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Abstract

Point cloud classification has been shown to effectively classify points in 3D scans, and

can accelerate manual tasks like the removal of unwanted points from cultural heritage

scans. However, a classifier’s performance depends on which classifier and feature set

is used, and choosing these is difficult since previous approaches may not generalise to

new domains. Furthermore, when choosing training scans for campaign-based classifica-

tion, it is important to identify a descriptive set of scans that represent the rest of the

campaign. However, this task is increasingly onerous for large and diverse campaigns,

and randomly selecting scans does not guarantee a descriptive training set.

To address these challenges, a framework including three classifiers (Random Forest

(RF), Support Vector Machine (SVM) and Multi-Layer Perceptron (MLP)) and various

point features and feature selection methods was developed. The framework also includes

a proposed automatic representative scan selection method, which uses segmentation

and clustering to identify balanced, similar or distinct training scans. The framework

was evaluated on four labelled datasets, including two cultural heritage campaigns, to

compare the speed and accuracy of the implemented classifiers and feature sets, and to

determine if the proposed selection method identifies scans that yield a more accurate

classifier than random selection.

It was found that the RF, paired with a complete multi-scale feature set including

covariance, geometric and height-based features, consistently achieved the highest overall

accuracy on the four datasets. However, the other classifiers and reduced sets of selected

features achieved similar accuracy and, in some cases, greatly reduced training and

prediction times. It was also found that the proposed training scan selection method

can, on particularly diverse campaigns, yield a more accurate classifier than random

selection. However, for homogeneous campaigns where variations to the training set

have limited impact, the method is less applicable. Furthermore, it is dependent on

segmentation and clustering output, which require campaign-specific parameter tuning

and may be imprecise.
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Chapter 1

Introduction

Cultural heritage preservation involves protecting objects of cultural significance by

maintaining their original condition for as long as possible [124]. In 1972, the United

Nations Educational, Scientific and Cultural Organization (UNESECO) identified cul-

tural heritage preservation as a necessary means of transmitting cultural heritage to

future generations [122]. There are over 1070 UNESCO world heritage sites [6] and cul-

tural heritage preservation is a large field with applications including the preservation

of art, architecture and archaeology.

Figure 1.1: Photograph of Petra treasury (left), and 3D model generated from ter-
restrial laser scanning (right) [5].

Digital cultural heritage preservation uses various technologies to record and store ob-

jects. This way, a digital version of the object can be used for research, education or

restoration if the original object degrades or is destroyed. For example, the University

of Cape Town’s Zamani project [5] have used terrestrial laser scanning (TLS) to record
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over 50 cultural heritage sites in Africa and other continents. These recordings are

stored as point clouds (large collections of 3D points) which are later used to generate

high-resolution 3D models such as the Petra treasury shown in Figure 1.1.

Due to their size and varied contents, preparing point clouds for preservation requires a

large amount of time. For example, to retain historical accuracy, Zamani use point cloud

editing software to manually remove unwanted points (e.g. vegetation, wires, vehicles)

from their scans. Figure 1.2 shows a scan before and after it is cleaned of vegetation

points. This task is time-consuming as it may take 30 minutes or longer to clean a scan,

and campaigns can contain dozens or hundreds of scans.

Figure 1.2: A raw terrestrial laser scan before (left) and after (right) the manual
removal of vegetation points [107], with points coloured by signal intensity (green strong,

red weak).

To address this problem, recent works based on machine learning have proposed semi-

automatic methods for single scan cleaning [77] and incremental scan campaign clean-

ing [74], which reduce cleaning times to an extent. However, there is still a need for

methods that accurately and automatically draw semantic information from an entire

scan campaign’s points in a single step, which could further accelerate tasks like scan

cleaning.

This is only one example application. In addition to scan cleaning, machine learning

methods that accurately categorise points in large and diverse terrestrial laser scans can

help with tasks such as robotic navigation, urban planning and agricultural monitoring.

The area of research that these machine learning methods belong to, and the focus of

this thesis, is point cloud classification.
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1.1 Point Cloud Classification

Point cloud classification is a machine learning approach to automatically predicting the

class of points in point clouds. These predictions provide categorical information on

points which can be used for further analysis or processing. For example, the classifi-

cation of points in a street scan (Figure 1.3) can identify obstacles and be leveraged by

self-driving cars for navigation. Or, as previously discussed, a point classifier can help

scan cleaning operators identify and remove unwanted points faster by predicting points

in a scan as Keep or Discard.

Figure 1.3: Example of classified point cloud, adopted from [104]. Points are coloured
by their predicted class, as indicated by the legend.

A common approach to point cloud classification uses a supervised classifier, trained

on features extracted from labelled points in a subset of campaign scans chosen for

training. Once trained, the classifier can predict the class of points in the remaining,

unseen scans of the campaign. This is a campaign-based approach, where two subsets of

scans from the same site are used for training and prediction respectively. This approach

is advantageous for terrestrial scan campaigns, which typically contain structures or

objects unique to the site, as the classifier can learn from campaign-specific traits in the

training set before classifying unseen scans. Another approach involves training general

classifiers on external datasets. These classifiers, however, may not generalise well to

diverse terrestrial laser scans containing structures the classifier has not seen before.

In either case, the speed and accuracy of a point cloud classification system greatly

depend on which classifier and features are used, as well as the descriptiveness of the

training data. When performing campaign-based classification, it is therefore important

to choose a suitable classifier and feature set in addition to training scans that describe
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unseen campaign scans well. Due to the importance and difficulty (discussed later)

of these choices, this thesis investigates the use of various classifiers and feature sets

when used for terrestrial scan campaign classification, and proposes a method that

automatically selects representative training scans. More detail on these investigations

and their motivation is provided below.

1.2 Proposed Solution and Motivation

To address the above challenge, a framework comprising various classifiers, feature sets

and a new representative scan selection method was developed. Through the evaluation

of this framework, this thesis investigates the performance of Random Forests (RFs),

Support Vector Machines (SVMs) and Multi-Layer Perceptrons (MLPs) and a variety

of feature sets when classifying terrestrial laser scanning campaigns. The thesis also

determines if the proposed automatic scan selection method can select a representative

set of training scans that yield a higher classification accuracy than a randomly selected

training set. These investigations are motivated by:

1. There are many different classifiers and point features available for point cloud clas-

sification, the use of which can have a large effect on predictive speed and accuracy.

Choosing which of these to use is important, but identifying the best classifiers or

features based on their success in the literature is difficult due to differing implemen-

tations, datasets and evaluation methods. The first aim of this thesis is therefore to

to investigate the speed and accuracy of a selection of classifiers and point feature sets

when used to predict diverse points from large terrestrial laser scanning campaigns.

2. Choosing which scans to label for training is also important, as the classifier’s ac-

curacy depends on the quality of the training set. However, manually determining

the most suitable training scans is not straightforward, and inspecting scans is in-

creasingly onerous for larger datasets. Randomly selecting scans is fast, but does not

guarantee a representative training set. Furthermore, a preliminary survey of the lit-

erature did not reveal any existing methods that automatically select scans suitable

for training. The second aim of the thesis is therefore to propose an approach to

automatic, representative training scan selection and to determine if scans selected

by the method yield a more accurate classifier than random selections when used for

training.

This research could help users working with terrestrial laser scans, such as the Zamani

project, by identifying methods that automatically provide accurate point information
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and reduce the need for manual tasks like cultural heritage scan cleaning. If successful,

the proposed scan selection method could reduce data preparation times and improve

predictive accuracy by automating the task of training scan selection. Lastly, the direct

comparison of existing classifiers and features can inform other research in the area,

while the proposed scan selection method can form a basis for similar methods in the

future.

1.3 Research Questions

Based on the proposed solution and its motivation, two research questions are asked to

focus the research. These questions are:

1. Which of a selection of classifiers (Random Forest, Support Vector Machine or

Multi-Layer Perceptron), and a variety of point feature sets, achieves the fastest

speed and highest accuracy when classifying points from large and diverse terrestrial

laser scanning campaigns?

Different machine learning algorithms, such as Random Forests, Support Vector

Machines and Multi-Layer Perceptrons, have been used to classify point clouds

generated from various sources. These algorithms use sets of features extracted

from points for both training and prediction. It is likely that some classifiers

and feature sets perform better than others depending on the type of data, scene

and recording equipment used. This research question asks which of these three

classifiers and a variety of feature sets are the fastest and most accurate when

classifying, specifically, diverse point clouds generated from large terrestrial laser

scan campaigns.

2. How do we automatically select a representative set of scans from a scanning cam-

paign that, when used for training, yields a classifier with higher accuracy than a

classifier trained on a random selection of scans?

The accuracy of any classifier is dependent on the quality of its training data. For

scan campaign classification, it is therefore important that the scans chosen for

labelling and training describe the other scans in the campaign well. However,

identifying suitable scans is difficult and time-consuming, and randomly selecting

scans (although fast) leaves the accuracy of the classifier to chance. This question

asks how a method can automatically identify scans that, when trained on, yield

a classifier that is more accurate than one trained on randomly selected scans.
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1.4 Scope and Limitations

The focus of the thesis is on methods that contribute towards the training and clas-

sification of points in scans. Post-processing tasks that occur after classification, such

as spatial regularisation and scan cleaning, are out of scope. However, the presented

findings and framework are intended to improve the results of such tasks.

There are many classifiers and features that can be used for point classification. To

keep testing feasible, only a selection of these, based on a review of the literature, are

evaluated. For scan selection, the proposed automatic method is evaluated against

random selection to provide a preliminary understanding of the method’s performance.

Comparison to manual selection is out of scope due to time constraints as it would

involve lengthy user tests and teaching users how to identify representative scans. In

addition, selections made by users may still be effectively random on larger datasets.

However, comparison to manual selection could be explored in future work after the

proposed method’s performance is better understood and its design is refined.

Lastly, testing is limited to four datasets: two cultural heritage scan datasets with Keep

or Discard labels, and two other terrestrial laser scanning datasets with multiclass labels.

This allows the methods’ performance and robustness to be sufficiently evaluated within

a reasonable amount of time.

1.5 Overview of Thesis

The remainder of this thesis is separated into seven chapters. Chapter 2 introduces

background theory on point clouds, segmentation and machine learning as these form

the foundation of the framework developed to answer the research questions. Chapter 3

presents a high-level overview of the framework and a description of its three core com-

ponents: (1) point features and feature selection, (2) point classification and (3) scan

selection. The next three Chapters (4, 5 and 6) are dedicated to these components, each

including a literature review and a detailed description of their component’s implemen-

tation. Chapter 7 is split into two sections: experiments and results. The experiments

section describes how the components were tested, while the results section analyses the

results of the experiments in depth. Lastly, Chapter 8 concludes the thesis and discusses

future extensions and applications.





Chapter 2

Background

The previous chapter introduced the problem of 3D scan campaign classification and

identified the aims of the research. This chapter provides the background theory needed

to understand the proposed solution. This includes theory on point clouds, segmentation

and machine learning as these are core concepts behind the component’s of the frame-

work. Later chapters on point cloud classification, features and scan selection provide

more detail on the concepts introduced below.

2.1 Point Clouds

A point cloud is a set of points defined by a coordinate system. A 3D point cloud contains

points with three spatial coordinates (X, Y and Z), which describes their position in 3D

space. Depending on how the point cloud is created, the points may be appended with

colour or intensity information. An example of a raw point cloud with per point colour

is shown in Figure 2.1. Raw point clouds can be processed to generate 3D meshes and

models for further analysis or application.

When creating point clouds from real-world objects, a LiDAR (Light Detection And

Ranging) scanner is used. This technology was first used by meteorologists in the 1960s

to measure natural clouds [46]. LiDAR scanners are now used for both airborne laser

scanning (ALS) and terrestrial laser scanning (TLS), can be either stationary or mobile,

and have applications in multiple fields including geography, autonomous navigation,

seismology and geomatics [23].

7
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Figure 2.1: Example of a raw point cloud with colour values for each point, captured
with a LiDAR scanner. Adopted from Autodesk tutorial 1.

When scanning large areas, LiDAR scanners based on the time-of-flight principle [52] are

typically used as they can record points at long distances (up to 1 kilometer, depending

on the model). Using this principle, the scanner probes the subject with a laser light

and times the round-trip of each pulse of light. Given that the speed of light c is known,

the distance to the surface the laser probed may be calculated as c ∗ t/2 where t is the

round-trip time of the pulse. Since the scanner can only detect points in one direction

at a time, modern scanners use rotating mirrors to scan in different directions.

While time-of-flight LiDAR scanning is a popular method it has its strengths and weak-

nesses [15]. It can capture points over long distances, but its accuracy is lowered due to

the difficulty of calculating the round-trip time precisely. In addition, when the laser hits

the edge of an object the resulting point can be in the wrong place due to the averaging

of two different locations of one pulse, leading to a scattered point effect. Furthermore,

the density of the point cloud decreases as the distance to the scanned object increases.

Lastly, when scanning at higher resolutions (requiring minutes) any movement or change

in lighting can create distorted scans. High resolution scans can also detect dust and

other particles in the air.

1Autodesk point cloud tutorial available at Autodesk website.

http://docs.autodesk.com/3DSMAX/16/ENU/3ds-Max-Help/index.html?url=files/GUID-49CE0ACB-1345-4D50-B6E5-361DBFDB5B33.htm,topicNumber=d30e158270


9

2.1.1 Point Cloud Features

A feature is a piece of information that describes an object or a part of an object. They

can be extracted from and used to describe different types of data such as audio, sen-

tences, images and point clouds. Descriptive features enable tasks such as segmentation

and classification (discussed later in this chapter).

Figure 2.2: Example of a normal feature (blue arrow) describing a point’s local
neighbourhood (black circle), from [2].

Point cloud features describe either a point’s local neighbourhood or the global properties

of an entire point cloud. While global features are useful when describing isolated

regions and segmented objects as in [105], local features are more practical for point

clouds containing dispersed points that are not easily segmented, such as those generated

by terrestrial laser scanning. A simple example is the normal feature illustrated in

Figure 2.2 above, which describes the direction of the vector perpendicular to a point

neighbourhood’s surface. More features are discussed in detail in Chapter 4.

2.2 Segmentation

Segmentation is the process of partitioning data into multiple homogeneous groups that

share some property. It is a general concept used across multiple fields such as economics,

marketing and biology as well as for several computing tasks including computer vision,

natural language processing and network segmentation. In computer vision, segmenta-

tion involves partitioning sets of image pixels into super-pixels or sets of of voxels (such

as points in point clouds) into super-voxels.

The pixels or voxels in each region are similar with respect to some property or feature.

For example, pixels in the same region could have similar colour as shown in Figure 2.3.

After an image or point cloud is segmented, adjacent regions should be significantly

dissimilar with respect to these properties [116]. Due to this simplified and meaning-

ful representation, the segments can be more efficiently analysed [12] by tasks such as

classification.
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Figure 2.3: Image segmented into regions using pixel colour.

2.2.1 Point Cloud Segmentation

There are a variety of approaches to point cloud segmentation. The most commonly

used methods can be grouped into four categories: model-fitting, region-growing, graph-

based and feature-clustering. Similarly to image segmentation, the goal of point cloud

segmentation is to segment the point cloud into groups of similar points, as shown in

Figure 2.4. An explanation of these approaches and some usage examples is given next.

Figure 2.4: Example of segmented point cloud from [3], with colour denoting points
in the same segment.

Model-fitting methods

Model-fitting methods work by attempting to group points into geometric shapes such

as spheres, cylinders, planes and rectangles. If a set of points are found to share the

same mathematical representation of a given shape, they form a segment.

The best-performing model-fitting method, RANdom SAmple Consensus (RANSAC)

[37], has been used for tasks such as plane extraction [108] and polyhedral rooftop ex-

traction [19]. While model-fitting methods can be fast and accurate for small datasets

and simple shapes, they become slower and less accurate as the dataset and scene com-

plexity grows [79]. They are also sensitive to point cloud noise and low density.
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Region-growing methods

Region-growing methods involve combining neighbouring points with similar properties

which consequently divides dissimilar regions into segments. There are two types of

region-growing methods: seeded (bottom-up) and unseeded (top-down). Seeded meth-

ods start by forming regions around a selected number of seed points until a certain

criterion is met. Unseeded methods do the opposite by starting with one large region

containing all points and dividing it into smaller regions so long as a threshold is unsur-

passed.

Region-growing methods have been used to segment surfaces of large buildings [123],

recognise potential building features [94] and segment planar regions in sparse point

clouds [20]. While they perform well on certain datasets, seeded methods are limited due

to their sensitivity to seed point positioning and compatibility thresholds [79]. Unseeded

methods are also limited by their dependency on prior knowledge (e.g. how many regions

to split).

Feature-clustering methods

Feature-clustering methods form segments based on grouping extracted point features.

After calculating feature vectors from point neighbourhoods, a cluster analysis algorithm

such as k-means groups nearby points with similar feature descriptors.

Feature-clustering methods have been used to segment terrestrial laser scans [34] and

cluster laser data surfaces [36]. One feature-clustering method, Voxel Cloud Connectivity

Segmentation (VCCS) [85], uses geometric relationships between points in addition to

colour and spatial features to over-segment point clouds as seen in Figure 2.5. An over-

segmented point cloud is made up of regions where the points within a single region are

similar but points in adjacent regions are not necessarily dissimilar.

Figure 2.5: Original point cloud (left) and its over-segmentation (right) using the
VCCS algorithm, from [1].

Feature-clustering methods are more robust than region-growing methods [123]. How-

ever, they are limited by their dependence on high-quality features, and are computa-

tionally expensive when calculating multi-dimensional features in large datasets.



12

Graph-based methods

Graph-based segmentation methods operate by treating the point cloud as a graph. In

this graph, each vertex corresponds to a point in the cloud and the edges connect pairs

of adjacent points.

Notable graph-based methods such as Markov Random Fields (MRF) [26] and Condi-

tional Random Fields (CRF) [60] have been used to segment points in complex urban

scenes [109] and segment points with different geometric surfaces [106] respectively.

These methods can segment complex, noisy point clouds with uneven density. However,

they are of higher complexity and are usually slower than previously discussed methods.

2.3 Machine Learning

Machine learning algorithms improve at a given task by adapting to data rather than

following an explicit set of instructions. The core objective of a learning algorithm is to

generalise from experience [14], meaning to improve at a task on new, unseen data after

experiencing learning data.

Machine learning is most commonly used in areas where finding an optimal solution to a

problem through explicit programming is not obvious or is infeasible [110]. This includes

tasks such as speech recognition, spam filtering, fraud detection and several computer

vision tasks including object recognition, robotic navigation and medical imaging diag-

nosis.

There are two main categories that machine learning algorithms typically fall into; su-

pervised and unsupervised [75]. This distinction depends on whether the training data

is labelled or not. With supervised learning, the algorithm has access to both the input

data and their desired output labels. For example, in the case of image recognition the

algorithm would learn from a set of images and a label for each such as “indoor” or

“outdoor” before predicting the class of unseen images. This is an example of a binary

classification since there are only two possible labels - this is different from multiclass

classification where there are three or more possible labels. Unsupervised learning meth-

ods are not given output labels, they instead are used to recognise patterns in unlabelled

data. An example of this is feature learning where an algorithm discovers features needed

to describe samples, or cluster analysis where unlabelled samples are assigned to groups

according to some similarity metric.

In recent years, deep learning methods have made major advances in solving difficult

problems and have seen a significant increase in popularity. Deep-learning [65] methods

learn a representation of training data through multiple levels of transformation. Each
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level transforms the data into a higher and slightly more abstract level, obviating the

need for feature engineering as features are learned from training data directly. While

deep-learning methods have achieved state of the art results in many benchmarks, most

implementations require very large amounts of training data and computation time.

2.3.1 Point Cloud Classification

Point cloud classification typically uses supervised learning to predict the class of (clas-

sify) points in the cloud. Due to the increased availability of consumer depth cameras

like the Microsoft Kinect and advances in professional LiDAR equipment, point clouds

are a popular and effective way of recording 3D representations of real world scenes.

Following this, point cloud classification has become an active area of research and an

important task in computer vision. Various approaches with different machine learning

methods at their core have been proposed. While the performance of these methods

greatly depends on the problem’s context and the quality of the training data, certain

methods have been shown to perform better than others in most conditions leading to

a rise in their popularity.

The next three sections discuss three successful and popular machine learning models

used for point cloud classification: Support Vector Machines, Random Forests and Ar-

tificial Neural Networks. This provides the background theory necessary for the point

classification chapter.

2.3.2 Support Vector Machines

Support Vector Machines (SVMs) were originally limited to non-probabilistic binary

classification [22], and could therefore only distinguish between two classes. Several

extensions have been made to SVMs to enable multiclass classification.

SVMs treat training samples feature vectors as points in space that are mapped such that

samples from different classes are as far away from each other as possible. Specifically,

they use a kernel function to map each training sample’s feature vector into a higher-

dimensional space, and find hyper-planes that fit between the training samples, as shown

in Figure 2.6. The goal is to find the hyper-plane that maximises the margin between

the nearest feature vectors from each class (called support vectors). The support vectors

are the only vectors that affect the position of the hyper-plane, and therefore define the

decision function.

When the SVM receives a test sample, it maps it to the hyper-space and classifies it

based on which side of the max-margin hyper-plane it falls into.
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Figure 2.6: SVM hyper-planes H1 - H3 (blue, red and green lines) separating training
samples (circles). Hyper-plane H2 maximises the margin between the nearest samples

from each class.

