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Resumo

A utilização acentuada de dispositivos móveis, as exigências de uma boa Qualidade de
Serviço (QoS) e o aumento do número de Temporary Crowded Events nos dias de hoje
remetem para a utilização de redes aéreas para fornecer conectividade à Internet nestes
cenários. Estas redes aéreas são construídas por Unmanned Aerial Vehicles (UAVs) que
atuam como pontos de acesso Wi-Fi ou estações de base celular.

A falta de informação que mapeie algoritmos de Machine Learning (ML) e o seu uso em
problemas de otimização com redes aéreas, inclusive no desenvolvimento de algoritmos
de posicionamento de UAVs, traz novas oportunidades de pesquisa nessa área.

Esta dissertação procura, deste modo, responder às necessidades dos utilizadores
através do desenvolvimento de um algoritmo de posicionamento de UAVs, recorrendo a
um modelo ML. Este modelo faz a previsão de qual a melhor topologia de rede aérea, de
acordo com o comportamento dinâmico dos utilizadores.

Esta dissertação apresenta duas contribuições. A primeira refere-se a um levanta-
mento sobre os conceitos básicos e fundamentais de algoritmos de Deep Reinforcement
Learning (DRL), assim como os principais métodos de aprendizagem usados na sua con-
strução, remetendo para a sua aplicação às redes aéreas. A segunda contribuição é um
modelo de ML envolvendo a exploração de técnicas de DRL com métodos policy gradient
e redes neuronais. Inerente a este modelo, é proposto um algoritmo que visa definir a sua
função de recompensa com base nas conexões entre os utilizadores e os agentes (UAVs),
evitando a sobrecarga dos respetivos pontos de acesso.

O algoritmo proposto apresenta melhorias significativas relativamente às outras soluções
analisadas, colmatando alguns problemas importantes e recorrentes que surgem na uti-
lização de uma arquitetura de redes aéreas, tais como uma fraca Qualidade de Serviço na
sobrecarga do sinal sem fios com muitas solicitações ao mesmo ponto de acesso.
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Abstract

Nowadays, the increased use of mobile devices, along with the need to satisfy the users’
Quality of Service (QoS) demands, particularly in Temporary Crowded Events (TCE),
motivates the adoption of flying networks to provide Internet connectivity in these sce-
narios. Flying networks are built by Unmanned Aerial Vehicles (UAVs) which act as Wi-Fi
Access Points (APs) or cellular Base Stations.

The lack of information that maps Machine Learning algorithms and their usage
in optimization problems related to Flying networks, including in the design of UAV
placement algorithms, brings up new research opportunities in this area.

This dissertation seeks to respond to the users’ demands by developing an UAV
placement algorithm through a Machine Learning (ML) model. This model allows the
determination of the best airborne network topology according to the dynamic behavior
of the users.

The contributions of this dissertation are two-fold. First, a survey on Deep Reinforce-
ment Learning concepts and the core learning methods used when developing an DRL
algorithm from scratch, in agreement with their application to the networking field. The
second contribution is an ML model involving the exploration of DRL techniques with
policy gradient methods and neural networks. Attached to this DRL algorithm, it is
proposed an algorithm that aims to define the reward function of the DRL model based
on the connections between users and agents, avoiding the overload of UAVs.

The proposed algorithm enables significant improvements with respect to other ana-
lyzed solutions, overcoming some important issues that come across when dealing with
airborne networks, such as the weak QoS when overloading the wireless signal with too
many request to the same access point.
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Chapter 1

Introduction

1.1 Context

The world is increasingly dependent on communications. Although, in the past, the
mobile phone was considered a simple device for calls, today it has numerous features that
make users increasingly dependent on it. The enhanced potential of these smartphones is
accompanied by the development of their hardware resources in order to respond to the
users’ high demands with regards to software. Nowadays, these electronic devices are
constantly receiving emails, downloading applications, exchanging messages on social
networks and synching to cloud-based storage. With this constant resort to downloads
and uploads, greater bandwidth utilization is inevitable and with this, Quality of Service
(QoS) problems arise.

This fact alone shows the incessant growth for bandwidth capacity requirements and
the Internet of Things topic has not even been touched. The intense study of this subject
already tells us that the future passes through the increase of devices connected to the
network for the transmission and reception of data. More wireless network users demand
more wireless Access Points (APs), this is, the number of APs should be proportional to
the number of users. When this is not accomplished and more users connect to the same
AP overloading the signal, or when users move farther away from the APs, throughput
decreases.

Nowadays, communication can be a vital need in people’s life. Involuntary events,
that arise from natural causes or any other type of unforeseen circumstances, such as fires,
catastrophes or terrorist attacks, are examples of situations that require a quick action and
where the guarantee of a good communication performance have a fundamental impact
in people’s rescue.

Today’s social media are able to easily bring together a large number of people in
a specific location for a certain time period with a particular purpose, such as concerts,
festivals, manifestations and sports events, generally known as Temporary Crowded
Events (TCEs). Unlike other types of events, where users’ positions are fixed and known
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2 Introduction

in advance, TCEs are characterized by the variable movement of the users across the
event area, creating high and variable traffic needs which are influenced by the dynamics
of the event. Therefore, users’ traffic demands vary over time and are defined by the
combination of users’ positions and offered traffic [12].

With scenarios that require this kind of flexibility, the answer focuses on the use of the
aerial space to fulfill the user’s requests and provide them the service they are demanding.
Flying networks are, thus, the basis for building architectures that enable a fast, simple,
easy and efficient deployment to respond to the users’ demands, taking into account the
limited terrestrial access to the crowd. Flying networks are composed of UAVs acting as
Access Points or Base Stations as shown in Figure 1.1. Due to their mobility, UAVs can be
positioned according to a three-dimensional reference, which allows them to be located
exactly where they are needed.

(a) Emergency Scenario

(b) Music Festival Scenario

Figure 1.1: Two examples of flying networks application scenarios
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1.2 Motivation

Machine Learning (ML) is increasingly associated with several areas by its transversality
and uniqueness when applied to some specific scenarios. It has also been increasingly
applied to the area of communication networks [13]. The traffic prediction and classifica-
tion capabilities of machine learning have proven that it can be a powerful tool to solve
current research problems in communications including optimizing network resources to
improve QoS [13, 14].

Although UAV placement algorithms [12] demonstrate interesting results, these can
still be improved, in particular, using ML techniques. Besides that, some improvements
to this sort of algorithms can be done using ML techniques, enhancing the results and
increasing the number of different scenarios where these algorithms can be applied.

Currently, many different approaches are being tested in the networking field, but
most of them have some unwanted restrictions, such as static environments and different
application scenarios. To the best of our knowledge, there are few studies that focus
mainly on improving the QoS in accordance with the management of resources.

Reinforcement Learning has recently been very much used in the networking field
as a useful tool to manage network resources [15]. Therefore, and considering some
other studies that confirm those recent researches connecting ML techniques and the
networking field [13,14,16–21], the exploration of Machine Learning to solve the problem
of adapting the airborne network topology to the users’ needs is analyzed as a very
promising solution, pointing to the potential of this dissertation.

1.3 Problem Statement

This dissertation will assume, as its starting and main conceptual definition, a TCE
scenario with high densities of moving users located in small and known geographic
areas for a limited time period and the usage of UAVs carrying Wi-Fi APs to serve large
and variable traffic demands.

The issues caused by the users’ variable and unpredictable movements are directly
related to the QoS that is provided to them. As mentioned above, to fulfill the requirements
of a well defined and preserved broadband Internet connectivity, there is the need to
automatically manage the airborne network topology in order to adapt them to dynamic
scenarios. This dissertation addresses the problem of finding an accurate technique that
determines the best airborne network topology. This topology will be instantly defined
according to the users’ positions answering to their needs by improving QoS.
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Figure 1.2: Problem Statement Diagram

1.4 Objectives

Considering the problem formulated in Section 1.3, the objective of this dissertation is to
explore which is the best ML technique and use it in the development of an ML-based
UAV placement algorithm that improves the QoS provided to the users in TCEs1.

Thus, after this study, an ML model will be developed and trained to be able to
determine the best airborne network topology which maximizes the QoS provided to the
users.

1.5 Contributions

The main contributions of this dissertation include:

• A survey on the main concepts of Deep Reinforcement Learning (DRL), mapping
them in the networking field by its implementation to solve a specific problem. It
presents a more detailed description on how and why these kind of algorithms have
been developed, giving to the reader the ability to deeply analyze them (Chapters
3, 4 and 5).

This is distinguished from previous surveys that only express a high-level of ML
concepts pertaining to its applications in the networking field ( [2,13,14,17]), others
which only focus on the main concepts of Deep Reinforcement Learning ( [22, 23]),
and a few explaining how Multi-Agent algorithms work not even mentioning the
benefits of Deep Learning in these flying network scenarios ( [24, 25]).

• Development of a DRL algorithm based on policy gradient methods and neural
networks in order to increase the QoS provided to the users in TCEs, by managing
the airborne network topology according to the user positions (Chapters 6 and 7).

1Throughout this document, it will be considered that, whenever the UAV is mentioned, it is presumed
that it bears a Wi-Fi AP.
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1.6 Document Structure

This document is structured in the following chapters:

• Chapter 2 [State of the Art] - Exploration of Machine Learning concepts and their
advantages over current approaches to solve the problem stated, including a review
of existing solutions;

• Chapter 3 [Reinforcement Learning Concepts] - Presentation of the most important
concepts of Reinforcement Learning (RL) algorithms followed by the specification
of the notation used throughout this document;

• Chapter 4 [Core Learning Solutions] - Enumeration and explanation of the existing
core learning methods used to achieve an optimal solution concerning finite Markov
Decision Process (MDP) problems;

• Chapter 5 [Policy Optimization] - Exploration of existing policy gradient methods
useful to build the presented algorithm;

• Chapter 6 [Proposed Solution] - Presentation of the proposed solution developed to
achieve this dissertation’s objectives, detailing the basis of the DRL algorithm and
its implementation;

• Chapter 7 [Results] - Demonstration of the results obtained with the proposed
solution, evaluating and comparing them with other approaches;

• Chapter 8 [Conclusion] - Conclusion of this dissertation, discussing the main out-
comes obtained, regarding the work developed, results accomplished and related
future work.
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Chapter 2

State of the Art

2.1 Concept of Flying networks

The concept of flying networks was born from the need to serve users of a TCE with the
necessary means of communication to meet their data transmission rate requirements.

Some studies conclude that the high mobility of mobile terminals greatly affects data
transmission rates, thus reducing the QoS by decreasing throughput and increasing jitter
[26]. To respond to these needs, flying networks have been emerging. Flying networks
are composed of UAVs acting as flying APs or cellular Base Stations, providing greater
network flexibility through the mobility of access points. The movement of the mobile
terminals and the analysis of user requirements influence the topology formed by these
UAVs.

There are several applications for the flying networks, such as search and rescue, event
monitoring, disaster response and delivery of goods [26].

There are different algorithms to solve optimization problems, such as finding the
best airborne network topology of a flying network, which can be divided into deter-
ministic and non-deterministic algorithms [27]. Inside of these two classes there are
multiple optimization algorithms, such as Genetic Algorithms [28], Monte Carlos Search
Method [29], Expectation–Maximization Algorithm [19, 30], Greedy Algorithm [31] and
Gradient Descent Algorithms [32]. These and more other algorithms can be organized
into sub-categories that will be mentioned throughout this document, such as Meta-
heuristics, Linear Programming, Dynamic Programming, Monte Carlo Algorithms and
Policy Gradient Methods.

7
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Figure 2.1: Differences between Deterministic and Non-deterministic algorithms

2.1.1 Deterministic Algorithms

A deterministic algorithm corresponds to an algorithm which, from given data entry, will
generate the same output. In this sort of algorithms there is a dependent relation between
the input and the output, where the data processing always passes through the same
sequence of states.

The following algorithm is governed by equations and fixed constants along its itera-
tions, following the concept of a deterministic algorithm, which can restrict its flexibility
in adapting to dynamic environments.

Network Planning Algorithm

Considering the Traffic-Aware Multi-Tier Flying Network (TMFN) approach, the Network
Planning Algorithm [12] was presented as one algorithm that characterized the users’
traffic demands as the average throughput offered by the users and changes the position
and range of the Wi-Fi cells of the Flying Mesh Access Points (FMAPs) according with
those input data.

The TMFN is organized according to a two-tier architecture, a first tier that corresponds
to the access network and is composed of the FMAPs, and a second tier that is associated
to the backhaul network where the UAV Gateway is implemented.

Therefore, this architecture creates a mobile network that allows a physically recon-
figurable adjustment of its Flying Mesh Access Points according to the user needs and
following a metric formed by equations defined a priori and potential field generators.
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The metric used in this model, a QoS representation, can be degraded by the saturation
of the wireless channel and the interference created by the concentration of FMAPs on a
small area. However, there are some suggestions to reduce the constraints referred above,
like the use of available Wi-Fi channels in the 5GHz band for the FMAPs and the use of
the IEEE 802.11ad standard, which enables the appearance of links in the 60 GHz band
and the establishment of smaller cells [12].

For future work were pointed out three most relevant changes, mainly focused on the
TMFN’s access tier: improve the characterization of the users’ traffic demands; calibrate
the equations and its constants, so they seamlessly adapt to the dynamic scenarios; and
evaluate the Network Planning algorithm in more dynamic scenarios.

2.1.2 Non-Deterministic Algorithms

Non-deterministic algorithms are algorithms of probabilistic nature which, for the same
input, have different behaviours in different executions, obtaining different results/outputs
and thus making a contrast to the deterministic algorithms.

This kind of algorithms are commonly composed by meta-heuristic, a high-level pro-
cedure to find/generate or select a heuristic - partial search algorithm - that may provide
a sufficiently good solution to an optimization problem, especially with meagre/faulty
information or limited computation capacity. This kind of approaches does not guar-
antee that a globally optimal solution can be found in some group of problems. The
non-deterministic factor of this type of procedure is due to the stochastic optimization
that is used in many of its implementations, so that the solution found is dependent on a
set of randomly generated variables.

MLMPGA Algorithm

Multi-Layout Multi-subpopulation Genetic Algorithm (MLMPGA) is an application to
solve multi-objective coverage problems of UAV networks. This multi-objective deploy-
ment is based on a weighted fitness function that takes into account coverage, fault-
tolerance and redundancy as relevant factors to optimally place the UAVs. The proposed
MLMPGA achieves significantly better performance results than the other meta-heuristic
algorithms, such as particle swarm optimization, hill climbing algorithm, or classical
genetic algorithms, in the vast majority of the simulation scenarios explored in [28].

As future work, this study refers the need to adapt and evaluate the proposed weighted
fitness function and MLMPGAs in scenarios that follow more dynamic distributions of
nodes, such as random ones, and the idea to model the weighted fitness function as
a multi-objective problem based on Pareto Dominance in order to get the Pareto front
solution for the three coverage problems announced.
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2.2 Machine Learning Concepts

Machine learning is a technique of data analysis that strives to increase performance
on a specific task, using statistical methods progressively and with as minimum human
intervention as possible. This kind of algorithms seeks to automate and optimize the
analysis of input data, by identifying patterns and making autonomous decisions, using
a feedback network and learning from it. The output is made out of predictions of a
software model that was not programmed explicitly. This software runs an algorithm
that adaptively improves its performance by learning from previous samples, as the
humans learn from experience.

2.2.1 Machine Learning vs Traditional Programming

Machine Learning was not created as a substitute for traditional programming, but as a
complement to it. So, ML is used when traditional programming methods cannot deal
efficiently with the problem.

To solve a problem using traditional programming, an engineer initially devises the
algorithm and writes the corresponding code; then, it adds the input parameters and the
implemented algorithm produces the desired results.

Figure 2.2: Traditional Programming

When applying ML to an identical problem, the method is completely different. Ini-
tially, the data scientist collects and prepares the data, then, it uses this dataset to train and
test multiple ML models in order to find the one which presents the best results. Input
parameters will be inserted into the ML model and the results will, finally, be produced.

One of the biggest differences between these two approaches is that in ML the model
is not built by an engineer. Instead, the model is mostly handled by the data scientist with
small tweaks to the ML algorithm settings. Besides that, while in traditional programming
the input parameters are restricted by the human capacity to build an algorithm which
would reasonably use all of those parameters, in ML the only limitations are the Central
Processing Unit (CPU) and memory.

The Figure 2.2 and Figure 2.3 illustrate the differences between Traditional Program-
ming and Machine Learning, more specifically a Supervised Learning Approach (which
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is explained in section 2.2.2). Basically, while the first gets the output results using only
the input parameters and the program devised by the engineer, the second is based on a
mathematical model that is trained by the data from a dataset, building a program that
can be used in the traditional programming.

Figure 2.3: Supervised Learning approach

2.2.2 Types of ML algorithms

ML algorithms are usually classified in three main categories:

• Supervised Learning (SL) - learn from labelled data, in order to conduct classifica-
tion or regression tasks.

SL is based on the idea of providing a set of input parameters followed by the
expected results, in order to “teach” the ML algorithm with correct answers.

• Unsupervised Learning (UL) - learn from unlabelled data, clustering them and/or
doing associations to learn more about them.

UL uses untagged data, so, the algorithm should figure something out without
being trained knowing some labels like in SL, trying to find hidden insights in raw
data.

Figure 2.4 shows how data is managed in the two previous learning methods and
in the derived method from both, the Semi-Supervised Learning.

Figure 2.4: ML Algorithms according to their data management [1]
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• Reinforcement Learning (RL) - learn by interacting with the environment, so as to
find the best action series to maximize the accumulated reward function (objective).

RL algorithms work similarly to the unsupervised ones, where a system must learn
the expected output on its own. However, on top of that, a reward function is
applied [2]. They are known for their strong capability to deal with decision-
making problems (MDPs) and for being highly suitable for problems that have
many undetermined parameters that change according to the environment state.

Figure 2.5 summarizes how each ML method is defined, relating their approaches
with simple math functions.

Figure 2.5: Relation between ML types of Algorithms and math functions

Figure 2.6 presents some of the ML techniques described in [2] and used in Self-
Organising Networks (SONs), that are defined as adaptive and autonomous networks
that are also scalable, stable and agile enough to maintain its desired objectives. Hence,
these networks are not only able to independently decide when and how certain actions
will be triggered, based on their continuous interaction with the environment, but are
also able to learn and improve their performance based on previous actions taken by the
system [33].

Figure 2.6: Different ML techniques described in [2] and used in SONs

As described in the Figure 2.7 there are numerous applications for the different types
of ML algorithms.
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Figure 2.7: Types of ML algorithm applications [3]

2.2.3 Key Elements of Learning Algorithm

To build a Learning Algorithm, there are some key elements in Machine Learning that
are indispensable [11], such as:

• Representation: Select a model to represent the data. A model must be represented
in some formal language that the computer can handle.

• Evaluation: Choose an objective function to optimize different given values for the
model parameters. An objective function is essential to distinguish good models
from bad ones.

