
UNIVERSITY OF CAPE TOWN

Digital Repositories in Private Clouds

by

Mushashu Mwansa Lumpa

Supervised by: A/Prof Hussein Suleman

Dissertation presented for the degree of Master of Science

in the

Department of Computer Science

University of Cape Town

February 2019

Univ
ers

ity
 of

 C
ap

e T
ow

n

http://www.uct.ac.za
mushashu@gmail.com
mushashu@gmail.com
http://www.cs.uct.ac.za
http://www.uct.ac.za

The copyright of this thesis vests in the author. No
quotation from it or information derived from it is to be
published without full acknowledgement of the source.
The thesis is to be used for private study or non-
commercial research purposes only.

Published by the University of Cape Town (UCT) in terms
of the non-exclusive license granted to UCT by the author.

Univ
ers

ity
 of

 C
ap

e T
ow

n

Plagiarism Declaration

I know the meaning of plagiarism and declare that all of the work in this dissertation,

save for that which is properly acknowledged, is my own.

Signed:

Date:

i

“Journeying through the unknowns to the unknown. We’ll connect the dots later.”

anon

Abstract

This study explores the use of digital repositories in private cloud environments. Private

cloud computing is a cloud computing deployment model where compute and storage in-

frastructure are hosted on-premise by institutions. Digital repositories are used to man-

age institutions’ generated content. The advancement in cloud computing, the promise

of elasticity, and the on-demand resource provisioning features of cloud systems are at-

tractive characteristics that institutions can leverage on in delivering digital content to

their audiences. In this study, a cloud computing operating system is deployed, and a

means to install, monitor, manage and customise a repository system is developed. The

repository system used is DSpace.

Eucalyptus cloud software was used to setup a private cloud environment. A prototype

application was developed to manage the installation and customisation of DSpace in

the cloud environment. The prototype also included a feature to monitor the status of

the running DSpace instances. To evaluate the efficiency, installation and customisation

of DSpace in the cloud environment, two types of evaluations were carried out – a

performance evaluation and a usability study. The performance evaluation was used to

ascertain how long it takes to ingest and view items in DSpace. The experiments were

carried out with varying numbers of running virtual machine instances in the cloud.

The usability study evaluated the ease of installing and customising DSpace with the

developed tool, called Lilu. A total of 22 participants took part in the usability study

that was carried out within the premises of the University of Cape Town’s Computer

Science Department. The participants belonged to 3 groups – experts, intermediate and

beginners – based on their technical skill levels.

The results show that private cloud environments can run institutional repositories with

negligible performance degradation as the number of virtual machine instances in the

cloud are increased. From the usability study, the tool developed was positively per-

ceived. Participants in the study were able to install and customise DSpace.

Institutional repositories can efficiently be installed and used in private cloud environ-

ments. Building tools that enable users to create single-click installations of the repos-

itories, and creating user friendly interfaces to customise repositories would potentially

increase the adoption and utilisation of private cloud environments by institutions.

Acknowledgements

I am grateful to my supervisor, Prof. Hussein Suleman. He has been supportive even in

times when I had completely given up. I cannot see how I would have seen this to its

end without his desire and effort to continue providing guidance and supervision for this

work. Through his guidance during my studies he’s transformed how I logically view

and fix challenges.

Thanks to Dr. Roma for the support and the continued mentorship, to Dr. Bolton and

Dr. Savory, for the push to make sure I finished my studies, To both Dr. Roma and Dr.

Bolton for finding me funds to complete my Masters.

Maletsabisa, Martha, Gina, Ngoni and Lighton - in you I have made friends for life.

Grateful for the outdoor events, the support in all forms provided, academically, socially,

and emotionally. Mpande M, a very good work colleague and friend for continually being

helpful and encouraging.

Russel Philander, thanks for the visits and making me feel less of a stranger in your city.

You have been a true friend.

Many thanks to my family for all the support during my studies.

To my mother for the unwavering unconditional love, I will remain grateful eternally.

iv

Contents

Plagiarism Declaration i

Abstract iii

Acknowledgements iv

List of Figures viii

List of Tables ix

1 Introduction 1

1.1 Project Objectives . 2

1.2 Motivation . 2

1.3 Research Questions . 3

1.4 Methodology . 3

1.5 Scope and Limitations . 4

1.6 Dissertation Organisation . 4

2 Related work 6

2.1 Digital Repositories . 6

2.2 Cloud Computing . 8

2.3 Infrastructure as a Service (IaaS) . 9

2.3.1 Amazon AWS . 11

2.3.2 Eucalyptus . 11

2.3.3 OpenStack . 12

2.3.4 Other Cloud Computing Platforms 14

2.4 Configuration Management in Cloud Environments 14

2.4.1 Wrangler . 15

2.4.2 Ansible . 15

2.4.3 Puppet . 15

2.4.4 Chef . 16

2.4.5 Fabric . 16

2.5 IaaS and Containers . 16

2.6 Repositories in Clouds . 18

v

Contents vi

2.7 Summary . 19

3 Design and Implementation 21

3.1 Implementation Objectives . 21

3.2 Implementation Overview . 22

3.3 Design Rationale and Implementation Approach 22

3.3.1 Infrastructure as a Service . 22

3.3.2 DSpace Digital Repository Toolkit 24

3.3.3 Configuration Management and Automation 24

3.3.4 UI Front-end . 25

3.4 System Description and Data Flow . 25

3.4.1 User Front End . 25

3.4.2 Backend . 28

3.5 Implementation notes . 31

3.6 Summary . 33

4 Evaluation and Results 34

4.1 Performance Experiment . 34

4.1.1 Experiment Setup . 35

4.1.2 Methodology . 36

4.1.3 Results – Ingestion Time . 38

4.1.4 Discussion – Ingestion Time . 39

4.1.5 Results – Item View and Download Time 41

4.1.6 Discussion – Item View and Download Times 42

4.1.7 Performance Experiment – Summary 43

4.2 Usability Evaluation . 44

4.2.1 Questionnaire Rationale . 44

4.2.2 Study Methodology . 45

4.2.3 Participants and Technical Ability Level 46

4.2.4 Installation Task – After Scenario Questionnaire Results and Dis-
cussion . 47

4.2.5 Customisation Task – After Scenario Questionnaire Results and
Discussion . 49

4.2.6 Overall Application Usability – Results and Discussion 51

4.3 Adapting DSpace for Cloud Deployment 55

4.4 Summary . 56

5 Conclusion and Future Work 57

5.1 Summary of Findings . 58

5.2 Study Contributions . 59

5.3 Future Work . 59

5.4 Lessons Learnt and Reflection . 59

Bibliography 61

Contents vii

Appendix A: Survey Questionnaire 68

Appendix B: Survey Questionnaire Results 77

1 Participants and their Categories . 77

2 Results – After Scenario Questionnaire . 79

List of Figures

2.1 Example of Cloud Computing models and service provided [17] 9

2.2 Virtual machines running off a single server using a hypervisor 10

3.1 Eucalyptus cloud components . 23

3.2 System implementation overview . 26

3.3 Lilu initial landing page . 26

3.4 Features on a repository once it is installing or it has fully installed 27

3.5 Information required to create a new repository 27

3.6 Repository customisation page . 28

3.7 Eucalyptus cloud state with only one virtual machine running 32

3.8 Eucalyptus cloud state with two virtual machines running 33

4.1 Diagrammatic representation of the private cloud environment for running
experiments . 35

4.2 Graph depicting the average time to ingest a DSpace item by the number
of running instances in the cloud . 39

4.3 Overall average ingestion time by order of ingestion and number of instances 39

4.4 Overall average ingestion time by order of ingestion and number of instances 40

4.5 Overall average item view and download time by number of instances . . 42

4.6 Average item view response times by number of instances and order of
item view . 42

4.7 Average item download response times by number of instances and order
of item download . 43

4.8 Average scores for the installation task by category of the study participant 48

4.9 Boxplot showing a summary of the results for the installation task. 48

4.10 Average customisation task scores by participant category 50

4.11 Distribution of responses to the ease of use question after completing the
customisation task. 50

4.12 Boxplot showing a summary of the results for the customisation task. . . 51

4.13 Overall SUS scores by participant category 52

4.14 A summary of positive comments given after use of the management tool 53

4.15 A summary of negative comments given after use of the management tool 54

viii

List of Tables

4.1 Hardware specifications used in performance experiment 36

4.2 Software specifications used in performance experiment 36

4.3 Ingestion time, p-values for paired number of instances in the cloud 41

4.4 Breakdown of participants by category . 46

4.5 SUS Scores by User Category . 51

4.6 Sample translations and grouping of negative responses 52

1 Participants and Their Assigned Categories 77

2 After Scenario Questionnaire - Installation 79

3 After Scenario Questionnaire - Customisation 79

4 System Usability Scale Questionnaire Results - Positive Questions 80

5 System Usability Scale Questionnaire Results - Negative Questions 80

6 After Scenario Questionnaire Result- Installation Task General Comments 81

ix

To my mother, Mabel Mukatimui Muyangana. . .

x

Chapter 1

Introduction

Cloud computing is not necessarily a new technology but rather a new operations model

that brings together a set of existing technologies to run in a different way [1]. A number

of definitions for cloud computing have been proposed, but in the context of this project,

the National Institute of Standards and Technology’s (NIST) definition, paraphrased,

describes it as a model of enabling on demand network access to a shared pool of

computing resources, that can be provisioned and released with minimal management

effort [2].

Cloud computing brings with it some characteristics that are desirable to institutions.

As Han [3] notes, some advantages that cloud computing include: cost-effectiveness –

institutions will only use resources as they need them, and only pay for what they use;

flexibility – the availability of compute resources on-demand, deviates from traditional

approaches where purchasing of computing resources would be a pre-requisite to proto-

typing software applications; etc.

Digital repositories are software tools that are used to manage digital content, share it

and provide means to provide potential long-term preservation of that content. Digital

repository tools will primary be used by libraries and generally institutions like uni-

versities that continually generate content through scholarly publications and teaching

materials.

If institutions can deploy digital repositories in cloud environments, they can leverage

the benefits that cloud computing provides. Institutions would then devote more time to

managing their digital content than their compute infrastructure and the software make-

up of the digital repositories. And on the infrastructure end, administrative functions

would benefit a lot from the self managing features of a cloud environment coupled with

the efficient usage of their computing resources. Institutions’ digital repository content,

1

Chapter 1. Introduction 2

or generally its content, is always growing and, as such, infrastructures that scale and

provide inherent elastic features are ideal to contain this content growth. Also, digital

repositories are required to contribute to the preservation of their content, and running

them in cloud infrastructures have a benefit of having their data potentially replicated

in the variety of storage options that cloud environments provide.

For institutions to take advantage of the benefits of the cloud, it is important that there

exist tools that simplify the deployment, management and monitoring of the digital

repositories.

This study explores the use of private clouds for hosting digital repositories. The follow-

ing sections give the research questions to be investigated, a summary of the methodology

to be used and the overall scope and limitations of this study.

1.1 Project Objectives

In general, the objective is to develop tools that are compatible with cloud comput-

ing technologies and standards. In doing so, different tools commonly used in cloud

environments will be explored. In a nutshell, the following are the objectives:

1. Create a one-click installation of digital repository tools.

2. Develop a way for novice users to monitor digital repository activity in cloud

environments.

3. Develop a way for users to customise repositories even when such users are lacking

in Web development technology skills.

1.2 Motivation

There is a growing need for institutions to have their own institutional repositories.

This may be attributed to technology advancements, and the mode in which users are

increasingly accessing information using the Web. Institutions also need to continually

implement ways to increase the potential preservation of their content. Digital Repos-

itories may help to meet some of these institutional objectives. Additionally, cloud

computing presents desirable features, that given user friendly tools that help inter-

act with cloud environments there would be, arguably, an increase in the adoption of

institutional repositories.

Chapter 1. Introduction 3

Therefore, this study considers ways for hosting digital repositories in private cloud

environments. The proposed solution abstracts the complexity of the underlying cloud

infrastructure, and thus enabling users to focus more on content they wish to publish.

1.3 Research Questions

This project attempts to answer the following research questions

1. Is it possible to host digital repositories in Private Cloud environments efficiently.

2. How can common repository tools like DSpace be adapted for the cloud for easy

management and deployment?

1.4 Methodology

This study involves hosting a digital repository in a private cloud computing environ-

ment. The process involves simplifying the installation process of DSpace and automat-

ing its installation in a virtual machine instance. The virtual machines are run in a

cloud environment setup using Euaclyptus.

Eucalyptus is a cloud computing operating system that enables the provisioning of In-

frastructure as a Service service.

A browser based application is developed to aid the installation process, customisation of

DSpace and virtual machine management for ordinary repository end users. Installation

is performed via a few clicks and provides the necessary information required to identify

and log on to the DSpace repository installed. The application also enables end users

to perform customisation of the DSpace repository, branding it with colors and logos

according to an institution’s branding policies.

Two types of evaluations are carried out: 1) performance experiment, 2) usability study

of the developed browser based application for installation and customisation of DSpace.

The performance experiment involves viewing and ingesting items in DSpace. The ex-

periment is run with varying number of instances in the cloud. The tests were carried

out in a private cloud that supports a maximum of 12 instances. The results are plot-

ted to check for correlation between the performance of viewing/ingesting items and

the number of instances running in a cloud. In addition, the evaluation looks at the

Chapter 1. Introduction 4

ingestion order of items to see if there is any noticeable effect as items are added to a

repository one after the other.

The usability study involves asking participants to carry out an installation and also

customise their installed instance. The System Usability Scale (SUS) is utilised to assess

the overall usability of the developed tool – in effect assessing the efficiency of installing

DSpace in a cloud environment. In addition, the After-Scenario Questionnaire (ASQ)

is used to assess individual tasks of installation and customisation using the developed

application.

1.5 Scope and Limitations

This work does not explore the importance of public vs private cloud computing en-

vironments. It specifically explores the deployment of an institutional repository in a

private cloud computing environment and how it can allow ordinary non-skilled users to

operate it.

The implementation looks at taking advantage of the cloud computing’s ephemeral na-

ture of compute instances and the cloud’s block storage that provides persistent storage

for the running instances.

The study does not evaluate the existing cloud computing systems and the available con-

figuration and systems management tools. It rather builds on the core principles of cloud

computing to provide the suggested solution. It is expected that the proposed solution’s

underlying principles can be applied in other private cloud computing environments that

provide IaaS features for compute and storage.

1.6 Dissertation Organisation

Chapter 2, Related Work, gives a background to the technologies used in this study.

Related work in the area of hosting digital repositories in private cloud environments is

discussed.

Chapter 3, Design and Implementation, gives an overview of the rationale to the solution

provided, the choice of the technologies and how they function. The process to install

DSpace is discussed. The Web application to manage installations and customisation of

DSpace is described.

Chapter 1. Introduction 5

Chapter 4, Evaluation and Results, describes the experiment and usability study that

was carried out to evaluate the proposed solution. Results of the experiment and analysis

of those results is given.

Chapter 5, Conclusion, summarises the work done in this study, and whether the objec-

tives were met. It ends by suggesting potential future work for this study.

Chapter 2

Related work

This chapter introduces the concepts used in the rest of this report, and goes on to

discuss works in the area of hosting repositories in Private Clouds. Digital Repositories

are described, detailing their common architectures and the different technologies used in

their implementation. An explanation of cloud computing follows, laying the foundation

for later sections that discuss possible tools used to automate, manage and monitor

applications in clouds.

2.1 Digital Repositories

Digital Repositories are used by institutions to manage digital content, share it and

provide means that aid in the long-term preservation of that content. Institutions con-

tinually generate content through scholarly publications, teaching materials, theses, and

research outputs. Therefore, digital repositories serve an important function as a tool to

aid institutions’ challenge to manage their ever growing content. With the advent of the

Open Access1 movement, there is increased motivation for institutions to generate more

digital content and publish it to a wider audience on the Internet. Digital repositories

are used to manage different data formats, some of which include images, videos, and

free text files.

There are different types of digital repository software products available, and some of

the commonly [4] used ones include DSpace [5, 6], EPrints [7] and Fedora [8]. These

repository tools share similar features, and to some extent are developed using the same

technologies. A number of studies [4, 9, 10, 11] have been done to compare the different

features that each of these provide. Of interest in this study is the technological make up

of the digital repository tools, and the modes in which they are installed and customised.

1What is Open Access?, http://www.digital-scholarship.org/cwb/WhatIsOA.htm

6

http://www.digital-scholarship.org/cwb/WhatIsOA.htm

Chapter 2. Related Work 7

DSpace is an open source product, which is widely used and has an active developer com-

munity. It is developed in the Java programming language and runs off a PostgresSQL

or Oracle database backend. Execution of Java requires the use of a Java Container and

the commonly used one is Tomcat. DSpace installation [12] requires running commands

that may require users to have technical skills [13]. Installation of DSpace is not trivial

and often requires multiples tries and a sizeable amount of time for to get it right.

