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Abstract

ABSTRACT

Movement of fishes is an integral part of their daily life, but has significant implications for 

fishery management. As with nearly all coastal countries, South Africa relies on coastal 

fisheries as a renewable resource, but many stocks have been overexploited for decades. 

Although it has long been recognised that an understanding of fish movement is necessary 

for effective management, it is with some difficulty that the subject has been studied in the 

past. In recent years, however, improvements in technology have provided the means for 

more in-depth investigations into fish movement. This research has revealed a range of 

complex movement behaviours. Movement in fishes occurs on a variety of temporal and 

spatial scales leading to the characteristic patterns of distribution and abundance observed 

in marine ecosystems. Fishes move nearly constantly in search of food, shelter or 

reproductive opportunities. Observations of behaviours such as long-term site fidelity, long­

distance migration and natal homing are enabling ecologists to understand patterns of 

distribution and abundance within a species' range. Fish movement around the South 

African coast has been studied on numerous occasions but this has largely been confined to 

studies on single species. Movement behaviour of multiple species has been studied, but 

this has been limited to spatially localised marine protected area research. There has been 

little attempt in southern Africa to synthesize interspecific movement behaviour over wide 

spatial scales.

Unprecedented concern over the biological effects of overexploitation, together with rapid 

technological advances in biotelemetry, have provided the impetus for much research, on a 

global scale, into the movement of marine animals. I reviewed 101 marine and estuarine fish 

movement studies from southern Africa, published from 1928 to 2014, with the aim of 

synthesising research trends and findings. Trends showed an increasing emphasis on fish 

movement research in publications in the sub-tropical and warm-temperate biogeographic 

regions along the south and east coasts of southern Africa. Although 63% of publications
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featured only marine studies, research into fine-scale habitat use in estuaries has been on 

the increase, concomitant with increasing accessibility of biotelemetry. Overall, 26 fish 

families were identified in the surveyed literature with regionally endemic sparids featuring in 

32% of the publications. Ten movement themes were identified in the surveyed literature, 

including broad-scale movement patterns, which featured in 68% of studies, followed by fine- 

scale habitat usage (33%) and protected areas (26%). The most prominent phenomenon, 

emerging from this research, is that of partial migration, which describes the occurrence of 

resident and migratory behaviour within a coexisting animal population. Substantial progress 

has also been made in unravelling the complexities of fine-scale movements in marine 

reserves and habitat usage in estuaries. While this knowledge has enabled more effective 

management of South Africa's multi-user, multi-species fisheries, focus should now be 

directed at improving our understanding of the commonalities in movement behaviour, the 

associated driving forces behind this behaviour and the extent of movement across reserve 

boundaries.

Mark-recapture data, collected over the past 30 years by the Oceanographic Research 

Institute’s Cooperative Fish Tagging Project (ORICFTP), were used to investigate broad- 

scale movement patterns of 30 prominent coastal fishery species (Chapter 4). Fishes were 

tagged with plastic dart tags along the coastline of southern Africa from Angola to 

Mozambique. This exercise yielded more than 10000 recaptures. The 30 chosen species 

represented 14 families, although 12 species belonged to a single family (Sparidae). Overall, 

67% of recaptures were reported from the original tagging locality and 73% were recorded 

within 5 km of the tagging locality. The remaining observations extended from 6-3000 km. 

Movements were assigned to four distance bins (0-5 km, 6-50km, 51-500km and >500 km) 

and modelled with an ordinal logistic regression. Species, life-stage (juvenile/adult) and time- 

at-liberty were included as predictor variables. Model coefficients were then included in a 

cluster analysis, which produced two primary groupings of species (Category I and II), with 

two sub-groupings (Category IIa and IIb). Category I species were characterised by wide-
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ranging movements, greatest median recapture length and highest trophic levels. Category II 

species were characterised by residency, lower median recapture length and lower trophic 

levels. These findings have implications for fisheries management. Exploitation of resident 

species may lead to localised depletion, but their diffuse spatial distribution may offer some 

resilience. In contrast, even localised targeting of migratory species may pose a population 

level risk if individuals are known to aggregate.

Life-cycle diversity or intra-population variability describes the existence of alternative 

strategies or tactics among coexisting individuals within an animal population (Chapter 5). 

Partial migration is a specific case of life-cycle diversity where coexisting groups exhibit 

either resident or migratory (wide-ranging) behaviour within a single population. Mark- 

recapture data collected under the auspices of the ORICFTP were used to investigate the 

occurrence and nature of life-cycle diversity in the movement behaviour of five non- 

diadromous fish species around the coastline of southern Africa. Among the five species 

were three teleosts (Category I and IIa) and two elasmobranchs (Category I). A fish was 

considered to have remained resident if recaptured within 0-5 km after 365 days at liberty. A 

fish was considered to have undertaken a wide-ranging movement if recaptured more than 

50 km away from the release site in 365 days or less. A total of 1848 individuals from the five 

study species were recaptured during the study, of which 73% of the observations were 

classified as being resident. Binomial logistic regression confirmed that species, life-stage 

(juvenile/adult) and ecoregion were significant (p < 0.001) predictors of the probability of 

wide-ranging behaviour. A Gaussian model confirmed that species and ecoregion were also 

significant (p < 0.001) predictors of direction and distance of wide-ranging movement. 

However, the direction and distance of wide-ranging movements in juveniles did not differ 

significantly (p > 0.05) to that of adults. The median growth rate was mostly greater in wide- 

ranging individuals; however, this was only statistically significant (p < 0.05) in two cases. 

These findings provide unequivocal evidence of life-cycle diversity in five fish species, with
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vastly different life-histories. This ecological phenomenon may provide species resilience at 

the population level and needs to be considered in fisheries management initiatives.

The movement of fishes is a fundamental aspect to consider when designing fishery 

management regimes. Unfortunately, traditional management strategies have often 

disregarded movement behaviour to the detriment of fish populations (Chapter 6). As a case 

study, the management of Lichia amia (Category I: wide-ranging) was evaluated in the 

context of its movement behaviour. Long-term catch-per-unit-effort (CPUE) datasets were 

examined for three South African recreational fishery sectors. The CPUE was standardised 

using generalized linear models (delta-Gamma/hurdle approach) to reduce the effect of 

factors other than abundance. Factors that were available for this purpose were year, month 

and locality/zone. Year was included in every model as the primary objective was to detect 

trends in abundance over time. Although standardised CPUE for all sectors showed an 

overall long-term decline, there was considerable variability in trends between the different 

recreational sectors and between datasets. Contrasting trends between competitive shore 

angling and general shore angling datasets were ascribed to hyperstability in competitive 

CPUE data. Hyperstability in this case was mostly influenced by rapidly improving 

technology, techniques and communication networks amongst competitive anglers. Month 

and locality were significant factors explaining the probability of catching L. amia. This 

suggests that the predictable aggregatory behaviour of this species could further compound 

the observed CPUE hyperstability. Although the CPUE responded positively for six years 

after implementation of the first minimum size and bag limits, and for one year after the 

decommercialisation of the species, these regulations and their amendments failed to arrest 

a long-term decline in the CPUE despite the ample evidence for hyperstability. It is clear 

from this case study that the predictable nature of wide-ranging behaviour in L. amia has 

made the population vulnerable to exploitation. This has led to the demise in the population, 

which could have been worse if not for the occurrence of intra-population variability in its 

movement behaviour, which may provide some measure of resilience.
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Our fish stocks were created wonderfully renewable, 
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Chapter 1: General Introduction

CHAPTER 1

GENERAL INTRODUCTION

As with nearly all coastal countries, South Africa relies on coastal fisheries as a renewable 

resource (WWF-SA 2016). Of the approximately 2200 fish species that occur in the region, 

more than 200 are exploited for commercial gain and for recreational purposes (Solano- 

Fernandez et al. 2012). Many of these stocks have been overexploited for decades (Penney 

et al. 1999, Griffiths 2000, Attwood 2013, Parker et al. 2016). In 2000, the Minister of 

Environmental Affairs and Tourism declared a state of emergency in the linefishery1. Several 

reasons exist for the management failure, such as excessive fishing effort (Attwood et al. 

2016) and ineffective regulations (Attwood and Bennett 1995a, Attwood 2002). Another 

reason for inappropriate management in the past is a lack of understanding of fish 

movement behaviour and its implications for exploitation (Maggs et al. 2016b). A lack of 

understanding has resulted in the widespread mismanagement of marine resources 

(Botsford et al. 1997, Penney et al. 1999, Griffiths 2000), and has led to many negative 

effects on biodiversity (Roberts 1995a, Boehlert 1996) and to the collapse of many fisheries 

worldwide (Pauly et al. 2002).

Although it has long been recognised that an understanding of fish movement is necessary 

for effective management, it is with some difficulty that the subject has been studied in the 

past. Unlike terrestrial science, the observation of aquatic marine species is restricted by the 

ocean's inhospitableness towards humans. Difficulties in tracking fish and complex life- 

histories, such as ontogenetic changes in movement behaviour, have hindered the 

incorporation of movement into management. Stock assessments and the resulting 

management strategies have traditionally neglected movement of fish, relying primarily on 

overall effort and catch limiting mechanisms with little consideration for temporal changes in 

distribution and abundance (Chapter 6, Maggs et al. 2012b, Maggs et al. 2016b).

In recent years, however, improvements in technology have provided the means for more in­

depth investigations into fish movement (Hussey et al. 2015). This research has revealed a 

range of complex movement behaviours. Movement in fishes occurs on a variety of temporal 

and spatial scales leading to the characteristic patterns of distribution and abundance 

observed in marine ecosystems. Fishes move nearly constantly in search of food, shelter or 

reproductive opportunities. Observations of behaviours such as long-term site fidelity, long­

Linefish is a colloquial South African term referring to species caught by hook and line. This term 
also includes species targeted in the spearfishery, but excludes long-line species (Mann 2013).
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distance migration and natal homing are enabling ecologists to understand patterns of 

distribution and abundance within a species' range.

Movement studies have shown that many fishery species are known to restrict the majority 

of their movements to within a small home range (Holland et al. 1993, Zeller 1997, Kramer 

and Chapman 1999, Parsons et al. 2003, Attwood and Cowley 2005, Jadot et al. 2006, 

Attwood et al. 2007, Kerwath et al. 2007a, b, Hedger et al. 2010, Parsons et al. 2010). 

Spatial management has focussed on taking advantage of site attachment by implementing 

marine reserves or marine protected areas (MPAs) -  areas where fishing effort is restricted 

in a variety of ways or even entirely eliminated.

Movement studies have also provided evidence to suggest that many fish species also make 

long-distance movements (Buxton and Clarke 1989, Garratt 1993a, Attwood and Bennett 

1994, Brouwer 2002, Griffiths and Wilke 2002, Roberts and Ayre 2010, Maggs et al. 2013b), 

often traversing provincial or even international boundaries (Maggs 2011). Genetic studies 

have highlighted the importance of managing transboundary stocks as a single unit (Helfman 

et al. 2009), but movement studies have shown, paradoxically, the importance of spatially 

explicit management. For example, intensive exploitation of elf Pomatomus saltatrix led to 

reports of stock depletion (van der Elst 1976). Tagging studies in South Africa showed that 

elf migrate annually from the Cape towards KwaZulu-Natal (KZN), where they aggregate to 

spawn during winter and spring (van der Elst 1975, Govender 1996, Maggs et al. 2012b). 

With this knowledge of elf movement, South Africa implemented a closed season during the 

sensitive aggregation period to rebuild the stock.

Aside from the direct effects of fishing (Dulvy et al. 2004, Hsieh et al. 2006), climate change 

will also potentially have, as yet, unforeseen effects on the spatial ecology of certain fishes 

(James and Hermes 2011, Potts and Gotz 2011). Not only is there the potential for range 

modifications, but there is also the possibility that climate change will lead to shifts in the 

location of functionally important areas such as spawning and nursery habitats. Climate 

induced changes in wind speed and direction may lead to alterations in ocean current flow, 

which would, not only affect fish dispersal directly, but also disrupt permanent upwelling 

cells, which have been recognised as barriers to fish dispersal (Griffiths 1997, Potts and 

Gotz 2011). Knowledge of fish movement patterns is important to aid management now, but 

also so that management can anticipate climate related changes in the future.

Fish movement around the South African coast has been studied on numerous occasions 

but has largely been confined to studies on single species, such as Chysoblephus puniceus
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(Garratt 1993a), Dichistius capensis (Attwood and Bennett 1994, Attwood 2002, Attwood 

and Cowley 2005), Pomatomus saltatrix (Govender 1996, Hedger et al 2010), Petrus 

rupestris (Brouwer 2002) and Argyrozona argyrozona (Brouwer et al. 2003). Movement 

behaviour of multiple species has been studied, but this has been limited to spatially 

localised MPA research (Buxton and Allen 1989, Cowley et al. 2002, Kerwath et al. 2007b, 

Maggs 2011, Maggs et al. 2013b, Mann et al. 2015). There has been little attempt in 

southern Africa to synthesis cross-species movement behaviour over wide spatial scales. 

Many questions remain unanswered and mark-recapture studies often report that recorded 

movements could not be correlated with size of the fish, time-at-liberty or sexual maturity 

(Attwood 2002, Griffiths and Wilke 2002, Maggs 2011).

At the 4th Linefish Symposium at Langebaan in April 2012, a breakaway session was held to 

discuss fish movement research. It was unanimously agreed that there was a pressing need 

to synthesize fish movement research in southern Africa. The research contained in this 

thesis was largely developed from the discussion that took place during that meeting.

1.1 KEY QUESTIONS AND RESEARCH PLAN
The overall aim of this research was to assess broad scale patterns in fish movement 

behaviour, specifically to contribute to the improved management of important fishery 

species. The following key questions/objectives were addressed:

1. What is the current state of knowledge regarding the movement behaviour of coastal 

fishes in southern Africa?

2. Produce a quantitative categoristation of fish movement behaviour for the southern 

Africa region.

3. Is the magnitude of movement positively correlated with species, life-stage 

(juvenile/adult) and time-at-liberty?

4. Does intra-population variability in movement behaviour vary across species, life- 

stage (juvenile/adult) and ecoregion?

5. Is wide-ranging behaviour biased towards a specific coastal direction?

6. How is the management of coastal fishes influenced by movement behaviour?

1.2 THESIS OUTLINE
This thesis consists of seven chapters (Figure 1.1). The research contained herein is applied 

in nature and attempts to inform management for the sustainable use of marine resources. 

Chapter 1 (this chapter) is a general introduction to fish movement and fishery management 

in southern Africa and provides the framework for the thesis. Chapter 2 provides a concise
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description of the study area (southern Africa region) and a detailed account of the data 

collection procedures in the research chapters (3, 4, 5 and 6), which are summarised below. 

Chapter 7 provides a short general discussion of the findings of the research.

Chapter 3 reviews nine decades (1928-2014) of fish movement research in southern Africa 

and provides a synthesis of research and findings. This research identified the need for a 

categoristation of fish movement behaviour and the investigation of intra-population 

variability in movement behaviour. These aspects were addressed in chapters 4 and 5 

respectively.

Chapter 4 used mark-recapture data to categorise 30 important fishery species according to 

movement behaviour so that management can be simplified. The focus of this chapter is to 

look at the characteristic movement of a species and to compare this with other species. The 

biological attributes and environmental drivers associated with the various categories are 

also discussed, which may aid in categorising other species not investigated in this study.

Chapter 5 uses mark-recapture data to investigate the intra-population variability in 

movement behaviour of five important fishery species. The focus of this chapter is to expand 

on the categorisation chapter by highlighting the fact that there is more to a species’ 

movement than its characteristic movement behaviour. That is, wide-ranging species 

sometimes display long periods of residency and resident species sometimes undertake 

long-distance movements. This complicates management but needs to be considered.

Chapter 6 is a case study, which uses a long-term catch-per-unit-effort time series to 

evaluate traditional management strategies for a species classified as wide-ranging (Chapter 

4) and one which displays intra-population variability in movement behaviour (Chapter 5). 

Much research, local and international has focussed on the management of resident species 

with specific emphasis on marine protected areas. However, there has been relatively little 

emphasis on the management of wide-ranging/migratory species, which may be more 

vulnerable to exploitation where movement is spatio-temporally predictable. Management of 

wide-ranging species is more complex than that for resident species, especially in those 

wide-ranging species displaying intra-population variability in movement behaviour.
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Chapter 1
General introduction

1
Chapter 2

Study area and data sources

l
Chapter 3

Review of research 
and findings

Data type

Chapter 6
Case study: fishery Catch-per-

implications of movement unit-effort
behaviour

Chapter 7
General discussion

Figure 1.1: Thesis structure.
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CHAPTER 2

STUDY AREA AND DATA SOURCES

2.1 GENERAL STUDY AREA
This study makes use of data collected in southern Africa, including Mozambique, South 

Africa, Namibia and Angola (Figure 2.1). This region includes tropical, sub-tropical and 

temperate ecosystems (Spalding et al. 2007), with the coastal ecology being profoundly 

influenced by two contrasting boundary currents (Shannon et al. 1990). On the east coast, 

the Agulhas Current brings warm tropical water down the coast (Schumann 1988, Shannon 

1989, Beckley and van Ballegooyen 1992, Roberts et al. 2010). On the west coast, the cold 

Benguela Current flows northwards and splits in the vicinity of Cape Agulhas. While the 

Agulhas brings nutrient-poor water down from the tropics, the Benguela brings cooler water 

up from the Southern Ocean and is characterised by upwelling and productivity (Lutjeharms 

and Meeuwis 1987). There is interplay between the two currents on the southern coast, 

where the continental shelf is at its widest (Chapman et al. 1987, Lutjeharms and Stockton 

1987). The shallow seas of the continental shelf are dynamic, subjected to upwelling cells, 

eddies, filaments and retroflections, which collectively have a strong influence on fish 

ecology in the region (Hutchings et al. 2002).

Five ecoregions are recognised around the coastline of southern Africa (Emmanuel et al. 

1992, Turpie et al. 2000, Sink et al. 2005, Spalding et al. 2007). On the east coast, the 

tropical Delagoa ecoregion includes the whole of southern Mozambique and a small area of 

South Africa as far south as Leven Point in the iSimangaliso Wetland Park. The subtropical 

Natal ecoregion stretches from Leven Point down the east coast as far as East London. The 

warm temperate Agulhas ecoregion includes the southern coast of South Africa from East 

London westwards to Cape Agulhas. The cool-temperate Namaqua ecoregion stretches 

from Cape Agulhas up the west coast to Luderitz in Namibia. Lastly, the Namib ecoregion, 

also classified as cool-temperate, stretches from Luderitz northwards. Although the divisions 

between ecoregions are often defined statistically in the literature, in reality the divisions are 

not always well-defined (Sink et al. 2005).
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Figure 2.1: Coastline of southern Africa including contrasting boundary currents and 

ecoregions (Namib, Namaqua, Agulhas, Natal and Delagoa).
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2.2 DATA SOURCES
The aim and objectives of this thesis required the analysis of three primary datasets. To 

establish what was already known of fish movement in southern Africa and to determine 

gaps in our understanding, a regional literature review of fish movement research was 

undertaken (Chapter 3). Two major knowledge gaps emerged from this review - a 

categorisation of fish movement and intra-population variability in fish movement. These 

topics were addressed in chapters 4 and 5. This required the analysis of a long-term mark- 

recapture dataset, known as the Oceanographic Research Institute Cooperative Fish 

Tagging Project (ORICFTP). One of the study species, Lichia amia, is a very popular 

recreational fishery species (van der Elst 1993), which was classified as wide-ranging 

(Chapter 4) and found to display intra-population variability in movement behaviour (Chapter 

5). Considering the movement behaviour of L. amia reported in chapters 4 and 5, this 

species was selected as a case study for an evaluation of past management strategies 

(Chapter 6). This required the analysis of a long-term catch-per-unit-effort (CPUE) dataset.

2.2.1 Chapter 3: Literature review
I examined fish movement studies from southern Africa (excluding freshwater fauna) 

published in the primary literature, student theses, book sections, reports, and published 

conference proceedings. A literature list was compiled by undertaking a systematic search 

using the internet-based Google Scholar search engine (http://scholar.google.co.za) from 8-11 

October 2014 with various combinations of preselected keywords (Table 2.1). Once a 

combination of keywords was queried, the first 25 pages of results were scanned for relevant 

literature. The reference section of publications was also scanned for additional literature.

Focus was given to South African fish movement research as the majority of the 

tagging/marking studies were conducted in South African waters (Appendix 1a, 1b). Only 

studies that included the direct marking, sighting or tagging (both externally and internally) of 

individuals was considered. Theoretical modelling studies were also included if based on 

tagging data. Thesis work and unpublished reports that were later published in the primary 

literature were disregarded in favour of the respective primary literature to avoid duplication. 

Some duplication was unavoidable where authors arrived at different conclusions in the 

thesis and the peer-reviewed publication or when multiple publications were based on one 

tagging project. This was not considered problematic as the duplication of student theses in 

the primary literature was negligible, and where one tagging study was published multiple 

times, these publications covered different aspects of movement. Conference presentations, 

popular articles, online web publications and annual funding reports were not considered. 

Publications that were disregarded included studies based on spatial analysis of catches,
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length-frequency analyses, hydro-acoustic monitoring, larval movement, photo identification, 

acoustic videography, genetic approaches and otolith microchemistry. Similarly, publications 

featuring the marking of individuals for the purpose of growth validation, mortality rate 

estimation and stock assessment were also not considered. Once a literature list had been 

compiled, each publication was read and data extracted according to a template and 

tabulated.

Table 2.1: Alphabetical list of keywords used in various combinations and entered into the 

Google Scholar online search engine (http://scholar.google.co.za) from 8-11 October 2014. For 

example, one combination included "south africa” & "passive integrated transponder” & "PIT 

tag” & "fish”. A list of literature (Appendix 1) was compiled from these queries for the current 

review.

Keywords

acoustic Otolith SPOT

ARGOS passive integrated transponder surgical implantation

chemistry PAT tag

conventional tag PIT tag tag effects

dispersal plastic dart tag tag loss

displacement pop-up archival tag recapture

elasmobranch movement pop-up satellite archival tag release

Fish PSAT tag retention

home range Ranging tag shed

homing Residency tagging

hydroacoustic satellite tag t-bar anchor tag

mark recapture satellite telemetry telemetry

mark resight shark movement tracking

migration site fidelity transmitter size

migratory Sonar vife tag

movement south Africa visible implant elastomer tag

Movement research in each publication was classified according to the following criteria: 

year of publication, type (peer-reviewed journal article, student thesis, book section, report or 

conference proceeding), origin (international or local), primary focus (biological/ecological, 

management and fisheries, reviews, method evaluation or mixed focus), prominence of 

movement research in publication (primary or auxiliary), geographic coverage, habitats 

(marine/estuarine/protected area/aquarium), tagging/marking methods, taxonomic coverage 

and primary movement topics (research focus areas). Often a study was assigned to more
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than one category. For example, certain studies covered both marine and estuarine 

environments or covered multiple movement topics.

2.2.2 Chapters 4 and 5: Mark-recapture data
Mark-recapture data were collected for various fish species around the coastline of southern 

Africa from Inhassoro (Mozambique) to Porto Alexandre (Angola) from 1984 to 2015. All 

data were collected under the auspices of the ORICFTP (www.oritag.org.za; Dunlop et al. 

2013). Project participants were distributed along most of the coastline and included various 

researchers conducting monitoring projects as well as a large contingent of volunteer 

anglers. Teleost fish and the majority of elasmobranchs were captured with conventional 

fishing tackle and tagged with uniquely coded plastic dart tags (Hallprint©, Australia). Some 

elasmobranchs were captured in bather protection nets along the east coast by the 

KwaZulu-Natal Sharks Board (Cliff and Dudley 2011). These were tagged with uniquely 

coded steel-head dart tags (Hallprint©, Australia). Recovery of tagged fish was opportunistic 

and relied on researchers and members of the angling public to report recaptured fish. 

Researchers conducting monitoring projects were reliable in reporting recaptured fish, but 

among public anglers, Dunlop et al. (2013) recorded non-reporting rates of up to 42%.

The ORICFTP database contains a system of numeric locality codes, which allows for quick 

distance calculations between coastal localities. The numeric code assigned to a particular 

locality refers to the distance (in km) from the northern Mozambique border. For example, 

the Durban Harbour is assigned the value of 3964 and the Cape of Good Hope is assigned 

the value 5655 indicating a coastal distance of 1691 km apart. All tag-release and recapture 

observations are recorded with a locality code to calculate the minimum distance moved by 

a tagged fish. Not every kilometre of coast was originally assigned a locality code and in 

some cases an observation has been recoded against the nearest available code on the 

database. However, the occurrence of this was neglible as all popular fishing areas have 

been assigned a locality code and new codes were assigned when needed. In those cases 

where the nearest code was used, the error associated was generally less than 5 km. The 

locality code system does not cater for movement upstream within estuaries (Dunlop et al. 

2013), which may be extensive in certain species, but the focus of this study was longshore 

coastal movement.

The life-stage of a fish, whether juvenile or adult, was considered in all analyses. For each 

species, the recapture length was used to code movement observations as juvenile or adult. 

This variable is referred to throughout the text as life-stage. Lengths at maturity were 

obtained from (Mann 2013). Observations were disregarded if length at recapture was
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unavailable or the method of length measurement was inconsistent with published length at 

maturity estimates. For example, in some instances fork length (FL) was recorded at the 

time of recapture for giant guitarfish, but length at maturity has only been published for total 

length. In some species, data was only available for the adult life-stage. This was 

unavoidable due to the methods used. For example, juvenile Cheimerius nufar, 

Chrysoblephus laticeps Diplodus capensis, and Pomatomus saltatrix were considered too 

small to tag with the plastic dart tags used in this study.

The gender of a fish may influence its movement behaviour in certain species (Hutchings 

and Gerber 2002). However, the gender of a fish was generally not recorded by ORICFTP 

participants. Although gender is easily determined in elasmobranchs by the presence or 

absence of external claspers, project participants tended to omit this data from tag returns. 

The gender of teleost species tagged in this study was not recorded due to the absence of 

any obvious external physical indicators. In teleost species exhibiting sequential 

hermaphroditism, gender could have been assumed based on published length-at-sex- 

change parameters. However, this would only have been possible for a small subset of the 

species. For these reasons, gender was not considered in any analyses using mark- 

recapture data.

2.2.3 Chapter 6: Fishery-dependent catch-per-unit-effort data
The carangid, Lichia amia, is a very popular recreational fishery species, which is targeted 

by shore-, boat- and spear-fisheries (van der Elst 1993, Maggs et al. 2016a). This species 

was selected for a case study evaluation of current management strategies and how they 

pertain to a wide-ranging species displaying intra-population variability in movement 

behaviour. South Africa's national Department of Agriculture, Forestry and Fisheries (DAFF) 

maintain a central database of recreational catch and effort data known as the National 

Marine Linefish System (NMLS, see van der Elst and Penney 1995, Maggs et al. 2016a). 