• Optimization: Estimate the model parameters using a certain optimization algo-
rithm. Finally, the selected optimization method is used to search the highest-
scoring model. The choice of an optimization technique is the key to the efficiency
of the learner, and also helps to determine the model produced in case the evaluation
function has more than one optimum.

Table 2.1 shows some examples of components of Learning Algorithms divided in the
three sections mentioned above.
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Representation Evaluation Optimization
Instances: Accuracy / Error Rate Combinatorial Optimization:

K-nearest Neighbour Precision and Recall Greedy search
Support Vector Machines Squared Error Beam search

Hyperplanes: Likelihood Branch-and-bound
Naive Bayes Posterior Probability Continuous Optimization
Logic Regression Information Gain Unconstrained

Decision Trees K-L Divergence Gradient Descent
Sets of Rules Cost/Utility Conjugate Gradient

Propositional Rules Margin Quasi-Newton Methods
Logic Programs Constrained

Neural Networks Linear Programming
Graphical Models Quadratic Programming

Bayesian Networks
Conditional Random Fields

Table 2.1: Examples of the three components of Learning Algorithm [11]

2.2.4 Phases of an ML algorithm implementation

After defining the three key elements of the learning algorithms, it is time to start the
process of building an ML approach to get a solution for a defined problem. This process
is divided into four stages:

• Data Management: Collect the training data, explore it to better understand its
structure and meaning, cleanse it - turn it into a mathematical construct (Represen-
tation - Section 2.2.3), that ML models understand -, prepare it to be loaded into the
programming environment, and split it into training, validation and testing subsets.
If there is no data to collect, it is needed to create a defined dataset to train, validate
and test the model. This task is one of the obstacles of ML as will be mentioned
later (Section 2.3.5).

• Train Model: Choose a learning task (prediction, clustering, etc), add some fea-
tures and select the appropriate algorithm to train the model. The training process
involves initializing some random values, predicting the output with those values,
then comparing it with the model’s prediction, and then adjusting the values so
that they match those predictions/increase the reward function. This training set is
performed multiple times in order to achieve the best model.

• Evaluate Model: Evaluate the output of the model using different metrics, score
them and compare the results. In this phase, some hyperparameters - initially
random variables that affect the objective function - are adjusted until a “good”
model is obtained. This step is associated with the Evaluation and Optimization
components of Learning Algorithm referred in Section 2.2.3.
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• Deploy Model: Apply the model to brand-new data and monitor the outcomes.
The predictions about that never explored data are made and if necessary, the ML
algorithm implementation process is restarted, learning from these new observa-
tions.

2.3 Machine Learning for Networking

ML is suitable and efficient to solve networking issues for the following reasons [13]:

• performance prediction and intrusion detection are some examples of the impor-
tance that classification and prediction can have in network problems;

• many network problems are related to the dynamic behaviour of the systems when
they are interacting with the environment, and it is not easy to accurately build mod-
els to represent these complex systems behaviors, such as throughput characteristics
and changing patterns of UAVs topologies;

• each scenario may have different characteristics (e.g., network states and traffic
patterns) and there is often the need to solve their problems independently.

2.3.1 Basic Workflow for MLN

As detailed in [13], Machine Learning for Networking (MLN) has a baseline workflow
that is usually followed in the application of ML in the network field, as presented in the
Figure 2.8. It starts with the Problem Formulation, where there is the need to decide the
type and the amount of data to collect as well as the learning model to select with regard
to the problem. That target problem can be seen as a classification, regression, clustering
or a decision-making problem. Then, it is time for the Data Collection, which is divided
into:

• Offline Phase - collecting historical data in a static environment and with pre-
defined labels; it is important for data analysis and model training;

• Online Phase - real-time (dynamic environments) performance details and net-
works state are often used as inputs or feedback signals for the learning model,
being their labels liable to changes;
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Figure 2.8: Basic Workflow for MLN

Thereafter, comes one of the most important steps, the Data Analysis, once it is the
one in which the QoS metric should be found. Considering a learning algorithm, it
is of extreme importance to find the proper features to fully unleash the potential of
data. Normalization and discretisation are some concepts that are usually used in this
step, in order to pre-process and clean raw data. Deep Learning appears, here, as an
excellent approach to help automate the feature extraction (this concept will be more
deeply explored in Section 2.3.2).

Once the data is prepared to be processed, the cycle between model construction and
validation begins. While Model Construction involves model selection, training and
tuning, Model Validation is an indispensable part of this basic workflow, deciding in
which way the algorithm should go, deployment and inference phase or a new model
construction, based on the error sources.

Concluding the workflow, there is the Deployment and Inference phase, which takes
into account the limitations on computation or energy resources, analyzing the trade-off

between accuracy and overhead for the performance.

2.3.2 Deep Learning

Concerning the diverse details that a real network system’s data has, it is relevant to
discuss the usage of Deep Learning.

Deep Learning (DL) has been seen as a promising solution for an efficient resource
management and network adaption (DeepRM 1 [15] / DeepRM2 2 [34]) - the key to improve

1DeepRM is an example solution that reflects the problem of packaging tasks with several resource
demands on a learning problem.

2DeepRM2 is an improvement of the DeepRM solution with faster convergence speed and better schedul-
ing efficiency.
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network system performance -, due to its ability to describe the inherent relationship be-
tween the inputs and outputs of network systems, having no human interference for that.
According to [35], DL has proven to be a very useful approach for intelligent wireless
network management owing to its human-brain-like pattern recognition capability. Be-
sides that, this approach makes the network aware of the variations caused by changes
in its topology and link conditions, which helps to generate more appropriate control
parameters, leading to an optimal solution.

2.3.3 Feasibility Discussion

When talking about a complex ML model, there is always the feasibility discussion.
Real-time systems with heavy computation are a problem that affects delay-sensitive
network applications. The solution lies in a trade-off between information stateless and
computation overhead, since the common method is to train the model with global
information and incrementally update it with local information on a small timescale.

2.3.4 Dataset Generation Techniques

With regard to the several parameters that need to be collected to analyse the network
performance, going to the field and obtaining those values manually is an impracticable
option, once it is a hard working and time-consuming task. However, there are some
available data sets that have collected those values for the training phase [36]. On the
other hand, it is much hard-headed to use a framework that concedes the environment’s
simulation and the "real-time" obtainment of those network characteristics.

Therefore, the use of those frameworks provides more realistic simulations, introduc-
ing real data that replace the deterministic and probabilistic models traditionally studied
and used, have demonstrated good results. ns-3 [37] is an example of a discrete-event net-
work simulator for Internet systems that enables the creation of a dataset using traditional
network models (probabilistic and deterministic). However, [38] allows the extension of
ns-3 to use real data through trace-based simulations, replicating real scenarios and con-
ditions. It enables the evaluation of the progression of the system in response to realistic
scenarios that can be tested with multiple simulations at the same time, exploring different
variables under evaluation. The study and improvement of the Trace-based Simulation
(TS) approach, TraceBasedPropagationLossModel [39], extends its application area to Mul-
tiple Access wireless scenarios, increasing the preference of simulator tests which, thus,
permits the evaluation of more complex algorithms.
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2.3.5 Obstacles of ML

There are some problems related to the application of ML techniques which impact MLNs
in the same way.

The lack of labelled data, mainly for the SL algorithms, is a big restriction for the
ML models. Nowadays, collecting a large amount of high-quality data that contain
performance metrics and network profiles is one of the most critical issues of MLN. The
main goal of the open database for the networking community is to acquire enough
labelled data for different ML models in order to reduce costly and time-consuming
data collection. It has been proved that, considering the ML domain, learning with a
simulator rather than in a real environment is more effective and with lower trial cost in
RL scenarios [13]. In order to substitute the high trial cost of large-scale network systems,
which have a limited accessibility, simulators have to be reliable, scalable and fast.

Another problem of ML algorithms, considering RL models, is the high system dy-
namics. The difficulty in, accurately, finding a cost optimization function given the great
dynamics of a system is a non-trivial problem.

Many implementations of ML models are related to big and complex problems that
require the robustness of the machine learning algorithms. However, this can lead to
another issue: the high cost brought by leaning errors. The need to train the ML
algorithm with a different set of parameters requires as much as high computational
resources and time as the complexity of the algorithm grows.

Finally, there is a special obstacle related to ML practical implementations, which is the
fact that many learning models, essentially the deep learning ones, are still a black box.
This forbids the analysis of the learning algorithms’ output so as to find useful insights to
understand how that output has been chosen, how does the network behave and how to
design a high-performance algorithm. The solution for this type of problems is to promote
the development of machine learning and the creation of algorithms that understand the
decisions of deep learning algorithms, such as convolutional neural networks.

2.4 ML Algorithms to Increase Network Performance

Some studies presented algorithms that already explored the ML techniques in networks,
considering the management of the airborne network topology, in order to increase the
network performance.

[40] investigates the problem of UAV assignment in areas subject to high traffic de-
mands given by the users. To solve this problem, a neural-based cost function approach
is formulated. The proposed model chooses user demand patterns that are used to mini-
mize the demand and cost functions by efficiently deploying aerial nodes as intermediate
nodes between high demand areas and the Mobile Base Station (MBS). These demand
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patterns are driven by a reverse multi-hierarchical neural model which is a combination of
input, hidden, and output layer. These neural patterns are then topologically rearranged
to form a stable network with a minimized cost function. It is shown that leveraging
multiple UAVs not only provides long-range connectivity but also better load balancing
and traffic offload.

[20] refers to the search for the best cell where the drone should be associated con-
sidering its location. The environment studied consists of a network of aerial drones
connected to a standard cellular network on the ground, which is, virtually, divided into
the cells where those drones should be mapped. It presents a machine learning method
for predicting a drone’s best-serving cells at a given location, based on the known signal
observations in the nearby region, using the Conditional Random Field (CRF)3 position.
To conclude, as the analysis of this study is based on Signal-to-Noise-plus-Interference
Ratio (SNIR) without explicit modelling the interference, further analyses are required
for more complex deployment scenarios, and on integration with existing methods.

[19] presents a new machine learning framework that was proposed for enabling a
predictive and efficient deployment of UAVs. The cellular traffic is analyzed and the
network congestion is predicted using this ML framework that is based on a Gaussian
Mixture Model (GMM) and a Weighted Expectation Maximization (WEM) algorithm,
in order to guarantee a no-delay wireless service.

GMMs are a probabilistic model normally used to represent distributed subpopula-
tions within an overall population. Mixture models, in general, do not require knowing
which subpopulation a data point belongs to, allowing the model to learn them auto-
matically, thus, developing a form of an unsupervised learning algorithm. GMMs are
parameterized by two types of values: the mixture component weights and the compo-
nent means and variances/covariances. Assuming that the number of components of the
model is known, a technique commonly used to explore these model parameters is the
Expectation Maximization, an iterative method used to search for maximum likelihood or
maximum a posteriori estimates of parameters in statistical models. As explained in [19],
it was used the WEM, that iteratively tries to find the best mixture component weights
that provide the best model’s output. Concluding, the algorithm presented in this paper
has several appearances with RL algorithms, detailed in Section 2.2.2.

2.5 Conclusion

The state of the art is divided into two main concepts, flying networks and machine
learning, since the focus of this dissertation is to find a solution that improves the QoS of
a flying network by optimizing the distribution of UAVs in a TCE field. Therefore, it is

3CRF is a classical inference model widely used in computer vision and natural language processing, and
it has been considered for the wireless system study.
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necessary to verify the current and relevant algorithms that aim a similar goal without
and with the use of machine learning, analyzing its results and limitations. In addition, it
is also essential to understand the studied concepts that associate these two clusters, ML
and flying networks, to figure out the best way forward to the proposed solution.

Two algorithms without the use of ML techniques are described in section 2.1: one,
deterministic, and another, non-deterministic. Network Planning appears as an algorithm
based on the use of attractive and repulsive forces to control the UAVs moves. MLMPGA
is defined as a meta-heuristic procedure with better results than other meta-heuristic
algorithms in the referenced article. These types of procedures are widely used in machine
learning algorithms, given their statistical component and the use of stochastic processes
to search for an optimal solution. So, and pointing to the future work of the presented
papers, it can be concluded that the first one has limitations in adapting to more dynamic
scenarios thanks to its deterministic component and the other one reveals an inconsistency
in the accuracy of the results given its meta-heuristic nature, not guaranteeing a Pareto
front solution, and not having been adapted or tested in more dynamic and random
scenarios, which is necessary given the objective of this dissertation.

After describing the main concepts of Machine Learning and its useful components to
build an ML model for a network, some algorithms were presented to determine the UAVs
positions which improve the performance of the networks. From this study, the usage of
an ML framework based on a Reinforcement Learning kind of approach demonstrated
an outperforming result concerning the widest sort of scenarios, pointing out its impact
on solving this sort of problems.



Chapter 3

Reinforcement Learning Concepts

3.1 Introduction

Reinforcement Learning is the act of learning by interacting with the environment, where
the agent learns from consequences of its actions, rather than from being explicitly taught
using an a priori dataset (supervised learning). The main concept of this type of ML
algorithms consists of a trial-and-error learning approach in which its actions are selected
according to its past experiences (exploitation) and also by new policies as well (explo-
ration) [6].

The RL algorithms are characterized by an evaluative feedback that indicates how
favourable the action taken was. There is a need for active exploration of the environment,
for an explicit search for good behaviour as the evaluation occurs.

Figure 3.1 shows a diagram that represent the interactions between the Agent and the
Environment. The Agent receives the state and the following response of the Environment,
a reward or a penalty according to the objective function, and takes the action that maximizes
the total reward.

Figure 3.1: Reinforcement Learning algorithm

Throughout this document there will be detailed the most important concepts that are
used to build an RL algorithm from scratch, however, some of them are antagonistic topics
(namely the ones presented in Section 3.5), so not all will be used for the implementation,

21
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but they are important in explaining how and why the algorithm applied to this particular
network problem is composed in this way.

This type of machine learning algorithms respond to one of two possible case scenarios:
bandits or MDPs, being the later a broad concept used to simplify the characterization of
the problem. This chapter details the main concepts of RL applied to this dissertation’s
use case. It is important to be aware of the notation used throughout this document and
the topics deeply explored in the following chapters.

Chapter 4 presents core learning methods to solve a finite MDP problem finding the
optimal policy using the Bellman Equations presented in Section 3.4. Those methods are
used to build different algorithms pointed to specific problems that rely on the assumption
of concepts defined in this chapter (Section 3.5). Whereas in the model-based algorithms
different learning methods are presented, in the model-free the learning methods, Monte
Carlo and Temporal-difference, also mention some of the most used algorithms that
implement them, MCTS and both SARSA and Q-Learning, respectively.

Chapter 5 refers to policy optimization’s methods fully linked with the proposed
solution and that combine the core learning methods previously mentioned (namely
the model-free and value-based) with a policy-based approach (particularly the policy
gradient methods).

Figure 3.2 represents the taxonomy of RL, referring which contents are presented
in this three chapters (3, 4 and 5). Note that the concept of the division made in the
model-based section is different from the concept considered in the model-free section -
in the first one it is used the optimization technique for the division, while in the second
one only the parameters of the RL problem are considered - in order to promote a better
understanding of those topics with regard to the structure of this document.

Figure 3.2: Taxonomy of RL
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3.2 RL Terminology

As presented in Figure 3.1, there are crucial components in an RL algorithm: agent,
environment, state, action and reward/penalty. However, to fully understand which and
how methods are used to solve these type of RL problems, there are several concepts that
need to be explained in a more practical way, beginning with the definition of the notation
and meaning of the variables and functions used throughout this document.

It is assumed that all the variables and functions with a quote on top represent their
next value, for example if s is the current state, then s′ corresponds to the next state.

• State: s ∈ S The state represents the relevant characteristics of the environment, such
as the positioning of UAVs and users, considering flying networks architectures.

• Action: a ∈ A(s) The action space - the set of all valid agent’s actions in the given
environment - can be part of a discrete domain - only several and discrete actions
are available - or a continuous domain - the action is a value from continuous
interval, having an infinite number of choices.

Every action made in the environment takes into consideration its actual state.
The actions are taken by the agent and confined by the action space previously
mentioned.

• Model: s0,a0,r1,s1,a1,r2, ...,sn−1,an−1,rn,sn
1

The Model is the agent’s representation of the environment. It predicts what the
environment will do next [5]. It starts with an initial state that is changed to the next
state after the initial action is executed and the first reward calculated. This occurs
until the terminal state (sn) is reached (episode tasks), unless the model follows a
continuous task. These concepts will be better explored in Section 3.5.

• State Transition Function: T(s,a,s′) ∼ P(s′ | s,a)

The environment can follow one of the following models:

deterministic model→ s′ = f (s,a)
stochastic model→ s′ ∼ P(s′ | s,a)

However, it is usually defined as a stochastic model, which brings it closer to reality
and more responsive to dynamic scenarios.

The State Transition Function is, by the very definition, definitely probabilistic,
i.e., the transitions are defined by a probability function P(s′ | s,a) - described by
a stochastic model. Considering the next state s′ (which could be the same state)
conditioned by the current state s, it will try to follow the action a.

1In this document, it is assumed that s0 = s and s1 = s′
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• Reward/Penalty: r = R(s) = R(s,a) = R(s,a,s′) ∈ R

The R function defines the reward for taking the action a, in the state s and transi-
tioning to state s′. The reward can be a positive value (reward) or negative (penalty).
For simplicity, this function is called reward function.

There are three ways of defining a reward function: only using the state, considering
an inherent action to reach it (r = R(s)); using both the state and the action to be
executed (r = R(s,a)); or adding a dependency for the state where the agent will
transit (r = R(s,a,s′)). However, these are only notation considerations, since all
three possibilities will return the same value. Here, it will be considered a reward
function that depends on the state and action to better understand that it will be
calculated considering different actions executed in different states.

The uncertainty of the stochastic environment forces the presence of a discounted
future return, since the agent’s goal is to maximize the cumulative reward it receives
in the long run. Considering that Rt is the cumulative reward until time t, the
cumulative discounted return equation can be defined as [6]:

Gt =

∞∑
k=0

γk
·Rt+k+1

= Rt+1 +γ · (Rt+2 +γ ·Rt+3 +γ2
·Rt+4 + ...)

(3.1)

where γ is a hyperparameter between [0,1), called discount factor. To simplify the
equation it is assumed that r = Rt∧ r1 = Rt+1:

G =

∞∑
k=0

γk
· rk+1

= r1 +γ · r2 +γ2
· r3 + ...

(3.2)

The output of this function at successive time steps is related to each other in a way
that is important to mention to better understand the theory behind this sort of RL
algorithms:

G = r1 +γ · r2 +γ2
· r3 +γ3

· r4 + ...

= r1 +γ · (r2 γ · r3 +γ2
· r4 + ...)

= r1 +γ ·G′
(3.3)

The goal of the agent is to maximize the total amount of rewards it receives, i.e.,
maximize the expected value of the cumulative sum of a received scalar signal
(reward) - Equation 3.2 - over a trajectory.

• Policy: π(s)→ a



3.2 RL Terminology 25

The Policy is described as the agent’s behaviour function. It defines the rules used
by an agent to decide what actions should be taken. Ergo, it is a mapping from
states to actions - takes a state and returns an action.

