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Abstract 

 

Every day, we use our sensory organs to perceive the environment around us. 

However, our perception not only depends on sensory information, but also on 

information already present in our brains, i.e. prior knowledge acquired by 

previous experience. The idea that prior knowledge is required for efficient 

perception goes back to Hermann von Helmholtz (1867). He raised the 

hypothesis that perception is a knowledge-driven inference process, in which 

prior knowledge allows to infer the (uncertain) causes of our sensory inputs. 

According to the currently very prominent “predictive coding theory” (e. g. Rao 

and Ballard, 1999; Friston, 2005, 2010; Hawkins and Blakeslee, 2005; Clark, 

2012; Hohwy, 2013) this inference process is realized in our brains by using 

prior knowledge to build internal predictions for incoming information.  

Despite the increasing popularity of predictive coding theory in the last decade 

(see Clark, 2012 and comments to his article), previous research in the field has 

left out several important aspects: 1. The neural correlates of the use of prior 

knowledge are still widely unexplored; 2. Neurophysiological evidence for the 

neural implementation of predictive coding is limited and 3. Assumption-free 

approaches to study predictive coding mechanism are missing.  

In the present work, I try to fill these gaps using three studies with 

magnetoencephalographic (MEG) recordings in human participants:  

Study 1 (n = 48) investigates how prior knowledge from life-long experience 

influences perception. The results demonstrate that prediction errors induced by 

the violation of predictions based on life-long experience with faces are 

reflected in increased high-frequency gamma band activity (> 68 Hz).  

For studies 2 and 3, neurophysiological analysis is combined with information-

theoretic analysis methods. These allow investigating the neural correlates of 

predictive coding with only few prior assumptions. In particular, the information-

theoretic measure active information storage (AIS; Lizier et al., 2012; Wibral et 

al., 2014) can quantify how much information is maintained in neural activity 

(predictable information). I use AIS in order to study the neural correlates of 

activated prior knowledge in study 2 and 3. 
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Study 2 (n = 52) assesses how prior knowledge is pre-activated in task relevant 

states to become usable for predictions. I find that pre-activation of prior 

knowledge for predictions about faces increases alpha and beta band related 

predictable information as measured by AIS in content specific brain areas.  

Study 3 (n patients = 19; n controls = 19) explores whether predictive coding 

related mechanism are impaired in autism spectrum disorder (ASD). The results 

show that alpha and beta band related predictable information is reduced in the 

brain of ASD patients, in particular in the posterior part of the default mode 

network. These findings indicate reduced use or precision of prior knowledge in 

ASD. 

In summary, the results presented in the present work illustrate the neural 

correlates of the use of prior knowledge in the predictive coding framework. 

They provide neurophysiological evidence for the link of prediction errors and 

fast neural activity (study 1, gamma band) as well as predictions and slower 

neural activity (study 2 and 3, alpha and beta band). These findings are in line 

with a theoretical proposal for the neural implementation of predictive coding 

theory (Bastos et al., 2012). Further, by application of AIS analysis (study 2 and 

3) the present work introduces the largely assumption-free usage of 

information-theoretic measures to study the neural correlates of predictive 

coding in the human brain. In future, analysis of predictable information as 

measured by AIS may be applied to a broad variety of experiments studying 

predictive coding and also for research on neuropsychiatric disorders as has 

been demonstrated for ASD.  
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1. General introduction 

1.1. Prior knowledge has a key role in perception  

These days it is a well-established notion that our perception is not exclusively 

based on environmental stimuli, but substantially depends on previous 

experience and contextual factors. A compelling example for this notion is given 

by the German neuroscientist Gerhard Roth (Figure 1.1.): 

 

Figure 1.1. What is this? (Solution in the text); Roth (1997: 261- 263). 

Most people have difficulties in recognizing what is shown in the picture when 

seeing it for the first time. After 10 or 20 minutes of exposure some can finally 

identify the animal portrayed in the picture, while others still remain unable to 

recognize it. However, when several hints are provided (e.g. think of “milk” and 

“Milka chocolate”) and after pointing on details of the outline, almost everyone is 

able to recognize the identity of the animal after a few minutes only. This can be 

explained by the fact that these hints activate pieces of knowledge in (visual) 

memory, which match to the information in the picture and thereby speed up the 

process of considering possible interpretations of the visual input (see e.g. 

Fenske et al., 2006). After repeated exposure to the picture, the recognition 

process becomes almost automatic and after an extensive exposure period, it 
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becomes almost impossible to see anything else than a cow in the picture. 

Importantly, Gerhard Roth’s example shows that a sensory input not resulting in 

any meaningful perception in the beginning, can transform into a stable and 

meaningful percept through experience. This parallels the well-established 

finding that previous experience with a stimulus facilitates perception – which is 

for instance demonstrated by impaired detection performance when objects are 

presented in unusual contexts (Biederman et al., 1973; see Bar, 2004 for a 

review).  

1.2. Perception as knowledge-driven inference 

The idea that prior knowledge from previous experience is required for efficient 

perception is not new; it can be traced back to Hermann von Helmholtz in the 

1860s. Von Helmholtz proposed the idea of perception as unconscious 

knowledge-driven inference, in which the brain uses prior knowledge from 

memory to infer the (high-level) causes of its sensory inputs (Von Helmholtz, 

1867). Helmholtz’s idea is based on the general problem that the brain does not 

have direct access to the external causes resulting in its (sensory) inputs. 

Moreover, there is no one-to-one mapping from external causes to sensory 

inputs. This is exemplified by the fact that the retina has only limited possibilities 

of representation for an unlimited amount of causes. Consequently, the same 

representation on the retina can be caused by a lot of different causes. 

Additionally, the same cause can lead to different representations on the retina 

depending on the context (see e.g. Kersten et al., 2004, Figure 1 for an 

illustration of this problem). 

It is assumed that the brain deals with this uncertainty by incorporating prior 

knowledge from previous experience in a (approximately) Bayesian fashion into 

the perceptual process (Kersten et al., 2004; Knill and Pouget, 2004). This 

allows the brain to combine the prior probability of a potential cause with a 

likelihood-term (probability of the observed sensory information given the 

cause) to build its posterior (probability of the cause given the observed sensory 
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information) in order to determine the most probable cause for its sensory input. 

A promising candidate for realization of this knowledge driven inference in the 

brain is predictive processing (e. g. Mumford, 1992; Rao et al., 1999; Friston, 

2005, 2010; Hawkins and Blakeslee, 2005; Clark, 2012; Hohwy, 2013), which 

became a highly prominent motif in neuroscience research during the last 

decade. Different variants of predictive processing in the brain have been 

suggested (see Spratling, 2017). The most popular variant is the (hierarchical) 

predictive coding theory (Rao and Ballard, 1999; Friston, 2005, 2010).  

1.3. History of the term “predictive coding” 

The term “predictive coding” was originally introduced in the context of 

television and radio transmission (Harrison, 1952; Oliver, 1952). In this context, 

it referred to an efficient strategy to transmit information over a channel with 

limited capacity. An ideal transmission strategy should get rid of signal 

redundancy and should also include a signal coding for which only a small 

dynamic range is required. To illustrate these requirements, television can be 

considered as an example. In television broadcasting, subsequent images are 

mostly very similar. So, instead of sending nearly the same image twice or more 

often it is more efficient to signal only the difference between the last and the 

actual image. Signaling only the difference and not the same and thus 

predictable part of the image constitutes a simple predictive code. 

Such a predictive code was also proposed to be a basic principle in the brain: 

According to predictive coding theory the information passed feed-forward in the 

cortical hierarchy is limited to the difference between the predicted and the 

actual incoming information – the so called “prediction error” (Clark, 2012). The 

basic principles of predictive coding theory are described below. 

1.4. Basic principles of predictive coding theory 

Predictive coding theory proposes that the brain builds a generative model of 
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the world based on the statistical regularities in the environment. This 

generative model maps from external causes to sensory consequences and can 

be inverted to predict the incoming information. The prediction with the best 

fitting to the incoming information is identified by an iterative process of 

prediction error minimization between hierarchical layers. Mathematically this 

can be formulated as finding the parameters of the generative model which 

minimize the sum of the squared error between the actual incoming information 

and the prediction. The prediction is represented in “prediction units” and is 

transmitted via feedback connections (top-down)1 to areas lower in the cortical 

hierarchy, where predicted and actual information are compared. A potential 

mismatch between predicted and actual information is represented in “error 

units” and is transmitted as prediction error via cortical feed-forward 

connections (bottom-up)2 to brain areas higher in the cortical hierarchy, where it 

may induce a modification or update of the original prediction. This procedure 

can be repeated in several loops until the prediction error is minimized and the 

most likely causes for the incoming information have been inferred (Rao and 

Ballard, 1999; Friston, 2005, 2010).  

This principle has been recently expanded by the concept of precision-

weighting (e.g. Friston, 2009; Feldman and Friston, 2010). According to this 

concept a stronger or weaker weighting of the sensory input or prediction error 

compared to the prediction depends on their corresponding “precision”. To give 

an example, a sound in a noisy environment would usually be not considered as 

reliable and would therefore not be associated with a strong precision, while the 

same sound in a silent environment would be potentially associated with a 

higher precision. This regulation of precision is also supposed to constitute a 

mechanism for the role of attention in the predictive coding framework (Friston, 

2009; Feldman and Friston, 2010), allowing to boost the precision when 

attention is directed to a stimulus.  

                                            
1,2

 Strictly speaking, the terms feedback and feed-forward refer to the anatomical connections, while the 

terms top-down and bottom-up refer to psychological concepts. However, for practical purposes these 

terms will be used interchangeably in this thesis. 
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Imbalances in the precision-weighting system may result in an excessive 

reliance on either top-down predictions or bottom-up incoming information and 

have been associated with neuropsychiatric disorders – in particular with autism 

spectrum disorder (ASD; Friston et al., 2013; Lawson et al., 2014). 

1.5. Predictive coding models for autism spectrum disorder 

A relation of impairments in patients with ASD and aberrant predictive coding 

mechanisms was first proposed by Pellicano and Burr (2012a). Specifically, 

Pellicano and Burr hypothesized that the prior knowledge (or in short, the 

“prior”) used for predictions is less precise in ASD patients, resulting in a 

reduced influence of prior knowledge on perception. According to this view, 

perception in ASD patients compared to healthy humans more heavily relies on 

the sensory information. This view is in line with hypotheses of a general 

reduction of top-down control in ASD (Frith, 2003). 

Pellicano and Burr’s proposal started an intensive discussion in which most 

researchers acknowledged the general idea of impaired predictive coding 

mechanisms in ASD (Brock, 2012; Friston et al., 2013; Teufel et al., 2013; van 

Boxtel and Lu, 2013; Lawson et al., 2014; Van de Cruys et al., 2014). However, 

some of the follow-up articles questioned Pellicano and Burr’s theory of 

attenuated influence of priors in ASD (Brock, 2012; Teufel et al., 2013; Van de 

Cruys et al., 2014). Their authors suggested that rather the influence of bottom-

up information (sensory input, prediction error) could be enhanced in ASD 

patients. This enhancement of bottom-up influences in ASD patients might be 

either caused by reduced sensory noise (Brock, 2012; however see Pellicano 

and Burr, 2012b) or by the unduly high precision of prediction errors (Van de 

Cruys et al., 2014). In turn, other accounts proposed that the use of top-down or 

bottom-up information is not unilaterally altered, but rather that the flexible 

precision-weighting of top-down and bottom-up information is abnormal in ASD 

(Friston et al., 2013, Lawson et al., 2014). According to these proposals, the 

excessive influence of prediction errors in ASD results from the failure to 
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attenuate the sensory gain of prediction error units by top-down gain control 

(Lawson et al., 2014).  

1.6. Neural implementation of predictive coding  

Differentiating between competing models of predictive coding in ASD with the 

help of neurophysiological recordings requires knowledge of the neural 

implementation of predictive coding mechanisms in the human brain. A proper 

predictive coding model at the implementational level (see Marr, 1982), ought to 

combine the physiology and anatomy of the human cortex with the “ingredients” 

of predictive coding theory: In the predictive coding framework, prediction errors 

are propagated via feed-forward connections which are known to originate in 

superficial cortical layers. Consequently, “error units” signaling the prediction 

errors should be preferentially located at superficial cortical layers. On the other 

hand, predictions are propagated via feedback connections which are known to 

originate in deep cortical layers. Hence, “prediction units” signaling the 

predictions should be preferentially located at deep cortical layers. In addition to 

this spatial segregation, a spectral segregation of predictions and prediction 

errors is suggested. This is based on the spectral predominance of gamma 

frequencies in the superficial cortical levels and alpha and beta frequencies in 

the deep cortical layers (Roopun et al., 2006, 2008; Buffalo et al., 2011; Xing et 

al., 2012). Additionally, a spectral segregation is supported by physiological 

findings in monkeys (Bastos et al., 2015) and humans (Michalareas et al., 2016) 

linking feed-forward and feedback connections to information transfer in the 

gamma and alpha/beta frequency band, respectively. 

In line with a spatial and spectral segregation of predictions and prediction 

errors, Bastos and colleagues recently proposed a theoretical model for the 

neural implementation for predictive coding (2012; Figure 1.2.).  
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Figure 1.2. Schematic illustration of the model for neural implementation of 
predictive coding proposed in Bastos et al. (2012). Error units in the superficial 
cortical layers, in which high frequencies dominate, send prediction error signals in 
gamma frequencies to areas higher up in the cortical hierarchy (h-1 to h and h to h+1). 
Prediction units in the deep cortical layers, in which the low frequencies dominate, send 
prediction signals in beta frequencies to areas lower in the cortical hierarchy (h+1 to h 
and h to h-1). Orange indicates high frequencies, blue indicates low frequencies. 

 

In Bastos’ model, prediction errors express in fast neural activity (> 30 Hz, 

gamma frequency band) at superficial cortical layers, while predictions express 

at deep cortical layers in lower frequencies, presumably in the beta frequency 

band (~ 12 - 30 Hz). 

1.7. Shortcomings of previous research in the predictive coding 

field and contribution of present research 

Although predictive coding theory became a highly popular research topic in 

neuroscience within the last ten years (see e.g. Clark, 2012 and comments to 

his article), previous research in the field has not addressed several important 

aspects, yet:  



General introduction 

26 
 

1. The neural correlates of the use of prior knowledge in predictive coding are 

still widely unexplored.  

2. Neurophysiological evidence for the neural implementation of predictive 

coding is limited.  

3. Assumption-free approaches to study predictive coding algorithms are 

missing, i.e. many experimental tests of predictive coding theory rely on ad hoc 

beliefs about what the brain should actually predict in a given situation. 

In the remainder of the general introduction I am going to discuss these 

shortcomings and describe how I addressed them in the present work. 

1.7.1. The neural correlates of the use of prior knowledge in predictive 

coding are still widely unexplored 

The use of prior knowledge is inevitably an essential part of predictive coding 

theory, as it facilitates the fundamental differentiation between predicted and 

unpredicted incoming information. It is also well known that the predictive 

coding principle can account for several behavioral and cognitive phenomena, 

in which prior knowledge plays a role – like priming, mismatch negativity, 

repetition suppression and binocular rivalry (Friston, 2005; Hohwy et al., 2008). 

Nevertheless, the neural correlates of the use of prior knowledge in predictive 

coding remain fairly unexplored to date. In the present work, I tried to fill this 

gap by conducting three studies to investigate the neural correlates of the use 

of prior knowledge in the predictive coding framework: 

1. In study 1 (“The faces of predictive coding” published in The Journal of 

Neuroscience, 2015, chapter 2) I investigated how prior knowledge from life-

long experience influences our perception. Hereby, I focused on the neural 

correlates of prediction errors – induced by a mismatch of sensory input and 

predictions based on prior knowledge about faces from life-long experience.  

