German weather service, www.dwd.de,



Chapter 3. Weather derivative pricing 40

Schleswig weather station, between the years 1947 and 2017.
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FIGURE 3.6: One trajectory of the Ornstein-Uhlenbeck process that
will be used to model the monthly rain

The visual inspection suggest similar appearance to the original monthly rainfall

data presented in Figure 3.1. Although the performance of the parameters can be

improved by incorporating on the mean function (3.8) more than one sine terms as

proposed in [19].

3.2.3 The PDE of the Ornstein-Uhlenbeck process

First we apply the Girsanov’s theorem to change the measure. Under the risk neu-

tral measure Q characterized by the market price of risk λ, we define

WQ
t = Wt + λt, (3.19)

we have that dWQ
t = dWt + λdt, so that dWt = dWQ

t − λdt and we replace it into

the equation (3.3) and we get

dXt = [k(θ(t)− Xt) + θ′(t)− λσt]dt + σtdWQ
t . (3.20)

where dWQ
t is the Brownian increment under risk neutral measure Q, see for exam-

ple [47], [48], [36]. By the Girsanov’s theorem WQ
t is a standard Brownian motion
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under the equivalent probability measure Q and the solution of (3.20) is martingale

under Q.

Weather derivative incomes depend on the evolution of an underlying meteoro-

logical index [1], [22]. Mostly the rainfall is modeled through an cumulative of

daily average amount of rainfall [19]. But, was shown for example in [41] that the

indexes constructed by the principle similar to that of degree-days indexes used

to modeling temperature derivatives, gives higher hedging effectiveness. Hence,

we present two ways of modeling rainfall derivatives contracts similar to the ones

used to model temperature derivatives by degree-days indexes. Bellow we present

an adaptation from [1] of the two alternatives.

Definition 3.2.1

We define rainfall defice day and denote RDD as the number of millimeters by which

the daily average rainfall Xt is below the base rainfall Xre f i.e:

f (Xt, t) = (Xre f − Xt)
+. (3.21)

Definition 3.2.2

We define rainfall excess day and denote RED as the number of millimeters by which

the daily average rainfall Xt is above the base rainfall Xre f i.e:

f (Xt, t) = (Xt − Xre f )
+. (3.22)

The "RDD" can be thought in terms of necessity of water in non raining periods

whereas, "RED" can be thought in terms of existence of more water than required in

raining periods. Hence, an investor wants to protect himself against higher levels of

rain, he can take position on RED contracts and the payment has a payoff defined

according to the equation (3.22). On the other hand if the protection is against

lower levels of rain he can take position on RDD contracts and contract will pays

according to the equation (3.21). For the strategy proposed in [21] with the expected

amount of rainfall per year between 200mm and 800mm, the investors must take

position on both RDD and RED contracts, considering the annual base raining of

200mm for RDD contracts and the annual base raining of 800mm for RED contracts.

The cumulative index Yt, of the underlying weather variable can be described by

the following equation (see for example [36])

dYt = f (Xt, t)dt. (3.23)

In this case the indexes Yt represents the amount of rainfall over all period t ∈ [0, T].
The index is a quantity of RDD or RED over all considered period. Additionally
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we consider t ≥ 0, k ≥ 0 and the initial condition X0 = x0.

Using financial theory from the rainfall model, one can measure the amount of the

rainfall in certain weather station and period, depending on the contract (RDD or

RED) one can use equation (3.21) or (3.22) as the payoff functions.

Under risk neutral probability measure, a contingent claim for example an op-

tion price V(Xt, Yt, t) can be given by (3.1), the discounting conditionally expected

payoff at maturity. By the Feynman-Kac theorem the value of the weather option

V(Xt, Yt, t) is also a unique solution of the following bivariate PDE,

∂V
∂t

= rV − f (x, t)
∂V
∂y
− γ(x, t)

∂V
∂x
− 1

2
σ2

t
∂2V
∂x2 (3.24)

where γ(x, t) = k(θ(t) − Xt) + θ′(t) − λσt , and the terminal conditions depends

on derivatives to be analyzed. The payoff is defined as f (x, t) = f (x).

When the underlying variable follow Ornstein-Uhlenbeck process, if one consider

some weather indexes, the prices for weather derivatives can be governed by a

convection-diffusion equation (3.24), that belongs to the wider class of Kolmogorov

backward equations. The diffusion effects are much smaller than the convection

effects. Pirrong and Jermakyan in [47] suggested a method based on PDEs to price

weather derivatives. They obtained the arbitrage-free prices of weather options

by inducing the market prices of risk from the quotations of the weather futures,

considering the liquidity of the weather options market.

In practise the weather option contract does not have a negotiable underlying in-

dex, and the model is still far from the reality. For practical uses, improvements of

weather derivatives pricing by PDEs can be found for example in [11]. Assuming

mean-self financing portfolio and partial hedging he derived a PDE introducing

a hedging instrument H that is imperfectly correlated with the underlying index.

Another improvement of (3.24), can be made if one consider a stochastic volatility,

which will allow to compute the market prices of risk instead of extracting them

from quotations. But as mentioned in [22], it is still necessary to have available

quotations of the weather contracts in order to extract a risk-neutral distribution.

Both risk-neutral distribution and market prices of risk requires the liquidity of the

quoted weather contracts.

The rain risk can be managed buying RDD or RED (American, Asian or European)

options, taking short or long positions. The limit on the financial gains or losses are

defined by the following terminal condition:

• for an RDD European put

V(x, y, t) = tick× (S− yT)
+, (3.25)
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• for an RDD European call

V(x, y, t) = tick× (yT − S)+, (3.26)

where yT is the value of RDD or RED index at maturity, S is strike level (that is

defined at time t) and "tick" is used to convert the quantity (yT−K)+ into monetary

terms, see for example [47], [48], [11], [51].
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Chapter 4

Lie symmetry analysis

Generally to solve differential equation we apply some special methods such as,

separation of variables, homogeneous or exact equations. These methods are spe-

cial cases of the general integration procedure based on the invariance of the differ-

ential equation under a continuous group of symmetries developed by Sophus Lie

(1842-1899) and now universally known as Lie Groups. In his paper, "On integra-
tion of a class of linear partial differential equations by means of definite integrals " [37], Lie

identified a set of equations that could be integrated or reduced to a lower-order

equations by group theoretic algorithms and proposed the group classification of

the linear seconder-order partial differential equation with two independent vari-

ables. Besides the PDEs, the Lie symmetry group theory can be applied in other

fields such as algebraic topology, differential geometry, invariant theory, bifurca-

tion theory, special functions, numerical analysis, control theory, classical mechan-

ics, quantum mechanics, relativity, continuum mechanics [44].

The symmetry group of a system of differential equations is a group which trans-

forms solutions of the system to other solutions and consist of geometric transfor-

mations on the space of independent and dependent variables for the system, and

act on solutions by transforming their images. As examples of continuous symme-

try groups we can consider the group of translations, dilatation (scaling symme-

tries) and rotations. Also exist discrete symmetry groups such as, reflections. But

the continuous symmetries can take more advantage in the point of view of the

computation.

By application of the Lie symmetry analysis the non linear characteristics of in-

variance of the system under the continuous local group transformation can be re-

placed by other equivalent and more simpler linear conditions in form of infinites-

imal invariance of the system under the group generators [44]. In most cases the

infinitesimal symmetries conditions can be solved explicitly in closed form and the

symmetry group determined explicitly then, the computer programs play a princi-

pal role. Once we have constructed the symmetry group, we can use it to determine
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new solutions to the system from known ones or to use it to make a group classi-

fication i.e., to affect a classification of families of differential equations depending

on arbitrary parameters of functions.

On the case of the ordinary differential equations, the invariance under a one-

particlar symmetry group allow to reduce the order of the equation by one, and

the solution of the original equation can be found from those of the reduced equa-

tions by single quadrature. If the equations is first order differential equation, the

reduction gives a general solution. But in general case i.e., on multi-parameter

symmetries groups sucessives reductions must be made and, in additional the con-

ditions of solvability have to be satiesfied in order to be able to reduce the original

equation by quadrature. In other hand, for partial differential equation, we can

not determine the general solution, but we can use the general group symmetry

to find special types of solutions which are invariant under some subgroup of the

symmetry group of the system of PDEs.

We provide a summary of concepts and main theorems of Lie symmetry theory

for PDEs. We gives the general description of the Lie symmetry method for com-

putation of the infinitesimal symmetries and the invariant solutions of the PDEs.

Furthermore, one can refer for more details to [45], [30], [27], [44] and [43].

4.1 Lie groups

Lie groups are continuous transformations groups and represents a subject in which

the algebraic groups and topological structures are combined. The differential

equations are regarded as a surface in the space of independent and dependent

variables together with the derivatives involved, so that its Lie group consist with

the geometric transformations which transform their solutions. Generally the dif-

ferential equations are given in Banach spaces and the group actions are those for-

mulated in the point of view of local Lie groups. In this section we give an overview

of concepts of Lie groups and some examples, most of them from [44].

Definition 4.1.1 (of group)

A group is a set G together with a group operation, usually called multiplication,

such that for any three elements g, h and k from G, the following axioms are satis-

fied

1. Closure: the product g · h is again an element of G

2. Associativity: g · (h · k) = (g · h) · k,

3. Identity element: there is a distinguished element e ∈ G, called the identity

element, which has the property that e · g = g = g · e, ∀g ∈ G,
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4. Inverses: for each g ∈ G there is an inverse, denoted g−1 with the property

g · g−1 = e = g−1 · g

If in addition the condition g · h = h · g, the group is called abelian.

Example 4

The usual sets Z and R of respectively integers and real numbers. In both sets

the group operation being addition. The addition in integers or in real numbers is

closed and associative, in both sets the identity is 0 and the inverse of an integer or

real number x is −x. Both groups are abelian, since the addition of real numbers is

commutative.

Example 5

Consider G = GL(n, Q) called general linear set of n× n invertible matrices with

rational numbers on entries or G = GL(n, R) called general linear set of n× n in-

vertible matrices with real numbers on entries. In both sets the group operation is

multiplication. The multiplication of matrices in Q or R is closed and associative.

In both cases the identity element is identity matrix I and the inverse of a matrix A,

denoted A−1 is the ordinary matrix inverse, which has respectively the rational or

real number on entries.

In the second case on both examples, the elements of the group can change contin-

uously as structure of an smooth manifold. This groups are those called Lie group

and formally defined bellow.

Definition 4.1.2 (r-parameter Lie group)

An r-parameter Lie group is a group G which also carries the structure of an r-

dimensional smooth manifold in such a way that both

• the group operation: m : G× G → G, m(g, h) = g · h, ∀g, h ∈ G,

• and the inversion: i : G → G, i(g) = g−1, g ∈ G,

are smooth maps between manifolds.

Example 6

On the second case of Example 4 we have, G = R and the group operation is ad-

dition (x, y) 7→ x + y. The inverse of x, −x. Both operation are smooth, so R is

one-parameter abelian Lie group. Generally all set of the form G = Rr, where R is

a set of real numbers can be used as example of r− parameter abelian Lie group.
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Example 7

A set G = SO(2) of rotations in the plane

Γa : x̄ = x cos a− u sin a, ū = u cos a + x sin a, −π < a < π

a denoting the rotation angle, is a one-parameter group and can be represented as

unit circle

S1 = {(cos a, sin a) : 0 ≤ a ≤ 2π},

which is a subset of R2 and the parameter is a. The group SO(2) is a special group

of 2 × 2 orthogonal matrix A, called special orthogonal group O(2), with addi-

tional property that detA = 1. Besides the rotations, the group O(2) contains also

the reflections and it has the manifold structure of two disconnected copies of S1.

Generally the special orthogonal groups for n× n matrices A is represented by

SO(n) = {A ∈ O(n) : detA = 1}, (4.1)

where O(n) is a group of orthogonal n× n matrices A, defined by

O(n) = {A ∈ GL(n) : AT A = I}. (4.2)

The general linear set GL(n) is a subset of the set of all n × n dimensional matri-

ces Mn×n, isomorphic to Rn2
, and is also n2-dimensional manifold. The set SO(n)

and O(n) are 1
2 n(n − 1)-parameter Lie group, since it is defined by n2 equations

AT A− I = 0 involving the elements of A, where precisely 1
2 n(n + 1) of these equa-

tions, corresponding to the matrix elements on or above the diagonal are indepen-

dent and satisfy the condition of maximal rank [43].

Definition 4.1.3 (Lie group homomorphism)

A Lie group homomorphism is a smoth map φ : G → H between two Lie groups,

G and H, which respects the group operations:

φ(g · g̃) = φ(g) · φ(g̃), g, g̃ ∈ G. (4.3)

Note that if φ is smooth inverse, the Lie group homomorphism determines an iso-

morphism between the Lie groups G and H.

Example 8

Consider that G = R and H = R+. The set H with the group operation being the

usual multiplication is a Lie group and is isomorphic to the Lie group G with group

operation being the usual addition. The Lie group homomorphism which is also an
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isomorphism between R and R+ is the exponential function φ : R → R+, φ(t) =
et.

Generally in the theory of Lie groups we works with groups that are subgroup of

others Lies groups. As an example, the special orthogonal groups, SO(n), are sub-

groups of orthogonal groups O(n) and these subgroups of general linear groups

GL(n). Since our interest is to study the Lie groups, we will consider only the sub-

groups of Lie groups in the sense of Definition 4.1.3, as defined below.