π(a | s) might be used in a stochastic environment, where executing a specific action
is not guaranteed, expressing the probability of executing action a in state s.

deterministic policy→ a = π(s)
stochastic policy→ π(a | s) = P(s′ | s,a)

• Optimal Policy: π∗(s)

If the action chosen by the policy is the best one from the entire action space - the
one that maximizes the long term expected reward -, that policy is called optimal
and defined by Equation 3.4 and 3.5.

π∗(a | s) = argmax
π

Qπ(s,a) (3.4)

π∗(s) = argmax
a

∑
s′

P(s′ | s,a)V∗(s′) (3.5)

The state value function, V(s), and the state-action value function, Q(s,a) will be
explained next.

• Value Function: Vπ(s)

The Value Function estimates how good for the agent is to be in a given state, the
benefits of performing a given action in a given state. Hence, it maps a value to a
state, telling what action to take while trying to maximize the cumulative discounted
return function, as expressed by the following equation [6]:

Vπ(s) = Eπ{Gt | st = s} (3.6)

where Eπ denotes the expected value of a random variable given that the agent
follows policy π. Gt is the value of the cumulative discounted return function
defined in Equation 3.1 at time step t, and st is the state at that same time t. The
action a is given by the policy (a = π(s)) in a deterministic way, thus the value
function does not need to take it in consideration to map the value to the action.

• Q Function: Qπ(s,a)

The Q Function is a state-action value function. It defines an expected value when
starting in a state s, performing an arbitrary action a while following a policy π, as
expressed by Equation 3.7 [6]. This function is commonly used in RL algorithms to
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deal with problems where a transition function is not available (model-free).

Qπ(s,a) = Eπ{Gt | st = s, at = a} (3.7)

where Eπ denotes the expected value of a random variable given that the agent
follows policy π. Gt is the value of the cumulative discounted reward function
defined in Equation 3.1 at time step t, st is the state and at is the action, both at that
same time t.

The relationship between Qπ and Vπ is:

Vπ(s) =
∑
a∈A

π(a | s) ·Qπ(a,s) (3.8)

where the value of being in state s is the sum of every state-action value (Qπ(s,a)) multi-
plied by the probability to take that action (π(a | s)).

The following equations help to comprehend Figure 3.3 and Figure 3.4:

Qπ(s,a) = r1 +γ
∑

s′
P(s′ | s,a)

∑
a′
π(a′ | s′)Qπ(s′,a′) (3.9)

Vπ(s) =
∑

a
π(a | s)

∑
s′

P(s′ | s,a)
[
r1 +γVπ(s′)

]
(3.10)

Figure 3.3: Q Function tree following the Equation 3.9
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Figure 3.4: Value Function tree following the Equation 3.10

3.3 RL Problems

There are numerous applications of reinforcement learning [41], such as optimizing mem-
ory control, human-level video game play, mastering the game of go [42], personalized
web services, game theory. These applications were born from well known classified
problem. So, in order to use an RL algorithm to solve a specific problem, like the manage-
ment of the airborne network topology in a TCE to improve QoS, it is essential to explore
the types of RL problems and define which one is the best for this purpose.

3.3.1 Bandits

A bandit problem is defined as an evaluative feedback problem of lower complexity,
because it does not involve learning to act in more than one situation. It has a nonasso-
ciative setting in the evaluative aspect of RL [6]. This concept is out of the scope of this
dissertation, since the problem that this dissertation tries to solve is more complex and
involves an associative characteristic that is not present here.

3.3.2 Markov Decision Processes

Finite MDPs are problems that involve evaluative feedback, as in bandits, and also an
associative aspect, choosing different actions in different situations. They are a classical
formalization of sequential decision making, where actions influence not just immediate
rewards, but also subsequent situations/states through delayed reward [6].

MDPs models are fully determined by 5 quantities that completely characterize the
environment (S, A, R, T, θ):

• S is the set of states according to the world;

• A is the action space;
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• R : S×A×S→ R ⊂R is the set of possible reward values;

• T : S×A×S→ [0,1] is the transition to state s′ if action a is taken in state s. This
transition probability only depends on the current state (s), which is called the
Markov condition, thus the name of the process. This condition assumes that the
current state (s) expresses all the meaningful information that should be considered
to take the next action.

• θ corresponds to the specific parameters that differ in each RL algorithm, according
to its settings. One example of these parameters is the value of the discount factor
(γ).

In MDPs, what is initially tried to learn from the agent is its behaviour, the way of
interacting with the environment that obtains high rewards. There are different types of
behaviour [8]. The following example is presented to better understand them: imagine
someone who asks the best way to go from point A to point B. Applying this example to
each type of behaviour, they can be described as follows:

• Plan: a fixed sequence of actions. Considering this behaviour structure, the answer
would be a fixed path, showing only one option in each crossroad.

• Conditional plan: includes conditional statements (like if ’s). In this case, the
answer would be a path constantly updated according to some random events
occurred while the person moves from point A to B. For example, alternative paths
would be calculated if that person found too much traffic at a specific street or
region.

• Stationary policy/universal plan: mapping from states to actions. This behaviour
structure is very extensive, because it explores all the possibilities with a policy. It
has to learn a lot, being a very powerful option, but, at the same time, not easy to
implement. For this behaviour structure the answer would be very complex, a set
of possible paths according to all different states in which the person could end.

RL algorithms are characterized to use a stationary policy/universal plan, since, from
the previous options, it is the one that best fits in a dynamic scenario where the solution
is based on optimization methods.

The State Transition function defines the physics of the world, the rules that do not
change from one iteration to another, i.e., the same rules are applied in every s ∈ S. It
follows a stationary policy.
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3.4 Bellman Equations

Fully knowing the system - which includes a perfect knowledge of the state the agent is
in as well as the transition probability and reward functions -, it is possible to estimate
the value function for each policy π from a self-consistent equation. These equations are
used by the model-based methods (Section 4.2) to solve finite MDP problems.

Starting with Equation 3.7, but using the Equation 3.2 to remove the time variable and
make this deduction simpler:

Qπ(s,a) = Eπ{G | s, a}

= Eπ
{
r1 +γG′ | s, a

}
= Eπ {r1}+γEπ

{
G′ | s, a

} (3.11)

adding the transition probability of state s to state s′ taking the action a - T(s,a,s′) = P(s′ | s,a)
- and the probability of taking an action a′ in state s′ - π(a | s).

Qπ(s,a) = r1 +γ
∑

s′
P(s′ | s,a)

∑
a′
π(a′ | s′)Eπ

{
G′ | s′, a′

}
= r1 +γ

∑
s′

P(s′ | s,a)
∑

a′
π(a′ | s′)Qπ(s′,a′)

(3.12)

and finally applying the Equation 3.8:

Vπ(s) = r1 +γ
∑

s′
P(s′ | s,a)Vπ(s′) (3.13)

it is deducted the Bellman Equation for Vπ (Equation 3.13), which expresses a recursive
relationship between the value of the current state and the next.

The optimal Bellman equation is obtained using the optimal policy that is calculated
using the Equation 3.5:

V∗(s) = r1 + max
a
γ
∑

s′
P(s′ | s,a)V∗(s′) (3.14)

In order to better understand the concepts to be explored below, another derivative of
Bellman Equation will also be considered (an equivalent to Equation 3.13):

Vπ(s) = Eπ {G | s}

= Eπ
{
r1 +γG′ | s

}
=

∑
a
π(a | s)

∑
s′

P(s′ | s,a)
[
r1 +γEπ

{
G′ | s′

} ]
=

∑
a
π(a | s)

∑
s′

P(s′ | s,a)
[
r1 +γVπ(s′)

] (3.15)
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3.5 Important Concepts

RL problems are characterized by some of the concepts explained throughout this section,
which differentiate them and defines the best approach to solve them.

As in supervised learning, where regression and classification tasks exist, in reinforce-
ment learning it is possible to identify two types of tasks [5]:

• Prediction: this corresponds to the estimation of an expected total reward from any
given state, assuming that π(a | s) is provided, i.e., according to policy π the value
function Vπ is calculated with or without the model.

An example of this task is the previously mentioned Policy Evaluation method.

• Control: this type of task tries to reach the policyπ(a | s) that maximizes the expected
total reward from any given state, i.e., considering any kind of policy π, it finds the
optimal policy π∗.

An example of this task is the previous mentioned Policy Improvement method.

There are two different ways of learning resorting to a policy [4]:

• On-policy: learning on the job, which means evaluating or improving the policy
that is currently used to make decisions.

• Off-policy: the evaluation is made using a target policy - may be deterministic
(e.g. greedy) - while following a behaviour policy - may be stochastic - as shown in
Figure 3.5. This is compared to the way we learn something while observing others
doing the same thing.

Figure 3.5: Off Policy life cycle

Off policy is seen as key to learn multi-step predictive models of a dynamic world.
This method is more powerful and generic, despite its frequent high variance and slower
convergence, since the data is due to a different policy. Whereas, on-policy methods are
generally simpler and considered first.

When training an algorithm according to some RL problem, it is necessary to define
which of these two is the nature of that problems’ task 2 [6]:

2This task is not related to the prediction and control task, is another kind of task dependent to the problem
definition.
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• Episode task: consists of a task defined into a finite amount of time, an episode.
For example, playing a chess game, where there are three final states: win, draw or
lose.

In this task, the reward is only calculated at the end of the episode or distributed
evenly across all actions taken in that episode.

• Continuous task: is an endless task, where there is no terminal state. For example,
the use case of this dissertation - managing an airborne network topology in order
to increase the QoS, according to the users’ positions in the TCE environment.

This is a concrete case where the discount factor (γ) is usually applied in the expected
reward function. The usage of this hyperparameter enables the control of how the
cumulative reward is affected by future rewards, being able to determine some kind
of terminal state.

These six concepts are mainly important for the Model-free algorithms that will be
addressed in Section 4.3.

It is necessary to define a few more topics related to this problem definition, specifically,
to detail the definition of the environment and which information can be extracted from
it.

• State versus Observation:
While a state has no hidden information, an observation is a partial description of
a state, having omitted information.

• Fully versus Partially Observed:
As the word itself suggests, a fully observed environment provides to the agent a
complete observation of its state, while a partially observed environment only gives
it a partial observation.

Making use of the above topics, there are two essential concepts that are indispensable
to the problem definition and which will be further discussed in Chapter 5.

3.5.1 Partially Observable MDP

Partially Observable MDP (POMDP) is a discrete time stochastic control process that
defines a way of talking about “non-Markov” environments. Being a partially observed
environment, the agent only receives, at each time step, an observation of its environment
which does not allow it to identify the state with certainty.

It is a 7-tuple (S,A,T,R,Ω,O,γ) where [4]:

• Ω is a finite set of observations, ωt,

• O : S×Ω→ [0,1] is a function that returns the conditional probability of seeing an
observation ωt ∈Ω given a state st ∈ S.
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besides the already defined (S,A,T,R,γ), which correspond to the 5-tuple of an MDP.
The agent chooses an action at ∈A after receiving an observation ωt ∈Ω that depends

on the state st ∈ S with probability O(st,ωt). Then, the environment follows the same
procedure as a simple MDP, it transits to the state st+1 ∈ S with probability T(st,at,ss+1)
and delivers to the agent a reward rt = R(st,at,st+1) ∈ R.

3.5.2 Multi-agent Systems

A multi-agent system corresponds to a set of multiple interacting agents within an envi-
ronment. Assuming a multi-agent POMDP with N agents, its tuple
(S,A1, ...,AN,T,R1, ...,RN,Ω,O1, ...,ON,γ) differs from the one presented in POMDPs since
[4]:

• S is a finite set of states describing all the possible configurations of the N agents,

• A = A1×A2× ...×An is a finite set of actions for each agent n ∈ [0,N],

• Rn : S×An×S→ R ⊂R, ∀n is the reward function for each agent n ∈ [0,N],

• On : S×Ω→ [0,1] is the set of conditional observation for each agent n ∈ [0,N],

There are two main topics that cover the most important settings to be defined when
applying this sort of systems [4]:

• Collaborative versus Non-collaborative:
If all the agents work together in order to achieve the same goal, they are in a
collaborative mode, where they have a shared reward measurement (Ri = R j, ∀i, j ∈
[1, ...,N]). Whereas in a non-collaborative configuration, each agent receives their
own reward. As in both cases, each agent i aims to maximize a discounted sum of
rewards

∑T
t=0γ

tr(n)
t . A non-collaborative setting may lead to a competition scenario,

where all agents seek to maximize their reward while sharing the same environment.

• Centralized versus Decentralized:
In a decentralized configuration, each agent decides its own action conditioned
only by its local information, while in a centralized configuration, the algorithm has
access to all the observations (ωn) and all the rewards (rn).

A collaborative environment, when combined with decentralization, might lead to
the emergence of communication between agents in order to share information,
whereas, while combined with a centralized setting, it can be reduced to a single-
agent RL problem.

This type of systems are challenging since the agents update their policies individu-
ally as the learning progresses. Therefore, the environment looks non-stationary to any
particular agent, since they do not know how the other agents will act and consequently,
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how their actions will affect their rewards. This can be explained by the use of a par-
tially observed environment and agents that follow intrinsic stochastic policies. For these
reasons, it is observed a high variance of the expected global return, which makes the
learning process harder, namely when used in conjunction with bootstrapping [4].
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Chapter 4

Core Learning Solutions

To solve an MDP it is required to find the right action to be taken in a specific state, to find
the optimal policy π∗. The learning process of RL problems is described by the Figure 4.1.
There are five main approaches divided in two types of models as presented in Figure 3.2:
Model-based algorithms - know the model that is use for planning value/policy functions
- and Model-free Algorithms - do not know the model, need to interact. The first one is
divided in Exhaustive Search, Linear Programming and Dynamic Programming, while
the second one includes the Monte Carlo and Temporal-Difference Methods.

Model-based algorithms learn a model from experience and use it to plan the value
function and/or the policy, while model-free algorithms have no model to use, so they
learn the value function and/or the policy through experiences collected from agent’s
interactions with the environment.

Figure 4.1: General schema representing the different approaches for RL [4]

Before diving into those approaches, it is important to take into consideration the
transversal issues that might appear in solving an MDP problem and how to bypass
them.

35
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4.1 Learning Issues

When trying to solve an MDP problem, first it is necessary to learn that MDP problem
and only then solve it. There are two possible approaches when learning a sequential
decision-making task [4]:

• Offline learning: when only limited data of a given environment is available for
the learning process.
This learning mode generally needs a batch setting to define the amount of data
used by the agent to learn without the possibility of interacting further with the
environment.

• Online learning: when the learning process occurs while the agent is gradually
gathering new experience from its interactions with the environment.
In this configuration, the learning problem is more complex and, even without
requiring a large amount of data (sample efficiency), learning is not influenced only
by the algorithm’s ability to generalize well from limited experience.

In order to solve this issue, the agent can gather experience using an exploration/exploitation
strategy. Besides that, he can request a replay buffer to cache its experiences, so they could
be processed at a later time.

4.1.1 Exploration/Exploitation Strategy

Exploration means trying random actions in different states, which helps discovering
the underlying MDP, and exploitation means following the so-far optimal policy, which
helps maximizing rewards.

After some exploration the agent might have found a set of apparently rewarding
actions and it is time to exploit them, following a new so-far optimal policy. However,
RL algorithms suffer from the curse of dimensionality, since it tries to cover all possibly
relevant situations in a real-world scenario. This results in a large action and state spaces,
which raises the problem of convergence, i.e., it takes an unfeasible amount of time to get
all the possible action and state combinations to first learn the MDP problem.

Therefore, RL algorithms try to implement both of these concepts at the same time:
learn the MDP (exploration), while solving it to find the optimal policy (exploitation).
About the convergence problem, it is solved with the generalisation of the value function,
usually applying a function approximation. Generalisation is a central concept in the
field of reinforcement learning. This concept is related to the ability to achieve good
performance in an environment where the collected data is limited, so it is directly related
to the notion of sample efficiency, for example, when the state-action space is too large to
be fully visited [4].
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In addition, RL algorithms require smart exploration techniques. Randomly choosing
actions without reference to an estimated probability distribution lead to poor perfor-
mance. ε-greedy is an example of a solution for that problem, making the agent choose
the action that follows the so-far optimal policy with a probability of 1− ε and a random
action with probability ε.

4.1.2 Experience Replay

A replay buffer ensures that the mini-batch updates are made using a reasonably sta-
ble data distribution stored in the replay memory, helping for convergence / stability.
This approach is particularly well-suited when using an off-policy learning algorithm
since experiences from past policies (different policies) do not introduce any bias, but
contrariwise, are good for exploration [4].

A replay buffer allows processing the transitions in a different order than they are
experienced. Furthermore, there is the possibility to use prioritized replay, that allows
the control of the frequency with which the transitions are considered. This control can be
made giving them different meaning, like ordering them according to some characteristic
or value, choosing which experience to store and which one to replay. In [43], that
meaning was related with the magnitude of the transitions’ TD error, i.e., experiences
with a bigger TD error value would have a bigger probability of being selected. These
methods seek to the replay of the “unexpected” transitions more often in order to make
the agent more flexible to dynamic scenarios.

4.2 Model-based Algorithms

Model-based Algorithms are, as the word itself indicates, algorithms that use their knowl-
edge of the model to solve an MDP problem. Knowing the state transition function,
T(s,a,s′), and the reward function, R(s,a), it is possible to achieve the optimal value func-
tion and/or the optimal policy using the Bellman Optimality Equation. Value iteration
and policy iteration are two methods that use this kind of algorithms and which have
their origins in the field of Dynamic Programming (DP).

4.2.1 Exhaustive Search

This method consists in exploring all the possibilities - all the deterministic Markov
policies -, evaluate each policy and return the best one. This is considered a naive
approach since the number of policies is exponential, |A||S| 1.

1
|S| is the size of the set of spaces and |A| the size of the action space
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4.2.2 Linear Programming

Linear Programming (LP) is an optimization framework, in which it is possible to have
linear constrains in a linear objective function and get a solution in polynomial time,
as long as the number of variables and constraints are polynomial. Thus, to use these
methods it is mandatory to encode the MDP in a linear program. There are two ways of
solving an MDP problem with a linear program [44, 45]:

• Primal Linear Program (P-LP): This method tries to:

min
s

∑
s

V(s) (4.1)

according to the following equation:

V(s) ≥ R(s,a) +
∑

s′
T(s,a,s′)V(s′),∀s ∈ S,∀a ∈A (4.2)

being the non-linear function max substituted in the Bellman Equation - presented
in Equation 3.13 where r1 = R(s,a,s′) - by a greater than symbol, ≥.

Therefore, V∗ is the solution of the above linear program. This program has |S||A|
constrains and |S| variables.