The majority of recreational fisheries data on the database originates from the east coast of 

South Africa from the Mozambique border down to the Mbashe River, which includes the 

province of KwaZulu-Natal and the former Transkei region of the Eastern Cape (Figure 2.2). 

Within the NMLS, several data sources were available for the analyses (Table 2.2).
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Figure 2.2: Map of the upper east coast of South Africa. Ezemvelo KwaZulu-Natal Wildlife 

shore patrols and boat inspections are limited to the KwaZulu-Natal coast, while 

Oceanographic Research Institute (ORI) catch return card data and KwaZulu-Natal Coast 

Anglers’ Union (KZNCAU) competition data cover the KwaZulu-Natal coastline as well as the 

former Transkei region of the Eastern Cape as far south as the Mbashe. KZN -  KwaZulu- 

Natal, EC -  Eastern Cape, WC -  Western Cape.
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Table 2.2: Data sources used in Chapter 6. KZN -  KwaZulu-Natal, TKEI -  former Transkei 

region of the Eastern Cape. ORI - Oceanographic Research Institute, Ezemvelo -  Ezemvelo 

KwaZulu-Natal Wildlife, KZNCAU -  KwaZulu-Natal Coast Anglers’ Union.

Data sources Temporal
distribution

Spatial
distribution

Collecting
agency Method

Angler
outing

coverage
Data collected

Shore fishing

Catch return cards 1982-2011 KZN/TKEI ORI Angler submission Complete fish.angler'1.hour'1

Competitions 1977-2012 KZN/TKEI KZNCAU Tournament records Complete fish.angler'1.hour'1

Shore patrols 1985-2012 KZN Ezemvelo Creel survey Incomplete fish.angler'1.outing'1

Boat fishing

Catch return cards 1974-2009 KZN/TKEI ORI Angler submission Complete fish.angler'1.hour'1

Inspections 1986-2012 KZN Ezemvelo Access-point Complete fish.angler'1.hour'1

Spearfishing

Catch return cards 1971-2012 KZN/TKEI ORI Angler submission Complete fish.angler'1.hour'1

Voluntarily submitted data (catch return cards, competitions)

Catch return cards were distributed to shore and boat anglers as well as to spear-fishers, 

who then voluntarily submitted CPUE data from fishing outings. No reward was offered for 

submission of cards. KwaZulu-Natal Coast Anglers Union (KZNCAU) held formalised 

recreational shore angling tournaments, where the objective was points scoring, which could 

lead to provincial and national recognition (Pradervand and Govender 2003, Pradervand 

2004, Pradervand et al. 2007). Certain biases existed in catch return cards and competitions 

(Mann-Lang 1996, Maggs et al. 2012a). Competition data tended to be biased towards large 

species, which would earn greater points, and specific areas where catches were generally 

higher. Catch return card data suffered from non-response bias, where anglers simply did 

not complete a catch return card, and response bias, where fishers sometimes submitted 

unreliable data. Consequently, this data source has been gradually phased out in favour of 

observer-based data collection.

Observer data (shore patrols, boat inspections)

Shore patrols, based on creel-survey methodology, and access-point boat inspections 

(Pollock et al. 1994), both conducted on a daily basis by independent observers, were 

introduced during 1984 and 1985 respectively. The primary objective of shore patrols and 

boat inspections was fisheries law enforcement and the collection of scientific data was a 

secondary objective. Therefore, the distribution of sampling effort was not always random 

and was generally biased towards areas and periods of high-effort (Mann-Lang 1996, Maggs 

et al. 2012a). During shore patrols, anglers were most often inspected while fishing and
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therefore incomplete outings were recorded. Whereas shore patrols and boat inspections 

recorded retained catch only, catch return card and competition data included retained and 

released catch. Catch return card and competition data may therefore include catches of fish 

that were released by the fisher to comply with size and bag limits.

Although L. amia occurs west of the Mbashe River, marine recreational fishery data from 

that region is limited and was therefore excluded from the analysis. Estuarine data were also 

excluded because very few L. amia occur in KwaZulu-Natal estuaries (Wallace and van der 

Elst 1975) and there is little NMLS data for the estuaries of the Eastern and Western Cape 

Provinces.

2.3 DATA ANALYSIS
See individual chapters for a detailed explanation of the data analysis procedures followed.
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CHAPTER 3

NINE DECADES OF FISH MOVEMENT RESEARCH IN SOUTHERN AFRICA:
A SYNTHESIS OF RESEARCH AND FINDINGS

Maggs JQ, Cowley PD. 2016. Reviews in Fish Biology and Fisheries 26(3): 287-302.

3.1 INTRODUCTION
Aquatic ecosystems are closely regulated by global climate patterns, which are currently 

undergoing unprecedented change (Doney et al. 2012). The way in which these changes 

affect the distribution and abundance of mobile marine animals has, in recent years, 

captured the attention of conservation efforts and fisheries research in a variety of 

geographic regions across the globe (Rijnsdorp et al. 2009, Cheung et al. 2010, Lloyd et al. 

2012, Potts et al. 2015). Tracking the movement of marine animals was previously very 

difficult given the vast expanse and 3-dimensional nature of the marine landscape. However, 

since the 1990s, fish movement research has increased dramatically, being facilitated by the 

rapid technological advances in the field of biotelemetry (Hussey et al. 2015). To aid 

management, attempts have been made to synthesise fish movement research. For 

example, the Great Lakes of North America have an extensive record of aquatic animal 

movement research, which was reviewed by Landsman et al. (2011) and movement patterns 

of coral reef fish were recently reviewed by Green et al. (2014). However, the wealth of fish 

movement research conducted in temperate ecosystems of the southern hemisphere has 

not received the same focus.

Southern Africa, with nine decades of fish movement research, is characterised by 

temperate ecosystems, complex oceanographic phenomena (Hutchings et al. 2002) and 

multiple ecoregions (Spalding et al. 2007). There is interaction between the warm Indian 

Ocean and the cold Atlantic Ocean with associated contrasting boundary currents. There are 

also numerous upwelling cells, eddies, filaments and retroflections occurring along the 

continental shelf, which varies widely in width. These attributes have a pronounced effect on 

fish movement behaviour (Hutchings et al. 2002), with some producing barriers to movement 

and others facilitating dispersal. Initially, the movement of fishery-important marine fish was 

inferred by the seasonality in catches at different locations along the coast, but direct 

evidence was lacking. Also, much remained unknown regarding migration routes and stock 

delineation. The earliest known publication is that of some tagging experiments, which were 

conducted in an aquarium in 1928 (von Bonde 1928). The tagging of 3 755 Cape snoek 

Thrysites atun in 1934 off the Namibian coast by the South African government’s Division of
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Fisheries (Marchand 1934) is reported to be the first field investigation into the movement of 

South African fish stocks using mark-recapture. Although only 17 (0.5%) individuals were 

recaptured from 1935 to 1938, this first attempt at fish tagging yielded direct evidence of 

transboundary connectivity and movement between the Cape (South Africa) and Namibia of 

a species critically important to South Africa’s commercial fishery (Davies 1954, De Jager 

1955). It was not until 1957 that tagging was resumed, again by the South African 

government, this time on another important fishery species, the South African pilchard 

Sardinops sagax (Newman 1970). Some 141100 individuals were tagged, and over a period 

of nine years, 10.7% of the tagged pilchards were recovered. Migration routes and 

intermixing of stocks were established. From 1964 to 1967, the government investigated 

movements of two more commercially important species, carpenter Argyrozona argyrozona 

and hottentot Pachymetopon blochii using plastic spaghetti tags (Nepgen 1977). The 

fisheries department of the South African government has remained active in movement 

research of commercially important fish species (Griffiths et al. 2002, Kerwath et al. 2007a, 

b).

In response to local shark attacks, the Oceanographic Research Institute (ORI) in Durban 

initiated an elasmobranch tagging project in 1964 (Davies and Joubert 1966, Davies and 

Joubert 1967) and through a reward system, had an overwhelming recapture rate of 39%. 

This study not only investigated the movements of sharks but also was the first in the region 

to evaluate the use of various tag types, tag retention and the occurrence of biofouling. 

However, the first long-term fish tagging initiative in the region got under way in 1976, when 

the KwaZulu-Natal Sharks Board (KZNSB) began tagging elasmobranchs captured in their 

bather protection nets and by fishing in adjacent areas (Cliff and Dudley 1991a, b, Cliff and 

Dudley 1992a, b, Dudley and Cliff 1993, Cliff et al. 1996, Allen and Cliff 2000, Dudley et al. 

2005, Hussey et al. 2009). This project remains in operation and to date more than 6200 

elasmobranchs have been tagged with a 9.8% recapture rate (S. Wintner, KZNSB, pers. 

comm. 2014).

Other than the tagging project by the KZNSB, fish tagging and movement research was 

largely ad hoc and uncoordinated on a national scale until 1984. Besides the published 

studies, many other short-term tagging initiatives had gone unreported because they yielded 

inconclusive results (van der Elst 1990). ORI recognised the collective value of unreported 

data and the need to coordinate tagging on a regional scale. At the same time, there was a 

growing interest among recreational anglers to participate in a cooperative tagging project, 

and in 1984 the ORI Cooperative Fish Tagging Project (ORICFTP) was established with a 

wide geographic coverage, including South Africa, Mozambique and Namibia (van der Elst
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1990, van der Elst and Bullen 1993, Dunlop et al. 2013). This project was aimed specifically 

at generating information on growth, migration and fishing mortality for use in fish stock 

assessments. To do this, ORI began supplying conventional plastic tags to other research 

institutions and to private anglers. By the end of 1984, the first year of the project, there were 

already more than 900 participants, who had collectively tagged and released some 2600 

fish. Since its inception, ORI has coordinated this project and has managed the resulting 

data, which is disseminated for research purposes on request.

In 1985, the KZNSB tagging project switched to using ORI tags and began contributing their 

data to the ORI database. The initiative by ORI also drew interest from other long-term 

projects that were just getting under way at the time. The De Hoop Marine Reserve fish 

monitoring project (Attwood and Swart 2000, Attwood and Cowley 2005) and Kosi Bay 

estuarine fish monitoring project (Kyle 2000) both began in 1985 and, at the time of writing, 

still submit tagging data to the ORICFTP. Similar fish monitoring projects were initiated in the 

Tsitsikamma National Park in 1990 (Brouwer 2002, Cowley et al. 2002, Brouwer et al. 2003, 

Attwood and Cowley 2005, Kerwath et al. 2007a, Watt-Pringle 2009), in the St Lucia Marine 

Reserve in 2001 (Mann 2012) and Goukamma MPA in 2001 (Kerwath 2005, Kerwath et al. 

2007a, Kerwath et al. 2008). More recently, fish tagging projects affiliated to the ORICFTP 

have commenced in the Pondoland Marine Protected Area in 2006 (Maggs 2011, Maggs et 

al. 2013b), in the Ngqura Harbour in 2007 (ML Dicken, KZN Sharks Board, pers. comm. 

2014) and in the Dwesa/Cwebe and Addo marine protected areas in 2008. All these projects 

contribute data to the ORICFTP and only the Tsitsikamma National Park monitoring project 

is no longer in operation, having ended in 2011. In addition, recreational anglers have 

collectively contributed significant amounts of tagging data. Certain individuals have 

contributed outstanding high quality data over extended periods -  most notably around the 

Cape Peninsula (Attwood and Cowley 2005). From 1984 to 2011, a total of 251 969 fish from 

368 species were tagged and released by ORICFTP participants, with an overall recapture 

rate of 5.2% (Dunlop et al. 2013).

Other agencies have also conducted smaller-scale cooperative mark-recapture projects, 

independent of the ORICFTP. The Port Elizabeth Museum facilitated a cooperative ragged- 

tooth shark Carcharias taurus tagging project from 1984-2004 in the Port Elizabeth area with 

2364 sharks being tagged (Smale et al. 2012). In 2006, the South African Institute for 

Aquatic Biodiversity (SAIAB) initiated a similar small-scale fish tagging project ("082 TAG 

FISH”) in selected Eastern Cape estuaries and in Algoa Bay with more than 5000 fish 

tagged since 2006 (SAIAB unpublished data). Participation in the independent projects has 

generally been restricted to a limited number of trained invitees. Consequently, collected
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data is generally of a high resolution. Data from these independent projects have not been 

submitted to the ORICFTP.

It was predominantly conventional mark-recapture techniques that were used during the 

1900s. However, despite the cost and relatively more complex application, electronic tags 

have grown in popularity since the turn of the century by offering high resolution tracking 

data on individual animals. The tagging of three whale sharks Rhincodon typus with satellite 

tags off Cape Vidal, KwaZulu-Natal in 1998 and 1999 (Gifford et al. 2007) is possibly the first 

published occurrence of electronic fish tracking in South Africa. From 2002 onwards, 

electronic tagging grew rapidly in popularity, particularly among shark researchers. In 2012, 

the Acoustic Tracking Array Platform (ATAP) was established as the regional node of the 

global Ocean Tracking Network (OTN) to centralise biotelemetry data for the southern Africa 

region.

Movement of fishes is an integral part of their daily life, but has significant implications for 

fishery management. In South Africa, fishery management is challenging because of the 

multi-user, multi-species nature of the fishery. To complicate matters further, many of the 

targeted species exhibit complex movement behaviour. Although fish movement research in 

the region has produced an extensive body of knowledge, there are still substantial gaps in 

our knowledge, which impede effective management. For the benefit of fishery managers 

and researchers, I synthesize the knowledge derived from fish movement research thus far 

in the southern Africa region and highlight certain areas that require research going forward. 

To the author’s knowledge, this study represents a novel contribution from the southern 

Africa region, which is characterised by temperate ecosystems.

3.2 MATERIALS AND METHODS
A detailed explanation of the study area and data collection procedures is given in Chapter 

2. In short, fish movement research in the southern Africa region was reviewed for the period 

1928 to 2014.

3.3 CHARACTERISTICS AND TRENDS IN FISH MOVEMENT RESEARCH

3.3.1 General characteristics
The number of publications featuring South African fish movement research increased 

sharply in the 1990s, most likely as a direct consequence of the long-term marine protected 

area monitoring projects initiated in the mid to late 1980s (Figure 3.1). This sharp increase 

can probably also be linked to the inauguration of the ORICFTP in 1984.
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Year

Figure 3.1: Number of South African marine and estuarine fish movement publications per 

decade surveyed in this review, 1928-2014 (n=101).

Of the 101 publications surveyed, 68% were peer-reviewed journal articles, 71% were 

published in South African journals and 53% were classified as having a biological/ecological 

theme (Table 3.1). The dominant contribution by primary literature can be ascribed to the 

ease of access obtained through online resources, which was the main method used to 

gather literature. Within the surveyed publications, movement research featured as either the 

primary focus of the publication (52%) or was auxiliary to a different theme (48%); however, 

a temporal shift was apparent. In the period 1928-1979, there was a ratio of 1:3.5 (primary: 

auxiliary). A shift towards movement as a primary focus took place in the following period 

(1980-1999), with a ratio of 1:2.6. However, from 2000 onwards the ratio was vastly different 

(1:0.6), indicating a large increase in the number of publications entirely dedicated to 

movement research. This was most likely because the importance of fish movement was 

beginning to be appreciated and the need for such information for management and 

conservation purposes was realised.

Sixty-three per cent of studies included work conducted only in the marine environment, 

while 17% covered only estuaries, with 15% covering both environments. The remaining 5% 

of studies were conducted completely ex situ within laboratories. From the early 2000s, 

movement research in estuaries escalated with the increasing accessibility of electronic 

tagging techniques (Kerwath et al. 2005, O’Connell 2008, N^sje et al. 2012). Due to the 

small-scale area utilisation of estuary-associated fishes, electronic tagging techniques 

yielded appropriate, high resolution data compared to conventional tagging methods.
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Thirteen per cent of field-based studies included aquarium-based research, often as pilot 

studies or for tagging method evaluation, including tag-effect assessments.

Table 3.1: Characteristics of publications surveyed in this review, 1928-2014 (n=101).

Publication characteristic

P ub lica tion  type %

Peer-reviewed journal 68

Thesis 11

Book section 2

Report 9

Conference proceedings 10

P ub lica tion  origin

Locally published 71

Internationally published 29

P rim a ry  focus o f  pub lica tion

Biological/Ecological 53

Management and fisheries 26

Reviews 7

Method evaluation or testing 13

Mixed focus 1

P rom inence  o f  m ovem ent in  pub lica tion

Primary 52

Auxiliary 48

3.3.2 Geographic distribution of studies
The focus of fish movement research, as with the majority of ichthyological research in 

South Africa, has been conducted in the subtropical and warm-temperate regions of the 

Indian Ocean from Cape Point to Kosi Bay, specifically in the Western Cape (Figure 3.2). 

The geographic coverage of studies was predominantly confined to single provinces (61% of 

studies, n=101), although some studies spanned provincial and international borders (34%). 

A further 5% of studies took place exclusively ex situ in aquariums/laboratories. Of the 

studies not conducted ex situ (n=96), 59% of surveyed publications featured research 

conducted on the Western Cape, followed by the Eastern Cape (53%) and KwaZulu-Natal 

(43%). Relatively few studies covered the Northern Cape (6%) or neighbouring countries, 

Namibia (9%) and Mozambique (6%).
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Figure 3.2: Geographic distribution of South African fish movement studies surveyed in this 

review 1928-2014 (n=101). Note that some studies covered multiple provinces and/or 

neighbouring countries (Namibia and Mozambique).

3.3.3 Tagging methods
Most (87%) studies made use of only one fish tagging method, while 12% included a 

combination of techniques. This included mark-recapture (69%), mark-resight (6%), acoustic 

telemetry (31%), pop-up archival tags (4%), passive integrated transponder (1%), satellite 

tags (3%) and other methods (4%), which included internal metal tags, oxytetracycline 

marking, coded wire tags, simulation modelling and photo identification (Table 3.2). 

Interestingly, conventional mark-recapture applications have maintained popularity even as 

electronic technologies have become more accessible.

The use of various tag types has, to a large degree, been determined by the price and 

logistics associated with the individual tag types. The marking of individual fish with 

conventional tags is relatively cheap and requires limited training. Dart tags issued by ORI, 

cost from US$1 -  US$22, including administration costs and the tag insertion technique can 

be quickly learnt. In stark contrast, fitting a single fish with an electronic tag ranges from

Price accurate as of May 2017.
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US$2703 (small acoustic) to more than US$40004 (pop-up archival), excluding associated 

receiver equipment and administration costs. The amount of training required to fit an 

electronic tag to a fish varies, but is most intensive for the commonly-used acoustic 

transmitters, where a surgical procedure is required. Despite the cost and relatively difficult 

application, the small size of acoustic tags and the high resolution data achieved using this 

method has made them very popular in recent years. The recovery of conventional tags is 

highly dependent on members of the public reporting the recaptured fish. However, non­

reporting rates have been estimated to be as high as 42% in certain areas of South Africa 

(Dunlop 2011).

Table 3.2: Number of fish movement studies surveyed in this review, 1928-2014 (n=101), 

featuring various fish tagging methods over three periods. Note that classification is 

according to publication date and not the date that the work was undertaken.

Year Mark-
recapture Mark-resight Acoustic

telemetry
Pop-up
archival

Passive
integrated

transponder
Satellite

telemetry
Other

methods

1928-1979 8 0 0 0 0 0 1

1980-1999 21 1 0 0 0 0 0

2000-2014 41 5 31 4 1 3 3

a Includes internal metal tags, oxytetracycline marking, coded wire tags, simulation modelling and photo identification

3.3.4 Taxonomic trends
Fish movement research in South Africa has traditionally been focussed on large 

commercially important fish stocks in the Western Cape (Marchand 1934, De Jager 1955, 

Newman 1970, Nepgen 1977). Of the 101 surveyed studies, 72% covered movement of a 

single taxon and 23% covered multiple species. A further five studies (5%) were either 

reviews or methods-based studies, which did not specifically present movement results of 

any particular species. Of the 97 studies specifically covering at least one species, most 

were focussed on the Osteichthyes (65% of studies), 33% focussed on elasmobranchs, and 

only two (2%) studies covered both groups (Figure 3.3). Overall, 26 families were identified 

in the surveyed literature. Endemic members of the family Sparidae featured in 32% of 

publications. Thereafter, carcharhinids (15%), haemulids (10%) and sciaenids (10%) 

featured highly in studies.

3
Price accurate as of May 2017, https://vemco.com/

4 Price accurate as of May 2017, http://www.microwavetelemetry.com/
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Figure 3.3: Fish family composition in the surveyed literature, 1928-2014 (n=96). Note that 

in some cases, more than one family featured within a single publication.

3.3.5 Movement research focus areas
Out of 85 publications presenting movement results (the remaining were reviews or 

methods-based studies), 51% focussed on an individual aspect of movement, while 49% 

covered multiple movement topics. Initially, publications featuring fish movement research in 

South Africa focussed largely on providing descriptive summaries of broad-scale movement 

patterns (Figure 3.4). This is not surprising given that the primary method employed was 

mark-recapture, which often depends on opportunistic recovery of tags by the public and 

which generates relatively low resolution spatial data. However, along with an increase in the 

number of studies and improvements in tagging technology, there has also been an increase 

in the diversity of research focus areas. Compared to the period leading up to 1979, the 

most notable change during 1980-1999, was the increase in the number of publications 

covering fish movement research within protected areas. This trend gained momentum in 

the following period (2000 onwards). The most notable change in this last period was the 

sharp increase in the number of publications which covered much-needed investigations into 

fine-scale movement patterns, concomitant with the increasing accessibility of biotelemetry. 

The period from 2000 onwards also witnessed the introduction of publications focussing on 

factors influencing fish movement.
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Research focus area

Figure 3.4: Movement research focus areas identified in the surveyed literature, 1928-2014 

(n=85). An additional 16 movement-associated publications were classified as reviews or 

methods-based studies that did not present movement results.

Broad-scale movement patterns (n=58)

Descriptive accounts of broad-scale movement patterns were almost exclusively based on 

conventional mark-recapture using plastic dart and T-bar anchor tags. Across a range of 

families, within the Osteichthyes and elasmobranchs, these accounts most often reported a 

high degree of restricted or "zero” movement, with infrequent occurrences of long-range 

movement (Bennett 1993, Griffiths 1996, Cowley et al. 2002, Griffiths and Wilke 2002, 

Brouwer et al. 2003, Attwood and Cowley 2005, Dudley et al. 2005, Dicken 2011, Maggs et 

al. 2013b). This phenomenon has been described as partial migration -  the occurrence of 

resident and migratory behaviour within a coexisting animal population (Kerr et al. 2009). It is 

interesting that the reported proportion of restricted movement nearly always outweighed the 

proportion of long-range movement (Cowley et al. 2013b, but see Ebert 1996) and little 

evidence could be found for a continuum in movement distance. Data from the ORICFTP 

indicates that among the top 30 species (by number of recaptures), approximately 70% of 

recaptures are made within 5 km of the original release site, although this varies among 

species (ORI unpublished data). The independent published mark-recapture studies, from 

where this data originates, often provide higher resolution than that provided by the 

ORICFTP. Indeed, Maggs et al. (2013b) showed that the 95th percentile of recorded

24



Chapter 3: Review of Movement Research

movements of four species ranged from 270 to 748 m. In the same study, some individuals 

of the same four species undertook long-range movements ranging from 3 to 1059 km. 

Attwood and Cowley (2005) reported similar results among 2174 recaptured Dichistius 

capensis. They estimated a maximum home range size of 1.38 km, while some individuals 

were recorded moving more than 1000 km -  covering nearly the entire distributional range of 

the species. It has been debated whether long-range movements are restricted to certain 

individuals or whether all individuals exhibit long-range movement infrequently -  the tourist 

model versus polymorphism hypothesis (Attwood 2002, Attwood and Cowley 2005). The 

polymorphism model refers to there being a combination of resident individuals and nomadic 

individuals within a population, while the tourist model refers to temporary residence of 

individuals, with periodic nomadic behaviour.

It has been questioned whether these patterns are representative of fish movement or an 

artefact of the tagging strategy (Attwood and Bennett 1994, Maggs 2011). Most studies 

provided discussion on the distribution of recapture effort, which could potentially mask 

movement patterns. Only Attwood and Cowley (2005) applied a correction factor to account 

for recapture effort distribution. Overall, it appeared that recapture effort distribution did not 

appreciably influence the recorded movement patterns. With conventional mark-recapture, 

little is known of the whereabouts of tagged fish between tagging and recapture (Attwood 

and Cowley 2005), which has been as long as 22.6 years for a sand tiger shark Carcharias 

taurus (Dunlop et al. 2013). It is therefore unknown whether some fish move away from their 

site of tagging and then return before being recaptured.

Fine-scale habitat usage (n=28)

The emergence of electronic tracking technologies, especially from 2000 onwards, has 

enabled successful investigations into fine-scale habitat usage. Movement within estuaries is 

constrained and particularly suited to fine-scale acoustic tracking, which has focussed 

predominantly on spotted grunter Pomadasys commersonnii (Kerwath et al. 2005, N^sje et 

al. 2007, O’Connell 2008, Childs et al. 2008a, b, c) and to a lesser degree on white 

steenbras Lithognathus lithognathus (Bennett et al. 2011, Bennett et al. 2012, Bennett et al. 

2013) and dusky kob Argyrosomus japonicus (Cowley et al. 2008, N^sje et al. 2012). 

Although logistically more difficult, fine-scale habitat usage has also been investigated to a 

lesser degree in the marine environment with both acoustic telemetry (Hissmann et al. 2006, 

Kerwath et al. 2007b, Jewell et al. 2012, Kock et al. 2013) and conventional mark-recapture 

(Attwood 2002, Kerwath et al. 2007a, Maggs 2011, Maggs et al. 2013b). Fine-scale habitat 

usage has most often been discussed in the context of residency and in association with 

estimations of home range with the objective of evaluating protected area sizing and
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spacing. It is perhaps not surprising that most studies, focussing on fine-scale habitat use, 

report small home range sizes and site fidelity, given that it is mostly resident reef- 

associated species, which are the subject of fine-scale movement studies.

The relationship between home range size and fish size or habitat is complex and was not 

clear from the surveyed studies. It is expected that energetic costs will be lower for larger 

fish and thus larger home ranges are to be expected. In contrast, the behavioural dominance 

of larger fish may force smaller fish to cover a wider area to secure resources. Childs et al. 

(2008a) reported that, in the Great Fish Estuary, larger P. commersonnii held larger home 

ranges. However, O'Connell (2008) found no such association among P. commersonnii in 

the nearby East Kleinemonde Estuary, although this study featured a small sample size. 

O'Connell (2008) suggested that the lack of association between body size and home range 

size may be explained by the lack of territoriality in this species, but this is inconsistent with 

the results of Childs et al. (2008a). The answer may have to do with the difference in 

habitats in these two studies. The Great Fish estuary is a permanently open system, 

whereas the East Kleinemonde is an intermittently open system. Pomadasys commersonnii 

in estuaries make increasing use of the marine environment with increasing size (Childs et 

al. 2008c). The study by O'Connell (2008) was limited to a period when the estuary was 

closed to the sea, which may have restricted movements of larger individuals. No evidence 

of a relationship between home range size and other variables were evident in the marine 

studies, which included biotelemetry and mark-recapture. Home range size may depend on 

competition, habitat availability, food, shelter or reproduction (Kerwath et al. 2007b).