Multiclass SVM classification approaches can be categorised as indirect or direct. The

indirect approach involves training multiple SVMs, either in a one-against-rest or one-

against-one manner [125]. When using a one-against-rest k-class classifier, k SVMs are

trained to separate each class from the all other classes and test sample prediction is

determined by which SVM gives the maximum output value. When using a one-against-

one k-class classifier, all possible k(k − 1)/2 pairwise SVMs are trained and prediction

is determined by which class receives the most votes. Direct or all-together methods

consider all classes at once, however their practical use is limited due to their high

computational complexity [125].

2.3.3 Random Forests

Before discussing random forests (RFs), it is necessary to describe their basis - decision

trees. A decision tree is a data structure consisting of leaves and branches where leaves

represent class labels, and branches represent the splitting of samples (based on consid-

ered features) that lead to a given class label [69]. Decision trees are trained recursively

starting at the top of the tree, called the root. The root node splits features into two

child nodes based on a metric such as the Gini index [45]. This is repeated until a

stopping condition such as the maximum depth of the tree is met, or if splitting further

would have no noticeable improvement.

To predict the class of an input feature vector, the vector is given to the root node. For

each non-leaf node, the procedure moves to the left or right child depending on the value

of the features whose indices are stored at the current node. This continues until a leaf
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node is reached and the input vector is classified as the class assigned to the leaf node

during training.

Figure 2.7: Illustration of RF prediction from [4], where an instance is classified by
the majority vote of an ensemble of n decision trees.

Random forests [17] are an ensemble method that combines multiple decision trees into

a more powerful predictor. They classify input vectors by giving each tree in the forest

the vector for classification and then bagging the resulting outputs to determine the

majority vote and the final output as shown in Figure 2.7.

When trees in the forest are trained, they are given the same parameters but use different

training sets. These training sets are randomly selected (with replacement) from the

original dataset and are the same size as the original dataset. The resulting datasets

can therefore contain some vectors more than once while other vectors may be absent.

To further randomise, when a node is split it only considers a random subset of the

training features. A different subset is used for all nodes, but they have the same size

which is typically set to the root of the number of variables. Due to this randomisation

and averaging of loosely correlated decision trees, RFs have lower variance than single

decision trees [41].

2.3.4 Artificial Neural Networks

Artificial neural networks (ANN), loosely inspired by the biological neural networks of

brains [54], are machine learning models formed by collections of connected nodes or

neurons. These artificial neurons can receive signals, process them and then generate

an output signal for connected neurons to use as input.
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A common ANN is the Multi-Layer Perceptron (MLP). An MLP consists of one input

layer, one output layer and one or more hidden layers. These layers contain one or more

neurons that are connected with the neurons in the previous and next layer. Figure 2.8

below illustrates a three layer MLP with three inputs, two outputs and a hidden layer

containing three neurons. In recent years, deep neural networks with many hidden layers

have been used to learn representations from training data, obviating traditional feature

extraction, and classify point clouds [96][63]. More information on these networks is

given in Section 5.1 of the classification chapter.

Figure 2.8: An MLP with three input neurons, two output neurons and a hidden
layer with three neurons.

Each neuron in the MLP has input and output links. The input links pass the neuron

the values from neurons in the previous layer to process and the output links pass the

neurons response to the neurons in the next layer. When a neuron receives a value from

the previous layer, they are weighted and summed up along with a bias term. This sum

is then transformed using an activation function f such as symmetrical sigmoid.

Given the outputs xj of the layer n, the outputs yi of the layer n+ 1 are computed as:

ui =
∑
j

(wn+1
i,j ∗ xj) + wn+1

i,bias (2.1)

yi = f(ui) (2.2)

To train the network, the input layer is first set to the same size as the number of

features in the training feature vector. For each training vector, the values of the vector

are taken as input and passed to the first hidden layer. Each neuron in the hidden layer

then computes their outputs using their stored weights and activation functions. The

outputs are passed to the next layer until the output layer is computed. This is done for

every training sample via backpropagation, where weights are iteratively adjusted with

every pass. Once completed, the network can predict the response of test samples by

the output given when passing the sample’s feature vector through the network.
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2.3.5 Cluster Analysis

Clustering is an machine learning approach where samples are assigned to groups (called

clusters) such that samples in the same group are more similar to each other than samples

in other clusters. Clustering is typically unsupervised i.e. does not require the samples

to be labelled. The metric used to define similar samples, and therefore the way that

clusters are formed, depends on the clustering algorithm. The most prominent clustering

methods are discussed below.

Centroid-based algorithms such as k-means [70] represent clusters as their most central

(mean) feature vector. They aim to find k clusters such that the squared distances of the

cluster members to their centroid is minimised. Figure 2.9 shows the clustering results

of a simple 2D dataset after applying k-means with k=3. There are variants of the

k-means algorithm including k-medoids [57] where centroids must belong to the dataset,

and fuzzy c-means [29] where points can belong to multiple clusters.

Figure 2.9: k-means clustering of 2D points into k=3 clusters denoted by red, green
and blue.

Other approaches include density-based, connectivity-based and distribution-based clus-

tering. Density-based methods, such as DBScan [32] and OPTICS [10], define clusters

as regions with a high density of points while points in low density areas (deemed noise)

are not assigned to a cluster. Connectivity-based methods form clusters of points that

are near each other and assumed to be similar. This is done repeatedly with varying

distance thresholds, resulting in a visualised hierarchy of cluster assignments for the user

to select from. Lastly, distribution-based clustering methods use statistical distributions

to cluster points. One example is Gaussian mixture models [100] where several random
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Gaussian distributions are initialised and samples are clustered by which distribution

they most likely belong to.

This chapter has introduced the theory needed to understand the design and implemen-

tation of the methods that form the scan campaign classification framework. The next

chapter provides a high-level description of the framework’s architecture and the role of

each component.





Chapter 3

Framework Design

This chapter provides a high-level overview of the scan campaign classification frame-

work’s design. The framework is composed of three core components: (1) Point Features

and Feature Selection, (2) Point Classification and (3) Representative Scan Selection.

First, the framework’s architecture is presented in Section 3.1 to illustrate the connection

of these components. Then, the role and elements of each component are described in

Sections 3.2 - 3.4. This overview provides context for later chapters where method choice

and implementation details are explained.

3.1 Architecture

The framework is designed to enable experiments that answer the research questions on

features, classifiers and scan selection. As discussed in the introductory chapter, these

questions are:

1. Which of a selection of classifiers (Random Forest, Support Vector Machine or

Multi-Layer Perceptron), and a variety of point feature sets, achieves the fastest

speed and highest accuracy when classifying points from large and diverse terrestrial

laser scanning campaigns?

2. How do we automatically select a representative set of scans from a scanning cam-

paign that, when used for training, yields a classifier with higher accuracy than a

classifier trained on a random selection of scans?

The framework is split into three core components containing the methods needed to

address these questions. Together, the components form a complete point cloud clas-

sification system that reads labelled point clouds and outputs the predicted classes of

19
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points in unseen test clouds. Through development and configuration of the framework,

different methods can be tested and evaluated to answer the research questions. The

diagrams in Figure 3.1 (Training Phase) and Figure 3.2 (Prediction Phase) illustrate the

component pipeline during training and prediction.

Figure 3.1: Component pipeline during training. Training starts with the Scan Campaign and
ends with a Trained Model. Test Scans are set aside for the prediction phase that follows. All

three components are used for training.

Figure 3.2: Component pipeline during prediction. Prediction starts with the Unseen Test
Scans and ends with a set of Classified Scans. Only two components are used for prediction as

scans are selected during the training phase.

The sections that follow explain the role of each component in the framework and give

a brief description of their methods. More detail on these methods is provided following

a review of the literature in each component’s chapter.
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3.2 Point Features and Feature Selection Component

The purpose of this component is to extract features from points in scans. These features

are later passed to the classification component where they are used for training or

prediction. The component also contains feature selection methods, which identify a

subset of the most useful (descriptive) features.

Feature Extraction

Point features describe properties of the points in a scan. The component extracts mul-

tiple features in order to capture enough information for a classifier to learn from. These

features describe the shape, size and other properties of a point’s local neighbourhood(s).

Features from point clouds re-sampled to different resolutions are also extracted.

Feature Selection

Two feature selection methods form this part of the component. They represent two

approaches to feature selection: classifier-dependent and classifier-independent. The

former utilises a classifier to determine feature importance, while the latter uses statistics

to rank features. A subset of the highest importance or top-ranking features form a

reduced feature set.

3.3 Point Classification Component

The classification component uses previously extracted point features paired with class

labels to train one of three classifiers. The classifier then predicts the class of unseen

scan points, and generates classified point clouds as well as speed and accuracy statistics.

Training

The component includes three classifiers for training. These are a random forest (RF),

Support Vector Machine (SVM) and Multi-Layer Perceptron (MLP). Although inter-

nally different, the classifiers accept the same training data (feature vectors and class

labels). From this data, the classifier learns a model which is stored for the prediction

phase.

Prediction

To predict the class of points in unseen scans, the points’ feature vectors are passed to the

previously trained classifier. After processing these vectors, the classifier’s predictions

are used to generate a classified point cloud with class colours. If ground truth labels

exist, a number of statistical measurements are also made.
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3.4 Representative Scan Selection Component

This component attempts to automatically select the most descriptive scans in a scan-

ning campaign for training, such that the accuracy of the classifier is maximised when

predicting other scans in the campaign. To do this, the component generates rough rep-

resentations of each scan which are used to score and select scans according to specific

criteria.

Representation

The component uses a series of steps to generate a representation of each scan in the

campaign. These include segmentation, feature extraction and clustering. In essence,

the points in each scan are segmented, and all segments from all scans are clustered. A

scan’s representation is then derived from its segments’ cluster assignments.

Selection

The component includes three scan selection schemes, each designed to meet different

criteria. Using the derived representations to score and rank scans, they identify the

most balanced, similar or distinct scans in the dataset. As with other methods discussed

above, more detail on the schemes is provided in the component’s relevant chapter. A

subset of the highest ranking scans then form the training set for the remainder of the

pipeline. Consequently, scans not selected for training form the set of test scans used

during the prediction phase.

This short chapter has provided a high-level overview of the scan campaign classification

framework’s design and a description of each component’s role. The next three chapters

are dedicated to the three components of the framework, and include a literature review

of related works as well as the design and implementation details of each component.





Chapter 4

Point Features and Feature

Selection

Point features are foundational to the scan campaign classification framework. It is

therefore important to select features that are relevant to both the given dataset and

classification task. This chapter introduces the first of the framework’s core components:

Point Features and Feature Selection. First, existing features and selection methods in

the literature are reviewed in Section 4.1 to identify suitable techniques. Section 4.2 then

details the implementation of the techniques chosen for the component, and methods

needed for integration with the framework.

4.1 Related Work

Before implementing the features component, it is necessary to survey existing methods.

This review is split into two sections: point features and feature selection. The point

features section discusses existing features, while feature selection looks at methods for

selecting descriptive features. The differences between the feature selection methods, as

well as their advantages and disadvantages, are then discussed.

4.1.1 Point Features

There are many point features in the literature, the use of which depends on the scene and

scanning method. For example, synthetic computer-aided design (CAD) point clouds,

an indoor room recorded with a Kinect, an urban street recorded with a mobile laser

scanner and a rural area surveyed via aerial scanning typically require different feature
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sets for accurate classification. These sets depend on the quality of the training data,

how similar the classes to be classified are, as well as the differing densities, shapes,

lighting, colour uniformity and noise of points in the scenes. This review is therefore

limited to features that have been used to classify points in terrestrial laser scans as

they are the focus of this research.

While some features use only a single point’s information, most features are based the

point and other nearby points i.e. the point neighbourhood. A common way to find

neighbourhoods is to search for the k closest points using the k-nearest neighbour (k-

NN) algorithm [39]. There are also spherical [66] and cylindrical [35] neighbourhoods,

formed by all points found within a sphere or cylinder of a fixed radius r. Depending

on the density of the point cloud and the k or r parameter, the speed of neighbourhood

extraction varies greatly.

Colour and intensity features are sometimes available depending on the scanner.

Along with 3D co-ordinates, each point in the cloud can have red, green, blue and inten-

sity (RGBI) values. Intensity measures the optical strength of the laser signal returned

while scanning. While colour features can be useful in ideal conditions e.g. synthetic

CAD-based objects, they are often unreliable in real-world scenes due to changes in

lighting caused by shadows, weather or time of day. Intensity is also unreliable due to

the effect that scanning distances and angles have on the reflectance of objects [92].

Geometric features are computed from points’ 3D co-ordinates. For example, a point’s

Z-value describes its height if the scanner is perpendicular to the XY plane while record-

ing. The difference ∆ between the smallest and largest Z, as well as the standard devi-

ation σ of Z, in the point’s local neighbourhood can help distinguish points belonging

to short and tall objects. Other height-based features like vertical range Zmax − Zmin,

height below Z − Zmin and height above Zmax − Z [50] are extracted from cylindrical

neighbourhoods to describe thin vertical objects well. Raw X and Y co-ordinates are

not suitable features for classification as they are relative to the scanner’s position, and

can therefore vary greatly despite belonging to points of the same class.

Features such as the radius of the sphere encapsulating a point’s k-nearest neighbours,

as well as the density of the neighbourhood, can also be extracted [128]. These are

useful for differentiating, for example, scanner noise (large radius, low density) from

valid points (small radius, high density).

Covariance features [133] describe the shape of the point neighbourhood. They are

estimated after computing the eigenvectors and eigenvalues (λ1 ≥ λ2 ≥ λ3 ≥ 0) of the

point neighbourhood’s covariance tensor [13]. Many features can be derived from eigen-

vectors and eigenvalues. For example, the eigenvector V3 with the smallest eigenvalue λ3
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is used to estimate the point’s surface normal, while the neighbourhood’s change of cur-

vature is computed as λ3/(λ1 +λ2 +λ3). Other shape features derived from these eigen-

values include planarity (λ2− λ3)/λ1 and linearity (λ1− λ2)/λ1. These are useful when

comparing e.g. points from a pole to a wall; while points on a pole have high linearity

and low planarity, points on a wall have low linearity and high planarity. Other features

derived from eigenvalues include sphericity λ3/λ1, omnivariance 3
√
λ1λ2λ3, anisotropy

(λ1 − λ3)/λ1, eigenentropy −
∑3

i=1 λiln(λi) and the sum of eigenvalues λ1 + λ2 + λ3.

First and second order moments of the neighbourhood around eigenvectors V1 and V2

have also been used to help identify boundaries between occluding objects [50].

2D features are extracted from the projection of the point cloud onto the XY plane.

These features are useful in scenes with symmetrical or orthogonal objects like buildings.

When projected onto a plane, a building wall becomes a line which is easily described by

shape features. Previously described 3D geometric features such as radius and local point

density [64] can be adapted into features extracted from circular 2D neighbourhoods

[127]. Similarly, covariance features can also be adapted to use the eigenvalues derived

from the circular neighbourhood’s covariance tensor.

Neighbourhood Context

A limitation of local features is their lack of contextual information. As they are local,

they do not describe the points outside of their neighbourhood. If included in the

neighbourhood, some of these points could increase the descriptiveness of the features.

One solution is to increase the size of the neighbourhood by increasing k for k-nearest

neighbourhood search or increasing r for spherical or cylindrical neighbourhoods. This

can be done manually or automatically as in [129] where a single neighbourhood of

optimal size k is found. While increasing the size of the neighbourhood broadens its

context, it also increases neighbourhood and feature extraction times.

A different method of increasing context re-samples the neighbourhood’s search space

[87] in order to describe the local 3D structure across varying scales. In doing this,

k remains fixed but the neighbourhoods capture a larger context as the search space

becomes sparser.

Discussion

There are clearly many features to choose from when designing a scan campaign clas-

sification framework. Despite limiting the review to point features typically used with

terrestrial scans, it is challenging to gauge their suitability to a given dataset. Some

promising features and their strengths have been highlighted, but their performance

may vary between datasets. The next section therefore looks at feature selection meth-

ods that could help identify a descriptive subset of scan campaign-specific features.
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4.1.2 Feature Selection

Choosing the best set of features for a given dataset is not straightforward; a feature that

performs well on one dataset or at one classification task may not necessarily perform

well on others. Feature selection methods attempt to solve this by finding compact

yet descriptive feature sets that improve computational efficiency without decreasing —

and sometimes increasing — predictive accuracy. Notable feature selection methods,

grouped by their classifier dependence, are described below.

Classifier-independent feature selection

Classifier-independent methods look directly at training vectors as well as their class

labels to select features without the need of a classifier. They calculate a score for each

feature which is used to rank and select the best features. They can be further divided

into univariate and multivariate methods as in [127].

Univariate methods evaluate the relationship between features and classes to differen-

tiate between relevant and irrelevant features. A score function calculates the relation

between a vector containing all the observed values of a specific feature and its respec-

tive class label vector. A popular univariate score function is the Pearson correlation

coefficient [88], which measures the strength of the linear correlation between a feature

and a class between -1 and +1, where a strong negative (-1) or positive (+1) correlation

indicates a relevant feature, and no correlation (0) indicates an irrelevant feature. Other

notable score functions are Fisher score [38], Gini index [45], Chi-squared test [89] and

information gain [97]. These measures and a brief description of what they indicate are

summarised below:

• Pearson correlation: Indicates to which degree a feature is correlated with a

class label.

• Fisher score: Calculates ratio between interclass and intraclass variance. A high

ratio indicates a discriminative feature.

• Gini index: Measures dispersion or inequality which indicates a features ability

to distinguish between classes.

• Chi-squared test: Assesses whether a class label is independent of a particular

feature.

• Information gain: Reveals the dependence between a feature and a class label.

These methods can be combined by aggregating rankings from different score functions

into one final ranking [127]. However, although univariate methods are fast to compute,

they only consider the feature-class relationship and can still select redundant features.
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Multivariate methods differentiate between relevant and irrelevant features like uni-

variate methods do, but they also evaluate feature-feature relationships to identify re-

dundant features. Unlike univariate methods, they consider multiple feature vectors

simultaneously instead of one at a time. Multivariate score functions include Relief-

F [59], Correlation-based feature selection methods [51][139] and Markov blanket-based

methods [42][91]. As multivariate methods filter out redundant features, some of them

have been shown to select features that out-perform the original feature set [127].

Classifier-dependent feature selection

Classifier-dependent methods interact with a supervised classifier to identify the best

features. These features are optimised for the respective classifier, meaning they may

not generalise to other classifiers as well as filter-based selections. However, if the same

classifier is used for selection and prediction it can be more accurate than with features

selected independently. Classifier-dependent selection is separated into wrapper and

embedded methods.

Wrapper methods treat feature selection as a search task by building and comparing

different combinations of features to each other. Feature sets are scored based on the

accuracy they achieve when predicting a validation set.

One way to search for the best feature set is to find the most predictive feature and pro-

gressively add features that improve accuracy e.g. Sequential Forward Selection [134].

Alternatively, Backward Sequential Elimination starts with the entire feature set and

successively deletes the worst performing features. Other search methods like best-first

search [138] and stochastic random hill-climbing [118] have also been used. Although

wrapper methods find features optimised for a specific dataset and classifier, the repe-

tition of training and prediction steps makes them much slower than other methods.

Embedded methods determine the set of features that contribute the most to a clas-

sifier’s accuracy as it is being trained. For example, the random forest algorithm [17]

internally determines a “feature importance” measure for each feature based on its im-

pact on the model’s accuracy. Similar built-in mechanisms exist in the single decision

tree algorithms ID3 [97] and C4.5 [98]. There are also embedded regularisation methods

that minimise the size of feature coefficients and eliminate features with coefficients that

are too close to zero [73].

Like wrapper methods, embedded methods interact with a classifier and can provide

optimised selections that outperform features selected by classifier-independent methods.

However, since embedded methods make their selection during training they are much

faster than iterative and computationally expensive wrapper methods.
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Discussion

A number of approaches to feature selection have been described. It is clear that they

have their own advantages and disadvantages that should be considered before applying

them.

Classifier-independent methods (univariate and multivariate filter methods) are easy

to implement and perform faster than classifier-dependent methods since they do not

require classifier training. Their resulting feature selections should also generalise well

to different classifiers since they consider feature vectors alone and are not influenced

by a specific classifier. Due to their speed, multiple filter methods can be combined to

generate an aggregated ranking of features.

Classifier-dependent methods (wrapper-based and embedded), while not as general as in-

dependent methods, identify feature sets specifically chosen for their classifier. Although

they are computationally expensive (especially wrapper-based methods) and slower than

independent methods, their tailored feature selections should achieve higher accuracy

when used to train their respective classifier.

The choice of feature selection method therefore depends on the requirements of the

system. If speed and the ability to generalise are important, then classifier-independent

methods are suitable. If slower speeds are acceptable and high accuracy with a specific

classifier is required, then classifier-dependent methods are a better choice.
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4.2 Implementation

This section describes the implementation of the features and feature selection com-

ponent. The choice of features and methods used for the component is motivated by

their applicability to terrestrial laser scans shown in the literature. The details of the

component’s implementation are given below. As a reference, a link to the repository

of the framework’s source code, including the features component, is provided in the

appendix.

4.2.1 Point Features

Pre-processing

Before point features are extracted, the point cloud is downsampled to a density of one

point per 2.5cm3 using Point Cloud Library’s octree class. Specifically, an octree is

built from the original point cloud with a resolution of 2.5cm and a new point cloud

is created from the XYZ averages of the points in each octree leaf. While this reduces

the point cloud’s level of detail, it mitigates the issue of non-uniform point density that

occurs when scanning large areas. This improves the consistency of extracted features

as it limits how much the features of points from the same class can vary due to density

alone. In addition, downsampling the original point cloud results in much faster feature

extraction.