Definition 4.1.4 (of Lie subgroup)

A Lie subgroup H of a Lie group G is given by a submanifold φ : H̃ → G, where

H̃ itself is a Lie group, H = φ(H̃) is the image of φ which is a Lie group homomor-

phism.

Example 9

For w ∈ R, the submanifold

H2 = {(t, 2t)mod2π : t ∈ R},

is a one-parameter Lie subgroup of the torus T2 since is isomorphic to the special

orthogonal group SO(2). The elements of H2 are classes of equivalence which are

circles so that, two elements, we say (t, 2t) and (t′, 2t′), belong to the same class if

the remainder of the quotients t
2π and t′

2π is the same.

4.1.1 Local Lie Groups

As we can see from the above examples, the Lie groups can be connected or not con-

nected. The set of orthogonal n× n matrices O(n) is example of an not connected

Lie group since it contains the discrete transformation such as reflections. In the

other hand the special orthogonal groups SO(n) are connected Lie groups. These

Lie groups only contains continuous transformations which are rotations. Both the

connected and the disconnected groups are important on the study of differential

equations but the theory of local Lie group based on infinitesimal transformations

is only relevant for connected groups.

Definition 4.1.5 (of r-parameter local Lie group )

An r-parameter local Lie group consists of connected open subsets V0 ⊂ V ⊂ R

containing the origin 0, and smooth maps

m : V ×V → Rr
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defining the group operation, and

i : V0 → V

defining the group inversion, with the following properties

• Associativity: If x, y, z ∈ V, and also m(x, y) and m(y, z) ∈ V, them m(x, m(y, z)) =
m(m(x, y), z)

• Identity element: For all x ∈ V, m(0, x) = x = m(x, 0)

• Inverses: For all x ∈ V0, m(x, i(x)) = m(i(x), x).

In contrast with the usual group axioms, the rules in Definition 4.1.5, are not neces-

sarily defined everywhere, only make sense for x and y sufficiently near to 0, since

the identity element of the group is the origin 0. The definition is in term of local

coordinates and only the group elements close to the identity element are consid-

ered.

Example 10

As an example of local one-parameter group, we consider the subset of R, V = {x :

|x| < 1} with group multiplication,

m(x, y) =
2xy− x− y

xy− 1
, x, y ∈ V.

If m(y, z) = 2yz−y−z
yz−1 , then

• Associativity: m(x, m(y, z)) = m(m(x, y), z),

m(x, m(y, z)) =
2x ·m(y, z)− x−m(y, z)

x ·m(y, z)− 1
=

2x 2yz−y−z
yz−1 − x− 2yz−y−z

yz−1

x 2yz−y−z
yz−1 − 1

=
3xyz− 2xy− 2xz + x− 2yz + y + z

2xyz− xy− xz− yz + 1
,

m(m(x, y), z) =
2m(x, y) · z−m(x, y)− z

m(x, y) · z− 1
=

2 2xy−x−y
xy−1 z− 2xy−x−y

xy−1 − z
2xy−x−y

xy−1 z− 1

=
3zxy− 2zx− 2zy− 2xy + x + y + z

2zxy− zx− zy− xy + 1

As we can see, m(x, m(y, z)) = m(m(x, y), z).

• Identity: 0 is identity element

m(x, 0) = m(0, x) =
−x
−1

= x
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• Inverse: i(x) = x
2x−1 , x ∈ V0 = {x : |x| < 1

2} is inverse element, so that,

m(x, i(x)) = m(i(x), x) =
x x

2x−1 − x− x
2x−1

x x
2x−1 − 1

=
2x2 − 2x2 + x− x

x2 − 2x + 1
= 0.

Most Lie group G arise as group of transformations of some manifold M, if for

each group element g ∈ G there is associative map from M to itself. As example,

the special orthogonal group SO(2) arises as the group of rotations in the plane

M = R2. The general lineal group GL(n) appears as the the group of invertible

linear transformation on Rn.

Definition 4.1.6 (of transformation of the set)

Let M be a set. A one to one mapping of the set M onto M, τ(M), is called a trans-

formation of the set M.

As we will see in the examples of the next definition, the totality of such transfor-

mations τ(M), of the set M can form a group, where the group operation is the

composition of mappings. The identity transformation is denoted by eM. In that

case, the group τ is called a transformation group of the set M.

In order to present a concept of one-parameter local Lie group of transformations,

first we recall the representation of an smooth curve on manifold by their para-

metric form. Suppose that C is a smooth curve on a manifold M, parametrized by

φ : I ⊂ R → M. In local coordinates x = (x1, . . . , xm), the curve C is given by m
smooth functions

φ(a) = (φ1(a), . . . , φm(a))

where a ∈ I is the parameter.

Definition 4.1.7 (of one-parameter local Lie group of transformations)

A set G of transformations

Γa : x̄i = φi(x, a), α = 1, . . . , m, (4.4)

where a is a real parameter which continuously ranges in values from a neigh-

bourhood D ⊂ R of a = 0 and φi are differentiable functions, is continuous one-

paremeter local Lie group of transformations in Rm if it satisfy the properties of

group, namely

• Closure: If Γa, Γb ∈ G and a, b ∈ D′ ⊂ D, then ΓbΓa = Γc ∈ G, c = ϕ(a, b) ∈
D,

• Associativity: (ΓaΓb)Γc = Γa(ΓbΓc),
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• Identity: There exists element Γ0 ∈ G such that Γ0Γa = ΓaΓ0 = Γa for any

a ∈ D′ ⊂ D and Γ ∈ G,

• Inverse: For any Γa ∈ G, a ∈ D′ ⊂ D, there exists Γ−1
a = Γa−1 ∈ G, a−1 ∈ D

such that ΓaΓa−1 = Γ0 = Γa−1 Γa.

The concept of the one-parameter local Lie group of transformation will be the prin-

cipal key on the symmetries of PDEs.

Example 11

A set G of transformations

Γa : x̄ = x + a, ū = ekau, k = constante, a ∈ R

forms a local group, since satisfy the property of group namely:

• Closure: ΓbΓa :

¯̄x = x̄ + b = x + a + b = x + c, ¯̄u = ūekb = uek(a+b) = uekc,

since c = a + b ∈ R.

• Associativity: (ΓbΓa)Γc :

¯̄̄x = (x + a + b) + c = b + (x + a + c),

¯̄̄u = (uek(a+b))ekc = uek(a+b)+kc = uekb+k(a+c) = ekb(uek(a+c))

the last members correspond to Γb(ΓaΓc).

• Identity: Γ0Γa = ΓaΓ0 = Γa :

¯̄x = x̄ + a = x + a + 0 = x + a, ¯̄u = ūeka = uek(a+0) = ueka

• Inverse: Γa−1 = Γ−a, so that, Γ−aΓa = ΓaΓ−a = Γ0 :

¯̄x = x̄− a = x + a− a = x ¯̄u = ūe−ka = uek(a−a) = uek0 that is Γ0

Example 12

A set G of transformations

Γa : x̄ = x + a, ū = u + a2, a ∈ R
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Does not form a local group, since the property of closure is not satisfied:

ΓbΓa : ¯̄x = x̄ + b = x + a + b = x + c, ¯̄u = ū + b2 = u + a2 + b2 = u + c2

to satisfy the closure property c = a + b =
√

a2 + b2, which is not necessary true

for all a, b ∈ R.

For an given manifold M, our goal is to construct a group of local Lie group of

transformations i.e., the transformation that map M to itself. The first step is to

construct the one-parameter local Lie group of transformation and, if the given

manifold is r− dimensional, the one-parameter local Lie group is used to find the

r− prolonged local Lie group of transformation. Since we are looking for local Lie

group of transformation, the transformation are approximated by the infinitesimal

transformation using Taylor’s series for integral curves generated by the vector

field on each point x in manifold M. As said at preview sections, only the local Lie

groups homomorphism are considered.

If we consider the curve in a parametrized form, the tangent vector of the smooth

curve C given in local coordinates x = (x1, . . . , xm) at each point x = φ(a) is given

by the derivatives

v|x = φ′(a) = φ1
a(a)

∂

∂x1 + φ2
a(a)

∂

∂x2 + · · ·+ φm
a (a)

∂

∂xm (4.5)

Example 13

Consider in R3 a curve parametrized by φ(a) = (sin a, a2, a). At each point (x, y, z) =
φ(a), the tangent vector will be

v|x = cos a
∂

∂x
+ 2a

∂

∂y
+

∂

∂z
.

If x = φ(a) = (φ1(a), . . . , φm(a)) is smooth curve expressed in term of local coor-

dinates x = (x1, . . . , xm) and y = Ψ(φ(a)) is correspondent curve in term of local

coordinate y, then the tangent vector V|x in y− coordinates is given by

v|y=Ψ(x) =
m

∑
j=1

d
da

Ψj(φ(a))
∂

∂yj =
m

∑
j=1

m

∑
k=1

∂Ψj

∂xk (φ(a))
dφk

da
∂

∂yj . (4.6)

Consider the tangent space TM|x to M at x, which is defined as the collection of all

tangent vectors to all possible curves passing through a given point x ∈ M. Each

smooth tangent vector v|x ∈ TM|x is assigned to each point x ∈ M by the vector
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field v in M. In local coordinates (x1, . . . , xm), a vector field has the form

v|x =

(
ξ1(x)

∂

∂x1 + ξ2(x)
∂

∂x2 + · · ·+ ξm(x)
∂

∂xm

)
|x, (4.7)

where each ξ i(x), i = 1, . . . , m are smooth function of x.

Now consider the integral curve of a vector field v, the smooth parametric curve

x = φ(a)(a is a parameter) whose tangent vector at any point coincides with the

values of v at the same point φ′(a) = v|φ(a) for all a. In local coordinates, the integral

curve x = φ(a) is a solution of linear system of ordinary differential equations

dxi

da
ξ i(a), i = 1, . . . , m (4.8)

where ξ i(a) are the coefficients of vector field v at x. If we consider the initial values

φ(0) = x0, (4.9)

the problem of existence and uniqueness of solution for system (4.8-4.9) is guar-

antied by the standard theorems. The parametrized maximal integral curve pass-

ing through x ∈ M, a curve not containing any longer other integral curve Ψ(a, x)
is the same as a one-parameter local Lie group of transformations [44]. The vector

v is called the infinitesimal generator of the action. The basic idea is that, in local

coordinates the parametrized maximal integral curve can be approximated by the

Taylor’s series. The expressions obtained by the approximation are called infinites-

imal transformation and formally defined bellow.

Definition 4.1.8 (of infinitesimal transformation)

The infinitesimal transformation is called the approximation by the Taylor series

expansion in a of the transformation (4.4) about a = 0 taking into account the initial

conditions φi|a=0 = xi,

x̄i ≈ xi + aξ i(x) (4.10)

where,

ξ i(x) =
∂φi(x, a)

∂a
|a=0 (4.11)

components of the vector field v = ( ∂φ1(x,a)
∂a , . . . , ∂φm(x,a)

∂a ) at local coordinates (x1, . . . , xm).

There is one to one correspondence between local one parameter groups of trans-

formations and their infinitesimals generators [44]. The computation of this one-

parameter group is often referred to, as exponentiation of the vector field and is
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denoted by

e(av)x ≡ Ψ(a, x) (4.12)

With vectors fields we can realize some specific operations and the most important

is the Lie bracket or commutator.

Definition 4.1.9 (of Lie brackets)

If v and w are vector fields on manifold M, then their Lie bracket , denoted [v, w],

is the unique vector field satisfying

[v, w]( f ) = v(w( f ))− w(v( f )) (4.13)

for all smooth functions f : M→ R.

Easily we can verify that [v, w] is in reality a vector field since for

v =
m

∑
i=1

ξ i(x)
∂

∂xi and w =
m

∑
i=1

ηi(x)
∂

∂xi (4.14)

in local coordinates we have that

[v, w] = vw− wv =

= v

(
m

∑
i=1

ηi(x)
∂

∂xi

)
− w

(
m

∑
i=1

ξ i(x)
∂

∂xi

)
=

=
m

∑
i=1

(
v(ηi)− w(ξ i)

) ∂

∂xi = (4.15)

=
m

∑
i=1

(
m

∑
j=1

ξ j(x)
∂

∂xj (η
i)−

m

∑
j=1

η j(x)
∂

∂xj (ξ
i)

)
∂

∂xi =

=
m

∑
i=1

m

∑
j=1

(
ξ j(x)

∂ηi

∂xj − η j(x)
∂ξ i

∂xj

)
∂

∂xi .

Note that on Lie bracket form, the terms involving the higher derivatives of a func-

tion f cancels.The next theorem gives the properties of the Lie bracket.

Theorem 4.1.1

The Lie bracket is characterized by the following properties:



Chapter 4. Lie symmetry analysis 55

1. Bilinearity

[cv + c′v′, w] = c[v, w] + c′[v′, w],

[v, cw + c′w′] = c[v, w] + c′[v, w′]

where c, c′ are constants.