2. In study 2 (“Information-theoretic evidence for predictive coding in the face-

processing system” published in The Journal of Neuroscience, 2017, chapter 3) 

I investigated how prior knowledge is activated in task relevant states to 
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become relevant for predictions. Here, I focused on the pre-activation of 

relevant prior knowledge for face predictions. 

These two studies used Mooney stimuli (Mooney, 1957), which are (degraded) 

black and white versions of faces (and houses in study 2 only). Mooney stimuli 

are well suited to study the use of prior knowledge in the predictive coding 

context, as prior knowledge from memory is inevitably required for their 

successful recognition (Kemelmacher-Shlizerman et al., 2008)  

3. Last, in study 3 (“Active information storage is reduced in autism spectrum 

disorder – a predictive coding study” submitted to Human Brain Mapping, 

chapter 4) I investigated whether the use of prior knowledge is reduced in ASD. 

Thereby, I tested the hypothesis that predictive coding related mechanisms are 

disturbed in ASD patients.  

All three studies used magnetoencephalography (MEG) recordings. The very 

good spatial resolution of MEG allowed whole-brain reconstruction of time 

courses in source space; the excellent temporal resolution further allowed 

studying the neural correlates of the use of prior knowledge in neural source 

activity proper. 

1.7.2. Neurophysiological evidence for the neural implementation of 

predictive coding is limited 

Although Bastos’ theory (2012) is to date the most relevant proposal for the 

neuronal implementation of predictive coding in the human cortex, 

neurophysiological evidence for Bastos’ suggestion of a separate fast frequency 

channel for prediction errors and a slower frequency channel for predictions 

remains rare until now. Fortunately, the use of MEG recordings also enables 

performing a spectral analysis for the neural correlates of prediction errors and 

predictions, respectively – and thereby testing Bastos’ hypothesis. Thus, in all of 

the three studies in the present work I also investigated whether the spectral 

profile of prediction errors or predictions (prior knowledge) was in line with 
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Bastos’ hypothesis of an association of prediction errors with high and 

predictions with lower frequencies. 

1.7.3. Assumption-free approaches to study predictive coding algorithms 

are missing 

When interested in the use of predictions, studying the neural correlates of 

predictive coding usually requires making assumptions about the particular 

brain areas being involved, and about what these should predict in a given 

situation. Partly, this information may be acquired from the literature in the field. 

For instance, van Pelt and colleagues (2016) studied the prediction of causal 

events based on a network of brain areas known to be involved in causal 

inference. However, defining brain areas based on other studies might be often 

misleading, as even small changes in the experimental design or setting can 

lead to an involvement of different brain areas. To overcome this problem, I 

used information-theoretic analysis methods for study 2 and 3, which allow 

investigating the neural correlates of predictive coding in terms of fundamental 

components of information dynamics, i.e. information storage and information 

transfer. This approach facilitates to describe the neural correlates of predictive 

coding with only few prior assumptions (Wibral et al., 2015) and allows to find 

the brain areas involved in representing the prior knowledge for predictions 

without a-priori defining these brain areas. In particular, the concept of 

information storage was of relevance for studying the activation of prior 

knowledge (chapter 3 and 4), while the concept of information transfer was of 

relevance for studying the propagation of predictions (chapter 3). The definition 

and application of these two information-theoretic concepts is outlined below: 

 

1. Information Storage: We can differentiate between passive and active 

storage in the brain (Zipser et al., 1993). While passive storage refers to 

information stored in physiological parameters like synaptic weights, active 

storage refers to information maintained in neural activity. In the predictive 

coding framework, knowledge previously stored passively needs to become 
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activated and to be maintained in neural activity in order to be transferred to 

other brain areas and to predict the incoming information. This active type of 

storage can be measured with the information-theoretic measure active 

information storage (AIS). AIS measures the mutual information           

between the past                ... , and present state    of a (neural) signal 

(see methods part in chapter 3 for details). AIS can quantify how much 

information for a given time step of a neural signal has been stored in its past 

state or, in other words, how much information is maintained in neural activity 

(predictable information). Thus, analysis of predictable information as measured 

by AIS was applied to quantify the amount of prior knowledge activated in 

neural activity (chapter 3 and 4, healthy controls and ASD patients).  

2. Information transfer: In subsequent processing steps, activated prior 

knowledge may serve predictions which are transferred to other brain areas. To 

study this information transfer I used the information-theoretic measure transfer 

entropy (TE, Schreiber, 2000; Vicente et al., 2011; Wibral et al., 2011). TE 

measures the conditional mutual information                between the future 

   of a (neural) target signal   and source signal   conditional on the past of the 

target signal       where   is the physical delay from source to target (see 

methods part in chapter 3 for details). TE quantifies how much information is 

present in the target, which is already known from the source but new to the 

target. In other words, TE quantifies how much information has been transferred 

from source to target. This allowed us to study how predictions based on prior 

knowledge were transferred between brain areas (chapter 3).  

The results of all studies are summarized and discussed in the general 

discussion (chapter 5). 
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2.1. Abstract 

Recent neurophysiological accounts of predictive coding hypothesized that a 

mismatch of prediction and sensory evidence – a prediction error (PE) – should 

be signaled by increased gamma band activity (GBA) in the cortical area where 

prediction and evidence are compared. This hypothesis contrasts with 

alternative accounts where violated predictions should lead to reduced neural 

responses.  
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We tested these hypotheses by violating predictions about face orientation and 

illumination direction in a Mooney face detection task, while recording 

magnetoencephalographic responses in a large sample of 48 human subjects. 

The investigated predictions – acquired via life-long experience – are known to 

be processed at different time-points and brain regions during face recognition. 

Behavioral responses confirmed the induction of PEs by our task. Beamformer 

source analysis revealed an early PE signal for unexpected orientation in visual 

brain areas followed by a PE signal for unexpected illumination in areas 

involved in 3-D shape from shading and spatial working memory. Both PE 

signals were reflected by increases in high-frequency (68-140 Hz) GBA. In high-

frequency GBA we observed also a late interaction effect in visual brain areas, 

probably corresponding to a high-level PE signal. In addition, increased high-

frequency GBA for expected illumination was observed in brain areas involved 

in attention to internal representations. 

Our results strongly support the hypothesis that increased GBA signals PEs. 

Additionally, GBA may represent attentional effects. 

2.2. Introduction 

The view of the brain as a “predictive machine” has gained considerable 

popularity in the last decade (e.g. Hawkins and Blankeslee, 2005; Clark, 2012; 

Hohwy, 2013). This notion implies that the brain relies on statistical regularities 

in the environment to construct internal predictions of its sensory inputs to 

facilitate perception. In many cases these statistical regularities are extracted 

from life-long experience and form priors residing in implicit long-term memory. 

Yet, the mechanisms underlying the integration of experience-based information 

and sensory evidence during the perceptual process are still a matter of debate 

(e.g. Mumford, 1992; Rao and Ballard, 1999; Kersten et al., 2004; Friston, 2005, 

2010; Grossberg, 2007, 2012; Spratling, 2008; Kay and Phillips, 2011). 

Opposing theories propose either signal suppression (Grossberg, 2007, 2012; 
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Carpenter and Grossberg, 2010) or signal enhancement (Mumford, 1992; Rao 

and Ballard, 1999; Friston, 2005) in case of a mismatch of sensory evidence 

and information learned from previous experience. 

According to predictive coding theory (Rao and Ballard, 1999) in particular, a 

mismatch between predictions based on priors from our experience and 

incoming information should result in a prediction error (PE), reflected by 

increased neural activity.  

Anatomically, PEs are supposed to be propagated by feed-forward connections 

(Rao and Ballard, 1999), originating in superficial cortical layers (e.g. Barone et 

al., 2000). As gamma band activity (GBA) is prominent in the superficial layers 

of the cortical microcircuit (Buffalo et al., 2011; also see Wang, 2010 for a 

review), it has been suggested that the bottom-up propagation of PE signals is 

reflected in GBA (Arnal and Giraud, 2012; Bastos et al., 2012). 

To test the hypothesis that PEs are reflected by increased neural activity –

versus alternative accounts that favor suppression of activity in case of violated 

predictions, we used MEG because of its high temporal and spatial resolution. 

This enabled the investigation of timing, anatomical location and magnitude of 

PE signals at distinct hierarchical levels. Moreover, direct access to 

electrophysiological activity by MEG allowed us to specifically test whether GBA 

is the carrier of PE signals.  

First evidence for PE signaling in GBA has been provided in recent MEG 

studies (Arnal et al., 2011; Todorovic et al., 2011; Bauer et al., 2014). The 

present study is however to our knowledge the first one to test this hypothesis 

for priors from life-long experience while providing the spatial resolution to 

investigate PEs at different hierarchical levels and a high statistical power due 

to the large sample size of 48 subjects (see Button et al., 2013 for a review on 

the problems caused by small sample sizes in neuroscience).  

We induced PEs by a mismatch between the sensory input in a Mooney face 

(Mooney and Ferguson, 1951) detection task and predictions based on priors 
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from lifelong visual experience. The investigated priors “upright face orientation” 

and “illumination from the top” are supposed to be processed in different brain 

areas as well as at different time-points during the face recognition process 

(Cavanagh, 1991), which we expect to be reflected by time-shifted PEs. 

2.3. Methods 

2.3.1. Experimental strategy 

To investigate the neural correlates of PE signals we collected MEG responses 

while subjects performed a Mooney face detection task (Mooney and Ferguson, 

1951). Mooney stimuli can not be recognized without relying on predictions 

based on priors from our life-long experience (Moore and Cavanagh, 1998; 

Kemelmacher-Shlizerman et al., 2008). Here, we focussed on two important 

priors for Mooney faces: First, faces normally appear in upright orientation 

(‘orientation prior’; Yin, 1969; Valentine, 1988). Second, a scene is normally 

illuminated by a single light source from the top (‘illumination prior’; Brewster, 

1847; Sun and Perona, 1998; Adams, 2007; Gerardin et al., 2010).  

To induce PEs, the presented stimuli were made incompatible with the 

orientation prior, the illumination prior or both priors. To this end, we presented 

upright (UP) or inverted (IN) Mooney faces illuminated from the top (TP) or from 

the bottom (BT) which resulted in a 2x2 full factorial design (factors orientation 

and illumination) with four Mooney face conditions: UPTP, UPBT, INTP and 

INBT. To counter a potential response bias, additional sham stimuli with 

matched image statistics were presented that did not contain a face. 

In order to formulate hypotheses about the expected timing of neural PE 

responses we draw on a behaviourally well validated process model for Mooney 

face recognition by Cavanagh (1991). Cavanaghs model suggests that the 

stimulus orientation should be processed before the illumination direction is 

evaluated. Hence, we assume that the PE response for the violation of the 

orientation prior should precede the PE response for the violation of the 
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illumination prior. 

2.3.2. Subjects 

59 subjects participated in the MEG experiment. Subjects had normal or 

corrected-to-normal visual acuity and were right handed according to the 

Edinburgh Handedness Inventory scale (Oldfield, 1971). Each subject gave 

written informed consent before the beginning of the experiment. Subjects were 

paid 10€ per hour. 11 subjects had to be excluded from further analysis; 1 

subject was not able to tolerate the structural MRI scan; 5 subjects were 

excluded due to excessive movement or due to an insufficient amount of 

remaining trials after artefact rejection. 5 more subjects were excluded based 

on their behavioral performance (see exclusion criteria below). 48 participants 

(average age: 25.04 years, 22 males) remained and were considered for 

behavioral and neurophysiological analysis. The large sample size of 48 

subjects was chosen to reduce the risk of false positives, as suggested by 

Button and colleagues (2013). 

The local ethics committee (Johann Wolfgang Goethe University, Frankfurt, 

Germany) approved of the experimental procedure. 

2.3.3. Stimuli 

Two-tone images, known as Mooney face stimuli (Mooney, 1957), were created 

by transforming all shades of gray in photographs of upright (UP) faces into 

either black or white. To investigate the violation of the orientation prior, Mooney 

face orientation was inverted (IN). To investigate the violation of the illumination 

prior, the illumination source was set to light from the bottom (BT), while light 

from the top (TP) corresponded to the expected illumination direction. 

There was no significant difference in average local luminance between any of 

the four Mooney face conditions (p > 0.55) 

In addition, scrambled ‘No-Face’ stimuli (SCR) were created from each of the 
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Mooney face conditions by displacing white or black patches within the given 

background. Thereby all low-level information was maintained but the facial 

configuration disappeared. The scrambled stimuli served as sham stimuli to 

avoid a response bias towards detecting faces. Examples of the stimuli can be 

seen in Figure 2.1.  

All stimuli were resized to a resolution of 510 x 650 pixels. All stimulus 

manipulations were performed with the program GIMP (GNU Image 

Manipulation Program, 2.4, free software foundation, Inc., Boston, 

Massachusetts, USA).  

2.3.4. Stimulus presentation  

A projector with a refresh rate of 60 Hz was used to display the stimuli at the 

center of a translucent screen (background set to gray, 145 cd/m²). Stimulus 

presentation was controlled using the Presentation software package (Version 

9.90, Neurobehavioral Systems).  

Stimuli were presented in a pseudo-randomized order for a short time window 

of 0.2 seconds with a vertical visual angle of 20.8 and a horizontal visual angle 

of 16.2 degrees (white stimulus parts, 1140 cd/m²; black stimulus parts, 30 

cd/m²). To avoid effects of fatigue, the overall experiment was divided into six 

blocks (134 stimuli per block) and subjects were allowed to take short breaks 

between blocks. In each block, 20 Mooney face stimuli of each face condition 

were presented together with No-Face stimuli in a 3:2 (exact ratio 2.96:2) ratio 

to counteract response bias; resulting in 80 Mooney face stimuli and 54 

Scramble stimuli. The inter-trial-interval between stimulus presentations was 

randomly jittered from 3.5 to 4.5 seconds.  

2.3.5. Task and Instructions 

Subjects performed a face detection task on two-tone images and responded by 

pressing one of two buttons. The button assignment for a “Face” or “No-Face” 

response was counterbalanced across subjects (n=24 right index finger for 
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‘Face’ response). Subjects were instructed to respond only once and as 

precisely and quickly as possible. The subjects were informed about the ratio 

(3:2) of “Faces” to “No-Faces” in the presentation. Between stimulus 

presentations subjects were instructed to fixate a white cross on the center of 

the gray screen. Further, they were instructed to maintain fixation during the 

whole block. In addition, subjects were asked to suppress eye blinks during 

stimulus presentation and to avoid any movement during the acquisition 

session. Before data acquisition, subjects performed a test block of two minutes 

with stimuli not used during the actual task.  

 

Figure 2.1. Graphical depiction of stimulus timing and the five stimulus 
categories. UPTP: Upright faces with illumination from the top; UPBT: Upright faces 
with illumination from the bottom; INTP: Inverted faces with illumination from the top; 
INBT: Inverted faces with illumination from the bottom; SCR: Scrambled Mooney 
stimuli, not representing a face; ITI = Intertrial interval 

2.3.6. Data acquisition and exclusion criteria  

MEG data acquisition was performed in line with recently published guidelines 

for MEG recordings (Gross et al., 2012). MEG signals were recorded using a 

whole-head system (Omega 2005; VSM MedTech Ltd.) with 275 channels. The 

signals were recorded continuously at a sampling rate of 1200 Hz in a synthetic 

third-order gradiometer configuration and were filtered online with fourth-order 

Butterworth filters with 300 Hz low pass and 0.1 Hz high pass.  