Neighbourhood extraction

All of implemented point features are extracted from the point’s local k-nearest and

cylindrical neighbourhoods at three density scales. As discussed in the review of features,

colour and intensity values are not used due to their unreliability, and the multi-scale

neighbourhood approach is used to provide broader context.

The component uses PCL’s nearestKSearch method to find a point’s k=10 nearest

neighbours. Rather than increasing k (and therefore search times) to improve the con-

text of derived features, k remains constant and an approach based on multi-scale neigh-

bourhoods [87] is employed. Three density levels, starting with an initial downsampling

of 2.5cm, are used to extract point features. This is doubled twice to 5cm and 10cm,

resulting in three different sets of k=10 nearest neighbours for each point.

A cylindrical neighbourhood search was also implemented to enable the extraction of

additional height features. The implementation uses PCL’s radius search on a k-d tree

built from a projection of the 2.5cm density point cloud onto the x-y plane. The pro-

jection is fast (simply setting each point’s Z to 0), but the radius search is increasingly



30

slow for larger radii due to the planar search space’s high density. The cylindrical search

is therefore limited to a radius of 5cm for all three density levels.

Feature extraction

A collection of 24 features are extracted at three scales (2.5cm, 5cm and 10cm), yielding

a total of 72 features per point. The feature set contains 3D covariance, geometric

and height features, as well as 2D variants of particular 3D features, chosen for their

applicability to terrestrial laser scans and their usage in previous works [50][127]. The

Eigen C++ library [47] computes the point’s k-nearest neighbourhood eigenvectors (e1,

e2, e3) and corresponding eigenvalues (λ1 ≥ λ2 ≥ λ3 ≥ 0) needed for the covariance

features. The geometric and height features are computed directly from k-nearest and

cylindrical neighbourhoods. The majority of the covariance features were originally

implemented in Octave based on the Matlab feature extraction code accompanying [127],

but were later converted to C++ for improved performance and integration. All of the

24 implemented features’ names, symbols and definitions are provided in Table 4.1.

In order to extract features at multiple scales, three k-d trees are generated during the

original point cloud’s three-stage downsampling. The point’s 24 features are extracted

in parallel from neighbourhoods found with the k-d trees (as well as the cylindrical

neighbourhoods), and are combined to form the final 72 element feature vector.

4.2.2 Feature Selection

Two feature selection schemes were implemented: one classifier-independent and one

classifier-dependent. The classifier-independent scheme combines univariate and multi-

variate filter methods while the classifier-dependent scheme leverages the feature impor-

tance values computed by an RF classifier. The schemes were chosen as they represent

the two main approaches to feature selection found in the literature. Their implemen-

tation details are given below.

Classifier-independent selection

The classifier-independent scheme uses univariate and multivariate filter methods avail-

able in the scikit-learn (Python) library [90]. A total of six filter methods from the library

are used to separately score and rank features before computing a combined ranking.

Table 4.2 below gives the type of each filter selection method and a summarises what

they measure.

The feature selection method loads vectors containing all 72 of the extracted training set

features from a stored comma-separated values (.csv) file. Although this increases read
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Name Symbol Definition

Covariance/shape features

Verticality V 1− |〈[001], e3〉|
Linearity Lλ (λ1 − λ2) /λ1
Planarity Pλ (λ2 − λ3) /λ1
Curvature Cλ λ3/ (λ1 + λ2 + λ3)

Sphericity Sλ λ3/λ1
Omnivariance Oλ

3
√
λ1 · λ2 · λ3

Anisotropy Aλ (λ1 − λ3) /λ1
Eigenentropy Eλ −

∑3
i=1 λi · ln (λi)

1st Order Moment 1 M1
∑

i∈P 〈Pi − p, e1〉
1st Order Moment 2 M2

∑
i∈P 〈Pi − p, e2〉

2nd Order Moment 1 M3
∑

i∈P 〈Pi − p, e1〉2

2nd Order Moment 2 M4
∑

i∈P 〈Pi − p, e2〉2

Sum of EVs Σλ3D λ1 + λ2 + λ3
Sum of EVs (2D) Σλ2D λ2D1 + λ2D2

Ratio of EVs (2D) Rλ2D λ2D2/λ2D1

Geometric features

Radius r3D dist(p,Pk)

Density D3D (k + 1)/(43πr3D
3)

Radius (2D) r2D dist(p2D,P2Dk)

Density (2D) D2D (k + 1)/(πr2D
2)

Height features

Height difference ∆H zmax − zmin

Height std. deviation σH
√∑k

i=1 (zi − z)2/(k − 1)

Vertical range (cylinder) Hrange zmax − zmin

Height above (cylinder) Habove zmax − z
Height below (cylinder) Hbelow z − zmin

Table 4.1: Extracted point feature names, symbols and definitions. λi and ei are the
ith eigenvalue and eigenvector derived from a covariance tensor of the points P in a
point p’s k-nearest neighbourhood. Features are extracted from 3D space unless stated

2D.

times, it is more straightforward than embedding Python filter methods in the C++

framework and allows other methods to use the same features at a later stage.

Each method generates a score for each feature. For most methods, a higher score de-

notes a better feature with the exception of the Gini coefficient where a lower coefficient

is better, and the Pearson correlation where the score falls between -1 (strong negative

linear correlation) and +1 (strong positive linear correlation). To account for this, Gini

coefficient scores are ranked in reverse order and Pearson correlation scores are replaced

with their absolute values.

After all of the scores are calculated they are ranked to form 6 separate rankings. The

rankings (unique values between 1 and 72) are combined to form a single final ranking

for each feature. The best 25 (lowest combined ranking) features are identified and their
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Method Type Measures

Gini index Univariate Inequality or dispersion between features.

ANOVA F-value Univariate Amount of variance explained by a feature.

Mutual information Univariate Dependence between a feature and a class label.

Pearson correlation Univariate Correlation between a feature and a class label.

Fisher score Univariate Ratio between inter-class and intra-class variance.

Relief-F Multivariate Conditional dependencies between features.

Table 4.2: Implemented filter selection methods, their type and measurement.

indices are used to form a 72 element bit array, which is later used to reduce feature

vectors before training or prediction. Although only 25 (approximately a third of all

features) are chosen, such a reduction may still yield an accuracy close to the full feature

set, and should enable comparison of different features and feature selection methods.

Classifier-dependent selection

The classifier-dependent scheme uses the Ranger [136] RF library. An RF is trained on

all of the extracted features in the training set using the same settings as the RF in the

classifier component (detailed later in Section 5.2) while additionally calculating feature

importances.

The Ranger implementation uses the Gini impurity to calculate feature importance.

The Gini impurity measures how often a random sample would be mislabelled if it

were randomly labelled according to the distribution of labels in the training set. This

measure is useful for feature selection as it indicates how much a feature decreases the

weighted impurity of a trained decision tree, i.e. how optimally the feature splits the

training set. This decrease is averaged across all trees and used to generate a feature

importance value for each feature where higher values denote more important features.

Similarly to classifier-independent selection, the feature scores (importances) are ranked

from highest to lowest. The indices of the top 25 ranked features are used to generate a

72 element bit array which is saved to a text file. The classification component can later

use this file to shorten feature vectors to contain only the 25 most important features

before they are used for either training or prediction.

This chapter has reviewed existing point features and feature selection methods, and

has described the implementation of the features and methods chosen for the compo-

nent. These extracted features are used for training and prediction by the classification

component, as described in the next chapter. The chapter includes a review of various

classifier types and the implementation details of the three classifiers chosen for the

framework.





Chapter 5

Point Cloud Classification

A crucial part of the scan campaign classification framework is, of course, the classifier.

This chapter starts with a review of existing classifier categories in Section 5.1. Then, the

implementation of three classifiers chosen for the second component, Point Classification,

is described in Section 5.2 which includes the classifiers’ pre-processing, training and

prediction phases.

5.1 Related Work

Point cloud classification is an active field of research with many approaches proposed

throughout the literature. While their applications vary, these approaches can be sen-

sibly grouped by their classifier type as done in [127]. In the review below, classifiers

are therefore split into six categories: instance-based, rule-based, probabilistic, max-

margin, ensemble and deep learning. For each section, notable papers are presented and

discussed. The review ends with a comparison of the six classifier categories.

Instance-based classifiers

Instance-based classification is different to other classification methods in that no model

is learned. Instead, unseen feature vectors are directly compared to known vectors in the

“training” set. The similarity between samples is defined by the Euclidean (or other)

distance between them; the closer the feature vectors, the more similar the samples. The

unseen sample is then assigned the class of the closest training sample.

In [56], the instance-based Nearest Neighbour (NN) algorithm is used to classify points

in urban scenes based on structural features extracted from points’ spherical neighbour-

hoods. An extension of the NN algorithm, k-Nearest Neighbour (k-NN), is used in [28].

33
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Rather than assign points the class of the closest point, the paper uses k-NN to clas-

sify points as the majority class of its k nearest neighbours. A variety of feature sets

were tested with k-NN, including eigen-features and local shape descriptors, and overall

accuracy of 92% was achieved on datasets containing cars, poles, trees and walls.

The main advantage of instance-based methods is their obviation of a training phase,

which saves time and computational resources. They can also adapt to new knowledge

by simply adding or removing instances from the dataset as opposed to re-training a

new model. However, their induction phase becomes slower as the dataset and therefore

complexity of the prediction hypothesis increases. They can also overfit to noise in the

dataset if the closest instance(s) to a test sample is noise.

Rule-based classifiers

Rule-based classifiers learn to represent knowledge as a set of rules, usually in the form

of binary decisions. These rules adapt as the classifier encounters new training samples

so that they can be applied to unseen samples. A single rule can be likened to an if-

statement e.g. if green then grass. A prominent rule-based classifier is the decision tree,

where a hierarchy of splits (decisions) are recursively built top-down as new training

examples are seen. Some classifiers combine multiple trees for ensemble classification

(discussed later in this section).

In [33], a single decision tree is trained on the vertical and horizontal features of ve-

hicle segments in airborne laser scans, enabling vehicle detection that improves on the

precision of previous methods by 30%. A decision tree is used in [9] to classify points

from urban datasets based on their triangular network and individual features, detect-

ing points belonging to grass and paved areas with accuracy varying from 68% to 92%

depending on the wavelength of the laser scanner.

Decision trees are easy to visually interpret and understand when there are a low number

of branches or nodes. They can also handle training samples with missing features and

are good at handling categorical features. They also require minimal parameter selection

and are fast to train. However, while they perform well with small sets of descriptive

features they are capable of modelling complex interactions between large feature sets.

Decision trees also tend to overfit the training set by learning long decision chains,

although there are techniques that attempt to alleviate this by limiting (pruning) the

tree’s depth.

Probabilistic classifiers

Probabilistic classifiers predict a probability distribution over a set of all possible classes

that an unseen sample could belong to. This is different to classifiers that predict a
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single class. However, they can predict a sample’s class as the one with the highest

probability.

The probabilistic Naive Bayesian classifier is trained on segments of 3D models in [62]

to detect objects in both indoor and outdoor environments for robotic navigation, out-

performing SVMs trained on the same data. Two other probabilistic methods, Linear

Discriminant Analysis (LDA) and Quadratic Discriminant Analysis (QDA) were both

used in [58] to classify tree species based on intensity and structural features, where the

QDA achieved up to 99% accuracy on datasets of coniferous and deciduous trees.

The class probabilities provided by these types of methods are advantageous as they can

be interpreted as the certainty (or uncertainty) of prediction. Furthermore, due to the

probability distribution of related variables these methods can handle missing or noisy

data. They are also simpler to implement as their hyper-parameters are learned from

the data. However, probabilistic methods rely on assumptions: Naive Bayesian classifi-

cation assumes that all features are conditionally independent and does not model the

relationship between correlated features, while LDA and QDA assume that independent

variables are normally distributed. If these assumptions are not met then these methods

may be inaccurate.

Max-margin classifiers

Max-margin classifiers maximise the distance between samples from different classes in

the feature space. The most commonly used max-margin approach is the SVM, discussed

in the background chapter. SVMs maximise the distance between different classes in

the feature space by constructing one or more hyperplanes to separate samples. New

samples are classified based on which side of the hyperplane they fall into.

In [111], an SVM is used to classify segmented objects in urban point clouds. Candidate

objects are identified as discontinuities on the ground and are described by geometrical

and contextual features. The authors motivate their choice of SVM by its ability to deal

with high-dimensional and limited training sets. Through a hierarchical classification

scheme, the method achieved an accuracy of 82% on well-segmented objects in terrestrial

and aerial datasets. Another paper [31] uses an SVM to classify regions in urban mobile

laser scanner point clouds as either vegetation or non-vegetation. These regions are

identified through a multi-resolution clustering, from which different histogram features

based on point density or eigenvalues are extracted. Vegetation such as trees and shrubs

were classified with 95% accuracy in city center scans when using eigenvalue histograms.

SVMs have also been used to classify airborne LIDAR data, as in [140]. Here, segments

identified through region-growing are described by 13 geometry, radiometry, topology

and echo features. The SVM was shown to achieve greater than 92% average accuracy

on three airborne datasets.
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SVMs can accurately classify high-dimensional and unstructured data when properly

configured. With the right kernel function and regularisation parameters, they can

solve complex problems without overfitting to the training data. Using one-versus-one

class prediction, they are particularly good at differentiating between similar object

classes. However, choosing the best kernel function and parameters is non-trivial and if

incorrectly done can weaken the classifier significantly. While some parameters such as

the width of the kernel and classification error penalty can be automatically tuned, this

adds an overhead to an already computationally complex training phase.

Ensemble classifiers

Ensemble classification involves combining a set of weak classifiers into a single strong

classifier (weak and strong in terms of accuracy). The two most common ensemble

approaches are bagging and boosting. Bagging (bootstrap aggregating) involves training

each of the weak classifiers with a randomly drawn subset of the training data and

counting their votes to assign a class for prediction. Boosting incrementally builds the

ensemble by training newer models with instances that previous models achieved lower

accuracy on.

A successful bagging method is the random forest (RF), also described in the background

chapter. In [27], an RF is used to classify objects in terrestrial laser scans captured by

Google Street View including vehicles and traffic lights. Another paper [141] found RFs

effective at classifying points in the KITTI [43] dataset using hybrid image/point cloud

features, achieving 89% average accuracy on classes including buildings, pedestrians and

vegetation. The authors in [48] use an RF to classify objects in point clouds of cluttered

scenes from the NYU-Depth V2 dataset [117], achieving state-of-the-art accuracy at the

time. Lastly, in [131] an RF is used to distinguish between tree-like and non-tree-like

objects represented by 14 geometric features in mobile laser scans, achieving up to 92%

overall accuracy.

One boosting algorithm used for point cloud classification is Adaptive Boosting [40]

(AdaBoost), where the ensemble also consists of decision trees. In [126], AdaBoost

classifies clusters of points in noisy terrestrial laser scans represented by multi-scale

features and achieves more than 90% accuracy on classes including trees, buildings and

people. Variations of AdaBoost are used in [71] to classify road, grass, buildings and

trees in aerial scans with higher than 92% accuracy using a simple set of 5 LiDAR

features. Lastly, AdaBoost is used for face recognition in [30] using Gabor wavelet

features extracted from depth and intensity images, achieving a 95% verification rate on

the FRGC V2 face recognition dataset [93].

The main strength of ensemble methods comes from their composition of multiple di-

verse weak learners. By training each learner with different training samples, ensemble
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methods have reduced bias and are less prone to overfitting. Random forests go an extra

step by randomly sampling the features used to train each tree, further diversifying the

ensemble and increasing its robustness. Random forests also provide variable importance

measures which can be used for feature selection. One limitation of ensemble methods is

their difficulty to visually interpret compared to e.g. a single decision tree. In addition,

it takes time to manually choose parameters and choosing poor parameters can decrease

accuracy e.g. training too many boosted trees can overfit the training data.

Deep learning

Deep learning methods learn a new representation of training data through multiple

(deep) levels of transformation. Each level transforms the data into a higher and more

abstract level, resulting in complex descriptions of the data. Research involving deep

learning for point cloud classification has become very active in recent years. Although

they typically involve neural networks, these deep learning methods differ from the shal-

low MLP described in the background chapter, which follows the traditional approach

of training on hand-crafted features.

The deep learning network PointNet [96] directly reads point cloud data (XYZ and

optional local/global features) as input and learns a set of optimisation functions that

select the most descriptive points from the point cloud. During prediction, the out-

put of these functions is aggregated in the final layer to assign point classes. When

applied to the ModelNet40 [137] dataset containing 40 synthetic object classes, the net-

work achieved state-of-the-art performance at the time. This network was also used

in [63] to classify points represented by a superpoint graph that encodes the contex-

tual relationships between points, also achieving state-of-the-art results on both the

outdoor Semantic3D [49] and indoor S3DIS [11] datasets. Deep learning was applied

to RGB-depth images in [119], where a combination of convolutional neural networks

(CNN) and recursive neural networks (RNN) classified depth images of 51 household

objects [61] faster and more accurately than comparable architectures.

Deep learning classifiers are highly accurate and can obviate time-consuming feature

engineering by learning descriptive representations directly from training data. Further-

more, knowledge from a trained network can be transferred and fine-tuned to new tasks

provided the learned representation is suitable. However, supervised deep learning typi-

cally requires more labelled data and resources (such as top-end GPUs) than previously

discussed classifiers to achieve their full potential. Deep learning also requires impor-

tant design and parameter choices e.g. the network type, number of hidden layers and

learning rates, for which established theory is currently limited due to ongoing advance-

ment in the area. Furthermore, fine-tuning pre-trained networks may not be suitable

for datasets or classification tasks that differ greatly from the original problem.
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Discussion

It is evident that there are many machine learning methods to choose from for point

cloud classification, each with their own advantages and disadvantages. However, it is

still difficult to determine how these methods compare to each other when used on large

terrestrial laser scans of diverse scenes. To help choose a suitable classifier, Table 5.1

summarises the differences between the six presented classifier types. The speed and

accuracy comparisons are approximated from other papers [127][49] where the classifiers

were evaluated.

Although simple to implement, instance-based classifiers are not suitable as they have a

relatively low accuracy, their prediction is slow and they could overfit the noise found in

terrestrial scans. Rule-based methods like single decision trees are very fast but have low

accuracy, and attempts at improving accuracy by increasing depth can lead to overfitting.

Probabilistic methods have better accuracy, but their assumption of feature indepen-

dence or the distribution of training data cannot be met reliably with limited training

data, as is often the case with campaign-based classification. Max-margin methods are

slow but can achieve accuracy with the right parameters. However, these parameters are

difficult to choose and tuning them automatically adds even more time to the already

long training and prediction stages. Deep learning classification methods achieve the

best accuracy given enough labelled data, time and computational power. However, de-

signing deep networks is not trivial or automatable and their demand for large amounts

of training data may not be met by manual labelling. A standard shallow neural net-

work, such as an MLP trained with engineered features, would require less resources

at the cost of accuracy, but may still perform similarly to other discussed classifiers.

Lastly, ensemble methods achieve high accuracy while being simpler to implement and

tune than maxim-margin and deep learning methods. Random forests, in particular, are

fast as they are easily parallelisable and are less prone to overfitting due to their random

sampling of samples and features.

After reviewing the literature and comparing existing approaches to point cloud classi-

fication, the applicability of three classifiers to campaign-based scan classification stand

out: random forests, SVMs and MLPs. These three algorithms have been shown to

achieve high accuracy when classifying point clouds. Although they require varying

amounts of configuration and have differing training/prediction speeds, they each have

their own strengths as discussed in the above review.
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5.2 Implementation

The classification component handles all of the training and prediction in the frame-

work. It use features extracted by the features component paired with point labels to

learn a model which can predict the class of unseen points. This section explains the

component’s implementation of necessary pre-processing steps, three different classifiers

and unseen point prediction.

5.2.1 Pre-processing

Labels

Before training or prediction, the necessary point labels are loaded and processed. In

the case of training these are the labels used to teach the classifier the mapping between

feature vectors and classes, and in the case of prediction these are the ground truth

labels used to evaluate the accuracy of the classifier. Since the format and encoding

of these labels can vary between datasets, they are restructured to be consistent and

easily read by the component. Specifically, labels are saved to a plain text file where the

line number of each label corresponds to the index of its respective point in the cloud.

Labels are integers between 0 and the total number of classes, while unlabelled points

are given a label of -1.

Scans

Raw scans with varying formats are initially read to pcl::PointCloud objects before

they are downsampled to a resolution of 2.5cm and re-written to disk as .pcd (Point

Cloud Data) files using PCL’s io::savePCDFileASCII method. Like label processing,

this is done to ensure consistent behaviour within the component. During downsampling,

a new label file is also generated to store the labels of the downsampled point cloud.

This is done by assigning downsampled points the dominant label of the points that

were averaged to generate them. The .pcd point cloud is then treated as the base point

cloud for all subsequent training and prediction. Although these point clouds have

lower resolution and detail than the original point clouds, they provide enough detail to

successfully compare the methods within the framework while requiring much less time

to process.

Class Balancing

The last pre-processing step is balancing the class samples before they are used for train-

ing. This is needed since most terrestrial scans have large class imbalances e.g. many

more points of buildings than vegetation. If the classifier learns from an imbalanced
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training set it could develop a bias towards the over-represented class and perform in-

accurately on under-represented classes. The implementation first oversamples smaller

classes by duplicating random samples until the class contains n samples, then over-

samples larger classes by replacing them with n samples selected randomly without

replacement. This results in the same number of samples per class and a balanced

training set. Note that this is done directly on label data before any feature extraction

occurs.