2. Skew-Symmetry

[v, w] = −[w, v]

3. Jacobi Identity

[u, [v, w]] + [w, [u, v]] + [v, [w, u]] = 0

To proof this theorem one can apply the definition of the Lie bracket (4.13) and

take in attention the fact that the vector multiplication is not commutative. c, c′ are

constants so that, we have for the bilinearity property:

[cv + c′v′, w] = (cv + c′v′)w− w(cv + c′v′) = cvw + c′v′w− wcv− wc′v′

= c(vw− wv) + c′(v′w− wv′) = c[v, w] + c′[v′, w],

for skew-symmetry:

[v, w] = vw− wv = −(wv− vw) = −[w, v],

and for Jacob identity:

[u, [v, w]] + [w, [u, v]] + [v, [w, u]] = u[v, w]− [v, w]u + w[u, v] +

−[u, v]w + v[w, u]− [w, u]v =

= u(vw− wv)− (vw− wv)u +

w(uv− vu)− (uv− vu)w +

v(wu− uw)− (wu− uw)v =

= uvw− uvw− uwv + uwv− vwu +

vwu + wvu− wvu + wuv− wuv +

vuw− vuw = 0

4.1.2 Lie Algebras

Some vector fields on Lie group G can be characterized by their invariance under

the group multiplication. A set of all these invariant vector fields (infinitesimal

generator) form a finite-dimensional vector space, called the Lie algebra of G. The

important realization of the Lie group theory is that almost all information in the



Chapter 4. Lie symmetry analysis 56

group G is contained in its Lie algebra and, the applications to differential equation

is linked to the idea that the nonlinear conditions of invariance under a group ac-

tion can be replaced by relatively simpler linear infinitesimal conditions.

Definition 4.1.10 (of Lie algebra)

The Lie algebra of a Lie group G, usually denoted by the lowercase German letter g,

is the vector space of all right-invariant vector fields on G i.e., satisfies the condition

dRg(v|h) = v|Rg(h) = v|hg (4.16)

for all g and h in G. Where Rg is a diffeomorphism, right multiplication map Rg :

G → G, for any group element g ∈ G defined by

Rg(h) = h · g (4.17)

with inverse Rg−1 = (Rg)−1.

Since Rg(e) = g, the right-invariant vector field is uniquely determined by its value

at the identity because

V|g = dRg(v|e) (4.18)

and the Lie algebra g of G can be identified by the tangent space to G at the identity

element

g ' TG|e. (4.19)

In other hand any tangent vector to G at e uniquely determines a right-invariant

vector field on G by (4.18) as following

dRg(v|h) = dRg(Rh(V|e)) = d(Rg ◦ Rh)(v|e) = dRgh(v|e) = v|hg.

The vector space structure of the Lie algebra, also satisfy the properties of the Lie

bracket namely, bilinearity, skew-symmetric and Jacob identity. If the vectors fields

v and w are right-invariant in G, their Lie bracket [v, w] is also right invariant in G.

Since by definition of the Lie brackets of differential map dF, induced by an smooth

function F : M→ N from the tangent spaces TM|x to the TN|F(x)

dRg[v, w] = [dRg(v), dRg(w)] = [v, w]

the Lie algebra can be also defined in term of Lie brackets as following.
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Definition 4.1.11 (of the Lie algebra)

A lie algebra is a vector space g together with a bilinear operation

[·, ·] : g× g→ g

called the Lie bracket for g, satisfying the bilinearity, skew-symmetry and Jocobi

Identity conditions.

Example 14

Consider the set of infinitesimals generators

{v1, v2, v3} = {
∂

∂x
,

∂

∂u
, eu ∂

∂x
}.

we have

• [v1, v1] = v1v2 − v2v1 = ∂
∂x (

∂
∂u )−

∂
∂u (

∂
∂x ) = 0− 0 = 0,

• [v1, v3] = v1v3 − v3v1 = ∂
∂x (e

u ∂
∂x )− eu ∂

∂x (
∂

∂x ) = 0− 0 = 0,

• [v2, v3] = v2v3 − v3v2 = ∂
∂u (e

u ∂
∂x )− eu ∂

∂x (
∂

∂u ) = eu ∂
∂x − 0 = eu ∂

∂x = v3.

These vectors span a three dimensional Lie algebra g also denoted L3.

The following theorems shows the relationship between some subsets of the Lie al-

gebra and the subsets of its corresponding Lie group G. They are important because

tells how the Lie sub-algebras are related to the correspond Lie groups through the

subgroups.

Theorem 4.1.2 (relation between one-dimensional subspace of Lie group and con-

nected one-parameter subgroup of its Lie group)

Let v 6= 0 be a right-invariant vector field on a Lie group G. Then the infinitesimals

generators of v
ga = eave ≡ eav (4.20)

is defined for all a ∈ R and forms a one-parameter subgroup of G, with

ga+b = ga · gb, g0 = e g−1
e = g−a (4.21)

isomorphic to either R itself or the circle group SO(2). Conversely, any connected

one-dimensional subgroup of G is generated by such a right-invariant vector field

in the above manner.

The proof of this theorem is made in two steps. To proof the direct assumption,
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one can consider the definition of F-related vectors fields i.e., two vectors v from M
and w from N are F-related if dF(v|x) = w|F(x) for all x ∈ M. Therefore if v and

w = dF(v) are F-related then F maps its integral curves with

F(eex) = eadF(v)F(x).

In addition of the definition of the right-invariance of vector field we will have:

gb · ga = Rga(gb) = Rga [e
bve] = eb·dRga (v) · Rga(e) = ebvga = ebveave =

= e(b+a)ve = gb+a

to show that ga is at least a local one-parameter subgroup and satisfy (4.21) since

that maximal integral curves are globally defined and form a subgroup. The inter-

val of definition of ga is at least − 1
2 a0 ≤ a ≤ 1

2 a0, for some a0 > 0 so that for ga = gb

for some a 6= b, ga has period a0 (ga+a0 = ga), that imply the isomorphism with SO2

(by taking θ = 2 πa
a0

). Otherwise ga 6= gb for all a 6= b, ga is isomorphic to R. The

inverse assumption can be demonstrated by considering that the Lie algebra g of G
can be identified with the tangent space to G at the identity element g isomorphic

to TG|e and one extended v to a right invariant vector field in all G, where v is

nonzero tangent vector to H ⊂ G at the identity. Since H is a subgroup it follows

that v|h is a tangent to H at any h ∈ H and therefore H is the integral curve of v
passing through the identity e. More details can be found in [44]

Theorem 4.1.3 (relation between Lie subgroup and Lie sub-algebra)

Let G be a Lie group with Lie algebra g. If H ⊂ G is a Lie subgroup, its Lie algebra

is a sub-algebra of g. Conversely, if g is any s-dimensional sub-algebra of g, there

is a unique connected s-parameter Lie subgroup H of G with Lie algebra g.

The proof of this theorem can be made first by defining the system of vector fields

on G generated by basis of sub-algebra g′ for each element of G. Since g′ is a sub-

algebra, then it is closed under the Lie bracket operation so that g′ is completely in-

tegrable (also called involutive system of vector fields in G). Its mean that, one can

consider a maximal connected submanifold H, passing through identity e, which

corresponds to a sub-algebra g′. To show that H is subgroup, we can consider the

Lie group hommomorphism φ and an element of φ(t), since the set of subspaces

associated with each base of the system of vector fields in G is invariant under

the "left" translations (H, `a−1 ◦ φ) is also a maximal submanifold of the set of sub-

spaces associated with each base trough the identity e, and `σ−1 ◦ φ(H) ⊂ φ(H),

and if σ, τ ∈ φ(H) implies that σ−1τ ∈ φ(H). We can now conclude that φ(H) is

an abstract subgroup of G. The group structure can be induced in H by the homo-

morphism φ : H → G, of abstract groups. By showing the existence of an smooth
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map α : H × H → H, one can conclude that (H, φ) is a Lie subgroup of G and g′

is the Lie algebra of H, and is isomorphic to the sub-algebra g. The uniqueness can

be proved by considering another connected Lie group of G, which is also maximal

submanifold at identity e, by maximality of H is proved that there is uniquely de-

termined map which is an injective and subjective Lie group homomorphism. This

mean that the Lie group homomorphism is also Lie group isomorphism, so that the

two connected subgroups are equivalents. More details of this demonstraction can

be found in [53] and [44].

An r dimensional Lie algebra g, has a vector space whose elements are infinitesi-

mals generators represented by their bases

{v1, . . . , vr}. (4.22)

The Lie bracket of any two basis vectors must be again in Lie algebra g. Thus there

are certain constants ck
ij, i, j, k = 1, . . . , r such that

[vi, vj] =
r

∑
k=1

ck
ijvk, i, j = 1, . . . , r. (4.23)

The elements ck
ij, i, j, k = 1, . . . , r satisfying the condition (4.23) are called struture

of constants of the Lie algebra g.

Since the infinitesimals generators vi’s form a basis of the Lie Algebra g, it can be

recovered by their structure of constants(4.23) and the bilinearity of the Lie bracket.

The other two conditions of the Lie bracket gives two additional constraints on the

structure of constants as bellow

• Skew-symmetry

ck
ij = −ck

ij, (4.24)

• Jacobi identity
r

∑
k=1

(ck
ijc

m
kl + ck

lic
m
kj + ck

jlc
m
ki) = 0. (4.25)

In the other hand, any set of constants ck
ij which satisfy (4.24) and (4.25) are the

structure of constants for some Lie algebra g since we can represent it by an differ-

ent basis with form v′i = ∑j aijvj. The structure of constants will take the form

c′ij = ∑
l,m,n

ailajmbnkcn
lm (4.26)

where
(
bij
)

is the inverse matrix of
(
aij
)
. The (4.26) is a condition that two different

sets of structure of constants determine the same Lie algebra. By the existence and

uniqueness of connected, simply-connected Lie group of some Lie algebra there is
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a one-to-one correspondence between equivalente classes of structure constants ck
ij

satisfying (4.24), (4.25) and connected, simply-connected Lie groups G whose Lie

algebras have the given structure constants. As we will see in the next chapter, the

entire theory of Lie groups can be reduced to the study of the structure of constants

relative to correspondent Lie algebra.

In practise, the convenient way to display the structure of constants of a given Lie

algebra is trough an tabular form, called commutator table. If the Lie algebra is r-

dimensional and v1, . . . , vr are their basis then, the commutator table for the Lie

algebra will be an r× r table whose (i, j)-th entry expresses the Lie bracket [vi, vj].

Since the structure of constants are skew-symmetric, the commutator table will be

skew-symmetric and in particular the diagonal entries are all zero. On the commu-

tator table, we can extract easily the structure of constant, since each element ck
ij is

the coefficient of infinitesimal generator vk in the position (i, j).

4.2 Symmetries of Partial Differential Equations

The first step on application of Lie symmetry analysis for differential equation is a

construction of the symmetries of differential equation, since we do not known a

prior the local one-parameter Lie group of transformation of the differential equa-

tion.

Consider a partial differential equation

Eσ(x, u, u(1), u(2), · · · , u(k)) = 0, σ = 1, · · · , m̃ (4.27)

u = (u1, · · · , um) is a function of the independent variable x = (x1, · · · , xn). u1, · · · , um

are the sets of all first, second up to kth-order partial derivatives:

u(1) = {uα
i } = {u1

x1 , · · · , u1
xn , · · · , uα

x1 , · · · , uα
xn},

u(2) = {uα
ij} = {u1

x1x1 , u1
x1x2 , · · · , u1

x1xn , · · · , uα
x1x1 , uα

x1x2 , · · · , uα
x1xn},

...

u(k) = {uα
ik
} = {u1

x1 · · · x1︸ ︷︷ ︸
×k

, u1
x1x2···xk , u1

x1 x2 · · · x2︸ ︷︷ ︸
×(k−1)

· · · , u1
xn · · · xn︸ ︷︷ ︸

×k

, · · ·

· · · , uα

x1 · · · x1︸ ︷︷ ︸
×k

, uα
x1x2···xk , uα

x1 x2 · · · x2︸ ︷︷ ︸
×(k−1)

· · · , uα

xn · · · xn︸ ︷︷ ︸
×k

}.

α = 1, · · · , m and i, j, i1, · · · , ik = 1, · · · , n. Since we assume that uα
ij = uα

ji, u(2)
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contains only the terms uα
ij for which i ≤ j, u(3) contains only the terms for which

i ≤ j ≤ k, and so for u(4), u(5), · · ·. There is a natural ordering in u(k) and the

number of elements is m
(k

n+k−1

)
.

We say that the system (4.27) admits the invertible transformation of the variables

x and u i.e.,

x̄i = f i(x, u), ūα = φα(x, u), i = 1, · · · , n; α = 1, · · · , m (4.28)

if it is form-invariant in the new variables x̄ and ū, i.e.,

Eσ(x̄, ū, ū(1), ū(2), · · · , ūk) = 0, σ = 1, · · · , m̃, (4.29)

whenever (4.27) holds. The invertible transformations are said to be a symmetry

transformation of the system (4.27) and, the set of all these transformation are de-

fined by

Γa : x̄i = f i(x, u, a), ūα = φα(x, u, a), i = 1, · · · , n; α = 1, · · · , m (4.30)

where a is real continuous parameter from a neighborhood of a = 0 and f i, φα

are differentiable functions that forms a local continuous one-parameter Lie group of
transformation G in R, since Γa satisfy the properties of the group, Definitions 4.1.3

and 4.1.7.

If the transformation (4.30) of a group G are symmetry transformations of (4.27),

then G is called a symmetry group of (4.27) and (4.27) is said to admit G as a group.

The symmetries transformations can be used to construct the solutions of differen-

tial equations and, as said previously it form a one-parameter local Lie group.