Protected areas (n=22)

The promulgation of marine and estuarine protected areas has gained popularity worldwide 

as a means of conserving biodiversity and managing fisheries (Roberts et al. 2001). From 

1984, South African protected areas captured the focus of fish movement research (Attwood 

and Bennett 1994, Kyle 2000, Cowley et al. 2002, Attwood and Cowley 2005). From this 

review, it was evident that 25% of the studies surveyed had coverage in marine or estuarine 

protected areas (MPA/EPA). While the conservation benefits within the boundaries of a 

protected area have been well established locally (Bennett and Attwood 1991, Kerwath et al. 

2008, Venter and Mann 2012, Maggs et al. 2013a) and internationally (Roberts 1995b, 

Halpern and Warner 2002, Halpern 2003), the benefit of protected areas to adjacent 

fisheries is less clear (Hilborn et al. 2004, Sale et al. 2005, but see Kerwath et al. 2013b). As 

such, many fish movement studies within South African MPAs have focussed on the 

movement patterns of fish in relation to protected area boundaries (Attwood and Bennett 

1994, Cowley et al. 2002, Attwood and Cowley 2005, Attwood et al. 2007, Kerwath et al.
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2007a, Kerwath et al. 2009, Hedger et al. 2010, da Silva et al. 2013b, Maggs et al. 2013b, 

Mann et al. 2015). The ORICFTP database contains the majority of the raw data on which 

these protected area studies are based. Within the ORICFTP dataset, there is approximately 

79495 fish, which were tagged by researchers within no-takes zones of seven protected 

areas (ORI unpublished data). Of the 7406 recaptures reported, 62-96% were within the 

original the no-take boundaries, while the remainder of recaptures (4-39%) occurred in 

exploitable areas beyond the boundaries of the no-take zone. Higher export values tended 

to be associated with smaller protected areas such as Dwesa/Cwebe (39%), Table Mountain 

National Park (38%) and Ngqura Harbour (38%), while lower export values were associated 

with larger protected areas such as the St Lucia Marine Reserve (4%), Pondoland MPA 

(6%), Tsitsikamma National Park (14%) and the De Hoop Marine Reserve (26%).

Fish moving across protected area boundaries, however, does not necessarily confirm 

benefits to adjacent fisheries unless that movement is spillover - the net export of adult 

fishes (Abesamis and Russ 2005) from a high concentration in a protected area to a lower 

concentration in a fished area. Although some South African studies have reported 

movement of fishes from a high concentration in a no-take area to an adjacent fished area 

(e.g. Maggs et al. 2013b), no direct evidence could be found that this movement resulted in 

net export or that the movement was driven by density-dependent interactions.

Population connectivity (n=9)

Where fish species exist as discrete stocks, stock delineation and connectivity between such 

stocks has significant implications for fisheries management (Carvalho and Hauser 1994, 

Botsford et al. 2009), especially where there is connectivity across political borders (Munro 

2009). Relatively few studies in South Africa have used fish tagging to investigate population 

connectivity. Instead, genetic techniques have been used increasingly to investigate this 

topic (e.g. Duncan et al. 2015). Nevertheless, conventional tag-recapture was used by 

Garratt (1993b) to investigate connectivity between different shoals of river bream 

Acanthopagrus vagus within the Kosi Bay estuarine lake system. Griffiths (1997) established 

that silver kob Argyrosomus inodorus off the South African coast exist as three discrete 

stocks with limited exchange of individuals between stocks. This knowledge has enhanced 

stock assessment appraisals for certain species (Kerwath et al. 2013a). Hedger et al. (2010) 

reported on a single elf Pomatomus saltatrix (FL = 405 mm), which remained resident for 

~12 months in the Langebaan Lagoon, Western Cape before moving ~1760 km to KZN.

On a larger scale, transboundary connectivity between South Africa and Namibia was 

established in Cape snoek Thyrsites atun (Marchand 1934) and in the pilchard Sardinops
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sagax (Newman 1970) enabling enhanced management and highlighting the need for 

international cooperation. Bonfil et al. (2005) reported on a white shark Carcharodon 

carcharias moving from South Africa to Australia and back, while da Silva et al. (2010) 

reported on a blue shark Prionace glauca tagged off the Western Cape coast of South Africa 

and recaptured off Uruguay.

Factors influencing movement behaviour (n=7)

It appears that there has been some difficulty in linking fish movement behaviour to driving 

factors. In the East Kleinemonde Estuary, O’Connell (2008) reported that fine-scale habitat 

use of P. commersonnii was more influenced by biotic factors than by abiotic factors, but in 

the nearby Great Fish Estuary, Childs et al. (2008b) and Childs et al. (2008c) found that 

habitat use was more affected by a range of environmental variables than by fish length or 

size. Childs et al. (2008c) reported that number and duration of marine excursions from the 

estuary were associated with tide, time of day, fish size, sea temperature, barometric 

pressure and wind direction. Their movement within the estuary was associated with large 

fluctuations in salinity, temperature and turbidity (Childs et al. 2008b). In A. japonicus, the 

direction of movement within the estuary was associated with direction of the tide, up during 

flood tides and down during ebb tides, but no association was found with spring or neap tide 

phases (N^sje et al. 2012). Hedger et al. (2010) reported that P. saltatrix in the Langebaan 

Lagoon increased ground speed with increases in tidal current speed, photoperiod and 

during the day. And, similar to A. japonicus in the Great Fish Estuary (N^sje et al. 2012), P. 

saltatrix in the Langebaan Lagoon tended to move seaward during ebb tides and away from 

the sea during flood tides. In contrast, Bennett et al. (2011) and Bennett et al. (2012) were 

unable to link habitat usage of L. lithognathus to environmental variables in either the East 

Kleinemonde or Great Fish estuaries.

Other studies among the surveyed literature provided auxiliary discussion on the reasons for 

patterns in fish movement behaviour, most of which were linked to biological factors, but 

most of these studies provided inconclusive results. For example, no association could be 

made between fish movement patterns and age or sex by Attwood and Bennett (1994), with 

sex by Dicken et al. (2007) or with fish length (Maggs et al. 2013b).

Reproduction (n=5)

Complex oceanographic phenomena have a pronounced effect on the distribution of 

planktonic eggs and larvae (Hutchings et al. 2002). Associated with this is a host of complex 

and poorly understood fish spawning migrations. In many species occurring along the 

southern and eastern seaboard, there is strong evidence that spawning is not evenly
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distributed throughout the range of the species (Mann 2013) and that individuals undertake 

north-eastward migrations, which may be spawning related. Also, certain studies have linked 

movements to the onset of maturity (Cowley 1999, Brouwer et al. 2003). In slinger 

Chrysoblephus puniceus, which occur along the east coast of South Africa, there is no 

evidence of spawning along the southern reaches of its distribution (Garratt 1993a). This 

author postulated that if C. puniceus located to the south, are to spawn, they must move 

north to known spawning grounds. Both mark-recapture observations (Maggs et al. 2013b) 

and genetic research (Duncan et al. 2015) support this hypothesis.

The 'sardine run' is an internationally known phenomenon that takes place along the east 

coast of South Africa. Each year, in the early austral winter, pilchard or sardine Sardinops 

sagax migrate up the east coast of southern Africa. Many hypotheses have been proposed 

to explain this phenomenon (Freon et al. 2010), but the interpretation by these authors is 

that the 'sardine run' corresponds to a seasonal reproductive migration of a genetically 

distinct sub-population.

In P. commersonnii, which is similarly thought to move north to spawn, it has been reported 

that migration is not synchronous with some individuals remaining resident for up to eight 

years (Webb 2002, Cowley et al. 2013b). Webb (2002) also reported a post-spawning return 

migration. It was also found that individuals fed during the migration. This behaviour does 

not fit well with the description of migration given by Dingle and Drake (2007), which requires 

suppression of response to resources. Eastward movement may not necessarily always be 

spawning related and may sometimes be associated with seasonal range expansion (Watt- 

Pringle 2009). In C. puniceus and other species there is little evidence for long-range 

southward movement of adults (Maggs et al. 2013b) indicating that movement north­

eastward may be permanent in some species, as suggested by Brouwer (2002) for another 

sparid species, Petrus rupestris.

Other secondary research focus areas (n=13)

Other themes identified in the surveyed literature included fish movements associated with 

nursery areas, feeding behaviour, migration rates and ontogeny, but these four themes were 

mostly of secondary importance. Movement associated with nursery areas was a prominent 

theme in only four studies (Dicken et al. 2007, Hussey et al. 2009, Watt-Pringle 2009, Watt- 

Pringle et al. 2013). This is perhaps a result of South African fish nursery areas being so 

poorly understood to begin with. Movement associated with feeding behaviour (Webb 2002, 

Laroche et al. 2007, Watt-Pringle 2009, da Silva et al. 2013a) similarly featured in only four 

publications, which may be a result of fish feeding being difficult to observe. Although
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migration rate featured in only three publications, these provided some interesting insight 

into fish ecology. The migration rate of highly migratory P. saltatrix was modelled by 

Govender (1996), who found that 96% of the population moved north-eastward annually but 

only 4% returned. This result, possibly confounded by high fishing mortality in the north-east, 

was similar to that in South African pilchard, where Newman (1970) reported a largely 

unidirectional, long-range migration with only partial movement in the opposite direction. 

Movement rate was also used by Attwood and Bennett (1995b) to investigate the effect of 

two South African MPAs on the nearby shore-fishery in the south-western Cape. Movement 

associated with ontogeny was a prominent theme in only two studies (Watt-Pringle 2009, 

Watt-Pringle et al. 2013) despite being of substantial importance to the distribution of fishes 

throughout different life-stages.

3.4 CONCLUSION
Ten research focal areas were evident from this review. The most prominent phenomenon, 

emerging from this research, is that of partial migration, which describes the occurrence of 

resident and migratory behaviour within a coexisting animal population. This phenomenon 

has important implications for conservation and fishery management, especially in relation to 

spatially explicit management measures such as protected areas. There has also been 

much progress made in our understanding of fine-scale habitat usage, particularly in 

protected areas and estuaries. This research provides knowledge for improved management 

in the region's highly complex multi-user, multi-species fisheries. However, with more than 

200 fish species targeted in the fishery, management could be simplified by improving our 

understanding of the commonalities in movement behaviour. In addition to seeking a greater 

understanding of movement patterns on a per species basis, there is a growing need to 

understand movement behaviour on a per guild basis. Management measures could then be 

tailored to a guild of species with similar movement behaviour. Although substantial progress 

has been made in the field of fish movement research, there are still substantial research 

opportunities for the future. These include drivers of movement behaviour, density- 

dependent movements in relation to protected area boundaries, return migrations, predator- 

prey interactions, ontogenetic habitat shift and movement in association with nursery areas.
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CHAPTER 4

FROM RESIDENT TO MIGRANT: AN EMPIRICAL MOVEMENT CATEGORISATION OF
COASTAL FISHES

4.1 INTRODUCTION
Animal movement is a central theme in ecology with implications for population persistence 

and resource management (Kokko and Lopez-Sepulcre 2006). Yet, our understanding of 

animal movement is incomplete, especially in fishes. Despite the potential for seemingly 

unrestricted movement in the marine environment, fish movement is not random. Research 

has shown complex patterns of home range behaviour over small areas, while wide ranging 

movements often involve seasonally predictable migration over relatively larger spatial 

scales (Zeller 1997, Parsons et al. 2003, Heupel et al. 2004, Maggs et al. 2013b, Dingle 

2014, Childs et al. 2015). Although the same individual may exhibit both residency and wide 

ranging behaviours, most species can be placed along a continuum extending from 

residency to wide-ranging movement patterns (Quinn and Brodeur 1991). Many intrinsic 

traits and extrinsic factors contribute to the mobility exhibited by a species and therefore its 

position on this continuum.

Body size may have a substantial effect on fish movement behaviour and mobility (Green et 

al. 2015). In contrast to terrestrial and flying animals, movement in fishes is constrained by 

the density of water and associated drag rather than by gravity (Videler 1993, Helfman et al. 

2009). Overcoming drag and therefore enhancement of swimming efficiency depends on the 

size, shape and motion of the body and appendages (Lauder 2006). Body size has received 

much attention in studies of fish movement patterns. In reef fishes, home range size 

generally increases with body size (Kramer and Chapman 1999, Nash et al. 2015). In mark- 

recapture studies that have reported long-distance movements, much variation in body size 

has been observed, but there is a tendency for bigger individuals of the same species to 

move further (Gillanders et al. 2001, Russell and McDougall 2005).

Body and appendage shape has significant implications for drag reduction. The fastest 

species, such as tuna and mackerels, have large sickle-shaped tails and streamlined bodies 

that are rounded and fusiform (Helfman et al. 2009). These species are characterised by 

their wide ranging behaviour. According to Breder’s (1926) system of classifying fish 

propulsion, increasing swimming prowess involves increasing use of the tail and posterior 

segments of the body and decreasing use of the anterior body. Unlike teleost species, 

elasmobranchs have relatively flexible cartilaginous skeletons with large thick rigid fins.
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Sharks use most of their body for propulsion, which is also a characteristic of weak- 

swimming anguilliform eels (Helfman et al. 2009). However, sharks have other features, 

which increase hydrodynamic efficiency, such as a large heterocercal tail.

Schooling may increase hydrodynamic efficiency (Abrahams and Colgan 1985) with 

advantages for long-distance movement. This has been shown for a variety of swimming 

modes from large pelagic Atlantic Bluefin tuna Thunnus thynnus (Newlands and Porcelli 

2008) to small demersal species, such as male European eels Anguilla anguilla (Burgerhout 

et al. 2013) and sea bass Dicentrarchus labrax (Herskin and Steffensen 1998).

Mobility may also be influenced by trophic requirements. In a study of home range allometry 

in coral reef fishes, Nash et al. (2015) reported that predators occupied larger home range 

areas than herbivores. This was attributed to predators having to travel further to secure 

more mobile and less abundant food sources, and was also suggested for predatory birds 

(Schoener 1968).

During ontogeny, changes take place in the morphology, physiology, trophic requirements 

and even the behaviour of fish, which may drive changes in movement behaviour (Scharf et 

al. 2000, Varsamos et al. 2005). Reproductive activities taking place after the onset of 

maturity have significant implications for movement of coastal fish. In broadcast spawners, 

pelagic eggs and larvae are under the influence of ocean currents and may be transported 

great distances between spawning and nursery areas. In live-bearing elasmobranchs, 

parturition usually takes place at or near nursery areas. In both reproductive modes, limited 

movement takes place among post-settlement juveniles within nearshore nursery areas. 

Late-stage juveniles will eventually move to join adult populations. Once individuals become 

reproductively active, long-distance migrations may be required to reach spawning areas. 

Life-cycle closure thus requires variable amounts of movement at each life-stage.

The mobility exhibited by an individual may be associated with dependence on critical 

habitats (Kramer and Chapman 1999). For example, mobility may be reduced in species 

with dependence on spatially discrete habitats, such as reef substrate or estuaries. Fish 

moving between habitats, on which they are critically dependent, are at risk of starvation or 

predation. Highly mobile pelagic species tend to be less associated with spatially discrete 

habitats. Seasonal patterns in productivity may also encourage long-distance movement to 

satisfy trophic requirements (Weng et al. 2008).
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Marine protected areas (MPAs) are places that restrict or eliminate fishing mortality and 

have recently escalated in popularity as a means of conserving biodiversity and as an 

additional tool for managing fisheries (Halpern et al. 2010). The movement behaviour of 

fishes has substantial implications for MPAs because movement beyond the borders of 

protection renders them vulnerable to fishing mortality (Gruss et al. 2011). Modelling studies 

show that high fish mobility decreases the ability of an MPA to reduce fishing mortality 

(Gerber et al. 2005). Empirical studies of MPAs have similarly shown greater fisheries 

benefits in fish populations with low to moderate mobility compared with populations having 

relatively high mobility (Gruss et al. 2011, Kerwath et al. 2013b). Consequently, in the 

context of fisheries management it is often reported that spatial protection is more suited to 

resident reef species and less so for migratory species (Gell and Roberts 2003). However, 

fish species are often arbitrarily defined as resident or migratory with little attempt having 

been made to empirically classify fishes according to characteristic scales of movement 

within the above mentioned continuum.

Based on the analysis of a 32-year mark-recapture dataset, the aim of this chapter was to 

empirically categorise different movement types exhibited by common marine fish species 

from southern Africa. It was hypothesised that the magnitude of movement is positively 

correlated with average body length and trophic level and that the magnitude of movement 

by adult fishes is greater than that of juvenile conspecifics. Ecological considerations and the 

implications for fisheries management are discussed.

4.2 MATERIALS AND METHODS
A detailed explanation of the study area and data collection procedures is given in Chapter 

2. In short, mark-recapture data was collected under the auspices of the Oceanographic 

Research Institute Cooperative Fish Tagging Project (ORICFTP) along the coastline of 

southern Africa from 1984 to 2015.

4.2.1 Data analysis
At the time of data extraction, on 10 July 2015, the ORICFTP database contained mark- 

recapture information for 180 species. However, many of these species had very few 

recaptures. Therefore, the top 30 species, according to the number of recaptures, 

accounting for 87% of all recaptures, were selected for further analysis (Table 4.1). These 

species were all of noteworthy importance in regional fisheries (Mann 2013). Data were then 

screened for inconsistencies. In some observations, the species name at recapture was 

different from that at the time of tag-release, or inappropriate dates or localities were 

specified. Observations of this nature were removed from any further analyses. Lastly, for
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individuals that were recaptured multiple times, only the first recapture observation was used 

for analysis. This was to prevent resampling highly resident individuals, which were 

sometimes recaptured many times at the same location. Although gender may be an 

important determinant of movement behaviour in some species, this aspect could not be 

considered in these analyses for reasons discussed in Chapter 2.

The data analysis consisted of four steps: modelling distance moved, categorisation of 

species using a cluster analysis, characterisation of the categories and model predictions.

Modelling distance moved

In preliminary analyses, Kruskal-Wallis ANOVA was used to test for differences in the 

distance moved among the study species and the Wilcoxon rank sum test was used to test 

for a difference in the distance moved between juveniles and adults. The correlation 

between distance moved and time-at-liberty was tested using Spearman’s rank correlation. 

These non-parametric tests were used as the data being tested did not satisfy the 

assumptions of normality or equal variance. An ordinal logistic regression model (Guisan 

and Harrell 2000) was fitted to the data with the aim of quantifying the effects of predictor 

variables and predicting the expected scale of movement for each species (Equation 4.1). 

Distance moved was included as the response variable and species, life-stage and time-at- 

liberty (At) as predictors. Distance moved was calculated as the difference in km between 

tag and recapture localities and was binned as 0-5 km, 6-50 km, 51-500 km or >500 km. 

These bins were ordinated from 1 to 4 respectively. These bins were chosen for the 

following reasons: 0-5 km was considered to adequately represent residency and to smooth 

out any small-scale inaccuracies in the measured distance moved (see Chapter 2); and the 

remaining three bins were chosen to include increasing orders of magnitude in distance 

moved. Species was the primary variable of interest in the study, but exploratory analyses 

indicated that life-stage (juvenile or adult) and time-at-liberty were also associated with 

distance moved. Thus, length-at-maturity for each species was obtained from Mann (2013) 

and used to code each observation as either juvenile or adult based on the length at 

recapture.

Distance moved[1-4] = species^] + life  stagey + At (4.1)

The ordinal logistic regression model, used in this analysis, requires that data comply with 

the proportional odds assumption. To check this assumption, the data were also fitted with a 

multinomial logit model, which makes no assumption of proportional odds. Multinomial
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models fit multiple slopes to the polytomous response variable, which increases model 

complexity. A likelihood ratio test was used to determine whether the multinomial model 

provided a better fit than the proportional odds model, thereby validating the appropriateness 

of the proportional odds model for this data.

Categorisation of species - cluster analysis

Species were then categorised according to the magnitude of movement using a hierarchical 

clustering analysis. The regression model indicated that the distance moved by a species 

was influenced by life-stage and time-at-liberty and should therefore not be considered in the 

cluster analysis in its raw form. Coefficients with their associated standard errors, obtained 

from the model, provided a measure of distance moved and variability in distance moved for 

each species, which was corrected for life-stage and time-at-liberty. Therefore, the clustering 

procedure was based on the Euclidean distance d measured between each possible pair of 

species using data corrected for life-stage and time-at-liberty and was calculated by:

d = ^ (s p u  -  Sp2i)2 
i=l

(4.2)

where the numeric difference between any two species (sp) is calculated, squared and then 

summed for variables v (v1=model coefficient, v2=model standard error). The group-average 

method was used and clusters of species were defined a priori as those with a greater than 

50% similarity.

Characterisation of categories

Categories of species identified by the cluster analysis were first characterised by the 

distance moved. For each category, summary statistics including measures of central 

tendency and variation were calculated for the raw distance data. Thereafter, the proportion 

of observations in each distance bin (0-5 km, 6-50 km, 51-500 km and >500 km) were 

calculated for each category. Secondly, categories were characterised according to 

biological traits, including body length (at time of recapture), taxonomic classification and 

trophic level based on Froese and Pauly (2016). Differences in trophic level among the 

categories were tested using a one-way ANOVA (Type II). Post hoc pairwise comparisons, 

using t-tests with pooled standard deviation and Bonferroni corrections, were used to identify 

which categories were different from each other in terms of trophic level.
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Model prediction

The parameters estimated by the regression model were used to predict the probability of 

recapturing an individual of a given species within each of the four distance bins. 

Probabilities were calculated for juveniles and adults and were based on an individual at 

liberty for 365 days. This duration was selected to encompass seasonal differences in 

movement patterns, such as annual spawning migrations.

Statistical significance of testing procedures was determined at a = 0.05. The statistical 

computing environment R, ver. 3.2.4 (R Core Team 2016) together with RStudio©, ver. 

0.99.893 (RStudio Team 2015) was used for all analyses. Besides the default packages 

included with the base R installation, the following packages were installed for further 

functionality: ‘ggplot2’ (Wickham 2009), ‘MASS’ (Venables and Ripley 2002), ‘plyr’ (Wickham 

2011), ‘reshape2’ (Wickham 2007), ‘car’ (Fox and Weisberg 2011) and ‘sparcl’ (Witten and 

Tibshirani 2013).

4.3 RESULTS
From 1984 to 2015, 10598 fish from the 30 study species were recaptured along the 

southern Africa coastline (Table 4.1). These 30 species represented 14 families, although 12 

(40%) species belonged to a single family - the Sparidae. Overall, 67% of recaptures were 

reported from the original tagging locality (zero km moved) and 73% of recaptures were 

recorded within 5 km of the original release site.

4.3.1 Modelling of distance moved
Distance moved for most species was right skewed and dominated by zero values, but the 

median distance moved differed significantly among the 30 species (Kruskal-Wallis ANOVA; 

p < 0.001). The percentage of recaptures recorded within 5 km of the original release site 

ranged from 28% for Carcharhinus brachyurus to 98% for Acanthopagrus vagus. Many 

individuals moved exceptionally long distances, but this also varied greatly among species. 

The maximum recorded distance for a species varied from 40 km for an Acanthopagrus 

vagus to 2966 km for a Carcharias taurus. Distance moved by adults was greater than that 

by juveniles (Wilcoxon rank sum test; p < 0.001). Distance moved was also positively 

correlated with time-at-liberty in days (Spearman’s rank correlation p; p < 0.001).
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Table 4.1: The 30 study species, including teleost and elasmobranchs, tagged and 

recaptured around the coastline of southern Africa from 1984 to 2015 used in the analyses. 

For individuals that were recaptured multiple times, only the first recapture observation was 

used for analysis.

Species Common name No. of recapture observations

C arangidae

C aranx ignob ilis Giant kingfish 88
L ich ia  am ia Leerfish / Garrick 622
C arch arh in id ae

C archarh inus b rachyurus Copper shark 173
C archarh inus obscurus Dusky shark 438
D ichistiidae

D ich is tius  capensis Galjoen 3606
D inoperc idae

D inoperca  pe te rs i Cavebass / Lampfish 96
H aem ulidae

P om adasys com m ersonn ii Spotted grunter 285
H exanchidae

N oto rynchus cepedianus Sevengill cowshark 46
Lutjan idae

Lu tjanus a rgentim acula tus River snapper 189
Lu tjanus rivu la tus Speckled snapper 509
O do ntasp id idae

C archarias taurus Raggedtooth shark 485
P o m atom idae

P om atom us sa lta trix Elf / Shad 299
R hynchobatidae

R hynchoba tus d jiddensis Giant guitarfish 161
S ciaen id ae

A rgyrosom us ja p o n icu s Dusky kob 731
S erran id ae

E p inephe lus  anderson i Catface rockcod 358
E p inephe lus  m arg ina tus Yellowbelly rockcod 271
S parid ae

A can thopagrus vagus Riverbream / Perch 188
C heim erius n u fa r Santer / Soldier 88
C hrysob lephus la ticeps Roman 238
C hrysob lephus p un iceus Slinger 171
C ym atoceps nasu tus Black musselcracker 201
D ip lodus capensis Blacktail 192
L ithogna thus au re ti West coast steenbras 51
L ithogna thus lithognathus White Steenbras 250
P achym etopon  grande Bronzebream 83
P e tru s  rupestris Red Steenbras 90
P o lys teganus p raeorb ita lis Scotsman 169
S parodon  dubanensis White musselcracker 67
T riak idae

M uste lus  m uste lus Smoothhound 141
T riak is  m ega lop te rus Spotted gullyshark 312

Total observations 10598
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Ordinal logistic regression (Table 4.2) confirmed that species, life-stage and time-at-liberty 

were significant (p < 0.001) predictors of the distance moved according to the four distance 

bins (0-5 km, 6-50 km, 51-500 km, >500 km). Fitting a multinomial logit model to the data 

resulted in better fit according to a likelihood ratio test (p <0.001). This suggested that the 

data was in violation of the proportional odds assumption. However, predictions made with 

the multinomial model and with the proportional odds model (Table 4.4) showed negligible 

differences. Furthermore, the multinomial model only explained a further 3% of the deviance, 

but substantially complicated the use of coefficients in the categorisation process. Therefore 

it was decided to retain the more parsimonious technique.

Table 4.2: Summary of ordinal logistic regression models. d.f. denotes degrees of freedom 

and A AIC is the difference in the AIC value compared with the preceding model.