5.2.2 Training

Three different classifiers were implemented for use in the component. The choice of

these classifiers is based on the review and discussion of methods in the literature

presented in Section 5.1. They represent three algorithms identified as applicable to

campaign-based classification: SVMs, MLPs and random forests. This section provides

the implementation details and parameter choices of each classifier.

Regardless of which classifier is to be trained, the component loads the indices of the

previously balanced training points and the scans they belong to. Features belonging

to the points at these indices are then extracted and the resulting vectors are reduced

according to the stored 72 element bit array if feature selection is enabled. An additional

feature normalisation step (Equation 5.1) is applied to the training features where x is

the original feature, x′ is the normalised feature and x and σ are the mean and standard

deviation of the feature. This step is necessary due to the importance of magnitude in

some of the classifiers’ objective functions and ensures that features are equally weighted

when training begins. Once prepared, the feature vectors and their respective class labels

are are passed to the classifier.

x′ =
x− x
σ

(5.1)

SVM implementation

The SVM is implemented using the OpenCV [16] C++ library’s SVM class which is

based on the LibSVM [18] library. Although OpenCV is primarily aimed towards com-

puter vision tasks, it also contains a number of standard machine learning algorithms.

LibSVM is an established and actively supported SVM library which provides the re-

quired SVM functionality for the component.

The SVM uses c-support vector classification. This is one of the two available n-class

(n ≥ 2) classification modes in LibSVM, the other being v-support vector classification.

These modes have similar functionality and performance but use different regularisation
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parameters (c or v) to penalise misclassifications while training. The choice mostly

depends on which parameter the user finds easier to interpret. The radial basis function

(RBF) kernel is used to map training samples into higher-dimensional space as described

in Section 2.3.2. This is the default kernel function in LibSVM and is commonly used

throughout the literature.

The SVM is trained using the OpenCV’s SVM trainAuto method. The method is set

to use 5-fold cross validation grid-search to find the optimal cost parameter c and the

RBF kernel’s γ parameter from the library’s default grid of parameters. Although this

adds to training time, it is a worthwhile trade-off as poorly chosen parameters reduce

the accuracy of the SVM. Once the SVM model is trained it is saved as a .yml file to

be loaded before prediction.

MLP implementation

The MLP is built using the neural network module in OpenCV. Although there are

other highly configurable and powerful libraries capable of training deep networks such

as Caffe [55] and Tensorflow [8], the OpenCV module provides the necessary methods to

train a standard MLP. As discussed previously, a standard shallow MLP is more feasible

for training on a limited amount data than deeper networks, and is more straightforward

to design. The lighter OpenCV implementation is therefore sufficient for the purposes

of this research, and yields a classifier more comparable to the implemented SVM and

random forest.

The architecture and parameters of the component’s MLP were chosen based on various

preliminary tests and guidelines in the literature. The input layer has the standard

n features neurons and the output layer has n classes neurons. The hidden layer con-

tains the mean number of neurons in the input and output layer, i.e. (n features +

n classes)/2 neurons. The network uses a symmetrical sigmoid activation function to

compute neuron outputs and the resilient back-propagation (RPROP) algorithm [101]

to update the weights of the network. The RPROP algorithm is chosen for its flexibility

as it uses only the signs of gradients to update weights while the symmetrical sigmoid

function is the most commonly used method for modelling non-linear relationships in

the training data. This typical pairing of methods is used throughout the literature and

provides a MLP that fairly represents the algorithm.

Before training, the order of training samples is randomly shuffled - this reduces variance

and the likelihood that the MLP overfits the data. The network is then trained until

either 10000 training iterations are completed or until the difference in error between

iterations reaches ε = 0.0001 (1e-4). Once trained, the metadata and weights of the

network are written to a .yml file to be loaded at the start of the prediction phase.
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Random Forest implementation

The Ranger C++ library [136] is used for its random forest implementation of the

original Breiman algorithm [17]. Although the OpenCV machine learning module offers

a random forest algorithm, it was not used for the component as it did not support the

parallel training of trees. In addition to providing parallel training of trees, the Ranger

library is actively supported and configurable.

There are a number of important parameters to set when training the random forest.

Their values were determined via basic trial-and-error testing, the implementation of

a parameter tuning phase as well as reference to the literature. A forest of 100 trees

with a target partition size of 1 is trained. This is the minimum partition size and

allows trees to be fully grown. Although letting a single decision tree grow to maximum

depth can result in overfitting, this is alleviated by the reduction in variance caused by

training 100 trees on different parts of the training set. Tree nodes are split with
√
p

(rounded down) randomly selected features , where p is the size of the feature vector.

With p = 72 features, nodes are therefore split with 8 randomly selected features. The

Gini index is chosen instead of information gain as a splitting criterion since they yield

similar accuracies while computing the information gain is slower due to its logarithmic

function. Lastly, the number of processing threads is set to the maximum available

threads determined via the standard C++ thread::hardware concurrency method.

This significantly reduces training times by dedicating a separate thread to each tree

being trained.

An additional method (Data::loadFromVectors) was added to support the loading of

feature vectors from memory as only reading from .dat files was supported initially. This

was done to improve the pipeline’s speed and standardise the interfacing between the

feature extraction and classification components. Once the training vectors are loaded

and the random forest’s parameters are set the random forest is trained. After all 100

trees are trained, the forest and its metadata are written to a .forest file to be loaded

when the prediction phase begins.

A summary of the methods and parameters used for each of the three implemented

classifiers is given in Table 5.2.
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Support Vector Machine

Library OpenCV (LibSVM)

Vector classification c-support

Kernel Radial basis function (RBF)

Parameter tuning (c and γ) Grid search

Cross validation folds 5

Multi-Layer Perceptron

Library OpenCV

Input layer size n features = 72

Output layer size n classes

Hidden layer size (n features + n classes)/2

Activation function Symmetrical sigmoid

Training method Resilient back-propagation (Rprop)

Random Forest

Library Ranger

Trees 100

Target partition size 1

Split features b
√
n featuresc = b

√
72c = 8

Splitting criterion Gini index

Threads thread::hardware concurrency = 6

Table 5.2: Important methods and parameters used by the implemented SVM, MLP
and RF.

5.2.3 Prediction

The implementation of the prediction phase is straightforward. The classifier (either

SVM, MLP or RF) is initialised and loads the trained model from the saved .yml or

.forest file.

Before they are classified, feature vectors of the test points are processed if necessary. If

the classifier was trained on a subset of selected features, the feature vectors are reduced

to contain only the selection according to the stored feature indices. The test feature

vectors are then normalised using the saved mean x and standard deviation σ of each

feature.

Rather than immediately classifying a test vector as it is extracted, vectors are stored

and predicted in batches of 100,000. This improves the efficiency of the pipeline by lim-

iting the number of function calls substantially without consuming an unsafe amount of
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memory. The prediction phase is also accelerated by the parallel extraction of test fea-

ture vectors using the OpenMP [25] library. Specifically, a separate thread is dedicated

to extract a point’s features at each resolution scale (2.5cm, 5cm and 10cm) before they

are combined into a single vector.

As each batch of test vectors reaches its maximum size, the classifier iterates through

them to predict point classes. For each point cloud being classified, a new cloud with

points coloured according to their class is generated and saved as a .pcd. If ground

truth labels are available, an additional error cloud that highlights misclassifications

and a .csv file containing the true and predicted classes of each point are generated.

These files are later used to generate statistics and evaluate the classifier.

This chapter reviewed classifiers in the literature and detailed the implementation of

three classifiers chosen for the point classification component. Combined with the pre-

vious chapter’s features component, these form the basis of the framework and enable

the investigation of feature sets and classifiers applied to terrestrial laser scans. The

next chapter describes the final component, which identifies representative scans that

the first two components to use for training.





Chapter 6

Representative Scan Selection

An accurate scan campaign classifier requires a descriptive set of training scans to learn

from. The third and final component of the framework, Representative Scan Selection,

automatically selects descriptive scans for the other components to extract features from

and train with. Given that such a method does not currently exist, the chapter starts

with a short review of loosely related but informative methods in Section 6.1. The

design and implementation of the proposed method’s three schemes are then described

in Sections 6.2 and 6.3.

6.1 Related Work

An early survey of the literature did not reveal previous work on the selection of rep-

resentative campaign scans for labelling and training. However, existing methods like

instance selection and active learning may help when designing a representative scan

selection component. The goal of these methods — to identify a descriptive subset of

data — could make them informative despite some core differences. This review cate-

gorises and describes methods of instance selection and active learning, using examples

from previous surveys [84][112], and discusses their applicability to representative scan

selection.

6.1.1 Instance Selection

Instance selection methods reduce the size of a labelled training set T. The goal is to

find a subset S ⊆ T such that a classifier trained on T achieves similar accuracy when

trained on S. When successful, instance selection reduces the time and memory needed

for training while maintaining (or improving) classification accuracy. The motivation is

46
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therefore similar to feature selection described in Section 4.1.2 of the Point Features and

Feature Selection chapter.

Instance selection can be separated into two types: filter and wrapper methods. Exam-

ples of these methods and their their applicability to scan selection discussed below.

Filter Methods

Filter methods select S ⊆ T without the use of a classifier. Instead, instances are

evaluated and selected based on their properties and relationship with other instances.

Notable examples of filter methods are discussed below.

Nearest Neighbour Search

Some filter methods use nearest neighbour search to determine border and interior in-

stances. A border instance has a different class to its nearest neighbour, whereas an

interior instance belongs to the same class as their nearest neighbour. Due to border

instances’ ability to differentiate between classes, methods like Pattern by Ordered Pro-

jections (POP) [102] and Pair Opposite Class-Nearest Neighbour (POC-NN) [99] discard

interior instances and select instances that border the most classes.

Clustering Methods

Clustering is also used for instances selection, where T is split into n clusters and the

center of each cluster [72] or the center of merged same-class clusters [76] are selected.

One clustering method, Object Selection by Cluster (OSC) [82], selects interior and

border instances from homogeneous (same class) and inhomogeneous clusters. Here, an

instance is a border if its nearest neighbour in the same cluster has a different class, and

the center of homogeneous clusters are also selected to represent uniform regions.

Weighting Methods

Weighting methods assign scores to instances which are used to threshold and select

instances. For example, Weighting Prototypes (WP) [86] computes an instance’s weight

based on their nearest neighbours and enemies (instances belonging to a different class),

and discards instances with weights above a threshold. Another method, Prototype

Selection by Relevance (PSR) [83], selects a percentage of relevant instances i.e. instances

with the highest average similarity to their class, as well as the most similar instances

belonging to different classes.

Wrapper Methods

Wrapper methods are classifier-dependent; they select a subset S of labelled instances

based on the accuracy a classifier achieves when they are used for training. Examples

of prominent wrapper methods are presented below.
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Nearest Neighbour Classifier Methods

Many wrapper methods use a k-Nearest Neighbour (k-NN) classifier to evaluate and

select instances. An early k-NN method, Condensed Nearest Neighbour (CNN) [53],

classifies T with a k-NN classifier trained on randomly selected instances from each

class, then adds misclassified instances to S. A more recent variant, Generalized CNN

(GCNN) [21], only selects instances that are not absorbed (represented) by S, which

improves efficiency and accuracy. Another k-NN method and its variants, Decremental

Reduced Optimization Procedure (DROP1-5) [135], involves discarding an instance if

it is not needed to correctly classify its associates (instances whose nearest neighbours

include the instance under consideration).

Support Vector Machine Methods

An SVM essentially performs instance selection when it identifies instances to use as

support vectors, as these vectors discriminate between classes. To utilise this, one

method [68] applies the DROP2 algorithm to the support vectors generated by an SVM.

Another method, Support Vector k-Nearest Neighbour Clustering (SV-kNNC) [120] clus-

ters support vectors with k-means, then selects instances from homogeneous clusters and

majority-class instances from inhomogeneous clusters.

Sequential Search

Sequential search-based methods iteratively add or remove instances from S based on

their contribution towards a classifier’s accuracy. For example, the Backward Sequential

Edition (BSE) [81] method discards instances until accuracy begins to diminish, while

the Sequential Floating Search (SFS) [95] method allows discarded instances to be re-

added if they improve accuracy. Although search methods are expensive due to the

number of steps and classifier re-training, they can be used with any classifier.

Discussion

Unfortunately, instance selection methods do not solve representative scan selection.

Filter methods require labelled training data, and wrapper methods require both la-

bels and the training of a classifier. As such, these methods cannot be used directly for

representative scan selection which occurs before labelling or training. However, they in-

clude methods that could work with unlabelled data, such as those that cluster instances

(OSC, SV-kNNC) or select them by their similarity (PSR). As clustering methods are

traditionally unsupervised and similarity functions work without labels, these methods

may help identify representative scans for labelling.
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6.1.2 Active Learning

Active learning proposes that a classifier’s accuracy can improve if given the ability to

choose which instances are labelled for training. It is particularly useful when there is

an abundance of unlabelled data but labels are difficult to obtain. The classifier starts

by training on a small set of training data and then querying an oracle (e.g. an expert

user) to label informative examples. In doing this, only the most descriptive instance

are labelled and the accuracy of the classifier is increased.

Instances are chosen for labelling based on a querying strategy. A number of strategies,

differing by how they evaluate instances, are proposed throughout the literature. Six

notable querying strategies are presented below followed by a discussion of their relevance

to scan selection.

Uncertainty Sampling

Uncertainty sampling [67] involves querying (requesting labels for) instances that the

classifier is the least certain about i.e. instances with the lowest probability of being

correctly classified. This can be measured simply by the classifier’s confidence in its pre-

diction, or by the difference between the classifier’s two most likely predictions (margin

sampling). Another approach, entropy sampling, considers the confidence of all classes

when measuring uncertainty.

Query-by-committee

Query-by-committee sampling [115] utilises a group or committee of classifiers trained

on the same labelled instances to predict (vote for) the class of unlabelled instances. The

oracle is asked to label the instances that the committee disagrees on the most i.e. the

instances with the most differing votes. Although slow, any type and number of classifiers

can be used, and there are different ways of measure the committee’s disagreement e.g.

soft-voting where the classifiers’ confidence in all classes are used rather a single vote.

Expected Model Change

The expected model change strategy asks the oracle to label instances that would cause

the most change to the classifier if its class was known. One method, Expected Gradient

Length (EGL) [114], applies this strategy to any classifier that uses gradient descent e.g.

linear SVMs or neural networks. Specifically, it queries instances that would increase the

magnitude of the training gradient (vector) the most if they were added to the training

set.

Expected Error Reduction

The expected error reduction strategy [103] queries instances that are expected to reduce

the classifier’s generalisation error the most, which should reduces the classifier’s total
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number of incorrect predictions. The strategy is particularly expensive as it requires re-

training the classifier for each possible query, as well as estimating the expected future

error of the classifier on the rest of the unlabelled instances.

Variance Reduction

Variance reduction is a response to how expensive the error reduction strategy is. It uses

the idea that a classifier’s expected error can be split into three terms [44]: noise, bias

and variance. By reducing variance, expected error is therefore indirectly reduced. This

is less expensive than error reduction as it does not require the re-training of classifiers,

but is still slower than most strategies for larger feature vectors.

Density Weighted Models

Many strategies tend to query high-impact border instances that change the classifier

in some way. While these are good for differentiation, they do not represent common

or interior instances. Strategies like error and variance reduction indirectly avoid this

problem by considering all unlabelled instances, but this is expensive. Density weighted

models [113] ensure that interior instances are queried by weighting their scores (com-

puted by e.g. uncertainty sampling) by their average similarity to other unlabelled in-

stances. One density approach [80] clusters instances to identify representative instances

and avoid outliers using a local noise model.

Discussion

As with instance selection, active learning is not directly applicable to representative

scan selection as queries require a trained classifier. However, there are some transferable

ideas. For example, density weighted models query instances that are similar to others,

with one approach using clustering to identify representative instances. As with instance

selection, these similarity and clustering methods do not require labelled data and could

therefore help select unlabelled scans for training. Furthermore, the idea of multiple

strategies that target different traits or effects on the dataset could be adopted by the

component to determine important training scan properties.
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6.2 Design

Developing the scan selection component required a different approach to the other

components. The feature and classifier components are based on widely understood

methods chosen to test their applicability to various terrestrial laser scanning campaigns.

However, the scan selection component has little literature to draw on since the problem

of automatically selecting a representative set of scans from a scanning campaign is not

currently addressed.

In order to address the problem, a set of selection criteria were developed. The aim of

these criteria is that they, when satisfied, yield a descriptive set of scans for labelling

and training. A method to automatically select scans based on these criteria was then

developed. Parts of the method borrow techniques from instance selection and active

learning which were explored in the related work, Section 6.1.

The remainder of this section is split into two parts. First, the selection criteria are

presented and explained. A high-level description and motivation of the component’s

design is then given. A detailed explanation of the methods used to realise this design

is given later in the implementation Section, 6.3.

6.2.1 Selection Criteria

Before designing the selection component, four selection criteria were developed. They

are based on practical experience of choosing scans for labelling and discussions with

scan labelling practitioners. The four criteria are explained below:

1. Scans should contain classes commonly found in other scans. If the

dataset contains scans with many points from trees and buildings, the scans se-

lected for labelling must have enough of these points so that the classifier can learn

to recognise them in unseen scans.

2. Scans should not be too similar to each other. Due to the way that the

scanner is incrementally moved around the site, there is the potential for very

similar scans in the dataset. While this is useful when generating a 3D model of

an area of interest, too many similar scans diminish the quality of a training set

as they add little new data for the classifier to learn from.

3. Scans should contain a diverse array of classes. In some scans, almost all

points belong to a single class e.g. a close-up scan of a wall. While such scans

can be useful if the points belong to a class underrepresented in the dataset, more
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diverse scans should be selected as they provide more classes and boundaries to

learn from.

4. Scans should represent all scene types at least once. There are some scenes

that do not occur often in a dataset but are still important to label. For example,

in a dataset of mostly outdoor scans a few indoor scans may be recorded. Despite

the indoor scans forming a small part of the dataset, the classifier needs to learn

from at least one of them in order to adequately classify the others.

6.2.2 Component Design

The design of the component is separated into two parts: Representation and Se-

lection. Representation generates two feature vectors for each candidate scan which

are then used by one of three selection schemes to identify scans based on the selection

criteria. Parts of the component’s design, particularly the use of clustering methods

and similarity measures, are inspired by their usage in the instance selection and active

learning literature (reviewed in Sections 6.1.1 and 6.1.2).

Representation

After considering the selection criteria, it is evident that a method choosing scans based

on their criteria compliance would first require knowledge of certain scan properties. For

example, in order to evaluate how diverse a scan’s point classes are (for criteria #3),

there needs to be a measure of the frequency or distribution of points belonging to each

class in the scan. With labelled scans this is trivial - a scan’s class distribution can be

directly computed from labels. However, a sensible way to make such measurements on

unlabelled scans is not obvious.

The proposed design therefore uses clustering in lieu of existing labels as a way of

estimating the distribution (and other properties) of points’ classes in unlabelled scans.

For example, if all the points in a scan campaign were clustered, the ID of each point’s

cluster could be viewed as its class label, and a distribution could be calculated.

Unfortunately, this is too costly due to the millions (or billions) of point feature vectors

that would require extraction before clustering. The design therefore opts to cluster

segments resulting from an over-segmentation phase (using the VCCS algorithm intro-

duced in Section 2.2.1). This way, the cluster assignments of a scan’s segments (not

points) may be used to estimate the scan’s point distribution and other properties. It is

important to note that all the segments from all the scans in the dataset are clustered

at once, rather than clustering the segments of each scan separately.
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This approach allows feature vectors to be computed for each segment rather than each

point in the dataset. A succinct set of 12 features is chosen to reduce the dimensionality

of the feature space and preserve meaningful distance metrics when clustering. No

neighbourhood search is required for these features; instead, the supervoxel segment itself

is treated as the point neighbourhood and each of the 12 features is computed only once

per supervoxel. This is much faster than finding each point’s k-nearest neighbourhood,

extracting individual point features and clustering them. A summary of the proposed

supervoxel clustering approach is illustrated in Figure 6.1.

Figure 6.1: Supervoxel clustering pipeline: (1) A raw, unlabelled scan with walls
(grey), ground (brown) and shrub (green) points. (2) Scan after VCCS over-
segmentation into supervoxels coloured by their unique IDs. (3) Visualisation of k-
means clustering of supervoxel feature vectors. (4) Scan with supervoxels “labelled”

with the ID of the cluster they were assigned to.

To cluster the segments’ feature vectors, the k-means algorithm (described in Sec-

tion 2.3.5) is used. Although k-means is unable to find non-linearly separable clusters

like more precise clustering methods (e.g. DBScan), it is fast and requires only one

parameter. The accuracy of the k-means clustering step (and the preceding segmenta-

tion step) greatly impact how well the cluster assignments can describe scans. However,

even rough properties derived from segments’ cluster assignments should provide enough

information about scans for them to be evaluated against the selection criteria.

Two properties are derived from the cluster assignments: distribution and similarity.

Distribution measures the spread of cluster assignments in a scan and is described by a

scan’s description vector D. Figure 6.2 illustrates the distribution of a scan’s supervoxel

cluster assignments - in this case the distribution vector D would comprise of 3 elements

(one for each cluster) such that D = [0.34, 0.51, 0.15].

The similarity vector S measures how similar a scan’s segments are to the clusters they

were assigned to. To illustrate this, Figure 6.3 visualises a basic clustering of supervoxels.