Installation, configuration and customisation of EPrints and Fedora are not any less

complicated compared to DSpace. They do not come with a guided installation graphical

user interface [14, 15]. They both require one to have some technical skills to run the

commands that are shared in their installation documentation.

Generally, installation and configuration of digital repositories is not a trivial task. Ko-

rber et al [13] established in their study of repository tools that more attention is paid

to improving end-user usability of repository tools, whilst giving in little work into the

improvement of administrative tasks. To cement their argument, they point out that

in the DSpace mailing list, installation and configuration questions are among the most

common questions end-users ask. This is an important consideration in this study as

one of the research questions tries to establish how efficient it would be to install and

configure repositories in cloud environments.

Like installation and consiguration, open source repository tools require someone with

some degree of familiarity with software development to be able to customise them.

Familiarity with HTML and XLST are some of the skills required for a successful basic

customisation of DSpace, for instance. Customisation of repositories is desirable as it

allows institutions to brand their repositories to adhere to their branding policies, while

also improving the asthetics of the repository to enhance its appeal. Verno [16] doc-

umented Boston Biomedical Consultants, Inc’s experience in implementing a DSpace

instance. As much as the it was successful, the difficulties with the installation, config-

uration and customisation of DSpace were highlighted.

In summary, digital repository products come with the necessary repository features that

institutions require out of the box. Installation, configuration and customisation may

not be a trivial task to repository owners and administrators. The technological soft-

ware stack of digital repository tools require technical users to provide reliable technical

support. Therefore, it is desirable to have systems or mechanisms in place that allow

repository users and managers to concentrate more on the management and curation of

digital content, and less on the overall low-level management of digital repositories.

Chapter 2. Related Work 8

An appreciation of the addressed challenges in installing, configuring and customising

repository tools will aid in understanding the design and implementation decisions that

are discussed in the next chapter.

2.2 Cloud Computing

Cloud computing is a computing paradigm that allows for remotely located computing

resources (e.g., applications, bandwidth, networks, servers, storage) to be provided as

a service to consumers. The National Institute of Standards and Technology (NIST),

defines cloud computing as “a model for enabling ubiquitous, convenient, on-demand

network access to a shared pool of configurable resources (e.g., networks, servers, storage,

applications) that can be rapidly provisioned and released with minimal management

effort or service provider interaction” [2]. Cloud computing’s underlying resources are

abstracted from end users (cloud consumers) and provisioned to them as services.

There are 3 service models commonly used to describe the nature of services provided in

cloud environments namely, Software as a Service (SaaS), Platform as a Service (PaaS)

and Infrastructure as a Service (IaaS). Software as a Service is a suite of applications

that cloud consumers access using the Intranet or the Internet. This service model

does not provide the cloud consumers with the capability to manage low levels resource

like the amount of RAM, or the number of CPUs that their cloud based applications

are using. Platform as a Service enables cloud consumers the capability to deploy

custom made applications using cloud based libraries or application frameworks. Similar

to SaaS, consumers of this service model have no access to the underlying low level cloud

infrastructure. Infrastructure as a Service provides access to the basic computing

resources to cloud consumers. Cloud consumers have control of the storage, computing

power and other low level resources that are assigned to them. Refer to Figure 2.1 for

an illustration of services that cloud consumers access by service model type [17].

There are 4 main modes of cloud computing deployments, which describe where the

cloud infrastructure is hosted, who manages it and who are the cloud consumers. The

4 deployment modes are: Private Cloud, Public Cloud, Hybrid Cloud and Community

Cloud. Private Clouds are hosted within an organisation’s enterprise infrastructure or

maybe hosted by a cloud provider solely on behalf of and for a given organisation’s use

and management. Public Clouds are managed and hosted for use by various organisa-

tions and individuals not necessarily affiliated with the cloud provider. This eliminates

the need for upfront investments costs in resources by cloud consumers as that would be

readily provided by the cloud providers. Recipients of the services provided in a Public

Cloud are oblivious to the infrastructural make up of the cloud. Community Clouds

Chapter 2. Related Work 9

Figure 2.1: Example of Cloud Computing models and service provided [17]

are run and hosted for one or more organisations sharing similar goals or interests. The

organisations are responsible for purchasing, maintenance and setup of the cloud envi-

ronment. Hybrid Clouds are deployments that utilise both Public and Private clouds.

These are useful for organisations that would like to build redundancy around their

computing resources.

The National Institute of Standards and Technology provides detailed definitions [2] and

a reference architecture [17] for Cloud computing.

2.3 Infrastructure as a Service (IaaS)

Infrastructure as a Service forms the basic layer of service delivery in cloud computing.

Consumers/end-users are aware of their interactions with the lower level features of the

computing infrastructure, they can decide which operating system to use, what and how

applications can be installed, request to use more RAM, persistent storage, etc. All these

features are provided to end users in a manner very different from traditional computing

– end users have no need to directly interact with the physical machines, and can quickly

change their preferences and effect them in a matter of seconds or minutes. However,

to provide this abstraction, elasticity, machine orchestration, and on-demand features

Chapter 2. Related Work 10

that cloud computing promises/provides, cloud computing software is used. They could

be thought of as cloud computing operating systems. These software can be used to

run either public clouds or private clouds. Examples of some of these cloud computing

software platforms include: Amazon AWS [18], OpenStack [19], Eucalyptus [20], and

OpenNebula [21].

Sharing of compute resources on servers to provide IaaS is achieved using virtualisation

technology – virtual machines are created on the servers with user determined speci-

fications. Cloud systems manage and monitor the creation of virtual machines using

hypervisors [22, 23]. Hypervisors are software programs that enable operating systems

to host one or more virtual machines. Examples of hypervisors include Xen [24], KVM

[25], Nitro [26], and vSphere [27]. See Figure 2.2 for an illustration of how virtual

machines share resources of a single server using a hypervisor.

Figure 2.2: Virtual machines running off a single server using a hypervisor

Important to cloud systems is persistent data storage and internetworking of compute

systems. Virtual machines as earlier discussed are the primary means to share resources

for IaaS purposes. However, virtual machines by default have ephemeral storage devices

– that is, they will lose their data when they are shutdown. Cloud Systems provide

various modes to support persistent data storage as will be discussed in detail in the

next sections.

In summary, IaaS is provided by Cloud systems that have at the very minimum 3

components that manage: 1) Compute resources 2) Data Storage and 3) Internetworking

of virtual compute resources

To answer this study’s research questions, Eucalyptus was used as the IaaS platform

and the details are discussed in Chapter 3. In the following section, a description of

Amazon AWS, Eucalyptus, and OpenStack cloud systems are given.

Chapter 2. Related Work 11

2.3.1 Amazon AWS

Amazon’s AWS [18] is one of the world’s popular, and one of the first prominent public

cloud computing platforms. It is closed source, and as such not an option for developing

private cloud implementations. However, it provides a set of services that other cloud

computing tools aspire to incorporate in their distributions. It has a rich set of APIs to

manage the services it provides and has a variety of software applications for end-user’s

varied needs either in machine management or general application management [28]. Its

superior features and popularity has seen other cloud operating systems build APIs that

enable interoperability with it [19, 20, 21].

The main services provided with Amazon’s AWS are: Elastic Compute Cloud (EC2)

[29], Elastic Block Storage (EBS) [30], and Simple Storage Service (S3) [31]. EC2 “is

a Web service that provides secure, resizable compute capacity in the cloud” [29]. EC2

is responsible for the provision of IaaS. It runs its virtual machine instances off Xen or

Nitro hypervisors. At creation, the virtual machine instances make use of the default

ephemeral storage. To launch an instance, an Amazon Machine Image (AMI) is used. A

Machine Image contains the basic software configuration to get the virtual machine into

a usable state. The Machine Image can be created with an Operating System to the

preference of the user. Amazon Web Services has pre-created AMIs that end users can

choose from. To persist the data in the instance, EBS is used. EBS provides the choice

between Solid State Drive volumes or Hard Disk Drives. End users can also determine

the sizes of the volumes to attach to their instances. S3 provides simple storage of

files and APIs are provided to deposit and retrieve data from it. All these features are

accessed via a subscription service and can be brought up and running in a matter of

minutes.

2.3.2 Eucalyptus

Eucalyptus is an open source cloud computing operating system that can be utilised

for building Infrastructure as a Service environments both for private and public cloud

deployments [20]. One of the reasons for Eucalyptus’ development was to have a system

open for experimentation [20]. Thus, its open-source nature made it one of the reasons

why it was adopted by this study to be used as the IaaS platform. Eucalyptus was

developed to have interfaces that use similar commands as Amazon’s EC2.

Eucalyptus comprises 5 components that deliver a complete implementation of a cloud

computing system. The components are: Cloud Controller (CLC), Cluster Controller

(CC), Walrus Storage Controller (WS3), Storage Controller (SC) and Node Controllers

Chapter 2. Related Work 12

(NC) [32]. As alluded to earlier, IaaS delivery is based on virtualisation. The Node

Controller is responsible for hosting and managing the lifecyle of virtual machines.

Eucalyptus supports both KVM and Xen hypervisors. To launch a virtual machine

instance, Eucalyptus uses a Eucalyptus Machine Image (EMI), which is analogus to

Amazon’s AMI discussed in the previous subsection. Users have the option of building

their custom images or utilising existing ones provided on the Eucalyptus Image Store.

As with Amazon’s EC2, virtual machine instances will by default have an ephemeral

storage device, thus once the virtual instance is terminated, all its data will be lost. This

is where the Storage Controller comes in. It is responsible for providing block storage

volumes to instances for data persistence beyond the lifecycle of a virtual machine. The

Storage Controller is analogous to Amazons’s EBS. Users can decide what sizes they

want and attach the volumes at runtime. The Cluster Controller is responsible for

managing one or more Node Controllers. The Cluster Controller decides which Node

Controller should run instances and also monitors the state of the Node Controller,

which it relays to the Cloud Controller. The Cloud Controller is the front-facing

interface that end users interact with, either through command-line instructions or UI

tools. The Cloud Controller provides overall administration of the cloud environment.

All requests for virtual machines go through this component, which then decides based on

the information it gathers about the environment where to deploy an instance. It is also

responsible for management of the other components of Eucalyptus. Walrus Storage

Controller provides a persistent simple storage service whose interface is compatible

with Amazon’s S3. This is responsible for storing Eucalyptus Machine Images, files and

virtual machine instance snapshots.

In summary, Eucalyptus comes with a set of APIs that can be interfaced with Amazon’s

Web Service. This allows for creation of services that can be run on both Eucalyptus and

Amazon’s Web Service, and in turn enabling the creation of hybrid cloud environments.

Eucalyptus was created as a research study within an academic institution but has since

been acquired by HP.

2.3.3 OpenStack

OpenStack [19, 33] is an open source cloud computing software toolset that allows for

the creation of private or public clouds. Openstack is defined as a system capable of

managing a large pool of compute and storage resources while providing interfaces for

users and administrators to control and provision those resources [34].

OpenStack has arguably one of the most complete and complex modular architectural

designs of existing Open Source cloud computing operating systems, a characteristic

Chapter 2. Related Work 13

that can be attributed to its large and active developer community [35]. Following in

similar fashion to provide compute and storage services for IaaS delivery, OpenStack is

comprised of at least 4 major components: OpenStack Compute Service (nova), Open-

Stack Block Storage Service (cinder), OpenStack Object Storage Service (swift), and

OpenStack Dashboard (horizon).

OpenStack Compute Service is the equivalent of Amazon’s EC2 and Eucalyptus’

Node and Cluster Controllers. It is the primary OpenStack service that delivers com-

pute services for IaaS delivery. It generally manages the lifecycle of virtual machine

instances. The default hypervisor it supports is KVM. Other hypervisors supported by

OpenStack include LXC, QEMU, Xen, etc [36]. The default storage device that the

compute resource uses is ephemeral. The OpenStack Block Storage Service pro-

vides the service for data persistence for virtual machine instances. It is responsible

for creating volumes and attaching them to instances. This is the equivalent of Ama-

zon’s EBS and Eucalyptus’ Storage Controller. Similar to Amazon and Eucalyptus,

OpenStack also provides a simple file storage system service called OpenStack Object

Storage Service. This service provides an API that applications can use to store and

read static data like images and music files. In addition to block storage and object

store, OpenStack provides another form of data persistence called Shared File Sys-

tem Storage. Both the block storage and file-system storage can be mounted as drives

in a given instance, however, the file system storage is created and managed only by a

system administrator. Unlike the block storage and shared file-system storage, Object

Store can be accessed via a Web service and access is not restricted to only within an

instance. Management of cloud resources by administrators and other cloud users is

done using multiple interfaces with the OpenStack Dashboard being the main such

interface. OpenStack provides other management interfaces, which include OpenStack

API, Secure shell (SSH), nova-manage, glance-manage, etc. [37].

The modular nature of OpenStack’s architecture has enabled it to build a lot of services

that enhance its overall functionality and make it one of the most feature rich cloud

operating systems. Some of its other services not discussed here include Identify Service

(keystone), Image Service (glance), and Data Processing Service (sahara).

As is the case with Eucalyptus, OpenStack has APIs that are compatible with some of

Amazon’s Web Services and as such can be used to build hybrid cloud environments

with EC2.

Chapter 2. Related Work 14

2.3.4 Other Cloud Computing Platforms

There are a number of other cloud operating systems that are in use but were not con-

sidered for use for this study. Some of those cloud operating systems reviewed but not

considered for use include: OpenNebula [21, 38], Nimbus [39, 40], and Apache Cloud-

Stack [41, 42, 43]. Each of these cloud systems possesses, to some extent, a similar

architectural skeleton to the previously discussed platforms. They all utilise virtuali-

sation technology, provide some form of persistent storage to virtual machines, provide

APIs to interact with the compute and storage resources and provide abstractions to

low level details of the provided infrastructure.

2.4 Configuration Management in Cloud Environments

The core objective of this study is to host digital repositories in private cloud environ-

ments efficiently. To realise that, installation and configuration of the digital repository

tools have to be done in a systematic and standard manner. This can be achieved

through use of configuration and management tools. These tools have been used in tra-

ditional computing environments to manage installations of similar software over several

computers. This is useful as it would reduce significant man-hours spent in carrying out

the work only with minor alterations for each iteration and virtual machine instance.

In the same way, these tools can be used in cloud computing environments where ad-

ministrators have remote access to their computing resources – depending on the size of

the cloud environment, system administrator can potentially be overseeing a cloud com-

puting environment that is capable of hosting dozens of compute and storage resources.

The advent of cloud computing and the popularity of using these tools have actually

resulted in new terminology to describe teams and methods of systems configuration

and system deployment. Those terms are DevOps [44] and Infrastructure as Code (IaC)

[45].

There are two main architectural designs for the available tools. Some operate with

a server machine, and execute all commands from centrally located machines. Others

adopt a client-server architecture, which requires the installation of an agent on the

target nodes/machines. Other options take the route of bundling virtual machines with

all the necessary software and required configurations, end users are only required to

boot the right images and they will have all their needed applications running, with only

minor configuration performed by the end users.

Below, a short description of some of the tools used for configuration and infrastructure

management is given.

Chapter 2. Related Work 15

2.4.1 Wrangler

Wrangler is a software tool that automatically provisions and configures virtual clusters

in cloud environments [46]. A virtual cluster in this case is a collection of virtual machine

instances. Wrangler is used to configure the desired compute characteristics of those

virtual machine instances. Wrangler defines the preferred final state/configurations of

virtual resources in the cloud using XML. Wrangler is comprised of 3 components: Client,

Coordinator and Agent. The Client is a command line interface that sends the details

of how to install and configure the virtual resources. The Coordinator is responsible

for retrieving information from virtual resources and also directing configuration details

to actual virtual machines. It essentially serves an information broker. Agents execute

the necessary configurations on the specific virtual machines. The Agent retrieves the

configurations from the Coordinator from which it ascertains what instructions are to

be executed on that virtual machine.

2.4.2 Ansible

Ansible is an open source automation, configuration management, cloud provisioning

and system administration software tool [47]

Ansible works by pushing small programs, called Ansible Modules, to target remote

nodes that are to be configured. Ansible Playbooks utilise Ansible Modules to execute

advanced configurations and orchestration of remote resources. Ansible Playbook is a

language that defines the desired state on target remote machine(s) and is expressed

using a human and machine readable language, which is a variation of the YAML lan-

guage.

Ansible does not require any dependency software or agents pre-installed (an exception

here is Python, which in most cases will come pre-bundled with Operating Systems) on

the target machines to carry out configurations or deployments.