• Dual Linear Program (D-PL): This method tries to:

max
λ

∑
s

∑
a
λ(s,a)R(s,a) (4.3)

according to the following equation:∑
a′
λ(s′,a′) = µ(s) +γ

∑
s

∑
a
λ(s,a)T(s,a,s′),∀s,s′ ∈ S,∀a,a′ ∈A,λ(s,a) ≥ 0 (4.4)

where:

λ(s,a) =

∞∑
t=0

γtP(st = s, at = a) (4.5)

and the optimal policy is defined as:

π∗(s) = argmax
a

λ(s,a) (4.6)

This program has |S| constrains and |S||A| variables.
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4.2.3 Dynamic Programming

Dynamic Programming is a mathematical and computer programming method of op-
timization developed by Richard Bellman. Its main purpose is to simplify large and
complex problems by dividing them into simpler sub-problems in a recursive manner,
following a divide-and-conquer approach. It is a solution to problems that contain the fol-
lowing properties: Optimal Structure - follow the Principle of Optimality and their optimal
solutions can be decomposed into sub-problems -, and Overlapping Sub-problems - their
sub-problems recur many times and the sub-problems’ solutions can be stored and reused
again.

MDPs satisfy both properties: the Bellman Equation gives recursive decomposition
and the Value Function stores and reuses solutions. Consequently, and due to the com-
plexity of the problem that this dissertation is trying to solve, this could be a useful
approach.

4.2.3.1 Policy Iteration

Policy Iteration (PI) is the way of finding an optimal policy. As the Bellman equation
shows (Equation 3.14), the purpose of recursion is to seek a consecutive policy improve-
ment evaluating Vπ over each iteration. Thus, a monotonic sequence is obtained by
improving policies and value functions [6]:

π0
E
→ Vπ0 I

→ π1
E
→ Vπ1 I

→ π2
E
→ ...

I
→ π∗

E
→ V∗ (4.7)

where E
→ denotes a policy evaluation and I

→ denotes a policy improvement.

As the monotonic term implies, each new policy used in the Bellman equation has to
be a strict improvement over the previous one (unless it is already optimal).

Policy Evaluation is an iterative computation, which starts with the value function
for the previous policy - if the model has a terminal state, the initial approximation, Vπ0 ,
is defined with value 0 - and, consecutively, calculates a new return of the value function
for an arbitrary policy, i.e., each successive approximation is obtained through the usage
of Bellman Equation for Vπ (Equation 3.14) as an update rule. Policy Evaluation is also
referred as a prediction method that estimates Vπ.

Policy Improvement is the process of creating a new policy from the improvement
of the original one, by making it greedy with respect to the value function of the original
policy. The new policy is chosen according to a Domination concept, which defines the
Policy Improvement Theorem [6]:

Policy Improvement Theorem. Let π and π′ be any pair of deterministic policies such that,
for all s ∈ S

Qπ(s,π′(s)) ≥ Vπ(s) (4.8)
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Then the policy π′ must be as good as, or better than, π. That is, it must obtain greater or equal
expected return from all states s ∈ S:

Vπ′(s) ≥ Vπ(s) (4.9)

Therefore, Strict Domination appears as [8]:

π1 ≥ π2 i f f ∀s ∈ S Vπ1(s) ≥ Vπ2(s)

∧ ∃s ∈ S Vπ1(s) > Vπ2(s)
(4.10)

Policy improvement must only accept the exchange of the old policy for a strictly better
policy, except when the original policy is already optimal.

These concepts are being applied considering deterministic policies. However, it is a
natural extension to consider changes at all states and to all possible actions, selecting, at
each state, the action that seems to be the best according to the state-action value function,
Qπ(s,a). In other words, it is considered the new greedy policy, π′, calculated as:

π′(s) = argmax
a

Qπ(s,a)

= argmax
a

Eπ
{
r1 +γG′ | s, a

}
= argmax

a

∑
s′

P(s′ | s,a)
[
r1 +γVπ(s′)

] (4.11)

In particular, the Policy Improvement Theorem carries through as stated for the
stochastic case. Besides that, if there are ties in the policy improvement steps, such
as in Equation 4.11, where it is possible to have several actions at which the maximum
is achieved, then, in the stochastic case, there is no need to select a single action, each
of those actions will have a proportional probability of being selected in the new greedy
policy.

Concluding, the greedy policy takes the action that looks best in the short term - after
one step of lookahead - according to Vπ. This is in agreement with the Policy Improvement
Theorem, so this greedy policy is as good as, or better than, the original policy, following
a monotonic sequence.

It is said that a policy is nearly optimal if the amount that it could improve according
to the new calculated state-value, per iteration, is very small, i.e., less than a predefined
hyperparameter ε. This assumption is given by [8]:

π is ε−optimal i f f |Vπ(s)−Vπ∗(s)| ≤ ε, ∀s ∈ S (4.12)

The following algorithm (1) explains how this method can be implemented.
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Algorithm 1 - Policy Iteration

1: procedure Initialization:
2: V(s) ∈R and π(s) ∈A(s) arbitrarily for all s ∈ S, except that V(terminal) = 0
3: end procedure

4: procedure Policy Evaluation:
5: repeat
6: ∆← 0
7: for all s ∈ S do
8: v← V(s)
9: V(s)←

∑
s P(s′,r | s,π(s))

[
r1 +γV(s′)

]
10: ∆←max(∆, |v−V(s)|)
11: end for
12: until ∆ < ε . the small positive number determining the accuracy of estimation
13: end procedure

14: procedure Policy Improvement:
15: policy-stable← true
16: for all s ∈ S do
17: a← π(s)
18: for all a ∈A do
19: Qπ(s,a) =

∑
s′ P(s′,r | s,a)

[
r1 +γVπ(s′)

]
20: end for
21: π(s)← argmaxa Qπ(s,a)
22: if a , π(s) then
23: policy-stable← f alse
24: end if
25: if policy-stable then
26: stop and return V ≈ v∗ and π ≈ π∗

27: else
28: go to 2
29: end if
30: end for
31: end procedure

4.2.3.2 Value Iteration

Value Iteration (VI) consists of an iterative application of the Bellman Optimality Equation
backup in order to find the optimal policy π∗. VI uses, as in PI, a Bellman Equation as
an update rule to calculate the V(s), but in this case the optimal one, Equation 3.14. It
focuses on finding the optimal state value function, V∗, and once that is found, it extracts
the optimal policy from it.

Comparing both iteration methods, the inner loop of PI (Policy Evaluation) is a lot
like VI. It is going as fast as VI, but it is doing a lot more work than VI, since VI does
not have an implicit policy. Each iteration of PI is doing pretty much all the work of VI
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plus multiple Policy Improvements, which is only done once in the VI, at the end, after
obtaining V∗.

In addition, while the greedy policy converges in finite steps, the value function itself
does not necessarily converge, but it is going to get closer to the solution, thus, it is used
the ε hyperparameter to build a condition (∆ < ε) that defines the last iteration, like it is
made in PI.

The following algorithm (2) explains how this method can be implemented.

Algorithm 2 - Value Iteration

1: procedure Initialization:
2: V(s) ∈R arbitrarily for all s ∈ S, except that V(terminal) = 0
3: end procedure

4: procedure Value Evaluation:
5: repeat
6: ∆← 0
7: for all s ∈ S do
8: v← V(s)
9: for all a ∈A do

10: Q(s,a) =
∑

s′ P(s′,r | s,a)
[
r1 +γV(s′)

]
11: end for
12: V(s)←maxa Q(s,a)
13: ∆←max(∆, |v−V(s)|)
14: end for
15: until ∆ < ε . the small positive number determining the accuracy of estimation
16: end procedure

17: procedure Conclusion:
18: Output a deterministic policy, π ≈ π∗: π(s) = argmaxa

∑
′

s P(s′,r | s,a)
[
r1 +γV(s′)

]
19: end procedure

4.2.3.3 Complexity of DP

DP methods are polynomial time algorithms for finite and discounted MDPs.

Assuming that |S| is the size of the set of spaces, |A| the size of the action space, γ is
the discount factor and ε the variable that defines the accuracy of the estimation [46]:

• Cost of PI:

– Policy Evaluation:

* Solving a system of linear equations2: O
(
|S|3

)
2In theory, value determination can probably be done somewhat faster, since it primarily requires inverting

a N×N matrix, which can be done in O
(
|S|2,376

)
[47]
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* Iterative, using hyperparameters (γ and ε):

O

|S|2 log
(

1
ε

)
log

(
1
γ

) (4.13)

– Policy Improvement:

* Solving a system of linear equations: O
(
|A||S|2

)
* Greedy, using hyperparameters (γ):

O
(
|A|

1−γ
log

(
|S|

1−γ

))
(4.14)

• Cost of VI:

– Only using state value function, Vπ(s) / V∗(S):

O
(
|S|2|A|

)
(4.15)

– Using state action value function, Qπ(s,a)/Q∗(s,a):

O
(
|S|2|A|2

)
(4.16)

As explained in 4.2.3.2, it is easy to deduct that each iteration of PI is computationally
more expensive than each iteration of VI. However, PI typically requires fewer iterations
to converge than VI. So, it is not possible to ensure that PI is better that VI or vice versa,
because PI has a faster convergence at the cost of greater computational expense.

The DP methods that was described so far used synchronous backups, i.e., all states are
backed up in parallel. There are Asynchronous DP methods that back up states individ-
ually, in any order, and can significantly reduce computation [5]. However, throughout
this document, asynchronous methods will not be considered since their improvements
only rely on a computation point of view and the focus is the results’ accuracy.
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Figure 4.2: Dynamic Programming Methods tree [5]

4.3 Model-free Algorithms

This sort of algorithms relies on a trial-and-error learning approach to update its knowledge
of the model. Therefore and referring Section 3.1, although the previous methods are
useful to better understand all the topic that reinforcement learning covers, RL algorithms,
truly belong to this section. These algorithms do not have the transition probabilities and
rewards for the RL problem. It has no information about the model, it needs to learn it by
itself. Therefore, the following methods will use the state-action value function, Q(s,a), to
update their policies, π(a | s), taking into consideration the combination of different states
and actions.

Before diving into the model-free methods, it is important to pay attention to the
concepts defined in Section 3.5 to fully understand those methods.

4.3.1 Monte Carlo Methods

Monte Carlo (MC) methods only require experience, sample sequences of states, actions
and rewards from current or simulated interaction with the environment. They learn
value functions directly from episodes of experience. They are used in episode tasks,
which means that it only calculates the reward at the end of an episode. Their learning
process of the new value functions is made from sample returns - like an average of a
bunch of numbers - with the MDP, whereas in DP methods the value functions were
computed from knowledge of the MDP. However, as in the previous methods, the values
functions and the corresponding policies still interact to obtain optimality. Besides that,
the order of the problems remained the same, first the prediction problems - computation
of Vπ and Qπ for a fixed arbitrary policy π - then the control problem and its solution by
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policy iteration.

Starting with the MC prediction and considering that each occurrence of state s in an
episode is called a visit to s, there are two different approaches to estimate Vπ(s) [6]:

• First-visit MC: the average returns are determined only for first time the state s is
visited in an episode.

• Every-visit MC: the average returns are calculated every time s is visited in an
episode. It is described by:

V(st)← V(st) +α [Gt−V(st)] (4.17)

being Gt the current return following time t and α a constant step-size parameter.

As the number of returns are observed, the average should converge to the expected
value - this underlies the MC methods. So, both first and every-visit MC converge to
Vπ(s) as the number of visits (or first visits) to state s go to infinity.

At the end of this prediction there is the control phase, which follows the same
pattern mentioned in DP. However, for MC policy iteration, it is natural to alternate
between the evaluation and improvement processes on an episode-by-episode basis. In
addition, while in the policy iteration method mentioned in Section 4.2.3.1 it was used the
state-value function Vπ for the evaluation. Here it is used the action-state value function
Qπ, since there is no knowledge of the model and, consequently, of the state transition
functions. This process is shown in Figure 4.3 and is described by Equation 4.18.

π0
E
→ Qπ0 I

→ π1
E
→ Qπ1 I

→ π2
E
→ ...

I
→ π∗

E
→ Q∗ (4.18)

Figure 4.3: Monte Carlo Policy Iteration cycle
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Monte Carlo Tree Search

Monte Carlo Tree Search (MCTS) [29] is a recent and strikingly successful example of
decision-time planning. It has proven to be useful in an extensive variety of competitive
settings; however, it is not limited to those scenarios. It can be effectively used for single-
agent sequential decision problems if there is an environment model simple enough for
fast multi-step simulation [6].

Figure 4.4 shows the MCTS. This tree is composed by big white circles - nodes -, which
represent each state, and by small black circles, that correspond to the possible actions.
The nodes that follow a blue arrow represent the states that were selected, being the root
node the current state. The algorithm follows the tree policy - an informed policy that
balances exploration and exploitation, e.g. selecting actions using an ε-greedy -, pursuing
the blue arrows, and when it sees itself stuck in a state where it does not know the next
best node to go further, the tree will expand from that node and the action-state value
functions will be calculated through the simulations made in each scenario according
to each possible action and following a rollout policy3. Then, recursively, it will back
up what it has learned from those simulations all the way to the top. That updates the
estimates (Q̂(s,a)) of the previously selected nodes and expands the tree policy one step
(one more action / blue arrow) until that last reached leaf, like a policy improvement.
Then, a new selection phase will take place, using the new tree policy, until getting stuck
again, hence a new expansion phase starts, repeating the whole process.

It is important to emphasize that the expansion follows some kind of greedy algorithm
to prevent the exploration problems (Section 4.1.1) and it stops according to an a priori
parameter proportional with the trade-off between speed, accuracy and resources.

This method benefits from online, incremental, sample-based value and policy im-
provement. Besides that, it saves action-value estimates attached to the tree edges and
updates them using RL’s sample updates [6].

MCTS methods have some peculiar properties [8]:

• useful for large state spaces;

• need lots of samples to get a good estimate;

• planning time independent of the number of states;

• running time exponential in the affected horizon - O
(
(|A|.X)H

)
, being X the number

of steps executed.

3Rollout Algorithms are decision-time planning algorithms based on MC control applied to simulated
trajectories that all begin at the current environment state. However, this concept is out of the scope of this
dissertation, so will not be explored [6].
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Figure 4.4: Monte Carlo Iteration cycle [6]

4.3.2 Temporal-Difference Methods

Temporal-Difference (TD)4 learning is the combination of MC and DP ideas. As in MC
methods, it can learn directly from raw experience without the knowledge of the model
that describes the dynamics of the environment, and, just like DP it bootstraps, i.e., it
updates their value estimates according to other value estimates [6].

What mainly distinguishes this method from the other two (MC and DP) are the
approaches to the prediction problem, since the control problem follows, like MC, the
idea of the generalized policy iteration, abstracted from DP - Section 4.2.3.1.

Whereas MC methods must wait until the end of the episode to determine the in-
crement to V(st) (when Gt is known) - Equation 4.17, in the TD prediction that wait is
defined only by the time step. At time t + 1, TD methods immediately form a target and
make a useful update using the observed reward Rt+1 and the estimate V(st+1), as shown
in the following equation:

V(st)← V(st) +
[
Rt+1 +γV(st+1)−V(st)

]
(4.19)

Sample updates, used in TD and MC methods, differ from the expected updates used

4In order to simplify the definition of this concept according to the scope of this dissertation, it will not
be mentioned the λ-return concept, so it will be assumed λ = 0, i.e., TD(λ) = TD(0)
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in DP methods since the first ones are based on a single sample successor rather than on
a complete distribution of all possible successors [6].

Taking back and comparing the three ways of updating the state value function, V(st):

DP : V(st)← Eπ
[
Rt+1 +γV(st+1)−V(st)

]
MC : V(st)← V(st) + [Gt−V(st)]

TD : V(st)← V(st) +
[
Rt+1 +γV(st+1)−V(st)

] (4.20)

and considering that the current expected value is:

Vπ(st) = Eπ [Gt | st]

= Eπ
[
Rt+1 +γGt+1 | st

]
= Eπ

[
Rt+1 +γVπ(st+1) | st

] (4.21)

the DP is the only one that knows the model of the environment; however, its target is an
estimate because despite knowing Vπ(st), Vπ(st+1) is not known and the current estimate,
V(st+1), is used instead. In addiction, MC target is an estimate because the current expected
value, Vπ(st), is not known as in DP (due to its model-based characteristic), so, a sample
return, Gt is used in place of the real expected return. Concluding, the TD target is an
estimate for both reasons: it samples the expected values, Rt+1 +γV(st+1), and it uses the
current estimate, V(st+1), instead of the true and unknown Vπ(st+1). Thus, TD methods
combine the sampling of MC methods with the bootstrapping of DP [6].

The TD error is defined as Rt+1 +γV(st+1)−V(st) = TD target−V(st)

The TD control problem can be classified according to whether they use an on-policy
or off-policy approach:

• SARSA is an on-policy method. SARSA is an acronym that means State-Action-
Reward-State-Action, following the tree shown in Figure 4.5 and the Equation 4.22

Q(s,a)←Q(s,a) +α
[
R +γQ(s′,a′)−Q(s,a)

]
(4.22)

• Q-Learning is an off-policy method, that estimates a state-action value function for
a target policy (greedy) that deterministically selects the action of highest value
(apparently the best next action a′) while following the behaviour policy (ε-greedy).
Equation 4.23 represents this method.

Q(s,a)←Q(s,a) +α
[
R +γmax

a′
Q(s′,a′)−Q(s,a)

]
(4.23)

There is a third way in which TD methods can be extended to control, called actor-
critic methods. These methods will be deeply explored in the next chapter, since they are
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not strictly value-based methods as the ones described in this subsection.

Figure 4.5: SARSA tree Figure 4.6: Q-Learning tree

4.3.3 n-step Method

When comparing MC and TD methods observing their equations (4.20) and the figures
4.7 and 4.8, it is easy to understand that both arise from an n-step method [6], described
by the following equations:

n = 1 (TD) G(1)
t = Rt+1 +γV(st+1)

n = 2 G(2)
t = Rt+1 +γRt+2 +γ2V(st+2)

...

n =∞ (MC) G(∞)
t = Rt+1 +γRt+2 + ...+γT−1RT

(4.24)

being t ∈ [0, T] and

G(n)
t = Rt+1 +γRt+2 + ...+γn−1Rt+n +γnV(st+n) (4.25)

thus, n-step temporal-difference learning is defined as:

V(st)← V(st) +α(G(n)
t −V(st)) (4.26)
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Figure 4.7: Monte Carlo Method tree [5]

Figure 4.8: Temporal-Difference Methods tree [5]

4.4 Conclusion

It is important to emphasize that the worst case convergence guarantees of LP methods
are better than those of DP. In addition, when compared to DP methods, LP methods
become impractical at a much smaller number of states.

MC methods learn value functions and optimal policies from experience in the form
of sample episodes, which give it three advantages over DP methods [6]:

1. MC methods can be used to learn optimal behavior directly from interaction with
the environment, without needing any model that describes the dynamics of the
environment.
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2. For many applications, it is easier to simulate sample episodes, even with the
difficulties of building the explicit model of transition probabilities required in DP.

3. It is easy and efficient to restrict the subset of states to a region of special interest as
it is done in MC methods, removing the expensive evaluation of the rest of the state
set.

In addition to these three advantages, not using the bootstrap concept implemented
in DP methods may allow MC methods to reduce the violation of Markov’s property
(Section 3.3.2).