Before and after each block the subject's head position relative to the 

gradiometer array was determined using three localization coils, one at the 

nasion and the other two located 1 cm anterior to the tragus of each ear on the 

nasion-tragus plane. Blocks with a head movement exceeding 5 mm were 
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discarded from further MEG data analysis. 

For artefact detection the horizontal and vertical electrooculogram (EOG) was 

recorded via four electrodes; two were placed distal to the outer canthi of the 

left and right eye (horizontal eye movements) and the other two were placed 

above and below the right eye (vertical eye movements and blinks). The 

impedance of each electrode was measured with an electrode impedance 

meter (Astro-Med, Inc Grass Instrument Division, W.Warwick RI USA) and was 

kept below 15 kΩ. 

Structural magnetic resonance (MR) images were obtained with a 3T Siemens 

Allegra or Trio scanner (Siemens Medical Solutions, Erlangen, Germany) using 

a standard T1 sequence (3-D magnetization -prepared -rapid-acquisition 

gradient echo sequence, 176 slices, 1 x 1 x 1 mm voxel size). For the structural 

scans vitamin E pills were placed at the former positions of the MEG localization 

coils for co-registration of MEG data and magnetic resonance images. 

Behavioral responses were recorded using a fiberoptic response pad (Photon 

Control Inc. LUMItouch™ Response System) in combination with the 

Presentation software (Version 9.90, Neurobehavioral Systems). Participants 

were excluded from further analysis if a response bias was detected (5 of 59 

subjects). For response bias detection we calculated the normalized c criterion 

(c(n), Green and Swets, 1966) from the performance of each participant. A mean 

response bias deviating more than two standard deviations from zero was 

chosen as the rejection criterion.  

2.3.7. Statistical analysis of behavioral data 

Responses were classified as correct or incorrect based on the subject’s first 

answer. For the hit rate analysis, the accuracy for each condition was 

calculated. For the reaction time analysis only correct responses were 

considered.  

Hit rates (HRs) and reaction times (RTs) were subjected to separate 2x2 
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repeated-measurements permutation ANOVAs (Anderson and Ter Braak, 2003; 

Suckling and Bullmore, 2004). To test whether the standard F-statistics obtained 

for the main effects and the interaction were likely to have occurred by chance, 

the condition labels of the original data were permuted across conditions. The 

F-value of the original data was then tested against an empirical distribution of 

F-values constructed from 5000 data sets with such randomly permuted 

condition labels. Each main effect and the interaction were tested separately. F-

values larger than the 95th percentile of the distribution of F-values obtained for 

the permuted data sets were considered to be significant at an alpha level of 

0.05. For the main effects, condition labels were permuted between the two 

levels of the tested factor within each subject, but permutations were restricted 

to occur within the level of the other factor, e.g. for the orientation effect labels 

for UPTP and INTP were considered to be exchangeable, but labels of UPTP 

and INBT were not exchangeable. By keeping the labels of the other factor 

fixed, we aimed to avoid any confounds due to the variability introduced by the 

factor not currently of interest. For calculation of the interaction effect, condition 

labels were permuted across levels of both factors within subjects. In contrast to 

standard F-tests, non-parametric permutation tests avoid the assumption of 

normality and are therefore recommended when testing non-Gaussian data as 

they are frequently encountered in behavioral measurements.  

For post-hoc testing, a Wilcoxon signed rank test was performed for each 

simple effect and a sequential Bonferroni Holm correction (Holm, 1979) was 

applied to account for multiple comparisons (uncorrected alpha level = 0.05). 

2.3.8. MEG-data analysis  

Preprocessing 

Data analysis was performed with Matlab (RRID:nlx_153890; MATLAB 2008b, 

MathWorks, Inc.) and the open source Matlab toolbox Fieldtrip 

(RRID:nlx_143928; Oostenveld et al., 2011; Version 2012 01-05).  
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Trials were defined from 0.55 s before to 0.55 s after stimulus onset. The time-

point of the stimulus onset was adjusted to take the projector delay into 

account.  

Trials containing sensor jump-, eye movement-, or muscle-artefacts were 

rejected using automatic FieldTrip artefact rejection routines. In addition, EOG 

channels were checked manually for horizontal and vertical eye movements. 

Only trials with correct behavioral responses were taken into account for MEG 

data analysis. 

To avoid potential effects of button-press related motor activity, we analysed 

only data up to 0.350 s after stimulus onset.  

Spectral analysis at the sensor level 

A multi-taper approach (Percival and Walden, 1993) based on Slepian 

sequences (dpss; Slepian, 1978) was used for time-frequency transformation. 

The transformation was applied in an interval from 2 to 150 Hz in 2 Hz steps 

and in a time window of 0.400 s – 0.050 s before (baseline) and 0 – 0.350 s 

after stimulus onset (task). 

For each frequency, we considered an adaptive sliding time-window with a 

width of 7 divided by the frequency in Hz and an adaptive frequency smoothing, 

with a factor of 0.2 times the frequency, resulting in 2 tapers for each frequency. 

Time frequency representations (TFR) for the combined face conditions (UPTP, 

UPBT, INTP and INBT) were averaged over time to obtain an average 

frequency representation for the task and baseline period, respectively. To 

identify frequency bands for subsequent beamformer analysis, we compared 

the spectral power in the task interval for all subjects and the combined face 

conditions with the baseline spectral power using a dependent-sample 

permutation t-test and a cluster-based correction method (Maris and 

Oostenveld, 2007) to account for multiple comparisons across frequency and 

sensors. Clusters were defined as (spatially and spectrally) adjacent samples 
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whose t-values exceeded a critical threshold corresponding to an uncorrected 

alpha level of 0.05. Cluster sizes were defined by taking the sum of t-values of a 

given cluster. During the randomization procedure labels of task and baseline 

data were randomly reassigned within each subject. Cluster sizes observed for 

the original data set were then tested against the distribution of cluster sizes 

obtained from 1000 permuted data sets. Cluster values larger than the 95th 

percentile of the distribution of cluster sizes obtained for the permuted data sets 

were considered to be significant. We found a significant positive and a 

significant negative cluster (Fig. 2.3.). To delineate frequency bands for these 

clusters, we identified the points of maximum curvature in the spectrum by 

visual inspection. Based on the points of maximum curvature (excluding the 

maximum turning points for positive values and minimum turning points for 

negative values), we determined four non-overlapping frequency intervals for 

subsequent beamformer source analysis: 1. 14-28 Hz (beta); 2. 28-56 Hz (low 

gamma); 3. 56-68 Hz (mid gamma); 4. 68-144 Hz (high gamma). 

Note that current recommendations for best practice favour source level 

statistics over statistics at the sensor level (Gross et al., 2012), we therefore 

only performed the minimally necessary statistics for a choice of frequency 

bands at the sensor level, while all other (orthogonal) statistical tests were 

performed at beamformer source level. 

Source grid creation 

To create individual source grids we transformed the anatomical MR images to 

a standard T1 template from the SPM8 toolbox (http://www.fil.ion.ucl.ac.uk/spm) 

in MNI space (Collins et al., 1994) obtaining an individual transformation matrix 

for each subject. We then warped a regular 3-D dipole grid based on the 

standard T1 template (spacing 10mm) with the inverse of the transformation 

matrix, to obtain an individual dipole grid for each subject in subject space. This 

way, each specific grid point was located at the same brain area for each 

subject, which allowed us to perform source analysis with individual head 

models as well as multi-subject statistics for all grid locations. Lead fields at 
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those grid locations were computed for the individual subjects with a realistic 

single shell forward model (Nolte, 2003).  

Beamformer source power analysis 

Beamformer source analysis was performed using the DICS (dynamic imaging 

of coherent sources) algorithm; a frequency domain beamformer (Gross et al., 

2001) implemented in the FieldTrip toolbox. While the DICS algorithm was 

designed to compute source coherence estimates, we used real valued filter 

coefficients only and thus restricted our analysis to the local source power (see 

also Grützner et al., 2010). The real part of the filters reflects the propagation of 

the magnetic fields from sources to sensors, as this process is supposed to 

happen instantaneously (e.g. Nunez and Srinivasan, 2006). Beamformer 

analysis uses an adaptive spatial filter to estimate the power at every specific 

location of the brain. The spatial filter is constructed from the individual lead 

fields and the cross spectral density matrix for each subject. Cross spectral 

density matrices were computed for the task period of 0 to 0.350 s after 

stimulus onset and the baseline period of 0.400 to 0.050 s before stimulus onset 

in four bands based on the statistical analysis of spectral power at the sensor 

level (spectral smoothing indicated in brackets): 21 Hz (± 7Hz), 42 Hz (± 14 Hz), 

62 Hz (± 6 Hz), 106 Hz (± 38 Hz). Cross-spectral density matrix calculation was 

performed using the FieldTrip toolbox with the multi-taper-method (Percival and 

Walden, 1993) using 3, 4, 9 or 26 Slepian tapers (Slepian, 1978), depending on 

the required spectral smoothing. We used a regularization of 5% (Brookes et 

al., 2008). 

Beamformer filters were computed as “common filters” based on the activation 

and baseline data across all conditions. Using common filters for activation and 

baseline and all conditions allows for subsequent testing for differences 

between conditions; using common filters ensures that differences in source 

activity do not reflect differences between filters.  

Spatial filtering of the sensor data for source statistics was then performed by 
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projecting single trials through the common filter for each condition, task and 

baseline separately.  

Source Statistics 

We used an equal amount of trials for the beamformer analysis for each subject 

in all conditions, to make sure that statistical differences were not caused by a 

different numbers of trials. When the trial number differed across conditions for 

a subject, the minimal amount of trials across conditions was selected randomly 

from the available trials in each condition. 

Statistical testing was performed in two steps: At the first level, we computed a 

within-subject t-test on the single trial data to obtain a test statistic for task vs. 

baseline source activity for each condition (dual state beamformer, Huang et al., 

2004). At the second level, the resulting t-values for each grid point and condi-

tion across all subjects were subjected to a 2x2 repeated-measurements per-

mutation ANOVA with factors stimulus orientation and illumination direction. 

Hereby, we aimed to identify the consistent effects of condition-dependent 

source-power changes across subjects. To account for multiple comparisons 

across voxels, a cluster-based correction method (Maris and Oostenveld, 2007) 

was used. Clusters were defined to be adjacent voxels whose F-values ex-

ceeded a critical threshold corresponding to an uncorrected alpha level of 0.05. 

Cluster sizes were defined the same way as for the sensor level statistics and 

were then tested against the distribution of cluster sizes obtained from 5000 

permuted data sets. Permutation strategies for main effects and the interaction 

were identical to the ones applied to the behavioral data. Cluster values larger 

than the 95th percentile of the distribution of cluster sizes obtained for the per-

muted data sets were considered to be significant. For illustration of the effects 

in bar charts, the t-values of the significant voxels in each cluster were aver-

aged for each condition and over all subjects.  

Both, the statistical procedure for the cluster-based analysis as well as the 

beamformer analysis parameters chosen for source power reconstruction were 
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very similar to the approach applied by Gruetzner and colleagues (2010). 

Gruetzner and colleagues were able to show a close correspondence of the 

beamformer source locations recovered from MEG data and the locations 

revealed by fMRI in a Mooney faces task, supporting the validity of the method.  

Post-hoc source analysis 

To characterise the effects in more detail by examining the frequency and time 

ranges at which the conditions underlying the significant effects differed, a post-

hoc analysis was performed. For this purpose, the source time courses of all 

significant voxels obtained by the permutation ANOVA were extracted. To that 

end, raw data were filtered in a broad frequency range (8 Hz high pass, 150 Hz 

low pass). Then, we calculated a time-domain beamformer filter (LCMV, linear 

constrained minimum variance, Van Veen et al., 1997) based on task and 

baseline intervals of all conditions (“common filters”, Nieuwenhuis et al., 2008). 

For each source location three orthogonal filters were computed (x, y, z 

direction). To obtain the source time courses, the broadly filtered raw data was 

projected through the LCMV filter. Subsequently, the 3-D direction carrying the 

largest variance, indicating the dominant dipole orientation, was identified using 

a singular value decomposition.  

For each source time course a time-frequency transformation was applied with 

the same parameters as for the sensor level analysis but only in the relevant 

frequency range (high gamma frequency range). Source time-frequency spec-

tral power was transformed to relative change values by subtracting the aver-

age baseline power at each frequency and by subsequently dividing by it.  

To determine the time and frequency ranges of the differential activations under-

lying the main or interaction effects, time-frequency transformations were aver-

aged across voxels within each significant cluster of the permutation ANOVA 

and subjected to a post-hoc dependent samples permutation t-test. When in-

vestigating the main effects, we additionally averaged over the two levels of the 

other (i.e. currently not tested) factor. For example, for the main effect of orien-
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tation, we calculated the mean of inverted stimuli (INTP and INBT) and the 

mean of upright stimuli (UPTP and UPBT) across all voxels and contrasted the 

resulting TFR with the permutation t-test. Condition labels were randomly reas-

signed within each subject between the two levels of the tested factor during the 

randomization procedure. For the main effects of illumination the mean of stim-

uli illuminated from the bottom (UPBT and INBT) and the mean of stimuli illumi-

nated from the top (UPTP and INTP) were contrasted. For the interaction effect 

we first calculated the orientation difference for stimuli illuminated from the bot-

tom (UPBT-INBT) and from the top (UPTP-INTP) and contrasted the resulting 

difference TFR using the permutation t-test. To account for multiple compari-

sons across frequency and time bins a cluster-based correction method (Maris 

and Oostenveld, 2007) was used. For one of the effects the post-hoc test did 

not reach significance with the cluster-based correction method and only uncor-

rected t-values are reported (Figure 2.5.C). 

To obtain the time-points of the strongest differential activation for each effect, 

the difference in the averaged TFR between the two levels of the tested factor 

(e.g. upright and inverted stimuli for the orientation effect) was further averaged 

over the relevant frequency range and plotted over time. Only the peaks in the 

significant time ranges identified by the post-hoc tests are reported. For one of 

the effects, for which the post-hoc test did not reach significance with the clus-

ter-based correction method, both main peaks are reported. 

Correlation of high-frequency gamma band activity (GBA) with reaction 

times 

Pearson’s correlations were calculated in order to assess the relationship 

between per-subject mean reaction times and baseline corrected high-

frequency GBA averaged over the significant cluster obtained for each effect. 

Before correlation, RT and GBA for each subject were averaged over upright 

(UPTP, UPBT) and inverted (INTP, INBT) conditions for the orientation effect, 

conditions illuminated from the top (UPTP, INTP) and from the bottom (UPBT, 
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INBT) for the illumination effect and congruent (UPTP, INBT) and incongruent 

(UPBT, INTP) conditions for the interaction effect. 

To focus on the effects of potential PEs, we subtracted each subjects’ mean of 

GBA at the significant source locations across the four face conditions as well 

the subjects’ mean RT across the four face conditions from the individual GBA 

and RT values, respectively. This subtraction corrects for individual differences 

in GBA (see Hoogenboom et al., 2006) as well as in behavioural speed between 

subjects (see Kanai and Rees, 2011, e.g. related to variations in the myelination 

of motor fibers.  

2.4. Results 

2.4.1. Behavioral analysis  

To assess the behavioral effects of the violation of the orientation and 

illumination prior, we analysed the hit rates (HR) and the reaction times (RT) of 

correct responses by means of a permutation ANOVA (see Methods). Post-hoc 

Wilcoxon Signed Rank tests were used to investigate the simple effects 

underlying the interactions for HR and RT (Figure 2.2.). Statistical results are 

summarized in Table 2.1. 

Hit rates 

Subjects made fewest mistakes in detecting faces when both priors were met 

(avg. HR(UPTP) = 94.38%) and made most mistakes when both priors were 

violated (avg. HR(INBT) = 68.84%), suggesting the induction of PEs by our task 

design. 