Model structure

D egrees
of

freedom A IC
A

A IC
Residual
deviance

A
D eviance

%  D eviance 
expla ined

Probability

(x i

NULL 18032 18026

+ species 29 16178 1853 16112 1913 10 .6 <  0.001

+ life -stage 1 15727 452 15659 454 2.5 <  0.001

+ tim e-a t-liberty 1 15544 182 15474 184 1.0 <  0.001

%  of to ta l d ev iance exp la ined  b y  m ode l 14.2

4.3.2 Categorisation of species - cluster analysis
The coefficients and standard errors from the final ordinal regression model were used in a 

cluster analysis to categorise species according to distance moved (Figures 4.1, 4.2). At the 

50% level of dissimilarity, three categories (hierarchical clusters I, Ila and 11 b) were identified.
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Figure 4.1: Hierarchical cluster analysis dendrogram using the Euclidean distance measure 

calculated between species based on their model coefficients and standard errors. A slice 

(red dashed line), defined a priori at the 50% dissimilarity level, indicates three distinct 

clusters (I, IIa and IIb) used for the categorisation of species.
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IIa IIb
Category

Figure 4.2: The 30 study species presented according to their respective categories, as identified by the cluster analysis. The image of each 

species is scaled to represent the mean length at recapture relative to other species.
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4.3.3 Characterisation of categories
Distance moved

The mean distance moved was greatest for Category I (112.3 km), followed by Category IIa 

(27.5 km) and then Category IIb (4.1 km) (Table 4.3). The median distance moved was 

substantially lower than the mean for all categories, indicating the presence of outliers. 

Category I had the highest median value (3 km), followed by categories IIa and IIb (both 0 

km). The maximum distance moved and the 95th percentile of distance moved was greatest 

for Category I (2966 km & 757 km respectively), followed by Category IIa (1892 km & 178 

km) and Category IIb (1059 km & 6 km). The standard deviation of the mean distance 

moved was also highest for Category I (273.9 km), followed by Category IIa (108.9 km) and 

Category IIb (41.9 km).

Movements within the 0-5 km distance category were dominant in all three categories (Table 

4.3, Figure 4.3). The proportion of these localised movements (0-5 km) was highest in 

Category IIb (0.94), followed by Category IIa (0.82) and Category I (0.54). The proportion of 

movements in all other distance bins (6-50 km, 51-500 km and >500 km) was greatest in 

Category I, followed by Category IIa and then Category IIb.

Table 4.3: Summary statistics for distance moved (km) and proportional distribution of

movements within four distance bins for the three groups of species identified by the cluster 

analysis.

I

Category

IIa IIb

Number of species 14 11 5

Number of observations 3866 5847 885

Mean 112.3 27.5 4.1

Median 3 0 0

Distance Minimum 
moved

0 0 0

(km) Maximum 2966 1892 1059

95th percentile 757.0 178.0 5.8

Standard deviation 273.9 108.9 41.9

0-5 km 0.54 0.82 0.94
Distance
moved 6-50 km 0.20 0.07 0.04

(proportion) 51-500 km 0.18 0.10 0.01

>500 km 0.08 0.01 0.00
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Distance bin
0-5 km 

6-50 km 

51-500 km 
>500 km

I II a II b

Category

Figure 4.3: Proportional frequencies of the distances moved (km), according to the four 

distance bins (0-5 km, 6-50 km, 51-500 km, >500 km), for each category (I, IIa, IIb).

Biological traits

The median recapture length differed significantly among the three categories (Kruskal- 

Wallis rank sum test; p < 0.001). Distance moved was positively associated with body size 

(Figure 4.2) for juveniles and adults across different species (Figure 4.4). However, some 

variability existed. For example, Category I included Pomatomus saltatrix, Lithognathus 

aureti, Sparodon durbanensis and Lithognathus lithognathus, which had a small mean 

recapture length relative to other Category I species. In contrast, Caranx ignobilis in 

Category II, had a large mean recapture length, relative to other Category II species as well 

as some Category I species. All elasmobranchs were clustered in Category I, but these also 

had the largest mean recapture lengths.

The trophic level of the 30 species ranged from 2.7 for Diplodus capensis (Category IIb) to 

4.7 for Notorynchus cepedianus (Category I). The mean trophic level differed significantly 

among the three categories (ANOVA test; p < 0.05) and was greatest in Category I (4.12), 

followed by Category IIa (3.79) and then Category IIb (3.44). However, post hoc pairwise 

comparisons indicated that a significant (p < 0.05) difference only existed between 

categories I and IIb.
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Figure 4.4: Mean recapture length of adults (A) and juveniles (J) for each of the three 

categories. Each data point represents the mean for a species at the specified life-stage. 

Note that data was not available for juveniles of certain species (see Chapter 2).

4.3.4 Model predictions of expected distance moved
For each species and life-stage, the model was used to predict the expected distance moved 

according to the four distance bins for a fish at liberty for 365 days (Table 4.4). For example, 

the model predicted that, after 365 days at liberty, there is a 96% probability of recapturing a 

juvenile Pachymetopon grande within 5 km of the original tagging locality. In contrast, there 

was only a 31% probability of recapturing an adult Pomatomus saltatrix within 5 km of the 

original tagging locality after 365 days. The model was then used to predict the expected 

distance moved according to the four distance bins for a fish at liberty over the course of 365 

days (Figure 4.5).
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Table 4.4: Predicted probability of distance moved for four distance bins (0-5 km, 6-50 km, 

51-500 km and >500 km) after 365 days for juvenile and adult individuals of each species.

Juvenile Adult

Category Species 0-5 km 6-50 51-500 >500 0-5 km 6-50 51-500 >500

A can thopagrus vagus 0.99 0.00 0.00 0.00 0.98 0.01 0.01 0.00

C hrysob lephus pun iceus 0.99 0.01 0.00 0.00 0.97 0.02 0.01 0.00

IIb D ip lodus capensis 0.98 0.01 0.01 0.00 0.95 0.03 0.02 0.00

D inoperca  pe te rs i 0.98 0.01 0.01 0.00 0.94 0.04 0.02 0.00

C hrysob lephus la ticeps 0.97 0.02 0.01 0.00 0.92 0.05 0.03 0.01

P o lys teganus p raeorb ita lis 0.96 0.02 0.01 0.00 0.89 0.06 0.04 0.01

P achym etopon  grande 0.96 0.02 0.02 0.00 0.88 0.07 0.05 0.01

E p inephe lus  anderson i 0.96 0.03 0.02 0.00 0.87 0.07 0.05 0.01

P om adasys com m ersonn ii 0.95 0.03 0.02 0.00 0.86 0.07 0.05 0.01

Lu tja nu s  rivu la tus 0.95 0.03 0.02 0.00 0.86 0.08 0.05 0.01

IIa Lu tja nu s  a rgentim acula tus 0.94 0.03 0.02 0.00 0.83 0.09 0.06 0.01

E p inephe lus  m arg ina tus 0.93 0.04 0.03 0.01 0.80 0.11 0.08 0.02

C ym atoceps nasu tus 0.92 0.04 0.03 0.01 0.79 0.11 0.08 0.02

C heim erius n u fa r 0.92 0.04 0.03 0.01 0.79 0.11 0.08 0.02

C aranx ignob ilis 0.91 0.05 0.03 0.01 0.76 0.13 0.10 0.02

D ich is tius  capensis 0.91 0.05 0.03 0.01 0.75 0.13 0.10 0.02

S parodon  dubanensis 0.86 0.08 0.05 0.01 0.66 0.16 0.14 0.03

L ithogna thus lithognathus 0.85 0.08 0.06 0.01 0.64 0.17 0.15 0.04

T ria k is  m ega lop te rus 0.81 0.10 0.08 0.02 0.56 0.19 0.20 0.05

A rgyrosom us japon icus 0.79 0.11 0.08 0.02 0.54 0.20 0.21 0.05

N oto rynchus cepedianus 0.78 0.12 0.09 0.02 0.52 0.20 0.22 0.06

M uste lus  m uste lus 0.77 0.12 0.09 0.02 0.51 0.20 0.22 0.06

1 P e tru s  rupestris 0.71 0.14 0.12 0.03 0.43 0.21 0.27 0.08
I

C archarh inus obscurus 0.64 0.17 0.16 0.04 0.35 0.21 0.33 0.11

R hynchoba tus d jiddensis 0.62 0.18 0.16 0.04 0.34 0.21 0.34 0.12

P om atom us sa lta trix 0.60 0.18 0.18 0.04 0.31 0.21 0.35 0.13

C archarias taurus 0.56 0.19 0.20 0.05 0.28 0.20 0.37 0.15

L ich ia  am ia 0.51 0.20 0.22 0.06 0.25 0.19 0.39 0.17

L ithogna thus au re ti 0.46 0.21 0.25 0.07 0.21 0.18 0.41 0.20

C archarh inus b rachyurus 0.44 0.21 0.27 0.08 0.20 0.17 0.42 0.21
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Figure 4.5: Predicted probability of distance moved for adults within each category within 

four distance bins (0-5 km, 6-50 km, 51-500 km and >500 km) over 365 days.
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4.4 DISCUSSION
In population level investigations, mark-recapture methods have an advantage over 

electronic methods by being relatively cheap and easily implemented. The methods used in 

this study and the spatio-temporal coverage of the data collection were thus able to 

adequately sample the characteristic movement behaviour of a wide range of species, 

including several endemic species spanning their entire distributional range. The findings 

revealed considerable variability in movement, but broad patterns were evident. Philopatry 

was a common behaviour. Long-range movement was also evident but the scale and 

frequency varied widely among species. Variability in movement behaviour was partly 

attributed to both interspecific and intraspecific factors including life-stage, body size and 

trophic level. It was also evident that the time-at-liberty accounted for a small, yet statistically 

significant, source of variation in the distance moved.

4.4.1 Proposed classification
Residency or philopatry (home loving) refers to the repeated use of a fixed area or 

adherence to a home range, which confers survival benefits through familiarity with 

surroundings and is commonplace (White and Brown 2013). Anderson (1982) defined a 

home range statistically as the space-utilisation contour encompassing 95% of an animal’s 

movement. Movement within a home range is resource-directed as are a variety of other 

movements that may grade towards migration (Dingle 2014). Migration is not so easily 

defined. True migratory movement is not directly responsive to resources and there is also 

the understanding that a migration involves a seasonally synchronised relocation between 

"two worlds” or habitats, which are spatially segregated (Greenberg and Marra 2005, Dingle 

and Drake 2007, Dingle 2014). In addition, it is traditionally understood that migration is a 

seasonal to-and-fro (return) movement between regions. However, this may not always be 

the case and migration may occur once in the life of an individual or even over generations 

and may also involve no return movement (Dingle 2014). Differences between residency and 

migration are largely behavioural and only weakly associated with scale. However, migratory 

movement usually involves an increasing rate of movement, relative to resident-type 

movements and is largely predictable.

Diadromous salmonids exemplify migration, with their iconic seasonal migrations from the 

marine environment into freshwater (Klemetsen et al. 2003). However, migration in non- 

diadromous marine fishes is not always so clearly evident and does not always conform to 

the definitions, which have developed in the avian literature. Unlike birds, the behaviour of 

marine fishes is not readily observable, making it difficult to determine patterns in movement.
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Species also do not fall into discrete categories with regard to movement behaviour, which 

tends to exist along a continuum (Quinn and Brodeur 1991). At one end, there are species 

with small, easily defined home ranges and little inclination towards long-range movement. 

On the other end, there are those which occupy large, awkwardly defined, home ranges and 

who undertake predictable annual migrations over long distances. Individuals of a typically 

resident species may at times undertake a long-distance movement resembling a migratory 

movement. However, if this is unpredictable in time and space, the species cannot be 

considered migratory.

Assigning a species to a dominant movement type, either resident or wide ranging is difficult. 

To avoid the complexities of defining migration, this chapter adopts the inclusive term "wide 

ranging” for species that are highly mobile, but which do not necessarily qualify as migrants.

The classification procedure identified two primary categories of species (I and II). Category I 

featured those species, which frequently exhibited wide-ranging behaviour. In contrast, 

Category II included species exhibiting predominantly resident behaviour. However, 

Category II had a secondary level split of importance, forming two subordinate clusters 

termed Category IIa and Category IIb. From the summary statistics and the model 

predictions, it was evident that mobility was greatest in Category I species and lowest in 

Category IIb species, with Category IIa consisting of species with intermediate levels of 

mobility. Within this context, the following generalised classification is proposed for common 

marine fishery species of southern Africa (Table 4.5).

Table 4.5: Proposed categorisation of broad-scale fish movement behaviour derived from 30 

common coastal fishery species from southern Africa

Typical species characteristics
Dependence 

Mean on Seasonal
Movement Taxonomic Mean body trophic stationary patterns in
category Generic description group size level resources abundance

Category I 
Wide-ranging

Some philopatry, long-range 
movement frequent and 
predictable

Elasmobranch/
Teleost

Large 
(854 mm) 4.12 Low Strongly

evident

Category IIa -
Intermediate
resident

Small home range, long- 
range movement occasional 
and unpredictable

Teleost
Small to 

intermediate 
(363 mm)

3.79 High Weakly evident 
or absent

Category IIb -  
True Resident

Small home range, long- 
range movement rare and 
unpredictable

Teleost Small 
(288 mm) 3.44 High Mostly absent
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Category I species display some philopatry, with frequent wide-ranging behaviour, which in 

most Category I species is predictable (Cliff and Dudley 1992b, Griffiths 1996, Dicken et al. 

2007, Dicken 2011, Govender 1996, Dunlop et al. 2015, Watt-Pringle 2009, Brouwer 2002, 

Bennett 2012). This group was characterised by species with relatively large body sizes that 

feed at high trophic levels and exhibit low dependencies on stationary resources. Category I 

included all elasmobranchs in this study, but it is not necessarily appropriate to associate 

high mobility with all elasmobranchs. The elasmobranchs in this study were large-bodied, 

which is likely a better predictor of mobility. Escobar-Porras (2009) reported extreme 

residency in small bodied catsharks (Scyliorhinidae) often with zero movement after long 

periods at liberty. However, some Category I species, such as Pomatomus saltatrix and 

Lithognathus aureti displayed high mobility despite their small body size. A notable 

characteristic of most Category I species is the well-known predictability in their wide-ranging 

movements, suggesting that these are true migrants. Furthermore, return migrations are 

clearly evident in species such as P. saltatrix (Govender 1996) and Lichia amia (Dunlop et 

al. 2015), but absent in others, such as Petrus rupestris (Brouwer 2002).

Less is known about L. aureti, Notorynchus cepedianus, Triakis megalopterus and 

Rhynchobatus djiddensis for which wide-ranging movement behaviour is fairly frequent but 

less predictable and poorly understood (Dunlop and Mann 2013, Mann and Potts 2013b, 

Smale and da Silva 2013, Zweig and McCord 2013). Lithognathus aureti occurs along the 

west coast of southern Africa from southern Angola to Cape Town. It rarely occurs outside of 

Namibia, where there are two distinct stocks (van der Bank and Holtzhausen 1998). There is 

no clear evidence of a spawning migration in this species, but mature males in the northern 

stock may have to move considerable distances to find gravid females for reproduction 

(Holtzhausen 2000). Considering that the behaviour of these species is not characteristic of 

true migrants, they probably occupy a position midway on the movement continuum. The 

movements of N. cepedianus in southern Africa are poorly understood (Zweig and McCord 

2013) due to insufficient research. However, a study using acoustic and satellite technology 

in southeast Tasmania, reported frequent large-scale migratory behaviour in N. cepedianus 

(Barnett et al. 2011).

Category II species have small home ranges with unpredictable and either occasional 

(Category IIa) or rare (Category IIb) long-range movement. Category II species are strongly 

characterised by philopatry, with movements overwhelmingly concentrated in the 0-5 km 

distance bin. This movement type was limited to small- and intermediate-sized teleost 

species, with relatively low trophic levels and a high dependence on stationary resources.
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Long-distance movement was not absent in these species, and is poorly understood. In 

Category IIa species, the long-range movements that do occur are unpredictable in space 

and time, and patterns in seasonal abundance are less marked or are absent (NMLS 

unpublished data). In Category IIb species, long-range movements are seldom observed 

and may be described as rare or even anomalous. Although Category II species sometimes 

undertake long-range movements, they are best described as resident due to the paucity 

and unpredictability of such movements.

The classification of Caranx ignobilis and Pachymetopon grande as Category IIa movers 

may require further verification. Caranx ignobilis is a cosmopolitan carangid, occurring 

throughout the Indo-Pacific and in the western Indian Ocean as far south as Algoa Bay in the 

Eastern Cape, South Africa. The movement of this large-bodied (mean recapture length -  

619 mm), high trophic-level (4.2) species is poorly understood. Adults are more abundant off 

KwaZulu-Natal during the summer months (ORICFTP unpublished data), which suggests a 

seasonal southward migration (Maggs and Mann 2013). Biotelemetry data has recently 

provided some evidence of a return migration from KwaZulu-Natal into southern 

Mozambique by an adult individual suggesting that movement may be bidirectional (Acoustic 

Tracking Array Platform unpublished data). It is possible that C. ignobilis was misclassified 

due to a low number of recapture observations (n = 88) and may be more appropriately 

described as a Category I species. However, the results of biotelemetry studies conducted 

elsewhere tend to support the findings of my study. On the Great Barrier Reef, Ledee et al. 

(2015) reported that 98.8% of detections of tagged C. ignobilis were recorded on the original 

capture reef. In Hawaii, Wetherbee et al. (2004) reported a high level of residency among 

young C. ignobilis, but suggested the possibility of increasing movement with age. Also in 

Hawaii, Meyer et al. (2007) tracked 28 adult C. ignobilis and reported that a large majority of 

movements were within 5 km (maximum: 29 km). Despite the limited distances moved, these 

authors described the species as wide ranging, highlighting the arbitrary nature of commonly 

used descriptions of movement behaviour.

Pachymetopon grande is a regionally endemic sparid, occurring from Cape Agulhas in the 

Western Cape, South Africa eastwards into southern Mozambique. This is a relatively small 

bodied (mean recapture length -  281 mm), low trophic-level (3) species, which has been 

reported to be extremely resident along rocky shores (Mwale and Cowley 2013). This throws 

into question its classification as a Category IIa (Intermediate resident) mover and perhaps it 

is better described as a Category IIb mover (True resident). However, despite having 

attributes of a true resident, there have been some reports of seasonality in catches (Clarke
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and Buxton 1989), suggesting long-distance movement, which increases confidence in its 

designation as a Category IIa species.

4.4.2 Trophic level considerations
The trophic level of a species is the position that it occupies in the food web and is an 

indicator of its influence in the ecosystem. Trophic level was lowest among the least mobile 

species (Category IIb) and greatest among the more mobile species (Category I). Wide 

ranging species, particularly migrants, fulfil important ecosystem functions (Shuter et al. 

2011). Category I species have a high trophic level, mostly above 4.3, and featured a large 

proportion of large elasmobranch species. Body length and trophic level were found to be 

moderately correlated in sharks, and sharks tend to have a high trophic level relative to most 

teleosts (Cortes 1999). Removal of top predators is often reported to result in cascading 

effects through lower trophic levels (Frank et al. 2005). Considering their wide ranging 

nature, Category I species are likely to have spatio-temporally concentrated effects on 

trophic structure. For example, L. amia has a trophic level of 4.5, being mainly piscivorous 

(Whitfield 1998, Froese and Pauly 2016). This large-bodied species as well as other 

Category I species, such as Carcharhinus brachyurus, P. saltatrix and Carcharhinus 

obscurus migrate into KwaZulu-Natal waters where they prey heavily on small resident 

teleosts. However, this effect on resident species may be offset to some degree by heavy 

predation on pilchard Sardinops sagax, which undertake a simultaneous eastward migration 

(Hussey et al. 2009, Fennessy et al. 2010, Freon et al. 2010, van der Lingen et al. 2010). 

The consistency and magnitude of the S. sagax migration is variable and in some years the 

shoals of pilchard do not reach KwaZulu-Natal, although their predators do. In these years, 

resident prey species are expected to experience increased mortality. Similarly, the reported 

spawning aggregation of large numbers (>2400 individuals) of predatory C. ignobilis in 

southern Mozambique could have a significant trophic impact on resident prey species in 

this region (Daly et al. submitted).

4.4.3 Dependence on spatially discrete habitat
Movement may be restricted by dependence on a stationary resource, which was relatively 

low among Category I species and high in Category II species. Reef dependence throughout 

the post-recruit phase was a characteristic of only one Category I species (P. rupestris) but 

nearly all Category II species. Migration in P. rupestris is somewhat predictable and is 

weakly observable in sequential catch seasons along the coastline of southern Africa 

(Penney and Wilke 1993). However, migration by this species appears to be a one-time 

event by the individual with no return migration (Brouwer 2002). Similarly for C. ignobilis,
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Meyer et al. (2007) reported atoll-wide movements in the Hawaiian Islands (10-29 km), but 

no movement between atolls. Ledee et al. (2015) reported similar results with little inter-reef 

movement. This suggests an unwillingness to cross deep open water. However, in southern 

Africa the coastline is continuous allowing for unbounded movement. Recently, two large 

mature C. ignobilis, tagged with an acoustic transmitters, moved 620 km from Ponta do Oura 

in Mozambique southward to Port St Johns in South Africa (Acoustic Tracking Array 

Platform, unpublished data). The movement behaviour of C. ignobilis therefore, presents 

much opportunity for future research.

Estuary-dependence is a characteristic of three Category I species (A. japonicus, L. 

lithognathus, L. amia) and two Category II species (P. commersonnii, Acanthopagrus vagus) 

(Whitfield 1994), suggesting that this trait is not negatively associated with mobility. With the 

exception of A. vagus, estuary dependence is largely limited to juveniles with adults 

spawning at sea. So juveniles may have restricted mobility but this is not necessarily 

applicable to adults. Fine-scale habitat usage in these species (excluding A. vagus) has 

been well studied within South African estuaries using biotelemetry (Kerwath et al. 2005, 

Childs et al. 2008a, b, c, O’Connell 2008, Bennett et al. 2011, 2012, N^sje et al. 2007, 

2012, Childs et al. 2015, Murray 2016, Maree et al. 2016). This research has shown fine- 

scale patterns of residency among estuary-dependent juveniles, which use estuaries as 

nursery areas. Adults also display fine-scale patterns in estuarine usage but make 

increasing use of the marine environment with age and spawn at sea, sometimes hundreds 

of kilometres from their natal estuary. Their attachment to estuaries may also interact with 

other factors to produce even more complex inter-estuary differences in movement 

behaviour (Murray 2016).

Acanthopagrus vagus rarely leaves the estuarine environment and spawns primarily in 

estuary mouths on an outgoing tide (Garratt 1993b). Early-stage juveniles then recruit into 

estuaries and tend to remain there for the rest of their life. Coastal movement is thus rare, 

but intra-estuary movement may be extensive. The system of locality codes currently used in 

the ORICFTP database is not able to record intra-estuary movement and all such 

movements are recorded as zero distance.

4.4.4 Environmental drivers of long-range movement
Long-distance movement may also be influenced by environmental phenomena. The 

longshore movement of boundary currents produces powerful secondary transport 

mechanisms, which may displace pelagic eggs and larvae far from their origin and beyond
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the normal range of the species (Hutchings et al. 2002). This may be longshore to areas with 

water temperature beyond the species’ thermal tolerances or offshore by mechanisms such 

as eddies, filaments, retroflection and Ekman drift (Hutchings et al. 2002). Eggs and larvae 

swept away from productive shelf waters quickly perish in the oligotrophic conditions further 

offshore (Beckley 1993). Coastal fishes, associated with boundary currents, thus require 

specialised strategies, incorporating long-distance movements to spawning grounds, so that 

larvae can settle in optimum nursery areas. The annual sardine run may itself be an indirect 

driver of migration in some Category I species. During the annual sardine run, predation on 

sardine by Category I species, such as L. amia, P. saltatrix, C. taurus and C. brachyurus 

may allow these species to build the necessary energy reserves needed for longshore 

migration (Hedger et al. 2010).

Long-distance movement is not only a characteristic of broadcast spawners. In live-bearing 

species, the dispersal of young is less affected by ocean currents, but long-distance 

movement in these species may fulfil different biological requirements. For example, in the 

ovoviviparous Carcharias taurus, females migrate every second year from the Eastern Cape 

to the warmer waters of southern KwaZulu-Natal, where mating takes place from October to 

late November. Pregnant females then move further north to spend the early part of their 

gestation in northern KwaZulu-Natal and possibly southern Mozambique. The near-term 

pregnant females then return during July and August to the Eastern Cape where parturition 

takes place. The migration to warmer water in KwaZulu-Natal may assist with embryonic 

development (Bass et al. 1975, Dicken et al. 2006, 2007).

4.4.5 Management implications
Marine protected areas (MPAs) have drawn particular interest in the protection of resident 

reef species (Babcock et al. 1999, Roberts et al. 2005, Gaines et al. 2010a, Maggs et al. 

2013a). A characteristic of these species is their small home ranges maintained over 

extended periods. This behaviour is particularly suited to spatial protection because limited 

movement reduces the chances of crossing MPA boundaries into fished areas. The model in 

this study predicted a very low probability of resident species moving more than 5 km, even 

after 365 days. This suggests that even a small no-take MPA of just 5 km in length would 

provide resident individuals with refuge from exploitation. However, this is overly simplistic 

and does not consider community-level protection or the maintenance of minimum viable 

populations (Shaffer 1981, Basset 1995, Nash et al. 2015). So, while animal movement is an 

important consideration in protected area planning, total coverage also needs due 

consideration, both in terms of habitat and population size (Sale et al. 2005, Mann et al.
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2016). Considering the socio-economic difficulties of establishing large MPAs, networks of 

smaller MPAs have gained much popularity, and their utility is supported by the findings of 

my study (Kerwath et al. 2007b, Gaines et al. 2010b).

Wide-ranging species are expected to regularly move long distances over a short period, 

which complicates their spatial management (Pressey et al. 2007, Runge et al. 2014). 

Conventional management measures, such as size limits and bag limits, may be more 

appropriate for reducing fishing mortality in species that do not adhere to small home 

ranges. True migrants may be particularly vulnerable. In contrast to resident species, whose 

distribution is mostly diffuse, the locality of migratory species is often highly predictable in 

space and time, making them easier to target, especially when highly aggregated during 

spawning. An obvious example is the demersal migrant, seventy-four Polysteganus 

undulosus, which was once the mainstay of the South African east coast traditional 

linefishery, before this sparid was systematically fished to the point of economic extinction 

(Chale-Matsau et al. 2001, Mann 2007). Its demise was partly due to its feeding voracity, but 

mostly due to intensive exploitation of massive shoals of spawning adults that migrated 

predictably up the east coast of South Africa. Geelbek Atractoscion aequidens and 

Argyrosomus japonicus are similar examples (Griffiths 2000). The negative effect of 

exploiting aggregations is exemplified by the Nassau grouper Epinephelus striatus, now 

considered threatened (Sadovy de Mitcheson et al. 2008). Despite the mobility of these 

species, there have been some developments regarding the usage of MPAs for managing 

migratory species (Gruss 2014). For example, seasonal area closures may be highly 

effective in conserving such species, by restricting exploitation during vulnerable times 

(Speed et al. 2010).