Whereas MC methods only work for episode task problems - it has to wait until the
end of the episode to get the reward - and learn from complete sequences, TD methods
work for both episodic and continuous task problems - it will only wait until the next time
step (not next episode) to update the value estimates -, and it can learn from incomplete
sequences too.

TD methods are announced in [6] as the most widely used reinforcement learning
methods, due to their great simplicity, i.e., they can be applied online, while getting
experience from its interaction with an environment, requiring a minimal amount of
computation, since they can be expressed nearly completely using single equations that
can be implemented with small computer programs.

Convergence is a tricky question when comparing TD and MC methods, since “no
one has been able to prove mathematically that one method converges faster than the
other” [6]. Nevertheless, and considering the example 6.2 presented in [6], TD methods
have usually been found to converge faster that constant-α MC methods on stochastic
tasks.

Summing up, Figure 4.9 presents an unified view of reinforcement learning methods.

Figure 4.9: Unified View of Reinforcement Learning methods [7]
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Chapter 5

Policy Optimization

5.1 Introduction

Policy optimization, as its name implies, combines the use of optimization algorithms as a
resource for policy updating when considering policy-based methods to find the optimal
solution.

Most of the policy optimization algorithms presented in the literature are exposed
in chapters 3 and 4 of [48], referencing their usefulness and several applications. Some
examples of these algorithms are: REINFORCE [49], Actor-Critic [50], Deterministic
Policy Gradient (DPG) [51], Deep Deterministic Policy Gradient (DDPG) [52], Trust Re-
gion Policy Optimization (TRPO) [53], Synchronous Advantage Actor-Critic (A2C) and
Asynchronous Advantage Actor-Critic (A3C) [54], Actor-Critic with Experience Replay
(ACER) [55], Actor-Critic using Kronecker-factored Trust Region (ACKTR) [56], Proximal
Policy Optimization (PPO) [57], Multi-Agent Deep Deterministic Policy Gradient (MAD-
DPG) [58], Soft Actor-Critic (SAC) [59], Distributed Distributional Deep Deterministic
Policy Gradient (D4PG) [60], Twin Delayed Deep Deterministic (TD3) [61].

Throughout this chapter some of these algorithms will be analyzed, pointing to the
proposed solution. Gradient Descent, also called back-propagation when applied to
neural networks, is one of the most popular optimization strategies, also used in some
of the previously mentioned algorithms. This strategy will be detailed according to the
Policy Gradient Methods that will be discussed next.

5.2 Policy Gradient Methods

Policy gradient methods belong to a broader class of policy-based methods that includes,
among others, evolution strategies [48].

Policy-based methods directly optimize the expected cumulative reward, known as
the objective function, by finding a good policy using parameterized policy. These policies

53
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can select actions without consulting a value function; however, it may be used to learn
the policy parameter. The policy’s parameter vector is defined as θ ∈Rl, l� |S|.

Therefore, the probability that action a is chosen at time t given the state s, at the same
time, with parameter θ is:

π(a | s,θ) = πθ(a | s) = Pr{at = a, st = s, θt = θ} (5.1)

It is assumed that π is differentiable with respect to its parameter, thus δπ(s,a)
δθ exists [62].

If a learned value function is used as well, then w ∈ Rd corresponds to its weight
vector.

These methods based their learning of the policy parameter on the gradient of some
scalar performance measure J(θ) with respect to the policy parameter. They aim to
maximize performance, so their updates approximate gradient ascent in J:

θt+1 = θt +α∇̂J(θt) (5.2)

where α is a positive-definite step size as mentioned previously in this document and
∇̂J(θt) ∈ Rd′ is a stochastic estimate whose expectation approximates the gradient of the
performance measure according to θt [6]. Therefore, the policy parameters are updated
approximately proportional to the gradient:

∆θ ≈ α
δJ(θ)
δθ

= α∇θJ(θ) (5.3)

where ∇θJ(θ) is the policy gradient given by:

∇θJ(θ) =


δJ(θ)
δθ1
...

δJ(θ)
δθn

 (5.4)

If this can be achieved, it is usually granted that θwill converge to a locally optimal policy
in the performance measure J(θ) [62].

Computing the gradient ∇θJ(θ) is tricky, since it depends on the selected action (di-
rectly determined by πθ) and the stationary distribution of the states while following
the target selection behaviour (indirectly determined by πθ). Policy gradient is part of
model-free methods, thus, not knowing the environment makes it difficult to estimate the
effects that a policy update has on the state distribution. Here comes the policy gradient
theorem, which simplifies the gradient computation of ∇θJ(θ) to:

∇θJ(θ) = ∇θ
∑
s∈S

dπ(s)
∑
a∈A

Qπ(s,a)πθ(a | s)

∝

∑
s∈S

dπ(s)
∑
a∈A

Qπ(s,a)∇θπθ(a | s)
(5.5)
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This is the scheme that characterizes the policy gradient methods.

How to measure the quality of a policy πθ?
Considering a continuous task, there are two ways:

• using average value per time-step:

JavV(θ) =
∑

s
dπθ(s)Vπθ(s) (5.6)

• or average reward per time-step:

JavR(θ) =
∑

s
dπθ(s)

∑
a
πθ(s,a)Ra

s (5.7)

where dπθ(s) = limt→∞Pr{st = s | s0,πθ} is a stationary distribution of states underπθ, which
is assumed as real and is independent of s0 for all policies [62].

Summarizing, the process is: give state; get action probability; take an action in
the environment given by the policy π; observe the next state and rewards; update the
parameters in the network based on the rewards collected - backpropagation -; repeat it
until the end of the training process.

These methods have some advantages, such as better convergence properties, ef-
fective in continuous spaces and can learn stochastic policies; but they also have some
disadvantages, as customarily converge to a local rather than a global optimum and their
evaluation of the policy is typically inefficient and high variance [5].

5.2.1 Parameterized Policy

Parameterized policies use a set of parameters, adjusted to change the behaviour through
an optimization algorithm, in order to return computable functions.

• Stochastic Policy Gradient are usually denoted by π, according to the following
equation:

at ∼ πθ(· | st) (5.8)

where θ corresponds to the policy parameter and the πθ the stochastic policy.

• Deterministic Policy Gradient are usually denoted by µ, according to the following
equation:

at = µθ(st) (5.9)

where θ corresponds to the policy parameter and µθ is the deterministic policy.
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5.2.2 Actor-Critic Methods

While value-based methods learn the value function with an implicit policy (e.g. ε-
greedy) and policy-based methods have no value function, learning the policy by itself,
the actor-critic appears using some of these two methods, it both learns the value function
and policy (Figure 5.1).

Figure 5.1: Venn Diagram representing the relation of Actor-Critic, Value and Policy-based
methods

The previously mentioned types of parameterized policies can be represented by a
neural network updated by gradient ascent. The policy gradient typically requires an
estimate of a value function for the current policy and the actor-critic architecture appears
as one common approach [4].

An actor-critic algorithm [50] learns the policy and the value function by two different
entities: the agent and the critic. The value function is used for bootstrapping, i.e.,
updating a state from subsequent estimates, in order to accelerate the learning process
and reduce variance [48].

The actor is related to the policy, it updates the policy parameter θ for πθ(a | s) in
the direction suggested by the critic, which estimates the approximate state-action value
function for the current policy π as Q(s,a;θ) ≈Qπ(s,a). So, while the actor decides which
action to take, the critic tells the actor how good its action was and how good it should
adjust. This adjustment is made according to the TD error calculated with the value
function, as shown in Figure 5.2.
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Figure 5.2: Actor-Critic architecture [6]

Although the critic estimations can be defined from a set of tuples< s,a,r,s′ >, possibly
taken from a replay buffer as a simple off-policy approach that uses a pure bootstrapping
algorithm TD(0) where, at each iteration, the current state-action value function is updated
towards a target value:

YQ
k = r +γQ(s′, a = π(s′); θ) (5.10)

this is not computationally efficient as it uses a pure bootstrapping technique that has
a slow reward propagation backwards and is prone to instabilities. Thereby, the ideal
architecture should be sample efficient - being able to use both off and on-policy trajec-
tories, through a replay buffer - and computationally efficient - it should be able to profit
from the stability and rapid spread of rewards of on-policy methods to samples obtained
from near on-policy behaviour policies [4].

5.2.3 Deep Deterministic Policy Gradient

This method was presented in [52] as an actor-critic and model-free DDPG algorithms that
can be applied in continuous action spaces, through the extension of Deep Q-Network
(DQN) [63] and DPG [51].

With reference to DPG, it uses value gradient method to estimate the gradient with
backpropagation, and it avoids the optimization of action value function at each time
step in order to obtain a greedy policy as in Q-Learning. This will make it unfeasible
in complex action spaces with large and unconstrained function approximators, such as
deep neural networks [48].

With regard to its usage of DQN, it deploys experience replay and an idea similar
to target network, like a soft target which, rather than copying the weights directly as
in DQN, it updates the wights θ′ of that soft target network slowly to track the learned
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networks weights θ, as followed:

θ′← τθ+ (1−τ)θ′ (5.11)

where τ� 1
As an off-policy, this method learns the actor policy using experiences from an ex-

ploration policy that adds noises sampled from a noise process in the actor policy. It is
shown in [48] that “DDPG can solve problems with 20 times fewer steps of experience
than DQN”. However, as almost all model-free RL methods, it still needs a lot of training
episodes to find solutions.



Chapter 6

Proposed Solution

This chapter starts with the problem analysis in agreement with the RL concepts presented
in Chapter 3. In the next section, it is determined the type of machine learning algorithm
used to solve the problem stated in Section 1.3, based on the studies exposed in Chapter 2.
After that, it is described which are the most compliant methods to use according to the
analysis of the problem and the approaches detailed in Chapter 5. Finally, the proposed
ML algorithm is explained in detail.

6.1 Assumptions and Problem Formulation

There are multiple studies and algorithms tested to solve several restrictions that appear
when trying to apply core learning algorithms to specific use cases. Each problem has its
own properties. Therefore, when building an algorithm to solve a problem it is necessary
to take into account its properties, mapping them to the diverse concepts mentioned in
Section 3.5.

There are several assumptions to take into account in order to decide which is the best
path to follow:

• The agents are defined as UAVs carrying Wi-Fi APs and the environment with
characteristics of a TCE, such as a music festival.

• The environment is defined as a bi-dimensional scenario, so the agents will not be
able to move in the Z axis (not increasing or decreasing their altitude).

Due to the nature of the problem and in order to simplify the algorithm without
compromising the goal, it is considered a discrete domain. Therefore, the action
space is limited to the X (horizontal) and Y (vertical) axis, with the possible actions:

– UP: increase the Y axis value;

– DOWN: decrease the Y axis value;
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– RIGHT: increase the X axis value;

– LEFT: decrease the X axis value;

– STAND: the coordinates do not suffer any operation.

Although the action space seems to be defined in a discrete domain that does not
mean that the algorithm needs to follow a discrete action space. As the problem was
defined to fulfill the users’ demands, it is necessary to manage the airborne network
topology and, for that purpose, they need to take actions in the real world, with a
continuous action space. However, and in order to test which is the best direction
to take that action, the previously mentioned action space was defined as discrete.

• Agents’ rewards are calculated with a cumulative discounted return function, Gt.

• Agents act without knowledge of the model due to the unpredictable users’ move-
ment. This falls into the model-free algorithms scope.

• As the goal of the proposed solution is to increase QoS in a TCE environment
managing the airborne network topology, the training process needs to be evaluated
according to this scenario, following a continuous task, where there is no terminal
state that defines the end of specific episodes. Thus, Monte Carlo methods are not
an option.

• As explained in Section 3.5, the off-policy is the key to learn predictions in a dynamic
world. It is able to solve complex problems, so this will be the type of policy applied
in the proposed solution. This statement removes SARSA from the Temporal-
Difference methods’ options.

Considering the previous assumptions, Q-Learning, a value-based method, and Policy
Optimization methods, which can be a combination of value and policy-based methods,
are the two main possibilities available for the proposed solution. The first one has been
very much used in DRL with the application of Deep Q-Networks [63–65]. However, its
restrictions about the use of state-action value functions, single-agent algorithms [66] and
scalability concerns [24] limit its use according to the following constraints:

• The algorithm will be running in real-time, in a continuous task, thus it needs to
converge fast to the optimal policy in order to ensure a good QoS to the users as
soon as possible. Thus, policy-based methods are considered a better approach,
since they usually have better convergence properties than value-based methods
and are effective in high-dimensional or continuous action spaces [48].

• The problem is defined as a POMDP (Section 3.5.1) on account of its decision-
making issue and need to learn how to act in dynamic scenarios, exploring different
situations.
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• Considering that the number of UAVs is greater than or equal to one, this problem
needs to be treated as a multi-agent problem. The system is assumed to be a
collaborative multi-agent in order to make all UAVs have the same goal, increasing
QoS.

6.2 Proposed Solutions

Considering the main characteristics of the 4 types of machine learning algorithms, su-
pervised, unsupervised, semi-supervised and reinforcement learning, RL algorithms are
the ones that are most suitable to the problem addressed in this work.

RL algorithms take actions according to changes in the environment, following an
objective function. In the same way, the resolution of the stated problem involves the
adaptation of the airborne network topology according to the dynamic movements of the
users, seeking to ensure the best possible QoS.

Concerning the problem to be addresses in this work, the RL algorithm to be defined
considers the environment as the users’ disposal in the field and the agent as the airborne
network topology. Thus, the actions the agent will have in the environment will be reflected
in changes in the QoS provided to the users. Likewise, the state, that will be passed
from the environment to the agent corresponds to the users’ disposal and the airborne
network topology facing the previous action and the reward/penalty reflects its impact in
the objective function, guiding the training process to the goal. In this way, the agent can
"learn from mistakes", learn from the action that was done before, moving forward to the
optimal solution and realizing how to deal with different scenarios.

However, DL appears as an extra tool that can be added to an RL algorithm, giving it
the ability to extract deeper features from the networks that can help it learn faster and
somehow smarter [7]. In this case, deeper features from the environment that can help it to
learn some habits about the users and which, statistically, can improve the choices made
by the algorithm, hence, increasing the average QoS. Therefore, DRL seems to be the best
technique to seek an optimal solution for the formulated problem.

While the methods presented in Chapter 4 correspond, mostly, to approaches that
return an optimal policy and, consequently, exact solutions, the methods introduced in
Chapter 5 correspond to approximate solution methods that can be applied effectively
to more complex and larger problems (bigger set of state and action spaces). The first
ones are fundamental core learning algorithms that are used to build these approximate
solution methods. The environment defined in this use case is characterized as a dynamic
and real-time scenario, which brings up the need to use a vast set of state and action
spaces.

There are three main approaches to solve an RL algorithm as shown in Figure 6.1. This
figure explains that given a loop (+) where a state s, action a and reward r are passed as
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input of, either a model learner, a value update or a policy search method, the algorithm
will finally get a policyπ. Value-based methods, known as model-free algorithms (Section
4.3), only derive the optimal policies after optimizing value functions, while policy-based
methods directly optimize the objective function. It is natural to expect that policy-
based methods are more useful in continuous space, since there is an infinite number of
actions and/or states to estimate the state-action value in a continuous space rather than
in a discrete space. Therefore, value-based approaches are computationally much more
expensive and have a slower convergence.

As shown in Figure 6.1 policy-based methods describe a higher level of direct learning,
which can be easily represented as faster convergence, and a lower supervised component,
that refers to its independence of the model. Therefore, these methods are inferred to be
more appropriate for real-time learning problems and dynamic scenarios with a low level
of model knowledge.

Figure 6.1: Reinforcement Learning main methods [8]

Chapter 5 explained with more detail how policy gradient methods - a class of policy-
based method - work, and which are the most important and useful algorithms that use
these methods.

6.3 Algorithm Planning

Following the constraints of Section 6.1, the main approach should be policy optimization,
namely, policy gradient methods as explored in Chapter 5.

REINFORCE is a Monte Carlo Policy Gradient that uses likelihood ratio method by
sampling returns from interactions with the model-free environment. It can use a baseline
value from the return Gt to reduce the variance of gradient estimation while keeping the
bias unchanged: A(s,a) = Q(s,a)−V(s) [4].
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Although REINFORCE methods learn both a policy and a state-value function, it
is not considered an actor-critic method because its state-value function is not used for
bootstrapping, so it is not a critic. The bias introduced by bootstrapping is often beneficial,
since it reduces variance and accelerates learning. Even using the previously mentioned
and unbiased baseline, it converge asymptotically and slowly to a local minimum, like all
Monte Carlo methods, due to the calculation of estimates with high variance. Thus, this
method is unhandy to use in continuing and online problems, like this one [6]. Therefore,
the starting point in this algorithm planning is the actor-critic method.

As referred in [4], actor-critic architecture is a common approach in the context of
collaborative multi-agent systems. It is implemented with a centralized critic during
learning and a decentralized actor. Besides that and as already affirmed in Section 6.2,
“deep RL have a large potential for many real-world tasks that require multiple agents
to cooperate in domains such as robotics, self-driving cars, etc.” [4]. [4] refers that, in
DRL, both actor and critic can be represented by non-linear neural network function
approximators.

According to the previous affirmations and the content presented in Section 5.2.3,
DDPG seems to be the next right step in the algorithm planning, since it shows very good
results using an actor-critic architecture that matches most of the conclusions announced
in Section 6.1.

[58] presents the MADDPG algorithm, which satisfies the last missing constraint,
a cooperative multi-agent system. Therefore, this will be the base algorithm to use for
solving the stated problem.

6.4 MADDPG Algorithm

This algorithm proposes a general-purpose multi-agent learning algorithm which (1) leads
to learned, at execution time, policies that only use local information, like from their own
observations (POMDP), (2) does not assume a differentiable model of the environment
dynamics or any particular structure on the communication method between agents
(model-free), and (3) is applicable to both cooperative and competitive interactions, or
mixed interactions involving physical and communicative behaviour.

In the viewpoint of an agent, the environment is non-stationary regarding the quick
updates of the other agents’ policies, which makes them unknown for it. MADDPG
appears as an actor-critic model redesigned particularly for handling such a dynamic
environment and interactions between agents. It assumes a centralized training with
decentralized execution, which permits to ease training given the usage of extra informa-
tion by the policies, as long as that information is not used at test time. To do so it was
proposed a simple extension of actor-critic policy gradient methods where the actor only
has access to the local information, whereas the critic is augmented with extra information
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about the policies of the other agents. After the training is concluded, the execution phase
only uses the local actors acting in a decentralized manner.

Since the centralized critic function uses the decision-making policies of the other
agents, this paper shows that the agents can learn approximate models of other agents
online, using them in their own policy learning process, effectively.

It was also introduced a method that uses an ensemble of policies at the agents’ training
procedure in order to improve the stability of multi-agent policies. However, this requires
a robust interaction between the multiple collaborator and competitor policies.