2.4.3 Puppet

Puppet [48] is another well known, and one of the earliest configuration management

tools. It has both open source and enterprise distributions. Puppet functions in a

client/server style, with the server managing the configurations on the nodes, and the

client carrying out the actual configurations on the target nodes. The server runs what

is called the Puppet master, and the client runs the Puppet client. The desired state

of a target remote machine is done using what are called Puppet Manifest files, which

Chapter 2. Related Work 16

make use of Puppet’s declarative language. The declarative languages requires some

programming experience to use. The enterprise version comes with a GUI that gives a

status of each of the target nodes being configured or deployed.

Puppet is arguably the most feature rich configuration tool with a wider enterprise and

open source community.

2.4.4 Chef

Like Puppet, Chef [49] is another older, well known configuration management and

automation tool. It has both a client/server capability, and also what it calls chef-solo,

which can function without having an agent running on the target nodes. Users define

the state of the target machine using what is called a Recipe, which can be combined

together into what is called a Cookbook. The Chef Server is a repository of cookbooks

and information of the target machines/nodes. The Chef Client runs on the target

machines, and retrives the latest configuration instructions, which it executes on the

target machines to realise the prescribed and desired state.

Like Puppet, Chef can be used to manage and deploy machines at enterprise scale.

2.4.5 Fabric

Fabric is a Python library and command-line tool for application deployment, configu-

ration management and executing systems administration tasks [50]. Fabric commands

are run from a central location to execute commands on remote machines. There is no

requirement to install Fabric or Python on the target machine where configurations or

system administration tasks are to be executed. Fabric can be used with other configura-

tion management tools to carry out far more complex deployments. It is an open source

product and thus free to use. To carry out configurations, a Python script, called fabfile,

is written that has definitions of what and how to carry out the required configurations,

or management tasks.

2.5 IaaS and Containers

In the previous sections, cloud computing has been discussed from a virtual machine

stand-point. This is in part due to the basic setup of cloud computing platforms for

delivering IaaS. The related provisioning and orchestration of these virtual machine

were also discussed. However, recent trends in cloud computing have seen a rise in the

Chapter 2. Related Work 17

adoption of container-based virtualisation which is generally called as Containerisation2

[51].

There is, as of this writing, no standard definition of containerisation or containers.

The setting up of the Open Container Initiative (OCI)3 established in 2015 may lead

to the overall standardisation of terminologies within the containerisation technology

ecosystem. Various vendors have different working definitions of containers, with the

underlying theme being that containers are a form of virtualisation that abstract re-

sources at Operating System level [52, 53, 54, 55]. Containers are run within a host

operating system and share the same resources as that host’s Operating System. This

is in contrast to the use of virtual machines that require running a guest Operating Sys-

tem on top of a host Operating System. This makes containers lightweight in nature.

Note, however, that containers can be run within virtual machines and that some cloud

providers now offer a combination of both container based virtualisation and hypevisor

virtualisation [56, 57, 58].

The recent rise in the adoption of using containers can arguably be attributed to the ad-

vent of Docker Engine [59, 60], a containerisation platform. Docker Engine is comprised

of 3 components namely Server, REST API and Command Line Interface (Docker CLI)

client. The Docker Server is responsible for running docker containers and managing

other docker objects that include images, storage volumes and networks. The Docker

CLI client is the interface that docker users utilise to interact with the Docker Server.

This communication between between the Docker Client and the Server is via the Docker

REST API. To manage containers across servers and compute clusters, container orches-

tration systems are utilised, some of which include Kubernetes [61] and Docker Swarm

[62]. Besides Docker, other containerisation platforms include LXC [63], rtk [64] and

OpenVz [65].

In the context of this study, the relevance of containerisation technology is that reposi-

tory tools could be pre-packaged in containers with all their dependencies and be portable

across various cloud platforms. For instance, a container could be packaged with a

DSpace repository tool including all its dependencies. As containers are very compa-

rable to how virtual machines would be managed in cloud environments, the methods

to simplify the installation and management of repository tools using containers would

still follow the same approach as using virtual machines.

For this study, container technology for either packaging a repository tool, or provision-

ing computing instances was not considered. The focus is on the primary delivery of IaaS

2DataDog, https://www.datadoghq.com/docker-adoption/
3Open Container Initiative, opencontainers.org/about

https://www.datadoghq.com/docker-adoption/
opencontainers.org/about

Chapter 2. Related Work 18

through virtual machines and the simplification of installing and managing repository

tools in private cloud environments.

2.6 Repositories in Clouds

This section gives an account of some of the related work on hosting institutional repos-

itories in cloud environments. Note that to our knowledge, there is little published work

in the area of hosting institutional repositories in private cloud computing environments.

The following accounts are the closest, and relevant related work.

Wu et al described their work in migrating a digital repository called CiteSeerX into a

private cloud environment [66]. Long terms costs, compared to migrating to a public

cloud, were one of the reasons for their motivation to setup a private cloud infrastructure

to host their digital repository. They labelled CiteSeerX as a medium sized digital

library in comparison to digital libraries like Google Scholar and Microsoft Academic

Search. Their setup utilises proprietary software – VMware ESXi – for the hypervisor

and VMware VSphere for instance provisioning and general cloud orchestration and

monitoring. They give a detailed account of the life cycle of a digital library, challenges

faced by their growing content and mechanisms for handling fault tolerance presented

in a cloud infrastructure. However, as much as they give a good account for their

work, their work is very specific to migrating CiteSeerX to a private cloud environment.

They do not provide a systematic and automated solution to effectively and efficiently

host digital libraries in clouds. Their process requires high-level expertise, which may

not be easily replicated when hosting institutional digital repositories, like DSpace and

EPrints, in private cloud environments. Aljenaa et al have explored the possibility of

hosting elearning systems in cloud based environments [67]. Their evaluation leads them

to recommend hosting their systems in a private cloud environment. They discuss the

on-demand and elasticity features of cloud computing environments as a major reason

to recommend the use of cloud computing. They provide potential principles to be

adopted when running applications in cloud environments and have no implementation

to evaluate their suggested solutions.

The Texas Digital Library described their efforts in first replicating their in-house com-

puting infrastructure onto EC2, then completely migrating all their digital library ser-

vices to Amazon’s EC2 [68]. In the cloud, their services are provided on 48 virtual

machine instances. Overall, they describe their move to the public cloud environment as

a positive one. Their work demonstrates the successful implementation of a repository

on virtualised infrastructure, which does not necessarily speak directly to hosting and

Chapter 2. Related Work 19

migrating repositories to private clouds. However, due to the similarities in the infras-

tructure setup of EC2 and Eucalyptus, it gives an insight into potential challenges in

setting up repositories in private clouds. Thakar et al [69] described their experience

migrating the Sloan Digital Sky Survey science archive, which has a database of 5 TB.

They describe their experience as frustrating based on two reasons: degraded perfor-

mance of the queries run off the database compared to their inhouse infrastructure; and

their inability to transfer the entire 5 TB to the cloud. The discussed works looked

at public clouds and also the performance of cloud systems. Others have looked into

content preservation across cloud environments. DuraCloud [70] for instance, utilises

different public cloud storage options to replicate content, providing the needed redun-

dancy and potential data preservation. Digital repository tools can store content to

DuraSpace through the different interfaces that DuraCloud provides. Kindura [71] is

another project that is encouraged by the possibilities of content preservation using

cloud storage systems. Both DuraCloud and Kindura do not explore the use of private

cloud infrastructure and simplifying the process of installing and managing digital repos-

itory tools. Both are driven by long term content preservation needs, which repository

tools can plug into to push and retrieve data.

Doelitzscher et al describe their work in setting up a private cloud managed by their

inhouse developed Cloud Infrastructure and Application (CloudIA) cloud system [72].

They describe the different components built into it that support IaaS, PaaS and SaaS.

They go into great detail describing the functionality of CloudIA and how to access

its supported e-learning applications. However, this work does not address the work of

hosting institutional repository tools. However, provides an extensive description of the

automation tasks in cloud environments.

None of the discussed related work proposes a method to run and manage institutional

repositories in private cloud environments. They do, however, give a good account of

working in cloud computing environments. The features for on-demand computing power

provisioning and elasticity of resources are indeed attractive. This study builds on these

features and proposes a solution that allows for a single point for system administrators

to install, manage and monitor institutional repositories in private cloud environments.

2.7 Summary

A brief background was provided on digital repositories and cloud computing. A thor-

ough discussion on providing IaaS was given, listing the components that make up cloud

computing operating systems. Tools necessary for automating and managing reposi-

tory tools in cloud environments were also discussed. The information provided was

Chapter 2. Related Work 20

to illustrate the details and underlying architecture of cloud environments and digital

repositories. Previous work in running repository tools, and generally electronic software

systems, in cloud environments were discussed. From the discussed literature, there has

been more effort in hosting repositories in Public cloud environments than in Private

ones. The work in Private cloud environments did not utilise existing cloud operat-

ing systems, but rather made use of virtualisation software to build a semblance of an

out-of-the-box cloud system. This dissertation’s objective is to build a tool to enable

installation of an institutional repository tool in an open source cloud operating system

efficiently. Therefore, the objective of this dissertation is not covered in previous works.

The next chapter describes the motivation and architectural design of the proposed solu-

tion. The chapter gives a detailed account of Eucalyptus and the design of the proposed

tool, Lilu.

Chapter 3

Design and Implementation

This chapter describes the steps taken to host a digital repository in a private cloud

environment, and a Web application called Lilu, that was developed to allow repository

system administrators and users to install and manage a repository.

The following section gives the overall objective for the solution to be developed followed

by a brief description of the implementation. What follows is a brief background for

each technology used in the proposed solution, and the rationale for the choice of the

named technology. A high level overview and workflow of the proposed solution is

then described. The chapter ends with a discussion on the challenges encountered in

developing the proposed solution.

3.1 Implementation Objectives

There are two major objectives for this project:

1. Host a digital repository in a cloud environment.

2. Develop a tool to install and manage digital repositories in clouds and their asso-

ciated compute resources.

Achieving these objectives helps to answer the research questions that were framed in

Chapter 1.

21

Chapter 3. Design and Implementation 22

3.2 Implementation Overview

A private cloud computing environment was setup using Eucalyptus, an Infrastructure

as a Service (IaaS) software tool. Eucalyptus came bundled with the Ubuntu operating

system and went by the alias of Ubuntu Enterprise Cloud (UEC). Version 10.10 of

UEC was used for this study. The institutional digital repository used was DSpace

using version 1.8. Installation and configuration of DSpace was achieved through use

of an orchestration and configuration management Python API called Fabric. Lilu was

developed using the Django Web framework [73]. Django Celery [74] formed a core part

of the overall solution: it enabled execution of tasks (e.g. installation and customisation

of repositories) in an asynchronous manner.

3.3 Design Rationale and Implementation Approach

The soluton to be developed builds on the principles/characteristic of cloud computing.

In fact, the solution leverages the aspects of cloud computing that make it very desirable

– elasticity and on demand resource/service provisioning.

With that in mind, an Infrastructure as a Service platform is adopted to manage all cloud

computing resources. The management of many computing resources is transparent to

the overall system administrator. This will allow system administrators to add and

remove resources seamlessly without having to concern themselves with the low-level

details of managing and assigning virtual machines when requested for. Use of the

Infrastructure as a Service tool helps to add the elasticity and on-demand provisioning

of resources features to the overall proposed solution.

Automation and resource orchestration are central to cloud computing. For the proposed

solution, Fabric, a Python implemented API is used to orchestrate and automate some

system functions.

Ordinary systems users need to be abstracted from all low level components that com-

prise the solution proposed. For these users, the tasks of installing and configuring

repository tools are achieved through mere clicks of a button.

3.3.1 Infrastructure as a Service

Eucalyptus was the choice for this project. Its ease of installation, as it was bundled

with some distributions of Ubuntu, made this choice easy. Its active community and also

detailed readily available documentation were other reasons for going with Eucalyptus.

Chapter 3. Design and Implementation 23

Figure 3.1: Eucalyptus cloud components 1

To fully grasp the solution proposed, it is important to understand the different com-

ponents of the cloud infrastructure, and how they relate to each other. The different

components were discussed at length in Chapter 2. Figure 3.1 shows the components in

a Eucalyptus Cloud.

Based on what has been discussed so far, the following are important characteristics of

the cloud environment that have to be taken into account in the solution developed:

1. Virtual machines have ephemeral storage – the life cycle of a running instance ends

once the virtual machine has been shutdown. Any data saved in the instance will

be lost, unless it was being saved on persistent storage managed by the Storage

Controller. When booting, the instance will have an ephemeral storage disk that

is predefined upfront.

2. Persistent Storage – persistent storage is provided by the Storage Controller. Vary-

ing sizes of storage volumes can be created, which can then be attached to running

instances. When an instance has been shutdown, any data saved on the volume

will not be lost.

1Source, https://cssoss.files.wordpress.com/2010/12/eucabookv2-0.pdf

https://cssoss.files.wordpress.com/2010/12/eucabookv2-0.pdf

Chapter 3. Design and Implementation 24

3. Backing up of Persistent Storage – copies of the persistent storage can be made

and then be saved by the Walrus Storage Controller (WS3).

Any solution that would be developed would have to take advantage of the ephemeral

nature of the virtual machines in the cloud and that persistence of data is through the

use of the volumes provided by the Storage Controller.

3.3.2 DSpace Digital Repository Toolkit

DSpace is an open source digital repository toolkit that is used by a lot of institutions

across the world2 – its wide usage is the reason why it was chosen for prototyping for

the proposed solution. It is developed in the Java programming language, and uses a

PostgreSQL database.

Installation of DSpace is not a trivial task [13], which can take a significant amount of

time to successfully complete [16]. An efficient installation approach would have to be

adopted that abstracts a lot of the steps that users would take to complete a DSpace

installation.

In summary, the steps to install DSpace are as follows:

1. Install PostgreSQL server

2. Install Tomcat Java container

3. Install Maven

4. Configure PostgreSQL server; create database for DSpace

5. Configure Tomcat

6. Download, compile and build DSpace files

In this study, all these steps will be transparent to the user of the system when instal-

lations are carried out.

3.3.3 Configuration Management and Automation

For this study, Fabric was used because of its simplicity and the programming lan-

guage it supports – Python. Eucalyptus has Python administrative tools and APIs [32].

2DSpace, http://registry.duraspace.org/registry/dspace

http://registry.duraspace.org/registry/dspace

Chapter 3. Design and Implementation 25

This means that a seamless solution can be provided using Fabric and Eucalyptus for

provisioning of cloud based services.

Fabric allows for remote execution of tasks such installation of software and also config-

uration of that software.

3.3.4 UI Front-end

The Django Web framework was used to develop the user interface frontend. The func-

tions to be provided to a user on the frontend are: DSpace installation, starting and

shutting down of instances, and the customisation of DSpace. These tasks take slightly

over a minute to complete. Django Celery is used in the backend to allow for the execu-

tion of these functions in an asynchronous manner. That way, a user can perform other

tasks provided to them.

The Django Web framework and Django Celery both support Python and thus help

simplify their integration with Eucalyptus.

3.4 System Description and Data Flow

Figure 3.2 is a high level depiction of the steps that follow once a request to install

DSpace has been made.

For the purposes of the discussion that follows, a DSpace instance is a virtual machine

instance in the cloud environment with a completed installation of DSpace. The DSpace

instance may also be referred to as a repository. Virtual machine instance and instance

are used interchangeably.

3.4.1 User Front End

The process flow depicted in Figure 3.2 begins with a user logging onto the prototype

application that was developed called Lilu, using a username and password. Figure 3.3

shows what is presented to a user or system administrator once they have logged in.

Figure 3.4 shows the functions that can be carried out on existing installations. At this

point, the user or system administrator are able to carry out a DSpace installation or

manage already existing repositories.

Installation of a new DSpace instance starts with providing information that should be

associated with a given repository – this is repository-identifying information and system

Chapter 3. Design and Implementation 26

Figure 3.2: System implementation overview

Figure 3.3: Lilu initial landing page

Chapter 3. Design and Implementation 27

Figure 3.4: Features on a repository once it is installing or it has fully installed

administrator credentials. The needed information is provided via the interface depicted

in Figure 3.5. Installation of the repository takes over 10 minutes to complete. However,

the browser does not block until the installation has completed. Control is returned to

the user, who can continue to perform other tasks provided by the prototype. Progress

status of the installation is given – a successfully completed installation will have a green

tick and its progress status information is updated accordingly.

Figure 3.5: Information required to create a new repository

While the installation is progressing or has completed successfully, basic customisation

can be performed on the given repository or any repository associated with the currently

logged in user. Figure 3.4 shows how to access the customisation function. The cus-

tomisation feature allows for making minor modifications to the repository’s overall look

and feel. Positioning of the repository’s logo can be switched between left and right,

custom images for logos can be used, colors on the site can be changed, and the name

of the repository and text on the body of the repository can be adjusted. Figure 3.6

shows the customisation page, showing the different parts of the repository that can be

customised.