Furthermore, the loss of essential habitat may pose a greater threat to migratory species 

than to resident species (Runge et al. 2014). For example, many fish species are dependent 

on migrating in and out of estuaries for life-cycle completion. Partial loss or even just 

degradation of this habitat would most likely have dire consequences for the entire 

population. This differs from resident species, where the life-cycle is less dependent on 

multiple habitats. Protected areas may therefore have further application in the management 

of migratory species by protecting essential habitat (Afonso et al. 2009). Whereas a 

reduction in fishing mortality may only require a seasonal area closure, habitat protection will 

require a permanent closure, unless potential threats are also seasonal. Canada has long­

standing legislation in place to protect essential or critical habitat for fishery important 

species (Hutchings and Post 2013).
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4.5 CONCLUSION

This chapter provides an empirically derived categorisation of fish movement behaviour, 

which is both locally significant and globally applicable. This study was based on 30 species 

across multiple ecoregions from an area characterised by high ichthyofaunal diversity. It is 

thus proposed that other long-term mark-recapture datasets already in existence in other 

parts of the world could be used to derive a similar categorisation of species. In such cases, 

consideration should be given to the influence of heterogeneously distributed fishing effort 

and low sample sizes, which could lead to under-estimation of the scale of movement. It is 

likely that the characterisation of categories would also be widely applicable. That is, 

different movement behaviours are likely to be similarly associated with specific biological 

traits as in the current study. In general, mobility was greater in adults and among large­

bodied, high tropic-level species. It is envisaged that this association may also be used to 

predict movement behaviour for data-deficient species. However, this should be done with 

caution as it is evident that exceptions do exist. For example, Sarpa salpa is a small 

(maximum recorded size: 30 cm total length) herbivorous sparid, which migrates along the 

east coast of South Africa (van der Walt and Govender 1996). Also, S. sagax is small (< 20 

cm caudal length) but is known to undertake iconic long-distance migrations (van der Lingen 

et al. 2010). Exploitation of resident species may lead to localised depletion within an area, 

but their diffuse spatial distribution may offer some resilience. Furthermore, overexploitation 

of resident species at the population level is generally achieved by wide-scale targeting. In 

contrast, even localised targeting of highly aggregated individuals may pose a population 

level risk for migratory species. The movement behaviour of non-migratory, wide ranging 

species, such as N. cepedianus, L. aureti, T. megalopterus and R. djiddensis, especially in 

terms of their management implications, offers an exciting knowledge gap for future 

research.
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CHAPTER 5

INTRA-POPULATION VARIABILITY IN THE MOVEMENT BEHAVIOUR OF COASTAL

FISHES

5.1 INTRODUCTION

Life-cycle diversity describes the existence of alternative strategies or tactics among 

coexisting individuals within an animal population (Secor and Kerr 2009). Although the 

prevalence of life-cycle diversity has been obscured by the inconsistent use of terminology in 

the literature (Secor and Kerr 2009), the phenomenon is reported to be widespread across 

animal taxa (Chapman et al. 2011). A central theme among studies of life-cycle diversity is 

that of intra-population variability in movement behaviour, which has been recognised in 

insects (Slager and Malcolm 2015), fishes (Kerr et al. 2009), amphibians (Grayson et al. 

2011), reptiles (Hatase et al. 2010), birds (Lundberg 1988) and mammals (Cagnacci et al. 

2011). In fishes, intra-population variability in movement behaviour is an essential aspect to 

consider when investigating stock structure (Patterson et al. 2008, Petitgas et al. 2010) or 

connectivity between sub-populations (Childs et al. 2015).

Partial migration describes a specific case of life-cycle diversity where coexisting groups 

exhibit either resident or migratory behaviour within a single population (Kaitala et al. 1993, 

Kerr et al. 2009, Chapman et al. 2012b). Numerous complexities arise with this definition. 

What constitutes resident or migratory movement? Dingle (2014) provides definitions for 

various movement types according to behaviour, but the nature of fish movement is often 

difficult to evaluate. Populations may be split according to life history stage. For example, 

juveniles may display residency only, while adults themselves are partially migratory. 

Alternatively, resident adults may or may not switch to a migratory mode or migration may be 

a one-time event, annual or occur conditionally.

Intra-population variability in movement behaviour has often been overlooked, especially in 

fisheries management (Chapman et al. 2011, Parsons et al. 2011). This has been mostly 

due to the difficulties associated with monitoring fish movement (Chapman et al. 2012b) and 

the related emphasis on closed population assumptions common in traditional fisheries stock 

assessment (Secor 1999). However, intra-population variability in movement behaviour may 

exert significant control over the spatio-temporal distribution and abundance of animals 

within a population. An understanding of this phenomenon has substantial implication for
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fisheries management, especially for the implementation of no-take reserves or seasonal- 

area closures for exploited species.

Commercially important salmonid species have tended to dominate the literature on partial 

migration in fishes. This is possibly because of the characteristic anadromous nature of 

migrants and the easily recognisable phenotypic differences between resident and migratory 

individuals (Jonsson and Jonsson 1993, 2001, Klemetsen et al. 2003, Kerr et al. 2009). For 

example, in the partially migrant brown trout Salmo trutta, resident individuals are relatively 

small and remain in freshwater (rivers/lakes), while their anadromous conspecifics are 

relatively large and migrate into the marine environment to feed and return to freshwater to 

spawn (Klemetsen et al. 2003). However, phenotypic differences, as observed in the brown 

trout are not apparent in all species that exhibit intra-population variability in movement 

(Chapman et al. 2012b). This behaviour is also not confined to diadromous fish species 

(Chapman et al. 2012a). Intra-population variability in movement behaviour has been 

reported to take place within freshwater (Skov et al. 2013) and marine (Attwood and Bennett 

1994, Gillanders et al. 2001, Maggs et al. 2013b, Papastamatiou et al. 2013) ecosystems.

In fishes, Secor (1999) suggested the term contingent to refer to a level of aggregation 

based on divergent migration behaviours or divergent habitat use. A given fish population 

may thus consist of multiple contingents of individuals, with each contingent exhibiting a 

different movement strategy or habitat preference. The concept of populations consisting of 

contingents is well known and has been reported in striped bass Morone saxatillis (Zlokovitz 

et al. 2003, Able and Grothues 2007), American eels Anguilla rostrata (Lamson et al. 2006) 

and juvenile dusky kob Argyrosomus japonicus (Childs et al. 2015). This concept is, 

however, very complex (Secor 1999, Petitgas et al. 2010). Individuals may shift from one 

contingent to another with ontogeny, environmental conditions or food availability. In juvenile 

A. japonicus, Childs et al. (2015) reported a marine contingent and an estuarine contingent 

(divergent habitat preference), each having divergent migration behaviours.

Along the coastline of southern Africa, there is a long history of fish movement research 

(Chapter 3, Maggs and Cowley 2016). A pervading theme of this research has been the 

prevalence of studies reporting a high degree of residency with infrequent wide-ranging 

movements (e.g., Bennett 1993, Griffiths 1996, Cowley et al. 2002, Griffiths and Wilke 2002, 

Brouwer et al. 2003, Attwood and Cowley 2005, Dudley et al. 2005, Dicken 2011, Maggs et 

al. 2013b, Childs et al. 2015). The reported proportion of restricted movement nearly always 

outweighs the proportion of wide-ranging movement (Cowley et al. 2013b, but see Ebert
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1996). Little evidence has been found for a continuum in movement distance, suggesting an 

abrupt switch in behaviour.

Intra-population variability in movement of fishes is still poorly understood and sometimes 

treated as anomalous (Kerr et al. 2009). The majority of research undertaken thus far has 

focussed on North American diadromous species. Relatively little is understood of life-cycle 

diversity in the movement of non-diadromous marine species, especially within different life- 

stages. In this chapter, I present an analysis of a 32 year mark-recapture dataset for five 

marine fish species (teleosts and elasmobranchs), which covers a wide spectrum of life- 

histories. These data cover five biogeographic ecoregions of the Indian and Atlantic oceans 

around southern Africa. The aim of this chapter was to investigate the occurrence and nature 

of life-cycle diversity in the movement behaviour of non-diadromous fishes for informing 

management. To address this aim, four key questions were asked: 1) Does movement 

strategy vary among individuals within a population? 2) Does movement strategy vary 

among species, life-stages and ecoregion? 3) Is wide-ranging movement biased towards a 

certain direction? and 4) Is there a difference in growth rate between resident and wide- 

ranging individuals?

5.2 MATERIALS AND METHODS

A detailed explanation of the study area and data collection procedures is given in Chapter 

2. In short, mark-recapture data was collected under the auspices of the Oceanographic 

Research Institute Cooperative Fish Tagging Project (ORICFTP) along the coastline of 

southern Africa from 1984 to 2015.

5.2.1 Data analysis
The top five species on the ORICFTP, according to number of recaptures, were selected for 

investigation in this chapter. This included only species with at least 30 recaptures in the 

adult life-stage and 30 recaptures in the juvenile life-stage. A fish was considered to have 

remained resident if recaptured within 0-5 km after 365 days at liberty. A fish was considered 

to have undertaken a wide-ranging movement if recaptured more than 50 km away from the 

release site in 365 days or less. As with Chapter 4, the term “wide-ranging” was adopted 

here to refer to all types of relatively rapid, long-distance movement, including migration.

Observations not satisfying the above criteria were omitted from further analyses. For 

example, observations where a fish was recaptured within 0-5 km after a short period (< 365 

days) were not considered an adequate representation of residency. Similarly, observations 

where a fish moved more than 50 km after a long period (> 365 days) were not considered

57



Chapter 5: Intra-population Variability in Movement

an adequate representation of wide-ranging behaviour. Observations where the distance 

moved was 6-49 km, regardless of time-at-liberty, were considered intermediate and 

omitted. For individuals that were recaptured multiple times, only the first recapture 

observation was used for analysis. This was to prevent resampling highly resident 

individuals, which were sometimes recaptured many times at the same location.

The data analysis consisted of four steps: modelling the probability of wide-ranging 

behaviour, model predictions, modelling the direction of wide-ranging movement and testing 

for differences in growth rate between resident and wide-ranging individuals.

Modelling the probability of wide-ranging behaviour

A logistic regression model (Equation 5.1) was fitted to the data with the aim of quantifying 

the effects of predictor variables and predicting the expected probability of wide-ranging 

behaviour for each species. Movement type (0: resident/1: wide-ranging) was included as 

the binomial response variable and species, life-stage (juvenile/adult) and ecoregion were 

included as predictors. Species was the primary variable of interest in the study, but 

exploratory analyses indicated that life-stage and ecoregion of tag-release were also 

associated with movement behaviour, hence were included. Length-at-maturity for each 

species was obtained from Mann (2013) and was used to code each observation as either 

juvenile or adult based on the length at recapture. Ecoregion boundaries were based on the 

observations of Emmanuel et al. (1992) and Spalding et al. (2007).

Movement type[1-2]~species[5] + l ife  s tag e^  + ecoregion[5] (5.1)

Predicting the probability of wide-ranging behaviour using the logistic regression model 

The parameters estimated by the binomial regression model (Equation 5.1) were used to 

predict the probability of wide-ranging behaviour in each of the five species for juveniles and 

adults and within each relevant ecoregion (see Chapter 2). Irrelevant ecoregions were 

considered to be those outside of a species’ normal distribution range. For example, no 

predictions were made for Dichistius capensis in the Natal ecoregion, where this species 

rarely occurs.

Modelling the coastal direction of wide-ranging movement

The direction (degrees; 0-360) and distance (km) of wide-ranging movements were 

vectorised by converting them into Cartesian coordinates (x; y) to remove the circular scaling 

that is a characteristic of directional data. The Cartesian coordinate pairs defining the
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direction and distance of each movement as a vector were reduced to a single dimension 

using Non-metric Multidimensional Scaling (NMDS) based on Euclidean distances so that a 

single response variable was produced for subsequent modelling that considered both the 

direction and magnitude of each movement. These NMDS values were then included in a 

Gaussian generalised linear model (Equation 5.2) as the response variable. Species, life- 

stage and ecoregion were included as the explanatory variables, with life-stage nested within 

species.

Direction[nmdS]~specieS[5] + life stage[2] + ecoregion^]

+ species(life — stage) + species(life — stage) *  ecoregion

The angular dispersion r of movements was calculated by the equation:

r = ^x 2 + y2 (5.3)

where x is the sine of the direction moved in radians and y is the cosine of the direction 

moved in radians. The resultant r  value ranges from zero to one, with zero representing 

uniform dispersion of movements in all directions and one representing complete 

concentration of movements in one direction.

Growth rate of resident versus wide-ranging individuals

Where sufficient length data was available, growth rate was calculated for the time between 

tag-release and recapture. Differences in the median growth rate between resident and 

wide-ranging individuals were tested with the non-parametric Mann-Whitney-Wilcoxon Test 

for each species and life-stage.

Statistical significance of testing procedures was determined at a = 0.05. The statistical 

computing environment R, ver. 3.2.4 (R Core Team 2016) together with RStudio©, ver. 

0.99.893 (RStudio Team 2015) was used for all analyses. Besides the default packages 

included with the base R installation, the following packages were installed for further 

functionality: ‘maps’ (Becker et al. 2016b), ‘mapdata’ (Becker et al. 2016a), ‘Imtest’ (Zeileis 

and Hothorn, 2002), ‘fossil’ (Vavrek 2011) and ‘vegan’ (Oksanen et al. 2016).

5.3 RESULTS

The five species selected for this investigation were from five different families, and included 

two elasmobranchs (Carcharias taurus, Triakis megalopterus) and three teleosts (Lichia
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amia, Dichistius capensis, Lutjanus rivulatus). According to the movement categorisation 

presented in Chapter 4, C. taurus, T. megalopterus and L. amia were classed as Category I 

species (wide-ranging), while D. capensis and L. rivulatus were classed as being resident 

species (Category II). A total 1848 individuals from the five study species were recaptured 

during the study. Of the 1848 observations, 73% were classified as being resident (0-5 km; 

>365 days at liberty) (Table 5.1, Figure 5.1).

Table 5.1. The five study species tagged and recaptured around the coastline of southern 

Africa from 1984 to 2015, with resident (0-5 km; >365 days) and wide-ranging (>50 km; <365 

days) behaviour indicated as a proportion. Movement category taken from Chapter 4.

Juven ile  A du lt

Move.
C ategory Species

No. o f 
recapture 

observa tions Resident
W ide-

ranging n Resident
W ide-

ranging n

I C archarias taurus  

(O dontasp id idae)

139 0.71 0.29 52 0.34 0.66 87

I L ich ia  am ia  

(C arangidae)

171 0.42 0.58 72 0.23 0.77 99

I Triakis m ega lop te rus  

(T riakidae)

87 0.87 0.13 39 0.63 0.38 48

II D ich is tius  capensis  

(D ich istiidae)

1329 0.87 0.13 101 0.78 0.22 1228

II Lu tjanus  rivu la tus  

(Lutjan idae)

122 0.99 0.01 86 0.97 0.03 36
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Wide-ranging

Figure 5.1. Spatial distribution of the tag-release localities for resident and wide-ranging 

observations in the five study species. Resident: 0-5 km, >365 days; Wide-ranging: > 50 km, 

< 365 days. Blue lines demarcate ecoregion boundaries (Chapter 2).
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5.3.1 Modelling the probability of wide-ranging behaviour
Binomial logistic regression (Table 5.2) confirmed that species, life-stage and ecoregion 

were significant (p < 0.001) predictors of the probability of wide-ranging behaviour. Post hoc 

testing showed that significant differences (p < 0.05) existed between all pairs of species 

except between T. megalopterus and D. capensis, and between T. megalopterus and C. 

taurus. In terms of life-stage, there was a higher probability of wide-ranging behaviour in 

adults. In terms of ecoregion, significant differences (p < 0.05) existed between the Agulhas 

ecoregion and the Namaqua, Namib and Natal ecoregions. There were also significant 

differences between the Namaqua ecoregion and the Natal and Namib ecoregions.

Table 5.2. Summary of binomial logistic regression. d.f. denotes degrees of freedom and A 

AIC is the difference in the AIC value compared with the preceding model.

Binom ia l m odel structure

D egrees
o f

freedom A IC A A IC
Residual
deviance

A
Deviance

%
Deviance
expla ined

P robab ility
(x2)

NULL 2160 2158

+ species 4 1917 243 1907 251 11.6 <  0.001

+ life -stage 1 1885 31 1873 33 1.5 <  0.001

+ ecoreg ion 4 1833 53 1813 61 2.8 <  0.001

% o f  to ta l dev iance exp la ined  b y  m ode l 16.0

5.3.2 Predicting the probability of wide-ranging behaviour using the logistic 

regression model
Model predictions from the logistic regression showed where wide-ranging behaviour was 

more prevalent in each species (Table 5.3). For example, it was predicted that there was a 

90% chance of an adult C. taurus undertaking a wide-ranging movement from the Natal 

ecoregion, whereas there was only a 41% chance of an adult undertaking a wide-ranging 

movement from the Agulhas ecoregion further west. Lichia amia in the Natal ecoregion 

showed the highest tendency for wide-ranging behaviour in both juveniles (94%) and adults 

(97%). Adult and juvenile T. megalopterus and D. capensis showed a very low probability (8­

24%) of wide-ranging movement in the Agulhas and Namaqua ecoregions, but a relatively 

high probability (40-57%) of this behaviour in the Namib ecoregion, further west. Lutjanus 

rivulatus showed the lowest tendency for wide-ranging movement (1-3%).
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Table 5.3. Model predictions using the binomial logistic regression (Equation 5.1). Values 

indicate the predicted probability of a fish undertaking a wide-ranging movement within each 

relevant ecoregion. For each species, ecoregions are ordered from east to west.

Move. Category Species Ecoregion Juvenile Adult

I C a rch a ria s  ta u ru s Delagoa 0.75 0.85

Natal 0.81 0.90

Agulhas 0.27 0.41

I L ich ia  a m ia Natal 0.94 0.97

Agulhas 0.57 0.72

I T ria k is  m e g a lo p te ru s Agulhas 0.14 0.24

Namib 0.40 0.57

II D ic h is tiu s  capens is Agulhas 0.14 0.24

Namaqua 0.08 0.15

Namib 0.40 0.56

II L u tja n u s  r iv u la tu s Delagoa 0.01 0.02

Natal 0.02 0.03

5.3.3 Modelling the direction of wide-ranging behaviour
The Gaussian model (Table 5.4) confirmed that species and ecoregion were significant (p < 

0.001) predictors of direction and distance of wide-ranging movement (Figure 5.2). The 

addition of a nested term (life-stage within species) and an interaction term (ecoregion) did 

not improve the overall model. Post hoc testing showed that significant differences (p < 0.05) 

existed only between D. capensis and L. amia and between D. capensis and C. taurus. In 

terms of ecoregion, significant differences (p < 0.05) existed between the Natal and Agulhas 

ecoregions as well as between Natal and Namaqua, Natal and Namib and between the 

Namib and Namaqua ecoregions.
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Table 5.4. Summary of Gaussian model fitted to direction and distance data. d.f. denotes 

degrees of freedom and A AIC is the difference in the AIC value compared with the 

preceding model.

Model structure

D egrees
o f

freedom A IC A AIC
Residual
deviance

A
D eviance

%
Deviance
expla ined

P robab ility
(x2)

NULL 7347 69873382

+ species 4 7325 22 65809465 4063917 5. 8 <  0.001

+ ecoreg ion 4 7248 77 55529163 10280302 14.7 <  0.001

+ species(life_stage) 5 7252 -4 54913457 615706 0.9 0 .3595

+ species(life_stage): ecoreg ion 7 7256 -3 53757749 1155708 1.7 0 .1723

% o f  to ta l d ev iance exp la ined  b y  m ode l 17.2

Angular dispersion r was generally low (Figures 5.2, 5.3, 5.4), which indicated much 

variation in the direction moved. The greatest angular dispersion in movement direction was 

displayed by L. amia tagged in the Natal ecoregion (r = 0.01) and the least angular 

dispersion was by D. capensis tagged in Namaqua ecoregion (r = 0.87).

Carchias taurus tagged in the Agulhas ecoregion tended to move north-eastward up the east 

coast, whereas those tagged on the east coast (Natal and Delagoa ecoregions) tended to 

move south-westwards down the coast. Lichia amia exhibited a similar pattern to C. taurus. 

Similarly D. capensis and T. megalopterus tagged on the southern coast (Agulhas 

ecoregion) tended to move eastwards; however, these movements by D. capensis were 

relatively short with high angular dispersion (r = 0.05). There was a strong tendency (r = 

0.87) for D. capensis tagged in the nearby Namaqua ecoregion to move eastwards. In the 

Namib ecoregion on the west coast, movements by D. capensis were down the coast in a 

south-eastward direction with relatively low angular dispersion (r = 0.66). The direction 

moved by L. rivulatus was north-eastward, although this was limited to one observation in 

the Delagoa ecoregion and one in the Natal ecoregion.

In most cases, the mean direction moved closely followed the orientation of the coast, 

suggesting a preference for a certain coastal direction. However, the mean direction moved 

by T. megalopterus in the Namib ecoregion appeared to be offshore. As no fish were tagged 

or recaptured offshore, this suggests more of a balance between movements in opposite 

coastal directions, although there were a low number of observations (n = 7) in this case.

The overall mean direction moved by all species combined also differed widely according to 

ecoregion (Figure 5.3). Fish tagged on the southern coast (Agulhas ecoregion) tended to
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move north-eastwards up the coast. Fish tagged on the east coast (Natal and Delagoa 

ecoregions) tended to move south-westward down the coast. Observations on the west 

coast (Namaqua and Namib ecoregions) were dominated by D. capensis recaptures and 

therefore these vectors resembled D. capensis in Figure 5.2.

Overall, the direction of wide-ranging movements in juveniles did not differ significantly (p > 

0.05) to that of adults. However, there were notable differences in mean direction moved 

between adults and juveniles of C. taurus and less so in T. meglaopterus (Figure 5.4). In L. 

rivulatus, the juvenile and adult direction vectors were each limited to one observation. 

However, the differences in direction between juveniles and adults may have been 

confounded by a disproportionate number of animals tagged in one ecoregion.
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Carcharias taurus Lichia amia

Triakis megalopterus
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Dichistius capensis Lutjanus rivulatus
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Figure 5.2. Mean direction and distance moved by each of the five study species according 

to ecoregion where movement data were available. n is number of observations and r is a 

measure of angular dispersion. Note different scales used.
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Figure 5.3. Mean distance and direction of movements by all species according to

ecoregion. n is number of observations and r is a measure of angular dispersion.
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Carcharias taurus Lichia amia

Triakis megalopterus

Dichistius capensis Lutjanus rivulatus

N o rth

A d u lts
n = 2 7 2 , r= 0 .1 7

Juve n ile s
n = 1 3 , r=0 .4 1

n ------------- 1------------1------------ 1--------------- n
-100 -50 0 50 100

km km

Figure 5.4. Mean direction and distance for juveniles and adults of the five study species. n 

is number of observations and r  is a measure of angular dispersion. Note different scales 

used.
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5.3.4 Somatic growth
The median growth rate was mostly greater in wide-ranging individuals (Table 5.5); however, 

this was only statistically significant (p < 0.05) in adult D. capensis and juvenile L. amia. The 

median growth rate of resident adult T. megalopterus was greater than their wide-ranging 

conspecifics, but this was not statistically significant.

Table 5.5. Median growth and length associated with residency and wide-ranging behaviour 

in the five study species. In some cases, indicated by “NA”, there were too few observations 

available with adequate length data.

G row th rate (m m /day)

Species n Resident.
W ide-
ranging

M ann-W h itney-W ilcoxon  
Test (p-value)

C archarias taurus

A du lt 42 0.09 0.23 0.072

Juvenile 42 0.21 0.25 0.652

D ich is tius  capensis

A du lt 873 0.05 0.14 <0.001

Juvenile 72 0.05 0.38 NA

L ich ia  am ia

A du lt 52 0.17 0.32 0.079

Juvenile 49 0.27 0.50 0.002

Lu tja nu s  rivu la tus

A du lt 33 0.08 NA NA

Juvenile 85 0.09 0.17 NA

Triakis m ega lop te rus

A du lt 20 0.06 0.00 0.333

Juvenile 20 0.12 NA NA

5.4 DISCUSSION

This chapter presents unequivocal evidence of life-cycle diversity in five fish species in the 

southern Africa region. This was apparent in the form of intra-population variability in the 

movement behaviour of juveniles and adults, with vastly different life-histories. The model 

(Equation 5.1) only explained 16% of the total deviance in the data and was thus weakly 

predictive, but indicated that the ratio of resident to wide-ranging behaviour differed 

significantly among species, life-stage and ecoregion. The prevalence of intra-population 

variability in movement behaviour of non-diadromous fishes is not well acknowledged but 

has been reported in other marine species from other parts of the world. Gillanders et al. 

(2001) reported variability in the movement of the carangid Seriola lalandi along the east

69



Chapter 5: Intra-population Variability in Movement

coast of Australia. Most tagged S. lalandi were recaptured within 50 km of the release site, 

but some made movements of 500-3000 km. Most red snapper Lutjanus campechanus, 

tagged on artificial reefs in the Gulf of Mexico, remained within 200 m of the release site, 

while one individual frequented various sites and another departed the area immediately 

after release (Schroepfer and Szedlmayer 2006). Intra-population variability has also been 

reported in the movement of New Zealand snapper Pagrus auratus (Parsons et al. 2011). 

Most P. auratus are reported to make frequent use of small areas, c. 2100 m linear distance 

or less; however, this species is capable of moving hundreds of kilometres (Parsons et al. 

2010).

A clear caveat to be acknowledged with the tag-recapture method is that little is known of the 

whereabouts of tagged fish between tagging and recapture (Attwood and Cowley 2005). The 

level of residency could be artificially inflated in the event that fish are able to migrate and 

then return to the site of tag-release before being recaptured. This may occur if fishing effort 

is heterogeneously distributed.

5.4.1 Study species
The five species in this study represented diverse life history characteristics. The two 

elasmobranchs, Carcharias taurus and Triakis megalopterus, are long lived (>20 years), 

slow growing species (K = 0.11-0.16 per year), classified as wide-ranging (Chapter 4). Both 

species occur in the warm temperate and cold temperate regions of southern Africa, with C. 

taurus also occurring in the sub-tropical and tropical regions of the east coast. Whereas C. 

taurus is ovoviviparous, attains a large body size (253.8 kg) and is not endemic to southern 

Africa, T. meglaopterus is viviparous, attains a smaller body size (36.4 kg) and is endemic to 

the region (Bass et al. 1975, Smale and Goosen 1999, Goldman et al. 2006, Booth et al. 