The permutation ANOVA revealed a main effect of orientation (p = 0.0002) and 

illumination (p = 0.0002), as well as an interaction between the two factors (p = 

0.0002). Higher HR were found for the upright (UP) than for the inverted (IN) 

Mooney faces. Also, higher HR were found for the Mooney faces illuminated 
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from the top (TP) than for the Mooney faces illuminated from the bottom (BT). 

Post-hoc tests revealed that violating the orientation prior led to a decrease in 

HR for faces illuminated from the top (p = 6.6 x 10-9; avg. HR(UPTP) – avg. 

HR(INTP) = 13.3%,) as well as for faces illuminated from the bottom (p = 1.63 x 

10-9; avg. HR(UPBT) – avg. HR(INBT) = 24.1%). HR also decreased, when the 

illumination prior was violated for upright (p = 0.046; avg. HR(UPBT) – avg. 

HR(UPTP) = 1.8%) and inverted Mooney faces (p = 2.14 x 10-8; avg. HR(INBT) – 

avg. HR(INTP) = 12.2%). 

Reaction times 

Subjects responded fastest when both priors were met (avg. RT(UPTP) = 0.614 s) 

and responded slowest when both were violated (avg. RT(INBT) = 0.723 s), which 

is also in line with the induction of PEs by our task design. 

We found main effects of orientation and illumination for the reaction times (p = 

0.0002), as well as an interaction between the two factors (p = 0.0002). Shorter 

RT were found for the upright (UP) than for the inverted (IN) Mooney faces. 

Also, RT were shorter for the Mooney faces illuminated from the top (TP) than 

for the Mooney faces illuminated from the bottom (BT). 

Violating the orientation prior led to increases in RT for faces illuminated from 

the top (p = 1.63 x 10-9; avg. RT(INTP) – avg. RT(UPTP) = 0.0710), and for faces 

illuminated from the bottom (p = 1.11 x 10-8; avg. RT(INBT) – avg. RT(UPBT) = 

0.0899 s) as revealed by the post-hoc Wilcoxon Signed rank tests. 

Further, an increase in RT was detected when the illumination prior was violated 

for the upright Mooney faces (p = 0.0035; avg. RT(UPBT) – avg. RT(UPTP) = 0.0190 

s). The violation of the illumination prior had an even more severe effect on the 

detection of Mooney faces in inverted orientation (p = 2.22 x 10-7; avg. RT(INBT) – 

avg. RT(INTP) = 0.0379 s). 

The orientation effect on RT as well as HR was stronger than the illumination 

effect (RT: p = 3.23 x 10-8; HR: p = 1.63 x 10-9).  
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Figure 2.2. Behavioral analysis of hit rates and reaction times of correct 
responses. Interaction plots (left) and bar plots (right) for hit rates and reaction times 
(n = 48) A) Hit rates decreased, when the orientation prior and/or the illumination prior 
were violated. B) Reaction times increased when the orientation prior and/or the 
illumination prior were violated. Error bars indicate one standard deviation of the mean. 
Asterisks indicate significant results of Post-hoc Wilcoxon signed rank tests, 
Bonferroni-Holm corrected for multiple comparisons. 

2.4.2. Neural responses 

We performed a time-resolved beamformer source analysis of MEG activity to 

assess the PE responses in source space that corresponded to the violations of 

illumination and orientation priors. To this end we first identified the relevant 

frequency bands for beamformer analysis by statistically comparing the sensor 

activity in the task interval (0-350 ms) for all face conditions and correct trials 

with the baseline activity.  
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Table 2.1. Behavioral analysis: ANOVA and post-hoc test results 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This analysis revealed a cluster with task-related increases in activity over 

occipital, parietal and temporal sensors and a cluster with task-related 

decreases over frontal, parietal and temporal sensors (Figure 2.3.). The spectral 

profile of the two clusters was used to determine four non-overlapping 

frequency intervals for beamformer source analysis: 1. 14-28 Hz (beta); 2. 28-

56 Hz (low gamma); 3. 56-68 Hz (mid gamma); 4. 68-144 Hz (high gamma).  

Note that all later statistical comparisons were carried out in source space as 

 Hit rate Reaction times  

Mean  

UPTP 94.38 % 614 ms 

UPBT 92.58 % 633 ms 

INTP 81.08 % 685 ms 

INBT 68.47 % 723 ms 

Permutation ANOVA (p-values) 

Main effect 
Orientation 

2x10-4* 2x10-4* 

 Main effect 
Illumination 

2x10-4* 2x10-4* 

Interaction effect 2x10-4* 2x10-4* 

Post-hoc Wilcoxon signed rank test (p-values) 

UPTP vs. UPBT 0.0416* 0.0035* 

UPTP vs. INTP 6.60x10-9* 1.63x10-9* 

UPBT vs. INBT 1.63x10-9* 1.11x10-8* 

INTP vs. INBT 2.14x10-8* 2.22x10-7* 

* = significant, corrected for multiple comparisons 
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this was strongly recommended in the recently published guidelines for MEG 

analyses (Gross et al., 2012). Moreover, we note that all subsequent statistical 

comparisons were orthogonal to the one used for identifying the frequency 

bands of interests, i.e. there is no double-dipping (Kriegeskorte et al., 2009).  

 

Figure 2.3. Sensor level frequency analysis. Significant clusters at the sensor level 
identified by frequency analysis for the four Mooney face conditions (task vs. baseline 
interval, t-values masked by 0.05, cluster correction, n = 48). A) Topographic plots of 
the activity for each identified frequency range. Note the two spatial clusters with task-
related decreases (blue colors) and increases (red colors). B) Power spectra for the 
two clusters, with task related increases in power (red) and task-related decreases 
(blue). Black dashed lines frame the frequency ranges of interest for subsequent 

beamformer source power analysis.  

High gamma frequency range (68-144 Hz):  

Orientation effect 

In the high gamma frequency range, we observed a main effect of orientation 

(cluster-based permutation ANOVA, p = 0.0154) at the occipital pole (V2), right 

superior occipital gyrus, left middle occipital gyrus as well as left fusiform gyrus 

(Figure 2.4.A left column; see Table 2.2. for MNI coordinates of peak voxels). At 

these areas, power in comparison to baseline was higher for inverted Mooney 

faces than for upright Mooney faces (Fig. 2.4.A right column). Post-hoc analysis 

revealed two significant clusters, the first one peaking at 80 ms and the second 



    The faces of predictive coding 

51 
 

one at 270 ms after stimulus onset (Fig. 2.5.A bottom row). The orientation 

effect involved the high gamma frequency range from 76 - 120 Hz (Fig. 2.5.A 

middle row). 

Illumination effect  

We found a main effect of illumination (cluster-based permutation ANOVA, p = 

0.012) in a cluster located in right superior frontal gyrus (SFG) / superior frontal 

sulcus (SFS), medial frontal cortex (MFC) and anterior cingulate gyrus (ACG) 

(Fig. 2.4.B left column; see Table 2.2 for MNI coordinates of peak voxels). At 

these locations power in comparison to baseline was higher for Mooney faces 

with illumination from the bottom than for Mooney faces with illumination from 

the top (Fig. 2.4.B right column). Post-hoc analysis revealed a significant 

frequency range from 78 - 112 Hz and a peak time at around 120 ms after 

stimulus onset (Fig. 2.5.B middle and bottom row). 

A second cluster for the main effect of illumination (cluster-based permutation 

ANOVA, p = 0.011) had a maximum located at right supramarginal gyrus (SMG) 

in the inferior parietal lobule, but extended also to the inferior temporal gyrus 

(Fig. 2.4.C left column; see Table 2.2. for MNI coordinates of peak voxels). At 

these locations, power in comparison to baseline was higher for Mooney faces 

with illumination from the top than for Mooney faces with illumination from the 

bottom (Fig. 2.4.C right column). This difference peaked at around 135 ms and 

310 ms after stimulus onset and was most pronounced between 75 - 144 Hz 

(Fig. 2.5.C middle and bottom row). 
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Table 2.2. Effects on beamformer reconstructed source power in the high 
gamma frequency range (68-144 Hz); corresponding time, anatomical 
regions and MNI coordinates of peak voxels  

Effect Time Anatomic region 

(L = left; R = right) 

MNI 
coordinates 
(x,y,z) 

1. Orientation 
effect  

80 ms / 
270 ms 

L Occipital pole (V2) -10, -70, 0 

R Superior occipital gyrus 30, -80, 30 

L Middle occipital gyrus  -40, -80, 20 

L Fusiform gyrus -40, -70, -10 

2. Illumination 
effect I 

120 ms Superior frontal gyrus/ 
Superior frontal sulcus  

-30, 30, 50 

10, 0, 70 

Medial frontal cortex 0, 30, 50 

-10, 50, 20 

Anterior cingulate gyrus -10, 30, 30 

10, 10 , 30 

3. Illumination 
effect II 

135 ms / 
310 ms 

R Supramarginal gyrus  40, -40, 20 

R Inferior temporal gyrus 60, -50, -10 

4. Interaction 
effect 

210 ms L Superior parietal lobe/ 
Precuneus 

-10, -60, 70 

R V2 10, -70, 20 

R Inferior occipital gyrus 10, -90, -20 

R Lingual gyrus 10, -40, -10 

R Cerebellum 20, -80, -50 
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Figure 2.4. Statistical analysis on beamformer estimated MEG source power in 
the high gamma frequency range (68-144 Hz). A) Main effect of orientation; B) Main 
effect of illumination I; C) Main effect of illumination II; D) Interaction effect of 
orientation and illumination. Left: Results of the 2-factorial permutation ANOVA on 
beamformer estimated source power (permutation F-values masked by p < 0.05, 
cluster correction, n = 48; z-value below each brain slice). Two representative slices 
are shown. For MNI coordinates of the peak voxels see Table 2.2. Contrasts are 
indicated by icons. L = left; R = right. Right: Mean t-values (task vs. baseline contrast) 
for the significant cluster shown on the left, in the four face conditions and the 
scrambled condition. Error bars indicate one standard error of the mean.  

 

Interaction effect 

In the high gamma frequency range also an interaction effect of the factors 

illumination and orientation (cluster-based permutation ANOVA, p = 0.002) was 

observed. The cluster was located at left superior parietal lobe (SPL) / 

precuneus, occipital pole (V2), right inferior occipital gyrus, right lingual gyrus 

and the right cerebellum (Fig. 2.4.D left column; see Table 2.2 for MNI 

coordinates of peak voxels). Here, source power in comparison to baseline was 
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higher for the UPBT and INTP condition than for the INBT and UPTP condition 

(Fig. 2.4.D right column). The interaction effect involved a significant frequency 

interval from about 68 to 96 Hz and had a peak at 210 ms after stimulus onset 

(Fig. 2.5.D middle and bottom row). 

Beta (14-28 Hz), low (28-56 Hz) and mid gamma (56-68 Hz) frequency 

range: 

No significant main or interaction effects were found in the beta, mid and low 

gamma frequency range.  

 

Figure 2.5. Post-hoc analysis on beamformer estimated MEG source power in the 
high gamma frequency range (68-144 Hz). Post-hoc time frequency analysis for 
significant voxels of the 2-factorial permutation ANOVA shown in Figure 2.4. A) Main 
effect of orientation; B) Main effect of illumination I; C) Main effect of illumination II; D) 
Interaction effect of orientation and illumination. Top: Contrasts and peak source 
locations of significant cluster. Middle: Time-frequency representation of post-hoc 
permutation t-test. A, B and D: Cluster correction, t-values masked by p < 0.05 C: 
Uncorrected, t-values corresponding to p < 0.05 are highlighted. Bottom: Mean relative 
high-frequency gamma-band power difference over time. The arrows highlight the 
peaks within the significant time periods. Please note that effect size might be 
exaggerated as only significant voxels were selected. L = left; R = right. 
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Correlation of high-frequency gamma band responses and RT 

Correlation of high-frequency gamma band responses and RT revealed a 

significant positive correlation at the source locations of the orientation effect (r 

= 0.37, p = 0.00019, Figure 2.6.A) and the first illumination effect (r = 0.43, p = 8 

x 10-6, Figure 2.6.B). A significant negative correlation was found at the source 

locations of the interaction effect (r = -0.32, p = 0.0011, Figure 2.6.D) and a 

tendency towards a negative correlation was found at the locations of the 

second illumination effect (r = -0.17, p = 0.09, Figure 2.6.C).  

 

Figure 2.6. Correlation analysis for high-frequency gamma power and reaction 
times. Scatter plots displaying the correlation of per-subject mean values (see 
methods for details) of high-frequency GBA with reaction times at the source locations 
of the A) Main effect of orientation, B) Main effect of illumination I, C) Main effect of 
illumination II and D) Interaction effect of orientation and illumination. Peak source 
locations are indicated on the right. Each subjects’ mean of GBA across conditions at 
the indicated source locations and the mean reaction time across conditions was 
subtracted before correlation to focus on the effects of potential PEs (n=48). Asterisks 
indicate significant correlation. Linear regression lines are shown in red for each effect. 
L = left; R = right.  
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2.5. Discussion 

We tested whether prediction errors (PEs) are reflected by increased neural 

activity vs. the alternative of reduced neural activity for violated predictions. 

Using MEG with its direct access to electrophysiological activity allowed testing 

specifically whether PEs are signaled in gamma-band activity (GBA). PEs were 

induced by the violation of two priors based on lifelong visual experience – 

upright face orientation and illumination from the top. Deviations from these 

priors were embedded in a Mooney face detection task (Mooney, 1957).  

Behavioral findings confirmed the successful induction of PEs by our task. In 

addition, neuronal activity at task-specific brain locations was increased when 

priors were violated, in line with the concept of PEs in predictive coding theory 

(Rao and Ballard, 1999). Importantly, this increase in neuronal activity was 

indeed observed in GBA (> 68 Hz), the frequency range thought to be 

associated with the bottom-up propagation of PEs (Arnal and Giraud, 2012; 

Bastos et al., 2012). These findings strongly support the notion that increased 

(high-frequency) GBA reflects PEs. No PE signals were found in any of the 

lower frequency bands, suggesting that PEs are mainly represented in high-

frequency GBA. 

However, for the violation of the illumination prior we additionally found 

decreased GBA in posterior parietal brain areas, which may represent 

decreased attention to internal mnemonic representations (Wagner et al., 2005). 

Hence, we suggest that the high-frequency GBA not only signals PEs, but also 

attentional effects – in line with previous results (e.g. Fries et al., 2001).  

2.5.1. Violations decrease accuracy and increase reaction times 

Behavioral responses were slower and more inaccurate when priors were 

violated. This is in line with other behavioral phenomena accounted for by 

predictive coding such as priming and global precedence (Friston, 2005) and 

validates that our task design successfully induced PEs.  
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Notably, the violation of the orientation prior had a higher impact on hit rates 

and reaction times than the violation of the illumination prior. This difference 

may be explained as follows. While a robust inversion effect is found in face 

perception (Yin, 1969 for photographic faces; Rodriguez et al., 1999 for Mooney 

faces), the illumination prior varies substantially between individuals (Adams, 

2007) and can be altered with experience (Adams et al., 2004). Thus, the 

stronger behavioural effect of the violation of the orientation prior is in line with a 

precision-weighting of PEs (Friston and Kiebel, 2009; Adams et al., 2013) based 

on the higher precision of the orientation prior than the illumination prior. 

2.5.2. Cortical source power changes in high-frequency GBA reflect PEs  

For the violation of the orientation prior we expected that the neural correlate of 

a PE should arise before any illumination effect, and that it would be signaled by 

GBA increases. Indeed, at 80 ms after stimulus onset – before any effect of 

illumination – we observed the first of two significant clusters of increased high-

frequency GBA for the violation of the orientation prior in early visual areas. 