Chapter 3. Design and Implementation 28

Other features available include shutting down the repository, restarting the repository

and completely deleting the repository.

Figure 3.6: Repository customisation page

As earlier pointed out, the frontend’s functionality is made possible through use of

Django Web framework. Bootstrap3, an HTML and CSS framework, is used to develop

rich Web controls. Django Celery was used to enable asynchronous execution of tasks,

which is the reason control is returned back to the user after requesting to install or

customise a repository.

3.4.2 Backend

The application on the backend manages the workflows that are needed to complete

the requests made from the frontend. It does so by interacting with Eucalyptus cloud’s

APIs via euca2ools4 [32]. euca2ools provides an abstraction and a set of programmable

3Bootstrap, http://getbootstrap.com/
4euca2ools, https://wiki.debian.org/euca2ools

http://getbootstrap.com/
https://wiki.debian.org/euca2ools

Chapter 3. Design and Implementation 29

functions that enable administrative management of Eucalyptus cloud services. Some

of the euca2ool functions utilised in this proposed solution are described below:

1. Start (run) virtual machine instances – this is achieved by executing the

euca-run-instance from the command line or run instance python function of the

euca2ools API. This function essentially boots the instance, bringing to life the

virtual machine instance. Depending on the image used to run the instance, the

virtual machine may or may not have an operating system in it. For this study,

the image that was used had the Ubuntu operating system. Each instance that is

run will have a system generated ID by Eucalyptus.

2. Terminate virtual machine instances – the command line function associated

with this function is euca-terminate-instances, with the equivalent python API call

being terminate instances. It is the equivalent of shutting down and powering off

a computer. All computing resources i.e. RAM, Volumes, CPU etc., will be freed

up and ready for use by another virtual machine instance.

3. Reboot virtual machine instances – rebooting a virtual machine mantains all

the instance’s information and its connected peripheral devices. The command for

this function is euca-reboot-instances. This call is used when the virtual instance

needs to maintain its state of its connected peripheral devices and all other data

saved on its ephemeral volume.

4. Create and delete block storage volumes – block storage volumes are what

are used to persist data for virtual machine instances. The call to create volumes is

euca create volume while the one used to delete the volume is euca delete volume.

A given volume can only be deleted when it is not attached to a running virtual

machine instance.

5. Attach block storage volumes to instances – this will attach the created

block storage volume to a running instance. The euca2ool function called to attach

volume(s) is euca-attach-volume. This function only ends at attaching the volume

to the running instance. For the volume to be usable, it would need to be mounted

by the operating system of the virtual machine and also formatted – formatting

of the volume is only done once. Subsequent attachment of the same volume to

instances requires no formatting unless it is the user’s preference to do so.

6. Check the status of virtual machines and volumes – euca describe volumes

and euca describe instances will check the status of virtual machine instances and

available volumes in the cloud, respectively. Virtual machines will be in either of

2 states: running or terminating. Once terminated, the virtual machine ceases to

Chapter 3. Design and Implementation 30

exist. Volumes too will be in one of 3 states: deleting, available, or attached. The

available state indicates that the volume is ready for use by an instance.

7. Monitoring of the clouds’ resource utilisation – euca-describe-availability-

zones is one of the important functions that helps ascertain the amount of resources

that are in use against the capacity of the cloud environment. The function can

be used to determine whether the cloud still has enough resources to run another

virtual machine instance.

The application builds on these functions to provide the features available on the user

frontend. The backend application will receive the requests, namely 1) install DSpace,

2) customise DSpace, 3) shutdown DSpace, and 4) start DSpace.

Install DSpace (install new repository) is the primary function in the developed

application prototype. When the request to install DSpace is received, the backend

application goes through the following phases (this is as depicted in Figure 3.2):

1. Via the cloud’s API, boot a new virtual machine instance.

2. If the instance booted successfully, the application will check if there is any avail-

able free block storage volume. If not, a new volume will be created. The success-

fully booted instance will have a private IP address.

3. The volume in step 2 will then be attached to the booted instance. The applica-

tion will generate a unique identifier for this volume. This identifier will also be

associated with the user requesting this installation.

4. The attached volume will be formatted and prepared for use in the virtual machine

instance.

5. Using Fabric, DSpace and its dependency libraries will be installed on the virtual

machine instance.

6. Configuration will be done for the DSpace PostgreSQL database and the location

where the DSpace bitstreams should be saved. All data that should be persisted

will be saved on the attached volume.

7. Restart Tomcat server on the virtual machine instance.

8. Assign this instance a URL and register it on the primary front-facing Apache

Webserver. This URL will be used to access the DSpace instance in the cloud.

The URL will be mapped to the instance’s private IP address in the cloud envi-

ronment. Note that the DSpace instance in the cloud is using Apache Tomcat as

Chapter 3. Design and Implementation 31

its Webserver and Java Container. The re-routing of external calls via the front-

facing Apache server to the Tomcat server is achieved by using an Apache module

called mod alias5 – this is installed on the front-facing Apache server, where the

publicly accessible URL is mapped to the internal private IP address for the virtual

machine instance.

Customise DSpase. When the backend receives this request to customise a given

repository, it keeps a copy of the customisations to be made before publishing them to

the DSpace instance. The customisation process entails overwriting files on the target

DSpace instance. Overwriting of files is achieved through rysnc6 calls. Using Django

Celery, the user can perform the customisation while the DSpace instance installation

is ongoing.

Shutdown DSpace. When this request is received on the server, the application will

detach the volume from the instance before terminating the virtual machine instance.

Detaching of the volume is only carried out once the Postgres database and Webservers’

(i.e. Tomcat and Apache) services have been stopped successfully. Termination of the

virtual machine instance is via calls to the Eucalyptus API terminate-instance. This

API call results in the equivalent process of shutting down the machine’s operating

system and powering off the virtual machine. Termination of an instance frees up the

compute resources that can be used for other purposes. Note that this is transparent to

the frontend user, who will have the perception of a traditional computer shutdown.

Start DSpace (or restart DSpace). This action can only be executed in the event

that the DSpace instance was previously shutdown. Starting a DSpace instance follows

the same process as installing a new DSpace instance. The difference is that there is

no DSpace installation and configuration required. A start DSpace task reattaches the

volume that was detached during the shutdown. This volume will still have all the

information about the DSpace instance before it was shutdown.

3.5 Implementation notes

Users of the system own volumes and not virtual machines. The application will store all

the identifying information of each virtual machine instance together with its associated

DSpace installation. Instances can be created and terminated at will, but the DSpace

instance’s data and all access information will remain intact. The importance of this

feature is that compute resources are freed when the instance has been shutdown and

5mod alias, https://httpd.apache.org/docs/2.4/mod/mod_alias.html
6rsync, https://linux.die.net/man/1/rsync

https://httpd.apache.org/docs/2.4/mod/mod_alias.html
https://linux.die.net/man/1/rsync

Chapter 3. Design and Implementation 32

thus available for use by other cloud users, or for other purposes. For an example, refer

to Figure 3.7 and Figure 3.8. Both figures show a cloud environment that has a capacity

to host a total of 4 virtual machines, and has 2 registered users. In Figure 3.7, one

instance – VM1 – is running belonging to User 1. User 2 has a volume assigned to them

but has their DSpace instance shutdown. Figure 3.8 shows that User 1 had shutdown

their instance, and on restarting they were assigned a different virtual machine – VM3.

When User 2 decided to run their instance, they were assigned virtual machine VM1,

which had previously been assigned to User 1. The assignment of the virtual machines

is transparent to the users.

Figure 3.7: Eucalyptus cloud state with only one virtual machine running

The whole process of booting a virtual machine instance in the Eucalyptus cloud setup

during this implementation to completing the installation of DSpace takes, on average,

about 12 minutes. This is a relatively long time from a user’s perspective. There are

options that can be explored to reduce this time significantly. One way would be to

pre-create instances and also pre-create volumes so that, at the time they are requested,

only configurations of DSpace will be performed.

This suggested solution removes the burden on the system administrator to manage

the hardware for each instance that is running. The system administrator can instead

concentrate on only pre-creating configurations for the repositories – an activity that

needs to only be carried out once. However, the running of unused resources, those that

were pre-created, would be a waste of resources - that would also result in unnecessary

performance hits on the resources that are actually in use.

Chapter 3. Design and Implementation 33

Figure 3.8: Eucalyptus cloud state with two virtual machines running

3.6 Summary

This chapter provided a description of the solution proposed to answer the research

questions on the possibility of hosting digital repositories in private cloud environments.

A private cloud environment was setup using Eucalyptus. A Web based tool was then

developed to automate the installation of DSpace in the private cloud environment.

The Web based tool did not only provide a feature to install DSpace, but to customise,

shutdown and restart DSpace instances.

The following chapter will evaluate this proposed solution in order to answer the study’s

research questions.

Chapter 4

Evaluation and Results

Eucalyptus was used as an Infrastructure as a Service platform to setup a private cloud

environment. Deployment of instances and installation of DSpace in them was done.

In addition, a prototype management application tool was developed. This chapter

discusses the steps taken to evaluate the use of DSpace in a private cloud environment

and also the tool developed to install and manage DSpace. The evaluation aims to

answer the following research questions:

1. Is it possible to host digital repositories in Private Cloud environments efficiently?

2. How can common repository tools like DSpace be adapted for the cloud for easy

management and deployment?

Two different types of evaluations are carried out: a performance experiment to ascertain

the efficiency of the deployed DSpace instance in the cloud; and a usability study to

answer the question on the management of repositories in a private cloud environment.

4.1 Performance Experiment

This experiment will answer the research question on whether it is possible to host

repositories in private clouds efficiently and effectively. The tests measure the response

times for ingesting and viewing repository items. Response time is the length of time

it takes to complete a task, tasks here being: 1) item ingestion; and 2) viewing and

downloading an item.

Another metric that was considered for measurement is instance install time. This metric

was to ascertain how long it takes from requesting an instance for DSpace installation

34

Chapter 4. Evaluation and Results Analysis 35

until it is ready for use. However, this is covered in the usability study where wait time

contributes to the participants’ satisfaction with the installation task. The performance

experiment did not measure instance install time.

4.1.1 Experiment Setup

To accomplish this test, a cloud environment was setup. Starting and stopping of com-

puting virtual machines and installation of DSpace were automated. The cloud en-

vironment could hold a total of 12 virtual machines. Figure 4.1 depicts the overall

infrastructure of the cloud environment with all its components.

Figure 4.1: Diagrammatic representation of the private cloud environment for running
experiments

Each of the components in Figure 4.1 plays a specific role. Below is a brief description

of each component:

• Main Server – This hosts the core components of Eucalyptus. The four compo-

nents running are Cloud Controller, Cluster Controller, Walrus and the Storage

Controller. These components were described in detail in Chapter 2 and Chapter

3. In addition to managing the overall cloud infrastructure, the main server serves

as the entry point to the virtual machines that are hosted on the node servers.

• Nodes – Each of the nodes runs Eucalyptus’ Node Controller. It is the nodes that

run the virtual machines that are later provisioned to users of the cloud in which

Chapter 4. Evaluation and Results Analysis 36

Table 4.1: Hardware specifications used in performance experiment

Main
Server

Nodes Virtual machines Client laptop

CPU 3.2 GHz Intel Core i5 (4 cores) 3.2 GHz QEMU Virtual
CPU (2 cores)

2.5 GHz Intel
Core i7 (4 cores)

RAM 8 G 1 GB 16 GB

Hard Disk 300 GB 5 GB 500 GB

Table 4.2: Software specifications used in performance experiment

Software Version Description

Eucalyptus 2.0.2 Infrastructure as a Service platform

DSpace 1.8.2 Digital Repository software

JMeter 2.13 Application performance measurement tool

DSpace is installed. In the experimental setup, a total of 6 nodes are used, with

each node running a total of two virtual machines.

• Client laptop – The client laptop is external to the cloud environment. It was

used to access the services provided by the cloud environment.

The hardware and software specifications used for this test are listed in Table 4.1 and

Table 4.2, respectively.

4.1.2 Methodology

The overall objective of the test is to measure ingestion and viewing of items in DSpace,

and ascertain if there is any effect on performance when the number of instances in the

cloud are increased or when concurrent requests are made to different instances. It would

serve no meaningful purpose if only one instance is evaluated as that would be as good

as evaluating a single standalone server machine. The performance experiment answers

the research questions by measuring how long common repository tasks are completed in

when executed by repository users. In addition, by comparing the performance of a sin-

gle server installation in the private cloud with multiple cloud server machine instances

in the cloud, the performance experiment measures the scalability of private cloud en-

vironments and therefore the efficiency and effectiveness part of the research question.

Scalability is an important feature of cloud platforms. Note, however, that the experi-

ments are run on commodity desktops machines, machines that would be for very low

resourced institutions but provide a good proxy for performance in environments with

server machines with medium to high end computer specifications.

Chapter 4. Evaluation and Results Analysis 37

To carry out the experiment, Apache JMeter1 was used to simulate repository user ac-

tions and also take response time measurements. JMeter was installed on the client lap-

top. All requests to ingest and view repository items were carried out from this instance

of JMeter on the client laptop. Simulation of repository actions entailed reproducing the

two common actions on repository tools, item ingestion and item viewing (downloading).

Ingestion of items goes through a series of Web pages where information and metadata of

the item being ingested is entered by a repository user. Viewing an item requires knowing

a given items’ URL endpoint, then navigating to it to load or view it. If the given reposi-

tory item has an associated resource, for instance a PDF document, the action of viewing

of the item proceeds to download that associated resource. For this study, the item used

can be found at the URL, https://doi.org/10.1007/978-3-642-24469-8_57. It is a

PDF document which is 60KB in size. For the experiment, all its metadata was associ-

ated with it during the ingestion. The choice for this item was driven by the need to use

a real world document, similar to what would be uploaded in institutional repositories.

The experiment began by running a number of virtual machine instances in the cloud

environment. Once the virtual machine instances had fully booted, DSpace would be

installed in each one of the instances, following the steps outlined in Chapter 3. Using

JMeter, 15 items would be ingested into DSpace installed in each of the running virtual

machine instances. Item ingestions in a single DSpace instance were carried

out sequentially, while ingestions in all the other running instances in the

cloud were run in parallel. The length of time to ingest an item was measured, which

in this study is called ingestion time. Once the 15 items in each DSpace instance were

successfully ingested, JMeter was used to view (load) the item. This was to mimic the

process of viewing and downloading items with their associated attachments/documents.

This step was used to measure the performance of accessing items in a DSpace instance

running in a cloud environment. The process of booting virtual machine instances,

installing DSpace in the instances, ingesting and viewing all 15 items in each of the

running DSpace instances constituted a single run in the experiment. Each run consisted

of one or more instances running in parallel. A total of 5 runs were carried out. Each

run had a different number of instances running in the cloud. The predefined number of

instances at each run were as follows: 1, 2, 5, 8 and 11. That is, in the first run, 1 instance

was used; in the second run, 2 instances were used; in the third run, 5 instances were

used; then 8 and 11 instances in the fourth and fifth runs, respectively. Note that, each

run was also repeated 5 times. The choice for the order 1, 2, 5, 8 and 11 instances was

deemed representative enough as was observed during the pilot phase of the evaluation

exercise. The exception to that was for not running 12 instances, which was the full

capacity of the cloud, due to the experimental environment becoming unstable and thus

1JMeter, https://jmeter.apache.org/

https://doi.org/10.1007/978-3-642-24469-8_57
https://jmeter.apache.org/

Chapter 4. Evaluation and Results Analysis 38

requiring resetting the entire cloud every time. This has been noted as one of the issues

to take note of when running private clouds.

A summary of the process is as follows:

begin

instances := [1, 2, 5, 8, 11]

for instances-to-boot in instances :

for i := 1 to 5 step 1 do

reset cloud. no instances running

boot instances-to-boot at once

using JMeter, ingest 15 items in each of booted instances-to-boot

using JMeter, view + download 15 items that were ingested in each of instances-to-boot

end

end

end

From the code above, the experiment has a pre-set number of instances to run at each

cycle (loop). In the first cycle, 1 instance is run, then the following five cycles have 2, 5,

8 and finally 11 instances running, respectively. Before each cycle begins, there should

be no running instances in the cloud. In addition, each cycle has to complete before

the next cycle is started. For the cycle where 2 or more instances are run, calls to boot

each instance are made at the same time and thus the instances are run concurrently.