In this figure, a scan’s similarity score for a cluster would be calculated as the average

cosine similarity between its supervoxels (solid points) and the center of the cluster they

were assigned to (points outlined black).
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Figure 6.2: Distribution of a scan’s supervoxel cluster assignments across three clus-
ters A, B and C. This scan’s distribution vector D = [0.34, 0.51, 0.15]

Figure 6.3: Example k-means clustering visualisation containing: supervoxels be-
longing to a scan (solid points), supervoxels belonging to other scans in the dataset
(hollow points) and the center of each supervoxel cluster as computed by k-means

(black-outlined points).

Vectors D and S therefore approximate the distribution of points in a scan and how

similar a scan’s points are to other points in the campaign. Although only estimates,

these vectors describe important characteristics which can be used to differentiate scans.

Using the vectors alone, the second part of the component evaluates how well a scan

complies with one or more of the selection criteria in order to identify representative

scans for labelling.

Selection

The second part of the component is designed to identify a descriptive set of scans using

their distribution and similarity feature vectors D and S generated in the previous step.

Scans are evaluated by how well their distribution and similarity features meet one or

more of the selection criteria and the best performing scans are chosen for labelling.

Rather than focusing on a single method of evaluating scans, three separate scan selec-

tion schemes were developed. These schemes differ in the importance they assign each
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of the four selection criteria. The motivation behind this is that by comparing the classi-

fication performance of the scans chosen by each scheme, the relative importance of the

selection criteria may be revealed. It also avoids the scenario of a single overly-complex

“silver bullet” method unsuccessfully trying to meet all the criteria at once. Due to the

exploratory nature of the component it is more sensible to design three different schemes

and gauge their performance separately.

Each selection scheme chooses N (determined by the user) scans to be labelled. A

high-level explanation of the three schemes and the criteria they target is given below

including illustrative figures. Although each scheme targets specific criteria, they are

not necessarily mutually exclusive. More detail on the implementation of these schemes

is given later in the implementation Section, 6.3.

1. Balanced scheme. This scheme is designed to select the most balanced scans in

the dataset. It uses the previously estimated distribution vector D to determine

how balanced each scan is. If all the segments in a scan belong to one cluster

then it is less balanced than a scan with segments belonging to multiple clusters.

To illustrate this, an example of a well-balanced scan is presented in Figure 6.4,

where the proportion of supervoxels belonging to each cluster are roughly the

same at 0.33. Scans are given a score based on how much their distributions differ

from a hypothetical, perfectly balanced (uniform) scan’s distribution. The N best

(lowest) scoring scans are selected for labelling. This scheme primarily targets

criteria #3: “Scans should contain a diverse array of classes”.

Figure 6.4: Example of a well-balanced scan distribution; supervoxels belong to clus-
ters almost equally with three proportions ≈ 0.33.

2. Similarity scheme. The similarity scheme favours scans with segments com-

monly found throughout the campaign. It leverages the scan’s cluster similarity

vector S alone. For example, if a scan’s segments have a high cosine similarity to

the other segments in their clusters, this indicates that the scan’s points represent

point classes commonly found throughout the campaign. To illustrate this, Fig-

ure 6.5 shows how close the supervoxels (represented by solid points) of two scans,

a and b, are to the center of their clusters (represented by black-outlined points).
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In this figure, it is likely that scan a has more supervoxels similar to the rest of the

campaign than scan b since its supervoxels are closer to the centers of the clusters

they belong to. A score is given to each scan based on its supervoxels’ average co-

sine similarities to their centers and the N best (highest) scoring scans are chosen

for labelling. This scheme focuses on criteria #1: “Scans should contain classes

commonly found in other scans”.

Figure 6.5: Supervoxel cluster assignments of two scans: (a) a scan’s supervoxels
(solid points) near the center (black-outlined points) of the clusters they were assigned

to, (b) a second scan’s supervoxels further away from their cluster centers.

3. Distinct scheme. This scheme selects a distinct set of scans which maximally

vary from each other. It combines both the distribution vector D and similarity

vector S to form a feature vector V for each scan. The scans themselves (not their

segments) are then clustered by their V vectors into N (number of scans to be

selected) groups. Since clusters are inherently dissimilar to each other, the scan

closest to the center of each cluster is chosen to form a distinct set of N scans for

labelling. This scheme is illustrated in Figure 6.6, where 35 scans are clustered into

k=N =5 groups, and the 5 scans closest to their cluster centers in the V feature

space are selected for labelling. This scheme aims to meet criteria #2: “Scans

should not be too similar to each other” in addition to criteria #4: “Scans should

represent all scene types at least once”.
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Figure 6.6: k-means clustering of 36 scans in the V feature space with k=5, scans
closest to their cluster center outlined black.

6.3 Implementation

This section describes the implementation details of the design proposed in the previous

section and is also split into two steps: Representation and Selection.

6.3.1 Step 1: Representation

The first step is to generate a representation of every scan in the campaign that can be

used the three schemes to select scans. This step uses a pipeline of segmentation, feature

extraction and clustering methods to generate the distribution vector D and similarity

vector S for each scan. A description of each stage of the pipeline is given below.

Segmentation

Scans are segmented into supervoxels using PCL’s VCCS implementation available in

the SupervoxelClustering class. Important parameters for this method are voxel

resolution R voxel and seed resolution R seed, where R seed is the resolution of the

grid that the starting seeds of supervoxels are evenly distributed across, and R voxel

is the resolution of the octree used to maintain the adjacency graph that generates

the supervoxels. It was found that ideal values for these parameters (yielding the best

segmentation) depend on the point density of the scans. They are typically set to

R voxel ≈ 0.025m and 0.25m > R seed 6 0.5m for the terrestrial laser scans used in

this research. Other important parameters are the colour, spatial and normal weights

(w colour, w spatial and w norm) set between 0 and 1 that, by weighting the equation

used for voxel distances, determine the effect that these properties have on supervoxel

generation. These parameters are set at w colour=0, w spatial=0.3 and w norm=1.0

which yields slightly irregularly shaped segments that ignore (unreliable) colour values
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but strongly respect normal orientation e.g separate adjacent segments on the wall and

the ground.

Feature extraction

A total of 12 features are extracted from each supervoxel. The first 10 features, derived

from the supervoxel’s height data and local structure matrix’s eigenvalues, are chosen

based on their consistently high performance in previous studies [128]. Specifically, these

features are: verticality, linearity, planarity, surface variation, sphericity, anisotropy,

height difference, height deviation as well as the sum and ratio of 2D eigenvalues. A

formal definition of these features was given earlier in the feature chapter’s Table 4.1.

The voxelSize and centroidNormZ properties of the supervoxel are also used as they are

fast to extract (already computed during segmentation) and describe the supervoxel well.

Specifically, voxelSize is the number of points in the supervoxel and centroidNormZ is

the Z component of the normal to the supervoxel surface at the centroid point. These

two features help to further differentiate supervoxels e.g. a supervoxel on a tree trunk is

typically smaller than, and perpendicular to, a supervoxel on the ground.

Clustering

The mlpack library’s [24] kmeans method is used to group supervoxels from all the

scans into k clusters using their normalised feature vectors. The method’s k parameter,

which defines the number of clusters to be found, is determined using the so-called elbow

method. This method computes the total sum of squared errors within each cluster (i.e

intra-cluster variance) for k= 2...10 and plots them on a line graph, as shown in Figure

6.7.

Figure 6.7: Elbow method graph with optimal k = 4.

The point in the line graph where increasing k begins to yield a diminishing reduction

in variance denotes the optimal k. This point in the graph, indicated by the red circle

in Figure 6.7, resembles an elbow and is determined by the user. Although this method



59

requires user input, identifying the elbow point is intuitive and is required only once per

dataset.

Distribution and Similarity vectors

After the supervoxels are clustered into the optimal k number of groups, the resulting

assignments are used to calculate a distribution vector D and similarity vector S for

each scan.

The distribution vector D describes the spread of supervoxels in a scan, and comprises

separate scores for each cluster. A scan’s distribution score for a cluster is simply the

proportion of its supervoxels belonging to the cluster. This is computed as Pi = Ni/T ,

where Pi is the distribution score for cluster i, Ni is the number of supervoxels in the scan

belonging to cluster i and T is the total number of supervoxels in the scan. Dividing

by T normalises scores to [0,1] which ensures that differently sized scans with similar

distributions are sensibly compared by the selection schemes in Step 2. Finally, a scan’s

distribution scores are combined to form its distribution vector D = [P1, P2, ..., Pk],

where Pi is the proportion of the scan’s segments belonging to cluster i and k is the

total number of clusters.

The similarity vector uses the cosine similarity function to describe how similar a scan’s

supervoxels are to their clusters. The cosine similarity function defined in Equation 6.1

measures the similarity between two vectors A and B based on the angle between them

- the smaller the angle, the greater the similarity. This cosine similarity function has

previously been used to measure intra-cluster similarity as well as the similarity between

the centroids of two clusters [121]. It conveniently yields a value between -1 (completely

dissimilar) and +1 (completely similar).

sim(A,B) = cos(θ) =
A ·B
‖A‖B‖

(6.1)

A scan’s similarity score for a cluster C is calculated as the average cosine similarity

between its supervoxels in C and the center of C. This is formalised in Equation 6.2,

where Ci is the cosine similarity score for cluster i, SVi,j is the j th supervoxel in cluster

i, Ceni is the center of cluster i and Ni is the total number of supervoxels in cluster i.

Ci =

Ni∑
j=1

sim(SVi,j , Ceni)

Ni
(6.2)

A scan’s cosine similarity scores for each cluster are then combined to form its similarity

vector S = [C1, C2, ..., Ck], where Ci ∈ [−1, 1] is the average cosine similarity between
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the scan’s segments in cluster i and their center, and k is the total number of clusters.

Since the center of the cluster represents the mean supervoxel in the cluster, this is

a reasonable way of comparing a supervoxel to its cluster and is less expensive than

comparing it to all other cluster members. The sum of supervoxel-center similarities are

averaged to ensure that they fall into the [-1:1] range - this way the scores are indifferent

to cluster size and only reflect similarity.

6.3.2 Step 2: Selection

The selection step uses the previously generated distribution vector D or similarity

vector S (or both) to choose a final subset of N scans to be labelled. Three different scan

selection schemes were implemented. The implementation of each scheme is explained

below.

1. Balanced scheme

This scheme selects the most balanced scans in the dataset i.e. scans with segments

most evenly assigned to the clusters. To implement this scheme, only the scan’s cluster

distribution vector D = [P1, P2, ..., Pk] is required, where Pi is the proportion of the

scan’s segments belonging to cluster i and k is the total number of clusters. The scan’s

balance goal G = 1/k is also calculated - this is the hypothetical value of Pi in a perfectly

balanced scan. A balanceScore = |(P1 −G)|+ |(P2 −G)|+ ...+ |(Pk −G)| is calculated

for each scan. The N scans with the lowest balanceScore, i.e. the scores that differ the

least from the perfect score of 0, are selected for labelling.

2. Similarity scheme

This scheme favours scans with segments commonly found throughout the dataset i.e.

scans with segments most similar to their clusters. The scheme requires the scans’ pre-

viously generated cosine similarity vectors S = [C1, C2, ..., Ck] where Ci ∈ [−1, 1] is the

average cosine similarity between the scan’s segments in cluster i and their center, and

k is the total number of clusters. A similarityScore = (C1 +C2 + ...+Ck) is summed

for each scan. Since a cosine similarity of -1 and +1 denote a perfect dissimilarity and

similarity respectively, the N scans with the highest similarityScore are selected for

labelling.

3. Distinct scheme

The scheme aims to select a distinct set of scans i.e. scans that differ from each other as

much as possible. To do this, each scan’s distribution vector D and similarity vector S

are concatenated to form a new feature vector V = [D1, D2, ..., Dn, S1, S2, ..., Sn] where

Di and Si are the ith elements of vectors D and S and n is the (equal) size of the vectors.

These feature vectors are then stored as rows of a matrix and normalised column-wise
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using Equation 5.1 used previously for point features. The scan feature vectors are then

clustered using the mlpack kmeans method, with k = N (the total number of scans

to select) and the AllowEmptyClusters flag set to false. This flag forces the k-means

algorithm to cluster the scans into N groups. Although k is not optimally set e.g. with

the elbow method (as done when clustering supervoxels), the k-means algorithm still

attempts to maximise the difference of the clusters. The scheme does not assign a score

to each scan, instead it chooses a representative scan from each cluster - the scan closest

to the cluster center. This is simply the scan with the smallest Euclidean distance d =√
(V1 − CV1)2 + (V2 − CV2)2 + ...+ (Vn − CVn)2, where V is the scan’s feature vector

and CV is feature vector of the center of the cluster the scan was assigned to. The scan

with the smallest distance d is chosen from each cluster, resulting in a selection of N

distinct scans for labelling.

Once a scheme has selected N scans their indices are stored for the classifier to load

before training. In the case that there are no labels for the scans, the user can refer to

the system output for the list of scans to label.

This chapter has presented the design and implementation of the representative scan

selection component, following a brief review of potentially informative methods. This

component, comprising three schemes based on various selection criteria, enables the

investigation of whether scans automatically identified as representative can yield a more

accurate classifier than randomly selected scans. As the details of all three components

have now been established, the next chapter presents the experiments conducted on the

components and analyses the results.





Chapter 7

Evaluation

This chapter describes the experiments used to test the scan campaign classification

framework and analyses the results. It is split into an experiments section and a results

section. The experiments section introduces the test datasets, system specifications,

performance metrics and testing process. The results section then presents and analyses

the results relevant to each of the framework’s components.

7.1 Experiments

Before describing the experiments, it is important to recall the aims of the research.

The first aim is to investigate the performance of various classifiers, features and fea-

ture selection methods when used to classify large and diverse terrestrial laser scanning

campaign scans. The second research aim is to determine if an automated selection of

descriptive campaign scans can outperform a random selection when labelled and used

for classifier training. To meet these aims, three core components - classification, features

and scan selection - comprised of competing methods and schemes were implemented.

Only through rigorous testing can these methods be evaluated and the outcome of the

research be determined.

The experiments are therefore designed to measure the performance of each component’s

methods when used as part of a scan classification pipeline. Specifically, the experiments

use relevant metrics to measure the unseen scan classification speed and accuracy of

different classifiers, feature selection methods and scan selection schemes. The remainder

of this section describes the test datasets, system specifications, performance metrics and

the testing process used to test each method.

62
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7.1.1 Test Datasets and System

Rather than testing the methods on a single campaign, four different datasets were

used for variation and to enable a more comprehensive analysis of the methods. These

datasets contain scans from (mostly) outdoor scenes varying by size and the number of

classes they contain. Datasets with existing labels were chosen as manually labelling

enough scans would have prolonged testing. Two of the datasets are from cultural her-

itage preservation campaigns and two are from general terrestrial laser scanning cam-

paigns.

Figure 7.1: Example ground truth scans from the (a) Montelupo [7], (b) Songo
Mnara [5], (c) Oakland [78] and (d) Semantic3D [49] datasets. The binary datasets
(a,b) are labelled Keep (red) and Discard (green), while datasets (c,d) have multiple

class labels.

All of the test datasets’ scans were downsampled to a point density of 2.5cm, i.e. at most

one point per 2.5cm3, using the octree method described in Section 4.2.1. This baseline

downsampling is intended to improve the consistency of each method’s performance

across datasets. Downsampling also accelerates prediction speeds which, depending on

the original density and number of points in a dataset, can be very slow. Although

downsampling reduces the level of detail in scans, it does not invalidate the experiments

since the methods are tested on the same data. In addition to downsampling, some of the

datasets’ scans were split into two or four “scans” to increase the number of candidate

scans for the scan selection component. This was done by splitting scans by the sign

of their points’ X coordinates (two halves) or by the sign of their X and Y coordinates
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(four quadrants). Example ground truth scans from each dataset are shown in Figures

7.1.a - 7.1.d. The datasets are described below and summarised in Table 7.1.

Songo Mnara: This scanning campaign, provided by the Zamani project [5] at UCT,

surveys the ruins of a Tanzanian town with crumbling buildings surrounded by

trees and plants. The 10 original scans of the dataset were split in half yielding

20 scans. There are only two classes: Keep and Discard. Points within an area of

interest (the cultural heritage site) belong to the keep class while the vegetation

inside and the points outside this area belong to the discard class.

Montelupo: This cultural heritage campaign, provided by the VCG lab [7] at CNR-

ISTI, contains 8 scans split into 16 and covers an old Italian church inside a walled

area with many plants. Most of the scans survey the exterior walls but some are

taken from inside the church. Like Songo Mnara, points are labelled as Keep or

Discard. Points from the area of interest (the church) are kept while vegetation

around the area is discarded.

Oakland 3D: The Oakland 3D set [78] of 15 point clouds covers a university campus

in Oakland, USA. There are five classes: building, vegetation, ground, pole and

wire. These scans are from an urban scene with organised and regularly shaped

structures, which provide contrast to the cluttered and degraded objects in the

previous two datasets. Furthermore, the dataset’s particularly low density (only

1.3M points across 15 scans) could help identify the more robust methods.

Semantic3D: The original Semantic3D training set [49] contains 15 high resolution

point clouds of sites recorded across Switzerland and Austria. Of these, five scans

containing a church, fountain and various structures were split into quadrants

yielding 20 point clouds. There are eight classes including building, high vegeta-

tion, low vegetation and natural terrain. This dataset contains the most points

and classes of the four, and allows for intensive testing.

Name Description # Scans # Points Classes

Songo Mnara Ruins of town in Tanzania 20 8.8M 2: keep, discard

Montelupo Old church in Italy 16 6.4M 2: keep, discard

Oakland
University campus in

Oakland, USA
15 1.3M 5: building, vegetation, ground, pole, wire

Semantic3D
Various structures in

Switzerland and Austria
20 41.6M

8: man-made terrain, natural terrain,

high vegetation, low vegetation, building,

hardscape, scanning artefact, car

Table 7.1: Summary of test datasets including description, number of scans, points
and classes.
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For the binary datasets, 3000 samples per class are used for training, while 1000 training

samples are used for each class in the multiclass datasets. This sums to a total of 6000

(Songo Mnara), 6000 (Montelupo), 8000 (Semantic3D) and 5000 (Oakland) training

samples. Although classification benchmarks exist for the Semantic3D and Oakland

datasets, the framework is only tested on a subset of these datasets’ training data that

has been re-purposed to evaluate the framework’s methods.

Test system specifications

Tests were run on a PC with a hex-core Intel Core i5 CPU clocked at 4.4 GHz and 16GB

of DDR4 memory running Ubuntu 16.04. The test datasets are stored on a 6Gb/s solid-

state drive which greatly accelerates I/O, but does not influence speed measurements as

they only start once the point clouds have been loaded into memory.

Performance metrics

A collection of metrics were used to measure the speed and accuracy of the methods.

These metrics were chosen based on their common usage throughout the literature. The

same set of measurements are generated for each test run, of which the most relevant

and insightful are presented in the results Section 7.2. A definition of these metrics and

how they were implemented is given below.

7.1.2 Quantitative Metrics

Speed: The C++ std::chrono library was used for all timing measurements. It was

used to track the duration of feature extraction, classifier training and point prediction.

Only operations belonging to these tasks are tracked; the times for surrounding processes

e.g. disk I/O are ignored.

Accuracy: The scikit-learn [90] library’s sklearn.metrics module was used for all

quantitative accuracy measurements. A Python script was created to load a .csv file

containing the true and predicted classes of each point in the test set and generate the

following:

• The precision, recall and F1 score of each class. To understand these, let TPC and

TNC be the true positives and true negatives of a class C, while FPC and FNC

are the false positives and false negatives of C. Figure 7.2 illustrates the relationship

between these values. Precision is the fraction of points classified as C that are

relevant (actually belong to C ) i.e. TPC
TPC+FPC

, while recall is the fraction of relevant

points that are correctly classified i.e. TPC
TPC+FNC

. In essence, high precision means that

a significant number of points classified as C actually belong to C, while high recall

means that a significant number of points belonging to C were correctly classified. Due
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to the trade-off between these two metrics, an F1 score combines them by calculating

their harmonic mean: F1 = 2 ∗ precision∗recall
precision+recall . A high F1 score signifies that the

classifier has both high precision and recall.

Figure 7.2: Illustration of true/false positives/negatives. The circle denotes points
classified as C, while the left and right rectangles denote points that do and do not

truly belong to C respectively.

• The micro, macro and weighted averages of the class precision, recall and F1 scores.

The micro-average of a metric is calculated by first summing individual class contri-

butions to form TPall, TNall,FPall and FNall and then re-computing the metric that

is consequently influenced by any class imbalances. The macro-average of a metric

is simply the sum of the classes’ independently calculated metrics divided by the to-

tal number of classes. Although this is faster to compute, it does not account for

class imbalances. The weighted-average addresses this by weighting independent class

metrics by the proportion of their examples in the dataset before they are averaged.

• The overall accuracy of the classifier. This is the fraction of points in the test dataset

that are correctly classified. Note that this is effectively the same as the micro-average

precision, i.e. TPall
TPall+FPall

, but is presented separately due to its intuitive meaning.

• A confusion matrix that visualises the classifier’s performance. This is a table where

each row represents the points in a true class and each column represents the points

in a predicted class, such that the diagonal shows the true positives for each class.

Figure 7.3 illustrates this with two example matrices, a and b, where a uses raw

counts and b normalises counts by their class sizes. The layout of these matrices

helps identify which classes a classifier “confuses” with others.
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Figure 7.3: Example confusion matrices. Diagonals show true positives - points
with the same predicted and true class. Matrix (a) contains raw counts, matrix (b)

normalises counts by class sizes. Adapted from scikit-learn website1.

In addition to the above, one of two possible measurements are stored if the classifier was

trained on features selected by a feature selection method. These are the aggregated

feature ranks that were calculated if the classifier-independent filter selection method

was used, or the feature importances that were generated if the RF-dependent feature

importance method was used.