6.5 Proposed Cooperative Mesh MADDPG Algorithm

The scenario used in this algorithm is build from a gym environment [67] composed by
users and UAVs carrying a Wi-Fi AP. The actions imposed by the policy are processed in a
discrete domain as mentioned in Section 6.1. However, their output describes the flawless
movement of the UAVs according to a continuous trajectory followed by the proportional
forces calculated with the action taken and the correspondent acceleration. In addition,
and in contrast to the MADDPG algorithm, the users execute random movements in a
continuous task. However, it is used an episode task approach after some steps in order
to increase the world dynamics with a completely new positioning of the users and the
agents. Therefore, after each episode it is calculated and stored the cumulative average
reward and it is made a reset to the environment, until the predefined number of steps
are complete. In short, there are three main predefined values that manages the steps of
this algorithm:

• episode_length: correspond to the estimate number of moves that the agent needs to
do to stabilize near a so-far optimal position;

• total_episodes: corresponds to the total number of episodes defined for the training
process;

• batch_size: corresponds to the number of collected experiences for episode randomly
taken from the replay buffer, B, and which defines the size of the mini-batch samples
S.

The agent follows a specific trainer with the following characteristics:

• two distinct Multi-Layer Perceptron (MLP) model: one for the actor and other for
the critic updates (deeply explained at Section 6.5.2),

• an Adam optimizer used in both models to minimize the loss function w.r.t. vari-
ables in Q and policy functions [68],
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• and a replay buffer, B, to save the observations, actions, rewards and new ob-
servations. The experience replay buffer is used when the following conditional
statement is fulfilled:

|B| ≥ batch_size · episode_length (6.1)

Considering the MADDPG, the proposed algorithm follows a multi-agent POMDP
system, where:

• N deterministic and continuous policies are used as µθi = µi
1 w.r.t. parameters θi,

which will suffer softly updated according to the following equation:

θ′i ← τθi + (1−τ)θ′i (6.2)

• Qµ
i (X,A) is a centralized action-value function that takes as input the N actions from

the N agents, A = (ai, . . . ,aN), in addition to some state information X, which consist
of the observations of all agents, X = (w1, . . . ,wN);

• the experience replay buffer B contains the tuples (X,A,R,X′), caching experiences
of all agents, where given a current observation X, agents take actions A, and get
rewards R = (r1, . . . ,rN), leading to a new observation X′.

• the gradient is written as:

∇θi J ≈
1
S

∑
j

∇θiµi(w
j
i )∇aiQµi(X

j, A j
| ai = µi(w

j
i )) (6.3)

where the tuples (X j, A j, R j, X′ j,θ j, w j) belongs to the sample, S, randomly taken
from the replay buffer, B.

• the centralized action-value function is updated with regard to the following loss
function:

L(θi) =
1
S

∑
j

(y j
−Qµi(X

j, A j))2 ,

y j = R j
i +γQµ′i

(X′ j, A′ j | a′k = µ′k(w j
k)) , k ∈ [1,N]

(6.4)

where µ′θ j
= {µθ′1 , . . . ,µθ

′

N
} is the set of target policies with delayed parameters θ′i .

The loss function uses Mean Square Error as the evaluation metric for the regression
problem that DQN tries to solve when making new predictions from the last sample
of collected experiences taken from the replay buffer. This metric uses the square
of the error to calculate the loss function, which enables the effect of larger errors to
become more pronounced then smaller error, so the model can now focus more on
larger errors.

1To simplify the notation, from now on, it will only be considered µi in substitution of µθi
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Algorithm 3 - Cooperative Mesh MADDPG Algorithm

1: env← tceEnvironment()
2: for episode = 1 to total_episodes do
3: X← env.reset()
4: ε← random ε− greedy process for action exploration
5: for step = 1 to episode_length do
6: ai = µi

θ(wi) +ε . softly update
7: Execute A = (a1, . . . ,aN)
8: Update Reward Function according to algorithm 4 or 5
9: X′,R← env.step(A)

10: Collect experience storing (X, A, R, X′) in replay buffer B
11: X← X′

12: for agent i = 1 to N do
13: Take random mini-batch of S samples from B - (X j, A j, R j, X′ j,θ j, w j)
14: Calculate TD target: y j = R j

i +γQµ′i
(X′ j, A′ j | a′k = µ′k(w j

k)) , k ∈ [1,N]
15: Train Q value model
16: Update Critic minimizing loss function: L(θi) = 1

S
∑

j(y j
−Qµi(X

j, A j))2

17: Train policy model
18: Update Actor using the sampling policy gradient:

∇θi J ≈
1
S
∑

j∇θiµi(w
j
i )∇aiQµi(X

j, A j
| ai = µi(w

j
i ))

19: end for
20: Update target network parameters: θ′i ← τθi + (1−τ)θ′i
21: end for
22: end for

While the scenario defines the number of users, M, present in the environment, the
algorithm manages the number of agents, N, according to their (C)apacity, following the
equation:

N ≥
M

C · (1−ζ)
(6.5)

where ζ ∈R+ correspond to an hyperparameter that defined the percentage of redundant
channel occupancy avoiding the Wi-Fi AP saturation carried by the UAV.

The definition of the reward function appears as a vital part of the DRL algorithm,
since it drives the algorithm to the optimal solution according to the goal, which is increase
QoS. In addition, the learning process that is guided by this reward function should be
followed with two neural networks models, one to estimate the state-action value function
and other to achieve the new so-far optimal policy. These topics will be discussed in the
next sections.
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6.5.1 Reward Function

Reward function is a crucial topic with respect to the way that the RL algorithm should
follow in order to approach the optimal solution. This algorithm calculates the reward
function according to two different options, considering the users’ point of view associated
with the cooperative component of the agents or the agent’s connection base related to
its link state. It is important to emphasize that the reward function is dependent of the
agent, being the return value only associated to it.

In addition, the reward values of these approaches will be associated with the distance
between the agents and the users, due to its relation with QoS as will be explained in
Section 7.1. Therefore, the objective will be minimize the distance between each user and
the agents in order to maximize the QoS provided to the users.

The first approach relies on the calculation of the distance between each agent and the
user. Thus, the reward value decreases by the distance between the nearest agent and the
current user while all users are traversed, as stated in the following algorithm:

Algorithm 4 - Cooperative Reward Function

1: rew← 0 . reward value
2: for all u ∈Users do
3: for all a ∈Agents do
4: if isCollision(a, curr_a) then . curr_a is the current agent receiving this reward
5: rew← rew− collision_ f actor
6: end if
7: distances[N]←

√
u.pos2− a.pos2

8: end for
9: rew← rew−min(distances[N])

10: end for

The reward is the same for all agents (shared reward). It is calculated from the user’s
point of view and considering the shortest distance to the nearest agent as penalty, this is,
the accumulative sum of these distances is what the algorithm seeks to improve / reduce,
since this is considered a negative reward, i.e., the greater the distance’s absolute value
the worse.

It is further considered that for each collision between the agents the reward is decre-
mented by collision_ f actor units - isCollision(). This is one of the parameters that are
changed along the This is due to two main reasons: (1) avoiding collisions between the
UAVs assuming an equal and constant altitude (Z axis invariant) and (2) even considering
a variation in the Z axis, this prevents a waste of coverage by the overlap of each UAV.

The second algorithm was created to prevent specific cases were a small percentage of
the users, named group B, would be disposed far away from the platoon, named group A,
which was well covered by a certain number of UAVs, numbered as agents 1. Therefore,
in this case, the other number of UAVs, numbered as agents 2, would be able to join the
group B, but that does not happen since the previous algorithm used a shared reward,
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not mapping the users with the UAVs. According to the Algorithm 4, agents 2 would
be disposed between the two groups, proportionally to the crowd’s size and their center.
Figure 6.2 shows one example of this specific case with two agents trying to cover four
blocks of users.

Figure 6.2: Scenario obtained with Algorithm 4 where the agent 2 should cover the group
B considering that agent 1 is capable of covering group A by himself

Whereas the Figures 6.3 and 6.4 present the results of the usage of the two different
algorithms to this special case, the Figures 6.5 and 6.6 detail the essential distance calcu-
lations used in both algorithms, highlighting the ones that directly influence the reward
function (green/dashed arrows).

Figure 6.3: Result of Algorithm 4 Figure 6.4: Result of Algorithm 5

Figure 6.5: Metric used in Algorithm 4 Figure 6.6: Metric used in Algorithm 5

The second approach is a link state method that confines the agents’ association with
the nearest users according to a centralized prioritization of the agents and a cumulative
distribution function, which defines the number of users connected to the agent pursuant
to their distances. This algorithm combines the cooperative multi-agent characteristic to
increase the same goal in a competitive dispute for the users’ connection according to a
centralized order that enables the agent’s communication.
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Algorithm 5 - Link State Reward Function

1: rew← 0 . reward value
2: for all a ∈Agents do
3: if isCollision(a, curr_a) then . curr_a is the current agent receiving this reward
4: rew← rew− collision_ f actor
5: end if
6: for all u ∈Users do
7: distances[M]←

√
u.pos2− a.pos2

8: end for
9: agent_distances[N]← distances[M]

10: end for
11: Order agent_distances[N] according to the priority_metric (Equation 6.6)
12: conn← 0
13: for all agent_d ∈ agent_distances[N] do
14: conn← number of users already connected
15: if x is the last agent then . the last agent gets the remaining users (M− conn)
16: conn_users[N]← getConnectedUsers(agent_d, M− conn)
17: else
18: conn_users[N]← getConnectedUsers(agent_d)
19: end if
20: if agent_d is the current agent then
21: set i as the current index of users[N]
22: break
23: end if
24: end for
25: for all u ∈Users do
26: if u ∈ conn_users[i] then
27: rew← rew−

√
u.pos2− curr_a.pos2

28: end if
29: end for

The link state reward function algorithm (5) assumes that all the agents have the same
capacity and calculates the distances in line with the agent’s point of view, i.e., while
in the cooperative reward function algorithm (4) the distances were determined from the
current user to each agent (passing through all the users), here it is the opposite, the
distances are calculated from the current agent to each user (passing through all the
agents), requiring the communication between the agents. After these calculus, the list of
distances, agent_distances[M], is sorted according to the value given by the Equation 6.6
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creating a prioritizing list of agents.

priority_metric = K · 〈 agent_distances[M] 〉+ (1−K) ·σ (6.6)

where 〈 agent_distances〉 is the average of the elements of the list agent_distances and K is
an hyperparameter with regard to the weight given to that average.

Equation 6.6 arises from the need to determine a way to define the priority of the
agents’ list, taking into account the distance of each agent to the users. However, it is
relevant to note the use of the standard deviation to avoid cases such as those shown in
figures 6.7 and 6.8, where a lower mean does not imply a greater number of users near
the agent.

Analyzing those figures it is easily recognized that even with two users contributing
for a low average, the blue/dashed agent should not be the first to choose with which users
it will connect, since the other agent have a more consistent distance with the majority
of the users, which makes it position almost optimal at an initial state. Therefore, it
is required the definition of a trade-off between these two math options, average and
standard deviation. This is in charge of the hyperparameter K.

Figure 6.7: Example about agents’ pri-
oritization

Figure 6.8: Distances calculation in
this special case

This priority relies on the possibility to choose first which users they must be associated
with, being those users out of the next agent’s choices until no more users left. The number
of users associated with each agent is defined through a cumulative distribution function
build from the agents’ array of distances to each user, getConnectedUsers(), following the
Equation 6.7:

F(x) =

∫ b

a
f (x)dx (6.7)

where F(x) is the probability of a ≤ x ≤ b and f (x) represents the probability density
function:

f (x) = exp(−x), ∀x ≥ 0 (6.8)

where x corresponds to the distance between the current agent and the user. Figure 6.9
shows both these functions considering an example where the input data (x) seems to
have a higher frequency in lower values.
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This distribution adds a stochastic property to the choice of the users connected to each
agent, removing an error propagation. The level of confidence on which users should
be connected to the agent decreases as the number of minimums returned from the list
of distances increases, hence, this distribution is build according to this list, being the
connection probability related to the calculated distance.

Figure 6.9: Cumulative Distribution Function (cdf) and Probability Density Function (pdf)
used to define the number users to be connected to a specific agent, according to their
distances

The random exponential number, calculated regarding this probability, defines the
agent’s maximum reach. Thus, all the users that confine a distance to the agent lower
than this value will connect to it. In order to avoid the case in which the return of the
cumulative distribution function would be a number lower than the minimum distance
present in the array, leading to the waste of an agent’s coverage, it is introduced an offset,
precisely that minimum distance, ensuring that at least the nearest user to the agent
connects to it.

Furthermore, it is fundamental to verify if the number of users to be connected exceed
the already mentioned percentage of agent’s capacity, given by C · (1− ζ). A positive
answer makes the algorithm increase the scale parameter of the next agent’s cumulative
distribution function, which is a special sort of numerical parameter of a parametric family
of probability distributions. Hence, the larger the scale parameter, the more spread out
the distribution, as shown in Figure 6.10.
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Figure 6.10: Impact of the scale in the slope of the cdf graphic

The increment in this scale attribute of the function consists in reducing the slope of the
line, thus increasing the probability of choosing larger distances, which in turn increases
the number of connections. This can be shown in the Figure 6.10. The value of this
increment is defined by a hyperparameter, ξ, and the number of agents, N, as represented
in Equation 6.9.

∆β =
ξ
N

(6.9)

Having the knowledge of which users are connected to the current agent, the next step
is to calculate the new optimal position where the agent should be, using a method similar
to the cooperative reward function algorithm (4). The reward value will decrease with the
distance between the current agent and the connected users. Therefore, the algorithm will
try to find the optimal position of the agent where that distance is minimized, decreasing
the absolute reward value.

Note that as the agents move this calculation gets new and different results, which
makes the new so-far optimal position of the agent change throughout each iteration, pro-
viding “confusing” and incoherent indications to each agent. Therefore, it is introduced
a connection update which will happen according to a percentage of the episode_length
in order to update of the connected users and, consequently, the so-far optimal position.
This percentage will be proportional to the acceleration of users’ movements, i.e., if they
move faster more changes to the environment occur at each time step, so the updates will
need to be more frequent.
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6.5.2 Neural Networks

Neural networks are introduced to this algorithm given the need to calculate the state-
action value function used to find the so-far optimal policy, in order to determine the best
action to be taken by a specific agent.

MLP is one of the basic building blocks of artificial neural networks. It is a feed-
forward structure commonly used in back propagation algorithms to increase the test
accuracy [69] [70] as needed when the goal is to recursively determine the state-value
function and achieve the optimal policy. Before diving into a deep explanation of this
kind of models, it is necessary to clarify the perceptron concept. In general terms, it
is a linear function, which given an input x, will produce an output based on some
internal parameters. Thus, mathematically, a perceptron is an implementation of the
linear function given by:

f (x) = w ·x + b (6.10)

where w corresponds to the weight and b to the bias. However, unlike regular functions,
a perceptron can learn the optimal values for w and b, which is made by minimizing the
average output error for a set of right example pairs (x, f (x)).

When talking about an MLP, as the name suggests, this concept is extended to a
multi-layer network, that is build from single perceptrons (neuron) organized in layers.
Accordingly, assuming N as the size of the input layer and M the size of the first hidden
layers, W = {{w11, . . . ,w1n}, . . . , {wm1, . . . ,wmn}} is a matrix m×n and b = {b1, . . . ,bm} is a vector
of size m:

f (x) = W ·x + b =


w11 ·x11 + w12 ·x12 + ...+ w1n ·x1n + b1

...

wm1 ·xm1 + wm2 ·xm2 + ...+ wmn ·xmn + bm

 (6.11)

The weights and bias parameters are updated over each iteration during back propa-
gation in agreement with the type of optimizer used to produce slightly better and faster
results. An optimization algorithm aims to maximize/minimize a specific objective func-
tion, in this case, that function is referred as the loss function expressed in Equation 6.4, so
the goal is to minimize it. As mentioned above, this algorithm uses the Adam optimizer
due to its attractive benefits on non-convex optimization problems described in [68]:

• straightforward to implement;

• computationally efficient;

• little memory requirements;

• invariant to diagonal rescaling of the gradients;

• well suited for problems that are large in terms of data and/or parameters;

• appropriate for non-stationary objectives;
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• appropriate for problems with very noisy/or sparse gradients;

• hyper-parameters have intuitive interpretation and typically require little tuning.

One of the configuration parameters defined in this optimization algorithm is the learning
rate.

Having several layers for a perceptron enables the approximation to non-linear func-
tions. However, simply adding new layers leads to the creation of new linear functions.
Therefore, the activation functions are used, which introduce the desired non-linearity
to the system. Examples of some of the most used activation functions are tanh, sigmoid,
Rectified Linear Unit (ReLU) and Leaky ReLU.

Both tanh and sigmoid are sigmoidal functions (have a ’s’ shape), but the first one has
a more extensive output, from -1 to 1, while the second maps the input values to output
values between 0 and 1. The advantage of tanh is that the negative inputs will be mapped
to even more negative output values.

Figure 6.11: Comparison between tanh and sigmoid functions [9]

While sigmoid is a very common used differentiable and monotonic activation function,
ReLU appears as a faster learner and a common approach nowadays, since it simply
implements a max operation between 0 and x.
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Figure 6.12: Comparison between sigmoid and ReLU functions [9]

Besides that, ReLU emerges as a solution for the vanishing gradient problem, where
the problem is that in some cases, the gradient will be vanishingly small, effectively
preventing the weight from changing its value. Considering the worst case, this may
completely stop the neural network from further training. As presented in Figure 6.13,
ReLU shows a linear derivative that prevents these cases from happening, while the
other methods have an increasingly smaller slope as their value is mapped to extreme
values. Traditional activation functions such as the sigmoid functions have gradients
between 0 and 1, and backpropagation computes gradients by the chain rule. This results
in multiplying n of these small numbers to compute gradients of the first layers in an
n-layer network, meaning that the gradient (error signal) decays exponentially with n
while the front layers train very slowly.

Figure 6.13: Derivative of Some Activation Functions [9]
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The Leaky and Parametric ReLU approach is similar to the ReLU, but instead of
mapping the negative values to zero, it have a small negative slope (defined as α = 0.01
by default) as presented in Figure 6.14 and defined in the following equation:

f (x) =

αx, if x < 0

x, if x ≥ 0
(6.12)

This prevents the fully connected layer from the “dying ReLU” problem: neurons can
sometimes be driven into states in which they become inactive for basically all inputs [71].
This problem affects the resulting graph by not mapping the negative values appropri-
ately. Therefore, Leaky ReLU reveals to be a good approach, fast and with a range of
[−∞, ∞]. When the α is a random number, it is called Randomized ReLU, but that is out
of the scope of this dissertation.

Exponential linear Units (ELUs) arrive as an enhancement of ReLU, being similar to
Leaky ReLUs but with an important difference: rather than using a linear component for
negative values, they use the exponential term, ex

− 1. The major effects are presented
in the range of the activation, that changed from [−∞, ∞] to [−1, ∞]. This spawns a
self-regularizing tendency of the networks to prefer values that are either positive or have
a small magnitude in what concerns the usage of this activation function [72].

Figure 6.14: Comparison between the different types of ReLU functions [10]
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The usage of an MLP neural network aims to extract important features of the network
in order to get a more accurate output probability, customized for the network and
appropriate for the ultimate goal, resulting in an approximation of the optimal point as
the training phase proceeds.