These areas have been linked to contour integration (e.g. Kourtzi et al., 2003). 

The contour-integration role of these areas combined with the early latency of 

the orientation effect supports its interpretation as reflecting PEs arising for 

unexpected face orientations. This is because contour processing areas are 

suitable candidate locations for an orientation PE as an early (2-D) contour 

match to internal templates was suggested as the first stage of Mooney face 

recognition (Cavanagh, 1991). Since the stimulus contour pattern of the 

inverted faces does not match the expected template contour pattern of upright 

faces, a specific PE in contour processing brain areas is supposed to arise for 

inverted stimuli at this early processing stage. 

An orientation-related PE could also arise in areas tuned to specific, 

illumination-invariant, coarse-grained luminance contrasts in faces, because 

these seem to play a role in face processing (Ohayon et al., 2012). This specific 

tuning was reported in the macaque middle face patch (MFP), making its 

homologue, the fusiform face area a candidate for orientation PEs. However, 
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MFP cells seem to be preferentially active for contrasts matching environmental 

priors, additionally requiring embedding of the contrast in a face-like pattern. 

This latter condition is not well met in Mooney stimuli, potentially reducing any 

effects of changes in luminance contrasts with orientation in our study.  

For the violation of the illumination prior we expected that the correlate of a PE 

should arise after the first orientation-related effect. Again, we expected this PE 

to be signaled by increased GBA. We observed increased high-frequency GBA 

for violation of the illumination prior at 120 ms after stimulus onset, and thus 40 

ms after the first orientation effect. This effect was located in MFC, SFS and 

ACG. Both timing and location of this effect support its interpretation as an 

illumination-related PE. This is because the illumination direction strongly 

influences the shading pattern of an image and shading cues are the only cues 

available in Mooney faces to reconstruct the 3-D shape (Kemelmacher-

Shlizerman et al., 2008). PEs are therefore likely to arise in areas involved in 

the processing 3-D shape from shading cues, such as the MFC (Taira et al., 

2001). Additionally, SFS may be used to keep shading cues in working memory 

(Courtney et al., 1998) and ACG may support error detection (Botvinick et al., 

2004). Thus, we interpret this illumination effect as a PE signal for the 

unexpected illumination. 

We also observed an interaction effect with increased GBA for the UPBT and 

INTP conditions at precuneus, V2 and lingual gyrus, which all three are involved 

in (global) shape processing (Fink et al., 1997; Hegdé and Van Essen, 2000; 

Tanskanen et al., 2008). This interaction effect occurred at 210 ms after 

stimulus onset. At this late time-point, the process model of Cavanagh (1991) 

suggests that the shape of the sensory input is supposed to be evaluated based 

on the interaction of light and 3-D structure. The combination of these two 

properties of a scene can also be predicted based on prior experience. We 

expect upright face orientation to be combined with illumination from the top and 

– as it is probably more common to see photographs of inverted faces than 

actual inverted faces – we expect inverted face orientation to be combined with 
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illumination from the bottom. This expected combination of orientation and 

illumination is violated in the INTP and UPBT conditions. Therefore, we interpret 

this late interaction effect at precuneus, V2 and lingual gyrus as a PE at a 

higher conceptual level. 

2.5.3. GBA additionally reflects attentional effects  

We observed a second illumination effect peaking at 135 ms and 310 ms after 

stimulus onset. For this illumination effect, we found a decrease of GBA for 

violation of the illumination prior mainly in SMG. Activity in this area may reflect 

deployment of attention to internal mnemonic representations – as stated in the 

attention to memory hypothesis (AtoM, Wagner et al., 2005). Accordingly, the 

SMG usually shows decreased BOLD fMRI activity for less familiar information 

(Wagner et al., 2005; Ciaramelli et al., 2008) – potentially corresponding to 

unusual illumination conditions here. To link these fMRI findings to our MEG 

results, we draw on the well established positive correlation of the BOLD-fMRI 

signal with GBA in MEG (Brookes et al., 2005). Taking this correlation into 

account, the observed decreased GBA for the stimuli with the less familiar 

illumination direction in the SMG may be an AtoM effect rather than a PE. 

Thus, our results suggest that high-frequency GBA does not exclusively signal 

PEs, but also reflects attention. This attentional interpretation could be 

reconciled with an interpretation as a PE by the recent proposal that attention 

itself is implemented via gain modulation of PE units (Feldman and Friston, 

2010). As our study was not designed to test this specific hypothesis, the 

interplay of attention, PEs and GBA remains to be investigated.  

2.5.4. Increased GBA for violations is associated with slower processing 

High-frequency GBA at the locations of the orientation effect and the first 

illumination effect showed a positive correlation with RT. This relationship is 

compatible with longer RT reflecting the PE for violation of the orientation and 

illumination prior. 



The faces of predictive coding 

60 
 

In contrast, the negative relationship of GBA and RT at the locations of the 

second illumination effect suggests that here increased GBA rather speeds up 

processing. This is in line with our interpretation that this effect does not 

represent a PE and also with a general negative correlation of GBA and RT 

from previous reports (e.g. Hoogenboom et al., 2010). 

The above interpretation of the interaction effect as a high-level PE, however, is 

questioned by the negative correlation of GBA with RT at these locations. 

Nevertheless, it’s possible that the consistency violation inducing the interaction 

is not performance relevant. 

2.5.5. Conclusion 

Our results strongly support the notion that PEs are signaled by increased high-

frequency GBA (> 68 Hz) for violation of priors from life-long experience.  
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3.1. Abstract  

Predictive coding suggests that the brain infers the causes of its sensations by 

combining sensory evidence with internal predictions based on available prior 

knowledge. However, the neurophysiological correlates of (pre-)activated prior 

knowledge serving these predictions are still unknown. Based on the idea that 

such pre-activated prior knowledge must be maintained until needed we meas-

ured the amount of maintained information in neural signals via the active in-

formation storage (AIS) measure. AIS was calculated on whole-brain beam-

former-reconstructed source time-courses from magnetoencephalography 

(MEG) recordings of 52 human subjects during the baseline of a Mooney 
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face/house detection task. Pre-activation of prior knowledge for faces showed 

as alpha- and beta-band related AIS increases in content specific areas; these 

AIS increases were behaviourally relevant in brain area FFA. Further, AIS al-

lowed decoding of the cued category on a trial-by-trial basis. Our results support 

accounts showing that activated prior knowledge and the corresponding predic-

tions are signalled in low-frequency activity (< 30 Hz). 

3.2. Significance statement 

Our perception is not only determined by the information our eyes/retina and 

other sensory organs receive from the outside world, but strongly depends also 

on information already present in our brains like prior knowledge about specific 

situations or objects. A currently popular theory in neuroscience, predictive 

coding theory, suggests that this prior knowledge is used by the brain to form 

internal predictions about upcoming sensory information. However, 

neurophysiological evidence for this hypothesis is rare – mostly because this 

kind of evidence requires making strong a-priori assumptions about the specific 

predictions the brain makes and the brain areas involved. Using a novel, 

assumption-free approach we find that face-related prior knowledge and the 

derived predictions are represented in low-frequency brain activity. 

3.3. Introduction 

In the last decade, predictive coding theory has become a dominant paradigm 

to organize behavioral and neurophysiological findings into a coherent theory of 

brain function (George and Hawkins, 2009; Friston, 2010; Huang and Rao, 

2011; Clark, 2012; Hohwy, 2013). Predictive coding theory proposes that the 

brain constantly makes inferences about the state of the outside world. This is 

supposed to be accomplished by building hierarchical internal predictions based 

on prior knowledge which are compared to incoming information in order to 

continuously adapt these internal models (Mumford, 1992; Rao et al., 1999; 

Friston, 2005, 2010) 

The postulated use of predictions for inference requires several preparatory 
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steps: First, task relevant prior knowledge passively stored in synaptic weights 

needs to be transferred into activated prior knowledge, i.e. information stored in 

neural activity (see Zipser et al., 1993 for a distinction of active/passive 

storage). Subsequently, (pre-)activated prior knowledge needs to be maintained 

until needed and transferred as a prediction in top-down direction to a lower 

cortical area, where it will be matched with incoming information (e.g. Mumford, 

1992; Friston, 2005, 2010). 

With respect to the neural correlates of activated prior knowledge and 

predictions we know that the prediction of specific features or object categories 

increases fMRI BOLD activity in the brain region at which the feature or 

category is usually processed (Puri et al., 2009; Esterman and Yantis, 2009; 

Kok et al., 2014). However, little is known about how the maintenance of pre-

activated prior knowledge and the corresponding transfer of predictions are 

actually implemented in neural activity proper. 

 As a first step towards resolving this issue a microcircuit theory of predictive 

coding has been put forward, suggesting internal predictions to be processed in 

deep cortical layers and to manifest and to be transferred in low-frequency 

neural activity (< 30 Hz) along descending fiber systems (Bastos et al., 2012).  

This theory is in line with the findings of a spectral predominance of low-

frequency neural activity in deep cortical layers (Buffalo et al., 2011) and the 

physiological findings linking feedback connections to alpha/beta frequency 

channels in monkeys (Fries et al., 2015) and humans (Michalareas et al., 2016). 

Recently, this microcircuit theory of predictive coding gained experimental 

support by neurophysiological studies showing the predictability of events to be 

associated with neural power in alpha (Bauer et al., 2014; Sedley et al., 2016) 

or beta frequencies (Pelt et al., 2016).  

However, representation and signalling of pre-activated prior knowledge serving 

predictions has been difficult to investigate with classical analysis methods. One 

reason is that classical analysis methods require a-priori assumptions about 

which predictions specific brain areas are going to make – assumptions which 

might be very challenging to make beyond early sensory cortices and for 

complex experimental designs (Wibral et al., 2014, section 4.4, p. 9). Moreover, 

classical analysis methods do not allow quantifying the amount of pre-activated 
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prior knowledge for predictions, as for instance diminished neural activity 

measured by fMRI, MEG/EEG may still come with less or more information 

being maintained in these signals. To overcome these problems we studied the 

maintenance and signalling of pre-activated prior knowledge for predictions 

using the information-theoretic measures of active information storage (AIS, see 

Methods in Lizier et al., 2012; also see Gómez et al., 2014 for an application to 

MEG), and transfer entropy (TE, Schreiber, 2000; Vicente et al., 2011). AIS 

measures the amount of information in the future of a process predicted by its 

past (predictable information) while TE measures the amount of directed 

information transfer between two processes (see Methods for details).  

Using these information-theoretic measures we investigated the pre-activation 

of prior knowledge for face predictions in neural source activity reconstructed 

from MEG recordings of 52 human subjects. In order to induce the pre-

activation of face-related prior knowledge, subjects were instructed to detect 

Faces in two-tone stimuli (Mooney and Ferguson, 1951; Cavanagh, 1991). 

3.4. Methods  

3.4.1. Basic concept and testable hypotheses 

To study the neural correlates of pre-activated prior knowledge for face 

predictions we used the information-theoretic measures active information 

storage (AIS) and transfer entropy (TE) – measuring predictable information 

(see Methods in Lizier et al., 2012) and information transfer (Schreiber, 2000; 

Vicente et al., 2011), respectively. 

The use of AIS and TE in our study is based on the following rationale: Since 

the brain will usually not know exactly when a prediction will be needed, it will 

maintain activated prior knowledge related to the content of the prediction over 

time. If there is a reliable neural code that maps between content and activity, 

maintained activated prior knowledge must be represented as maintained 

information content in neural signals, measurable by AIS (Figure 3.1.A).  

Importantly, we do not suggest that predictable information in neural signals as 

measured by AIS measures the predictability of external events. Rather, we 
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suggest that AIS can be used as a measure to detect increased predictable 

information in specific brain areas. This predictable information is bound to rise 

when prior knowledge is pre-activated based on perceptual demands and 

thereby becomes available for predictions. 

Further, predictions based on prior knowledge are supposed to be transferred to 

hierarchically lower brain areas, where they can be matched with incoming 

information. This information transfer thus must be measurable via TE. 

From this basic concept we derived five testable hypotheses about AIS and TE 

in the predictive coding framework: 

1. When activated prior knowledge is maintained, predictable information as 

measured by AIS is supposed to be high in brain areas specific to the content of 

the predictions.  

2. If the microcircuit theory of predictive coding is correct, maintenance of pre-

activated prior knowledge should be reflected in alpha/beta frequencies, i.e., 

predictable information and alpha/beta power should correlate. 

3. If maintenance of relevant prior knowledge is reflected by predictable 

information on a trial-by-trial basis, the content of predictions should be also 

decodable from AIS information on a trial-by-trial basis. 

4. Information transfer related to predictions (i.e. signalling of pre-activated prior 

knowledge measured by TE) should occur in a top-down direction from brain 

areas showing increased predictable information, and should be reflected in 

alpha/beta band Granger causality. 

5. As predictions based on pre-activated prior knowledge are known to facilitate 

performance, predictable information is supposed to correlate with behavioural 

parameters, if it reflects the relevant pre-activated prior knowledge.  
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Figure 3.1. Central idea of the study and experimental design. A) Typically, pre-
activated prior knowledge related to the content of a prediction has to be maintained as 
the brain will not know exactly when it will be needed. If there is a reliable neural code 
that maps between content and activity, maintained activated prior knowledge should 
lead to brain signals that are themselves predictable over time (here the brain signals 
are depicted as identical, although the relation between past and future will almost 
certainly be much more complicated). B) Exemplary stimulus presentation in Face 
blocks (top) and in House blocks (bottom). Face and House icons on the left indicate 
Face and House blocks, respectively. Middle: Depiction of stimulus categories and 
timing. The beginning of the response time window is indicated by the hand icon. Red 
horizontal bars mark the analysis interval. Figure elements obtained from OpenCliparts 
Library (http://www.openclipart.org) and modified. SCR – scrambled Mooney stimuli, 
not representing a face or house. 

3.4.2. Subjects 

57 subjects participated in the MEG experiment. 5 of these subjects had to be 

excluded due to excessive movements, technical problems, or unavailability of 

anatomical scans. 52 subjects remained for the analysis (average age: 24.8 

years, SD 2.8, 23 males). Each subject gave written informed consent before 

the beginning of the experiment and was paid 10€ per hour for participation. 

The local ethics committee (Johann Wolfgang Goethe University clinics, 

Frankfurt, Germany) approved of the experimental procedure. All subjects had 
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normal or corrected-to-normal visual acuity and were right handed according to 

the Edinburgh Handedness Inventory scale (Oldfield, 1971). The large sample 

size subjects was chosen to reduce the risk of false positives, as suggested by 

(Button et al., 2013). 

3.4.3. Stimuli and stimulus presentation 

Photographs of faces and houses were transformed into two-tone (black and 

white) images known as Mooney stimuli (Mooney and Ferguson, 1951). 

Mooney stimuli were used based on the rationale that recognition of two-tone 

stimuli cannot be accomplished without relying on prior knowledge from 

previous experience, as is evident for example from the late onset of two-tone 

image recognition capabilities during development (> 4 years of age, Mooney, 

1957) and from theoretical considerations (Kemelmacher-Shlizerman et al., 

2008). 

In order to increase task difficulty, in addition to Mooney faces and houses also 

scrambled stimuli (SCR) were created from each of the resulting Mooney faces 

and Mooney houses by displacing the white or black patches within the given 

background. Thereby all low-level information was maintained but the 

configuration of the face or house was destroyed. Examples of the stimuli can 

be seen in Figure 3.1.B.  