2011, Dudley and Dicken 2013, Smale and da Silva 2013). The three teleosts, Lichia amia, 

Dichistius capensis and Lutjanus rivulatus are broadcast spawners with vastly different life 

history characteristics. Lichia amia is a wide-ranging (Chapter 4), estuarine dependent 

species, with a maximum size of 32.2 kg and a maximum age of 10 years (growth: K = 0.2 

per year). Dichistius capensis and Lutjanus rivulatus are relatively small (max. size: 6.5 and

12.3 kg respectively) species, classified as resident (Chapter 4). Dichistius capensis attains 

a maximum age of 12 years (growth: K = 0.142 per year). The maximum age of L. rivulatus 

is unknown but this species has a relatively faster growth rate (K = 0.33 per year). Dichistius 

capensis and L. amia occur in the cold temperate and warm temperate regions of southern 

Africa. Lichia amia also occurs seasonally in the subtropical region on the east coast and L. 

rivulatus is largely limited to the tropical region on the upper east coast. Dichistius capensis
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is endemic to southern Africa, but L  rivulatus and L. amia are not (Munro and Williams 1985, 

Bennett and Griffiths 1986, van der Elst 1993, Smith 2008, Attwood and Mann 2013, Mann 

and Maggs 2013, Mann and Potts 2013a).

Considering that intra-population variability in movement behaviour was exhibited to some 

extent in all five species, having such a diverse array of life-histories, it suggests that this 

phenomenon is employed widely amongst non-diadromous species as proposed in the 

literature (Secor and Kerr 2009, Chapman et al. 2011, Dodson et al. 2013). However, this 

study showed how life-cycle diversity is not employed consistently among species. That is, 

wide-ranging and resident behaviour were exhibited by all five study species, but wide- 

ranging behaviour was significantly more prevalent in some species, such as L. amia than it 

was in other species, such as L. rivulatus.

A species is often characterised by its prevalent behaviour (Chapter 4), but what about 

residency in L. amia and wide-ranging behaviour in L. rivulatus? Are these anomalous 

observations beneficial to the individual or to the population as a whole? Intra-population 

variability is thought to confer survival benefits and may be the outcome of population-level 

bet hedging (Gillanders et al. 2015). Residency is a conservative approach and is associated 

with stability, while wide-ranging behaviour may be more risky, but is associated with 

productivity (Petitgas et al. 2010). Residency provides familiarity with surroundings, but 

moving farther afield provides access to a wider variety of resource opportunities, such as 

food and reproduction. Flexibility in movement reflects a balance between the costs and 

benefits of migration in terms of fitness (Gillanders et al. 2015) and provides a means of 

buffering against severe environmental events (Childs et al. 2015).

The division in behaviour among partial migrants is not necessarily fixed. For example, 

residents may at some stage abandon station and choose to migrate (Kerr et al. 2009). 

Migrants also do not necessarily move back and forth every year. Pomatomus saltatrix is a 

wide-ranging (Chapter 4) species well-known for its characteristic annual spawning migration 

to KwaZulu-Natal. Hedger et al. (2010) found that some individuals remained resident year 

round in the Langebaan Lagoon, Western Cape. These authors reported that a single P. 

saltatrix (FL = 405 mm) remained resident for ~12 months in the Langebaan Lagoon before 

moving ~1760 km to KwaZulu-Natal. These accounts can be described as asynchronous 

migration and is probably more prevalent among other species than expected. Migration and 

spawning are energetically costly. Migration to spawning areas in KwaZulu-Natal is therefore 

highly likely to be triggered by individual conditioning as suggested by Kerr et al. (2009) for
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Morone americana. As mentioned in Chapter 4, the annual migration of an important prey 

species sardine Sardinops sagax up the east coast of southern Africa may allow migratory 

species, such as P. saltatrix, L. amia and C. taurus, to build the necessary energy reserves 

required for longshore migration (Hedger et al. 2010). However, in years when migrating 

sardine are scarce, migratory predators may find it difficult to build the necessary energy 

reserves. In these years, residency may be a more productive or safer option than migration.

In resident species, wide-ranging movement may be in response to some extreme 

environmental driver. Pomadasys commersonnii is an estuarine dependent species, which 

remains resident (Chapter 4) and closely associated with estuaries throughout ontogeny 

(Cowley et al. 2013b). In a biotelemetry study, these authors reported year-round estuarine 

residency by some individuals, but also recorded two abrupt collective departures (sea trips) 

by tagged individuals from the monitored estuaries. In December 2008, eight of 15 fish 

tagged in the Kariega Estuary went to sea, of which four never returned. Similarly, all eight 

fish tagged in the neighbouring Bushmans Estuary briefly went to sea in June 2009. Upon 

examining historical weather records, Cowley et al. (2013b) found that on 24 December 

2008 and 24 June 2009, the south eastern coastline had experienced extreme weather 

events with some of the roughest seas and sharpest drops in barometric pressure ever 

recorded. The movement out of the estuary suggests instinctive behaviour in anticipation of 

the extreme weather. In another example, Mann et al. (2015) suggested that sand 

inundation of low-profile inshore reefs may force L. rivulatus to search for new habitat. While 

these two examples do not confirm wide-ranging movement as defined in the current study 

(>50 km; <365 days), it does show a switch in behaviour from a state of residency, which is 

associated with environmental pertubations.

5.4.2 Life-stage
Variability in movement was evident in both juvenile and adult life-stages, although residency 

was notably more prevalent in juveniles. This suggests that with the onset of maturity there 

is an increased tendency for wide-ranging movement. Mature fish may be more inclined to 

move further for various reasons. Besides increased energy requirements associated with 

increased body size, reproductive activity may be a particularly strong driver. Firstly, 

reproduction is energetically costly in terms of gamete production, altered behaviour and the 

development of sexual characteristics (Wooton 1985). The increased energy requirement 

may thus drive mature fish to move further to discover additional food resources. Secondly, 

where spawning is geographically concentrated, mature fish may be required to travel long 

distances to spawn. In those species that migrate to spawn, there is little point in migrating
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as a juvenile. However, in migratory species, late-stage juveniles may participate in 

migrations through entrainment in preparation for future migratory events (Petitgas et al. 

2010) as seen in sub-adult L. amia (Dunlop et al. 2015).

5.4.3 Ecoregion
The decision to undertake a wide-ranging movement varied among ecoregions. This is 

perhaps not surprising considering how different the southern Africa ecoregions are in terms 

of geology, productivity, current flow, chemical composition and invertebrate community 

composition (Emmauel et al. 1992, Spalding et al. 2007). Generally, there was a greater 

probability of wide-ranging movement on the east and west coasts (Delagoa, Natal, 

Namaqua and Namib ecoregions) compared with the southern coast (Agulhas ecoregion).

The reasons for this are associated with the ecology of each species. In C. taurus and L. 

amia, the direction of wide-ranging movement reflected the annual spawning movements 

with north-eastward movement from the Agulhas ecoregion and south-westward movement 

from the Natal ecoregion (Figure 5.2). However, this chapter has clearly demonstrated that 

certain individuals do not partake in the annual migration from the Agulhas ecoregion, but 

those that do are likely to return. This would explain the increased probability of wide-ranging 

movements from the Natal ecoregion in C. taurus and L. amia. Dichistius capensis and T. 

megalopterus showed a greater probability of wide-ranging movements in the Namib 

ecoregion compared with the Agulhas ecoregion. Two possible reasons could explain this. 

The Namib ecoregion is approaching the edge of the distribution for these two species and 

probably features sub-optimal habitat. Wide-ranging movements may be related to foraging 

or discovery of new habitats. Alternatively, there are numerous upwelling cells along the 

west coast of southern Africa, which can alter the physical environment considerably 

(Lutjeharms and Meeuwis 1987). Upwelling may therefore periodically drive individuals away 

from their usual home ranges. For D. capensis and T. megalopterus, the Agulhas ecoregion 

likely represents optimal habitat with more stable environmental conditions.

5.4.4 Direction
The direction of wide-ranging movements differed significantly among species and 

ecoregions. Along the east coast, the landward edge of the Agulhas Current is normally 

located along the 200 m isobath as it follows the continental slope. North of Port Elizabeth, 

there is minimal meandering of the current and the mean velocity is 1.1-1.4 m/s (Pearce et 

al. 1978, Lutjeharms 2006). Along the narrow inshore shelf region, current flow is strongly 

influenced by the Agulhas Current (Pearce et al. 1978, Roberts et al. 2010) and by wind
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stress. Circulation on the east coast shelf is generally south-westward, similar to the Agulhas 

Current, but there are periodic current reversals associated with wind-stress and 

oceanographic phenomena, such as break-away eddies and the Natal Pulse (Roberts et al. 

2010). In the nearshore and surf-zone, wind and swell produce longshore drift, which is 

predominantly in a north-eastward direction. These counter current mechanisms may 

facilitate north-eastward movement in coastal species that migrate annually in the Austral 

winter to KwaZulu-Natal (Roberts et al. 2010). It is during this time, when the sea 

temperatures are cooler, that pilchard Sardinops sagax extend their range up the east coast 

(van der Lingen et al. 2010). Sardinops sagax are thought to move against the powerful 

Agulhas by using these counter current mechanisms.

Carcharias taurus and L. amia are likely to similarly take advantage of the counter current 

mechanisms to undertake their seasonal north-eastward migrations, albeit for different 

reasons. In the case of C. taurus, adult females migrate biennially north-eastward from the 

Eastern Cape towards southern KwaZulu-Natal, where mating takes place (Dicken et al. 

2006). Pregnant females then migrate further north to spend the first part of their gestation in 

the warmer waters of northern KwaZulu-Natal and southern Mozambique (Dudley and 

Dicken 2013). This temporary move to warmer during gestation may be to increase foetal 

growth rates. Thereafter, a return migration is undertaken south-westward to productive 

temperate bays in the Eastern Cape, where pupping takes place (Bass et al. 1975).

In the case of L. amia, an annual migration takes place up the east coast towards KZN, 

where the majority of spawning takes place. The eggs and larvae are transported south- 

westwards and juveniles recruit predominantly into Eastern Cape estuaries. The estuaries of 

the Eastern Cape appear to be optimal habitat for young L. amia and therefore it makes 

sense to move north-eastward, up-current, before spawning. After spawning adults return to 

the coastal waters of the Eastern and Western Cape.

The mean movement of D. capensis in the Agulhas ecoregion was similarly eastward, 

although movements had a relatively low mean distance and the angular dispersion was 

high (see Attwood and Bennett 1994). In contrast, movements by D. capensis in the 

Namaqua ecoregion had a much higher mean distance and also a very low angular 

dispersion, with mean direction of nearly due east. However, most tagging of D. capensis in 

the Agulhas ecoregion was in the De Hoop Marine Reserve, whereas most tagging of D. 

capensis in the Namaqua ecoregion took place around the Cape Peninsula, approximately 

250 km away. Therefore, most tagging in the two ecoregions took place in close proximity to
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the ecoregion border, yet the nature of movements was in stark contrast. There are a few 

reasons that may contribute to this disparity. Firstly, the Peninsula upwelling cell is 

noticeable immediately west of Cape Point during summer and results in a mean sea 

surface temperature of <17° C during upwelling (Lutjeharms and Meeuwis 1987). This may 

present a barrier to westward movement of fish tagged around Cape Point. The fish tagged 

in the De Hoop Marine Reserve are centred within the Agulhas upwelling regime, which is 

considered to be the southern limit of the west coast upwelling (Lutjeharms and Stockton 

1987). The Agulhas upwelling cell results in a relatively warmer mean sea surface 

temperature of approximately 18.5° C during upwelling (Lutjeharms and Meeuwis 1987). 

However, unlike the Peninsula Cell, the inshore effect of the Agulhas cell is limited by the 

broad Agulhas Bank in the De Hoop region. But around Cape Point, the continental shelf is 

very narrow with cold water being upwelled close to the shoreline. Therefore fish movement 

around Cape Point may be significantly more affected by cold water intrusions than at De 

Hoop. Since eggs produced by D. capensis become deformed at 14-16° C (van der Lingen 

1994), there is motivation to move eastward away from the colder water to spawn. Secondly, 

and likely as a result of the upwelling, fish tagged around Cape Point are near the western 

edge of their distribution. Although D. capensis is caught further up the west coast, there is 

broad area of 200-300 km from Cape Point northwards where this species is rarely 

encountered. This is most likely due to a broad area of sub-optimal habitat. Movements by 

D. capensis in the Namib ecoregion were limited to six observations, but these showed a 

strong tendency to move long distances down the coast. Again, fish tagged in the Namib 

ecoregion were mostly at the northern extent of their distribution and there would be little 

incentive to move further north.

Although T. megalopterus was classified as wide-ranging (Chapter 4) its long-range 

movements are not predictable. However, the prevalence of eastward movement in the 

Agulhas ecoregion reflects that of other species in the same ecoregion. Wide-ranging 

movements by L. rivulatus (classified as a resident species -  Chapter 4) were limited to two 

observations, both of which showed fish moving up the east coast from northern KwaZulu- 

Natal. Besides the return migrations of C. taurus and L. amia, there seems to be a general 

tendency for fish to move in an anti-clockwise direction around southern Africa. This may 

have a clear purpose as is the case in spawning migrations with the need for larvae to return 

to nursery areas, but in other cases the reasons are not clear.
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5.4.5 Growth
The results of this study suggested faster somatic growth (length) in wide-ranging individuals 

compared with resident individuals, but this was statistically significant in only adult D. 

capensis and juvenile L. amia. Size difference between residents and migrants is strongly 

evident in partially migrant salmonids (Chapman et al. 2011). Similarly, migratory black 

bream Acanthopagrus butcheri in the Murray-Darling River (Australia) were found to be 

larger, older and in slightly better condition than their resident conspecifics (Gillanders et al. 

2015). Wide-ranging individuals may encounter increased food availability, leading to faster 

growth and improved fitness and reproduction (Jonsson and Jonsson 1993). In the case of 

Murray-Darling black bream, migrants were thought to benefit by moving away from areas 

with declining habitat quality to more favourable locations. Alternatively, it has been 

suggested that some individuals may be genetically predisposed to faster growth 

encouraging wide-ranging behaviour, but there is less support for this hypothesis (Olsson et 

al. 2006, Dodson et al. 2013).

5.5 CONCLUSION

The prevalence of intra-population variability in movement behaviour in fishes is a relatively 

novel concept, but has substantial implications for fisheries management (Petitgas et al. 

2010). These authors suggest that connectivity between resident contingents (stability) and 

migratory contingents (productivity) tends to increase stock size and in some cases a 

population may rebuild from strong year classes produced by resident contingents. Life-cycle 

diversity thus appears to provide resilience at a population level, but what are the 

implications for management of a fish population exhibiting variability in movement? These 

questions will need to be answered in terms of stock assessment methods and how 

regulations are applied. More research is needed to determine the causes of movement 

variability and whether this is due to population structuring or conditional on environmental or 

biological fluctuations.

In biotelemetry studies, high temporal resolution movement data can reveal contingent 

structuring of the population (Childs et al. 2015). Contingents are identifiable because the 

data showed that individuals generally did not switch behaviour. However, unlike 

biotelemetry and otolith microchemistry (Secor 1999), mark-recapture provides poor 

temporal resolution. In the current study, it was therefore difficult to identify contingents, 

where individuals are permanently subscribed to a specific movement mode. Using mark- 

recapture data, it is exceedingly difficult to establish whether some individuals are 

permanently resident, while others are migratory (consistent with the contingent hypothesis),
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or whether all individuals are sometimes resident and sometimes migratory (Attwood and 

Cowley 2005).

There have been numerous reports predicting that climate change will lead to increases in 

the severity and frequency of environmental perturbations, such as tropical cyclones 

(Webster et al. 2005) and intensification of coastal ocean upwelling (Bakun 1990). If these 

predictions are accurate, they may have substantial implications for species, such as 

Pomadasys commersonnii, with instinctive responses to impending environmental 

perturbation. More research is thus required into the effects of severe environmental 

perturbations on fish ecology, particularly movement.
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CHAPTER 6

FISHERY MANAGEMENT IMPLICATIONS FOR A WIDE-RANGING (CATEGORY I) 

CARANGID TELEOST: THE LEERFISH LICHIA AMIA

Maggs JQ, Mann BQ, Potts WM, Dunlop SW. 2016. Fisheries Management and Ecology 

23(3-4): 187-199.

6.1 INTRODUCTION

One of the most sought after recreational fishery species in South Africa (van der Elst 1993) 

and in other parts of the world (Lloret et al. 2008) is the leerfish, Lichia amia. This large 

piscivorous (Whitfield 1998), coastal carangid species occurs in the Mediterranean Sea, the 

Black Sea, and through the warm-temperate regions of the west coast of Africa into Angola 

(Mann and Potts 2013a). Lichia amia is scarce along the Namibian coast and the South 

African west coast, but is common along the south and east coasts of South Africa where it 

forms a genetically distinct stock (Henriques et al. 2012).

In South Africa, L. amia was classified as a wide-ranging (Category I) teleost species 

(Chapter 4). However, it was shown in Chapter 5 that the species also displays intra­

population variability in movement behaviour with noteworthy occurrences of residency in 

the juvenile and adult life-stages. Generally, the adults of the South African population 

migrate alongshore from the southern and south-eastern coast towards the warmer waters 

of KwaZulu-Natal in the late austral autumn and winter (van der Elst et al. 1993, Smith 

2008). Spawning takes place along coastal areas predominantly in KwaZulu-Natal during the 

austral spring from September to November (Garratt 1988, van der Elst et al. 1993, Connell 

2012) (Figures 2.1, 2.2). Eggs and larvae are then distributed south-westward, inshore of the 

Agulhas Current (Connell 2012) with juveniles (~40-120 mm total length [TL]) recruiting into 

the Eastern Cape and Western Cape estuaries from November to January (Smale and Kok 

1983) (Figure 2.1).

The South African commercial and recreational fisheries began targeting L. amia in the early 

nineteen hundreds (Biden 1930). The species was decommercialised in 1988 and has since 

remained a purely recreational species. Although South Africa’s recreational fisheries are 

open-access, an annual recreational permit was introduced for a nominal fee in 1999. A daily 

bag limit of five fish per person and a minimum size-limit of 380 mm TL were implemented in 

1973. The minimum size-limit was increased to 700 mm TL in KwaZulu-Natal in 1974 and for
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the rest of the country in 1985. In 2005, the daily bag limit was reduced from five to two per 

person.

A preliminary per-recruit stock assessment for L. amia in the early 1990s indicated that the 

spawning stock biomass was optimally exploited (van der Elst et al. 1993). However, a 

second assessment in 2008 suggested that the stock had collapsed (Smith 2008) and the 

guidelines outlined in the South African Linefish Management Protocol (Griffiths et al. 1999) 

indicated that an immediate management response was required. Unfortunately, no 

additional regulations have been promulgated up to now and this is in part due to the lack of 

knowledge on how the previous regulations influenced the fishery.

This chapter aimed to use a range of catch and effort monitoring datasets to gain an 

understanding of the trends in the catch-per-unit-effort (CPUE) of L. amia for the different 

recreational fisheries and to investigate how these trends relate to the movement behaviour 

of the species. To do this, an analysis of five standardised, long-term CPUE datasets from 

three recreational fishery sectors along South Africa's east coast was conducted.

6.2 MATERIALS AND METHODS
A detailed explanation of the study area and data collection procedures is given in Chapter 

2. In short, CPUE data was collected under the auspices of the National Marine Linefish 

System (NMLS) along the east coast of South Africa from 1971 to 2012. Data sources 

included shore patrols, catch return cards, competitions and boat inspections. Data collected 

was predominantly from KwaZulu-Natal, but some competition and catch return card data 

was also collected from as far south as the Mbashe River in the Eastern Cape. For this 

reason the study area is referred to in the following text as the ‘east coast’, although the data 

strongly reflect trends of the KwaZulu-Natal fishery.

6.2.1 Data analysis
Data was filtered prior to analysis to maintain integrity. Data excluded from the analyses 

included the following: (i) all shore patrols that were of an unlikely duration (> 20 hours or 0 

hours), (ii) fishing outings from all datasets where there were more than 12 anglers 

encountered in a group (Dunlop 2011), and (iii) outings of less than 0.5 hours (Hoenig et al. 

1997). Individual records of CPUE in the dataset were expressed in terms of the number of 

L.amia.angler'1.hour'1 and were derived by:
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CPUEli =
catchii

e f fo r t i i (6.1)

where catchy is the number of L. amia recorded on the ith day, at locality l and where effort,,, 

is the number of angler-hours recorded on the ith day at locality l. In the case of shore 

patrols, where an individual data point may cover several localities within an operational 

zone, locality l was substituted with zone z. In addition, catch and angler effort information 

collected during shore patrols was based on incomplete outings Therefore, the CPUE for 

shore patrols was expressed in terms of the number of L. am/'a.angler'1.outing'1. Data 

collected by inspections, competitions and catch return cards were based on completed 

outings.

It was assumed that CPUE is related to relative abundance and takes the form CPUE = Nq, 

where N is relative abundance and q is the fraction of the abundance captured by one unit of 

effort (Maunder and Punt 2004). Although CPUE is assumed to be proportional to relative 

abundance as long as q remains constant, this is rarely the case (Beverton and Holt 1957, 

Campbell 2004). Catchability, or vulnerability of the species to fishing gear, may vary over 

time and space and is especially relevant in the case of migratory species such as L. amia. 

Therefore, area-specific CPUE may fluctuate disproportionately to overall abundance for this 

species.

The CPUE was standardised using generalized linear models (GLM) to reduce the effect of 

factors other than abundance. Factors that were available for this purpose were year, month 

and locality (zone in the case of shore patrols). Year was included in every model as the 

primary objective was to detect trends in abundance over time (Maunder and Punt 2004), 

while month and locality (zone) were included only when significant. It was decided a priori 

to include an interaction between month and locality when significant because of the strong 

seasonality in catches. Year, month and zone were included as categorical predictors, 

whereas locality was included as a continuous predictor. Generally, CPUE data is right 

skewed containing a large proportion of zero values, which complicates analyses. To 

incorporate the large volume of zeroes in this study, the delta-Gamma distribution 

(Stefansson 1996, Maunder and Punt 2004, Fletcher et al. 2005) was used. Delta is the 

probability of a non-zero observation occurring and was modelled with a binomial distribution 

(logistic link function), while non-zero observations were modelled separately assuming a 

Gamma distribution (log link). Expected (standardised) CPUE was calculated by multiplying
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the probability of L. amia being captured by modelled non-zero CPUE. This is often referred 

to as the hurdle approach in the literature. The Akaike’s Information Criterion (Akaike 1973) 

and ANOVA hypothesis testing was used to establish the appropriate combination of 

explanatory variables to include in each of the models. Residual plots were used to evaluate 

goodness-of-fit. The statistical computing environment R (R Core Team 2014) was used for 

all analyses. Besides the default packages included with the R installation, the ‘sqldf’ 

(Grothendieck 2014), ‘ggplot2’ (Wickham 2009), ‘scales’ (Wickham 2014) and ‘effects’ (Fox 

2003) packages were installed for additional functionality.

6.3 RESULTS

Overall, 4706713 angler-outings, 8241852 angler-hours and 18994 L. amia were recorded 

over the 42 year period (Figure 6.1, Table 6.1). Lichia amia contributed less than one per 

cent to the overall reported catch composition in the hook and line fisheries (boat and shore) 

and 3.9% in the spearfishery (Table 6.1). The overall mean standardised CPUE for the east 

coast recreational fishery was 0.022 (± 0.053) L.amia.angler'1.hour'1 (excluding the shore 

patrol dataset where hours were not available). The mean standardised spearfishing CPUE 

was an order of magnitude higher (0.087 ± 0.078) than the angling CPUE (Table 6.1).

Table 6.1: General characteristics of the CPUE datasets for Lichia amia from three 

recreational fisheries along the east coast of South Africa between 1971 and 2012. CPUE 

expressed as L. amia.angler'1.hour'1 for all datasets except shore patrols, where CPUE was 

expressed as L. amia.angler'1.outing'1.

F ishe ry  sector
N um ber

o f
records

A ng le r-
ou tings

A ng le r-
hours

N um ber 
o f L ich ia  

amia

%
contribu tion  

to  total 
catch

M ean
standard ised  
C P U E ±  SD

S h o re  f is h in g

C atch  return cards 94030 224631 845547 567 0.29 0 .002  ± 0 .002

C om petitions 37707 247636 1346909 1168 0.35 0 .004  ± 0 .002

Shore patro ls 175171 3251790 N /A 10658 0.39 0 .002  ± 0.001

B o a t f is h in g

C atch  return cards 170616 526612 3160789 4351 0.69 0 .0006 ± 0 .0007

Inspections 129494 426904 2764880 888 0.11 0 .0003 ± 0 .0004

S p e a r fis h in g

C atch  return cards 15517 29140 123726 1362 3.89 0 .087  ± 0 .078
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Figure 6.1: Trends in the data collection for three recreational fisheries targeting Lichia amia 

along the east coast of South Africa between 1971 and 2012.

6.3.1 Standardisation o f Lichia amia catch-per-unit-effort

Model results (Table 6.2) indicated that year, month and locality (zone in the case of shore 

patrols) were significant (p < 0.05) factors in explaining the probability of catching at least 

one L. amia (binomial distribution). Similarly, year, month and locality (zone in the case of 

shore patrols) were significant (p < 0.05) factors in the Gamma component (non-zero data) 

of the models. An interaction effect between month and locality (zone in shore patrols) was 

also evident in certain models. The significance of month and zone as explanatory factors
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was evident in the spatio-temporal distribution of CPUE in the shore patrol data of the shore 

fishery (Figure 6.2).

Table 6.2: Summary statistics of delta-Gamma generalised linear models fitted to Lichia 

amia CPUE data for three recreational fishery sectors along the South African east coast. 

d.f. denotes degrees of freedom and A AIC is the difference in the AIC value compared with 

the preceding model.

Binom ial m odel structure d.f. A IC A A IC
R esidual
deviance

A
Deviance

%
Deviance
expla ined

Probability

(X2)

NULL 35065 35063

+ year 27 34412 653 34356 707 2.0 <  0.001

+ m on th 11 30635 3776 30557 3799 10.8 <  0.001

+ zone 14 28956 1679 28850 1707 4.9 <  0.001

+ m onth:zone 154 28214 743 27800 1050 3.0 <  0.001

% o f  to ta l d ev iance exp la ined  b y  m ode l 20.7

G am m a m odel structure d.f. A IC
R esidual

A ^\I C
deviance

A %
A Deviance 

Deviance
expla ined

Probability

(X2)

NULL
15353

6022

+ year 27
15671

318 5612 410 6.8 <  0.001

+ m on th 11
16082

411 5165 447 7.4 <  0.001

+ zone 14
16946

864 4342 823 13.7 <  0.001

+ m onth:zone 125
17802

856 4023 319 5.3 <  0.001

% o f  to ta l d ev iance exp la ined  b y  m ode l 33 .2

B inom ial m odel structure d.f. A IC A A IC
R esidual
deviance

A
Deviance

%
Deviance
expla ined

Probability

(X2)

NULL 

+ year 35

3850

3847 3

3848

3775 73 1.9 <  0.001

om
pe

tit
io

ns

+ m on th 11 3343 504 3250 526 13.7 <  0.001

+ loca lity 1 3294 49 3198 51 1.3 <  0.001

+ m on th :loca lity 11 3264 30 3146 52 1.4 <  0.001

% o f  to ta l d ev iance exp la ined  b y  m ode l 18.2

i
CD

-CCO4=
CD
O-C

G am m a m odel structure d.f. A IC A A IC
R esidual
deviance

A
Deviance

%
Deviance
expla ined

Probability

(X2)

(O
NULL -2003 648

+ year 35 -2039 35 527 121 18.7 <  0.001

+ m on th 8 -2177 139 385 142 21.9 <  0.001

+ loca lity 1 -2201 24 365 20 3.1 <  0.001

% o f  to ta l d ev iance exp la ined  b y  m ode l 43.7
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Table 6.2: Continued...