Once instances are up and running, each of the running instances will have 15 items

ingested in them. The action of ingesting items across the running instances is carried

out concurrently while the ingestion of each of the 15 items in each running instance is

carried out sequentially. For a given instance, once the ingestion step has completed,

the 15 ingested items will be viewed and their associated file downloaded in sequential

order.

4.1.3 Results – Ingestion Time

The average times to ingest an item into DSpace are shown in Figure 4.2. Figure 4.3

shows the average ingestion time by order of ingestion of the DSpace items and, finally,

Figure 4.4 has a detailed breakdown of the average ingestion times by instance and also

ingestion order of the item.

Chapter 4. Evaluation and Results Analysis 39

Figure 4.2: Graph depicting the average time to ingest a DSpace item by the number
of running instances in the cloud

Figure 4.3: Overall average ingestion time by order of ingestion and number of in-
stances

4.1.4 Discussion – Ingestion Time

At the onset of this project, it was not certain what performance hits would be incurred

when running a DSpace instance in a cloud environment, especially when the cloud has

other virtual machines running. It can be deduced from Figure 4.2 that an increase in

the number of instances does not have a considerable effect on the performance of the

ingestion of an item in DSpace. The overall average ingestion time remains between 30

Chapter 4. Evaluation and Results Analysis 40

Figure 4.4: Overall average ingestion time by order of ingestion and number of in-
stances

and 35 seconds. The average ingestion time by 1, 2, 5, 8 and 11 instances are 32.27,

32.98, 32.86, 32.93 and 32.86 seconds respectively.

Figure 4.3 and 4.4 show that the order in which the items are ingested into DSpace

also remains stable: there is no spike in the response time as more items are ingested

into DSpace. However, the initial ingestion time into DSpace is noticeably higher than

the rest of the ingestions. This can be attributed to Apache server on the central cloud

server making its initial connection with the Tomcat server on the DSpace instance in

the cloud. In addition, at first run, Tomcat on the DSpace instance will be loading

the necessary resources, which may contribute to this slowness. Once connections have

been established and other configurations cached by Apache on the main server and the

Tomcat server has been loaded fully, subsequent requests are noticeably faster.

Since in a cloud environment the cluster of machines are managed from a single point

(the cloud server) and resources are shared between virtual machines (on node servers),

it would be expected that the more instances that are running, the slower the tasks’

execution. This experiment demonstrates that, for the ingestion task, the performance

degradation is noticeably small. As can be seen from Figure 4.4, even an increase in

the number of DSpace instances, which also resulted in more requests being sent to the

server concurrently, there is no noticeable increase in the wait time. Because the increase

is in milliseconds, it would not be noticed on the part of the user of the system.

In order to further ascertain the magnitude of the difference in the ingestion times when

run in an environment with varied numbers of instances, a one-way ANOVA test is

Chapter 4. Evaluation and Results Analysis 41

carried out on the 5 different instances used. Using SciPy’s f oneway function, an F-

statistic of 3.19 and p-value of 0.012 is obtained. At a significance level of 95%, it can be

concluded that there is a significant difference in the ingestion times, that is, rejecting

the null hypothesis that there is no difference between the average item ingestion times

into dspace when multiple instances are run at the same time. However, when the

differences are compared between each number of instances, ingestion times when there

is a single instance in the cloud are lower than when multiple instances are running.

When the ingestion time is compared between multiple running instances, Table 4.3

shows that there is no significant difference in the ingestion times between them. It

can be concluded that there is indeed a significant difference when one instance is used

compared to any number of multiple instances. But, because the differences are in

milliseconds, it can be argued that there is no practical implication on any number of

instances running in the private cloud.

Table 4.3: Ingestion time, p-values for paired number of instances in the cloud

Number of instances t-statistic p-value

1 vs 2 -3.83 0.0001

1 vs 5 -4.07 0.00007

1 vs 8 -4.53 0.00001

1 vs 11 -4.39 0.00002

2 vs 5 0.58 0.55

2 vs 8 0.30 0.75

2 vs 11 0.79 0.42

5 vs 8 -0.41 0.67

5 vs 11 0.21 0.83

8 vs 11 0.75 0.44

4.1.5 Results – Item View and Download Time

Item view time (item view response time) is the time taken to load an item with its

metadata in the browser after a user has requested for it, and the mode in which this

was measured is discussed in the methodology section of this experiment. The average

response times are shown in Figure 4.5. The download time is the time taken to download

a file associated with a given DSpace item. The download average time is also shown

in Figure 4.5. Figure 4.6 shows the average item view time by number of instances

and in sequential order that the file was requested for. Figure 4.7 is a summary of the

average download times by number of instances and in sequential order of item download.

Note that as much as there is a noticeable difference between running 1 instance and

11 instances, all response times are under a second, with the maximum response time

about one eighth of a second.

Chapter 4. Evaluation and Results Analysis 42

Figure 4.5: Overall average item view and download time by number of instances

Figure 4.6: Average item view response times by number of instances and order of
item view

4.1.6 Discussion – Item View and Download Times

Overall, the average response times for the two tasks – item view and item download –

are all under one eighth of a second. However, there is a noticeable linear decrease in

performance as the number of instances running in the cloud are incrementally increased

to full capacity. This difference would be hardly felt by users of the system. Using the

ANOVA test to compare the differences between the view times of 1, 2, 5, 8 and 11

Chapter 4. Evaluation and Results Analysis 43

Figure 4.7: Average item download response times by number of instances and order
of item download

instances, an F-statistic of 72.57 and p-value of 2.23e− 55 is obtained. Since p<0.05, it

can be said that there is a significant difference in the view times experienced.

Therefore, overall performance is affected as the number of instances in the cloud are

increased. However, due to the increases being in milliseconds, users will barely no-

tice the performance degradation. With these results, it can be said that for private

clouds of similar sizes as used in this experiment, slight performance degradation can be

experienced when clouds are run at full capacity.

4.1.7 Performance Experiment – Summary

From the experiments, it can be summarised that while the ingestion time when multiple

instances are running in the cloud is significantly different, the difference would not be

discerned by system users. Because the difference the repository user would experience

when one machine is running in a cloud environment compared to when multiple in-

stances are being run would not practically be discerned by users, it can be said that

the users of repositories would complete their tasks effectively and efficiently.

The experiment on item view and item download showed that there is a significant dif-

ference between a single server setup and multiple server setups in a cloud environment.

However, due to size of the increase in the view time, it can be argued that there is no

practical significance between the view times. It is also important to note that these

Chapter 4. Evaluation and Results Analysis 44

actions of viewing and downloading items are what will be subjected on the repository

more often by users than the act of ingestion of items.

The results from the two performance experiments show that from a practical stand-

point, it is possible to host digital repository in Private Cloud environments efficiently

and effectively.

4.2 Usability Evaluation

Cloud systems come with unique challenges and, unlike in traditional systems where

the computing systems running applications are in physically close proximities, in cloud

systems all interactions have to be carried out remotely. This presents a challenge that

non-expert users would contend with. Effectiveness, hence in this context, is determined

to mean the ease with which carrying out installation and management tasks on digital

repositories can be achieved. Commonly, digital repository installations are carried

out from a command line interface. In this study, a browser based software application

interface is provided to carry out installations and management of instances and, as such,

effectiveness and efficiency evaluations are based on the usability of the management

interface developed. The objective of this evaluation is centered around the following

questions:

1. Is the developed tool easy to use?

2. Are the features in the prototype sufficiently complete. This will help identify what

additions need to be made to the application’s features to make it more useful and

usable.

3. Do results from completed tasks meet user expectations? Here we establish if, for

instance, the customisation function produces results that meet the users’ expec-

tations.

4.2.1 Questionnaire Rationale

To answer the questions posed in the previous section, usability studies were conducted.

Usability, as defined by ISO 9241-11 [75], comprises aspects of efficiency, effectiveness

and satisfaction [76]. These components form what is at the core of the objectives

to be investigated in this study. The System Usability Scale (SUS) [77] is adopted

Chapter 4. Evaluation and Results Analysis 45

for this study. Of the other potential options 2,3, SUS not only meets the needs of

this study, because of its applicable set of questions, but it is also widely used4, has

respectable reliability [78] and is available for free use without a licence. For the purposes

of evaluating the developed prototype, the questions in SUS have been slightly adapted,

with appearances of system replaced with application or tool. SUS has 10 questions only,

therefore making it easy for participants to use and also for scoring purposes.

As SUS will only give a usability score for the whole system, a post-task subjective

psychometric questionnaire is used. The After-Scenario Questionnaire (ASQ) [79] is

a three-item after scenario rating, that measures user satisfaction immediately after a

task has been completed. Though simple, it has been shown that it fares well with other

competing evaluation methods [80, 81]. For the purposes of this study, the question

Overall, I am satisfied with the support information (on-line help, messages, documen-

tation) when completing the tasks? was dropped from the list of questions used in this

study. However, a free text field was added to allow participants to express their feelings

that might not have been captured by the provided ratings. The free text field was also

added in the overall system usability evaluation using SUS.

4.2.2 Study Methodology

This study was conducted from within the University of Cape Town’s intranet. Partici-

pants were recruited from a pool of postgraduate students. The minimum requirements

for participants were that they should be familiar with Web technologies and be ev-

eryday users of the Internet. They were not expected to be expert technology users.

Before the participants engaged in the study, they were asked to sign a consent form.

All participants consented to take part in the study.

The evaluation exercise involves completion of 2 main tasks that were the core features

of the developed prototype: installation and customisation of a digital repository. After

completion of each of those two tasks, users were asked to answer the task’s associ-

ated post-task question. When the two tasks have been completed, participants then

proceeded to answer the SUS questionnaire that measures the overall system usability.

Refer to Appendix A: Survey Questionnaire, for the detailed task descriptions, instruc-

tions and survey questionnaire.

2User Interface Usability Evaluation, http://hcibib.org/perlman/question.html
3A Comparison of Questionnaires, http://www.upassoc.org/usability_{}resources/conference/

2004/UPA-2004-TullisStetson.pdf
4Measuring Usability with the SUS, https://www.measuringusability.com/sus.php

http://hcibib.org/perlman/question.html
http://www.upassoc.org/usability_{}resources/conference/2004/UPA-2004-TullisStetson.pdf
http://www.upassoc.org/usability_{}resources/conference/2004/UPA-2004-TullisStetson.pdf
https://www.measuringusability.com/sus.php

Chapter 4. Evaluation and Results Analysis 46

4.2.3 Participants and Technical Ability Level

Twenty two participants took part in the evaluation study. From the outset, participants

were asked to list any software applications that they had installed and /or configured

before. This was a test to gauge roughly how familiar they were with carrying out

installations that could be time-consuming and ascertain their technical ability levels.

Based on the results, participants were identified to fall into three (3) categories:

• Non-expert: Users who have never installed nor configured an application whose

characteristics are similar to any DSpace dependent application.

• Intermediate: These users have installed an application before that shares some

similarities with DSpace’s dependent software. The application could also be

DSpace’s dependent application, e.g., a user who lists Apache as a single system

they have installed or configured is considered an intermediate user.

• Expert: These users should have installed either DSpace (or any Repository ap-

plication), at least any two of DSpace’s dependents components, or at least any

two such applications that share similarities with any of DSpace’s dependent ap-

plications. For instance, a given user who has installed MySQL and GlassFish

would be classed as an expert.

The assumption behind these classes is that non-experts are not expected to understand

the intrinsic details of configuring Web applications, intermediates would have been

exposed to running Web applications and may even have some understanding of basic

HTML. Experts (the word expert is used very loosely), have a good understanding of

running Web applications and they are very familiar with installation and configuration

of developer environments required to setup a Web site. Note however that a high level

of technical ability was not a prerequisite to take part in the study. This classification of

participants will be used in the other sections to help identify whether users’ technical

abilities affect their perception of the application’s usability.

Table 4.4: Breakdown of participants by category

Level Of Familiarity Number of Participants

Expert 10

Intermediate 6

Non-expert 6

Chapter 4. Evaluation and Results Analysis 47

Table 4.4 shows the breakdown of each category and its associated number of partici-

pants. For an understanding of how these categories were arrived at, refer to Table 1

of Appendix B: Survey Questionnaire Results.

4.2.4 Installation Task – After Scenario Questionnaire Results and

Discussion

Using the developed prototype for installing and managing repositories, participants

were asked to carry out an installation of DSpace and immediately were asked to rate

their experience based on the following statements: 1) Overall, I am satisfied with the

ease of completing the tasks in this scenario, and 2) Overall, I am satisfied with the

amount of time it took to complete the tasks in this scenario. A five point Likert scale

was used for the responses, with 5 being strongly agree and 1, strongly disagree. All

questionnaires were adequately filled in.

Results

The complete raw results can be found in Appendix B: Survey Questionnaire Results.

Figure 4.8 shows the average scores for each category of the participants and the overall

scores for all participants. The overall average score for the perception of the duration

of time to install DSpace is 3.4 while the median score is 3.5, both of which are just

above average. The score for the ease of installation is more positive compared to the

installation duration perception. The average score for the ease of installation is 4.3,

while the median score is 4.5. The boxplot in Figure 4.9 gives a distribution summary

of the results

When asked to comment on what they liked about the installation process, the study

participants highlighted the simplicity of the user interface and also the few steps re-

quired to complete the installation. The comments included, 1) “very few details needed;

clean install; progress bar to show install progress”; 2)“very simple and required no ex-

perience; very clean and simple UI”; 3) “one click installation, very simple”, etc. When

the participants were asked what they did not like about the installation process, their

responses showed that the duration taken to complete the installation was a problem.

Some of the comments included the following, 1) “installation took too long”; 2) “not

sure how long it normally takes but installation seemed too slow”; 3)“it took too long, it

was too slow”; etc. These comments help explain why the duration of the installation

had a median score of 3.5 and why the median score for the ease of use was 4.5.

Chapter 4. Evaluation and Results Analysis 48

Figure 4.8: Average scores for the installation task by category of the study partici-
pant

●

Satisfaction−Ease of Use Satisfaction−Installation Duration

1
2

3
4

5

Installation After Scenario Result Summary

S
co

re
: 1

−
S

tr
on

gl
y

D
is

ag
re

e,
 5

−
S

tr
on

gl
y

A
gr

ee

Figure 4.9: Boxplot showing a summary of the results for the installation task.

Discussion

The main result from this part of the usability study is that the time taken to complete

the installation is long for the average user. It is important that for any improvements to

the installation function, installation duration time would have to be a priority. However,

even with the mixed responses on the duration time, the overall usability perception

Chapter 4. Evaluation and Results Analysis 49

of the installation task was a positive one. The accompanying comments were of a

satisfactory tone, with all the participants, bar one, completing the installation process

with very little help offered.

The time taken to complete the installation is a constraint of the cloud environment’s

response times. A number of techniques can be applied to ensure that users do not have

to wait for over 8 minutes to start administering their repositories. One way would be

to create instances in advance – once they are allocated to users, their only task would

be to configure the system to their preferences. This is an aspect that would only be

useful in a high traffic environment. For organisations where requests would only be

started once in a while, the wait times would suffice in comparison to the official DSpace

installation steps.

4.2.5 Customisation Task – After Scenario Questionnaire Results and

Discussion

The complete raw results for the subjective multiple choice questions asked immediately

after the participants carried out the customisatiom task are in Table 3 of Appendix B:

Survey Questionnaire Results. For the customisation task, users had to make changes

to the look and feel of the DSpace installation, making modifications following their

instinctive preferences. Figure 4.10 shows the average scores by each category of partic-

ipants. The overall scores are above average. This means that the users found the task

easy to complete and they perceived the time taken to complete the customisation task

positively.

For the question, Overall, I am satisfied with the ease of completing the tasks in this

scenario, the median and the mean score both are tied at 4 – the Likert scale used had

1 as strongly disagree and 5 as strongly agree. Figure 4.11 shows the distribution of the

results, indicating that most participants scored the ease of use for the customisation task

with 4. Of the 22 participants, 2 indicated that they had an unsatisfactory perception

of the ease of usability of the customisation feature of the application by scoring the

usability with a 2. The general picture that arises when the results are presented using

a boxplot as shown in Figure 4.12 is that the majority of the participants found the

feature easy to use as indicated by a median of 4 and all participants in the 4th quartile

scoring it with 5 – strongly agree.

The time it took to complete the customisation in itself had high scores, with no partici-

pant scoring it below 3. This is understandable as the user interface for the customisation

Chapter 4. Evaluation and Results Analysis 50

Figure 4.10: Average customisation task scores by participant category

2 3 4 5

Customisation − Ease of Use Responses

Response Scores

N
um

be
r

of
 p

ar
tic

ip
an

ts

0
2

4
6

8

Figure 4.11: Distribution of responses to the ease of use question after completing
the customisation task.

tasks provided relatively few fields to make changes to, and once the participant com-

pleted filling in their preferences for the different sections, there was little to no waiting

at all.