All stimuli were resized to a resolution of 591x754 pixels. Stimulus manipula-

tions were performed with the program GIMP (GNU Image Manipulation Pro-

gram, 2.4, free software foundation, Inc., Boston, Massachusetts, USA).  

A projector with a refresh rate of 60 Hz (resolution 1024x768 pixels) was used 

to display the stimuli at the center of a translucent screen (background set to 

gray, 145 cd/m²). Stimulus presentation during the experiment was controlled 

using the Presentation software package (Version 9.90, Neurobehavioral 

Systems).  

The experiment consisted of eight blocks of seven minutes. In each block 120 

stimuli were presented (30 Mooney faces, 30 Mooney houses, 30 SCR faces, 

30 SCR houses) in a randomized order. Stimuli were presented for 150 ms with 
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a vertical visual angle of 24.1 and a horizontal visual angle of 18.8 degrees. The 

inter-trial-interval between stimulus presentations was randomly jittered from 3 

to 4 seconds (in steps of 100 ms).  

3.4.4. Task and Instructions 

Subjects performed a detection task for faces or houses (Figure 3.1.B). Each of 

the eight experimental blocks started with the presentation of a written 

instruction; four of the experimental blocks started with the instruction “Face or 

not?” while for the other four experimental blocks started with the instruction 

“House or not?”. The former are referred to as “Face blocks” and the latter as 

“House blocks”. Face and House blocks were presented in alternating order. 

The same blocks of stimuli were presented as Face blocks for half of the 

subjects, while for the other half of the subjects these experimental blocks 

appeared as House blocks and vice versa. This way, the initial block was 

alternated between subjects (i.e. half of the subjects started with Face blocks 

and the other half with House blocks). Importantly, as the blocks contained the 

same face, house, SCR face and SCR house stimuli the only difference 

between face and house blocks was in the subjects’ instruction.  

To avoid accidental serial effects, the order of blocks was reversed for half of 

the subjects. Subjects responded by pressing one of two buttons directly after 

stimulus presentation. The button assignment for a ‘Face’ or ‘No-Face’ response 

in Face blocks and 'House' or 'No-House' in House blocks was counterbalanced 

across subjects (n=26 right index finger for ‘Face’ response).  

Between stimulus presentations, subjects were instructed to fixate a white cross 

on the center of the gray screen. Further, they were instructed to maintain 

fixation during the whole block and to avoid any movement during the 

acquisition session. Before data acquisition, subjects performed Face and 

House test blocks of two minutes with stimuli not used during the actual task. 

During the test blocks subjects received feedback on whether their response 

was correct or not. No feedback was provided during the actual task. 
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3.4.5. Data acquisition  

MEG data acquisition was performed in line with recently published guidelines 

for MEG recordings (Gross et al., 2012). MEG signals were recorded using a 

whole-head system (Omega 2005; VSM MedTech Ltd.) with 275 channels. The 

signals were recorded continuously at a sampling rate of 1200 Hz in a synthetic 

third-order gradiometer configuration and were filtered online with fourth-order 

Butterworth filters with 300 Hz low pass and 0.1 Hz high pass.  

Subjects’ head position relative to the gradiometer array was recorded 

continuously using three localization coils, one at the nasion and the other two 

located 1 cm anterior to the left and right tragus on the nasion-tragus plane for 

43 of the subjects and at the left and right ear canal for 9 of the subjects.  

For artefact detection the horizontal and vertical electrooculogram (EOG) was 

recorded via four electrodes; two were placed distal to the outer canthi of the 

left and right eye (horizontal eye movements) and the other two were placed 

above and below the right eye (vertical eye movements and blinks). In addition, 

an electrocardiogram (ECG) was recorded with two electrodes placed at the left 

and right collar bones of the subject. The impedance of each electrode was kept 

below 15 kΩ. 

Structural magnetic resonance (MR) images were obtained with either a 3T 

Siemens Allegra or a Trio scanner (Siemens Medical Solutions, Erlangen, 

Germany) using a standard T1 sequence (3-D magnetization-prepared-rapid-

acquisition gradient echo sequence, 176 slices, 1 x 1 x 1 mm voxel size). For 

the structural scans vitamin E pills were placed at the former positions of the 

MEG localization coils for co-registration of MEG data and magnetic resonance 

images.  

Behavioral responses were recorded using a fiberoptic response pad (Photon 

Control Inc. Lumitouch Control ™ Response System) in combination with the 

Presentation software (Version 9.90, Neurobehavioral Systems).  
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3.4.6. Statistical analysis of behavioral data 

Responses were classified as correct or incorrect based on the subject’s first 

answer. For hit rate analysis the accuracy for each condition was calculated. 

For reaction time analysis only correct responses were considered.  

Post-hoc Wilcoxon signed rank tests were performed on hit rates as well as 

reaction times. To account for multiple testing, Bonferroni correction was 

applied (uncorrected alpha = 0.05). 

3.4.7. MEG-data preprocessing 

MEG Data analysis was performed with Matlab (RRID:nlx_153890; Matlab 

2012b, The Mathworks, Inc.) using the open source Matlab toolbox Fieldtrip 

(RRID:nlx_143928; Oostenveld et al., 2011; Version 2013 11-11) and custom 

Matlab scripts. 

Only trials with correct behavioral responses were taken into account for MEG 

data analysis. The focus of data analysis was on the prestimulus intervals from 

1 s to 0.050 s before stimulus onset. Trials containing sensor jump-, or muscle-

artefacts were rejected using automatic FieldTrip artefact rejection routines. 

Line noise was removed using a discrete Fourier transform filter at 50,100 and 

150 Hz. In addition, independent component analysis (ICA; Makeig et al., 1996) 

was performed using the extended infomax (runica) algorithm implemented in 

fieldtrip/EEGLAB. ICA components strongly correlated with EOG and ECG 

channels were removed from the data. Finally, data was visually inspected for 

residual artefacts. 

In order to minimize movement related errors, the mean head position over all 

experimental blocks was determined for each subject. Only trials in which the 

head position did not deviate more than 5 mm from the mean head position 

were considered for further analysis. 

As artefact rejection and trial rejection based on the head position may result in 

different trial numbers for Face and House blocks, after trial rejection the 

minimum amount of trials across Face and House blocks was selected 
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randomly from the available trials in each block (stratification). 

3.4.8. Sensor level spectral analysis 

Spectral analysis at the sensor level was performed in order to determine the 

subdivision of the power spectrum in frequency bands (see Brodski et al., 2015 

for a similar approach). As we aimed to identify frequency bands based on 

stimulus related increases or decreases, respectively, new data segments were 

cut from -0.35 to -0.05s before stimulus onset for the time interval of “baseline” 

and from 0.05 s to 0.35 after stimulus onset for the interval of “task”. Before 

spectral transformation a single Hanning taper was applied to the data. The 

spectral transformation was calculated in an interval from 4 to 150 Hz using a 

fast Fourier approach. Average spectra of task and baseline periods were 

contrasted over subjects using a dependent-sample permutation t-metric with a 

cluster based correction method (Maris and Oostenveld, 2007) to account for 

multiple comparisons. Adjacent samples whose t-values exceeded a threshold 

corresponding to an uncorrected α-level of 0.05 were defined as clusters. The 

resulting cluster sizes were then tested against the distribution of cluster sizes 

obtained from 1000 permuted datasets (i.e. labels “task” and “baseline” were 

randomly reassigned within each of the subjects). Cluster sizes larger than the 

95th percentile of the cluster sizes in the permuted datasets were defined as 

significant.  

3.4.9. Source grid creation 

In order to create individual source grids we transformed the anatomical MR 

images to a standard T1 MNI template from the SPM8 toolbox 

(http://www.fil.ion.ucl.ac.uk/spm) – obtaining an individual transformation matrix 

for each subject. We then warped a regular 3-D dipole grid based on the 

standard T1 template (spacing 15 mm resulting in 478 grid locations) with the 

inverse of each subjects’ transformation matrix, to obtain an individual dipole 

grid for each subject in subject space. This way, each specific grid point was 

located at the same brain area for each subject, which allowed us to perform 

source analysis with individual head models as well as multi-subject statistics 
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for all grid locations. Lead-fields at those grid locations were computed for the 

individual subjects with a realistic single shell forward model (Nolte, 2003) 

taking into account the effects of the ICA component removal in pre-processing.  

3.4.10. Source time course reconstruction 

To enable a whole brain analysis of active information storage (AIS), we recon-

structed the source time courses for all 478 source grid locations.  

For source time course reconstruction we calculated a time-domain beamformer 

filter (linear constrained minimum variance, LCMV; Van Veen et al., 1997) 

based on broadband filtered data (8 Hz high pass, 150 Hz low pass) from the 

prestimulus interval (-1 s to -0.050 s) of Face blocks as well as House blocks 

(use of common filters – see Gross et al., 2012, page 357).  

For each source location three orthogonal filters were computed (x, y, z direc-

tion). To obtain the source time courses, the broadly filtered raw data was pro-

jected through the LCMV filters resulting in three time courses per location. On 

these source time courses we performed a singular value decomposition to ob-

tain the time course in direction of the dominant dipole orientation. The source 

time course in direction of the dominant dipole orientation was used for calcula-

tion of active information storage (AIS). 

3.4.11. Definition of active information storage  

We assume that the reconstructed source time courses for each brain location 

can be treated as realizations     ...           of a random process   

    ...          , which consists of a collection of random variables,   , ordered 

by some integer  . AIS then describes how much of the information in the next 

time step   of the process is predictable from its immediate past state (Lizier et 

al., 2012). This is defined as the mutual information 
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where   is the mutual information and      are the variables' probability density 

functions. Variable      
 describes the past state of   as a collection of past ran-

dom variables     
        ...            , where   is the embedding dimension, 
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i.e., the number of time steps used in the collection, and   the embedding delay 

between these time steps. For practical purposes,   has to be set to a finite val-

ue  max, such that the history before time point    max    does (statistically) 

not further improve the prediction of    from its past (Lizier et al., 2012). 

Predictable information as measured by AIS indicates that a signal is both rich 

in information and predictable at the same time. Note that neither a constant 

signal (predictable but low information content) nor a memory-less stochastic 

process (high information content but unpredictable) will exhibit high AIS values. 

In other words, a neural process with high AIS must visit many different possible 

states (rich dynamics); yet visit these states in a predictable manner with mini-

mal branching of its trajectory (this is the meaning of the log ratio of equation 

(1)). As such, AIS is a general measure of information that is maintained in a 

process, and could here reflect any form of memory based on neural activity. 

AIS is linked specifically to activated prior knowledge in our study via the ex-

perimental manipulation that alternately activates face- or house-specific prior 

knowledge, and by investigating the difference in AIS between the two condi-

tions.  

3.4.12. Analysis of predictable information using active information 

storage 

The history dimension ( max; range 3 to 6) and optimal embedding delay 

parameter (tau; range 0.2 to 0.5 in units of the autocorrelation decay time) was 

determined for each source location separately using Ragwitz’ criterion 

(Ragwitz and Kantz, 2002), as implemented in the TRENTOOL toolbox (Lindner 

et al., 2011). To avoid a bias in estimated values based on different history 

dimensions, we chose the maximal history dimension across Face and House 

blocks for each source location (median  max over source locations and 

subjects = 4).  

The actual spacing between the time-points in the history was the median 

across trials of the output of Ragwitz’ criterion for the embedding delay tau 

(Lindner et al., 2011).  
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Based on the assumption of stationarity in the prestimulus interval, AIS was 

computed on the embedded data across all available time points and trials. This 

was done separately for each source location and condition in every subject. 

Computation of AIS was performed using the Java Information Dynamics Tool-

kit (Lizier, 2014). A minimum of 68400 samples entered the AIS analysis for 

each subject, block type and source location (minimum of 57 trials, approx. 1 

sec time interval, sampling rate 1200 Hz). AIS was estimated with 4 nearest 

neighbours in the joint embedding space using the Kraskov-Stoegbauer-

Grassberger (KSG) estimator (Kraskov et al., 2004; algorithm 1), as imple-

mented in the open source Java Information Dynamics Toolkit (JIDT; Lizier, 

2014). 

Computation of AIS was performed at the Center for Scientific Computing 

(CSC) Frankfurt, using the high-performance computing Cluster FUCHS 

(https://csc.uni-frankfurt.de/index.php?id=4), which enabled the computationally 

demanding calculation of AIS for the whole brain across all subjects as well as 

Face and House blocks (478 x 52 x 2 = 49712 computations of AIS). 

3.4.13. AIS Statistics 

In order to determine the source locations in which AIS values were increased 

when subjects held face information in memory, a within-subject permutation t-

metric was computed. Here, AIS values for each source location across all sub-

jects were contrasted for Face blocks and House blocks. The permutation test 

was chosen as the distribution of AIS values is unknown and not assumed to be 

Gaussian. To account for multiple comparisons across the 478 source loca-

tions, a cluster-based correction method (Maris and Oostenveld, 2007) was 

used. Clusters were defined as adjacent voxels whose t-values exceeded a 

critical threshold corresponding to an uncorrected alpha level of 0.01. In the 

randomization procedure labels of Face block and House block data were ran-

domly reassigned within each subject. Cluster sizes were tested against the 

distribution of cluster sizes obtained from 5000 permuted data sets. Cluster val-

ues larger than the 95th percentile of the distribution of cluster sizes obtained 

for the permuted data sets were considered to be significant.  
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3.4.14. Correlation analysis of spectral properties and AIS 

We investigated the relationship of spectral power in the prestimulus interval 

and AIS values on the single trial level. Before calculation of single trial spectral 

power, a single Hanning taper was applied to each prestimulus epoch. Then, 

single trial spectra were computed with the fast Fourier approach, were 

averaged over all epochs and subdivided in the predefined frequency bands for 

each subject. Next, Spearman’s rho was computed for correlation of the median 

single trial spectral power in the predefined frequency bands with the single trial 

AIS values in order to obtain individual correlation values. Median correlation 

values over both block types were computed for each subject. In order to test 

the significance of the correlation analysis, for each subject the epochs were 

randomly permuted 5000 times and correlation was re-calculated also for the 

permuted data sets. For each subject an original correlation value larger (or 

smaller) than 99.99997% (threshold Bonferroni adjusted for the 52*5*6 multiple 

comparisons) of the correlation values obtained for the permuted data sets was 

considered to be significant. At the second level we used a binomial test to 

assess whether the number of subjects showing significant correlations (for one 

source and frequency range) could be explained by chance. Median correlation 

values over subjects and their significance based on the binomial test are 

reported. 

We also calculated a correlation of two t-value maps: (1) the mean AIS contrast 

and (2) a mean power contrast. For both t-value maps the dependent samples 

t-metric Face blocks vs. House blocks was computed over all 52 subjects and 

all 478 source locations inside the brain. For the power t-value map, source 

power in the alpha (8-14 Hz) and beta (14-32 Hz) frequency band was 

reconstructed with the DICS (dynamic imaging of coherent sources, Gross et 

al., 2001) algorithm as implemented in the FieldTrip toolbox using real valued 

filter coefficients only (see also Grützner et al., 2010). 

3.4.15. Correlation analysis of reaction times and AIS 

Last, we assessed the relationship of AIS values and reaction times for each 
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subject. To this end, before the correlation analysis, for each subject mean 

reaction times and mean AIS values in the brain areas of interest for Face and 

House blocks were subtracted from each other. This allowed accounting for 

differential behavioral speed between subjects. The correlation of the difference 

in AIS values and the difference in reaction times was calculated via Spearman 

skipped correlations using the Robust Correlation Toolbox (Pernet et al., 2013). 