Binom ial m odel structure d.f. A IC A A IC
R esidual
deviance

A
Deviance

%
Deviance
expla ined

Probability

(X2)

NULL 3950 3948

+ year 28 3807 142 3749 199 5.0 <  0.001

+ m onth 11 3400 407 3320 429 10.9 <  0.001

+ loca lity 1 3393 7 3311 10 0.2 0.002

+ m on th :loca lity 11 3369 24 3265 46 1.2 <  0.001

% o f  to ta l d ev iance exp la ined  b y  m ode l 17.3
O

O)
C  

4=  
(f) 

4=  
CD

G am m a m odel structure d.f. A IC A A IC
R esidual
deviance

A
Deviance

%
Deviance
expla ined

Probability

(X2)

-C
c o

NULL -1364 946

+ year 18 -1429 65 779 167 17.6 <  0.001

+ m onth 10 -1504 75 646 134 14.1 <  0.001

+ loca lity 1 -1536 32 603 43 4.5 <  0.001

% o f  to ta l d ev iance exp la ined  b y  m ode l 36.3

B inom ial m odel structure d.f. A IC A A IC
R esidual
deviance

A
Deviance

%
Deviance
expla ined

Probability

(X2)

NULL 2704 2702

+ year 26 2658 46 2604 98 3.6 <  0.001

ns
pe

ct
io

ns

+ m onth 1 2548 110 2492 112 4.2 <  0.001

+ loca lity 1 2519 29 2461 31 1.2 <  0.001

% o f  to ta l d ev iance exp la ined  b y  m ode l 8.9

1

c 5
4=
.</)

03
O

G am m a m odel structure d.f. A IC A A IC
R esidual
deviance

A
Deviance

%
Deviance
expla ined

Probability

(X2)

CD NULL -884 520

+ year 24 -906 22 418 102 19.5 <  0.001

+ m onth 11 -923 17 369 49 9.4 <  0.001

+ loca lity 1 -933 10 355 14 2.7 0.003

% o f  to ta l d ev iance exp la ined  b y  m ode l 31.6
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Table 6.2: Continued...

Binom ial m odel structure d.f. A IC A A IC
R esidual
deviance

A
Deviance

%
Deviance
expla ined

Probability

(X2)

NULL 7390 7388

+ year 33 6560 831 6492 897 12.1 <  0.001

+ m onth 11 5096 1464 5006 1486 20.1 <  0.001

+ loca lity 1 4663 433 4572 435 5.9 <  0.001

+ m on th :loca lity 11 4548 116 4434 138 1.9 <  0.001

% o f  to ta l d ev iance exp la ined  b y  m ode l 40.0

_co

G am m a m odel structure d.f. A IC A A IC
R esidual
deviance

A
Deviance

%
Deviance
expla ined

Probability

(X2)

NULL -1577 1041

+ year 25 -1632 55 924 117 11.2 <  0.001

+ m onth 11 -1710 77 824 100 9.6 <  0.001

+ loca lity 1 -1733 23 800 24 2.3 <  0.001

+ m on th :loca lity 11 -1753 20 762 38 3.7 0.003

% o f  to ta l d ev iance exp la ined  b y  m ode l 26.7

B inom ial m odel structure d.f. A IC A A IC
R esidual
deviance

A
Deviance

%
Deviance
expla ined

Probability

(X2)

NULL 5989 5987

+ year 39 5800 189 5720 267 4.5 <  0.001

(/) + m onth 11 5068 732 4966 754 12.6 <  0.001

g + loca lity 1 4808 260 4704 262 4.4 <  0.001
C
D
0J
_c

+ m on th :loca lity 11 4778 30 4652 52 0.9 <  0.001

% o f  to ta l d ev iance exp la ined  b y  m ode l 22.3

roo
1
O)c

'jz
(f)
*£

G am m a m odel structure d.f. A IC A A IC
R esidual
deviance

A
Deviance

%
Deviance
expla ined

Probability

(X2)

(0(U NULL 570 661
(0 + year 30 563 7 615 46 6.9 <  0.001

+ m onth 11 549 14 592 23 3.5 0.028

+ loca lity 1 529 20 578 14 2.1 <  0.001

+ m on th :loca lity 11 522 7 561 18 2.7 0.015

% o f  to ta l d ev iance exp la ined  b y  m ode l 15.2
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Figure 6.2: Spatio-temporal distribution of standardised Lichia amia CPUE from the 

KwaZulu-Natal shore fishery from 1985 to 2012. Data source - Ezemvelo KwaZulu-Natal 

Wildlife shore patrols.

6.3.2 Long-term trends in standardised catch-per-unit-effort
Numerous peaks and troughs in standardised CPUE indicated high inter-annual variation 

and made it difficult to discern long-term trends in the six datasets (Figure 6.3). However, it 

was evident that the magnitude of peaks, which represented years with exceptional catches, 

decreased over time in most datasets. This was evident in the boat fishery, the spearfishery 

and in the shore patrol dataset from the shore fishery. The catch return card data from the 

shore fishery was exceptionally variable with no visible trend. Competition data from the 

shore fishery showed an initial decline and then a sudden increase in 1995 and 1996 

followed by a highly variable, somewhat cyclical, downward trend.
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Figure 6.3: CPUE (Lichia amia.angler-1.hour-1) from the recreational shore, boat and 

spearfisheries along the east coast of South Africa. CPUE recorded by shore patrols is 

presented as L. amia.angler-1.outing-1. Missing data points indicate no data collected for that 

year. DBL is daily bag limit in terms of L. amia per person, SL is minimum size limit.

There was a general upward trend in the standardised CPUE for L. amia in the mid- and 

late- 1970’s, shortly after the promulgation of the first regulations (size- and bag-limit) (Figure 

6.3). There was also a brief (one year) upward trend in the standardised CPUE in all but one
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(catch return cards of the boat fishery) of the datasets immediately after the 

decommercialisation of L. amia in 1988. However, there was no clear response to the 

reduction of the daily bag limit in 2005. The predominance of zero catches in the catch return 

card datasets from 2000 (Figure 6.3) may be a consequence of the very low response by 

anglers as this data source was phased out.

6.4 DISCUSSION

The large size, characteristic appearance and strong fighting ability of Lichia amia make it a 

highly sought after recreational angling species throughout its global distribution. However, 

there is limited recreational CPUE information for this species. In the Mediterranean, it is 

apparent that this species is an incidental catch, rather than a primary target (e.g. Coll et al. 

2004, Morales-Nin 2005, Lloret et al. 2008, Unal et al. 2010). In contrast, this species is a 

primary target in the shore-based recreational angling fishery in South Africa and southern 

Angola. Its predictable annual migration, covering hundreds of km along South Africa’s east 

coast, attracts much targeted fishing effort, particularly in KwaZulu-Natal. The scarcity of L. 

amia in the Mediterranean may be attributed to a long history (millennia) of fishing pressure 

in the region (Margalef 1985). In South Africa, coastal fisheries exploitation dates back to the 

mid-eighteen hundreds (Biden 1930, Tarr 2013), while the fisheries in southern Angola have 

been described as developing and relatively unexploited due to the long civil war in the 

country (Potts et al. 2009). In Angola the CPUE was about five times higher than the hook 

and line fishery in this study (Potts et al. 2014). The scarcity of this species in areas with a 

long history of fishing suggests that this species is highly susceptible to exploitation and 

therefore provides a good model to examine the effects of exploitation and the 

implementation of regulations.

The effect of exploitation was evident in the long-term declines of the standardised CPUE for 

L. amia along the KZN coast. This was most evident in the boat fishery and spearfishery but 

not as clear in the shore fishery (Figure 6.3), where only shore patrol data showed a decline. 

This disparity between the CPUE in the catch return card and competition data for the shore 

fishery requires some explanation.

It has long been acknowledged that CPUE may not accurately reflect fish abundance 

(Beverton and Holt 1957) because of changes in catchability (Maunder and Punt 2004). One 

of the most common examples of this is “hyperstability”, where the CPUE is maintained or 

even elevated while true abundance decreases (Hilborn and Walters 1992, Harley et al. 

2001, Ward et al. 2013). Competitive angling has a long history in South Africa, and it
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includes a group of highly motivated individuals who strive to achieve regional and national 

recognition. Competitive anglers aim to maximise catch and this is contrary to other 

recreational anglers, who also have non-catch motivations such as relaxation and 

experiencing the natural surroundings (Arlinghaus 2006). Competitive anglers are therefore 

at the forefront of technological development, which in the case of this fishery, has included 

improvements in the fishing rods and reels, thinner stronger monofilament line and sliding 

traces used to attach live bait. Perhaps one of the most important changes was the 

development of life support systems for the transportation of live bait to known aggregation 

sites. Anecdotal reports suggest that this may have contributed substantially to the observed 

increase in CPUE from 1995. Competitive anglers also began using mobile telephone 

communication in the late 1990s. This allowed angling teams to coordinate efforts by sharing 

“real time” information on where the fish were biting, and in so doing, increase their catch 

rates. Based on the rise in the competition CPUE from the mid-1990s when compared with 

the other datasets, it is likely that the abovementioned technological developments are 

important mechanisms driving hyperstability.

Gartside et al. (1999) evaluated the use of competitive angling records in the management 

of marine fisheries by examining records from two fishing clubs in New South Wales. They 

found that the CPUE of competitive anglers may be broadly representative of recreational 

fishing overall. The results of this study however suggest that competition angling data may 

not be appropriate for monitoring stock abundance. These results demonstrate the value of 

using multiple datasets when examining trends in the relative abundance of species.

Another mechanism driving “hyperstability” is the concentration of fishing effort during highly 

predictable fish aggregations (Sadovy and Domeier 2005, Sadovy De Mitcheson et al. 2008, 

Erisman et al. 2011, Ward et al. 2013). The results of the GLM showed that location and 

month were significant factors explaining the catch of L. amia in the recreational fishery. This 

suggests that the aggregations of this wide-ranging species are predictable and it is not 

surprising that recreational fishers have learned to target the aggregations of L. amia during 

their spawning season in KwaZulu-Natal (Figure 6.2). It is therefore likely that this angler 

behaviour is a further mechanism driving hyperstability and masking a decline in the 

abundance of L. amia.

The catch and effort data analysed in this paper did not cover the entire distribution range of 

the South African L. amia stock, and focussed mainly on adults that were migrating up to 

KwaZulu-Natal from the Cape. However, some adult L. amia are caught in the Cape when
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most others have undertaken the annual spawning migration (Dunlop et al. 2015) indicating 

some variation in migration strength. This phenomenon has been described in many other 

animal species as partial migration, where coexisting groups exhibit resident and migratory 

behaviour respectively within a single population (Chapman et al. 2012b). Such intra­

population variability in L. amia movement was investigated in Chapter 5, where it was 

shown that some L. amia displayed residency, while most undertook migrations. 

Standardised CPUE trends presented here may therefore portray the strength of the 

migration, rather than the overall stock abundance. The relationship between stock 

abundance and migration strength is unknown, but it may be influenced by the condition of 

individuals prior to the annual migration event. Several other important fishery species, 

including Pomatomus saltatrix undertake a similar annual migration (Garratt 1988, Fennessy 

et al. 2010), where not all individuals migrate every year. Maggs et al. (2012b) speculated 

that individuals in poor biological condition may “choose” to remain in the Cape waters. If this 

finding holds true for L. amia, it is possible that factors such as reduced food availability and 

unfavourable water temperatures in the Eastern and Western Cape may explain the decline 

in CPUE in KwaZulu-Natal. However, it is unlikely that these conditions would have persisted 

or even worsened sufficiently to drive the long-term CPUE trend observed during this study. 

Whatever the driver of intra-population variability in movement behaviour, this phenomenon 

is believed to confer survival benefits and may be the outcome of population-level bet 

hedging (Gillanders et al. 2015).

South Africa’s Linefish Management Protocol (LMP, Griffiths et al. 1999) provides a variety 

of corrective catch and effort limiting restrictions, including minimum size limits and bag 

limits. Minimum-size limits have been used extensively to prevent growth overfishing (Allen 

et al. 2013) and in South Africa, these limits, as per the LMP, are normally set at the length- 

at-50% maturity. However, the minimum size limit of 700 mm TL (585 mm fork length [FL]) 

for L. amia that was set in 1974 was smaller than the length at 50% maturity (males: 750 mm 

FL, females: 850 mm FL -  van der Elst et al. 1993). Interestingly, the standardised CPUE for 

all of the existing datasets appeared to increase after 1974, suggesting that this regulation 

may have had a positive impact on the sustainability of the fishery, despite the fact that most 

fish captured in KwaZulu-Natal are substantially larger than the minimum size limit (Dunlop 

et al. 2015). It is therefore possible that this size limit was mainly effective in Eastern Cape 

and Western Cape waters, where juveniles and sub-adults are abundant and where a large 

proportion of captured L. amia are below the minimum size limit (Pradervand and Baird 

2002). Allen et al. (2013) attempted to quantify the value of minimum size limits to prevent 

recruitment overfishing and found that larger minimum lengths were required if anglers were
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not discouraged from fishing by reduced fish abundance. The 43% decrease in shore 

angling effort recorded along the KwaZulu-Natal coast between 1994-1996 and 2007-2008 

(Mann et al. 2008), suggests that there may have been some response to the overall 

reduction in L. amia CPUE in the region. However, since the decline in fishing effort was 

attributed to security concerns and the ban on beach driving (Mann et al. 2008), it is likely 

that there is a weak responsiveness to reductions in fish abundance. Other non-catch 

motives, such as relaxation, spending time with friends and experiencing the natural 

surroundings (Arlinghaus 2006) are also important factors that influence the decision to go 

fishing. This suggests that an increase in the minimum size limit of L. amia in KZN may be a 

viable option to maximise biomass yield in the fishery. However, as L. amia is 

decommercialised and a recreational trophy species, the sole use of a minimum size limit is 

questionable as it would promote severe age- and size-truncation (Gwinn et al. 2015) and 

would result in a reduced number of trophy specimens. Gwinn et al. (2015) using general 

age- and size-structured population models on several recreationally important fish species 

found that fisheries managed with harvest slot size-limits, not only consistently produced 

greater numbers of fish, but also more trophy specimens. However, since the knowledge of 

and the compliance with minimum size limits are low amongst South African shore anglers 

(Brouwer et al.1997, Dunlop and Mann 2012), it is likely that slot size-limits would be 

unsuccessful.

Daily bag or creel limits are also common in recreational fisheries. Unfortunately, although 

many recreational anglers do believe that bag limits are effective (Dunlop and Mann 2012), 

most fisheries managers do not share their enthusiasm (Radomski et al. 2001). This is 

primarily because these limits are often determined arbitrarily, with little consideration for 

biological relevance (Radomski et al. 2001). Indeed, the daily bag limit for L. amia in South 

Africa was arbitrarily set at five fish per angler in 1973, but then, based on the perception of 

declining catches, reduced to two fish per angler in 2005. While there was some evidence of 

an increase in the CPUE in the mid 1970’s, there was no evidence to suggest that there was 

an improvement in the CPUE for L. amia after 2005 (Figure 6.3). This is not surprising as 

daily bag limits are designed to reduce retained catch and certainly do not restrict total 

harvest in an open-access fishery (Newman and Hoff 2000, Radomski et al. 2001). In South 

Africa, Attwood and Bennett (1995a) developed a procedure for setting the daily bag limits in 

the recreational shore fishery. Using catch data from individual anglers, they estimated the 

reductions in fishing mortality for four recreational species given different bag limit scenarios. 

They found that reductions in bag limits resulted in a negligible reduction in fishing mortality 

(<1%) for three of the four species. This was mainly because the bag limits were set at a
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level higher than the daily catch of most anglers. They also noted that these restrictions lose 

their effectiveness with decreasing fish density. In the case of L. amia, where abundance 

has decreased considerably over the years, the primary objective of the daily bag limits can 

no longer be to reduce fishing mortality. However, bag limits may still play a role in 

conservation efforts by convincing anglers that the stock is indeed finite and should be 

conserved.

Based on the results of this study, it would appear that the traditional regulations used for the 

management of recreational fisheries have been largely ineffective in maintaining stable 

catch rates of L. amia. This may, in part, be attributed to the high levels of non-compliance 

with the fishing regulations in South Africa. In particular, the illegal sale of fishes by 

recreational anglers (Brouwer et al. 1997, Cowley et al. 2013a, Dunlop and Mann 2012, 

2013) has increased the motivation to break the regulations and has placed greater pressure 

on the L. amia stock.

Closed seasons have been implemented in South Africa for only a few recreational species 

including Pomatomus saltatrix (Maggs et al. 2012b) and Dichistius capensis (Attwood and 

Cowley 2005). This type of regulation has been used to protect fishes during vulnerable life- 

stages (Johannes 1998, Maggs et al. 2012b) and may be effective for L. amia during their 

annual aggregation in KwaZulu-Natal. Based on their life history (van der Elst et al. 1993) 

and the spatio-temporal distribution of CPUE data (Figure 6.2), a “closed season” from the 

1st of October to the 30th of November may effectively reduce fishing mortality. Although L. 

amia is abundant in KwaZulu-Natal in months prior to October and after November, a closed 

season during the latter represents a pragmatic approach, as this would coincide with the 

closed season for P. saltatrix, which is used extensively as livebait to capture L. amia. A 

concurrent closed season for these two species would simplify education and enforcement 

and would still provide fishers with an opportunity to capture this species. Although closed 

seasons do tend to displace fishing effort to either side of the period of closure, it is likely 

that the pre- and post- spawning L. amia would be more dispersed and therefore less 

vulnerable to capture during these times. Furthermore, very few L. amia are captured in 

KwaZulu-Natal after November and most adults have already returned to the Cape regions 

(Figure 6.2, Dunlop et al. 2015). In a survey of the recreational shore fishery in KwaZulu- 

Natal, Dunlop and Mann (2012) found that while the majority of anglers agreed with most 

linefish regulations, knowledge of these and compliance was poor. However, anglers 

indicated a relatively higher level of compliance and knowledge with regard to closed 

seasons than with other regulations.
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Besides the traditional, formal recreational fisheries management regulations, there is also 

an international trend towards the development of informal regulations (Cooke et al. 2013). 

These include education programs and voluntary changes, generally developed 

cooperatively and led by the stakeholders themselves (Cooke et al. 2013). One such 

example of this in South Africa is the ORI Cooperative Fish Tagging Project (Dunlop et al. 

2013). The concept of tag and release has partly been responsible for changing the ethics of 

many recreational anglers, many of whom now release their catch, thereby contributing to a 

more sustainable fishing future. However, besides this project, few other stakeholder 

initiatives exist despite the presence of several conservation-conscious angling bodies, 

which could engage in aquatic stewardship practices. Angler education drives, focussing on 

the importance and methods of “catch and release” angling, should become a priority. An 

ironic example in South Africa has been the development of an ethic of voluntary release 

amongst anglers who target freshwater invasive species such as rainbow trout 

Oncorhynchus mykiss and largemouth bass Micropterus salmoides. However, it appears 

that these ideals are also gaining some popularity in marine recreational fisheries with the 

recent development of a competitive angling league for shore anglers where catch and 

release is mandatory.

Other interventions that use conservation psychology to change attitudes also hold some 

promise in South Africa. An example would be for either formal or informal institutions to 

demonstrate through an education drive, how the implementation of a voluntary maximum 

size limit would improve the likelihood of an angler capturing a trophy size specimen, and 

thus achieve one of their personal goals (e.g. Petty et al. 1992). Other interventions, such 

as the social norms approach (Berkowitz 2004), which would aim to rectify misperceptions of 

poor compliance behaviour amongst recreational anglers and use the influence of the social 

norm to improve compliance behaviour, hold some promise. While informal regulations have 

been advocated for recreational fisheries in developed nations, their relative affordability 

when compared with prohibitive compliance initiatives, suggest that these may also be 

appropriate in developing nations, such as South Africa.

6.5 CONCLUSION

This case study has provided evidence that traditional management strategies have been 

inadequate for the management of wide-ranging (Category I) teleost species. Considering 

the reported benefits of intra-population variability in movement behaviour (Gillanders et al. 

2015), this trait may have provided L. amia some resilience to exploitation. There is therefore 

the possibility that without this trait, the population status of L. amia could have been worse.
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Further investigation is required to empirically determine the potential resilience of species 

displaying intra-population variability in movement behaviour. Given that this phenomenon is 

reported to be so widespread in the animal kingdom, due consideration should be given to 

develop management strategies that maximise the benefits of this variability.
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CHAPTER 7

GENERAL DISCUSSION

7.1 THESIS OVERVIEW

The purpose of this thesis was to extend our understanding of fish movement behaviour in 

southern Africa and to provide better insight for the management of fish stocks. To extend 

our understanding, the current state of knowledge on coastal fish movement research was 

established through a published literature review. Nine decades of research findings in 

southern Africa were synthesised, allowing for the identification of knowledge gaps and 

areas requiring further research effort. Two such gaps, a movement categorisation of coastal 

fishes and intra-population variability in movement were selected and addressed using three 

decades of mark-recapture data. These analyses covered a large geographic area, including 

five ecoregions along the west, south and east coasts of southern Africa. To provide better 

insight for management, four decades of fishery-dependent catch data were analysed in a 

case study. This was done in the context of fish movement to evaluate the efficacy of past 

management strategies, which have largely neglected to incorporate movement behaviour 

(Figure 7.1). This analysis was geographically more focussed and covered only the east 

coast of South Africa, specifically along the KwaZulu-Natal coast.

7.2 RESEARCH TRENDS

The review of fish movement research in southern Africa (Chapter 3) uncovered an 

impressive array of pioneering research. Nine decades of studying fish movement has 

generated a wealth of knowledge on fish ecology. But this has not come easily. From 1934, 

the challenges of southern Africa oceanography and a shortage of economic resources have 

required extensive innovation on the part of individual researchers and research 

organisations.

The tagging of 141100 pilchard Sardinops sagax from 1957 to 1965 off Walvis Bay, Namibia 

(Newman 1970) bears testimony to the innovation of early researchers in the region. This 

enormous sample was collected by ‘marking’ individual fish with small internal metal tags. 

Recovery of tagged pilchard was achieved through magnet installations at fish processing 

plants. This somewhat ambitious endeavour by the South African government proved 

immensely fruitful and resulted in an impressive recapture rate of 10.7% (corrected for 

variable magnet efficiency and tagging mortality). Researchers were able to challenge 

previous hypotheses about nursery areas and establish stock structure along the south-west
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coast of Africa. Even with the technology of the present day, we would have a difficult time 

improving on the efficiency of the original study considering the sample size and the time 

frame in which it was obtained.

REVIEW OF MOVEMENT RESEARCH IN SOUTHERN AFRICA
Ch 3. R e v ie w  o f  fish  m ovem en t research  id e n tifie d  tw o p a rticu la r know ledge  gaps

Knowledge gap 1
Arbitrary descriptions 
of movement types

Knowledge gap 2
High variability in 

observed movement

CATEGORISATION INTRA-POPULATION VARIABILITY
Ch 4. C a tegorisa tion  p rocedu re  y ie ld e d  two m ove m e n t ca tego ries  lin ke d  to  b io lo g ica l a ttribu tes  

Ch 5. In tra -popu la tion  va riab ility  in  m ove m e n t com m on a n d  va ried  w ith b io lo g ica l a n d  e co log ica l a ttribu tes

W id e -ra n g in g  w ith  
o b s e rv a tio n s  o f  

re s id e n c y

C a te g o r y  I -  W id e - r a n g in g
Large body 
High trophic level 
Low dependence on stationary resources 
Patterns in seasonal abundance

C a te g o r y  II - R e s i d e n t
Small body 
Low trophic level 
High dependence on stationary resources 
Weak or absent patterns in seasonal abundance

R e s id e n t  w ith  
o b s e rv a tio n s  o f  

w id e -ra n g in g  
b e h a v io u r

CASE STUDY: EVALUATE THE EFFICACY OF A MANAGEMENT STRATEGY 
THAT HAD NEGLECTED MOVEMENT

Ch 6. M an a g e m en t s tra te g y  fo r  L ich ia am ia  n e g le c te d  its  m ove m e n t b e h av iou r to the d e trim en t o f  the spec ies

Predictability in 
migratory 

behaviour makes 
the species 
vulnerable

Residency

Implement closed season for when 
migratory individuals are highly 

aggregated

Intra-population 
variability in 

movement may 
offer some 
resilience

D

Figure 7.1: Schematic illustration of the main findings of this research.
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Also in the late 1950s and early 1960s, researchers at the Oceanographic Research Institute 

(ORI) began tagging sharks along the east coast of South Africa (Davies and Joubert 1966, 

Davies and Joubert 1967). These researchers had the foresight to supplement their early 

tagging efforts with evaluations of different tag types, tag retention and the occurrence of 

biofouling. Some of this research was made possible by using the old Durban Centenary 

Aquarium (now uShaka Marine World) as a laboratory. Funds generated through the sale of 

entrance tickets at the aquarium were used to fund research. Initially, this research was in 

response to a spate of attacks on bathers, which was severely affecting local tourism. 

However, the research resulted in much being learnt about shark biology and movement 

behaviour, which laid the foundation for further shark research and conservation in later 

years.

These are just two examples of many that comprise the rich history of pioneering work done 

on fish movement in southern Africa and which paved the way for later research. The South 

African government still conducts research on the movement of important fishery species for 

improved management. Early shark tagging at ORI led on to a shark movement research 

project conducted by the KwaZulu-Natal Sharks Board, which currently still tags sharks 

captured in their bather protection nets. Today shark tagging in South Africa has attracted 

worldwide interest through media coverage with considerable funding being made available 

for shark research in South Africa. Owing to concerns of overexploitation, primarily among 

teleost species, and with the experience gained from earlier shark tagging, ORI initiated the 

ORI Cooperative Fish Tagging Project (ORICFTP) in 1984. After more than three decades, 

this project is still in operation and is one of the longest running citizen scientist projects in 

Africa.