Two different neural networks were used in this algorithm implementation: one to
get the state-action value function given the actions and observation information of the
environment (which will be named as Q value model), and another created to determine
the best action to be taken, considering the observations of a specific agent and relating
them to a probabilistic vector mapped to each one of the action space’s elements (which
will be named as policy model).

The size of the first neural networks considers the following parameters:

inputneurons = N · (4N + 2M) + N · |A|

outputneurons = 1
(6.13)

where the number 4 corresponds to the 4 coordinates that describe the agents movement -
(x, y) for the position and (x, y) for the velocity - and 2 corresponds to the users’ positioning,
(x, y).

Note that although the users are not static, their movements are completely random,
not conferring any additional information to the neural network. The single output neu-
ron corresponds to the state-action value function Qµθ(X,A), considering the deterministic
policy µθ made regarding the actual parameters θ and the already mentioned set of ob-
servations X and actions A. Remember that N is the number of agents, M is the number
of users and |A| is the size of the action space.

The size of the second neural networks follow the following parameters:

inputneurons = 4N + 2M

outputneurons = |A|
(6.14)

This MLP model returns a set of agent probabilities to take one of the actions defined by
the action space, according to the agent’s observations of the environment. The output
result of this model takes the probability of executing a specific action in the discrete
domain and makes a vector addition of the results to obtain the final action to be taken
considering a continuous space.

After some tests detailed in the next chapter, it was concluded that the MLP models
implemented in this algorithm should use a ELU as the activation function of the first
fully connected layer and a ReLU for the second one.

Since the output values of the policy model should appear as a probability, after
using the ReLU it is necessary to apply a Softmax function in the output values. This
corresponds to a normalized exponential function which “squashes” a K-dimensional
vector z with arbitrary real values to a K-dimensional vector σ(z) composed by real values
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between 0 and 1 that add up to 1, following the equation [71]:

σ(z)i =
ezi∑K

k=1 ezk
, i = 1,2, ...,K (6.15)

Both MLP models are build with two hidden layers, however each model has specific
settings. While the Q value model needs to have a bigger number of neurons in each
hidden layer (approximately twice the size according to equations 6.13 and 6.14 and since
it is only defined by powers of 2), the policy model demands the application of a softmax
function to their output values. These and other main characteristics of both models are
presented in the figures 6.15 and 6.16.

Figure 6.15: Multi-layer Perceptron Model for Q Value updates
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Figure 6.16: Multi-layer Perceptron Model for Policy updates

6.6 Tools Used

Due to the numerous and recent investigations related to this area, there is a great range
of tools that can be used to create a RL algorithm. However, Tensorflow and OpenAI
Gym were the main used tool to train the algorithm.

Tensorflow is a well-known open-source framework created by Google for many
programming languages. It has more features than Keras, being not so easy to use, but
presenting more flexibility and control of the network.

Open AI Gym is one of the most popular environments for developing and comparing
reinforcement learning models. Besides that, it is compatible with high computational
frameworks like TensorFlow.

Besides these tools, Anaconda was also used. It is an open-source distribution of
Python that includes Spyder, a powerful scientific environment for Python which was
very useful for data visualization, exploration, debugging and interactive execution.
Moreover, Spyder proffers built-in integration with several popular scientific packages,
including SciPy, NumPy, Pandas, Matplotlib, IPython, QtConsole, SymPy, and more.
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Chapter 7

Results

This chapter starts with the explanation of some network concepts and their relations
in order to map the results obtained and presented in the successive sections with the
QoS parameters used to evaluate the flying network. It is demonstrated that those QoS
parameters, namely the throughput, decrease with increasing distance, allowing the use
of the distance as criterion for the manipulation of the reward function.

7.1 Relation between Reward Function and QoS

The deployment of the Cooperative Mesh MADDPG algorithm in a TMFN architecture
should take into consideration the relation of its reward function and the wireless tech-
nologies used nowadays.

It will be considered the recent IEEE 802.11ax, also known as Wi-Fi 6, which has
brought numerous improvements over the previously and very commonly used nowa-
days IEEE 802.11ac. Besides the use of Orthogonal Frequency-Division Multiple Access
(OFDMA) uplink and downlink and the modulation reaching the 1024-QAM, another
technical improvement was the extension of the guard intervals duration that allow for
better protection against signal delay spread, which is common in outdoor environments,
as a TCE. Besides that, with this specification of IEEE 802.11 it is now available the
Multi-User Multiple Input Multiple Output (MU-MIMO) in both downlink and uplink
direction. This technology confers directional beams to multiple simultaneous users as
shown in Figure 7.2 instead of what is present in Figure 7.1.

The Friis transmission equation describes how the received Power, Pr, changes with
distance, d:

Pr(d) =
PtGt

4πd2
Grλ2

4π
= GtGr

(
λ

4πd

)2
Pt [W] (7.1)

where Gt and Gr are the gain of the transmitter and receiver antenna respectively, and λ
is the wavelength associated to the aperture (area) of receiving antenna.
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Figure 7.1: Single-User MIMO where Wi-Fi connects to one device at a time

Considering that the UAVs will be at a considerable altitude in a free space and that
Line-Of-Sight (LOS) can be assumed when considering a flying network architecture, the
propagation model can be represented as a Free Space Path Loss model.

Assuming the presence of an Additive White Gaussian Noise (AWGN) the capacity
of a wireless channel is given by the Shannon theorem:

C = B · log2(1 +γ) [bit/s] (7.2)

where B is the bandwidth and γ is the SNIR, which can be expressed as:

γ = SNIR =
Pr

N0B +
∑I

i=1 Pri

(7.3)

being N0 the noise power spectral density and
∑I

i=1 Pri the power received from interfering
nodes.

Assuming that each Wi-Fi AP carried by the UAV is configurable with four spatial
streams in a 16-QAM modulation with a coding rate of 3/4, the bit rate given by each
directional beam will be dependent on the channel’s frequency and the guard intervals
duration, which will be defined as 20MHz and 1600ns, respectively. Therefore, and
considering the standard definitions of IEEE 802.11ax, the data rate of each AP will be of
approximately 50Mb/s.

Since the goal of this problem solution is to maximize the QoS, it is necessary to assure
that the consideration of the distance between the users and the agents is in agreement
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Figure 7.2: Multi-User MIMO to improve capacity where Wi-Fi connects to multiple
devices once, at the same speed

with the Key Quality Indicators or QoS parameters. The three most important parameters
that design the QoS evaluation are the packet delay, packet loss ratio and throughput.

All these three topics are interconnected and related to the capacity, C, since it is the
tight upper bound on the rate at which information can be reliably transmitted over a
communication channel. So, mixing up all the previous equations (7.1, 7.2 and 7.3) and
discarding the interferences:

C = B · log2

1 +
GtGr

(
λ

4πd

)2
Pt

N0B

 ⇔

⇔ C = B · log2

1 +
GtGr

λ2

16π2d2 Pt

N0B

 ⇔

⇔ C = B · log2

(
1 +

GtGrλ2Pt

16π2d2N0B

)
(7.4)

According to Equation 7.4 and assuming that B, Gt, Gr, Pt and N0 are non-negative
constants and that log2 is a monotonically increasing function, if the value returned by the
fraction inside log2 increases, C increases as well. This fraction is inversely proportional
to the square of the distance, hence, the capacity will rapidly decrease with increasing
distance. �

Figure 7.3 proves the previous considerations according to the following parameters:

• Specification of IEEE 802.11: ax

• Modulation and Coding Scheme (MCS) index: 4

• Modulation: 16-QAM

• Coding Rate: 3/4
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• Bandwidth: 20 MHz

• Guard Intervals Duration: 1600 ns

• Data Rate: 50 Mbit/s

• RX antenna gain: Gr = 3 dBi

• TX antenna gain: Gt = 3 dBi

• Noise Power Spectral Density: N0dBm = −174 dBm/Hz

• Noise Figures: NF = 0

• Power Received from Interfering Nodes:
∑I

i=1 Pri = 0

• Packet Size: MTU = 1000 bits

• Power Transmitted: Pt = 20 dbm

Figure 7.3: Channel Capacity

7.2 Test Cases

Considering the problem stated in Section 1.3 and the absence of an ML algorithm to
manage the UAV topology according to the users disposal in the TCE, the main solutions
pass through an a priori determination of a fixed point to place the UAVs, which is assumed
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as the strategic point given by the geometrical center of the environment, or the control
of their positioning manually, an approach that will not be considered since the goal is to
automatically find the optimal solution, i.e., nowadays it is desired to reduce the real-time
human intervention to solve optimization problems.

Therefore, in order to evaluate the Cooperative Mesh MADDPG algorithm, it is de-
fined a baseline approach to solve this problem, which is described by the fixed and
geometrical positioning of the UAVs as shown in the Figure 7.4.

Figure 7.4: Example of the baseline positioning for one, two and four agents (UAVs)

Besides this baseline approach and, as discussed in Section 6.5.1, there are two more
approaches that aim to find the best UAV topology using an RL algorithm:

1) the cooperative reward function algorithm, which considers the minimum distance
between the user and each agent (4)

2) the link state reward function algorithm, which takes into account the overloaded
channel and the UAVs connections with the users (5)

In addition to these three approaches were defined two scenarios, all with an agent
capacity, C, of 4 users, following the Equation 6.5:

A) single-agent: 1 agent and 3 users

B) multi-agent: 2 agents and 5 users

Note that the baseline approach is not a DRL algorithm, hence it cannot be directly
compared to the other two approaches. The other two approaches differ in the reward
function calculation which is made with different algorithms (cooperative vs link state), but
both used to train the DRL algorithm. Each of these methods defines a way to calculate
their performance according to the users’ disposal versus the UAV positioning:

• baseline: sum of the distances between each user and the nearest agent - defined as
standard metric

• cooperative: standard metric plus the negative reward of -1 given when agents collide
during the training phase.

• link state: difference between the agent’s current position and the estimated optimal
position obtained by the average positioning of the connected users. This metric
also counts the agents collision penalization as the cooperative approach does it.
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This is the only way to know if the user can associate himself to the agent or if the
agent is “full”, which already points out its advantage facing the other approaches,
not leading the learning process to the overload of the APs.

Another metric is defined to correctly evaluate the QoS performance assuming the
relation between the reward function and the QoS detailed in Section 7.1. The ideal metric
consists of the sum of the distances between each agent and the connected users plus the
agents collision penalization. This metric is called ideal because it avoids considering the
sum of distances between users and agents who, despite being closer, may already be full
of capacity. Contrariwise, the standard metric does not take into account that cases where
the Wi-Fi AP carried by the UAV is overloaded and the user cannot be associated to the
nearest agent, i.e., it considers an unlimited agent capacity.

To evaluate these three approaches it is necessary to find the best way to compare
them. The performance of the baseline approach is estimated separately of the other two,
which run simultaneously as the training process proceeds. While the two algorithms
take into consideration the movable position of the UAVs as the DRL algorithm receives
its rewards, the baseline approach uses the fixed positions of the UAVs. All three methods
use the random users’ disposal on the field.

Therefore, since the baseline approach cannot know which users the other agents
connect with, unlike the other two algorithms, this method is evaluated using the standard
metric as mentioned above. The other two algorithms can be evaluated by any of the two
metrics, but the preference is to use the ideal metric.

Concluding, in the next section the three approaches will be evaluated using the
standard metric and, more accurately, the two algorithms will be evaluated using the
ideal metric. The impossibility of evaluating the quality of the baseline approach with
the ideal metric already demonstrates a restriction that gives advantage to the two other
approaches, this is, to the use of a DRL algorithm.

7.3 Algorithm Parameters

Before diving into the results exploration, it is necessary to indicate which are the values
defined for the multiple constants and hyperparameters. During the evaluation process,
where the following parameters were changed multiple times, the best-found combination
in agreement with both scenarios was:

• percentage of redundant channel occupancy avoiding AP saturation: ζ = 0.1

• learning rate for Adam optimizer: η = 0.01

• discount factor: γ = 0.95

• weight given to the average distance to users when prioritizing agents: K = 0.5
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• maximum total incremental value to the scale parameter distributed by all agents
to increase users connection probability: ξ = 0.1

• rate for updating the target network (θ): τ = 0.01

• agents collision penalty: collision_ f actor = 10

• percentage of the collision area relative to the dimensions of each agent: collision_area =

1.2

• number of episodes to optimize at the same time: batch_size = 512

Besides these parameters, the size of the training process was defined as:

• total number of episodes: total_episodes = 100000

• save rate of episodes: save_rate = 1000

• maximum size of each episode: episode_length = 50

• connection update according to the percentage of the episode_length: conn_rate = 0.4

Assuming that the number of units of the hidden layers should be at least bigger than
the size of the input layer in order to improve the feature extraction property of the neural
network, in Q value model it is calculated in line with:

num_units_q >N · (4N + 2M) + N · |A| (7.5)

which, as explained in Section 6.5.2, implies that the number of units of the hidden layer
for the policy model be:

num_units_p = 2log2(num_units_q)−1 (7.6)

For scenario A, where N = 1, M = 3 and |A| = 5:

num_units_q >N · (4N + 2M) + N · |A| ⇔

⇔ num_units_q > 1 · (4 ·1 + 2 ·3) + 1 ·5 ⇔

⇔ num_units_q > 15

(7.7)

it was concluded that:

num_units_q = 16 =⇒ num_units_p = 8 (7.8)
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For scenario B, where N = 2, M = 5 and |A| = 5:

num_units_q >N · (4N + 2M) + N · |A| ⇔

⇔ num_units_q > 2 · (4 ·2 + 2 ·5) + 2 ·5 ⇔

⇔ num_units_q > 46 =⇒ num_units_q = 64

(7.9)

it was concluded that:

num_units_q = 64 =⇒ num_units_p = 32 (7.10)

Note that the results presented in the next section will compare the three approaches
(baseline, cooperative and link state) in the two scenarios (A and B) using both the standard
and ideal metrics.
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7.4 Results Analysis

As mentioned in Section 6.5.2, the choice of the ELU and ReLU as the activation functions
for the two hidden layers of the MLP model respectively, is in agreement with the results
presented in Figure 7.5.

Figure 7.5: Rewards given by the standard metric, considering scenario B, the training
process with the link state reward function algorithm and different activation functions,
from an overview and zoom perspective, respectively

Combining these five conditions (three approaches and two scenarios) and assuming
the characteristics of the algorithms described in Section 6.5, the following figures presents
the final results:
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• Scenario A:

Figure 7.6: Rewards given by the standard metric, considering scenario A

Figure 7.7: Rewards given by the ideal metric, considering scenario A

By the analysis of Figure 7.6 both algorithms show similar results. It is important
to point out that the values presented in this figure are from two different training
processes, one trained with the cooperative reward function and another with the link
state reward function. Therefore, the curves shown in the graphic are not exactly the
same, depending on a random set of variables - initial positioning of agents and
user, plus users arbitrary movements. However, its similarity is sufficient for the
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results analysis and to conclude that both DRL approaches present better results
than the baseline.

In addition, this scenario is a special case since the great distinction between the
two algorithms is not present here. Link state reward function algorithm (5) appears
to solve the connection problem between the users and the agents, informing the
algorithm in which way the users are distributed by the agents throughout each
iteration in order to avoid situations of overload of the bandwidth of the Wi-Fi AP
carried by the UAV. Therefore, since this scenario assumes that the single-agent can
cover all users, it is expected that they have equal results according to both standard -
distance between each user and its nearest agent - and ideal metric - distance between
each user and its corresponding agent - as shown in Figure 7.7.

• Scenario B:

Figure 7.8 remarks for the improvements achieved with each of the algorithms
vis-à-vis the baseline approach. While the baseline is almost constant due to its
strategic positioning, the other two curves tend to stabilize up to the minimum
reward achieved. Note that the reward value can never be greater than 0, being this
minimum only achieved in a scenario with an equal number of users and agents.

Figure 7.8: Rewards given by the standard metric, considering scenario B

Figure 7.9 reveals that, taking into account the ideal metric, the results obtained when
training the DRL algorithm using link state reward function are better than the ones
presented using the cooperative reward function. This is easily explained since the link
state approach trains according to this metric, being more accurate when considering
important and real aspects of flying network architecture implementations, such as
the already mentioned access point overload.
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Figure 7.9: Rewards given by the ideal metric, considering scenario B

The results related to the cooperative approach can be analyzed through the Fig-
ure 7.10, while those concerning the link state approach are exhibited in Figure 7.11.

Figure 7.10: Rewards given by the metric used to train through the cooperative reward
function of algorithm 4 (standard metric), considering scenario B
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Figure 7.11: Rewards given by the metric used to train through the link state reward function
of algorithm 5, considering scenario B

The cooperative and competitive component of these algorithms (cooperative ap-
proach and link state approach, respectively) can be analyzed through Figures 7.10
and 7.11. The first figure shows a stepped graph regarding to the shared rewards
of the two agents, while in the second figure the reward are not shared, both agents
receive different rewards. Thus, the return value of the ideal metric estimated in the
link state reward function algorithm for each agent presents a frequent number of
peaks in the stabilization zone, keeping its average monotonic, which indicates the
cooperative work of the agents where both compete for the connection to users with
view to a lower system reward, changing its reward value in a quasi-complementary
way.

In addition, it is important to emphasize the impact of the experience replay in this
algorithm, showing that the results are indeed related to the batch_size as observable by
Figure 7.12. In this figure it is clear that the results improved after the optimization of the
previous batch size number of episodes.
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Figure 7.12: Results of a small training phase in scenario B, where the inflection points
match the optimization of the batch_size number (1 ·125≈ 128 (left) and 4 ·125≈ 512 (right))
of the previous episodes

Furthermore, the definition of the number of units used in the hidden layers is related
to the starting point of the algorithm reward values as shown in Figure 7.13, which can
be inferred from the fact that, theoretically, more units indicate a deeper analysis of the
input data. However, the convergence is not very much affected by the number of units.
The number of units has been chosen taken into account the trade off between the amount
of time that an hidden layer with more units spends running the algorithm versus its not
very significant benefits, as mentioned in Section 7.3.

Figure 7.13: Rewards given by the standard metric, considering scenario A, a training
process of 10 000 episodes with the link state reward function algorithm and different
number of units, from an overview and zoom perspective, respectively
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Conclusion

The scope of this dissertation reveals to be extensive due to the lack of background in
Machine Learning and Deep Learning that this master degree presents. Therefore, there
was a need to explore several reinforcement learning techniques, both in their theoretical
and practical components. During this research, a survey was carried out, aiming to
bridge together the three main concepts of this work: reinforcement learning, solution
optimization, and flying networks.

The main focus of this dissertation was the exploration of Deep Reinforcement Learn-
ing techniques, namely DQN, until its limitations to single-agent systems. Due to that
premise, the policy gradient methods were introduced to answer the optimization prob-
lem of the airborne network topology management concerning a multi-agent POMDP
system. DPG appear as one useful method which combined with DQN put together the
two core pieces of the proposed Cooperative Mesh MADDPG algorithm.