Calculation of skipped correlations includes identifying and removing bivariate 

outliers (Rousseeuw, 1984; Rousseeuw and Driessen, 1999; Verboven and 

Hubert, 2005). This can provide a more robust measure, which has been 

recommended for brain-behaviour correlation analyses (Rousselet and Pernet, 

2012). The uncorrected alpha level was set to 0.05. For each correlation 

bootstrap confidence intervals (CIs) were computed based on 1000 resamples. 

In order to account for multiple comparisons across brain areas, bootstrap CIs 

were adjusted using Bonferroni correction. If the adjusted CI did not encompass 

0, the correlation was considered as significant. 

3.4.16. Decoding analysis 

To investigate whether prediction content (i.e. face or house block) can be de-

coded from individual trial AIS values, we applied a multivariate analysis using 

support vector machines (SVMs) with the libsvm toolbox (Chang and Lin, 2011; 

available at http://www.csie.ntu.edu.tw/~cjlin/libsvm). For each subject the linear 

SVM classifier was trained using 70% randomly chosen trials as training data. 

However, the training data contained always the same amount of trials for face 

and house blocks, respectively. Parameters for the SVMs were optimized in a 

three-fold cross-validation procedure for the training data only. Subsequently, 

the classifier was tested using the data from the remaining 30% of the trials with 

the best parameters obtained from the training procedure, thereby ensuring 

strict separation of training and testing data (Nowotny, 2014). 

This procedure was repeated 10 times. We report the median accuracy value 

for each subject. In order to test the significance of the median accuracy value, 

for each subject the labels of face blocks and house blocks were randomly 

permuted 500 times for each of the 10 training and testing sets and the median 

over the 10 accuracy values was calculated also for the permuted data sets. A 
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median accuracy value larger than the 99.999% (threshold Bonferroni adjusted 

for the 52 multiple comparisons) of the median accuracy values obtained for the 

permuted data sets was considered to be significant, corresponding to an un-

corrected alpha level of 0.05. 

3.4.17. Definition of transfer entropy (and Granger analysis) 

Transfer entropy (TE, Schreiber, 2000) was applied to investigate the infor-

mation transfer between the brain areas identified with AIS analysis. For links 

with significant information transfer, we post-hoc studied the spectral finger-

prints of these links using spectral Granger analysis (Granger, 1969). 

Both, TE and Granger analysis are implementations of Wiener’s principle (Wie-

ner, 1956) which in short can be rephrased as follows: If the prediction of the 

future of one time series X, can be improved in comparison to predicting it from 

the past of X alone by adding information from the past of another time series Y, 

then information is transferred from Y to X. 

TE is an information-theoretic, model-free implementation of Wiener's principle 

and can be used, in contrast to Granger analysis, in order to study linear as well 

as non-linear interactions (e.g. Chang and Lin, 2011) and was previously ap-

plied to broadband MEG source data (Wibral et al., 2011). TE is defined as a 

conditional mutual information 
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where    describes the future of the target time series  ,     
 describes the past 

state of  , and     
 

 describes the past state of the source time series   . As for 

the calculation of AIS, past states are defined as collections of past random var-

iables with number of time steps   and   and a delay  . The parameter   ac-

counts for a physical delay between processes   and   (Wibral et al., 2013) and 

can be optimized by finding the maximum TE over a range of assumed values 

for  . 
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3.4.18. Analysis of information transfer using transfer entropy and 

Granger causality analysis 

We performed TE analysis with the open-source Matlab toolbox TRENTOOL 

(Lindner et al., 2011), which implements the KSG-estimator (Kraskov et al., 

2004; Frenzel and Pompe, 2007; Gómez-Herrero et al., 2015) for TE estima-

tion. We used ensemble estimation (Wollstadt et al., 2014; Gómez-Herrero et 

al., 2015), which estimates TE from data pooled over trials to obtain more data 

and hence more robust TE-estimates. Additionally, we used Faes' correction 

method to account for volume conduction (Faes et al., 2013). 

In the TE analysis the same time intervals (prestimulus) and embedding param-

eters as for AIS analysis were used. TE values for Face blocks and House 

blocks were contrasted using a dependent-sample permutation t-metric for sta-

tistical analysis across subjects. In the statistical analysis, Bonferroni correction 

was used to account for multiple comparisons across links (uncorrected alpha 

level 0.05). As for AIS, the history dimension for the past states was set to finite 

values; we here set  max    max and used the values obtained during AIS esti-

mation for the target time series of each signal combination. 

For the significant TE links post-hoc nonparametric bivariate Granger causality 

analysis in the frequency domain (Dhamala et al., 2008) was computed. Using 

the nonparametric variant of Granger causality analysis avoids choosing an 

autoregressive model order, which may easily introduce a bias. In the non-

parametric approach Granger causality is computed from a factorization of the 

spectral density matrix, which is based on the direct Fourier transform of the 

time series data (Dhamala et al., 2008). The Wilson algorithm was used for fac-

torization (Wilson, 1972). A spectral resolution of 2 Hz and a spectral smoothing 

of 5 Hz were used for spectral transformation using the multitaper approach 

(Percival and Walden, 1993) (9 Slepian tapers). We were interested in the dif-

ferences of Granger spectral fingerprints of Face and House blocks, however 

we also wanted to make sure that the Granger values for these differences sig-

nificantly differed from noise. For that reason we created two additional “ran-

dom” conditions by permuting the trials for the Face block and the House block 

condition for each source separately. Two types of statistical comparisons were 



Information-theoretic evidence for predictive coding in the face-processing system  

79 
 

performed for the frequency range between 8 and 150 Hz and each of the sig-

nificant TE links: 1. Granger values in Face blocks were contrasted with 

Granger values in House blocks using a dependent-samples permutation t-

metric 2. Granger values in Face blocks / House blocks were contrasted with 

the random Face block condition / random House block condition using another 

dependent-samples permutation t-metric. For the first test a cluster-correction 

was used to account for multiple comparisons across frequency (Maris and 

Oostenveld, 2007). Adjacent samples which uncorrected p-values were below 

0.01 were considered as clusters. 5000 permutations were performed and the 

alpha value was set to 0.05. Frequency intervals in the Face block vs. House 

block comparison were only considered as significant if all included frequencies 

also reached significance in the comparison with the random conditions using a 

Bonferroni correction. Last, Bonferroni correction was also applied to account 

for multiple comparisons across links.  

3.1. Results 

3.5.1. Behavioral results 

We found no differences between Face blocks and House blocks for hit rates 

(avg. hitrate Face blocks 93.9%; avg. hitrate House blocks 94.6%; Wilcoxon 

Signed rank test p = 0.57) and reaction times of correct responses (avg. mean 

reaction times Face blocks 0.545 s, avg. reaction times House blocks 0.546 s; 

Wilcoxon Signed rank test p = 0.85). For both block types subjects showed 

decreased hit rates and increased reactions times for the instructed intact 

stimulus (i.e. face in Face blocks and house in House blocks) compared to the 

non-instructed intact stimulus (house in Face blocks and face in House blocks), 

as the instructed intact stimuli had to be distinguished from a similar distractor 

(SCR stimuli; Figure 3.2.). Also, slower reaction times were found for the 

instructed intact stimulus vs. the non-instructed scrambled stimulus for both 

block types. Moreover, for both block types subjects showed lower hit rates for 

houses than SCR houses (see Figure 3.2. for results of behaviour analysis). 
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Figure 3.2. Behavioral results. Depiction of hit rates and reaction times of correct 
responses for (A) Face blocks and (B) House blocks. Equivalent conditions in different 
block types are marked in red and grey, respectively. Asterisks indicate significant 
differences based on Wilcoxon signed-rank tests within block type (n = 52; Bonferroni 
corrected for multiple comparisons). Error bars indicate standard error. SCR – 
scrambled Mooney stimuli. 

3.5.2. Definition of frequency bands  

Following the same approach as Brodski and colleagues (2015), we defined 

frequency bands for subsequent neural analysis based on the significant 

clusters of a task vs. baseline contrast at the MEG sensor level. This analysis 

was based on the spectra of all conditions for both block types and revealed 

one positive cluster with task-related increases in activity and one negative 

cluster with task related decreases in activity (Figure 3.3.). Based on the 

spectral profile of the two significant clusters, the following six frequency bands 

were defined for further analysis: (1) 8–14 Hz (alpha); (2) 14–32 Hz (beta); (3) 

32–50 Hz (low gamma), (4) 50–60 Hz (mid gamma), (5) 60–100 Hz (high 

gamma) and (6) 100-150 Hz (very high gamma). 
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Figure 3.3. Sensor-level frequency analysis – defining frequency bands. Middle: 
Power spectra for all of the significant clusters (one positive and one negative cluster) 
at the sensor level (permutation t-metric, contrast [0.05s 0.35s] vs. [-0.35s -0.05s] 
around stimulus onset, t values masked by p < 0.05, cluster correction, n = 52). 
Frequency analysis at the sensor level was calculated using both blocks types jointly. 
Task-related increases in power are shown in red (positive cluster) and task-related 
decreases in blue (negative cluster). Black dashed lines frame the identified frequency 
ranges. Top and bottom: Topographical plots of the task-related increases or decreases 
for each defined frequency range. 

3.5.3. Analysis of predictable information  

Statistical comparisons of AIS values between Face blocks and House blocks in 

the prestimulus interval revealed increased AIS values for Face blocks in 

clusters in fusiform face area (FFA), anterior inferior temporal cortex (aIT), 

occipital face area (OFA), posterior parietal cortex (PPC) and primary visual 

cortex (V1) (Figure 3.4.). We referred to these five brain areas as “face 

prediction network” and subjected it to further analyses. In contrast to this 

finding of a face prediction network, we did not find brain areas showing 

significantly higher AIS values in House blocks compared to Face blocks. This 

is similar to highly cited previous studies that failed to find prediction effects for 
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houses in the brain in contrast to faces (e.g. Summerfield et al., 2006a, 2006b; 

Trapp et al., 2015). 

 

Figure 3.4. Statistical analysis of predictable information (measured by AIS) at 
the MEG source level. Results of whole-brain dependent samples permutation t-
metric contrasting Face blocks and House blocks (n=52, t-values masked by p < 0.05, 
cluster correction). Peak voxel coordinates in MNI space are shown at the top for each 
brain location; z-values are displayed below each brain slice. OFA = occipital face area; 
FFA = fusiform face area; aIT= anterior inferior temporal cortex; PPC = posterior 
parietal cortex; V1 = primary visual cortex. 

3.5.4. Correlation of single trial power and single trial predictable 

information  

In order to investigate the neurophysiological correlates of activated prior 

knowledge identified via AIS analysis, a correlation analysis of single trial power 

in distinct frequency bands with single trial AIS was conducted. Correlation 

analysis revealed significant positive correlations in the alpha and beta 

frequency bands (Table 3.1.). This means that alpha and beta band activity is 

the most likely carrier of activated prior knowledge. Additionally, for two of the 

brain areas we also found a weak negative correlation of single trial very high 
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gamma power and AIS. However, the tiny effect size of the very high gamma 

correlation questions the relevance of this effect. We will therefore only discuss 

the findings in the alpha and beta band. 

Table 3.1. Correlation of single trial power and single trial predictable 
information (measured by AIS) in the face prediction network 

 FFA aIT V1 OFA PPC 

Alpha 
(8-14 hz) 

rho = 0.46* rho = 0.46* rho = 
0.49* 

rho = 0.47* rho = 0.47* 

Beta  
(14-32 hz) 

rho = 0.33* rho = 0.34* rho = 
0.31* 

rho = 0.33* rho = 0.3* 

Low gamma 
(32-50 hz) 

rho = 0.07 rho = 0.07 rho = 0.08 rho = 0.07 rho = 0.09 

Mid gamma 
(50-60 hz) 

rho = 0.03 rho = 0.01 rho = 0.02 rho = 0.02 rho = 0.04 

High gamma 
(60-100 hz) 

rho = 
-0.007 

rho = -0.02 rho = 0.01 rho = 0.003 rho = 0.05 

Very high 
gamma  
(100-150 Hz) 

rho = -0.13 rho =-0.16* rho= -0.12 rho = -0.13* rho = -0.11 

* = significant, based on binomial test  

While we found a significant correlation of single trial power and predictable 

information in the alpha and beta band, the contrast map based on mean 

beamformer reconstructed source power over all source grid points for Face 

and House blocks (t-values obtained from dependent sample t-metric over all 

52 subjects) did not correlate with the mean AIS contrast map for both, alpha 

and beta power (alpha rho = 0.043, p = 0.33; beta rho = 0.05, p = 0.21; Figure 

3.5.). This suggests that AIS analysis provides additional information not directly 

provided by a spectral analysis. In other words, while AIS seems to be carried 

by alpha/beta-band activity, not all alpha/beta-band activity contributes to AIS. 
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Figure 3.5. Correlation of predictable information contrast maps and source 
power contrast maps. A) Illustration of the t-value maps of the dependent samples t-
metric for the Face block vs. House block contrast (n = 52, no correction) on the 
cortical surface. B) Scatter plots of the relationship of the alpha/beta contrast and the 
AIS contrast. Each dot represents a source location within the brain. Spearman 
correlation values are displayed at the top right corner of each plot (n = 478). Linear 
regression lines are included in gray (solid). 

3.5.5. Decoding prediction content from single trial AIS values 

To study whether face or house predictions can be decoded from AIS values of 

the face prediction network on a trial-by-trial basis, support vector machines 

were used (Chang and Lin, 2011). Cross-validated decoding performance 

reached a maximum of 65.2% (mean performance 53.5%, SD 3.9% over 

subjects). When Bonferroni correcting for the high number of subjects tested (n 

= 52), for 22 of the 52 subjects performance was still significantly better than for 

permuted datasets (p < 0.05/52). Note, that this fraction is much higher than 

would have been expected by chance (p = 1.1 x 10-52, binomial test).  

3.5.6. Analysis of information transfer  

To understand how activated prior knowledge is communicated within the 

cortical hierarchy, we assessed the information transfer within the face 

prediction network in the prestimulus interval by estimating transfer entropy (TE, 
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Schreiber, 2000) on source time courses for Face blocks and House blocks, 

respectively. Statistical analysis revealed significantly increased information 

transfer for Face blocks from aIT to FFA (p = 0.0001, Bonferroni correction) and 

from PPC to FFA (p = 0.0014, Bonferroni correction). For House blocks 

information transfer was increased in comparison to Face blocks from brain 

area V1 to PPC (p = 0.0014, Bonferroni correction) (Figure 3.6.).  

Post-hoc frequency-resolved granger causality analysis did not reveal any 

significant effects. 

 

Figure 3.6. Analysis of information transfer in the prestimulus interval. Results of 
dependent sample permutation t-tests on transfer entropy (TE) values (Face blocks vs. 
House blocks, n = 52, p < 0.05, Bonferroni corrected). Red arrows indicate increased 
information transfer for Face blocks; blue arrows indicate increased information transfer 
for House blocks. Illustration of the resulting network in A) a view from the back of the 
brain, B) view from the top of the brain, C) depiction of the network hierarchy (based on 

the hierarchy in Zhen et al., 2013; Michalareas et al., 2016). 

3.5.7. Correlation of predictable information and reaction times 

In order to study the association of predictable information and behaviour, we 

correlated the per subject difference of AIS values between Face blocks and 

House blocks with the per subject difference in reaction times. This analysis 

was performed for the three brain areas between which we found increased 

information transfer during Face blocks (FFA, aIT and PPC). For these brain 

areas we tested the hypothesis that predictable information for face blocks was 

associated with performance, i.e. reaction times during Face blocks. Negative 

correlation values were found for all of the three brain areas, however only brain 
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area FFA reached significance when correcting for multiple comparisons (Figure 

3.7.): FFA robust Spearman’s rho -0.41, robust confidence interval (CI) after 

correcting for multiple comparisons [-0.68 -0.066]; aIT robust Spearmans rho = -

0.12, CI [-0.4554 0.245]; PPC robust Spearman’s rho -0.21 CI [-0.5480 0.1178].  