7.1.3 Qualitative Metrics

In order to qualitatively evaluate the accuracy of a classifier’s predictions, a predic-

tion cloud and an error cloud are generated for each classified test scan using PCL’s

io::savePCDFileASCII method. The prediction cloud simply colours points according

to their predicted classes, giving an overall impression of the classifier’s performance.

For more insight, the error cloud colours points by their predicted classes but displays

incorrectly classified points a high contrast colour. Examples of these point clouds are

given in Figure 7.4, where a shows a ground truth scan with 3 classes, b shows a classi-

fier’s attempt at classifying the ground truth and c highlights the incorrectly classified

points. These visualisations help reveal the classifier’s most challenging areas or classes.

1Confusion matrix tutorial available at: https://scikit-learn.org/0.17/auto_examples/model_

selection/plot_confusion_matrix.html

https://scikit-learn.org/0.17/auto_examples/model_selection/plot_confusion_matrix.html
https://scikit-learn.org/0.17/auto_examples/model_selection/plot_confusion_matrix.html
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Figure 7.4: Example point cloud visualisations. (a) A unseen ground truth scan with
three classes. (b) A classifier’s prediction of the points in the unseen scan. (c) Point

cloud with the classifier’s incorrect predictions highlighted.

7.1.4 Testing Process

The testing process was separated into two steps. The first step tested classifiers and

feature selection methods simultaneously. The second step then used the outcome of

the first step to test the scan selection schemes.

Datasets are split into training and prediction scans depending on the methods being

tested and the size of the dataset. Specifically, tests during step one (classifiers and

feature selection) use the same set of training and prediction scans for each dataset to

ensure that the methods are compared with equal conditions. However, when testing

scan selection, training scans are selected (or randomised) and therefore vary between

runs. In this case, the prediction set consists of scans that were not selected.

Step 1: Classifiers and feature selection methods

Three classifiers and two feature selection methods were tested. The classifiers are

the SVM, MLP and RF, the implementations and parameters of which were detailed

in Section 5.2. The feature selection methods tested were the filter-based (classifier-

independent) method and the RF-importance (classifier-dependent) method described

in Section 4.2 of the chapter on features. The set of all extracted features is also tested.

Each of the three classifiers are tested with each of the three feature selections, resulting

in nine sets of results (the previously discussed metrics) per dataset. This way, a classifier

may be evaluated using its average performance when paired with the feature selection

methods, and vice-versa. An example of how these results may look is given in Table 7.2,

where the averages of the rows and columns reveal that “Classifier 3” and “Feature Set

1” yield the highest average overall accuracy.

This approach is not exhaustive; only one configuration of each algorithm’s parameters

is tested and only one run is conducted for each pair of classifier and feature set. This

is because test runs are already slow, and adding algorithm variants or more runs would
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Feature Set 1 Feature Set 2 Feature Set 3 Avg

Classifier 1 0.7 0.66 0.71 0.69

Classifier 2 0.66 0.67 0.63 0.65

Classifier 3 0.78 0.72 0.74 0.75

Avg 0.71 0.68 0.69

Table 7.2: Table of (hypothetical) overall accuracy results of different classifier and
feature set combinations, with highest averages in bold.

cause a combinatorial effect and greatly increase test times. Instead, the methods are

tested on four separate datasets. Since there are nine classifier-feature selection com-

binations, this step yields 36 (9 × 4) separate sets of results for in-depth analysis. To

further mitigate randomness and ensure reliability, the methods are tested on identical

sets of training samples.

Step 2: Scan selection schemes

The second step tests the three designed scan selection schemes. These are the balanced,

similarity and distinct schemes as detailed in Section 6.3 of the scan selection chapter.

This occurs after the previous step as only the best-performing classifier and feature set

combination is used to test the schemes. This consistent baseline ensures that only the

effect of the selection schemes is captured.

A total of ten runs are made per dataset: one for each scheme and seven where scans

are selected randomly. This step therefore yields 40 (10 × 4) sets of results. Multiple

random runs are required since the results of different random selections are expected to

vary. By doing this, the minimum, maximum and average performance of the random

runs can be compared to the selection schemes’ performance. Note that the selection

schemes are deterministic and therefore do not require multiple runs; they always make

the same selection.
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7.2 Results

This section presents the results of the experiments described above, and is split into

three sections: 7.2.1 Features, 7.2.2 Classifiers and 7.2.3 Scan Selection. Through the

analysis of numerous tables, graphs and classified scans, this section provides the infor-

mation needed to answer the questions of this research.

7.2.1 Features

Feature extraction speed

The feature extraction times for each dataset are shown in Table 7.3. The results show

that the average time to extract feature vectors from 1000 prediction samples is between

17ms and 31ms, depending on the dataset. This means that 72,000 features (72 features

per sample) are extracted in < 0.1s. Although difficult to compare due to different test

sets and system specifications, these times are close to a similar approach [50] where 12M

vectors are extracted in 191s (average 16ms per 1000 samples), and much faster than

another approach [132] where feature extraction of the same 12M points took 23,000s

(average 2s per 1000 samples).

Training Prediction

# of points
Feature

extraction

Average

(1k points)
# of points

Feature

extraction

Average

(1k points)

Montelupo 6000 0.20s 34ms 4,783,495 150.55s 31ms

Songo Mnara 6000 0.13s 22ms 6,354,173 112.08s 18ms

Oakland 5000 0.08s 16ms 872,593 15.07s 17ms

Semantic3D 8000 0.18s 22ms 9,070,732 190.37s 21ms

Table 7.3: Number of samples and feature extraction times for each dataset during
training and prediction.

Three main factors help accelerate feature extraction times. First, OpenMP allows the

parallel feature extraction of points from point clouds with different resolutions. In

addition, C++ compiler optimisation flags (e.g. -O2) greatly improve the speed of the

Eigen library’s matrix calculations. Lastly, using a small radius (5cm) for cylindrical

neighbourhoods is much faster than larger radii (e.g. 50cm), especially on datasets with

many vertical structures. For example, feature extraction takes longer on Montelupo

than Songo Mnara, despite Montelupo having fewer points, due to the large number of

walls it contains.

There are no separate extraction times for the feature sets chosen by feature selection.

This is because selected sets are likely to still require eigendecomposition or cylindrical
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neighbourhood search, the most expensive parts of extraction. It is therefore more

practical to extract all features and reduce them than it is to extract selected features

only. A more important observation - the speed of using selected features for training

and prediction - is analysed later in the classifier results, Section 7.2.2 .

Comparison of Features

Figure 7.5: Average filter selection score of each feature across all four datasets, grouped by
feature and coloured by resolution.

Figure 7.6: Average feature importance of each feature across all four datasets, grouped by
feature and coloured by feature resolution.
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Figure 7.7: Number of times each feature (at any resolution) is selected by filter or importance
selection on all four datasets.

Features are evaluated using the scores assigned to them by each feature selection method

and by the number of times they were selected. Figure 7.5 shows the average filter

selection score of each feature, while Figure 7.6 shows the average feature importance

score. These are the average scores across all four datasets and are colour-coded by

the resolution of the point cloud the feature was extracted from. In addition to these,

Figure 7.7 shows the number of times a feature was selected by either method, regardless

of resolution.

The results show that some features scored well on both selection methods at one or more

resolution: V (verticality), Cλ (curvature), Oλ (omnivariance), Aλ (anisotropy), ∆H

(height difference), σH (height deviation), Hrange (vertical range) and Hbelow (height

below). Other features score low on both selections: Lλ (linearity), Σλ3D (sum of 3D

eigenvalues), Σλ2D (sum of 2D eigenvalues), M1 - M4 (moments), D3D (3D density)

and D2D (2D density). These findings are consistent (where applicable) with a previous

feature ranking study [130] on the Oakland dataset.

Some features achieved high scores with one selection method but low scores on the other.

Filter-based selection scored all (except Σλ3D) 3D shape features highly, but importance

selection scored Lλ (linearity), Pλ (planarity) and Eλ (eigenentropy) amongst the lowest.

Importance-selection highly favoured height features like Hrange which achieved double

the score of the next best feature, whereas filter-selection scored height features well but

relatively close to others.

The multi-scale approach of extracting features at 2.5cm, 5cm and 10cm resolutions

had a limited impact on feature scores. Lower resolutions are somewhat favoured, with

10cm, 5cm and 2.5cm features being selected 78, 63 and 59 times respectively. However,

features like V and σH do much better at 10cm, while Hrange does better at 2.5cm/5cm.

This is likely because V and σH benefit more from k-nearest neighbour search’s increased

context at lower resolutions, whereas Hrange is extracted from a cylindrical (r=5cm)
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neighbourhood that could miss important points at lower resolutions. If the frameworks

implementation of multi-scale features had more levels (as in another approach [50]) or

larger intervals e.g. 5cm, 20cm, 50cm, there may have been a greater difference between

features scores at different resolutions.

Comparison of Feature Selection Methods

a) Montelupo b) Songo Mnara

All Filtered Important All Filtered Important

RF 0.8822 0.8732 0.8817 RF 0.9135 0.9028 0.9094

SVM 0.8614 0.8479 0.8421 SVM 0.9010 0.8181 0.8904

MLP 0.8370 0.8553 0.8404 MLP 0.8807 0.8960 0.8902

Average 0.8602 0.8588 0.8547 Average 0.8984 0.8723 0.8967

c) Oakland d) Semantic3D

All Filtered Important All Filtered Important

RF 0.8853 0.8812 0.8794 RF 0.7725 0.72301 0.7606

SVM 0.8672 0.8788 0.8661 SVM 0.7379 0.7082 0.7478

MLP 0.8754 0.8726 0.8678 MLP 0.7072 0.6999 0.7181

Average 0.8760 0.8775 0.8711 Average 0.7392 0.7103 0.7422

Table 7.4: Overall accuracy of each classifier/feature set combination for each dataset.
Highest scoring feature set per classifier in bold.

All Filtered Important

Montelupo 0.8602 0.8588 0.8547

Songo Mnara 0.8984 0.8723 0.8967

Oakland 0.8760 0.8775 0.8711

Semantic3D 0.7392 0.7103 0.7422

Average 0.8434 0.8297 0.8412

Table 7.5: Summary of each feature set’s overall accuracy on each dataset. Highest
overall accuracy per dataset in bold.

To evaluate the impact of using selected features instead of all features, Table 7.4 gives

the overall accuracy of each classifier and feature set combination for each dataset. The

averages of these scores is then summarised in Table 7.5. These results show an almost

negligible difference in accuracy when using selected features over all features. Indeed,

the difference in average accuracy between all and filter-selected features is 1.4%, while

the difference between all and importance-selected features is 0.2%, as seen in Table 7.5.

In some cases this difference is larger, e.g. on Semantic3D (RF) all features achieved

roughly 5% higher accuracy than filter-selected features, and on Songo Mnara (SVM) the
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classification results achieved when using all features were around 8% more accurate than

when using filter-selected features. Overall, these results show no significant difference

in accuracy between all and selected features.

This is a desirable effect of feature selection; using fewer features (resources) with mini-

mal cost to accuracy. However, the implemented selection methods had favourable con-

ditions. Although 25 features are selected (roughly a third of all 72 features), this is a

lot considering that there are only 24 unique features extracted at 3 different resolutions.

Furthermore, the minor increment in resolution (2.5cm, 5cm, 10cm) may have created

redundant features, meaning there are fewer useful features for a selection method to

“miss”. If the original set consisted of 72 unique features, or if only 10 features were

selected by the methods, the selected sets may have achieved much lower accuracy than

the original set.

Regardless of the minor accuracy difference, there are some noteworthy interactions

between classifiers and feature sets. While the RF was always most accurate when using

all features, the MLP was most accurate on 3 of 4 datasets when using a smaller feature

set. This may be due to the RF’s large number of max-depth decision trees successfully

mapping a large input vector, whereas the MLP’s shallow design (few hidden layers

and nodes) performs its best with fewer inputs. The RF was also more accurate when

using important features over filtered features on 3 of 4 datasets - this is expected since

importance-based selection is dependent on a trained RF. Lastly, despite filter-selection

being classifier-independent, it did not consistently outperform importance selection on

the non-RF classifiers (SVM and MLP) as may be expected — on Semantic3D, important

features were 4% (SVM) and 2% (MLP) more accurate than filter-selected features.

Overall, the trade-off between accuracy and resources saved is worth it under the right

conditions. Depending on the quality of the original set, the size of the reduced set and

the type of classifier used, the advantages of feature selection will vary. It is particularly

useful for classifiers with training and prediction times that scale poorly with large

feature sets, as is discussed later in the classifier results, Section (7.2.2).
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Highlighted example: Semantic3D

Figure 7.8: Filter selection scores of features extracted from the Semantic3D dataset, grouped
by feature and coloured by resolution. The 25 top-scoring features (above dashed line) are

selected for training.

Figure 7.9: Feature importance of features extracted from the Semantic3D dataset, grouped by
feature and coloured by resolution. The 25 top-scoring features (above dashed line) are selected

for training.

This highlighted example illustrates and explains one of the larger differences in accuracy

between the feature selection methods. On the Semantic3D dataset, the RF trained on

important features achieved 4% higher overall accuracy than the filter-selected features,

as was shown in Table 7.4. This is relatively large difference compared to the other

results and is worth investigating.
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The feature scores given by each method are shown in Figure 7.8 (filter selection) and

Figure 7.9 (importance selection). In these graphs, the 25 top-scoring features (those

above the dashed line) are chosen by the respective feature selection method. The results

show that the majority of selected features are shared by each method at one or more

resolution. Of the features not selected by both methods, Hrange (vertical range) stands

out; it has the largest feature importance score by a large margin, but is just missed by

the filter-selection method. Based on these scores, the difference in accuracy between

the two feature sets may be explained by whether or not they include Hrange.

Figure 7.10: Normalised confusion matrices of RF classification on Semantic3D dataset, using
filter selection features (left) and importance selection features (right).

To determine where this difference lies, Figure 7.10 shows two normalised confusion

matrices of a RF trained on each feature selection to classify the Semantic3D test set.

The diagonals of these matrices (the accuracy on each class) are similar; for 7 classes,

the maximum difference in accuracy is 3%. However, the importance set has 8% higher

accuracy than the filter set on the Buildings class. This makes sense since the Hrange

feature describes the height difference of points in an upright cylinder and is intended to

describe tall vertical objects like walls or poles. The Buildings class is one of the largest

in the dataset, this 8% therefore explains much of the 4% difference in overall accuracy.
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Figure 7.11: Classification of Semantic3D region after training a RF on different feature sets:
(a) filter selection features, (b) importance selection features, (c) ground truth reference.

To visualise the difference in accuracy on the Buildings class, Figure 7.11 shows a region

of a classified Semantic3D scan for the filtered selection (a), importance selection (b)

and the ground truth (c). The filtered selection misclassifies many Building (yellow)

points as Scanning artefacts (grey) or Hardscape (teal), whereas the importance selection

correctly classifies most Buildings points. Without Hrange, the filtered selection likely

confuses Buildings with Hardscape and Scanning artefacts (13% and 6% false positives,

per Figure 7.10) as it may lack the vertical context needed to differentiate them. The

points belonging to windows are challenging for both selections. This could be explained

by how the windows are receded into the wall. Due to this, height features derived from

a cylinder with a small radius (5cm) may be less helpful since the wall points are not

captured by the cylinder.
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7.2.2 Classifiers

Training and prediction speeds

To evaluate classifier speed, Table 7.6 shows the training and prediction speed of the

RF, SVM and MLP classifiers on each dataset. Separate timings are given for each

feature set: all, filtered and important. Since speed greatly depends on classifier de-

sign and parameters — i.e. they do not represent all classifiers of a particular type —

implementation details are considered when comparing results.

a) Montelupo

Alltrain Filttrain Imptrain Allpredict Filtpredict Imppredict

RF 0.99 0.64 0.62 83.69 81.39 79.80

SVM 12.90 4.54 4.38 256.52 165.63 130.06

MLP 0.26 0.21 0.14 8.58 4.72 4.73

b) Songo Mnara

Alltrain Filttrain Imptrain Allpredict Filtpredict Imppredict

RF 0.96 0.63 0.60 111.02 107.58 106.18

SVM 12.53 4.81 4.98 340.13 123.26 121.87

MLP 1.00 0.19 0.21 11.27 6.35 6.27

c) Oakland

Alltrain Filttrain Imptrain Allpredict Filtpredict Imppredict

RF 1.05 0.69 0.67 10.73 10.61 10.60

SVM 20.73 7.16 7.16 81.54 31.38 42.73

MLP 0.74 0.44 0.37 1.63 0.92 0.91

d) Semantic3D

Alltrain Filttrain Imptrain Allpredict Filtpredict Imppredict

RF 3.78 2.35 2.26 159.09 158.56 152.85

SVM 66.54 25.53 23.43 2040.46 824.47 781.01

MLP 1.03 0.73 0.46 17.48 9.81 9.82

Table 7.6: Time (in seconds) of each classifier’s training and prediction phases for each feature
set, grouped by dataset.

The results show that across all four datasets, the MLP classifier had the fastest training

and prediction speeds for all feature sets. The SVM was the slowest by a large margin,

while the RF had training speeds similar to the MLP but much slower prediction speeds,

although not as slow as the SVM. For example, on Semantic3D (Table 7.6.d) with

all features the training times of the MLP, RF and SVM were 1, 4 and 67 seconds

respectively, while the prediction times were 17, 159 and 2040 seconds. The MLP’s fast
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train speed is largely due to its shallow design; only one hidden layer which contains

(n features + n classes)/2 neurons. In addition, MLPs are inherently fast predictors

due to the low cost of passing test samples through the network. SVM training times

are increased by a factor of 5 due to 5-fold cross validation, but would still be the

longest without it. The SVM’s training and prediction is also particularly slow on

multiclass datasets (Tables 7.6.c and 7.6.d) due to the implementation’s one-against-one

approach. The RF training times are close to the MLP since decision trees are simple

to train. However, prediction times are around 10 times slower. RF prediction speed

is proportional to the number of trees in the forest — if the implementation trained 50

trees instead of 100, prediction would be twice as fast.

The results in Table 7.6 also show the impact of feature set size on training and prediction

speeds. The complete feature set (All) has 72 features while the important (Imp) and

filtered (Filt) sets have 25 features. The SVM and MLP are much faster when using

reduced sets. Using reduced sets, the SVM trains and predicts in 30% - 40% of the

time it takes using all features while the MLP takes approximately 50% of time. This

is due to a large decrease in complexity when using fewer features; the SVM benefits

from mapping samples to a lower dimension hyperspace, while the MLP is accelerated

by fewer connections between neurons. The effect of smaller sets on the RF’s times is

less noticeable. In particular, prediction speeds are at most 5% faster. This is because

RF prediction requires the same number of trees (100) to be traversed when classifying

a sample, regardless of the number of features.

Classification accuracy

To begin assessing classification accuracy, Tables 7.7 - 7.10 show the recall and precision

of the classifiers on each class in the test sets. As a reminder, recall is the proportion of

points in a class C that are correctly classified, whereas precision is the proportion of

points classified as C that are correctly classified. These are important to differentiate,

since recall indicates how well the classifier predicts points in C and precision indicates

how often the classifier is correct when it predicts a point as C.
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Montelupo

Recall

Keep Discard

RF 0.8722 0.8905

SVM 0.8816 0.8447

MLP 0.8276 0.8448

Precision

Keep Discard

RF 0.8689 0.8934

SVM 0.8252 0.8956

MLP 0.8160 0.8550

Table 7.7: Class precision and
recall values of each classifier

(Montelupo).

Songo Mnara

Recall

Keep Discard

RF 0.8922 0.9346

SVM 0.8927 0.9093

MLP 0.8715 0.8897

Precision

Keep Discard

RF 0.9309 0.8978

SVM 0.9067 0.8956

MLP 0.8864 0.8752

Table 7.8: Class precision and
recall values of each classifier

(Songo Mnara).

On the binary datasets (tables 7.7 and 7.8), there is little disparity between the precision

P and recall R of any classifier. In most cases, a classifier’s P and R are within 0.02

of each other. However, on Montelupo (7.7) the SVM has R − P ≈ 0.06 (Keep) and

P −R ≈ 0.05 (Discard). This means that the classifiers, except for the SVM, correctly

predicted points in C about as often as they were correct when they classified a point

as C.

Oakland

Recall

Ground Building Vegetation Pole Wire

RF 0.9615 0.4974 0.8059 0.7439 0.7761

SVM 0.9501 0.4956 0.7549 0.7174 0.7713

MLP 0.9614 0.5888 0.7072 0.7633 0.7861

Precision

Ground Building Vegetation Pole Wire

RF 0.9886 0.7988 0.8829 0.1140 0.0340

SVM 0.9960 0.7976 0.8762 0.1107 0.0221

MLP 0.9896 0.7983 0.9176 0.0840 0.0326

Table 7.9: Class precision and recall values of each classifier (Oakland).

The multiclass Tables (7.9 and 7.10) show larger differences between R and P . On the

Pole and Wire classes of Oakland (Table 7.9), the classifiers have an average R of 0.74,

0.78 and average P of 0.10, 0.03 respectively. This means that Pole and Wire points are

classified correctly most of the time, but the classifier is rarely correct when it classifies a

point as one of these classes. This is common with smaller classes in imbalanced datasets

since false positives are more likely and have a larger impact on P . On Semantic3D’s
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(Table 7.10) Building class, the average R and P are 0.63 and 0.91 respectively. Although

37% of Building points were incorrectly classified, the classifiers are correct 91% of the

times they predict a point as Building. This indicates that the classifiers confuse Building

points with others, as shown by the confusion matrices (Figure 7.10) used to evaluate

feature sets, which can occur when there are similar classes in the dataset.