The use case of this dissertation is defined according to a flying network architecture,
assuming a TCE as its environment and UAVs as the agents, with a viewpoint of an RL
algorithm. When managing multiple agents seeking the same goal, but acting isolated, the
cooperation aspect can be challenging. This was one of the major tasks while developing
the proposed UAV placement algorithm. Since the reward function has a crucial part in
the learning process - “teaching” the algorithm which way it should follow throughout
each iteration - its definition requires a complex algorithm able to solve that cooperation
aspect. From the three presented approaches, the link state reward function algorithm is
presented as the best solution to avoid an UAV overhead, pointing out to the optimal and
instantaneous airborne network topology.

Neural networks were also explored and used in this dissertation, by the inherent use
of an MADDPG algorithm as the baseline of the proposed algorithm. It was implemented
an MLP neural network and studied the best parameters to define it, such as the usage of
an Adam Optimizer and ELU and ReLU as the two successive activation functions of its
hidden layers.

95
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The results show that the objectives of this dissertation were successfully fulfilled,
referring to the scientific contribution of a DRL algorithm for flying networks.

Firstly, comparing the obtained results with the baseline approach, it was concluded
that the DRL proposed algorithm, which have two different implementation regarding the
definition of the reward function, showed remarkable improvements. These improve-
ments are, theoretically, even better when testing these approaches to more crowded
scenarios and with a wider distribution of the users in larger environments, being the
geometric points of the mesh design by the baseline approach more spaced and present-
ing worse results. In addition, the link state reward function algorithm demonstrates how
to bypass problems arisen from the implementation of multi-agent systems in network
environments, such as the overhead of UAVs, presenting a solution that faces algorithms
as Monte Carlo K-means.

Secondly, comparing the achieved results with the state of the art, this dissertation
introduced a new answer to the stated network problem composed of DRL and policy
gradient methods. The usage of GMM and WEM in a similar problem, as reported in
the state of the art, also presents very promising results, but it is not considered as a
deep reinforcement learning technique. While the solution proposed in this dissertation
considers completely random users’ distributions and movements in a continuous task
scenario, the other referred algorithm uses a cellular traffic distribution dataset to train the
model and evaluate the performance, making assumptions that restrict its implementation
to completely dynamic scenarios learned in real-time, not being able to precisely compare
the results of the two algorithms.

The mapping of the metric used in the reward function to the commonly used QoS
parameters (packet delay, packet delivery ratio and throughput), allows to theoretically
prove the applicability of this model in the networking field and the potential improve-
ments against the baseline.

The dimension of the scientific content involved in the creation of this algorithm
induces that the results can be further analyzed. Some of these potential improvements
are:

• further analysis of the parameters referred in Section 7.3 and exploration of the
potentiality of the algorithm increasing the number of test cases;

• simulate the proposed algorithm in ns-3 taking advantage of its integration with
Open AI Gym. This enables the usage of more realistic data and the QoS parameters
as directly inputs to shape the reward function.
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[25] Lucian Buşoniu, Robert Babuška, and Bart De Schutter. Multi-agent Reinforce-
ment Learning: An Overview. In Janusz Kacprzyk, Dipti Srinivasan, and
Lakhmi C. Jain, editors, Innovations in Multi-Agent Systems and Applications - 1,
volume 310, pages 183–221. Springer Berlin Heidelberg, Berlin, Heidelberg, 2010.
URL: http://link.springer.com/10.1007/978-3-642-14435-6_7, doi:10.1007/
978-3-642-14435-6_7.

[26] S. Hayat, E. Yanmaz, and C. Bettstetter. Experimental analysis of multipoint-to-
point UAV communications with IEEE 802.11n and 802.11ac. In 2015 IEEE 26th
Annual International Symposium on Personal, Indoor, and Mobile Radio Communications
(PIMRC), pages 1991–1996, August 2015. doi:10.1109/PIMRC.2015.7343625.

[27] Metaheuristic vs. deterministic global optimization algorithms: The univariate case
| Elsevier Enhanced Reader. doi:10.1016/j.amc.2017.05.014.

[28] D.G. Reina, H. Tawfik, and S.L. Toral. Multi-subpopulation evolutionary al-
gorithms for coverage deployment of UAV-networks. Ad Hoc Networks, 68:16–
32, January 2018. URL: https://linkinghub.elsevier.com/retrieve/pii/
S1570870517301713, doi:10.1016/j.adhoc.2017.09.005.

[29] Cameron B. Browne, Edward Powley, Daniel Whitehouse, Simon M. Lucas, Peter I.
Cowling, Philipp Rohlfshagen, Stephen Tavener, Diego Perez, Spyridon Samoth-
rakis, and Simon Colton. A Survey of Monte Carlo Tree Search Methods. IEEE
Transactions on Computational Intelligence and AI in Games, 4(1):1–43, March 2012.
URL: http://ieeexplore.ieee.org/document/6145622/, doi:10.1109/TCIAIG.
2012.2186810.

[30] Prateek Jain and Purushottam Kar. Non-convex Optimization for Machine Learn-
ing. Foundations and Trends® in Machine Learning, 10(3-4):142–336, 2017. arXiv:
1712.07897. URL: http://arxiv.org/abs/1712.07897, doi:10.1561/2200000058.

[31] Alessio Sancetta. Greedy algorithms for prediction. Bernoulli, 22(2):1227–1277, May
2016. arXiv: 1602.01951. URL: http://arxiv.org/abs/1602.01951, doi:10.3150/
14-BEJ691.

[32] Sebastian Ruder. An overview of gradient descent optimization algorithms.
arXiv:1609.04747 [cs], September 2016. arXiv: 1609.04747. URL: http://arxiv.
org/abs/1609.04747.

[33] O. G. Aliu, A. Imran, M. A. Imran, and B. Evans. A Survey of Self Organisation
in Future Cellular Networks. IEEE Communications Surveys Tutorials, 15(1):336–361,
2013. doi:10.1109/SURV.2012.021312.00116.

http://arxiv.org/abs/1710.03792
http://arxiv.org/abs/1710.03792
http://ieeexplore.ieee.org/document/4445757/
http://ieeexplore.ieee.org/document/4445757/
http://dx.doi.org/10.1109/TSMCC.2007.913919
http://link.springer.com/10.1007/978-3-642-14435-6_7
http://dx.doi.org/10.1007/978-3-642-14435-6_7
http://dx.doi.org/10.1007/978-3-642-14435-6_7
http://dx.doi.org/10.1109/PIMRC.2015.7343625
http://dx.doi.org/10.1016/j.amc.2017.05.014
https://linkinghub.elsevier.com/retrieve/pii/S1570870517301713
https://linkinghub.elsevier.com/retrieve/pii/S1570870517301713
http://dx.doi.org/10.1016/j.adhoc.2017.09.005
http://ieeexplore.ieee.org/document/6145622/
http://dx.doi.org/10.1109/TCIAIG.2012.2186810
http://dx.doi.org/10.1109/TCIAIG.2012.2186810
http://arxiv.org/abs/1712.07897
http://dx.doi.org/10.1561/2200000058
http://arxiv.org/abs/1602.01951
http://dx.doi.org/10.3150/14-BEJ691
http://dx.doi.org/10.3150/14-BEJ691
http://arxiv.org/abs/1609.04747
http://arxiv.org/abs/1609.04747
http://dx.doi.org/10.1109/SURV.2012.021312.00116


100 REFERENCES

[34] Yufei Ye, Xiaoqin Ren, Jin Wang, Lingxiao Xu, Wenxia Guo, Wenqiang Huang, and
Wenhong Tian. A New Approach for Resource Scheduling with Deep Reinforcement
Learning. page 5, 2018.

[35] Q. Mao, F. Hu, and Q. Hao. Deep Learning for Intelligent Wireless Networks: A
Comprehensive Survey. IEEE Communications Surveys Tutorials, 20(4):2595–2621,
2018. doi:10.1109/COMST.2018.2846401.

[36] Xiaming. City Cellular Traffic Map (C2tm). Contribute to caesar0301/city-cellular-
traffic-map development by creating an account on GitHub, October 2018.
original-date: 2014-10-09T10:47:21Z. URL: https://github.com/caesar0301/
city-cellular-traffic-map.

[37] nsnam. ns-3. URL: https://www.nsnam.org.

[38] Helder Fontes, Rui Campos, and Manuel Ricardo. A Trace-based ns-3 Simulation Ap-
proach for Perpetuating Real-World Experiments. In Proceedings of the Workshop on ns-
3 - 2017 WNS3, pages 118–124, Porto, Portugal, 2017. ACM Press. URL: http://dl.
acm.org/citation.cfm?doid=3067665.3067681, doi:10.1145/3067665.3067681.

[39] Helder Fontes, Rui Campos, and Manuel Ricardo. Improving the ns-3 TraceBased-
PropagationLossModel to support multiple access wireless scenarios. In Proceed-
ings of the 10th Workshop on ns-3 - WNS3 ’18, pages 77–83, Surathkal, India, 2018.
ACM Press. URL: http://dl.acm.org/citation.cfm?doid=3199902.3199912,
doi:10.1145/3199902.3199912.

[40] V. Sharma, M. Bennis, and R. Kumar. UAV-Assisted Heterogeneous Networks for
Capacity Enhancement. IEEE Communications Letters, 20(6):1207–1210, June 2016.
doi:10.1109/LCOMM.2016.2553103.

[41] A G Barto, P S Thomas, and R S Sutton. Some Recent Applications of Reinforcement
Learning. page 6, 2017. URL: https://people.cs.umass.edu/~pthomas/papers/
Barto2017.pdf.

[42] David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George
van den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam,
Marc Lanctot, Sander Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya
Sutskever, Timothy Lillicrap, Madeleine Leach, Koray Kavukcuoglu, Thore Graepel,
and Demis Hassabis. Mastering the game of Go with deep neural networks and tree
search. Nature, 529(7587):484–489, January 2016. URL: http://www.nature.com/
articles/nature16961, doi:10.1038/nature16961.

[43] Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized Ex-
perience Replay. arXiv:1511.05952 [cs], November 2015. arXiv: 1511.05952. URL:
http://arxiv.org/abs/1511.05952.

[44] Tao Wang, Michael Bowling, and Dale Schuurmans. Dual Representations for Dy-
namic Programming and Reinforcement Learning. In 2007 IEEE International Sym-
posium on Approximate Dynamic Programming and Reinforcement Learning, pages 44–
51, Honolulu, HI, USA, April 2007. IEEE. URL: http://ieeexplore.ieee.org/
document/4220813/, doi:10.1109/ADPRL.2007.368168.

http://dx.doi.org/10.1109/COMST.2018.2846401
https://github.com/caesar0301/city-cellular-traffic-map
https://github.com/caesar0301/city-cellular-traffic-map
https://www.nsnam.org
http://dl.acm.org/citation.cfm?doid=3067665.3067681
http://dl.acm.org/citation.cfm?doid=3067665.3067681
http://dx.doi.org/10.1145/3067665.3067681
http://dl.acm.org/citation.cfm?doid=3199902.3199912
http://dx.doi.org/10.1145/3199902.3199912
http://dx.doi.org/10.1109/LCOMM.2016.2553103
https://people.cs.umass.edu/~pthomas/papers/Barto2017.pdf
https://people.cs.umass.edu/~pthomas/papers/Barto2017.pdf
http://www.nature.com/articles/nature16961
http://www.nature.com/articles/nature16961
http://dx.doi.org/10.1038/nature16961
http://arxiv.org/abs/1511.05952
http://ieeexplore.ieee.org/document/4220813/
http://ieeexplore.ieee.org/document/4220813/
http://dx.doi.org/10.1109/ADPRL.2007.368168


REFERENCES 101

[45] Pieter Abbeel. Markov Decision Processes and Exact Solution Methods:. page 34. Ac-
cessed 2019. URL: https://people.eecs.berkeley.edu/~pabbeel/cs287-fa12/
slides/mdps-exact-methods.pdf.

[46] Michael L. Littman, Thomas L. Dean, and Leslie Pack Kaelbling. On the Complexity
of Solving Markov Decision Problems. arXiv:1302.4971 [cs], February 2013. arXiv:
1302.4971. URL: http://arxiv.org/abs/1302.4971.

[47] D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic progressions.
In Proceedings of the Nineteenth Annual ACM Symposium on Theory of Computing, STOC
’87, pages 1–6, New York, NY, USA, 1987. ACM. URL: http://doi.acm.org/10.
1145/28395.28396, doi:10.1145/28395.28396.

[48] Yuxi Li. Deep Reinforcement Learning. arXiv:1810.06339 [cs, stat], October 2018.
arXiv: 1810.06339. URL: http://arxiv.org/abs/1810.06339.

[49] Ronald J Williams. Simple statistical gradient-following algorithms for connectionist
reinforcement learning. page 28, 1992.

[50] Vijay R. Konda and John N. Tsitsiklis. On Actor-Critic Algorithms. SIAM Journal on
Control and Optimization, 42(4):1143–1166, January 2003. URL: http://epubs.siam.
org/doi/10.1137/S0363012901385691, doi:10.1137/S0363012901385691.

[51] David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin
Riedmiller. Deterministic Policy Gradient Algorithms. page 10, 2014.

[52] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez,
Yuval Tassa, David Silver, and Daan Wierstra. Continuous control with deep rein-
forcement learning. arXiv:1509.02971 [cs, stat], September 2015. arXiv: 1509.02971.
URL: http://arxiv.org/abs/1509.02971.

[53] John Schulman, Sergey Levine, Philipp Moritz, Michael I. Jordan, and Pieter Abbeel.
Trust Region Policy Optimization. arXiv:1502.05477 [cs], February 2015. arXiv:
1502.05477. URL: http://arxiv.org/abs/1502.05477.

[54] Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi Mirza, Alex Graves, Timo-
thy P. Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous
Methods for Deep Reinforcement Learning. arXiv:1602.01783 [cs], February 2016.
arXiv: 1602.01783. URL: http://arxiv.org/abs/1602.01783.

[55] Ziyu Wang, Victor Bapst, Nicolas Heess, Volodymyr Mnih, Remi Munos, Koray
Kavukcuoglu, and Nando de Freitas. Sample Efficient Actor-Critic with Experience
Replay. arXiv:1611.01224 [cs], November 2016. arXiv: 1611.01224. URL: http:
//arxiv.org/abs/1611.01224.

[56] Yuhuai Wu, Elman Mansimov, Shun Liao, Roger Grosse, and Jimmy Ba. Scal-
able trust-region method for deep reinforcement learning using Kronecker-factored
approximation. arXiv:1708.05144 [cs], August 2017. arXiv: 1708.05144. URL:
http://arxiv.org/abs/1708.05144.

[57] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
Proximal Policy Optimization Algorithms. arXiv:1707.06347 [cs], July 2017. arXiv:
1707.06347. URL: http://arxiv.org/abs/1707.06347.

https://people.eecs.berkeley.edu/~pabbeel/cs287-fa12/slides/mdps-exact-methods.pdf
https://people.eecs.berkeley.edu/~pabbeel/cs287-fa12/slides/mdps-exact-methods.pdf
http://arxiv.org/abs/1302.4971
http://doi.acm.org/10.1145/28395.28396
http://doi.acm.org/10.1145/28395.28396
http://dx.doi.org/10.1145/28395.28396
http://arxiv.org/abs/1810.06339
http://epubs.siam.org/doi/10.1137/S0363012901385691
http://epubs.siam.org/doi/10.1137/S0363012901385691
http://dx.doi.org/10.1137/S0363012901385691
http://arxiv.org/abs/1509.02971
http://arxiv.org/abs/1502.05477
http://arxiv.org/abs/1602.01783
http://arxiv.org/abs/1611.01224
http://arxiv.org/abs/1611.01224
http://arxiv.org/abs/1708.05144
http://arxiv.org/abs/1707.06347


102 REFERENCES

[58] Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, Pieter Abbeel, and Igor Mor-
datch. Multi-Agent Actor-Critic for Mixed Cooperative-Competitive Environments.
arXiv:1706.02275 [cs], June 2017. arXiv: 1706.02275. URL: http://arxiv.org/abs/
1706.02275.

[59] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft Actor-
Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic
Actor. arXiv:1801.01290 [cs, stat], January 2018. arXiv: 1801.01290. URL: http:
//arxiv.org/abs/1801.01290.

[60] Gabriel Barth-Maron, Matthew W Hoffman, David Budden, Will Dabney, Dan
Horgan, Dhruva Tb, Alistair Muldal, Nicolas Heess, and Timothy Lillicrap. DIS-
TRIBUTED DISTRIBUTIONAL DETERMINISTIC POLICY GRADIENTS. page 16,
2018.

[61] Scott Fujimoto, Herke van Hoof, and David Meger. Addressing Function Approx-
imation Error in Actor-Critic Methods. arXiv:1802.09477 [cs, stat], February 2018.
arXiv: 1802.09477. URL: http://arxiv.org/abs/1802.09477.

[62] Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Pol-
icy Gradient Methods for Reinforcement Learning with Function Approximation.
page 7, 2000.

[63] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness,
Marc G. Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg
Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, He-
len King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis Hassabis.
Human-level control through deep reinforcement learning. Nature, 518(7540):529–
533, February 2015. URL: http://www.nature.com/articles/nature14236, doi:
10.1038/nature14236.

[64] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing Atari with Deep Rein-
forcement Learning. page 9, 2013.

[65] J. Kim, B. Kim, J. Yoon, M. Lee, S. Jung, and J. y Choi. Robot Soccer Using Deep Q
Network. In 2018 International Conference on Platform Technology and Service (PlatCon),
pages 1–6, January 2018. doi:10.1109/PlatCon.2018.8472776.

[66] Martin Lauer and Martin Riedmiller. An Algorithm for Distributed Reinforcement
Learning in Cooperative Multi-Agent Systems. In In Proceedings of the Seventeenth
International Conference on Machine Learning, pages 535–542. Morgan Kaufmann, 2000.

[67] OpenAI. Gym: A toolkit for developing and comparing reinforcement learning
algorithms. URL: https://gym.openai.com.

[68] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization.
arXiv:1412.6980 [cs], December 2014. arXiv: 1412.6980. URL: http://arxiv.org/
abs/1412.6980.

[69] Kayri. Data Optimization with Multilayer Perceptron Neural Network and Using
New Pattern in Decision Tree Comparatively. Journal of Computer Science, 6(5):606–
612, May 2010. URL:http://www.thescipub.com/abstract/10.3844/jcssp.2010.
606.612, doi:10.3844/jcssp.2010.606.612.

http://arxiv.org/abs/1706.02275
http://arxiv.org/abs/1706.02275
http://arxiv.org/abs/1801.01290
http://arxiv.org/abs/1801.01290
http://arxiv.org/abs/1802.09477
http://www.nature.com/articles/nature14236
http://dx.doi.org/10.1038/nature14236
http://dx.doi.org/10.1038/nature14236
http://dx.doi.org/10.1109/PlatCon.2018.8472776
https://gym.openai.com
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://www.thescipub.com/abstract/10.3844/jcssp.2010.606.612
http://www.thescipub.com/abstract/10.3844/jcssp.2010.606.612
http://dx.doi.org/10.3844/jcssp.2010.606.612


REFERENCES 103
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