According to Lie’s theory, the construction of a one-parameter group G is equivalent

to the determination of the corresponding infinitesimal transformations obtained

by the Taylor series expansion in a of the equation (4.30) about a = 0, taking into

account the initial conditions, i.e:

f i |a=0= xi, φα |a=0= uα. (4.31)

The infinitesimal transformations are:

x̄i ≈ xi + aξ i(x, u), ūα ≈ uα + aηα(x, u) (4.32)

where

ξ i(x, u) =
∂ f i(x, u, a)

∂a
|a=0, ηα(x, u) =

∂φα(x, u, a)
∂a

|a=0 . (4.33)
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By introducing the operator

X = ξ i(x, u)
∂

∂xi + ηα(x, u)
∂

∂uα
, (4.34)

the infinitesimal transformation (4.32) can be written as:

x̄i ≈ (1 + aX)xi, ūα ≈ (1 + aX)uα. (4.35)

The operator (4.34) is known as the infinitesimal operator or generator of the group

G. Therefore, if G is admitted by (4.27), X is also admitted operator of (4.27).

The one-parameter groups are obtained trough their generators as said on the Lie’s
theorem bellow.

Theorem 4.2.1 (Lie’s theorem)

Given the infinitesimal transformations (4.32) or X, the corresponding one-parameter

group G is obtained by solution of the Lie equations,

dx̄i

da
= ξ i(x̄, ū),

dūα

da
= ηα(x̄, ū), (4.36)

subject to the initial conditions (4.31),

x̄i |a=0= xi, ūα |a=0= uα. (4.37)

The base idea of proof this theorem, is that, if we consider the Lie equations, which

are obviously associated to the vector field X, is required to find out whether there

is a one parameter group G, for which the given X is its tangent vector field. The

proof is made by consider the existence of unique solutions of the Cauchy problem

(4.36 - 4.37) and that this map form a one parameter family of local transformations.

It is shown that this set satisfy the conditions of definition of local Lie group, using

the principal idea that if two solutions are solutions of the Cauchy problem they

are coincident. More details can be found in [45] (Pag.14).

In the space (x, u, u(1), u(2), u(3), · · · , u(k)), the infinitesimal transformation are ob-

tained by constructing the prolonged group G[k] of G, where k is the highest or-

der of the derivatives in the system (4.27). For example if one consider the space

(x, u, u(1)), the prolonged group will be G[1], and if the space considered is (x, u, u(1), u(2))

then the prolonged group will be G[2].

Since the transformation (4.30) is a symmetry group G of the system (4.27), the

function ū = ū(x̄) satisfies (4.29), whenever the function u = u(x) satisfies (4.27).

The transformation of the derivatives ū(1), ū(2), ū(3), · · · , ū(k), are found from (4.30)
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by using the formulae of change of variables in the derivatives with respect to each

of the parameter xi,

Di = Di( f j)D̄j (4.38)

where

Di =
∂

∂xi + uα
i

∂

∂uα
+ uα

ij
∂

∂uα
j
+ · · · (4.39)

is the total derivative operator with respect to xi and D̄j is likewise given in terms of

the transformed variables. If we consider

ūα
i = D̄i(ūα), ūα

ij = D̄i(ūα
i ) = D̄i(ūα

j ), · · ·

and apply (4.38) in ūα, (4.30) can be written as

Di(φ
α) = Di( f j)D̄j(ūα) = Di( f j)ūα

j . (4.40)

Taking the first and the last terms of (4.40), we get

Di( f j)ūα
j = Di(φ

α)⇔ (
∂ f j

∂xi + uβ
i

∂ f j

∂uβ
)ūα

j =
∂φα

∂xi + uβ
i

∂φα

∂uβ
. (4.41)

By solving (4.41) with respect to uα
i , since it is locally invertible equation, we found

the transformation of the derivatives uα
i in uα

i , given by

ūα
i = ψα

i (x, u, u(1), a), ψα
i |a=0= uα

i . (4.42)

The transformation of u(1) on ū(1) together with the transformations of (x, u) on

(x̄, ū) will form the first prolongation of the one-parameter group G[1] acting in

the space (x, u, u(1)). From the first prolongation by using the total derivatives,

we obtain the second prolongation one-parameter group G[2] acting in the space

(x, u, u(1), u(2)) and successively we obtain the kth prolongation one-parameter group

G[k] acting in the space (x, u, u(1), · · · , u(k)).

Since we have the prolonged groups G[1] to G[k], we have to find their infinitesimal

transformation. Remember that the infinitesimal transformation for (x, u) is given

by (4.32). For (4.42), if we apply the Taylor’s series expansion in the neighborhood

of a = 0 and taking into account the initial conditions ψα
i |a=0= uα

i , we will get:

ūα
i ≈ uα

i + aζα
i (x, u, u(1)),

ūα
ij ≈ uα

ij + aζα
ij(x, u, u(1), u(2)), (4.43)

...
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ūα
i1···i2 ≈ uα

i1···ik
+ aζα

i1···i2(x, u, u(1), · · · , u(k)).

Now we have to find the functions ζα
i , ζα

ij and ζα
i1···ik

. Taking equation (4.41), consid-

ering only the expressions of the equation in the right side, taking into account the

values of f j and φα from (4.32), and of ūα
j from (4.43), considering that

δ
j
i =

{
0, i 6= j;
1, i = j.

Also we considered the fact that this transformation is local, i.e., a is very small and

a2 will be smaller therefore, negligible, we obtain:

Di(xj + aξ j)(uα
j + aζα

j ) = Di(uα + aηα)

(δ
j
i + aDiξ

j)(uα
j + aζα

j ) = uα
i + aDiη

α (4.44)

uα
i + aζα

i + auα
j Diξ

j = uα
i + aDiη

α.

By simplification we find ζα
i , which is ūα

i , in the first prolongation formula (4.43).

Higher prolongation formulas are obtained by introducing the Lie characteristic

function Wα = ηα − ξ juα
j , giving

ζα
i = Di(Wα) + ξ juα

ji

ζα
ij = DiDj(Wα) + ξkuα

kij (4.45)
...

ζα
i1···ik

= Di1 · · ·Dik(W
α) + ξ juα

ji1···i1 .

From (4.45) and (4.46), we can conclude that the functions ζα
i , ζα

ij and ζα
i1···ik

in the

equation (4.43) are given recursively by the prolongation formulas:

ζα
i = Di(η

α)− uα
j Dj(ξ

j)

ζα
ij = Dj(ζ

α
i )− uα

il Dj(ξ
l) (4.46)

...

ζi1···ik = Dik(ζi1···ik−1)− uα
i1···ik l Dj(ξ

l).

The generators of the prolonged groups are determined in the same way using

equation (4.34) to obtain the generator of the group G, which are also referred to as

the k-th prolonged generators

X[1] = ξ i(x, u)
∂

∂xi + ηα(x, u)
∂

∂uα
+ ζα

i (x, u, u1)
∂

∂uα
i
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... (4.47)

X[k] = ξ i(x, u)
∂

∂xi + ηα(x, u)
∂

∂uα
+ ζα

i (x, u, u1)
∂

∂uα
i
+

+ζα
i1···ik

(x, u, · · · , uk)
∂

∂uα
i1···ik

.

4.2.1 Exact Solutions

By considering the symmetry transformation of (4.27), one can use some solutions

of the system to obtain general solutions of the system (group transformation of known
solutions). If the solutions are not known, one can look for the solutions that are

invariant of the group generated by the particular X (invariant solutions). Let us

consider first some definitions and theorems about invariant points and invariant

functions:

Definition 4.2.1 (of invariant point)

A point (x, u) ∈ Rn+m is an invariant point if it remains unaltered by all transfor-

mation of the group G, i.e, (x̄, ū) = (x, u) ∀a ∈ D′ ⊂ D.

Theorem 4.2.2 (necessary and sufficient condition for a point to be invariant of a

group)

A point (x, u) ∈ Rn+m is an invariant point of a group G with generator given by

(4.34) if and only if ξ i(x, u) = ηα = 0.

To give the idea on the proof of the theorem, first we call "orbit of the group through
point (x, y)", the set of points to which (x, y) can be mapped by a suitable choice

of parameter a. This set is smooth curve and is invariant under the action of a Lie

group (i.e., the action of a Lie group maps every point from an orbit to a point into

the same orbit), [27]. If X is a tangent vector to the orbit at the point (x̄, ū), then X
is smooth curve. If an orbit crosses any curve C transversely at a point (x, u), then

there are Lie symmetries that map (x, u) to points that are not in C. Any curve is

invariant if and only if no orbit cross it, in other words, C is an invariant curve if

and only if the tangent to C at point (x, u) is parallel to the tangent vector X i.e., we

have the inner product

η(x, u)− u′(x)ξ(x, u) = 0,

(u′(x), 1) being the tangent vector of the curve ate (x, u(x)).

Definition 4.2.2 (of invariant group)

A function F(x, u) is an invariant of a group G if and only if F(x̄, ū) = F(x, u), ∀ x,
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u and the parameter a ∈ D′ ⊂ D.

Theorem 4.2.3 (necessary and sufficient condition for invariance of function)

A function F(x, u) is an invariant of a group G with generator given in (4.34) if and

only if

X(F) = ξ i(x, u)
∂F
∂xi + ηα(x, u)

∂F
∂uα

= 0. (4.48)

Following the idea of demonstration of the Theorem 4.2.2, we can say that the

surface F is invariant provides that the tangent field to F at (xi, uα) is parallel to

(ξ i, ηα), i.e.,

ξ i(x, u)
∂F
∂xi + ηα(x, u)

∂F
∂uα

= 0

In other hand if (4.48) is true then, the tangent field to F at (xi, uα) is parallel to

(ξ i, ηα) so that, no orbit cross transversely the surface i.e., the action of the Lie

group maps every point on the surface to a another point into the same surface

therefore F is invariant.

The equation (4.48) is a linear PDE and can be solved using method of characteris-

tics that will give the invariant curves which are tangent to the vector (ξ i, ηα), for

i = 1, · · · , n and α = 1, · · · , m. The local invariant surface u(x), which is a solution

of a PDE will be a union of these invarian curves in the neighborhood of the point

a = 0. The characteristics equations are:

dx1

ξ1(x, u)
= · · · = dxn

ξn(x, u)
=

du1

η1(x, u)
= · · · = dum

ηm(x, u)
. (4.49)

Equation (4.49) holds for exactly m + n− 1 functionally independent first integrals

invariant of a one-parameter group G, called basis of invariant

I1(x, u) = c1, · · · , Im+n−1(x, u) = cm+n−1,

where i = 1, · · ·m + n− 1 and ci are constants. But there are other invariant func-

tions which are given by the general solution

F = Λ(I1(x, u), · · · , Im+n−1(x, u)) of X(F) = 0

for an arbitrary function Λ.

Let us now define and present theorems for the invariant points and invariant func-

tions for prolonged groups.

Definition 4.2.3 (of differential invariant of a group)

A differential function F(x, u, · · · , up), p ≥ 0, is a pth-order differential invariant
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of a group G if

F(x, u, · · · , up) = F(x̄, ū, · · · , ūp)

i.e., if F is an invariant under the prolonged group G[p], for p = 0, u0 ≡ u and

G[0] ≡ G.

Theorem 4.2.4 (sufficient condition for invariance of differential equation)

A differential function F(x, u, · · · , u(p)), p ≥ 0, is a pth-order differential invariant

of a group G if,

X[p]F = 0,

X[p] is the pth prolongation of X and for p = 0, X[0] = X.

The idea for proof of this theorem is similar to the Theorem 4.2.3 therefore we

can regard the derivatives on differential function F also as another p additional

variables and X[p] being the infinitesimal generator correspondent to the function

F with the variables (x, u) plus p new variables, so that the invariance criterion

(4.48) become X[p]F = 0.

Similarly, we will write down the characteristic system corresponding to the linear

PDE in the Theorem 4.2.3 and solve it for the differential invariants. To compute

the symmetries of the system (4.27), we start by applying (4.43) into (4.29) i.e.,

Eσ(x̄, ū, ū1, · · · , ūk) ≈ Eσ(x, u, u1, · · · , uk) + a(X[k]Eσ), σ = 1, · · · , m̃. (4.50)

For the invariance of (4.27), as can be seen in (4.50) we require that

X[k]Eσ(x, u, u1, · · · , uk) = 0, σ = 1, · · · , m̃ (4.51)

whenever (4.27) is satisfied. The converse also applies.

Theorem 4.2.5 (about how to define all infinitesimal symmetries of system of PDEs)

Equation (4.51) define all infinitesimal symmetries of the system (4.27).

The demonstration of Theorem 4.2.5, is immediate from the Theorems 4.2.3 and

4.2.4.

Equations (4.51) are called the determining equations of (4.27). They are compactly

written as

X[k]Eσ(x, u, u1, · · · , uk) |(4.27)= 0, σ = 1, · · · , m̃, (4.52)

where |(4.27) means that the equation is evaluated on the surface (4.27). Generally
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the transformations Γa generated by the Lie equations (4.27) are a result of a com-

position of r one-parameter groups, as we can see in the following theorem.

Theorem 4.2.6 (necessary and sufficient conditions for a product of "r" one param-

eter groups to be r-parameter group)

Let Lr be an r-dimensional vector space of operators

Xl = ξ i
l(x, u)

∂

∂xi + ηα
l (x, u)

∂

∂uα
, l = 1, · · · , r.

The product Γa = Γar · · · Γa1 of r one-parameter groups of transformations Γal gen-

erated by each Xl via the Lie equations

dx̄i

dal
= ξ i

l(x̄, ū),
dūα

dal
= ηα

l (x̄, ū) (4.53)

subject to the initial conditions

x̄i |a=0= xi, ūα |a=0= uα

is a local r−parameter group Gr if and only if Lr is a Lie algebra.