Semantic3D

Recall

Man-made

terrain

Natural

terrain

High

vegetation

Low

vegetation
Building Hardscape Artefacts Cars

RF 0.9455 0.9008 0.7735 0.5934 0.6962 0.3789 0.7553 0.6438

SVM 0.9333 0.8688 0.6768 0.6103 0.6608 0.4075 0.7654 0.5539

MLP 0.9480 0.8643 0.6765 0.6679 0.5571 0.3690 0.7367 0.4092

Precision

Man-made

terrain

Natural

terrain

High

vegetation

Low

vegetation
Building Hardscape Artefacts Cars

RF 0.9318 0.8939 0.7389 0.6100 0.9144 0.2776 0.1201 0.2318

SVM 0.9106 0.8811 0.7188 0.5446 0.9125 0.2693 0.0830 0.1939

MLP 0.8743 0.7673 0.7546 0.5080 0.8989 0.2833 0.1059 0.1232

Table 7.10: Class precision and recall values of each classifier (Semantic3D).

Using recall or precision alone, comparing classifiers is limited. This is because a classifier

may have high recall but low precision, or vice-versa. While this can reveal class bias and

confusion, metrics like overall accuracy (the proportion of correct classifications) and F1

score (a combination of recall and precision) are more suitable for general comparison.

Table 7.11 summarises the overall accuracy (OA) of each classifier and feature set com-

bination. The results show that the RF paired with all features consistently has the

highest overall accuracy on all datasets. Using all features, the RF’s average OA is

86.3%, which is 2.1% higher than the average OA of the SVM (84.2%) and 3.8% higher

than the MLP (82.5%). The difference is smaller when averaging the OA of all three

feature sets, where the RF has 85.5% average OA which is almost 3% higher than both

the SVM (83%) and MLP (82.8%). However, the RF’s OA with all three feature sets is

still higher than the other classifiers paired with any feature set. This gives a general

impression of the classifiers’ accuracy.
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RFall RFfilter RFimp SVMall SVMfilter SVMimp MLPall MLPfilter MLPimp

Montelupo 0.882 0.873 0.882 0.861 0.848 0.842 0.837 0.855 0.840

Songo Mnara 0.914 0.903 0.909 0.901 0.818 0.890 0.881 0.896 0.890

Oakland 0.885 0.881 0.879 0.867 0.879 0.866 0.875 0.873 0.868

Semantic3D 0.772 0.723 0.761 0.738 0.708 0.748 0.707 0.700 0.718

Avg 0.863 0.845 0.858 0.842 0.813 0.837 0.825 0.831 0.829

Classifier Avg 0.855 0.8306 0.8284

Table 7.11: Overall accuracy of each classifier and feature set combination for all four datasets.
Highest overall accuracy in bold.

To reveal which classes are the most challenging for each classifier, Figures 7.12.a -

7.12.d show their class F1 scores. Since the F1 score is the harmonic mean of recall and

precision, i.e. F1 = 2 ∗ P∗R
P+R , it follows that classes with low F1 scores have low P , low

R or both. This is evident by the low Pole and Wire F1 scores in Figure 7.12.b, which

have a very low average precision (0.10 and 0.03).

Figure 7.12: Classifiers’ mean F1 scores for each class and dataset: (a) Montelupo, (b) Oak-
land, (c) Songo Mnara, (d) Semantic3D. Bars are clustered by class and coloured by classifier.
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On the binary datasets (Figures 7.12.a and 7.12.c), the RF has the highest F1 score

on all classes, followed by the SVM and the MLP. However, on the multiclass datasets

(Figures 7.12.b and 7.12.d), the ranking of classifier F1 scores is less consistent. For

example, on Oakland (Figure 7.12.b) the MLP scores the highest on the Building class

but the lowest on almost all others. Similarly, on Semantic3D (Figure 7.12.d) the RF has

the highest score on every class except Hardscape, where it scores the lowest. To further

illustrate the differences between the classifiers’ results, two highlighted examples are

presented next.
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Highlighted example 1: Montelupo

The classification of a Montelupo scan is presented for each classifier in Figure 7.13: (a)

MLP, (b) SVM and (c) RF. The ground truth of the scan (d) is also provided. On this

dataset, the MLP, SVM and RF achieve 84%, 86% and 88% OA respectively.

Figure 7.13: Classification of a Montelupo scan with each classifier: (a) MLP, (b) SVM, (c)
RF, (d) ground truth. Keep class = red, discard class = green. Yellow square contains arbitrary
class boundary, blue circle shows scanner’s position. Classifiers use complete set of features for

training and prediction.

As with other scans in the dataset, the ground truth (d) contains arbitrary class bound-

aries. This is because points are labelled as Keep or Discard rather than traditional

classes like Wall or Vegetation. Due to this, points belonging to the same object or the

same type of object can have different labels. For example, the back wall in the scan is

mostly labelled Keep, while the front wall is fully labelled as Discard. In addition, the

same site object or structure may appear in multiple scans but with different labels.

The results show a noticeable difference between the classifiers’ predictions. For example,

the MLP has the most errors on the front wall and the left side of the back wall. The
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SVM classifies the left side more accurately than the MLP, while the RF has the highest

accuracy. These points are consistently labelled throughout the dataset, meaning that

these results reflect the classifiers’ accuracy on normal, expected test points.

Results on other areas are affected by inconsistent labelling, for example: the arbitrary

class boundary on the back wall (indicated by the yellow square). The right side of this

boundary is accurately classified by the RF, but poorly classified by the other classifiers.

The opposite occurs to the left of the boundary, where the RF has the most errors.

This may be due to this wall appearing in other scans where the class boundary occurs

further to the left, and suggests that the RF is the best at recognising objects/points co-

occurring in multiple scans. Although this leads to errors where boundaries are shifted,

the RF’s improved ability to recognise previously seen areas could explain its higher

overall accuracy.

Lastly, a classifier’s statistical accuracy is affected its performance at varying point

densities. Although scans are downsampled to one point per 2.5cm3, points furthest

away from the scanner are much sparser. It follows that results from areas closer to the

scanner have a larger impact on statistical accuracy. In the example, many of the RF’s

incorrect predictions occur around the class boundary (yellow square) on the back wall,

which is relatively far from the scanner’s position (blue circle). Due to point sparsity,

the RF’s errors on the back wall have a small impact on overall accuracy, while the

MLP and SVM’s errors on the dense front wall have a large, negative effect on accuracy.

The RF’s high accuracy on dense areas and lower accuracy on sparse, low-impact areas

further explains its rank above the other classifiers.
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Highlighted example 2: Oakland

The normalised confusion matrices of the three classifiers’ predictions on the Oakland

dataset are shown in Figure 7.14. Although the classifiers achieve similar OA on this

dataset (RF 89%, SVM 87%, MLP 88%), their F1 scores on each class are varied. These

matrices help explain the classifiers’ varying class F1 scores.

Figure 7.14: Normalised confusion matrices of RF, SVM and MLP classifiers’ results on Oak-
land dataset (using all features).

The MLP achieves the highest F1 score (0.68) on the Building class, roughly 0.07 higher

than the other classifiers. All three classifiers confuse the two smaller classes (Pole and

Wire) with Building points fairly often (between 12% - 26% of points). However, on

the two larger classes, Ground and Vegetation, the MLP confuses only 2% of Ground

points and 6% of Vegetation points with Building points. Considering class size, this

is far fewer points than the RF (6% Ground, 14% Vegetation) and SVM (2% Ground,

11% Vegetation) misclassify as Building. However, the MLP is also the most likely to

incorrectly classify points in other classes as Building. This suggests that the MLP is

biased towards the Building class, improving its accuracy on the class but lowering its

overall accuracy on the dataset.
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Figure 7.15: SVM’s confusion between Building and Wire class. (a) Wire points classified as
Building, (b) Distant, low density region with Building points classified as Wire. Building =

green, Wire = yellow.

The SVM has a very low F1 score on the Wire class despite usually having the second

highest F1 score on other classes. The classifiers have very low precision (< 4%) on

this class, meaning that very few of the points predicted to be Wire actually are. In

particular, the SVM incorrectly classifies Building points as Wire 26% of the time. The

confusion between Building and Wire is likely due to their similarity at low point densi-

ties where walls appear as stacked, horizontal lines. This effect, and the SVM’s confusion

between the two classes is illustrated in Figures 7.15.a (Wire confused as Building) and

7.15.b (Building confused as Wire). This example of large classes being misclassified

as smaller classes like Wire is indicative of the SVM’s lowest overall accuracy on the

dataset.

Figure 7.16: Classifiers’ results on points belonging to an isolated tree in the Oakland dataset:
(a) MLP, (b) SVM and (c) RF. Vegetation = blue, Pole = teal .

Lastly, the RF achieves the highest F1 score on the Vegetation class. It also has the

highest accuracy on this class at 81%, which is 6% higher than the SVM and 10% higher
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than the MLP. Vegetation is a large class, and is only sometimes (8%) confused with the

Pole class by the RF. The MLP confuses Vegetation with Poles almost twice as often

(15%), while the SVM only confuses the two 10% of the time, but misclassifies 8% of

Vegetation points as Wire, twice as often as the RF. Figures 7.16.a - 7.16.c illustrate

the classifiers’ confusion between the Vegetation (blue) and Pole (teal) class, where the

RF is the most accurate. Overall, the RF’s high F1 score on the Vegetation class and

low confusion rates explains its position as the most accurate classifier on the Oakland

dataset.
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7.2.3 Scan Selection

The previous results show that the RF and complete feature set were consistently the

most accurate combination for classification. The scan selection experiments therefore

used this pairing to test random selection and the designed selection schemes. The

remainder of this section analyses the speed and accuracy of the schemes, followed by

two highlighted examples.

Selection pipeline speed

To evaluate scan selection speed, Table 7.12 shows the processing times of the pipeline’s

four stages for each dataset. Segmentation is the most expensive stage due to the

high complexity of the VCCS algorithm, accounting for up to 80% of processing times.

The fastest stage, Scoring, consistently takes less than 0.1s since calculating balance and

similarity scores from cluster assignments is computationally simple. The Features stage

accounts for roughly 15% of the pipeline, taking up to 6s to extract supervoxel-based

features, making it much faster than point-based features which require up to 190s for

prediction alone (as shown in Section 7.2.1). The Clustering times vary the most, taking

between 5% and 27% of the total time, which is likely due to the time needed for k-means

to converge.

Segmentation Features Clustering Scoring Total # Scans Avg

Montelupo 21.17s 4.13s 1.36s 0.01s 26.71s 16 1.67s

Songo Mnara 16.56s 3.32s 7.25s 0.04s 27.17s 15 1.81s

Oakland 1.83s 0.36s 0.57s 0.01s 2.77s 20 0.14s

Semantic3D 19.92s 5.77s 9.61s 0.07s 35.37s 20 1.77s

Table 7.12: Time (in seconds) required by the four main scan selection stages, with
average selection time per scan.

In total, selection takes around 30s for three of the four datasets tested, while the low-

density Oakland dataset takes only 3s. Averaging by the number of scans, it takes

less than 2s per scan regardless of dataset. Although no formal testing of manual scan

selection was done, first-hand experience with manual selection and discussions with

scan operators indicates that manually selecting scans is much slower. Indeed, manually

iterating through a dataset to inspect and identify useful scans while simultaneously

comparing them to previously seen scans is a lengthy task. For larger scanning cam-

paigns, this is increasingly onerous as there are more scans to recall and comparing them

is (conceptually) a n2 problem. On the tested datasets, a conservative estimate of 20s

per manually selected scan means that the proposed method is at least one order of

magnitude faster than manual selection. It is even faster on low-density datasets which

could be more difficult to manually select from due to their lack of detail.
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An alternative to both methods, random selection, was also tested. However, since

selecting scans via random indices is essentially instant, no timing measurements are

presented. Instead, later sections will determine if the effect of automated selection on

classification accuracy is worth the time overhead it introduces.

Segmentation and clustering

To provide insight on how the optimal number of supervoxel clusters is chosen, Figures

7.17.a - 7.17.d show the elbow method graphs for each dataset. As a reminder, the elbow

is the point where the reduction of sum of squared errors (SSE) starts to diminish as k

(number of clusters) increases.

Figure 7.17: Elbow method graphs used to find optimal k for k-means supervoxel clustering
for each dataset: (a) Montelupo, (b) Songo Mnara, (c) Oakland, (d) Semantic3D.

This point is manually identified, meaning the method is prone to human error and not

entirely automatic. However, the task is straightforward and quick - typically requiring

less than 5 seconds to complete. A more important factor is the segmentation parame-

ters, specifically the voxel resolution R voxel and seed resolution R seed of the VCCS

algorithm. Depending on how these are set, the supervoxels and the resulting elbow

method graphs can change greatly, leading to a different optimal k being chosen. In
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practice, choosing k requires iteratively tweaking segmentation parameters until scans

are reasonably segmented and a clear elbow point can be identified.

The elbow graphs show that three of the datasets (Figures 7.17.a - 7.17.c) have optimal

k=4 and the Semantic3D dataset (Figure 6.7.d) has k=3. This difference could be due

to the large variation of scenes in the Semantic3D dataset causing k-means to group

supervoxels into three general clusters rather than four more distinct clusters. It could

also be due to the particularly large number of Semantic3D segments, resulting in smaller

segment “classes” being unable to form their own clusters and instead grouping with

more common segments.

Figure 7.18: Supervoxel segmentation and k-means cluster assignments of scans from two
datasets: Montelupo segments (a) and cluster assignments (b), Semantic3D segments (c) and

cluster assignments (d).

Visual results from the first two scan selection stages, segmentation and clustering, are

presented in Figure 7.18. Note that these are results from two separately processed

datasets, and that segments from all scans in a dataset are clustered at once. Segmenta-

tion of the Montelupo (Figure 7.18.a) and Semantic3D (Figure 7.18.c) scans is generally

good, with most points from clearly different objects (e.g. walls and ground) belonging

to different segments. However, points in very sparse areas, e.g. the green points near
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the center of Figure 7.18.a, are not close enough to other points to form segments. Given

the low number of these points and the limited detail they provide, they are ignored by

the clustering step.

The cluster assignment scans (Figures 7.18.b and 7.18.d) show mixed results. Overall, a

large proportion of the segments in each cluster belong to the same type of object. For

example, in Figure 7.18.d most ground, building and vegetation points are assigned to

the green, blue and red clusters respectively. However, in Figure 7.18.b certain segments

are clearly in the wrong cluster, such as the horizontal segments on the top of the walls

being mistaken for ground (green) segments. Lastly, very small segments (less than 5

points) such as those of the roof in Figure 7.18.d are not clustered since some features

require at least 5 points to be extracted.

Despite some limitations, the results of the segmentation and clustering stages are sat-

isfactory and provide enough information for the rest of the pipeline to describe scans

and make an informed selection. However, a worst case segmentation or clustering could

limit the rest of the pipeline’s ability to sensibly compare scans. The effect of clustering,

and other factors, on a selection’s classification accuracy is therefore analysed in the

following sections.

Effect of schemes on classification accuracy

Before comparing the RF’s accuracy when trained on selected or random scans, it is

important to analyse the random runs alone. Table 7.13 shows the RF’s overall accu-

racy (OA) when training on random scans, with seven runs per dataset. The standard

deviation of the OA is also given.

Rand1 Rand2 Rand3 Rand4 Rand5 Rand6 Rand7 σ

Montelupo 0.8774 0.8849 0.8659 0.7324 0.8517 0.8381 0.8874 0.0541

Songo Mnara 0.9206 0.8913 0.9088 0.9118 0.9062 0.9186 0.9018 0.0101

Oakland 0.9113 0.9076 0.9196 0.9098 0.9090 0.9088 0.9046 0.0047

Semantic3D 0.7823 0.7416 0.7439 0.7363 0.6110 0.7329 0.6982 0.0543

Table 7.13: Overall accuracy and standard deviation of RF classifier trained on ran-
dom scan selections, 7 runs per dataset.

The datasets with the largest deviation in OA (5.4%) are Montelupo and Semantic3D.

This is due to number of factors. Firstly, the Montelupo dataset has six scans with

many more points than other scans due to the resolution they were originally captured

at. Secondly, the Semantic3D dataset is the most varied of the four tested, with scans

spanning large areas from different sites. Lastly, both datasets contain at least one very

small, uninformative scan; a result of splitting the original scans by their X-coordinate

signs. While undesirable, these “anomaly” scans are included to test if the selection
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schemes avoid them. Given these flaws and the lack of homogeneity between scans,

these datasets are therefore challenging and the deviation in OA yielded by random

training selections is understandable.

On the Songo Mnara and Oakland datasets however, there is a much smaller deviation

(no more than 1%) in OA between random runs. Scans in these datasets are more homo-

geneous, with similar objects and composition, as well as less significant size differences.

Furthermore, neither of these datasets contain any particularly problematic scans fol-

lowing X-coordinate splitting. Lastly, the RF consistently achieves a higher OA (around

90%) on these datasets than on the others. This suggests they may be inherently sim-

pler to model, reducing the need for highly descriptive scans and reducing the impact of

changes to the training set. The small deviation in accuracy between random runs on

these two datasets is therefore explained by their homogeneity and relative simplicity.

To compare the accuracy of the selection schemes to random selection, Figures 7.19 and

7.20 below show the OA achieved by the three schemes (balanced, similarity, distinct)

on each dataset as well as the random runs’ minimum, maximum and average OA.

The comparison is split into two parts. First, selection schemes are compared to the

random runs on the challenging, less homogeneous datasets that saw the most variation

in random run accuracy (Montelupo and Semantic3D). Then, comparisons are made

on the simpler, homogeneous datasets that the random selections consistently achieved

high OA on (Songo Mnara and Oakland).

Figure 7.19: Scan selection schemes’ and random runs’ overall accuracy on (a) Montelupo and
(b) Semantic3D. The least accurate random run (RandomMin) is highlighted red.

The success of the selection schemes is most evident on the challenging datasets. For

example, on the Montelupo dataset (Figure 7.19.a) all three schemes achieve a higher

(up to 3%) OA than the average random run, and a much higher (13 - 15%) OA than
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the worst random run. In particular, the similarity scheme is within 1% of the highest

random run’s OA. The Semantic3D dataset (Figure 7.19.b) shows a large variation in

OA between the schemes and the random runs. Although only the balanced scheme is

more (2%) accurate than the average random run, all three schemes achieved a much

higher (4 - 13%) OA than the lowest random run. Since this is the lowest of only 7 runs,

it is likely that other untested random combinations could be even less accurate. In such

a case, the improvement of the schemes over the random minimum would be even greater

since the schemes’ selections would remain unchanged. This highlights a key advantage

of the schemes — deterministic selection. Rather than leaving the accuracy of a classifier

to chance by randomly selecting a set of potentially weak training scans, the schemes

have shown to consistently outperform the worst random runs on challenging campaigns

and provide more confidence in the quality of the training set.

Figure 7.20: Scan selection schemes’ and random runs’ overall accuracy on (a) Songo Mnara
and (b) Oakland. The least accurate random run (RandomMin) is highlighted red.

The results on the less challenging datasets show a smaller impact of the selection

schemes. For example, on Songo Mnara (Figure 7.20.a) and Oakland (Figure 7.20.b),

some schemes score higher than the average run while others score lower, although the

difference is minor (less than 2%). At least two of the schemes score higher than the

worst random run on both datasets, although also by a very small amount. Overall,

there is little comparison to be made since the selections (random or scheme) score

consistently high and within approximately 3% of each other. This is expected since

these are the most homogeneous and least challenging datasets which, coupled with a

large number of training scans, greatly reduces the importance and impact of scans used

for training. These results provide contrast to the previous findings, revealing that the

schemes are most beneficial when datasets are challenging.
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The OA graphs also reveal how the selection schemes compare to each other. Most

notably, there is no scheme that consistently scores the highest or lowest of the three.

Instead, each scheme’s performance relative to the others varies by dataset. For ex-

ample, the similarity scheme has the highest OA on Montelupo and Oakland, but the

lowest on Songo Mnara. The distinct scheme scores the highest on Songo Mnara, but

scores particularly (up to 9 %) lower than the other schemes on Semantic3D. There is a

consistent ranking for Montelupo and Oakland, where similarity > distinct > balanced,

but this does not extend to the other datasets.

Discussion

There are a number of potential reasons for the selection schemes’ varying levels of

improvement over the random runs and each other. Firstly, if a dataset’s scans are

homogeneous with little variation between random runs, the selection schemes’ impact

may be minimised since changes to the training set have an insignificant effect on the

classifier. Conversely, if a dataset is inhomogeneous then changes to the training set

may have a high impact on classification accuracy.

Secondly, the large training set size (20 - 25% of the dataset) may greatly benefit random

selections as they have a higher chance of including useful scans. If the training sets

were smaller (e.g. 10% of the dataset), the probability of the best scans being randomly

selected would be lower. However, the selection schemes would still select the highest

scoring scans. In such a scenario, the difference between the random runs and the

selection schemes may be more noticeable.

Lastly, the selection schemes depend on the descriptiveness of balance and similarity

scores, which may be unreliable due to poor segmentation or clustering. Even when

scans are described well by these scores, a scheme’s core principle may have a negative

effect. For example, a small, noisy scan with limited information might be distinct (and

thus chosen by the distinct scheme) but it is not suitable for training. To explain these

reasons further, the next section presents example selections and discusses why they

were chosen as well as their potential impact on classification accuracy.
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Highlighted example 1: Montelupo

The Montelupo dataset sees the greatest increase in OA when using the selection schemes

instead of random selection (up to 3% higher than the average run and 13-15% higher

than the minimum). To explain the increase, this section begins with a discussion of

the scans’ balance and similarity scores, as well as the distinct scheme’s cluster sizes.