It can be deduced from the given results that the overall perception of the customisation

process is positive. However, as Figure 4.12 shows, some improvements would still

improve the user’s usability perception.

Chapter 4. Evaluation and Results Analysis 51

Satisfaction−Ease of Use Satisfaction−Customisation Duration

2.
0

2.
5

3.
0

3.
5

4.
0

4.
5

5.
0

Customisation After Scenario Result Summary

S
co

re
: 1

−
S

tr
on

gl
y

D
is

ag
re

e,
 5

−
S

tr
on

gl
y

A
gr

ee

Figure 4.12: Boxplot showing a summary of the results for the customisation task.

4.2.6 Overall Application Usability – Results and Discussion

Results

The overall average SUS score from the evaluation was 74. SUS is scored out of 100.

There was an observed difference in the average scores by each of the categories that

were devised: experts scored an average of 81, intermediates scored 65 and non-experts

scoring 70. Table 4.5 has the results broken down by category and their associated

standard deviations. Figure 4.13 is a graphical representation of the results.

Table 4.5: SUS Scores by User Category

Category Average SUS No. Participants Standard Deviation

Non-expert 70.8 6 19.14

Intermediate 65.0 6 14.91

Expert 81.97 10 24.30

Overall SUS 73.97 22 21.08

Chapter 4. Evaluation and Results Analysis 52

Figure 4.13: Overall SUS scores by participant category

Responses to the question, What did you like about the application? and What did you

NOT like about the application? were transformed into categories for easy grouping

and analysis. Table 4.6 shows an example of how the translations were done. Essen-

tially, each response was interpreted and transformed into a specific positive or negative

area of the application. The response was then assigned a specific short phrase/code.

When a response included multiple positives or negatives, the response was assigned

multiple codes equivalent to the nunber of positives or negatives in the response. For

instance, one participant’s response to the question that solicited a negative aspect of

the application was, “Tricky to understand; slow to install; not enough user feedback;

finish button bug”, and was translated to 3 codes namely, “Not-responsive-enough”,

“Difficulty-to-understand”, and “Installation-takes-long.” From the translations, more

positive comments were given compared to the negative ones. There was a total of 39

unique positive comments and 27 unique negative comments. Figures 4.14 and 4.15 show

a summary of what each group of participants said as what they perceived as negative

and positive. From the figures, it can be deduced that ease of use was the most positive

perception and installation taking long as the most negative perception of the system.

Table 4.6: Sample translations and grouping of negative responses

What did you NOT like about the application? Response translation

Use of personal information; settings not retained Personal-information-not-

reusable

Takes some time installing Installation-takes-long

Chapter 4. Evaluation and Results Analysis 53

Some minor bugs: about the link not working; cursor

treats customisation labels as links and acts inconsis-

tently when clicking these labels

Minor-bugs

The long wait time on creation, having to clear cache

to view upate

Need-to-clear-cache

The long wait time on creation, having to clear cache

to view upate

Installation-takes-long

Installationspeed; effects of customisation should be

seen during the customisation, not after

Installation-takes-long

Installationspeed; effects of customisation should be

seen during the customisation, not after

Not-responsive-enough

Limited options – information about what is going on Limited-options

Tricky to understand; slow to install; not enough user

feedback; finish button bug

Installation-takes-long

Tricky to understand; slow to install; not enough user

feedback; finish button bug

Not-responsive-enough

Tricky to understand; slow to install; not enough user

feedback; finish button bug

Difficulty-to-understand

Still buggy around the edges – some refreshing was

needed; needs more details when performing tasks (up-

dates, installs etc)

Minor-bugs

Figure 4.14: A summary of positive comments given after use of the management
tool

Chapter 4. Evaluation and Results Analysis 54

Figure 4.15: A summary of negative comments given after use of the management
tool

Discussion

From the overall SUS score, it can be concluded that the system’s usability of 74 is

above average. Of note, Intermediate study participants scored their perception of the

developed application less positively compared to both the Expert and Non-expert par-

ticipants. From the open-ended responses given, it can be deduced that the length of

time to install the repository was important to the Intermediate participants as it af-

fected how they perceived the usability of the application. It can be speculated that

their previous experience of installing dependent software of a digital repository made

them expect the installation of the digital repository to take about the same time as its

dependent software. This can be contrasted with the Expert participants (Expert par-

ticipants had experience installing digital repositories) who only registered one negative

response that has to do with the duration of the installation.

For Non-expert and Expert participants, it can be deduced from the comments that the

ease of use of the application is one of the reasons they scored the system relatively more

positively compared to Intermediate participants. Non-expert participants’ relatively

lower score compared to the Expert participants’ can be attributed to how they perceived

the responsiveness of the application – a majority of the Non-experts’ negative comments

were about how the application was not very responsive.

A comparison of the overall positive and negative comments attributed to the system

Chapter 4. Evaluation and Results Analysis 55

provides more support that the system is generally usable as there are more positive com-

ments provided. Apart from the installation time, which was queried by 7 participants,

the other negative perceptions were expressed by 4 participants.

The results from this evaluation indicate that users are able to complete tasks of in-

stallation and customisation of the system, and there is an above average satisfaction

in interacting with repositories in the cloud through use of the developed system. This

answers the question on the efficiency of hosting digital repositories in private cloud

environments.

4.3 Adapting DSpace for Cloud Deployment

This study’s second research question is about how DSpace, or other commonly used

Institutional Repository tools, can be adapted for easy management and deployment.

The two experiments carried out dwelt on evaluating the performance of DSpace in a

cloud that was deployed using the application tool developed to manage repositories

in cloud environments – which was the second evaluation done. Therefore, the success

from the evaluation help answer the research question on how repository tools should

be adapted for cloud environment.

DSpace was not adapted in any way. However, what was tweaked was the installation

process of DSpace, which contributed to building an interface allowing for easy manage-

ment and installation of DSpace. In summary, the architectural makeup of DSpace was

not adapted, but its installation steps were.

The developed tool included a feature to customise DSpace’s look and feel. This too,

did not require a change to the overall design of DSpace, but instead were simple edits

to DSpace’s front-end technology – HTML and XSLT – that enabled automating and

simplifying the process of how customising the look and feel is carried out by developers.

The edits were a creation of placeholders for changing the colors, fonts and placements of

certain user interface componets. Using user supplied details, these placeholders would

be updated during runtime with changes made reflecting user defined preferences. This

was described in detail in Chapter 2 of this report.

It can therefore be concluded that deploying DSpace in the cloud requires no architechu-

ral changes to the repository application. Building tools to manage repositories and

customise their look and feel may be necessary to widely have low cost private cloud

environments built and supported by non-techincal users. In addition, simplifying the

process of installation is also beneficial to all users as was discussed in the usability

evaluation of this study.

Chapter 4. Evaluation and Results Analysis 56

4.4 Summary

This chapter attempted to answer the research questions that were set out for this study.

Two different evaluations were performed: a performance experiment and a usability

study.

The performance experiment revealed that private cloud environments can indeed host

digital repositories. Much as there was a significant difference in the view and download

times as the number of instances increased, the degradation in time would be barely

noticed by users as the time difference is in milliseconds.

The usability study looked at the prototype developed to help manage digital reposito-

ries. Different types of participants were recruited for the study. The outcome of the

study showed that the tool developed was positively perceived. Most participants were

able to install DSpace and, at the same time, carry out simple customisations of DSpace.

Chapter 5

Conclusion and Future Work

It was set out at the onset to host digital repositories in private cloud environments.

Eucalyptus was identified as the Cloud System to provide IaaS. A prototype was devel-

oped to aid the installation and management of a repository in a cloud environment.

DSpace was used for this project. A performance experiment of DSpace running in the

cloud was done, and a usability study for the installation and customisation of DSpace

was done.

This work was to realise the objectives set out, which were as follows:

1. Create a one-click installation of a digital repository tool

2. Develop a way for users to monitor repository activity in cloud environments

3. Develop a way for users to customise repositories even when such users are lacking

in Web development technology skills

The listed objectives were to help answer the following research questions:

1. Is it possible to host digital repositories in private cloud computing environments

efficiently?

2. How can repository tools like DSpace be adapted for the cloud for easy management

and deployment?

57

Chapter 5. Conclusion and Future Work 58

5.1 Summary of Findings

Is it possible to host digital repositories in private cloud computing

environments efficiently?

The performance experiment for ingesting and viewing items in DSpace showed that

there is noticeably little effect on the performance of a repository even as the number

of instances were increased. The increases were linear in nature and as such, when the

hardware resources’ specifications are increased, traffic into the cloud would be gracefully

handled.

The usability study focussed on the experiences of end users completing installation

tasks and customising an installed repository. The time to complete an installation was

found to be an issue that can be improved on to improve the overall user perceptions of

the task. However, even with that drawback, the overall score for the installation was

above average.

It can be concluded that DSpace was installed successfully in a cloud environment with

ease.

How can repository tools like DSpace be adapted for the cloud for easy

management and deployment?

The proposed solution involved developing a prototype to aid installation and man-

agement of DSpace. For the prototype to achieve the single-click install of DSpace,

dependent software and libraries had to be pre-compiled. An automation and configura-

tion management tool was used that interfaced with a Web frontend to manage requests

from users and execute them on the target machine instances. This required that files

that needed to be changed, like configuration files, were written as templates that would

be updated with parameters (which are user defined details) passed from the front-

end at configuration time, all transparent to the user. The tool had a feature to make

minor customisations to the look and feel of DSpace. This feature is not a trivial one

as without the prototype developed, technical skills are required to achieve the desired

look-and-feel.

A running DSpace instance in the cloud required no architectural changes. Therefore,

for easy management and deployment in cloud, DSpace did not require any adapta-

tion. However, developing the prototype to manage installations and configurations was

important in answering the second research question. The usability study conducted,

Chapter 5. Conclusion and Future Work 59

provided the evidence that the prototype made it easy to manage, customise and deploy

repository tools in cloud and thus answering the research question.

5.2 Study Contributions

This study has made two contributions to the body of knowledge on hosting repositories

in private cloud environments:

1. Development of a DSpace installation and management tool for private cloud envi-

ronments. This would enable users or system administrators perform installation

of repositories with a lot of ease.

2. It has shown, through its step-by-step documentation, how to efficiently install a

repository in a private cloud environment. This work can serve as a template to

guide setting up of private cloud environments that run DSpace.

5.3 Future Work

This work solely focussed on hosting a new repository in a private cloud environment.

On this account, the objectives were met. However, there should be an exploration of

migrating an existing repository into a private cloud environment.

Eucalyptus was used as the cloud system to enable the serving of an Infrastructure as a

Service service. Another study should look into using other existing cloud systems like

OpenStack.

The setup of the prototype was off commodity computers. Some future works should

consider using enterprise grade computers for the private cloud. Small to medium sized

institutions could leverage their data centers to setup and run private cloud environ-

ments.

5.4 Lessons Learnt and Reflection

The features of the cloud systems that provide on-demand resources, and make them

elastic come at a cost. It is not always that instances will be successfully booted the

first time. Applications developed for cloud systems, or managing applications in cloud

systems should factor in failure of compute resources.

Chapter 5. Conclusion and Future Work 60

It is important to keep a close eye on the underlying infrastructure of the private clouds.

Obvious as it may seem, most of the times, failures to terminate a virtual machine, or

start one, was because of problems on the commodity machine on which the virtual

instance was to be provisioned.

It was observed that when running the cloud at full scale, some virtual instances would

abort without any useful information provided. This resulted in the performance exper-

iments being run with a maximum of 11 virtual instances instead of the cloud capacity,

which is 12 virtual machine instances.

Interfacing Django Webframework and euca2ools was particularly easy due to both

applications using Python. However, this project having been using the early releases of

euca2ools and generally Eucalyptus, low-level calls from Django would have to be made

to euca2ools instead of using the provided API.

For this study, 4 components of the cloud system were installed on one machine. The 4

components were Cloud Controller, Cluster Controller, Walrus Controller and Storage

Controller. This setup should never be used in a production environment as it creates a

single point of failure.

References

[1] Armando Fox, Rean Griffith, Anthony Joseph, Randy Katz, Andrew Konwinski,

Gunho Lee, David Patterson, Ariel Rabkin, and Ion Stoica. Above the Clouds: A

Berkeley View of Cloud Computing. Dept. Electrical Eng. and Comput. Sciences,

University of California, Berkeley, Rep. UCB/EECS, 28(13), 2009.

[2] Mell Peter and Grance Timothy. The NIST Definition of Cloud Comput-

ing, 2011. URL http://csrc.nist.gov/publications/nistpubs/800-145/

SP800-145.pdf.

[3] Yan Han. On the Clouds: A New Way of Computing. Information Technology

and Libraries, 29(2):87–92, 2010. URL https://search.proquest.com/docview/

325033464/fulltextPDF/A52FC66FB8DE4D9BPQ/1?accountid=14500.

[4] Bankier Jean and Gleason Kenneth. Institutional Repository Software Com-

parison. pages 1–16, 2014. URL https://unesdoc.unesco.org/ark:/48223/

pf0000227115.

[5] DSpace. DSpace – A Turnkey Instutitional Repository Application, 2018. URL

https://duraspace.org/dspace/.

[6] MacKenzie Smith, Mary Barton, Margret Branschofsky, Greg McClellan, Julie Har-

ford Walker, Mick Bass, Dave Stuve, and Robert Tansley. DSpace – An Open

Source Dynamic Digital Repository. D-Lib Magazine, 9(1), Jan 2003. doi: 10.

1045/january2003-smith. URL http://www.dlib.org/dlib/january03/smith/

01smith.html.

[7] EPrints. EPrints Services, 2018. URL http://www.eprints.org/uk/.

[8] Carl Lagoze, Sandy Payette, Edwin Shin, and Chris Wilper. Fedora: An

Architecture for Complex Objects and their Relationships. International

Journal on Digital Libraries, 6(2):124–138, Apr 2006. ISSN 1432-5012.

doi: 10.1007/s00799-005-0130-3. URL http://link.springer.com/10.1007/

s00799-005-0130-3.

61

http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
https://search.proquest.com/docview/325033464/fulltextPDF/A52FC66FB8DE4D9BPQ/1?accountid=14500
https://search.proquest.com/docview/325033464/fulltextPDF/A52FC66FB8DE4D9BPQ/1?accountid=14500
https://unesdoc.unesco.org/ark:/48223/pf0000227115
https://unesdoc.unesco.org/ark:/48223/pf0000227115
https://duraspace.org/dspace/
http://www.dlib.org/dlib/january03/smith/01smith.html
http://www.dlib.org/dlib/january03/smith/01smith.html
http://www.eprints.org/uk/
http://link.springer.com/10.1007/s00799-005-0130-3
http://link.springer.com/10.1007/s00799-005-0130-3

References 62

[9] Michal Kökörčený and Agáta Bodnárová. Comparison of Digital Libraries Sys-

tems. In Proceedings of the 9th WSEAS International Conference on Data Networks,

Communications, Computers, DNCOCO’10, pages 97–100, Stevens Point, Wiscon-

sin, USA, 2010. World Scientific and Engineering Academy and Society (WSEAS).

ISBN 978-960-474-245-5. URL http://dl.acm.org/citation.cfm?id=1948805.

1948823.

[10] Adewumi OA and Omoregbe NA. Institutional Repositories: Features, Architec-

ture, Design and Implementation Technologies. Journal of Computing, 2(8), 2011.

[11] Shahkar Tramboo, Humma, S M Shafi, and Sumeer Gul. A Study on the Open

Source Digital Library Software’s: Special Reference to DSpace, EPrints and Green-

stone. CoRR, abs/1212.4, 2012. URL http://arxiv.org/abs/1212.4935.

[12] DSpace. Installing DSpace - DSpace 6.x Documentation - DuraSpace Wiki, 2018.

URL https://wiki.duraspace.org/display/DSDOC6x/Installing+DSpace.

[13] Nils Körber and Hussein Suleman. Usability of Digital Repository Software: A

Study of DSpace Installation and Configuration. In Digital Libraries: Universal

and Ubiquitous Access to Information: 11th International Conference on Asian

Digital Libraries, ICADL 2008, Bali, Indonesia, Dec 2-5, 2008. Proceedings, pages

31–40. Springer Berlin Heidelberg, Berlin, Heidelberg, 2008. ISBN 978-3-540-

89533-6. doi: 10.1007/978-3-540-89533-6 4. URL https://doi.org/10.1007/

978-3-540-89533-6_4.

[14] EPrints. Installing EPrints on Debian/Ubuntu – EPrints Documentation, 2018.

URL https://wiki.eprints.org/w/Installing_EPrints_on_Debian/Ubuntu.