If we consider that a multi-parameter group is a composition of a various one-

parameter groups, its invariants can be defined as Definition 4.2.2. Thus, a function

F(x, u) is an invariant of an r−parameter group Gr with generators

Xl = ξ i
l(x, u)

∂

∂xi + ηα
l (x, u)

∂

∂uα
, l = 1, · · · , r

if and only if

Xl(F) = ξ i
l(x, u)

∂F
∂xi + ηα

l (x, u)
∂F
∂uα

= 0, l = 1, · · · , r.

4.2.2 Group Classification

The treatment given to the equations without arbitrary elements is different from

the one given to the equations with arbitrary elements. If the equation or system

does not contain arbitrary elements, the Lie group analysis will be merely to cal-

culate its full group (the full Lie algebra of operators) and, if the equation or the

system contains parameters, we have to realize a group classification relative to

these parameters.

Consider the class of generalized (1+2) dimensional equations of form (3.24). The

principal idea of group classification is, once we have calculated the determining

equation, we realize that some of them depend on arbitrary elements. By solving it
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for arbitrary elements, we find the principal Lie algebra of the equation. The principal
Lie group of the PDE, is the group admitted by all equation of the these form. But

some elements of the group can admit extension of the principal or full Lie group.

We find this extension by considering particular values of the arbitrary elements

and we extend the kernel of the full Lie algebra. Then we solve this equations

with respect to the arbitrary elements and we find the additional condition for in-

finitesimal transformation. By substitution of this conditions into the determining

equation we generate the general structure of the classification equation which is

responsible for the group classification of the equation or system. The values of

the arbitrary elements that can extend the full Lie algebra must be the solution of

the general structure [45]. For further explanation about Lie group classification of

PDE we refer for example to Lie [37], [31] and [30].

4.2.3 Optimal Algebras

In many situations some subalgebras are similar i.e., they are connected each other

by a transformation from the symmetry group with Lie algebra Lr. Their corre-

sponding invariant solutions are also connected by the same transformation. By

putting into one class all subalgebra of a given dimension n, the problem of finding

invariant solutions of the Lie algebra Lr can be reduced to the problem of finding

an optimal system of invariant solutions. The optimal system of order n can be a set

of all invariant solutions of selected representative from each class of subalgebras

of dimension n. Unfortunately, there is no an efficient method which can be used

to find optimal system. Some algorithms are presented in [23], [43] and [45].

The principal idea is, suppose we have to construct two non similar sub-groups of

group G, say H and K. The invariant solution S under the subgroup H will satisfy

the condition S = hS for all h ∈ H. Since H and K are non similar sub-groups,

the solutions S will be transformed to S̄ under the sub-group K i.e., S̄ = kS̄, for all

k ∈ K. To find k, we look for g ∈ G such that S̄ = gS. Since S is invariant under

H, we can make the transformation S̄ = g(hS) = ghS = ghg−1gS = ghg−1S̄ and

k = ghg−1. K is called the adjoint subgroup of H under the symmetry group G.
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Chapter 5

Application to the PDE of the
Ornstein-Uhlenbeck process

In this section we apply the Lie symmetry method described in Section 4.2, to the

PDE of Ornstein-Uhlenbeck process. With help of the computer subprogram Wol-
fram Mathematica, SYMLie we make a group classification of this PDE and we use

its infinitesimal to find some invariant solutios and construct its one dimensional

optimal system.

5.1 The Basic Equation

We consider a PDE (3.24), the equation derived from the prices of rainfall deriva-

tives when the rainfall follow the Ornstein-Uhlenbeck Process. We consider the

function

θ(t) = m + α sin
π(t− ν)

6

and

f (x, t) = f (x) = (Xre f − Xt)
+ or f (x, t) = (Xt − Xre f )

+,

where Xre f is the reference level (the base from which the excess or deficit of rainfall

is determined). Differentiating θ(t) we will get

θ′(t) =
π

6
α cos

π(t− ν)

6
.

In order to reduce the complexity of the computation, we consider the following

basic mathematic transformations

cos(a± b) = cos a cos b∓ sin a sin b ∧ sin(a± b) = sin a cos b± sin b cos a
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for θ(t) and θ′(t), the equation (3.24) can take the following form

∂V
∂t

= rV − f (x)
∂V
∂y
−
(

w1 cos
πt
6

+ w2 sin
πt
6

+ w3 + kx
)

∂V
∂x
− 1

2
σ2 ∂2V

∂x2 (5.1)

t, x, y are independent variables, V is dependent variable, r, xre f , w1, w2, w3, k, σ are

parameters and w1, w2, w3 are defined by the following system of equation,

w1 =
απ

6
cos

πν

6
− kα sin

πν

6
,

w2 =
απ

6
sin

πν

6
+ kα cos

πν

6
,

w3 = km− λσ.

5.2 Infinitesimal Operators and Group Classification

We construct now the prolonged generator,

X[2] = X + ζ1
∂

∂Vt
+ ζ2

∂

∂Vx
+ ζ3

∂

∂Vy
+ ζ12

∂

∂Vtx
+

+ζ13
∂

∂Vty
+ ζ23

∂

∂Vxy
+ ζ11

∂

∂Vtt
+ ζ22

∂

∂Vxx
+ ζ33

∂

∂Vyy
(5.2)

for

X = ξ1(t, x, y, V)
∂

∂t
+ ξ2(t, x, y, V)

∂

∂x
+ ξ3(t, x, y, V)

∂

∂y
+ η(t, x, y, V)

∂

∂V
(5.3)

and we find solutions of the determined equation (the infinitesimals). This solution

can be explicitly determined by hand calculation, but it requires a lot of computa-

tions that can be avoided if one use Wolfram Mathematica, SYMLie [16]. For more

details in the hand calculation, please see [45].

Generally the system of over-determined equations can contain many equations. In

our case we obtained more than hundred equations. Since the determining equa-

tion are linear homogeneous PDEs of order two for the unknown functions ξ i and η,

we generate an over-determined system of algebraic equation with n+m = 3+ 1 =

4 unknowns functions. By solving the over-determined system we obtain the un-

knowns function ξ i, η and consequently ζi and ζij. The values of functions ξ i and η

depends on different values of the parameter k and σ. For a 6= 0∧ k(36k2 + π2) 6= 0

we will have:

ξ1 =
π

36k2 + π2

[
(πw1 + 6kw2) cos

πt
6

+ (−6kw1 + πw2) sin
πt
6

]
c1 +

+
e−kt (−e2ktc2 + c3

)
k

− c5,
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ξ2 =
6

36k2 + π2

[
(−6kw1 + πw2) cos

πt
6
− (πw1 + 6kw2) sin

πt
6
+

]
c1 +

+
ektc2 + e−ktc3

k2 + c4 + tc5,

ξ3 = c1,

η =
V

σ2k

[
2ekt(w3 − kx)c2 + k

(
k(tw3 − x)c5 + k2(−st + y)c5 + a2c6

)]
+

−6V
σ2π (36k2 + π2)

[
2ektπ(−6kw1 + πw2)c2 + k

(
36k2 + π2)w2c5

]
·

· cos
πt
6

+
6V

σ2π (36k2 + π2)
·

·
[
2ektπ(πw1 + 6kw2)c2 + k

(
36k2 + π2)w1c5

]
sin

πt
6

+ ω(x, y, t),

where c1, c2, c3, c4, c5, c6, c7 are constants and ω(x, y, t) satisfies (5.1). The infinites-

imal generators are obtained by representing the general solutions of the deter-

mining equations as linear combinations of independent solutions defined by the

constants i.e., the number of independents solutions will depend on the number of

the constants in the general solution.

The principal Lie algebra Lp i.e., the Lie algebra of operators admitted by the linear

PDE (5.1) containing arbitrary elements is spanned by the generators

X1 =
∂

∂y
, X2 = V

∂

∂V
, Xω = w(t, x, y)

∂

∂V
. (5.4)

where the function ω(t, x, y) satisfies Equation (5.1).

5.3 Extension of Principal Lie Algebra

For particular choices of the arbitrary elements, we found the possible extensions

for non-degenerate PDE (5.1), satisfying the following conditions:

1. σ 6= 0 and (36k2 + π2) = 0 (in two cases, k = ±i π
6 ): the principal Lie algebra

Lp admits extension only by one operator.

2. σ 6= 0 and k(36k2 + π2) 6= 0: the principal Lie algebra Lp admits extension by

four operators.

X3 = − ekt∂x

k
+

ekt∂y

k2 ,

X4 =
k
(
−kxre f πt− πw3t + πx + kπy + 6w2 cos πt

6

)
σ2π

V∂V +

−6kw1

σ2π
sin

πt
6

V∂V − ∂x + t∂y,
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X5 = ∂t + π

[
(πw1 − 6kw2)

36k2 + π2 cos
πt
6

+
(πw2 + 6kw1)

36k2 + π2 sin
πt
6

]
∂x +

+

[
(6πw2 + 36kw1)

36k2 + π2 cos
πt
6

+
(36kw2 − 6πw1)

36k2 + π2 sin
πt
6

]
∂y,

X6 =
72ke−kt

σ2(36k2 + π2)

(
−w3 −

π2w3

36k2 − kx− π2x
36k
− w1 cos

πt
6

)
V∂V

+
72ke−kt

σ2(36k2 + π2)

[
−πw2

6k
cos

πt
6

+ (−πw1

6k
+ w2) sin

πt
6

]
V∂V

+
e−kt

k
∂x +

e−kt

k2 ∂y.

3. σ 6= 0 and k = 0: the principal Lie algebraLp admits extension by 6 operators.

X3 = −∂x + t∂y,

X4 = ∂t +

(
w1 cos

πt
6

+ w2 sin
πt
6

)
∂x + 6

w2 cos πt
6 − w1 sin πt

6
π

∂y,

X5 =
2
(
πw3t− πx− 6w2 cos πt

6 + 6w1 sin πt
6

)
σ2π

V∂V − 2t∂x + t2∂y,

X6 =
3
σ2

[
2xre f t + w3t2 − 2tx− 2y +

12(6w1 − w2t)
π

cos
πt
6

]
V∂V

+
36
σ2 (πw1t + 6w2) sin

πt
6

V∂V − 3t2∂x + t3∂y,

X7 = 2t∂t +

[
2rt +

6w3
(πw3t−πx

6 − w2 cos πt
6 + w1 sin πt

6

)
σ2π

]
V∂V

+

[
x− xre f +

2πtw1 + 6w2

π
cos

πt
6
− 6w1 − 2πtw2

π
sin

πt
6

]
∂x

+12
[

y
4
− 9w1 − πw2t

π2 cos
πt
6
− 9w2 + πtw1

π2 sin
πt
6

]
∂y,

X8 = 2t2∂t + 4
(
+

rt2

2
+

xre f w3t
2σ2 +

w2
3t2

4σ2 −
2xre f x

σ2 − w3xt
2σ2

)
V∂V

−
[

4t +
48w3

σ2

(
xre f w2

πw3
+

9w1

2π2 +
w2t
4π
− w2x

πw3

)
cos

πt
6

]
V∂V

+
24
σ2

(
2xre f w1

π
+

w1w3t
2π

− 9w2w3

π2 − 2w1x
π

)
sin

πt
6

V∂V +

+

[
4x2 + 6w3y

σ2 − 72
(w2

1 − w2
2) cos πt

3 + w1w2 sin πt
3

π2σ2

]
V∂V

+

[
−2xre f t +

(
216w1 + 2π2t2w1

π2 +
tw2

π

)
cos

πt
6

]
∂x +

+

[
2tx− 6y +

(
−12tw1

π
+

216w2

π2 + 2t2w2

)
sin

πt
6

]
∂x +

+6t
(

y− 36w1 + 2πtw2

π2 cos
πt
6
− 36w2 + 2πtw1

π2 sin
πt
6

)
∂y,

We can see that the equation (5.1) admits a maximum extension by six operators,
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therefore equation (5.1) cannot be transformed, for any choice of its coefficients into

heat equation,

ut = uxx + uyy (5.5)

since we know that the heat equation can only be extended by seven additional

operators, see [20] and [30].

5.4 Invariant Solutions

As a result of the group classification we realized that one can not reduce the PDE

(5.1) to the heat equation. But we can use the Lie analysis to find the invariant

(exact) solution of the equation (5.1). The invariant solutions are those solutions

that transform into themselves under a particular group of symmetries. If equation

(4.27) admits a Lie algebra Lr of dimension r > 1 we could consider invariants

solutions based on many (infinite) number of subalgebra of Lr. We consider only

the symmetries generated in the case where

σ 6= 0 ∧ k(k2 + π2) 6= 0.

i.e., the volatility and the mean reverting factor are non zero. The first six symme-

tries generating the finite dimensional Lie algebra L, allow us to construct a com-

mutator Table. 5.1, where the commutator of two symmetries Xi and Xj is given

by,

[Xi, Xj] = XiXj − XjXi; i, j = 1, 2, · · · , 6 (5.6)

TABLE 5.1: The Commutator Table of Subalgebras

[, ] X1 X2 X3 X4 X5 X6

X1 0 0 0 k2

σ2 X2 0 0
X2 0 0 0 0 0 0
X3 0 0 0 0 −kX3

2
kσ2 X2

X4 − k2

σ2 X2 0 0 0 −X1 +
k2xre f +kw3

σ2 X2 0

X5 0 0 kX3 X1 −
k2xre f +kw3

σ2 X2 0 −kX6

X6 0 0 − 2
kσ2 X2 0 kX6 0

From the commutator Table. 5.1 we see that the set of operators (or Lie point sym-

metry generators ) X1, X2, X3, X4, X5, X6 is anti-symmetric and closed under the

product [·, ·]. Since the commutator is bilinear and satisfy the Jacobi identity we

can confirm that the set of these symmetries form the infinite dimensional Lie al-

gebra of the PDE (5.1). The infinite dimension of the Lie algebra explain the fact

that the PDE has infinitely many linearly independents solutions. The PDE (5.1)

belong to a wide class of (1+2) evolutionary equation. To construct their invariant
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solution, we have to use two dimensional Lie subalgebra in order to use the two

linearly independent invariants to reduce to an ordinary differential equation. We

will apply the algorithm presented in [20], following the steps:

1. First we choose a set of n operators that are admitted by the equation which

form a subalgebra (for example X1 and X2). This algebra has n functionally

independents invariants (for the case n = 2, I1 and I2) and their rank is n.