Then, exemplar scans from each selection scheme are analysed based on their cluster

assignments and ground truth.

Figure 7.21: Balance (a) and similarity (b) scores of each scan in the Montelupo dataset.
Green bars denote scans selected by the respective scheme.

The balance scores in Figure 7.21.a show that although the scans are imbalanced (much

larger than the perfect balance score of 0), their scores are fairly consistent with most

falling between 50 and 60. This indicates that the scans in the dataset have an un-

even distribution of supervoxels i.e. the types of objects in each scan are not equally

represented.

The similarity scores in Figure 7.21.b are not as straightforward to read. Since a scan’s

similarity score is the sum of its supervoxels’ average cosine similarity ∈ [−1,+1] to the

center of their cluster, the perfect similarity score is k, the number of clusters. All of

the similarity scores, except one, fall between 2.8 and 3.05, i.e. 70 - 76% of the perfect

score (4.0). This means that the objects in each scan (estimated with supervoxels) are

reasonably similar to objects of the same type (their clusters) in other scans.



97

Montelupo Songo Mnara Oakland Semantic3D

Size Center Size Center Size Center Size Center

Cluster 1 8 ML3b 3 SM10a 4 OAK11 1 UNT3a

Cluster 2 6 ML5a 1 SM8a 5 OAK6 9 UNT1b

Cluster 3 1 ML8a 2 SM9a 1 OAK15 1 BIL1d

Cluster 4 1 ML8b 10 SM10b 5 OAK9 1 BIL5b

Cluster 5 — — 4 SM4a — — 8 BIL5a

Table 7.14: Distinct scheme’s cluster sizes and center scans selected for training, per
dataset. Smaller datasets are clustered into 4 groups only (cluster 5 not applicable).

Lastly, the distinct scheme’s cluster sizes and centers are given in Table 7.14. These

are not the clusters that balance and similarity scores are derived from; they are the

k-means (k = number of scans to select) clusters found using feature vectors of scans’

balance and similarity scores. The table shows two large clusters (size 8 and 6) and

two single-scan clusters are found when selecting k=4 Montelupo scans. This means

that two of the scans in the dataset are highly distinct, or that two sensible clusters

exist and single-scan clusters are a result of forcing k-means to find four non-empty

clusters. In either case, the selected scans differ from each other as much as possible

while representing their clusters.

Next, an exemplar scan from each selection scheme is analysed based on their cluster

assignments and ground truth. The cluster assignments reveal why scans are selected,

while the ground truth illustrates how balanced, similar or distinct the scans actually

are.

Figure 7.22: Exemplar balanced scan ML2b cluster assignments (a) and ground truth (b).
Colours in (a) denote cluster ID, colours in (b) denote class label ID.

The exemplar balanced scan, ML2b, has the best (lowest) balance score of the Mon-

telupo scans. It therefore contains the most even distribution of supervoxels from each

cluster. Although it is not particularly balanced (balance score = 48), the scan contains
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a noticeable spread of supervoxels from each cluster (Figure 7.22.a). Besides the largest

cluster (blue) that most wall segments belong to, the remaining clusters are evenly spread

between ground (green), low vegetation (red) and high vegetation (yellow) supervoxels.

Since walls are the focus of the scanning campaign, it is expected that they form the

largest cluster. The ground truth scan (Figure 7.22.b) is similarly balanced in terms of

its object composition.

Figure 7.23: Exemplar similarity scan ML8b cluster assignments (a) and ground truth (b).
Colours in (a) denote cluster ID, colours in (b) denote class label ID.

The exemplar similarity scan, ML8b, has the highest similarity score. Based on its

cluster assignments (Figure 7.23.a), very few supervoxels belong to the red and yel-

low cluster, while over 90% belong to the blue and green cluster. In this dataset, red

and yellow clusters typically consist of vegetation segments which are more varied than

the homogeneous blue (walls) and green (ground) segments. Since clusters are equally

weighted when scoring similarity, scan ML8b’s high score is not due to a high proportion

of blue and green segments, but due to a high sum of individual similarity scores for

each cluster. Although it is difficult to gauge how similar the scan’s segments are to

their clusters by inspection, the ground truth (Figure 7.23.b) is visually similar to other

scans in the dataset since most scans contain walls and different types of vegetation.

Figure 7.24: Exemplar distinct scan ML3b cluster assignments (a) and ground truth (b).
Colours in (a) denote cluster ID, colours in (b) denote class label ID.
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Scan ML3b is selected by the distinct scheme as it is the closest to the center of one of the

k=4 scan clusters. The distinct scheme selects scans that are distinct from each other

while also representing other scans, not scans that are simply the most distinct in the

dataset. Scan ML3b is the center of the largest cluster (size 8), meaning that it represents

half the dataset but is distinct from the other three clusters. Its representational strength

is evident by how it is the only scan in the dataset selected by all three schemes. Based

on its cluster assignments (Figure 7.24.a) and ground truth (Figure 7.24.b), the scan

represents a diverse, commonly surveyed area of the campaign but is distinct from other

scans in the selection, e.g. ML8b, with different structure and object distribution.

Overall, the process behind the schemes’ selections is clearer after inspecting example

Montelupo scans’ scores and cluster assignments. Although not all the selections are

reviewed, the presented ground truth scans indicate that the schemes successfully select

balanced, similar or distinct scans. This ability to make intentional, descriptive training

set selections instead of relying on chance explains the schemes’ increase in classification

accuracy over random selections. As this varies between datasets, the next section

highlights example scans from the Semantic3D dataset.
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Highlighted example 2: Semantic3D

Using the schemes to select training scans from the Semantic3D dataset yields mixed

results. While the balanced scheme improves on the lowest random run by 13%, the

similarity and distinct schemes improve by 7% and 4% respectively. As before, this

section discusses dataset scores and analyses individual selected scans to explain the

schemes’ performance.

Before discussing scores, it is important to consider the difficulty of clustering Seman-

tic3D supervoxels. Of the four datasets tested, Semantic3D has the most points, classes

(8) and contains scans from different sites. Given this complexity, k-means is unlikely

to separate supervoxels into uniform clusters. Instead, three general clusters with high

intracluster variance are found. This does not invalidate balance and similarity scores

but impacts how they are interpreted.

Figure 7.25: Balance (a) and similarity (b) scores of each scan in the Semantic3D dataset.
Green bars denote scans selected by the respective scheme.

The balance scores (Figure 7.25.a) are considerably more varied than the Montelupo

dataset’s. The lowest balance score is 10 and the highest is 75, while the scores be-

tween them increase linearly. Scans therefore vary from near-perfect balance to high

imbalance. Even with general clusters, this means the distribution of supervoxels differs

greatly between scans. This is expected given the noticeable variety of scenes the dataset

contains.

The similarity scores in Figure 7.25.b mostly lie between 1.8 and 2.0. This is 60 - 66%

of the perfect score for the dataset (3, the number of clusters). Although two scans

stand out with scores of 2.15 (72%) and 1.65 (55%), most scores are around 10% lower

than those from the Montelupo dataset (70 - 76%). This means that scans’ supervoxels
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are only somewhat similar to the clusters they were assigned to. This is expected

given the larger variance between members of general clusters, but still indicates some

commonality. It shows that although scenes vary greatly, their objects can be roughly

categorised.

The distinct scheme’s cluster sizes (from Table 7.14 in the previous example) show two

large clusters (size 8 and 9), and three single-scan clusters for Semantic3D. Again, the

single scans are chosen either because they are highly distinctive or because k-means

is forced to find five non-empty clusters that are maximally different. Given the large

variation of scenes in the dataset, it is likely that even a rough description of the scans

(the balance and similarity scores derived from general supervoxel clusters) is sufficient

for identifying distinct scans.

As in the previous example, scans from each selection scheme are analysed based on

their cluster assignments and ground truth. These are provided to analyse why scans

are selected and if they are indeed balanced, similar or distinct.

Figure 7.26: Exemplar balanced scan BIL1c cluster assignments (a) and ground truth (b).
Colours in (a) denote cluster ID, colours in (b) denote class label ID.

The balanced scheme achieves an OA of 74%, the highest accuracy of the three schemes.

Its selection comprises five scans with balance scores between 10 and 22. The cluster

assignments and ground truth of the most balanced scan, BIL1c, are shown in Figures

7.26.a and 7.26.b. The clusters are inconsistent, with many segments from the same

structure belonging to different clusters e.g. red and blue segments on the same tree.

Despite this, the ground truth has a fairly even distribution of ground, building and veg-

etation. In terms of class label distribution, the scan is not balanced as it contains only

three of the eight classes in the dataset (natural terrain, buildings and high vegetation).

Given the inherent imbalance of point classes and imprecise cluster information, it is

challenging for the scheme to identify class-balanced scans as it does not have access to
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labels. However, by selecting scans with a good distribution of larger estimated classes

(clusters), the final selection should cover most point classes.

Figure 7.27: Exemplar similarity scan BIL5b cluster assignments (a) and ground truth (b).
Colours in (a) denote cluster ID, colours in (b) denote class label ID.

The similarity scheme achieves the second highest OA of the schemes with 68%. The

exemplar similarity scan, BIL5b, has a similarity score of 2.15 (72% of the perfect score).

Its cluster assignments (Figure 7.27.a) and ground truth (Figure 7.27.b) show a high

proportion of building and terrain points, well-grouped by the blue and green clusters.

The facade and flat terrain have a relatively simple shape compared to other instances of

these classes e.g. buildings with roofs and sloped terrain. This could explain why the scan

has the highest similarity score; its supervoxels are precisely formed and represent their

clusters well. While the ground truth contains five of the eight classes in the dataset,

this is not a direct result of the scheme’s design. Overall, the scan is not dissimilar to

the rest of the campaign and contains structures commonly found in other scans.

Figure 7.28: Exemplar distinct scan UNT3a cluster assignments (a) and ground truth (b).
Colours in (a) denote cluster ID, colours in (b) denote class label ID.
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The distinct scheme performs the worst of the three on the Semantic3D dataset, achiev-

ing an OA of 65%. While this is still 5% higher than the lowest random run, it is 13%

lower than the balanced scheme. Figures 7.28.a and 7.28.b show the cluster assignments

and ground truth of one of the selected scans, UNT3a. During the scheme’s k-means

scan clustering, a single-scan cluster is formed with this scan.

Based on the scan’s scores, cluster assignments and ground truth, the reasons for this

are evident. The scan has the worst similarity score (1.65) and the second worst bal-

ance score (65) in the dataset. Inspection reveals it is an “anomaly” scan, a result of

the X-coordinate splitting of the dataset. The scan is particularly small, inaccurately

clustered and contains almost only building points. The scheme successfully makes a

distinct selection, but the selected scan is not descriptive of the dataset and is therefore

unsuitable for training. The selection of such training scans explains why this scheme

achieves the worst accuracy of the three.

Overall, the varying accuracy of the selection schemes on the Semantic3D dataset is

explained by how effectively they utilise scores derived from general, imprecise clusters,

as well as how sensibly their underlying principles apply to challenging or problematic

datasets. The analysis has shown why, despite these limitations, the schemes can still

outperform random selections on inhomogeneous datasets like Montelupo and Seman-

tic3D.

This chapter has explained the experiments used to test the framework’s methods, and

has given a detailed analysis of the results. By analysing each component separately,

this chapter has provided the information needed to answer the research questions and

other factors to consider. The next and final chapter concludes the thesis by answering

the research questions and discussing possible future work.





Chapter 8

Conclusion

Point cloud classification is a powerful tool that can provide semantic information on

points and accelerate time-consuming tasks, but a point classification system’s perfor-

mance greatly depends on the classifier, point feature set and training data that are

used. When developing a campaign-based scan classification system, it is important to

choose a suitable classifier and feature set, as well as a descriptive set of training scans.

These choices are difficult, as a method’s success in the literature is not guaranteed

to transfer to other contexts, and manually identifying descriptive training scans is a

complicated task.

Given the importance and difficulty of these choices, this thesis sought to investigate

which classifiers and feature sets performed the best, in terms of speed and accuracy,

when applied to datasets of terrestrial laser scans. It also sought to determine how an

automated method could select representative, descriptive scans from a campaign, and

if a classifier trained on such a selection is more accurate than a classifier trained on

randomly selected scans. These goals were formalised as research questions to establish

the focus of the thesis. To answer these questions, relevant methods in the literature

were reviewed, a framework containing different classification, feature and scan selection

methods was developed, and experiments were conducted to evaluate the methods.

The experiments successfully demonstrated the methods’ performance and provided the

information needed the answer the research questions. In addition, the results gave

insight into other factors to consider when developing a point classification system.

These answers and insights are discussed below.

104
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8.1 Classifiers and Feature Sets

The first research question, regarding the performance of different classifiers and feature

sets, was:

• Which of a selection of classifiers (Random Forest, Support Vector Machine or

Multi-Layer Perceptron), and a variety of point feature sets, achieves the fastest

speed and highest accuracy when classifying points from large and diverse terrestrial

laser scanning campaigns?

To address this question, each classifier was combined with three different feature sets

and tested on four terrestrial laser scanning campaigns. These three feature sets con-

tained: (1) all extracted features, (2) a selection of features with the highest RF-

importance and (3) features with the highest aggregated filter scores.

Classifier Speed

It was found that the MLP was the fastest classifier to train and predict with, while

the SVM was the slowest by a large margin. The RF was almost as fast as the MLP to

train, but approximately an order of magnitude slower at prediction. However, on the

largest dataset, RF prediction required at most 2.5 minutes while the SVM took over

30 minutes. It was also observed that some classifiers are more sensitive to design and

parameter choices, and scale better to larger feature vectors, than others in terms of

speed.

Classifier Accuracy

The results revealed that the RF was consistently the most accurate classifier on every

dataset when paired with the complete feature set. With the selected feature sets, the

RF’s average overall accuracy (OA) was also higher than the other classifiers using the

same features. The SVM and MLP’s average OA was only 2-4% lower than the RF, but

in some cases was up to 8% lower. Class-based metrics showed that all the classifiers’

accuracy varied between classes, but that the MLP and SVM confused classes the most.

Lastly, highlighted examples revealed the effect that inconsistent class labels and varying

point density can have on classifier accuracy, and how the RF may be more robust to

such errors.

Feature Set Speed

It was found that training and prediction with reduced sets of selected feature sets was

consistently faster than with the original set. Using the selected sets, the SVM’s training

and prediction times were reduced by 60-70% and the MLP’s were halved. The RF was

only 5% faster with the selected sets due to its constant number of trees, but was still
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up to four times faster than the SVM. It was also shown that the implemented feature

extraction method’s speed, 17-31ms per 1000 points, is comparable to others approaches

in the literature. Lastly, it was observed that the speed of cylindrical neighbourhood

extraction does not scale well with increased radius size, and is particularly slow on

datasets with many vertical structures.

Feature Set Accuracy

It was shown that replacing the original feature set with selected features lead to only

a small decrease in accuracy. On average, the filter-selected set had 1.4% lower OA

than the original set, while the importance-selected set was only 0.2% lower. Where this

difference was greater, highlighted examples revealed the descriptive strength of height-

based features like vertical range Hrange when classifying tall structures. Feature scores

indicated that 3D shape features like curvature Cλ, omnivariance Oλ and anisotropy Aλ,

as well as height features like vertical range Hrange, height difference ∆H and height

deviation σH are the most relevant, a finding that is consistent (where applicable) with

the literature. Lastly, the multi-scale features were shown to have some effect on feature

scores, with features like verticality Vλ scoring much higher at lower resolutions, but

could have had a greater impact if more levels or larger intervals were used.

8.2 Representative Scan Selection

The second research question, regarding the automated selection of descriptive training

scans and their comparison to randomly selected scans, was:

• How do we automatically select a representative set of scans from a scanning cam-

paign that, when used for training, yields a classifier with higher accuracy than a

classifier trained on a random selection of scans?

This question was addressed by designing three scan selection schemes, each based on

a different concept of what makes a scan representative. The scans selected by these

schemes were then compared to random selections by measuring the accuracy of a RF

trained on both separately.

Automatic Selection of Representative Scans

Although challenging to evaluate, the results indicated that a method based on seg-

mentation, clustering and scoring can identify a useful set of representative training

scans. Visual inspection of scans showed that, in most cases, scans identified by differ-

ent schemes as balanced, similar or distinct were indeed so, and described other scans

in the campaign well. However, the method was revealed to be highly dependent on
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the quality of segmentation and clustering output, which requires a careful, campaign-

specific choice of parameters and is limited by the use of less accurate methods like k-

means clustering. Furthermore, the principles behind the selection schemes were shown

to occasionally have negative effects, as seen by the distinct scheme’s selection of unique

but uninformative scans with very few points. Lastly, although manual selection was

not formally tested, the speed of the proposed method (less than 2 seconds per scan)

is at least one order of magnitude faster than a conservative estimate of 20 seconds per

manually selected scan.

Accuracy of Selected Training Scans

The results showed that the schemes can indeed select scans that yield a more accurate

classifier than randomly selected scans. Specifically, the schemes were shown to be the

most beneficial on complex and diverse campaigns, where they achieved up to 15%

higher overall accuracy than random selection. This reinforces the importance of a

representative training set when scans cover large and diverse regions, and demonstrate

the success of the schemes in such scenarios. However, it was found that on simple

and homogeneous campaigns, the schemes’ advantage over random selection is limited.

This is to be expected; when there is little variation between the scans in a campaign,

changes to the training set have less impact. However, given the schemes’ deterministic

selection, their advantage over random selection is potentially greater for large campaigns

with smaller training sets where random selections are less likely to include descriptive

scans. It was also found that no scheme was consistently the best or worst of the

three, suggesting that their applicability depends on the campaign. Analysis of exemplar

selections indicated this to be the case, with more accurate schemes successfully meeting

their scheme’s criteria without selecting weakly descriptive scans. Lastly, the method’s

processing time (at most 35 seconds on tested datasets) is justified by its improved

accuracy and consistency over random selection, and scales better to large campaigns

where manual selection is more complicated and time-consuming.

8.3 Research Implications and Contribution

This thesis highlights factors to consider when designing a 3D scan campaign classi-

fication system. As a classifier, RFs are a sensible choice as they offer high accuracy,

relatively low training and prediction times, and are straightforward to implement. How-

ever, other classifiers should not be dismissed. An MLP, even with only one hidden layer,

achieves a reasonable accuracy but much faster prediction speed than a large RF. An

SVM, while much slower, can offer within 1% of an RF’s accuracy in some scenarios.

Similarly for features, a selected feature set can be almost as accurate as a complete set,
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especially when many features are redundant. Furthermore, smaller feature sets greatly

decrease training and prediction times, particularly where the classifier does not scale

well to larger feature spaces. Lastly, some features are expensive to compute but describe

certain classes very well. When choosing a classifier or feature set, one should therefore

consider the speed and accuracy requirements of the system, as there is evidently a

trade-off between the two.

The research also brings attention to the importance of training scans and how they

should be selected. For homogeneous campaigns where scans are very similar, one can

randomly choose scans for labelling and training with minimal cost to the classifier’s

accuracy. However, diverse campaigns require a more sensible approach for the training

set to sufficiently describe the rest of the campaign. The research has shown that

an automatic solution to this problem is possible. Despite some dependencies, the

developed scan selection method has shown that an accurate classifier can be trained on

representative, automatically selected training scans. As the method is both automated

and deterministic, it should also scale better to larger datasets than manual or random

selection, as manually selecting from larger campaigns is laborious, and the chance of

randomly selecting descriptive scans from a large pool is lower. The proposed method has

therefore set a precedent for future research, which could refine its design and improve

its performance.

Overall, this thesis has provided a better understanding of various methods, existing

and new, when used as part of a scan campaign classification system. By testing these

methods on terrestrial laser scan datasets, including cultural heritage campaigns, the

presented methods and findings in this thesis are a valuable resource for other point cloud

researchers, as well as cultural heritage preservation groups like the Zamani project. By

doing this, this thesis contributes towards important point cloud classification research.

8.4 Future Work

There are a number of possibilities for future work following this research. For example,

the proposed scan selection method could be refined. This could involve improving

the segmentation and clustering output with more advanced methods, or combining

the selection schemes into a single weighted/hybrid method that applies all selection

principles simultaneously. Better metrics for measuring how representative a scan is

could also be developed, which would provide more information to the schemes, and

would enable the statistical evaluation of results to complement visual inspection. More

comprehensive testing against manual selection could also be conducted, which may

involve lengthy user-training and experiments but would provide a better understanding
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of the method’s efficacy. Lastly, where scans’ GPS coordinates are are recorded for

registration, such data could be leveraged to ensure that training sets adequately cover

the site’s location.

There is also room for future work regarding the use of classifiers and features with

point clouds. Other classifiers, or variations of those implemented, could be tested on

the same datasets used during this research. These could include classifiers with deeper

architectures, such as neural networks with many hidden layers or deep forests [142].

Such classifiers could be tested to determine how well they learn from a small set of

labelled scans, as well as the practicality of their training and prediction times. Ad-

ditional features could be extracted from photographs or range images of the scanning

site, followed by an evaluation of their impact on classification or scan selection. With

regard to multi-scale features, the effect that varying levels and interval sizes has, and

a way to optimise these parameters for a given dataset, could also be investigated.



Appendix A

Source Code

The source code for the framework containing all the designed and implemented methods

is publicly available at: https://github.com/pccchr001/3DScanCampaignClassification.
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