Despite persistent financial impediments, relative to more developed countries, South Africa 

has kept up with technological developments in the fish tracking sector. Since the turn of the 

century, electronic tracking technologies, such as acoustic telemetry and satellite tracking 

have become increasingly accessible, radically altering fish movement research in southern 

Africa. These technologies have allowed researchers to gain high resolution insight into the 

behaviour of individual fish and into interactions between individuals, such as between 

predator and prey. Although mark-recapture methods are still better suited to population 

level studies due to low cost and ease of application, electronic techniques now offer much 

finer-scale data on the movement of individuals.
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Considering the various events along the timeline of fish movement research in southern 

Africa, by far the most productive endeavour by researchers has been to coordinate 

research effort and to collaborate with other researchers. Networking, pooling of resources 

as well as data centralisation and sharing has been far more effective in data collection, 

knowledge production and ensuring longevity of projects than would have been possible with 

researchers working independently. Indeed, the establishment of the ORICFTP, the Acoustic 

Tracking Array Platform (ATAP) and other similar cooperative research networks are 

examples where the whole has been greater than the sum of its parts. Collaborative 

networks are not unique to southern Africa and are well established globally5. These 

networks and platforms tend to promote longevity of the associated projects and are likely to 

outlive the dedicated individual researchers that founded them. Considering that southern 

Africa has a long, rich history of fish movement research, and that research is becoming 

increasingly coordinated and keeping up with international advancements, there are exciting 

prospects for the future.

The synthesis of nine decades of research findings allowed for the identification of 

knowledge gaps and areas requiring further research effort (Figure 7.1). Two such gaps 

were selected for further investigation in this thesis. Firstly, a categorisation of fish 

movement was required. Mann (2013) assigned movement types (resident, nomadic, 

migratory or unknown) to 139 species; however, these designations were often based on 

expert opinion and seldom on quantitative analyses. In addition, there was no published 

framework on movement behaviour within which one species could be evaluated relative to 

other species. Secondly, it was clear from the literature review that some degree of 

polarisation existed in movement observations of many species. Many individuals stayed 

resident, but some moved far and there was little middle ground in observations.

7.3 CHARACTERISATION OF BEHAVIOURS

7.3.1 Movement categorisation of fishes
This thesis features a novel contribution to science by providing the first empirically 

determined categorisation of fishes according to movements recorded by mark-recapture 

data (Chapter 4). The two broad categories derived here largely reflected those suggested 

by respective experts (Mann 2013). However, for the first time movement categories were 

based on quantitative analyses and considered the movements of 30 species in relation to

5
International examples are widespread and include networks such as Atlantic Cooperative 

Telemetry (ACT) www.theactnetwork.com, Florida Atlantic Coast Telemetry (FACT) Array and 
SUNTag www.suntag.org.au.
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each other. This allowed for the development of a framework in which movement categories 

were associated with certain biological attributes.

Two primary movement categories were recognised - Category I and II (Figure 7.1). 

Category I species were characterised by frequent long-distance movements and included 

many migratory teleost and elasmobranch species. Other attributes associated with 

Category I species were large body size, high trophic levels, low dependence on stationary 

resources and patterns in seasonal abundance. Although strongly evident, these attributes 

were not strictly applicable and varied somewhat. Category II species, further sub-divided 

into IIa and IIb, were characterised by resident behaviour and featured relatively smaller 

body size, lower trophic levels, higher dependence on stationary resources and weak or 

absent patterns in seasonal abundance.

It is envisaged that this movement categorisation of fishes will simplify this biological aspect 

in much the same way as Whitfield’s (1994) estuary-association classification of fishes for 

southern Africa. The management of fish can now be defensibly customised in terms of their 

movement as well as their degree of estuary dependence. Regarding movement, data- 

deficient species may also be tentatively categorised according to biological attributes, 

although this will ultimately require verification. There was also a notable difference in the 

distribution of movements among distance bins between Category I and Category II species 

(Figure 4.3). This will also assist in categorising new species for which mark-recapture data 

becomes available in the future. Although the distance bins were chosen a priori, the results 

suggest that movements within 5 km are indicative of residency across species. However, 

this is likely an upper limit. Residency in some species has been shown to be at much 

smaller spatial scales (Kramer and Chapman 1999, Maggs et al. 2013b, Mann et al. 2015).

It was also shown that the magnitude of movement was associated with the time a fish 

spends at liberty between tagging and recapture. Other mark-recapture studies have noted 

this but have had difficulty in determining a quantitative association between distance moved 

and time-at-liberty (Attwood 2002, Griffiths and Wilke 2002, Maggs 2011). The analysis 

presented here showed that the relationship between these two variables was weak but 

statistically significant. Consequently, time-at liberty should always be considered when 

analysing mark-recapture data.

A caveat to this analysis is that it featured only 30 species and these were mostly coastal 

and demersal in nature. Inclusion of true pelagic species, such as billfish from the Xiphiidae
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and Istiophoridae families, would have been desirable. However, despite many pelagic 

species having been tagged in the ORICFTP, there have been very few recaptures reported.

7.3.2 Intra-population variability in movement behaviour
Although the categorisation of fishes in Chapter 4 showed the dominant movement 

behaviour of individual species, this exercise necessarily omitted the detail of individual 

movement. Like the need for a categorisation, the phenomenon described in this thesis as 

intra-specific variability in movement behaviour was identified as a significant knowledge gap 

from the literature review (Figure 7.1). Of the 30 species studied in Chapter 4, five were 

chosen for further investigation into the coexistence of resident and wide-ranging behaviour 

within populations (Chapter 5). Category I species exhibited mostly wide-ranging movement, 

but there were also numerous observations of residency. Similarly, Category II species 

exhibited mostly residency, but also undertook substantial wide-ranging movements. This 

phenomenon was found to occur in all five study species, in all ecoregions around southern 

Africa and in juveniles as well as adults. This suggests that intra-population variability in 

movement is widespread among fishes in southern Africa.

Although the movement categorisation simplified a complex aspect of fish ecology, 

movements which are seemingly uncharacteristic of a species should not be neglected. This 

out-of-the-ordinary behaviour is not anomalous and represents a critically important 

population-level strategy to increase resilience against recruitment failure. Petitgas et al. 

(2010) suggested that resident individuals provide stability to a population, while migratory 

individuals are associated with productivity. This combined strategy can be likened to a 

balanced investment portfolio. Resident individuals represent the steady, safe, slow-growth 

component of the portfolio, while migratory individuals are the high-risk, potentially high- 

reward component. Together these contrasting strategies allow a fish population (or 

investment) to endure difficult periods and to take advantage of productive periods. A 

population of only residents may not recover sufficiently between severe adverse 

environmental conditions, whereas a population of only risk-taking migrants may not have 

the resilience to endure a severe environmental event and could experience a collapse. As 

such, Petitgas et al. (2010) further suggested that the balance between the resident and 

migratory components tends to increase stock size and in some cases a population may 

rebuild from strong year classes produced by resident contingents. Owing to the widespread 

overexploitation of fish stocks, this aspect of movement should be seen as a priority for 

research, particularly in the context of marine protected areas.
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The distance and direction of wide-ranging movement was dependent on the species and 

the ecoregion of tag-release. This adds significant complexity for investigation. For this 

reason, future research will probably have to address this topic on a per species basis to 

obtain more in-depth insight. However, the distance and direction of wide-ranging 

movements in juveniles did not differ significantly to that of adults.

There was some evidence to suggest faster growth in wide-ranging individuals compared to 

resident individuals, but this was not conclusive, primarily due to limited data being available 

for this part of the analysis. Future research should test this. If confirmed, the question then 

is whether faster growing fish are better suited to wide-ranging movement or wide-ranging 

movement results in faster growth due to individuals accessing more diverse food resources.

7.4 FISHERY MANAGEMENT IMPLICATIONS

Overfishing is having an unprecedented effect on wild fish populations (Pauly et al. 2002). 

Fishers often target species that are vulnerable to exploitation, operate in sensitive 

environments and exploit critical life-stages, such as spawning or migration (Jackson et al. 

2001). The South-West Indian Ocean region was identified by Worm and Branch (2012) as a 

fisheries conservation hotspot with high biodiversity, increasing catch trends and very low 

management effectiveness. Among other things, effective management depends on reliable 

scientific investigation. The review of movement research (Chapter 3) confirmed that there is 

a wealth of fish movement data available to inform management in southern Africa, yet this 

has seldom been effectively incorporated into past management strategies. South Africa’s 

marine recreational fisheries have largely been managed using traditional recreational 

management regulations. These are often designed to limit fishing mortality and maximise 

yield (Ihde et al. 2011), through the implementation of regulations, such as minimum size 

(Allen and Pine 2000) and bag (creel) limits. Unfortunately, the stocks of many of the 

important recreational species have responded poorly to the management regimes. Several 

stocks are now categorised as overexploited or collapsed (Mann 2013).

A striking example of this has been the management of Lichia amia, which has experienced 

a long-term decline in catch-per-unit-effort (Chapter 6). Regulations have neglected to 

consider this species’ complex movement behaviour, which includes juvenile residency in 

estuaries, sub-adult and adult migration and geographically concentrated spawning 

aggregations. The movement categorisation provided here and the estuary-association 

classification provided by Whitfield (1994) deliver distilled descriptions of their respective 

ecological aspects for a species. In this way, these attributes should be considered when
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evaluating stock status and when adapting existing management strategies. Consideration 

for intra-population variability in movement behaviour yields two important points. Firstly, 

migratory L. amia experience heavy fishing mortality due to their predictability in space and 

time and that they form dense aggregations. This part of the life-cycle makes L. amia 

susceptible to overexploitation at a species level and must be protected. Secondly, if 

migratory individuals confer productivity to the population as suggested, there is even more 

reason to protect this part of the life-cycle.

Widespread failure of single-species fishery management approaches has resulted in a 

global shift towards an ecosystem based approach to management (Halpern et al. 2010, 

Pomeroy et al. 2010). One of the most popular implementations of this more holistic 

approach is the declaration of marine protected areas (MPAs) or marine reserves (Attwood 

et al. 1997, Kaplan 2009, Gaines et al. 2010a, b). MPAs are usually declared with two 

primary objectives -  biodiversity conservation and fisheries management. These spatially- 

based management tools are most often used alongside traditional management regulations 

and may provide varying levels of protection to the enclosed environment and the associated 

fauna and flora (Kelleher and Kenchington 1992, Unsworth et al. 2007). In a way, South 

Africa has incorporated fish movement into management through the implementation of 

MPAs, the efficacy of which depends largely on fish movement.

Resident species tend to overwhelmingly dominate most ecosystems and are well suited to 

spatial protection within MPAs, since they rarely move beyond the borders into exploitable 

areas. It is therefore not surprising that evidence of positive "reserve effects” has frequently 

been reported in resident species (Roberts and Polunin 1991, Dugan and Davis 1993, 

Rowley 1994, Bohnsack 1996, Roberts and Hawkins 2000, Maggs et al. 2013a, Mann et al. 

2016).

Wide-ranging species regularly move long distances, which are greater than the scale of 

most MPAs (Gaines et al. 2010b). Limiting fishing mortality with MPAs is therefore not as 

effective for more mobile species as it is for resident species. However, MPAs may still have 

application in some cases. Wide-ranging species often concentrate in spatially discrete 

localities during vulnerable life-stages and these localities can be protected with MPAs 

(Apostolaki et al. 2002). For example, while individuals are occupying juvenile nursery areas 

(e.g. estuaries) or participating in adult spawning aggregations, there is an increased risk of 

overexploitation. Once these sensitive areas have been identified, fishing mortality can be 

locally eliminated with the declaration of a no-take MPA. Alternatively, temporary MPAs or
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spatially-defined closed seasons can be used to eliminate fishing mortality during spawning 

aggregations. In the case of L. Amia, a closed season from 1 October to 30 November would 

likely benefit the species greatly. Owing to the seasonal aggregation being largely confined 

to KwaZulu-Natal, the closed season could potentially be confined to that province.

Despite the dominance of resident species in South Africa and research supporting the use 

of MPAs, the governance of these areas has been somewhat poor (Tunley 2009). 

Surprisingly, fishery managers in South Africa are showing weak support for MPAs and in 

certain cases have opened up long-standing closed areas to recreational and subsistence 

fishing.

7.5 FUTURE RESEARCH

Despite nine decades of fish movement research in southern Africa, there are still many 

exciting research questions that remain unanswered. From my research, the following are 

some ideas for future research, which would have application in fisheries management.

The movement of individual fish is highly variable but has population level implications. 

Considering that intra-population variability in movement behaviour potentially offers 

resilience to exploitation, this concept warrants focussed research effort. This phenomenon 

has been well researched in the avian literature, but is still poorly understood in the 

ichthyological literature. Secor (1999) suggested the term contingent to refer to a level of 

aggregation based on divergent migration behaviours or divergent habitat use. Simply put, a 

population may consist of two contingents of fish -  one resident and one migratory. 

Knowledge of contingent structuring is important to the conservation of a species. With the 

mark-recapture methods used in the current study, it was not possible to identify 

contingents. Accurate identification of contingents requires other more suitable methods, 

such as biotelemetry (e.g. Childs et al. 2015, Gahagan et al. 2015) or otolith microchemistry 

(e.g. Kerr et al. 2009, Gillanders et al. 2015) and should receive increased research focus in 

the future.

Factors influencing movement behaviour remain a substantial knowledge gap, which will 

hopefully provide context to the patterns observed in nature. With a better understanding of 

what drives movement, more accurate predictions can be made to improve our management 

of stocks. Recently this area of fish movement research has accelerated in the spatial 

confines of southern African estuaries, where biotelemetry is particularly suitable for high- 

resolution observations of fine-scale habitat use (O’Connell 2008, Childs et al. 2008b, c,
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Hedger et al. 2010, Bennett et al. 2011, N^sje et al. 2012, Bennett et al. 2012). In 

comparison, research into factors influencing large-scale coastal movement has lagged far 

behind that in estuaries. This represents another important knowledge gap, which can 

hopefully be addressed by the rapidly growing Acoustic Tracking Array Platform (ATAP). 

This platform, administered by the South African Institute for Aquatic Biodiversity (SAIAB), is 

an expanded network of automated data-logging acoustic receivers that are moored to the 

ocean’s floor around the South African coastline (www.saiab.ac.za/atap.htm).

The use of MPAs has intensified rapidly on a global scale in recent years primarily for 

conservation. This has frequently resulted in the loss of fishing grounds, which has prompted 

evaluations of MPA relevance to fisheries management. In response, spillover of sub-adult 

and adult fish from MPAs has often been cited as a direct fisheries benefit of these spatial 

management initiatives (Roberts et al. 2001, Russ 2002, Goni et al. 2008). In theory, true 

spillover would result from density-dependent emigration of post-recruit fish from within an 

MPA (Abesamis and Russ 2005). Under these conditions, an MPA can continuously 

enhance nearby fisheries. However, proof of spillover is exceedingly difficult to obtain and 

often relies on indirect or circumstantial evidence, such as increased catch-per-unit-effort 

adjacent to MPA boundaries (Goni et al. 2008). Furthermore, many studies have failed to 

discriminate between spillover and variability in movement patterns (Zeller et al. 2003, 

Maggs et al. 2013b). More research is needed to determine the nature and drivers of 

movement across MPA boundaries. Without this knowledge, there may be unforeseen 

consequences to the use of these seemingly simple management tools. For example, if 

residency and wide-ranging behaviour is fixed in respective individuals, there may be 

differential selection for and against these traits (Attwood 2002). That is, residency may 

become more prevalent because wide-ranging individuals, moving beyond the borders of 

protection, will be caught out. Since wide-ranging/migratory individuals are associated with 

population productivity, this situation would be highly undesirable.

Four species, namely Notorynchus cepedianus, Lithognathus aureti, Triakis megalopterus 

and Rhyncobatus djiddensis were classified as Category I - wide-ranging (Chapter 4), but 

their long-distance movements are inconsistent with true migration and appear random. 

However, the movements of these species most likely appear somewhat random due to a 

lack of understanding. The movement behaviour of these species, especially in terms of the 

management implications, offers an exciting knowledge gap for future research.
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Lastly, the movement categorisation was limited to only 30 species from one geographic 

region. The mark-recapture dataset used is not unique at a global scale and similar datasets, 

such as SUNtag, exist in other parts of the world. These datasets are likely to have similar 

mark-recapture data to that of the ORICFTP. Besides covering other regions, these datasets 

will contain species and families, which were not available in the ORICFTP. These datasets 

thus present an opportunity to extend the categorisation of fish movement developed in this 

thesis to include new data from around the globe.
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Appendices

APPENDICES

Appendix 1a: Literature surveyed in Chapter 3. Publications (n=101) covered the period 1928-2014. Area -  MOZ: Mozambique, KZN: 

KwaZulu-Natal, EC: Eastern Cape, WC: Western Cape, NC: Northern Cape, NAM: Namibia. Research focus areas -  1: broad-scale movement 

patterns, 2: fine-scale habitat use, 3: protected area, 4: population connectivity, 5: factors influencing movement, 6: reproductive, 7: nursery 

areas, 8: feeding behaviour, 9: migration rates, 10: ontogeny. See full reference below (Appendix 1b).

M ovem ent
Publication Area Environm ent Tagging m ethod S pecies research 

focus areas

A llen  and C liff 2000 KZN M M ark-recapture C archarh inus b rev ip inna 1

A ttw ood 2002 EC, W C M M ark-recapture D ich is tius  capensis 1,2,3

A ttw ood and B ennett 1994 W C M M ark-recapture D ich is tius  capensis 1,3

A ttw ood and B ennett 1995 KZN, EC, W C M M ark-recapture D ich is tius capensis, S paridae (2 spp.) 1,3,9

A ttw ood and C ow ley 2005 EC, W C M M ark-recapture D ich is tius  capensis 1,3

A ttw ood et al. 2007 W C E A coustic R habdosargus g lob iceps 2,3

Bass 1977 KZN M, E M ark-recapture C archarh inus ga lapagens is , C. leucas 1

Bass 1978 KZN, EC, W C M, E M ark-recapture C archarh inus obscurus, C. leucas 1

Bass et al. 1973 KZN M, E M ark-recapture C archarh in idae (3 spp.) 1

Bennett 1993 W C M M ark-recapture L ithogna thus  lithognathus 1

Bennett e t al. 2011 EC E A coustic L ithogna thus  lithognathus 2,5

Bennett e t al. 2012 EC E A coustic L ithogna thus  lithognathus 2,5

Bennett e t al. 2013 EC M, E M ark-recapture, Acoustic L ithogna thus  lithognathus 1,2

Bonfil et al. 2005 W C M Acoustic , PAT, Sate llite , O the r C archarodon ca rcharias 1,4

Brouw er 2002 EC M M ark-recapture P e tru s  rupestris 1,3

Brouw er et al. 2003 EC M M ark-recapture A rgyrozona  argyrozona 1,3

Buxton and A llen  1989 EC M M ark-recapture C hrysob lephus cris ticeps, C hrysob lephus la ticeps 1,3
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M ovem ent
Publication Area Environm ent Tagging m ethod S pecies research 

focus areas

C hilds et al. 2008a EC E A coustic P om adasys  com m ersonn ii 2,3

C hilds et al. 2008b EC E A coustic P om adasys  com m ersonn ii 2,5

C hilds et al. 2008c EC E A coustic P om adasys  com m ersonn ii 2,5

C hilds et al. 2011 A A coustic A rgyrosom us ja p o n icu s M ethods

C liff and D udley 1991 KZN M M ark-recapture C archarh inus leucas 1

C liff and D udley 1992a KZN M M ark-recapture C archarh inus b rachyurus 1

C liff and D udley 1992b KZN M M ark-recapture R eview

C liff and D udley 2010 KZN M M ark-recapture C archarh inus am bo inensis 1

C liff et al. 1996 KZN, EC, W C M M ark-recapture C archarodon ca rcharias 1

C ow ley 1999 EC M M ark-recapture L ithogna thus  lithognathus, P achym etopon  grande 1,3

C ow ley e t al. 2002 EC M M ark-recapture D ich is tius capensis, S paridae (3 spp.) 1,3

C ow ley e t al. 2008 EC E A coustic A rgyrosom us ja p o n icu s 2

C ow ley e t al. 2013 EC M, E A coustic P om adasys  com m ersonn ii 1,6

da S ilva et al. 2010 W C M M ark-recapture, PAT P rionace  g lauca 1,4

da S ilva et al. 2013a W C E A coustic M uste lus  m uste lus 3,6 ,8

da s ilva  et al. 2013b W C E A coustic M uste lus  m uste lus 2,3

D avies and Joubert 1966 MOZ, KZN, EC, O ther M M ark-recapture E lasm obranch ii (6 spp.) 1

D icken 2011 EC M M ark-recapture C archarh inus obscurus 1

D icken et al. 2006 KZN, EC, W C M M ark-recapture C archarias taurus M ethods

D icken et al. 2007 KZN, EC, W C M M ark-recapture C archarias taurus 1,7

D icken et al. 2009 KZN, EC, W C M M ark-recapture C archarias taurus M ethods

D icken et al. 2011 EC, W C M M ark-recapture C archarias taurus M ethods

D iem er et al. 2011 KZN, EC, W C M M ark-recapture S phyrna  lew in i, S . zygaena 1

D udley and C liff 1993 KZN M M ark-recapture C archarh inus lim batus 1

D udley et al. 2005 KZN, EC, W C M M ark-recapture C archarh inus obscurus 1

D unlop et al. 2013 MOZ, KZN, EC, W C , NC, NAM M, E M ark-recapture V a rious  te leost species 1
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Publication Area Environm ent Tagging m ethod S pecies
M ovem ent 
research 

focus areas

Ebert 1996 EC, W C , NAM M M ark-recapture N oto rynchus cepedianus 1

E scobar-P orras 2009 KZN, EC, W C M M ark-recapture, Acoustic S cy liorh in idae  (4 spp.) 1

G arratt 1993a KZN M M ark-recapture C hrysob lephus pun iceus 1,6

G arratt 1993b KZN E M ark-resight A can thopag rus  berda 1,4

G ifford et al. 2007 MOZ, KZN, O ther M Satellite R h incodon  typus 1

G ovender 1996 KZN, EC, W C M M ark-recapture P om atom us sa lta trix 1,9

G ovender and Bullen 1999 MOZ, KZN, EC, W C , NC, NAM M, E M ark-recapture Review

G riffiths 1996 KZN, EC, W C M M ark-recapture A rgyrosom us ja p o n icu s 1

G riffiths 1997 W C M M ark-recapture A rgyrosom us inodorus 1,4

G riffiths 2003 W C , NAM M M ark-recapture T hyrs ites  a tun 4

G riffiths and A ttw ood 2005 W C M, E M ark-recapture A rgyrosom us ja p o n icu s 1

G riffiths and W ilke  2002 W C M M ark-recapture S paridae (5 spp.) 1,3

G riffiths e t al. 2002 W C M M ark-recapture R habdosa rgus g lob iceps

H edger e t al. 2010 W C M, E A coustic P om atom us sa lta trix 2

H issm an et al. 2006 KZN M A coustic La tim e ria  cha lum nae 2

H ussey et al. 2009 KZN, EC, W C M M ark-recapture C archarh inus obscurus 1,7

H utch ings 2005 KZN, EC, W C M M ark-recapture U m brina  rob inson i 1

Jew ell et al. 2011 W C M Satellite C archarodon ca rcharias

Jew ell et al. 2012 W C M A coustic C archarodon ca rcharias 2

Johnson et al. 2009 W C M A coustic C archarodon ca rcharias 2

Kerwath et al. 2005 EC E A coustic P om adasys  com m ersonn ii 2

Kerwath et al. 2006 A M ark-recapture, M ark-resight C hrysob lephus la ticeps, B oopso idea  inorna ta M ethods

Kerwath et al. 2007a EC, W C M M ark-recapture, M ark-resight C hrysob lephus la ticeps 2,3

Kerwath et al. 2007b W C M A coustic C hrysob lephus la ticeps 2,3

Kerwath et al. 2008 W C M M ark-recapture, Acoustic, O ther C hrysob lephus la ticeps 3

Kerwath et al. 2009 W C M, E A coustic R habdosa rgus g lob iceps 3
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M ovem ent
Publication Area Environm ent Tagging m ethod S pecies research 

focus areas

Kock et al. 2013 W C M A coustic C archarodon  ca rcharias 2

Kyle 2000 KZN E M ark-recapture A can thopag rus  b e rda 1

Kyle 2002 KZN E M ark-recapture T e leoste i (3 spp.) 1

Laroche et al. 2007 W C M A coustic C archarodon  ca rcharias 8

Lukey et al. 2006 EC E M ark-recapture T e leoste i (6 spp.) 1

M aggs 2011 KZN, EC M M ark-recapture T e leoste i (7 spp.) 1,2,3

M aggs et al. 2013 KZN, EC M M ark-recapture S paridae (2 spp.), S erran idae (2 spp.) 1,2,3

Mann 2012 KZN M M ark-recapture T e leoste i (8 spp.) 1,2,3

M archand 1934 W C , NC, NAM M M ark-recapture T hyrs ites  a tun 1,4

M cCord and Lam berth  2009 W C M, E M ark-recapture, Acoustic C archa rh inus  leucas 1

M cCord et al. 2013 W C M, E M ark-recapture, Acoustic, PAT C archarh inus leucas, Teleoste i (2 spp.) 2 ,5

M urray 2012 KZN, EC, W C M M ark-recapture C ym atoceps  nasu tus 1,2

N * s je  et al. 2007 EC E A coustic P om adasys com m ersonn ii 2

N * s je  et al. 2012 EC E A coustic A rgyrosom us ja p o n icu s 2,5

N epgen 1977 W C M M ark-recapture A rgyrozona  argyrozona, P achym etopon  b lo ch ii Unknown

N epgen 1979 W C M M ark-recapture T hyrs ites  a tun Unknown

N ew m an 1970 W C , NC, NAM M M ark-recapture  (in terna l m etal tag) S a rd inops  sagax 4,9

O 'C onnell 2008 EC E A coustic P om adasys com m ersonn ii 2,5

Pa lm er 2008 A M ark-resight, O ther A rgyrosom us ja p o n icu s M ethods

P arker et al. 2013 KZN M M ark-recapture T rach ino tus  b o tla 1

Penney 1982 W C M M ark-recapture S erio la  la land i 1,4

Sm ale et al. 2012 ECW C M M ark-recapture, Acoustic , PAT C archa rias  taurus 1

Sm ith  2008 KZN, EC, W C M M ark-recapture L ich ia  am ia 1

Thorstad et al. 2009 A Acoustic , PIT P om atom us sa lta trix M ethods

van de r E lst 1990 MOZ, KZN, EC, W C , NC, NAM M, E M ark-recapture Review

van de r E lst and Bullen 1993 MOZ, KZN, EC, W C , NC, NAM M, E M ark-recapture Review
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M ovem ent
Publication Area Environm ent T agg ing  m ethod S pecies research 

focus areas

van de r E lst and C hater 1982 KZN, EC, W C M M ark-recapture P om atom us sa lta trix 1

von Bonde 1928 A M ark-recapture E p inephe lus  m arg ina tus M ethods

W att-P ring le  2009 KZN, EC, W C M M ark-recapture, M ark-resight S paridae (3  spp .) 1 ,2 ,6,7 ,8 ,10

W att-P ring le  e t al. 2013 EC M M ark-resight S paridae (3  spp .) 2 ,7 ,10

W ebb  2002 KZN, EC, W C M, E M ark-recapture P om adasys com m ersonn ii 1,6,8

W ilke  and G riffiths 1999 W C , NAM M M ark-recapture T e leoste i (17 spp) 1,3,4
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