2. We determine the invariants by the system of n differential equations

X1 I = 0, X2 I = 0, · · · , Xn I = 0.

The invariants solution exists if rank(∂V I1, · · · , ∂V In) = 1.

3. We find the invariant solution in the form

In = φ(I1, · · · , I(n−1)). (5.7)

By substituting the solution (5.7) into (5.1), we get a differential equation for the

function φ. Considering the case k 6= 0 and σ 6= 0, and the subalgebra spanned by

X2, X3 i.e., < X2, X3 >, the independent invariant solutions of these subalgebra are

I1 = t and I2 = kxekt − ln V. The invariant solution of (5.1) take the form,

kxekt − ln V = φ(t)⇐⇒ ln V = kxekt − φ(t)⇐⇒ V = ekxekt−φ(t), (5.8)

where φ(t) is determined by the following ordinary differential equation

−φ′(t) = r + k(−w3 − w1 cos
πt
6
− w2 sin

πt
6
)ekt − k2

2
σ2e2kt. (5.9)

This equation can be integrated by the standard methods and φ is given by

φ(t) = −rt− [−w3 − w1
36k2

36k2 + π2 (cos
πt
6

+
π

6k
sin

πt
6
) +

−w3
36k2

36k2 − π2 (sin
πt
6
− π

6k
cos

πt
6
)]ekt +

σ2

4
e2kt + C. (5.10)

For the subalgebra spanned by X1 and X2, the invariants are

I1 = t, I2 = x, I3 = Ve−y

and the relation among the invariants is given by

I3 = φ(I1, I2).
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Then the invariant solution of the PDE is V = eyφ(t, x), where the function φ(t, x)
is solution of the equation

φt = (r− xre f + x) φ−
(

kx + w3 + w1 cos
πt
6

+ w2 sin
πt
6

)
φx +

−1
2

σ2φxx. (5.11)

Again we realized a group classification of equation (5.11) since we found that the

determining equations depends on arbitrary elements k and σ. In the case k(36k2 +

π2) 6= 0∧ σ 6= 0 of its group classification we have the symmetry Γ2 = ekt

k ∂φ + ekt∂x

and the invariants are given by,

I1 = t, I2 = φe−
x
k .

The relation between the invariants is I2 = ψ(I1) and φ = e
x
k ψ(t). The function

ψ(t) is a solution of the first order ordinary differential equation

ψt =

[
r− xre f −

(
w3 + w1 cos

πt
6

+ w2 sin
πt
6

)
1
k
− 1

2k2 σ2
]

ψ. (5.12)

For equation (5.12) we can apply the standard methods of resolution and we get

the following solution

ψ(t) = e
(

r−xre f− w3
k −

σ2

k2

)
t− 6

kπ (w1 sin( πt
6 )−w2 cos( πt

6 ))+C (5.13)

the final solution of the PDE under the subalgebra 〈X1, X2〉 given by V = eyφ(t, x) =
e(y+

x
k )ψ(t) will take the form

V = ey+ x
k +
(

r−xre f− w3
k −

σ2

k2

)
t− 6

kπ (w1 sin( πt
6 )−w2 cos( πt

6 ))+C (5.14)

5.4.1 Invariant Solutions Compatible with the Terminal Conditions

In financial applications, the only relevant invariant solutions are those that are

compatible with the terminal conditions. Among all symmetries, we will seek for

those which satisfies the system of equation and terminal conditions and we use

them to find the invariant solutions. By substituting the invariant solutions into

the equation (5.1), we find the solution consistent with the terminal condition by

solving the resulting ordinary differential equation. We recall the terminal condi-

tion (3.25), and we transform it in a double conditions:

t = T ∧V = tick× (S− yT)
+. (5.15)
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The general Lie point symmetry for maximal finite Lie algebra of the equation (5.1)

(case: σ 6= 0 and k(k2 + π2) 6= 0) will be given by

X =
6

∑
i=1

aiXi (5.16)

where the constants ai, i = 1, · · · , 6 must be determined. The application of X for

each terminal condition (5.15) gives:

t = T : a5 = 0,

V = τ · (S− yT) :
kT
(

w3 − kxre f +
kyT−x

T − 6 w2 cos πT
6 −w1 sin πT

6
πT

)
σ2 Va4

+
72kekT

(
w3 +

π2w3
36k2 − kx− π2

36k x + w1 cos πt
6

)
σ2(36k2 + π2)

Va6 +

Va2 +
12πekT

[(
w1 +

6kw2
π

)
sin πT

6 − w2 cos πt
6

]
σ2(36k2 + π2)

Va6

= a1 +
ekT

k2 a3 + Ta4 +
e−kT

k2 a6.

Solving this equations, and equating the coefficients of the same powers of the

variables x and yT we get

a5 = 0, a4 =
2
k

e−kTa6, a6 = 0

a1 = − ekT

k2 a3 (5.17)

As a solution, we have a one parameter symmetry a3 which is compatible with

the terminal conditions (3.25). Then we can write the symmetry as one-parameter

point symmetries:

Λ = − ekt

k
∂x + (− ekT

k2 +
ekt

k2 )∂y,

(5.18)

From the invariance under Λ we get

I1 = t, I2 = kekty + (ekt − ekT)x, and V = I3

The relation among the invariants is given by I3 = φ(I1, I2). Then the invariant

solution of the PDE compatible with the terminal condition is V = φ(t, z), where
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z = I2 = kekty + (ekt − ekT)x. The function φ(t, z) is solution of the equation

φt = rφ−
[

kz + kxre f ekt + (w3 + w1 cos
πt
6

+ w2 sin
πt
6
)(ekt − ekT)

]
φz +

−1
2

σ2(ekt − ekT)2φzz. (5.19)

With the symmetry Λ, the PDE was reduced by one independent variable. We

can find the symmetries of the reduced equation (5.19) and we use it to find their

invariants solutions, which obviously will give the solution of the equation (5.1).

To make the treatment of the equation (5.19) we perform some simpliplications on

the Lie equations, so that the invariants become

I1 = t, I2 = y +
(1− ek(T−t))

k
x, and V = I3,

and φ(t, z) solution of the equation

φt = rφ−
[

xre f + (w3 + w1 cos
πt
6

+ w2 sin
πt
6
)
(1− ek(T−t)

k
)

]
φz +

− 1
2k2 σ2(1− ek(T−t))2φzz. (5.20)

For the PDE (5.20), the terminal conditions (3.25) and (3.26) become respectively

• for an RDD European put

φ(T, z) = tick× (S− z)+ (5.21)

• and, for an RDD European call

φ(T, z) = tick× (z− S)+ (5.22)

The equation (5.20) belong to the classe of (1 + 1) parabolic PDE with general form

ut = a(t, z)uzz + b(t, z)uz + c(t, z)u. (5.23)

a, b and c are continuous functions in t and z. Lie gave the complete group classifi-

cation of the PDE (5.23) providing all the canonical forms for which the PDE admits

nontrivial point symmetry. In [39] was presented the complete characterization of

the PDE (5.23) in terms of the invariant and its reduction to the four Lie canonical

forms. The general conditions for the PDE (5.23) to be reduced to the heat equation

and the transformation to be done were summarised in the following theorem.



Chapter 5. Application to the PDE of the Ornstein-Uhlenbeck process 79

Theorem 5.4.1 (theorem 3 in [39])

The following statements are equivalent:

1. the scalar linear (1 + 1) parabolic PDE (5.23) has six nontrivial point symme-

tries in addition to the infinite number of superposition symmetries;

2. the coefficients of the parabolic equation (5.23) satisfies the invariant equation

2Lz + 2Mz − Nz = 0, (5.24)

where

L = a
1
2 [a

1
2 Jz]z, M = a

1
2 [a

1
2 ∂t(

b
2a

)]z, N = a
1
2 ∂2

t (
1

a
1
2
) (5.25)

and J is given by

J = c− bz

2
+

baz

2a
+

azz

4
− 3a2

z
16a
− at

2a
− b2

4a
; (5.26)

3. the linear parabolic equation (5.23) is reducible to the classical heat PDE ūt̄ =

ūz̄z̄ via the transformation

t̄ = ϕ(t),

z̄ = ±
∫
[ϕ̇a(t, z)−1]

1
2 dz + β(t),

ū = ν(t)|a(t, z)|−1
4 u× (5.27)

×Exp


∫ b(t, z)

2a(t, z)
dz− ϕ̈

8ϕ̇

[∫ dz

a(t, z)
1
2

]2
×

×Exp

{
−1

2

∫ 1

a(t, z)
1
2

∂t

[∫ dz

a(t, z)
1
2

]
dz∓ β̇

2ϕ̇
1
2

∫ dz

a(t, z)
1
2

}

for which ϕ, β and ν are constructed from

f (t) =
ϕ̈2

16ϕ̇2 −
1
8

(
ϕ̈

ϕ̇

)
t
,

g(t) = ± ϕ̈β̇

4ϕ̇ϕ̇
1
2
∓ 1

2

(
β̇

ϕ̇
1
2

)
t

, (5.28)

h(t) =
ϕ̈

4ϕ̇
+

β̇2

4ϕ̇
+

ν̇

ν

with functions f , g and h constrained by the relation

J + ∂t

∫ b
2a

dz− 1
2

∫ 1

a
1
2

∂2
t

(∫ 1

a
1
2

dz
)

dz + f (t)
(∫ 1

a
1
2

dz
)2

+

+g(t)
∫ 1

a
1
2

dz + h(t) = 0. (5.29)
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Now we apply the invariant criteria provided with the Theorem 5.4.1 to reduce the

equation (5.20) into first Lie canonical form. Comparing the PDE (5.20) with the

(1+1) general parabolic PDE we can writte the following coefficients:

a(t, z) = − 1
2k2 σ2

(
1− ek(T−t)

)2
,

b(t, z) = −xre f −
(

w3 + w1 cos
πt
6

+ w2 sin
πt
6

)
1− ek(T−t)

k
,

c(t, z) = r. (5.30)

To evaluate the invariant condition (5.24), we need the values of J, L, M and N
given also in the Theorem 5.4.1 so that,

J = r− kek(T−t)

1− ek(T−t)
−

(
kxre f

(1−e−kt+kT)
2 +

(
w3 + w1 cos πt

6 + w2 sin πt
6

))2

2σ2 ,

L = 0, (5.31)

M = 0,

N =
ekt(ekt + ekT)k2

(ekt − ekT)2 .

Note that the functions L, M and N are independent of z, so that we get Lz =

Mz = Nz = 0. With the substitutions of these values to the invariant condition of

Theorem 5.4.1, we can see that the invariant condition is satisfied. In the Theorem

5.4.1 all the statements are equivalent, then the PDE (5.20) can be reduced to the

heat equation. We obtain the transformations (5.27) defined in Theorem 5.4.1. The

functions ϕ, β and ν are obtained by solving the ODEs in (5.28). First we need

to obtain the functions f (t), g(t) and h(t) by equating the coefficients of the same

power of z in (5.29), we have the following result:

f (t) =
ekT (ekt + ekT) k2

4 (ekt − ekT)
2 ,

g(t) =
−6k

[
−e2kTw3 + ek(t+T)(w3 + 2kxre f )

]
6
√

2e2kt
√
− (ekt − ekT)

4
σ2

+

−
(
ekt − ekT) [−ektπw2 + ekT(6kw1 + πw2)

]
cos

[
πt
6

]
6
√

2e2kt
√
− (ekt − ekT)

4
σ2

+ (5.32)

−
(
ekt − ekT) [ektπw1 + ekT(−πw1 + 6kw2)

]
sin
[

πt
6

]
6
√

2e2kt
√
− (ekt − ekT)

4
σ2

,

h(t) =
ekTk

ekt − ekT − r +
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−

[
kxre f −

(
−1 + ek(−t+T)

) (
w3 + w1 cos

[
πt
6

]
+ w2 sin

[
πt
6

])]2

2
(
σ− ek(−t+T)σ

)2 .