[15] Fedora. Installation and Configuration - Fedora 3.8 Documentation - DuraS-

pace Wiki, 2016. URL https://wiki.duraspace.org/display/FEDORA38/

Installation+and+Configuration.

[16] Alicia Verno. IVDB . . . for Free! Implementing an Open-Source Digital Repository

in a Corporate Library. Journal of Electronic Resources Librarianship, 25(2):89–99,

2013. doi: 10.1080/1941126X.2013.785286. URL http://dx.doi.org/10.1080/

1941126X.2013.785286.

[17] Fang Liu, Jin Tong, Jian Mao, Robert Bohn, John Messina, Lee Badger, and Dawn

Leaf. NIST Cloud Computing Reference Architecture. NIST Special Publication,

500(2011):1–28, 2011.

[18] Amazon. Overview of Amazon Web Services – Overview of Amazon Web Services,

2018. URL https://docs.aws.amazon.com/aws-technical-content/latest/

aws-overview/introduction.html.

http://dl.acm.org/citation.cfm?id=1948805.1948823
http://dl.acm.org/citation.cfm?id=1948805.1948823
http://arxiv.org/abs/1212.4935
https://wiki.duraspace.org/display/DSDOC6x/Installing+DSpace
https://doi.org/10.1007/978-3-540-89533-6_4
https://doi.org/10.1007/978-3-540-89533-6_4
https://wiki.eprints.org/w/Installing_EPrints_on_Debian/Ubuntu
https://wiki.duraspace.org/display/FEDORA38/Installation+and+Configuration
https://wiki.duraspace.org/display/FEDORA38/Installation+and+Configuration
http://dx.doi.org/10.1080/1941126X.2013.785286
http://dx.doi.org/10.1080/1941126X.2013.785286
https://docs.aws.amazon.com/aws-technical-content/latest/aws-overview/introduction.html
https://docs.aws.amazon.com/aws-technical-content/latest/aws-overview/introduction.html

References 63

[19] Omar Sefraoui, Mohammed Aissaoui, and Mohsine Eleuldj. OpenStack: Toward

an Open-Source Solution for Cloud Computing. International Journal of Computer

Applications, 55(3):38–42, 2012.

[20] Daniel Nurmi, Rich Wolski, Chris Grzegorczyk, Graziano Obertelli, Sunil Soman,

Lamia Youseff, and Dmitrii Zagorodnov. The Eucalyptus Open-Source Cloud

Computing System. In Cluster Computing and the Grid, 2009. CCGRID’09.

9th IEEE/ACM International Symposium on, pages 124–131. IEEE, 2009. URL

http://ieeexplore.ieee.org/document/5071863/.

[21] Borja Sotomayor, Rubén S. Montero, Ignacio M. Llorente, and Ian Foster. Virtual

Infrastructure Management in Private and Hybrid Clouds. IEEE Internet Com-

puting, 13(5):14–22, Sep 2009. ISSN 1089-7801. doi: 10.1109/MIC.2009.119. URL

http://ieeexplore.ieee.org/document/5233608/.

[22] VMware. What is a Hypervisor?, 2018. URL https://www.vmware.com/topics/

glossary/content/hypervisor.

[23] David Freet, Rajeev Agrawal, Jessie J Walker, and Youakim Badr. Open Source

Cloud Management Platforms and Hypervisor Technologies: A Review and Com-

parison. In SoutheastCon 2016, pages 1–8. IEEE, Mar 2016. ISBN 978-1-5090-

2246-5. doi: 10.1109/SECON.2016.7506698. URL http://ieeexplore.ieee.org/

document/7506698/.

[24] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, Rolf

Neugebauer, Ian Pratt, and Andrew Warfield. Xen and the Art of Virtualization. In

ACM SIGOPS Operating Systems Review, volume 37, pages 164–177. ACM, 2003.

[25] Fabrice Bellard. QEMU, A Fast and Portable Dynamic Translator. In USENIX

Annual Technical Conference, FREENIX Track, volume 41, page 46, 2005.

[26] Amazon Web Services. Amazon EC2 FAQs - Nitro Hypervisor, 2018. URL https:

//aws.amazon.com/ec2/faqs/#compute-optimized.

[27] VMware. vSphere Hypervisor, 2019. URL https://www.vmware.com/products/

vsphere-hypervisor.html.

[28] Amazon. AWS Management Console, 2019. URL https://aws.amazon.com/

console/.

[29] Amazon Web Services. Amazon EC2, 2018. URL https://aws.amazon.com/ec2/.

[30] Amazon Web Services. Amazon Elastic Block Store (EBS) - Amazon Web Services,

2019. URL https://aws.amazon.com/ebs/.

http://ieeexplore.ieee.org/document/5071863/
http://ieeexplore.ieee.org/document/5233608/
https://www.vmware.com/topics/glossary/content/hypervisor
https://www.vmware.com/topics/glossary/content/hypervisor
http://ieeexplore.ieee.org/document/7506698/
http://ieeexplore.ieee.org/document/7506698/
https://aws.amazon.com/ec2/faqs/#compute-optimized
https://aws.amazon.com/ec2/faqs/#compute-optimized
https://www.vmware.com/products/vsphere-hypervisor.html
https://www.vmware.com/products/vsphere-hypervisor.html
https://aws.amazon.com/console/
https://aws.amazon.com/console/
https://aws.amazon.com/ec2/
https://aws.amazon.com/ebs/

References 64

[31] Amazon Web Services. Amazon Simple Storage Service, 2019. URL https://aws.

amazon.com/s3/.

[32] Johnson D, Murari Kiran, Raju Murthy, Suseendran RB, and Girikumar Yogesh.

Eucalyptus Beginner’s Guide – UEC Edition, 2010. URL http://cssoss.files.

wordpress.com/2010/12/eucabookv2-0.pdf.

[33] Gregor Von Laszewski, Javier Diaz, Fugang Wang, and Geoffrey C Fox. Comparison

of Multiple Cloud Frameworks. In Cloud Computing (CLOUD), 2012 IEEE 5th

International Conference on, pages 734–741. IEEE, 2012.

[34] OpenStack. What is OpenStack?, 2019. URL https://www.openstack.org/

software/.

[35] Stanley Lima, Álvaro Rocha, and Licinio Roque. An Overview of OpenStack Ar-

chitecture: A Message Queuing Services Node. Cluster Computing, Jul 2017. ISSN

1573-7543. doi: 10.1007/s10586-017-1034-x. URL https://doi.org/10.1007/

s10586-017-1034-x.

[36] OpenStack. OpenStack Docs: Hypervisors, 2018. URL https://docs.openstack.

org/ocata/config-reference/compute/hypervisors.html.

[37] OpenStack. OpenStack Docs: Management Interfaces, 2019. URL https://docs.

openstack.org/security-guide/management/management-interfaces.html.

[38] OpenNebula. Home - OpenNebula, 2019. URL https://opennebula.org/.

[39] Nimbus Project. About Nimbus – Nimbus, 2019. URL http://www.

nimbusproject.org/about/.

[40] Peter Sempolinski and Douglas Thain. A Comparison and Critique of Eucalyptus,

OpenNebula and Nimbus. In 2010 IEEE Second International Conference on Cloud

Computing Technology and Science, pages 417–426. IEEE, Nov 2010. ISBN 978-

1-4244-9405-7. doi: 10.1109/CloudCom.2010.42. URL http://ieeexplore.ieee.

org/xpl/articleDetails.jsp?arnumber=5708480.

[41] Apache Software Foundation. Apache CloudStack: Open Source Cloud Computing,

2017. URL https://cloudstack.apache.org/about.html.

[42] Sonia Shahzadi, Muddesar Iqbal, Zia Ul Qayyum, and Tasos Dagiuklas. Infras-

tructure as a Service (IaaS): A Comparative Performance Analysis of Open-Source

Cloud Platforms. In 2017 IEEE 22nd International Workshop on Computer Aided

Modeling and Design of Communication Links and Networks (CAMAD), pages 1–6,

2017.

https://aws.amazon.com/s3/
https://aws.amazon.com/s3/
http://cssoss.files.wordpress.com/2010/12/eucabookv2-0.pdf
http://cssoss.files.wordpress.com/2010/12/eucabookv2-0.pdf
https://www.openstack.org/software/
https://www.openstack.org/software/
https://doi.org/10.1007/s10586-017-1034-x
https://doi.org/10.1007/s10586-017-1034-x
https://docs.openstack.org/ocata/config-reference/compute/hypervisors.html
https://docs.openstack.org/ocata/config-reference/compute/hypervisors.html
https://docs.openstack.org/security-guide/management/management-interfaces.html
https://docs.openstack.org/security-guide/management/management-interfaces.html
https://opennebula.org/
http://www.nimbusproject.org/about/
http://www.nimbusproject.org/about/
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5708480
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5708480
https://cloudstack.apache.org/about.html

References 65

[43] Salman A. Baset. Open Source Cloud Technologies. In Proceedings of the Third

ACM Symposium on Cloud Computing - SoCC ’12, pages 1–2, New York, New York,

USA, Oct 2012. ACM Press. ISBN 9781450317610. doi: 10.1145/2391229.2391257.

URL http://dl.acm.org/citation.cfm?id=2391229.2391257.

[44] Christof Ebert, Gorka Gallardo, Josune Hernantes, and Nicolas Serrano. DevOps.

IEEE Software, 33(3):94–100, 2016.

[45] Amazon Web Services. What is DevOps? - Amazon Web Services (AWS), 2019.

URL https://aws.amazon.com/devops/what-is-devops/.

[46] Gideon Juve and Ewa Deelman. Wrangler: Virtual Cluster Provisioning for the

Cloud. In Proceedings of the 20th International Symposium on High Performance

Distributed Computing, HPDC ’11, pages 277–278, New York, NY, USA, 2011.

ACM. ISBN 978-1-4503-0552-5. doi: 10.1145/1996130.1996173. URL http://doi.

acm.org/10.1145/1996130.1996173.

[47] Ansible. How Ansible Works, 2019. URL https://www.ansible.com/overview/

how-ansible-works.

[48] Puppet. Puppet 6 Documentation - Puppet (PE and Open Source) 6.1, 2019. URL

https://puppet.com/docs/puppet/6.1/puppet{_}index.html.

[49] Chef. Automate IT Infrastructure, 2019. URL https://www.chef.io/chef/.

[50] Fabric. Fabric Documentation, 2018. URL http://www.fabfile.org/.

[51] Stephen Soltesz, Herbert Pötzl, Marc E Fiuczynski, Andy Bavier, and Larry

Peterson. Container-Based Operating System Virtualization: A Scalable, High-

Performance Alternative to Hypervisors. In ACM SIGOPS Operating Systems Re-

view, volume 41, pages 275–287. ACM, 2007.

[52] Kubernetes. Kubernetes Reference - Standard Glossary, 2019. URL

https://kubernetes.io/docs/reference/glossary/?fundamental=true#

term-container.

[53] OpenVZ. OpenVZ - Container, 2019. URL https://wiki.openvz.org/Container.

[54] IBM. IBM - Containerization, 2019. URL https://www.ibm.com/cloud/learn/

containerization#toc-what-is-co-r25Smlqq.

[55] Docker. What is a Container?, 2019. URL https://www.docker.com/resources/

what-container.

[56] OpenStack. OpenStack and Containers, 2019. URL https://www.openstack.org/

containers/.

http://dl.acm.org/citation.cfm?id=2391229.2391257
https://aws.amazon.com/devops/what-is-devops/
http://doi.acm.org/10.1145/1996130.1996173
http://doi.acm.org/10.1145/1996130.1996173
https://www.ansible.com/overview/how-ansible-works
https://www.ansible.com/overview/how-ansible-works
https://puppet.com/docs/puppet/6.1/puppet{_}index.html
https://www.chef.io/chef/
http://www.fabfile.org/
https://kubernetes.io/docs/reference/glossary/?fundamental=true#term-container
https://kubernetes.io/docs/reference/glossary/?fundamental=true#term-container
https://wiki.openvz.org/Container
https://www.ibm.com/cloud/learn/containerization#toc-what-is-co-r25Smlqq
https://www.ibm.com/cloud/learn/containerization#toc-what-is-co-r25Smlqq
https://www.docker.com/resources/what-container
https://www.docker.com/resources/what-container
https://www.openstack.org/containers/
https://www.openstack.org/containers/

References 66

[57] Google Cloud. Containers at Google, 2019. URL https://cloud.google.com/

containers/.

[58] Amazon AWS. Containers on AWS, 2019. URL aws.amazon.com/containers/.

[59] Dirk Merkel. Docker: Lightweight Linux Containers for Consistent Development

and Deployment. Linux Journal, 2014(239):2, 2014.

[60] Docker. Docker Overview, 2019. URL https://docs.docker.com/engine/

docker-overview/.

[61] Kubernetes. Kubernetes, 2019. URL https://kubernetes.io/.

[62] Docker. Swarm Mode Overview, 2019. URL https://docs.docker.com/engine/

swarm/.

[63] Linux Containers. What is LXC?, 2019. URL https://linuxcontainers.org/

lxc/introduction/.

[64] CoreOS. rkt Overview, 2019. URL https://coreos.com/rkt/.

[65] OpenVZ. OpenVZ, 2019. URL https://wiki.openvz.org/Main_Page.

[66] Wu J, Teregowda P, Williams K, Khabsa M, Jordan D, Treece E, Wu Z, and

Giles CL. Migrating a Digital Library to a Private Cloud. In 2014 IEEE In-

ternational Conference on Cloud Engineering, pages 97–106, Mar 2014. doi:

10.1109/IC2E.2014.77. URL http://ieeexplore.ieee.org/stamp/stamp.jsp?

arnumber=6903462.

[67] Aljenaa E, Al-Anzi FS, and Alshayeji M. Towards an Efficient e-Learning System

Based on Cloud Computing. In Proceedings of the Second Kuwait Conference on

e-Services and e-Systems, KCESS ’11, pages 13:1–13:7, New York, NY, USA, 2011.

ACM. ISBN 978-1-4503-0793-2. doi: 10.1145/2107556.2107569. URL http://doi.

acm.org/10.1145/2107556.2107569.

[68] Peter Nuernberg, John Leggett, and Mark McFarland. Cloud as Infrastructure at

the Texas Digital Library. Journal of Digital Information, 13(1), 2012. ISSN 1368-

7506. URL http://journals.tdl.org/jodi/index.php/jodi/article/view/

5881.

[69] Ani Thakar and Alex Szalay. Migrating a (Large) Science Database to the Cloud.

In Proceedings of the 19th ACM International Symposium on High Performance

Distributed Computing - HPDC ’10, page 430, New York, New York, USA, Jun

2010. ACM Press. ISBN 9781605589428. doi: 10.1145/1851476.1851539. URL

http://dl.acm.org/citation.cfm?id=1851476.1851539.

https://cloud.google.com/containers/
https://cloud.google.com/containers/
aws.amazon.com/containers/
https://docs.docker.com/engine/docker-overview/
https://docs.docker.com/engine/docker-overview/
https://kubernetes.io/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://linuxcontainers.org/lxc/introduction/
https://linuxcontainers.org/lxc/introduction/
https://coreos.com/rkt/
https://wiki.openvz.org/Main_Page
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6903462
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6903462
http://doi.acm.org/10.1145/2107556.2107569
http://doi.acm.org/10.1145/2107556.2107569
http://journals.tdl.org/jodi/index.php/jodi/article/view/5881
http://journals.tdl.org/jodi/index.php/jodi/article/view/5881
http://dl.acm.org/citation.cfm?id=1851476.1851539

References 67

[70] DuraSpace. DuraCloud Guide, 2019. URL https://wiki.duraspace.org/

display/DURACLOUDDOC/DuraCloud+Guide#DuraCloudGuide-WhatisDuraCloud?

[71] Simon Waddington, Jun Zhang, Gareth Knight, Mark Hedges, Jens Jensen, and

Roger Downing. Kindura: Repository Services for Researchers Based on Hybrid

Clouds. Journal of Digital Information, 13(1), 2012.

[72] Frank Doelitzscher, Anthony Sulistio, Christoph Reich, Hendrik Kuijs, and David

Wolf. Private Cloud for Collaboration and e-Learning Services: From IaaS to

SaaS. Computing, 91(1):23–42, Jan 2011. ISSN 1436-5057. doi: 10.1007/

s00607-010-0106-z. URL https://doi.org/10.1007/s00607-010-0106-z.

[73] Django Foundation. Django Web Framework, 2019. URL https://www.

djangoproject.com/start/overview/.

[74] Celery Project. Celery - Distributed Task Queue, 2019. URL http://docs.

celeryproject.org/en/latest/index.html.

[75] International Organization for Standardization. ISO 9241-11: Ergonomic Require-

ments for Office Work with Visual Display Terminals (VDTs): Part 11: Guidance

on Usability, 1998.