By solving the ODEs in (5.28) we obtain the functions ϕ, β and ν

ϕ(t) = − e2kt

2k
[
−e2kT + 4ek(t+T) + 2e2kt(kt + c1)

] ,

β(t) = ±
∫
[
∫ ekt

3(−e2kT + 4ek(t+T) + 2e2kt(kt + c1))
√
−2 (ekt − ekT)

2
σ2
×

×(−6k(−e2kTw3 + ek(t+T)(w3 + 2kxre f )) +

−
(

ekt − ekT
) (
−ektπw2 + ekT(6kw1 + πw2)

)
cos

[
πt
6

]
+

−
(

ekt − ekT
) (

ektπw1 + ekT(−πw1 + 6kw2)
)

sin
[

πt
6

]
)dt]dt,

ν(t) =
e−

kt
2
(
ekt − ekT)− 1

2
(
ekt − ekT)

ert+kt
(
e2kT − 4ek(t+T) − 2e2kt(kt + c1)

)− 1
2
×

×Exp{
∫
[− (−e2kT + 4ek(t+T) + 2e2kt(kt + c1))

2

(e2kt − ek(t+T))2
× (5.33)

×[
∫ ekt

(−e2kT + 4ek(t+T) + 2e2kt(kt + c1))
√

26
√
− (ekt − ekT)

2
σ2
×

×(−6k(−e2kTw3 + ek(t+T)(w3 + 2kxre f )) +

−
(

ekt − ekT
) (
−ektπw2 + ekT(6kw1 + πw2)

)
cos

[
πt
6

]
+

−
(

ekt − ekT
) (

ektπw1 + ekT(−πw1 + 6kw2)
)

sin
[

πt
6

]
)dt]2]dt +

−

(
kxre f −

(
−1 + ek(−t+T)

) (
w3 + w1 cos

[
πt
6

]
+ w2 sin

[
πt
6

]))2

2
(
σ− ek(−t+T)σ

)2 }

where c1 is a integration constant. The transformations which reduce the PDE (5.20)

into the heat equation are

t̄ = − e2kt

2k
(
−e2kT + 4ek(t+T) + 2e2kt(kt + c1)

) ,

z̄ = ± k
√

2e2ktz√
−σ2

(
e2kT − 4ek(t+T) − 2e2kt(kt + c1)

) +
±2

∫
[
∫ ekt

6(−e2kT + 4ek(t+T) + 2e2kt(kt + c1))
√
−2 (ekt − ekT)

2
σ2
×
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×(−6k(−e2kTw3 + ek(t+T)(w3 + 2kxre f )) +

−
(

ekt − ekT
) (
−ektπw2 + ekT(6kw1 + πw2)

)
cos

[
πt
6

]
+

−
(

ekt − ekT
) (

ektπw1 + ekT(−πw1 + 6kw2)
)

sin
[

πt
6

]
)dt]dt,

φ̄ =
2

1
4

√
k
(
e2kT − 4ek(t+T) − 2e2kt(kt + c1)

)
e2kt+rt

√
σ

φ×

×Exp{
k2(xre f + (w3 + w1 cos πt

6 + w2 sin πt
6 ) (1−ek(T−t))

k )z
σ2(1− ek(T−t))2

+

k3
(

2e3kt − e3kT + 2ek(t+2T) − 2ek(2t+T)(3 + c1)− 2ek(2t+T)kt
)

z2

2σ2ekt
(
1− ek(T−t)

)3 (−e2kT + 4ek(t+T) + 2e2ktc1 + 2e2ktkt
) +

+
k3ektz2

2σ2(1− ek(T−t))3
∓
√

2(−e2kT + 4ek(t+T) + 2e2kt(kt + c1))√
−σ2ekt(ekt − ekT)2

×

×[
∫ ekt

6(−e2kT + 4ek(t+T) + 2e2kt(kt + c1))
√
−2 (ekt − ekT)

2
σ2
×

×(−6k(−e2kTw3 + ek(t+T)(w3 + 2kxre f )) +

−
(

ekt − ekT
) (
−ektπw2 + ekT(6kw1 + πw2)

)
cos

[
πt
6

]
+

−
(

ekt − ekT
) (

ektπw1 + ekT(−πw1 + 6kw2)
)

sin
[

πt
6

]
)dt]z +

+
∫
[− (−e2kT + 4ek(t+T) + 2e2kt(kt + c1))

2

(e2kt − ek(t+T))2
×

×[
∫ ekt

(−e2kT + 4ek(t+T) + 2e2kt(kt + c1))
√

26
√
− (ekt − ekT)

2
σ2
× (5.34)

×(−6k(−e2kTw3 + ek(t+T)(w3 + 2kxre f )) +

−
(

ekt − ekT
) (
−ektπw2 + ekT(6kw1 + πw2)

)
cos

[
πt
6

]
+

−
(

ekt − ekT
) (

ektπw1 + ekT(−πw1 + 6kw2)
)

sin
[

πt
6

]
)dt]2] +

−

(
kxre f −

(
−1 + ek(−t+T)

) (
w3 + w1 cos

[
πt
6

]
+ w2 sin

[
πt
6

]))2

2
(
σ− ek(−t+T)σ

)2 dt}

By using the transformations (5.34) we reduce the equation (5.20) to the heat equa-

tion and we can use the well known fundamental solution of the heat equation.

In [49] the fundamental solution of heat equation was presented in barred coordi-

nates,

φ̄ =
1

2
√

t̄π
e−

z̄2
4t̄ . (5.35)
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We solve the transformation (5.34) in term of φ, and the solution of the PDE (5.20)

is given by:

φ =
e2kt+rt√σ

2
1
4

√
k
(
e2kT − 4ek(t+T) − 2e2kt(kt + c1)

) φ̄×

×Exp{−[
k2(xre f + (w3 + w1 cos πt

6 + w2 sin πt
6 ) (1−ek(T−t))

k )z
σ2(1− ek(T−t))2

+

k3
(

2e3kt − e3kT + 2ek(t+2T) − 2ek(2t+T)(3 + c1)− 2ek(2t+T)kt
)

z2

2σ2ekt
(
1− ek(T−t)

)3 (−e2kT + 4ek(t+T) + 2e2ktc1 + 2e2ktkt
) +

+
k3ektz2

2σ2(1− ek(T−t))3
∓
√

2(−e2kT + 4ek(t+T) + 2e2kt(kt + c1))√
−σ2ekt(ekt − ekT)2

×

×[
∫ ekt

6(−e2kT + 4ek(t+T) + 2e2kt(kt + c1))
√
−2 (ekt − ekT)

2
σ2
× (5.36)

×(−6k(−e2kTw3 + ek(t+T)(w3 + 2kxre f )) +

−
(

ekt − ekT
) (
−ektπw2 + ekT(6kw1 + πw2)

)
cos

[
πt
6

]
+

−
(

ekt − ekT
) (

ektπw1 + ekT(−πw1 + 6kw2)
)

sin
[

πt
6

]
)dt]z +

+
∫
[− (−e2kT + 4ek(t+T) + 2e2kt(kt + c1))

2

(e2kt − ek(t+T))2
×

×[
∫ ekt

(−e2kT + 4ek(t+T) + 2e2kt(kt + c1))
√

26
√
− (ekt − ekT)

2
σ2
×

×(−6k(−e2kTw3 + ek(t+T)(w3 + 2kxre f )) +

−
(

ekt − ekT
) (
−ektπw2 + ekT(6kw1 + πw2)

)
cos

[
πt
6

]
+

−
(

ekt − ekT
) (

ektπw1 + ekT(−πw1 + 6kw2)
)

sin
[

πt
6

]
)dt]2] +

−

(
kxre f −

(
−1 + ek(−t+T)

) (
w3 + w1 cos

[
πt
6

]
+ w2 sin

[
πt
6

]))2

2
(
σ− ek(−t+T)σ

)2 ]dt}

we substitute the solution of heat equation (5.35), z̄ and t̄ in the solution (5.36), the

solution of the PDE (5.20) become

φ =

√
σert+kt

2
3
4

√
−π

(
1− ek(T−t)

) xre f (xre f +2w3)

kσ2

×

×Exp{−[
k2(xre f + (w3 + w1 cos πt

6 + w2 sin πt
6 ) (1−ek(T−t))

k )z
σ2(1− ek(T−t))2

+

k3
(

2e3kt − e3kT + 2ek(t+2T) − 2ek(2t+T)(3 + c1)− 2ek(2t+T)kt
)

z2

2σ2ekt
(
1− ek(T−t)

)3 (−e2kT + 4ek(t+T) + 2e2ktc1 + 2e2ktkt
) +
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+
k3ektz2

2σ2(1− ek(T−t))3
∓
√

2(−e2kT + 4ek(t+T) + 2e2kt(kt + c1))√
−σ2ekt(ekt − ekT)2

×

×[
∫ ekt

6(−e2kT + 4ek(t+T) + 2e2kt(kt + c1))
√
−2 (ekt − ekT)

2
σ2
×

×(−6k(−e2kTw3 + ek(t+T)(w3 + 2kxre f )) +

−
(

ekt − ekT
) (
−ektπw2 + ekT(6kw1 + πw2)

)
cos

[
πt
6

]
+

−
(

ekt − ekT
) (

ektπw1 + ekT(−πw1 + 6kw2)
)

sin
[

πt
6

]
)dt]z +

+
∫
[− (−e2kT + 4ek(t+T) + 2e2kt(kt + c1))

2

(e2kt − ek(t+T))2
×

×[
∫ ekt

(−e2kT + 4ek(t+T) + 2e2kt(kt + c1))
√

26
√
− (ekt − ekT)

2
σ2
×

×(−6k(−e2kTw3 + ek(t+T)(w3 + 2kxre f )) +

−
(

ekt − ekT
) (
−ektπw2 + ekT(6kw1 + πw2)

)
cos

[
πt
6

]
+ (5.37)

−
(

ekt − ekT
) (

ektπw1 + ekT(−πw1 + 6kw2)
)

sin
[

πt
6

]
)dt]2] +

− 1

2
(
σ− ek(−t+T)σ

)2 [kx2
re f ek(−t+T) + w2

3

(
−1 + ek(−t+T)

)2
+

+xre f (xre f + w3)(k− ek(T−t))− 2
(

kxre f − w3(−1 + ek(T−t))
)
×

×
(
−1 + ek(−t+T)

)(
w3 + w1 cos

[
πt
6

]
+ w2 sin

[
πt
6

])
+

+

((
−1 + ek(−t+T)

)(
w3 + w1 cos

[
πt
6

]
+ w2 sin

[
πt
6

]))2

]]dt +

+
2k
(
−e2kT + 4ek(t+T) + 2e2kt(kt + c1)

)
4ekt ×

×[± k
√

2e2ktz√
−σ2

(
e2kT − 4ek(t+T) − 2e2kt(kt + c1)

) +
±2

∫
[
∫ ekt

6(−e2kT + 4ek(t+T) + 2e2kt(kt + c1))
√
−2 (ekt − ekT)

2
σ2
×

×(−6k(−e2kTw3 + ek(t+T)(w3 + 2kxre f )) +

−
(

ekt − ekT
) (
−ektπw2 + ekT(6kw1 + πw2)

)
cos

[
πt
6

]
+

−
(

ekt − ekT
) (

ektπw1 + ekT(−πw1 + 6kw2)
)

sin
[

πt
6

]
)dt]dt]2}.

In [49] the following results was applied. Consider the evolution of the Cauchy

problem

ut + a(t, z)uzz + b(t, z)uz + c(t, z)u = f (t, z), (5.38)
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u(0, z) = u0(x), (5.39)

where a(t, z), b(t, z), c(t, z), u0(x) and f (t, z) are sufficiently smooth functions. In

addition, we assume the existence and uniqueness for the Cauchy problem (5.38)

its solution is given by

u(t, z) =
∫

R
S(t, z, ς, 0)u0(ς)dς +

∫
R×[t,0]

S(t, z, ς, τ) f (τ, ς)dςdτ, (5.40)

with the function S(t, z, ς, τ) being the fundamental solution of the Cauchy problem

(5.38).

The solution (5.37) will be the fundamental solution for the Cauchy problem (5.20)-

(5.22) [49], if is provide that

lim
t→t0

φ(t, z) = δ(z− z0), (5.41)

where δ(z− z0) is the Dirac function and is defined by the well-known limit

lim
p→0

1
√

pπ
e
(z−z0)

2

4p = δ(z− z0). (5.42)

The big challenge is to verify if the solution (5.37) satisfies the condition (5.41) for

t0 = T and use it in (5.40) to determine the solution of the Cauchy problem (5.20)-

(5.22). If condition (5.41) is satisfied, then the solution of the Cauchy problem (5.20)-

(5.22) will be given by

φ(t, z) =
∫ ∞

−∞
φ(t, z− ς)tick · (ς− S)+dς (5.43)

where φ(t, z− ς) is fundamental solution (5.37). The solution (5.43) must have the

following property

lim
t→T

φ(t, z) = tick · (z− S)+. (5.44)

5.5 One Dimensional Optimal System of the PDE

We construct an optimal system of one dimensional subalgebra of equation (5.1)

and apply the direct algorithm of one-dimensional optimal system presented in

[23]. The general operator takes the form

X = a1X1 + a2X2 + a3X3 + a4X4 + a5X5 + a6X6 (5.45)
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and corresponding to a vector of their coefficients

a = (a1, a2, a3, a4, a5, a6).

The goal is to simplify as many as possible the elements ai being zero by application

of the adjoint transformation in X. We applied the direct algorithm by following

the steps:

1. From the commutator Table.5.1 we take the matrix of the structure of con-

stants C(j), j = 1, · · · , 6, i.e., each column determine one matrix;

2. We determine all the vectors rows

(a1, a2, a3, a4, a5, a6)C(j), j = 1, · · · , 6;

3. The R − rank(K(a)) functionally independents invariants I(a) are found by

solving the linear system aC(j)∇I(a) = 0, K(a) is the R× R matrix whose j
th row is aC(j), j = 1, · · · , R (also called Killing matrix in [45] from which the

invariant is determined as a trace of K2(a)).

4. We determine the adjoint matrix

A(j, ε) = exp(εC(j)) = Σ∞
0 C(j)n εn

n!
, j = 1, · · · 6 (5.46)

from the adjoint representation Table. 5.2. Each row corresponding to one

matrix A(j, ε) by using each position to fill its rows;

5. We construct the general adjoint transformation matrix

A =
6

∏
j=1

A(j, ε j) (5.47)

and we use to simplify a, we look for ai associated with the invariants and

consider all subcases. We select the simplest representative X̃ by solving the

adjoint transformation equation

ã = aA or a = ãA, (5.48)

so that X must be equivalent to X̃ under the adjoint action, if the system has

solution.

The following adjoint representation table was constructed by using the SYM pack-
age of the software Wolfram Mathematica [16].
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TABLE 5.2: The Adjoint Table of Subalgebras

Ad X1 X2 X3 X4 X5 X6

X1 X1 X2 X3 − k2ε
σ2 X2 + X4 X5 X6

X2 X1 X2 X3 X4 X5 X6

X3 X1 X2 X3 X4 kεX3 + X5 − 2ε
kσ2 X2 +

X6

X4 X1 +
k2ε
σ2 X2

X2 X3 X4 εX1 +
−k2xre f +kw3

σ2 εX2+
k2ε2

2σ2 X2 + X5

X6

X5 X1 X2 e−kεX3 X4 X5 −ekεX6

X6 X1 X2
2ε

kσ2 X2+ X3 −εX1+
k2xre f−kw3

σ2 εX2+
X4

X5 − kεX6 X6

The coefficients of the linear system aC(j)∇I(a) = 0 can be extracted directly from

the commutator Table.5.1, and the system become,

k2a4
σ2

∂I
∂a2

= 0
2a6
kσ2

∂I
∂a2
− ka5

∂I
∂a3

= 0

−a5
∂I
∂a1

+

[
− k2a1

σ2 +
(k2xre f +kw3)a5

σ2

]
∂I
∂a2

= 0

a4
∂I
∂a1
− (k4xre f +kw4)a4

σ2
∂I
∂a2

+ ka3
∂I
∂a3
− ka6

∂I
∂a6

= 0

− 2a3
kσ2

∂I
∂a2

+ ka5
∂I
∂a6

= 0

(5.49)

By Solving the system (5.49), we can found the invariants I1 = a5 and I2 = a4.

According to [23], the first step in constructing the one-dimensional optimal system

of the finite dimensional Lie algebra is to scale the invariants as in the following

situations:

• A. If the degree of the invariant is odd, we need to consider two cases: I = 0

and I 6= 0 (for simplicity we scale it to 1 or −1);

• B. If the degree of the invariant is even (excluding zero), three cases are con-

sidered: I = 0, I > 0 and I < 0 (if we scale we get respectively the correspon-

dents cases I = 0, I = 1 and I = −1);

• C. Once one of the invariants is scaled (not zero), the other invariants (if any)

can not be adjusted.

The invariants of the equation (5.1) are I1 = a5 and I2 = a4, both with degree one,

then we can consider the cases

{I1 6= 0, I2 6= 0}, {I1 = 0, (I 6= 0∨ I2 = 0)} (5.50)
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and the subcases given by the new invariant

I = a3a6 (5.51)

found by substitute a5 = 0 in the system aC(j)∇I(a) = 0.

Once we have the invariants of the equation (5.1), we need to determine the general

adjoint transformation matrix A, which is given in (5.47). The components A(j, ε)

extracted from ajoint Table.5.2 are:

A(1, ε1) =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 − k2ε1
σ2 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


, A(2, ε2) =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


,

A(3, ε3) =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 kε3 0 1 0

0 − 2ε3
kσ2 0 0 0 1


,

A(4, ε4) =



1 k2ε4
σ2 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

ε4 − k(w3+kxre f )ε4
σ2 +

k2ε2
4

2σ2 0 0 1 0

0 0 0 0 0 1


,

A(5, ε5) =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 e−kε5 0 0 0

−ε5
k(w3+kxre f )ε5

σ2 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 ekε5


,
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A(6, ε6) =



1 0 0 0 0 0

0 1 0 0 0 0

0 2ε6
kσ2 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 −kε6

0 0 0 0 0 1


,

then,

A =



1 k2ε4
σ2 0 0 0 0

0 1 0 0 0 0

0 2e−kε5 ε6
kσ2 e−kε5 0 0 0

−ε5 − k2ε1
σ2 + k(w3+kxre f )ε5

σ2 0 1 0 0

ε4 − k(w3+kxre f )ε4
σ2 +

k2ε2
4

2σ2 + 2e−kε5 ε3ε6
σ2 e−kε5 kε3 0 1 −kε6

0 − 2ε3
kσ2 0 0 0 ekε5


. (5.52)

The adjoint transformation equation (5.48) is

ã1 = a1 + a5ε4 − a4ε5

ã2 = a2 + a4

(
− k2ε1

σ2 + k(w3+kxre f )ε5
σ2

)
+

+a5

(
− k(w3+kxre f )ε4

σ2 +
k2ε2

4
2σ2 + 2e−kε5 ε3ε6

σ2

)
+

− 2a6ε3
kσ2 + a1k2ε4

σ2 + 2a3e−kε5 ε6
kσ2

ã3 = a3e−kε5 + a5e−kε5 kε3

ã4 = a4

ã5 = a5

ã6 = a6ekε5 − a5kε6

(5.53)

The goal is to find for each case (5.50)-(5.51) the representative ã for which the sys-

tem has solution. Some algebraic details for computation and simplifications in

resolution of the system of linear equations ã = aA will be omitted.
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Case 1: I1 = a5 = 1, I2 = a4 = c, c ∈ R

We can simplify (5.53) by vanishing a1, a2, a3 and a6, choosing

ε1 ∈ R,

ε4 = −a1+a4ε5
a5

,

ε3 = −a3
ka5

,

ε5 = −σ2a2
k(w3+kxre f ) + a4

kε1
(w3+kxre f ) − a5

(
−ε4 +

kε2
4

2(w3+kxre f ) +
2e−kε5 ε3ε6

k(w3+kxre f )

)
+

+ 2a6ε3
k2(w3+kxre f ) −

a1kε4
(w3+kxre f ) −

2a3e−kε5 ε6
k2(w3+kxre f ) ,

ε6 = a6ekε5

ka5

The corresponding representative adjoint equivalent vector for all vectors of the

form a = (a1, a2, a3, a4, 1, a6) is ã = (0, 0, 0, a4, 1, 0).

Case 2: I1 = a5 = 0,

• I2 = a4 = 1: we can vanish the elements a1 and a2 by choosing ε3, ε4, ε6 ∈ R

ε5 =
a1

a4
,

ε1 =
σ2a2

k2 + a4
(w3 + kxre f )ε5

k
− 2a6ε3

k3 + a1ε4 +
2a3e−kε5 ε6

k3 .

The representative of all the vectors of the form a = (a1, a2, a3, 1, 0, a6) is ã =

(0, 0, a3, 1, 0, a6)

• I2 = a4 = 0: we can vanish a2 by choosing

ε4 =
−kσ2a2 + 2a6ε3 − 2a3ε6

k3a1
, a1 6= 0 ∧ ε3, ε6 ∈ R

If we scale a1 by a1 = 1 we have the representative vector for all vectors of

the form a = (1, a2, a3, 0, 0, a6) given by ã = (1, 0, a3, 0, 0, a6).

• a3a6 = ±1: we have to consider two cases, namely for a4 6= 0 and a4 = 0 and

we substitute a3 in (5.53) by a3 = ± 1
a6

. For a4 6= 0 we can vanish a1 and a2, the

solution is included in the case I1 = a5 = 0, ∧I2 = a4 = 1. For a4 = 0 we can

vanish a2 and the solution is included in the case I1 = a5 = 0, ∧I2 = a4 = 0

• a3a6 = 0: we have to consider the following three possibilities.

– a3 6= 0 and a6 = 0: for a4 6= 0 we can vanish a1 and a2. If we scale a3 by

a3 = 1, the representative for all vectors of the form a = (a1, a2, 1, a4, 0, 0)

is ã = (0, 0, 1, a4, 0, 0). For a4 = 0, we can vanish a2 and after scaling a3,

the representative of all the vectors of the form a = (a1, a2, 1, 0, 0, 0) is

ã = (a1, 0, 1, 0, 0, 0).

– a3 = 0 and a6 6= 0: we can also consider two possibilities. For a4 6= 0,
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we can vanish a1 and a2. If we scale a6, all vectors of the form a =

(a1, a2, 0, a4, 0, 1) has the representative ã = (0, 0, 0, a4, 0, 1). For a4 = 0,

we can vanish a2 and, after scaling a6, the representative of all vectors of

the form a = (a1, a2, 0, 0, 0, 1) is ˜a1, 0, 0, 0, 0, 1.

– a3 = a6 = 0: We also have two possibilities. For a4 6= 0, we can

vanish a1 and a2, so that, after scaling a4, all the vectors of the form

a = (a1, a2, 0, 1, 0, 0) are represented by ã = (0, 0, 0, 1, 0, 0). For a4 = 0,

we can vanish only a2 for a1 6= 0, and after scaling a1, the representative

of all vectors of the form a = (1, a2, 0, 0, 0, 0) is ã = (1, 0, 0, 0, 0, 0).

– The Last possibility is to consider a1 = a3 = a4 = a5 = a6 = 0, and after

scaling a2, the representative is ã = (0, 1, 0, 0, 0, 0).

The one dimensional optimal subalgebra for the equation (5.1) is,

X1, X2, X4, X3 + a1X1, X3 + a4X4, X5 + a4X4, X6 + a1X1, X6 + a4X4,

X1 + a3X3 + a6X6, X4 + a3X3 + a6X6.

Using the subalgebra X3 + aX1, we get the following invariants for the generator,

I1 = t, I2 = z =
ekt

k
y + (

ekt

k2 + a)x, I3 = V

and the invariant solution for the equation (5.1) is V = φ(t, z). The substitution of

V into (5.1) yields to the reduced equation by one independent variable

φt = rφ−
[

S + kz + (w3 + w1 cos
πt
6

+ w2 sin
πt
6
)(

ekt

k2 + a)
]

φz +

−1
2

σ2(
ekt

k2 + a)2φzz (5.54)

then, φ(t, z) is a solution of the reduced equation (5.54).
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Chapter 6

Conclusions and Future work

We applied Lie analysis of the partial differential equations with three independent

variables, equation (3.24). The PDE was derived by applying the Fayman-Kac the-

orem for pricing weather derivatives when the rainfall process follow the Ornstein-

Uhlenbeck process with constant volatility.

By the group classification we have shown that the Lie algebra of the PDE (3.24)

depends on the parameters k and σ. The principal Lie algebra admits the symme-

tries ∂y, u∂u and w(x, y, t)∂u, where w(x, y, t) is an solution of the equation (3.24).

The PDE admits the maximal extension by 6 symmetries for σ 6= 0 ∧ k = 0,

extension by 4 symmetries for σ 6= 0, ∧ k(k2 + π2) 6= 0 and by 1 operators for

σ 6= 0, ∧ (k2 + π2) = 0.

We realized that the PDE can not be reduced to heat equations for any values of pa-

rameters, since it admits the extension by seven symmetries. We have used some

subalgebra to find some solutions of the equation (3.24), although the solution is not

compatible with our boundary conditions. By determining the symmetries which

are compatible with our boundary conditions, we found a subalgebra with only

one symmetry. We used it to reduce the equation (3.24) by one independent vari-

able. We was not able to compute the symmetries of the reduced (1+1) parabolic

PDE (5.20) by the computer programs. As alternative we applied the results from

[39] that allowed the reduction of the PDE (5.20) to heat equation. From the funda-

mental solution of the heat equation we derived the candidate of the fundamental

solution for parabolic PDE (5.20). As stated in [49] the produced solution is funda-

mental solution if provide that its limit is Dirac function.

Furthermore, we determined the one dimensional optimal system of the algebra

admitted by the PDE (3.24) through algorithm suggested by Yu, Li and Chen in

[23]. The optimal system allows to dived the set of all invariant solutions of the

PDE into equivalent classes. The solutions which can be mapped to the other solu-

tion by a point symmetry of the PDE, are equivalent and belong to the same class.

Once we have constructed a optimal system, we need only to find one invariant

solution from each class, and the whole class can be constructed by applying the
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symmetries. We found ten classes of equivalence and we used one which reduced

the PDE by one variable.

As future work We expect to verify that the solution (5.37) satisfy the conditions

(5.41) for t0 = T so that if it is provide to be we will use it as a fundamental so-

lution for the PDE (3.24) in order to derive the solutions compatible with terminal

conditions and illustrate simulations of the derivative prices. Also we expect to

investigate the reduction by others classes of equivalence and find all solutions.

Other research can be made to analytically investigate if this PDE can admit a com-

plete number of symmetries, because can happen that the result of the group clas-

sification was influenced by the limitation of the computer programs in finding all

symmetries of the equations. In addition for future works we also expect to in-

vestigate the discrete symmetries of this PDE since are also important and can be

used as alternatives to simplify the numerical computations of the solution of the

PDEs, to create new exact solutions from know solutions and to study the stability

and integrability of the PDEs. More details about discrete symmetries for PDEs we

refer for exemple to [26]
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