[76] Aaron Rich and Mick McGee. Expected Usability Magnitude Estimation. Proceed-

ings of the Human Factors and Ergonomics Society Annual Meeting, 48(5):912–916,

2004.

[77] John Brooke. SUS – A Quick and Dirty Usability Scale. Usability Evaluation in

Industry, 189:194, 1996.

[78] Aaron Bangor, Philip T Kortum, and James T Miller. An Empirical Evaluation of

the System Usability Scale. Intl. Journal of Human–Computer Interaction, 24(6):

574–594, 2008.

[79] James R Lewis. Psychometric Evaluation of an After-Scenario Questionnaire for

Computer Usability Studies: The ASQ. ACM SIGCHI Bulletin, 23(1):78–81, 1991.

[80] Jeff Sauro and Joseph S Dumas. Comparison of Three One-Question, Post-Task

Usability Questionnaires. In Proceedings of the SIGCHI Conference on Human

Factors in Computing Systems, pages 1599–1608. ACM, 2009.

[81] Donna Tedesco and Tom Tullis. A Comparison of Methods for Eliciting Post-Task

Subjective Ratings in Usability Testing. Usability Professionals Association (UPA),

2006:1–9, 2006.

https://wiki.duraspace.org/display/DURACLOUDDOC/DuraCloud+Guide#DuraCloudGuide-WhatisDuraCloud?
https://wiki.duraspace.org/display/DURACLOUDDOC/DuraCloud+Guide#DuraCloudGuide-WhatisDuraCloud?
https://doi.org/10.1007/s00607-010-0106-z
https://www.djangoproject.com/start/overview/
https://www.djangoproject.com/start/overview/
http://docs.celeryproject.org/en/latest/index.html
http://docs.celeryproject.org/en/latest/index.html

Appendix A: Survey

Questionnaire

68

Digital Libraries in Private Clouds - Usability Evaluation
Mushashu M. Lumpa

Digital Libraries Laboratory
Computer Science Department

University of Cape Town

Introduction
Thank you for accepting to take part in this evaluation exercise. This forms part of the evaluation for the

research work in creating tools to manage Digital Repositories in Private Cloud environments.

Cloud Computing is a paradigm of computing that allows users to provision and acquire remote

computing resources on demand, whose location is transparent to the users. Currently, the major public

provider is Amazon AWS. Digital Repositories on the other hand, are applications that enable sharing,

accessing and preservation of digital content. Installation of application in Cloud environments is similar

to that in traditional environments, with the major difference being the physical machine’s proximity to

the user carrying out the installation.

Using the provided application, you will be asked to complete tasks that will result in the installation of a

digital repository, which you will later be able to modify.

Prerequisite:
1. Use the credentials that were provided to you to access the Repository Manager at:

sarabi.cs.uct.ac.za:8000/home

2. A default installation of DSpace looks like this: http://sarabi2.cs.uct.ac.za/xmlui/

3. An example of a customised installation is here: http://sarabi1.cs.uct.ac.za/xmlui/.

4. Please, ask any questions when you are not clear: emailto. mushashu@gmail.com/cell: 07 1568 9069.
5. IMPORTANT: This exercise is not an ASSESSMENT of your skills. Instead, you are

ASSESSING the application. If something breaks, it is definitely not your fault.
6. Access the questionnaire from: http://goo.gl/pqngYa
7. When comfortable, please proceed to the instructions and attempt the listed tasks.

Instructions
Please follow closely the instructions below:

1. Before you begin with the tasks, fill in questions (1) through to (4).

2. Task 1: Install an instance of DSpace.

3. When installation is complete, view the instance of DSpace you just installed.

4. Fill in question (5), (6) , (7)and (8) in the provided questionnaire.

5. Task 2: Modify the DSpace installation you made in (2). [Note: some logos you may wish to

use find here: http://goo.gl/aMSmXl]. Note also that you should not strive for perfection

with the modifications you will be making. The goal is to ascertain the usability of the

customisation function.

6. View your changes. [On some browsers, reloading the page may be enough to notice the

changes but in others you may have to clear your cache to notice them].

7. Fill in question (9), (10), (11) and (12) in the provided questionnaire.

8. You are done with the tasks, you may proceed to answer the rest of the questions in the

questionnaire.

Appendix A. Survey Questionnaire 69

Digital Libraries in Private Clouds - Survey
Dear Respondent,

Thank you for taking the time to participate in this study. This survey forms part
of the evaluation for the research work in creating tools to manage Digital
Repositories in Private Cloud environments. The overall objective is to measure
the user experience of the developed Cloud Repository Management tool.

* Required

Participant Consent
This study has received approval from the Ethics in Research Committee of the
Science Faculty at the University of Cape Town. Be advised that it is confidential
and no identifying information will be kept along side your responses.

1. I agree with the terms and hereby consent to participate in this study.
*

Mark only one oval.

Yes

No

1.

Background Information

Appendix A. Survey Questionnaire 70

2. Have you ever installed and/or configured any of the following
before?
Check all responses that apply.

Check all that apply.

DSpace

EPrints

Drupal

Fedora

Tomcat

Postgres

Apache

MySQL

Other web based software

 Other:

2.

3. Are you familiar with installing and managing of applications in cloud
environments like Amazon Web Services?

Mark only one oval.

Yes

No

3.

4. Name any applications you have installed and configured before?
Name as many as you can recall.

4.

Installation - Experience
You must perform an installation of a repository as described in the instructions

Appendix A. Survey Questionnaire 71

before proceeding to respond to questions in this section.

5. Overall, I am satisfied with the ease of completing the tasks in this
scenario

Mark only one oval.

1 2 3 4 5

Strong disagree Strongly agree

5.

6. Overall, I am satisfied with the amount of time it took to complete the
tasks in this scenario

Mark only one oval.

1 2 3 4 5

Strong disagre Strong agree

6.

7. Please list what you liked about the installation process7.

8. Please list what you did NOT like about the installation process8.

Customisation - Experience

Appendix A. Survey Questionnaire 72

You must first customise the repository you installed as described in the
instructions given before proceeding to answer questions in this section.

9. Overall, I am satisfied with the ease of completing the tasks in this
scenario

Mark only one oval.

1 2 3 4 5

Strongly disagree Strong agree

9.

10. Overall, I am satisfied with the amount of time it took to complete the
tasks in this scenario

Mark only one oval.

1 2 3 4 5

Strong disagree Strong agree

10.

11. Please list what you liked about the customisation process11.

12. Please list what you did NOT like about the customisation process12.

Appendix A. Survey Questionnaire 73

Overall Application Usability
This section is based on the System Usability Scale. You will be asked to respond
to questions which you will rate between 1 and 5, with 1 being strongly disagree
and 5 strongly agree.

13. Would you use this application frequently?

Mark only one oval.

1 2 3 4 5

Strongly disagree Strong agree

13.

14. I found this system unnecessarily complex

Mark only one oval.

1 2 3 4 5

Strongly disagree Strong agree

14.

15. I thought the system was easy to use

Mark only one oval.

1 2 3 4 5

Strongly disagree Strong agree

15.

16. I think I would need support to be able to use this application

Mark only one oval.

1 2 3 4 5

Strongly disagree Strongly agree

16.

Appendix A. Survey Questionnaire 74

17. I found the various functions in this application well integrated

Mark only one oval.

1 2 3 4 5

Strongly disagree Strongly agree

17.

18. I thought there was too much inconsistency in this application

Mark only one oval.

1 2 3 4 5

Strong disagree Strong agree

18.

19. I would imagine that most people would learn to use this application
very quickly

Mark only one oval.

1 2 3 4 5

Strongly disagree Strongly agree

19.

20. I found the application very cumbersome to use

Mark only one oval.

1 2 3 4 5

Strong disagree Strongly agree

20.

21. I felt very confident using the application

Mark only one oval.

1 2 3 4 5

Strongly disagree Strongly agree

21.

Appendix A. Survey Questionnaire 75

22. I needed to learn a lot of things before I could get going with this
application

Mark only one oval.

1 2 3 4 5

Strong disagree Strong agree

22.

23. What did you like about the application?23.

24. What did you NOT like about the application?24.

Powered by

Appendix A. Survey Questionnaire 76

Appendix B: Survey

Questionnaire Results

1 Participants and their Categories

Table 1: Participants and Their Assigned Categories

ID Have you ever installed and/or configured any

of the following before?

Level of Familiarity (Participant

Category)

22 n/a Non-expert

1 linux mint; Non-expert

2 mysql intermediate

3 mysql intermediate

4 wordpress intermediate

5 fedora;mysql expert

6 n/a Non-expert

7 fedora; tomcat; apache; mysql; php; node.js expert

8 ubuntu os intermediate

9 ms windows xp; ms office; vlc media player; ad-

vanced system care

intermediate

10 apache; mysql expert

11 n/a Non-expert

12 apache intermediate

13 apache; mysql expert

14 tomcat; mysql; wordpress expert

15 eprints expert

16 apache; mysql expert

17 Apache, MySQL, Joomla expert

18 n/a Non-expert

77

Appendix B. Questionnaire Results 78

19 DSpace, Tomcat, Postgres, MySQL expert

20 Tomcat, Apache, MySQL, Other web based soft-

ware

expert

21 n/a Non-expert

A
p

p
en

d
ix

B
.

Q
u

estio
n

n
a
ire

R
esu

lts
79

In the tables that follow, the rows represent the question numbers while the columns represent individual participants.

2 Results – After Scenario Questionnaire

Table 2: After Scenario Questionnaire - Installation

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15 p16 p17 p18 p19 p20 p21 p22

Q 1 5 4 5 5 4 5 4 5 5 4 2 3 4 3 3 5 4 5 5 5 5 4

Q 2 5 5 3 3 2 4 3 4 4 1 1 2 3 2 4 3 4 5 5 5 5 3

p(number): participant

Q(number): question

Table 3: After Scenario Questionnaire - Customisation

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15 p16 p17 p18 p19 p20 p21 p22

Q 1 4 5 5 3 2 5 3 4 3 5 4 4 4 5 3 5 4 3 4 5 4 3

Q 2 4 5 3 5 3 5 3 5 3 4 4 3 4 5 4 5 4 3 4 5 5 3

p(number): participant

Q(number): question

A
p

p
en

d
ix

B
.

Q
u

estio
n

n
a
ire

R
esu

lts
80

Results – System Usability Scale

Table 4: System Usability Scale Questionnaire Results - Positive Questions

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15 p16 p17 p18 p19 p20 p21 p22

Q 1 3 3 2 2 3 3 3 3 3 3 4 4 3 1 3 5 3 3 3 4 5 4

Q 3 5 5 5 4 4 5 4 5 4 2 5 2 4 2 4 5 5 5 4 5 4 4

Q 5 4 5 4 3 2 4 4 3 3 4 4 3 3 2 4 4 5 3 4 4 4 4

Q 7 5 5 5 4 4 5 4 5 5 1 5 3 2 1 4 5 5 5 5 5 5 4

Q 9 4 5 4 3 4 5 2 4 3 1 3 2 4 1 4 5 4 5 4 5 4 4

p(number): participant

Q(number): question

Table 5: System Usability Scale Questionnaire Results - Negative Questions

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15 p16 p17 p18 p19 p20 p21 p22

Q 2 1 1 1 2 2 1 2 1 1 2 1 3 2 3 2 1 2 1 1 1 1 2

Q 4 2 1 2 2 2 1 4 1 1 4 1 4 2 5 2 1 3 1 3 1 1 2

Q 6 2 1 2 2 2 1 3 1 3 5 2 3 2 3 3 1 1 1 2 1 1 2

Q 8 1 1 1 2 2 1 3 1 2 2 1 4 3 5 2 1 1 1 2 1 1 2

Q 10 1 1 2 2 1 1 4 1 1 3 2 2 2 5 1 1 1 1 4 1 1 1

p(number): participant

Q(number): question

Appendix B. Questionnaire Results 81

Table 6: After Scenario Questionnaire - Installation Task General Comments

Please list what you liked about

the installation process

Please list what you did NOT like about

the installation process

p1 It was easy to do and quick. I was not quite sure about what the information

I provided (name, email, etc.) would be used

for.

p2 it was easy to create an instance of

dpsace, however, it was initially un-

clear as to what each field required

it was unclear as to what each field required

p3 user is informed of current progress;

simple clean interface

p4 one button creates instance; creat-

ing repository is simple and clean

time taken to create instance

p5 creating a new instance is pretty

straight forward and directions are

clear

the installation tool had to be run twice; instal-

lation seemed to take a rather long time and the

feedback was not entirely specific (percent fig-

ures) of how long was left or if it was progressing

or hanging (stuck / frozen)

p6 easy and quick(no need to fill in lots

of information); good interface

maybe the possibility to view in a bit more detail

what is going on would be useful

p7 confusing to someone who has not worked with

these sorts of things before

p8 very few details needed; clean in-

stall; progress bar to show install

progress

no detail given on what the installation is busy

with; not ETA on install time

p9 very simple and required no experi-

ence; very clean and simple UI

once installed, it wasn’t obvious how to run the

application

p10 simple interface took too long to install; no instructions on the

screen to tell me what to do next

p11 one click installation was very sim-

ple

installation took a very long time(over half an

hour)

p12 the drop list menu to go to an ac-

tion; the ease to create a instance

the time it took to install an instance; the

amount of space available in the cloud

p13 simple ui; few actions required to in-

stall

labels and progress could be a little clearer; not

sure how long it normally takes but installation

seemed slow

Appendix B. Questionnaire Results 82

p14 it was actually pleasantly simple;

the form that we had to fill in was

so long

it took too long, it was too slow

p15 its simplicity

p16 its simplicity I like everything

p17 simple; clear; direct

p18 It’s quick, and straight forward

p19 Very easy!

p20 There was minimal required infor-

mation from the user to install a

Dspace instance. The automation

of the process makes it simpler for

an end-user. The instructions were

adequate to complete installation

without requiring help

p21 There big visible button to start

the installation made it very easy to

know where to start

It was rather long (this was expected, of course),

but a nicer thing would have been to warn

me that the process may take a few min-

utes..to some peope, when a process takes long,

they take it to mean the thing is broken/non-

responsive.. On the + side, the progress bar

is useful, but a message saying the installation

will begin and may take a few minutes could be

useful

p22 It was simple and user-friendly. It took a little longer than I expected.

	Plagiarism Declaration
	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	1 Introduction
	1.1 Project Objectives
	1.2 Motivation
	1.3 Research Questions
	1.4 Methodology
	1.5 Scope and Limitations
	1.6 Dissertation Organisation

	2 Related work
	2.1 Digital Repositories
	2.2 Cloud Computing
	2.3 Infrastructure as a Service (IaaS)
	2.3.1 Amazon AWS
	2.3.2 Eucalyptus
	2.3.3 OpenStack
	2.3.4 Other Cloud Computing Platforms

	2.4 Configuration Management in Cloud Environments
	2.4.1 Wrangler
	2.4.2 Ansible
	2.4.3 Puppet
	2.4.4 Chef
	2.4.5 Fabric

	2.5 IaaS and Containers
	2.6 Repositories in Clouds
	2.7 Summary

	3 Design and Implementation
	3.1 Implementation Objectives
	3.2 Implementation Overview
	3.3 Design Rationale and Implementation Approach
	3.3.1 Infrastructure as a Service
	3.3.2 DSpace Digital Repository Toolkit
	3.3.3 Configuration Management and Automation
	3.3.4 UI Front-end

	3.4 System Description and Data Flow
	3.4.1 User Front End
	3.4.2 Backend

	3.5 Implementation notes
	3.6 Summary

	4 Evaluation and Results
	4.1 Performance Experiment
	4.1.1 Experiment Setup
	4.1.2 Methodology
	4.1.3 Results – Ingestion Time
	4.1.4 Discussion – Ingestion Time
	4.1.5 Results – Item View and Download Time
	4.1.6 Discussion – Item View and Download Times
	4.1.7 Performance Experiment – Summary

	4.2 Usability Evaluation
	4.2.1 Questionnaire Rationale
	4.2.2 Study Methodology
	4.2.3 Participants and Technical Ability Level
	4.2.4 Installation Task – After Scenario Questionnaire Results and Discussion
	4.2.5 Customisation Task – After Scenario Questionnaire Results and Discussion
	4.2.6 Overall Application Usability – Results and Discussion

	4.3 Adapting DSpace for Cloud Deployment
	4.4 Summary

	5 Conclusion and Future Work
	5.1 Summary of Findings
	5.2 Study Contributions
	5.3 Future Work
	5.4 Lessons Learnt and Reflection

	Bibliography
	Appendix A: Survey Questionnaire
	Appendix B: Survey Questionnaire Results
	1 Participants and their Categories
	2 Results – After Scenario Questionnaire