 

Figure 3.7. Correlation analysis for predictable information and reaction times. 
Scatter plots displaying the (skipped) correlation of per subject AIS difference values 
(Face blocks – House blocks) with per subject reaction time difference values (Face 
blocks – House blocks). Robust Spearman correlation values are displayed at the top 
right corner of each plot. Asterisks indicate significant correlation, using Bonferroni 
correction of bootstrap confidence intervals. Linear regression lines are included in 
gray (solid). 

 



Information-theoretic evidence for predictive coding in the face-processing system  

87 
 

3.6. Discussion 

We tested the hypothesis that the neural correlates of prior knowledge activated 

for use as an internal prediction must show as predictable information in the 

neural signals carrying that activated prior knowledge. This hypothesis is based 

on the rationale that the content of activated prior knowledge must be 

maintained until the knowledge or the prediction derived from it is used. The fact 

that activated prior knowledge has a specific content then mandates that 

increases in predictable information should be found in brain areas specific to 

processing the respective content. This is indeed what we found when 

investigating the activation of prior knowledge about faces during face detection 

blocks. In these blocks, predictable information was selectively enhanced in a 

network of well-known face processing areas. At these areas prediction content 

was decodable from the predictable information on a trial-by-trial basis and 

increased predictable information was related to improved task performance in 

brain area FFA. Given this established link between the activation of prior 

knowledge and predictable information we then tested current 

neurophysiological accounts of predictive coding suggesting that activated prior 

knowledge should be represented in deep cortical layers and at alpha or beta-

band frequencies and should be communicated as a prediction along 

descending fiber pathways (Bastos et al., 2012). Indeed, predictable information 

within the network of brain areas related to activated prior knowledge of faces 

was associated with alpha and beta-band frequencies and information transfer 

within this network was increased in top-down direction– in accordance with the 

theory.  

We will next discuss our findings with respect to their implications for current 

theories of predictive coding. 

3.6.1. Activated prior knowledge for faces shows as predictable 

information in content specific areas  

We found increased predictable information as reflected by increased AIS 

values in Face blocks in the prestimulus interval in FFA, OFA, aIT, PPC and V1. 
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Out of these five brain areas FFA, OFA and aIT are well known to play a major 

role in face processing (Kanwisher et al., 1997; Kriegeskorte et al., 2007; Tsao 

et al., 2008; Pitcher et al., 2011). 

It might seem surprising that predictable information for Face blocks was not 

increased within superior temporal gyrus (STS), a brain area which has been 

recently identified as a key region for the prediction of face identities in a face 

identity recognition task (Apps and Tsakiris, 2013). This finding may be 

explained by the specific role of STS in face processing – mainly processing 

facial identities and emotional expressions (Winston et al., 2004; Fox et al., 

2009). In contrast, the STS may play a lesser role in the pure face detection 

task of our design where neither identities nor emotional expressions were of 

relevance. 

In addition to increased predictable information in well-known face processing 

areas we also found increased predictable information in Face blocks in PPC. 

We consider the increase in predictable information in PPC also as content-

specific, because regions in PPC have been recently linked to high-level visual 

processing of objects like faces (Pashkam and Xu, 2014) and activation of PPC 

has been repeatedly observed during the recognition of Mooney faces by us 

and others (Dolan et al., 1997; Grützner et al., 2010; Brodski et al., 2015). 

In sum, our finding of increased predictable information for Face blocks in FFA, 

OFA, aIT and PPC confirms our hypothesis that activation of face prior 

knowledge elevates predictable information in content specific areas. 

Additionally, our results suggest that predictable information in content-specific 

areas is associated with the corresponding prediction on a trial-by-trial basis – 

by decoding the anticipated category (Face or House block) from trial-by-trial 

AIS values at the face prediction areas.  

However, while we found increased predictable information in content specific 

areas for Face blocks, we did not find brain areas showing increased 

predictable information for House blocks. Similarly, Summerfield and colleagues 

(2006b) observed in a face/house discrimination task increased activation in 

FFA, when a house was misperceived as a face – but failed to see increased 

activation in parahippocampal place area (PPA), a scene/house responsive 

region, when a face was misperceived as a house. The authors suggest that 
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this might be related to the fact that PPA is less subject to top-down information 

than FFA – as faces have much more regularities potentially utilizable for top-

down mechanisms than the natural scenes that PPA usually responds to. 

Additionally, because of their strong social relevance (e.g. Farah et al., 1995) 

faces capture attention disproportionally (e.g. Vuilleumier and Schwartz, 2001). 

Thus, also face predictions/templates may be prioritized in comparison to other 

templates e.g. for houses (Esterman and Yantis, 2009; Puri et al., 2009; Van 

Belle et al., 2010). 

3.6.2. Maintenance of activated prior knowledge about faces is reflected 

by increased alpha/beta power 

We found a positive single-trial correlation of AIS with alpha/beta power for all 

face prediction areas. This finding supports the assumption that the 

maintenance of activated prior knowledge as indexed by AIS is related to alpha 

and beta frequencies. Congruently with our findings, Mayer and colleagues 

(2015) recently showed that activation of prior knowledge about previously seen 

letters is associated with increased power in alpha frequencies in the 

prestimulus interval. Also, Sedley and colleagues (2016) observed that the 

update of predictions, which also requires access to maintained activated 

knowledge, is associated with increased power in beta frequencies.  

Extending these previous findings, we are the first to report that single-trial low 

frequency activity strongly correlates with the momentary amount of activated 

prior knowledge in content specific brain areas. Specifically, our results 

demonstrate that the current amount of activated prior knowledge usable as 

predictions for face detection is associated with neural activity in the alpha and 

beta frequency range, supporting the hypothesis of a popular microcircuit theory 

of predictive coding (Bastos et al., 2012).  

3.6.3. Face predictions are transferred in a top-down manner  

In Face blocks we observed increased information transfer to FFA from aIT as 

well as from PPC, both areas located higher in the processing hierarchy than 
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FFA (e.g. Zhen et al., 2013; Michalareas et al., 2016). Thus, FFA seems to have 

the role of a convergence center to which information from higher cortical areas 

is transferred in order to prepare for rapid face detection.  

Closely related to our findings Esterman and Yantis (2009) observed that 

anticipation effects for faces in FFA (and houses in PPA) were associated with 

increased activity in a posterior IPS region (part of the PPC) extending to the 

occipital junction. However, to our knowledge our study is the first to report face-

related anticipatory top-down information transfer from PPC and aIT to FFA. 

Top-down information transfer in face processing regions in a preparatory 

interval before face detection is in general supportive of the predictive coding 

account (Mumford, 1992; Rao et al., 1999; Friston, 2005, 2010), that suggests a 

top-down propagation of predictions. This top-down information transfer of 

predictions is probably associated with a low-frequency channel (Bastos et al., 

2012) – in contrast to the bottom-up propagation of prediction errors, which has 

been linked to a high-frequency channel (Bastos et al., 2012; Brodski et al., 

2015). The spectral dissociation between the transfer of predictions and of 

prediction errors frequencies is in line with physiological findings in monkeys 

and humans (Bastos et al., 2015; Michalareas et al., 2016) and received recent 

support from a MEG study investigating the (spectrally resolved) information 

transfer during the prediction of causal events (Pelt et al., 2016). Our spectrally 

resolved granger causality analysis did not contradict this view, yet results failed 

to reach statistical significance. 

In addition to the two top-down links showing increased information transfer for 

Face blocks, we observed a bottom-up link from V1 to PPC with increased 

information transfer for House blocks. As we did not find a prediction network for 

houses and our analysis was thus only performed in the brain areas of the face 

prediction network, one can only speculate on the function of this bottom-up 

information transfer. It is possible that it indicates that house detection was 

rather performed in a bottom-up manner for instance by first identifying low level 

features that distinguish houses from their scrambled counterparts. 
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3.6.4. Pre-activation of prior knowledge about faces facilitates 

performance 

Across subjects we found elevated predictable information in FFA in Face 

blocks in contrast to House blocks to be associated with shorter reaction times 

for Face blocks compared to House blocks. This suggests that especially pre-

activation of prior knowledge about faces in FFA facilitates processing and 

speeds up face detection, as also suggested by FFA effects in previous fMRI 

studies (Esterman and Yantis, 2009; Puri et al., 2009). Our study is however the 

first to demonstrate that the size of the facilitatory effect on perceptual 

performance depends on the quantity of activated prior knowledge for faces in 

FFA, measurable as the difference in AIS between face and house block for 

each subject. Differential size of the faciliatory effect between subjects and the 

associated differences in the quantity of activated prior knowledge in FFA may 

be related to the differential ability in maintaining an object specific 

representation (see Ranganath et al., 2004). 
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4.1. Abstract 

The neurophysiological underpinnings of the non-social symptoms of Autism 

Spectrum Disorder (ASD) which include sensory and perceptual atypicalities 

remain inconclusive. Well-known accounts of less dominant top-down 

influences and more dominant bottom-up processes compete to explain these 

characteristics. These accounts have been recently embedded in the popular 

frame work of predictive coding theory. In order to differentiate between 

competing accounts, we studied altered information dynamics in ASD by 

quantifying predictable information in neural signals. Predictable information in 

neural signals measures the amount of stored information that is used for the 

next time step of a neural process. Thus, predictable information limits the 

(prior) information which might be available for other brain areas, e.g. to build 

predictions for upcoming sensory information. We studied predictable 

information in neural signals based on resting state magnetoencephalography 

(MEG) recordings of 19 ASD patients and 19 neurotypical controls aged 

between 14 and 27 years. Using whole-brain beamformer source analysis we 

found reduced predictable information in ASD patients across the whole brain, 

but in particular in posterior regions of the default mode network. In these 

regions, predictable information was positively associated with source power in 

the alpha and beta frequency range. Predictable information in precuneus and 

cerebellum was negatively associated with non-social symptom severity, 

indicating a clinical relevance of the analysis of predictable information for 

research in ASD. Our findings are in line with the assumption that use or 

precision of prior knowledge is reduced in ASD patients. 

4.2. Introduction 

Autism Spectrum Disorder (ASD) is a developmental disorder with an estimated 

prevalence of about one in 68 children (Christensen, 2016). The disorder is 

characterized by deficits in social communication together with restricted, 

repetitive and stereotyped patterns of behaviors and interests as well as hypo- 

or hyperreactivity to sensory input (American Psychiatric Association, 2013). 
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Despite the first descriptions of the disorder by Kanner (1943) and Asperger 

(1944) dating back more than 70 years, the neurophysiological mechanisms 

underlying the symptoms of ASD have remained largely unknown. Historically, 

there have been attempts to elicit specific core underlying cognitive 

mechanisms, such as the “Theory of Mind” hypothesis (Baron-Cohen et al., 

1985) assumed to underlie impaired social-cognitive function or executive 

function impairments (Russell, 1997) as well as “weak central coherence” 

(Happé and Frith, 2006) assumed to underlie stereotyped and repetitive 

behavior as well as sensory aspects. Examples of sensory and perceptual 

atypicalities in ASD are decreased susceptibility to visual illusions (Happé, 

1996) as well as the superior performance in perceptual tasks requiring a focus 

on local features compared to global features (e.g. Shah and Frith, 1983; 

Plaisted et al., 1998; Joseph et al., 2009). Recent accounts of ASD further 

confirm these perceptual characteristics as a key element towards a 

comprehensive theory of ASD and propose to elucidate the non-social 

symptoms of the disorder within the framework of predictive coding theory 

(Pellicano and Burr, 2012a; Lawson et al., 2014). Predictive coding theory (Rao 

et al., 1999; Friston, 2005, 2010; Clark, 2012) suggests that perception is a 

process of hierarchical probabilistic inference, in which the brain uses prior 

knowledge from life-long experience for building internal predictions. These 

predictions are combined with incoming sensory information in order to infer the 

state of the outside world. A mismatch between top-down propagated 

predictions and sensory evidence results in a bottom-up propagated prediction 

error. Influence on perception of the prediction error depends on so-called 

precision-weighting (Friston, 2009; Friston and Kiebel, 2009) – i.e. the weight 

that is given to the prediction error compared to the prediction / prior knowledge.  

Predictive coding accounts of perception in ASD can be formalized as changes 

in information processing in terms of a reduced influence of prior knowledge 

(Pellicano and Burr, 2012a), a relative imbalance of prior knowledge and 

prediction error (Friston et al., 2013; Lawson et al., 2014) or a mere 

overweighing of prediction error/sensory input (Brock, 2012; Van de Cruys et 

al., 2014). In order to differentiate between these accounts, altered information 

dynamics in ASD may be assessed via the three fundamental component 
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operations of information processing, i.e. information storage, transfer and 

modification (Langton, 1990; Lizier et al., 2012; Gómez et al., 2014; Wibral et 

al., 2015). In particular, quantifying information storage in neural signals may be 

a useful tool for testing the hypothesis of reduced use of prior knowledge in 

ASD (Gómez et al., 2014) as the use of prior knowledge for predictions requires 

that (passively) stored information is re-expressed in neural activity (active 

storage – see Zipser et al., (1993) for a distinction between passive and active 

storage). Information storage in neural processes is mirrored by the fact that 

information from the past of a neural process predicts a certain fraction of 

information in the future of this process (e.g. Gómez et al., 2014; Wibral et al., 

2014). This predictable information provides the upper bound of the information 

potentially becoming useful as predictions for the brain. 

In the present study we compared predictable information as measured by the 

information-theoretic measure active information storage (Lizier et al., 2012) for 

young patients diagnosed with ASD and neurotypical controls based on neural 

signals reconstructed from resting state magnetoencephalography (MEG) 

recordings. 

We hypothesized that predictable information would be reduced in patients with 

ASD and that reduced predictable information would further be associated with 

severity in one or more of the symptom domains in ASD. 

4.3. Methods 

4.3.1. Participants 

Nineteen male patients diagnosed with autism spectrum disorder (ASD) 

according to ICD-10 (World Health Organization, 1992), i.e. autism (F84.0), 

Asperger Syndrome (F84.5) or atypical autism (F84.1), and nineteen male, 

neurotypical controls (NTC) aged 14 – 27 years participated in the present 

study. Exclusion criteria for both groups were an IQ below 70, history of or 

current diagnosis of schizophrenia or bipolar disorder, current depressive 

episode, severe anxiety disorder, tic disorder, illegal drug use, and a chronic 

medical or neurological condition. All participants showed normal or corrected to 
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normal vision. Neurotypical individuals had to score below the clinical cut-off of 

all first order scales of the Youth Self Report (YSR; (Achenbach and Edelbrock, 

1991; Deutsche Child Behaviour Checklist, 1998a) or Young Adult Self Report 

(YASR 18-30; Achenbach, 1990; Deutsche Child Behaviour Checklist, 1998b). 

The ethics committee of the Medical Faculty of the University of Frankfurt 

approved the experimental study. Participants and/or their parents gave written 

informed consent before the experiment and received monetary compensation. 

ASD patients were recruited through the Department of Child and Adolescent 

Psychiatry, Psychosomatics and Psychotherapy, University Hospital Frankfurt, 

Goethe-University and via ASD related websites. NTC were recruited from local 

schools and by notices on the university campus. 

4.3.2. Assessment instruments across groups 

In- and exclusion criteria were assessed using checklists as well as a semi-

standardised medical history interview. IQ was measured by the Culture Fair 

Intelligence Test (CFT 20-R; Weiß, 2006). The German version of the Youth Self 

Report (YSR) and the German version of the Young Adult Self Report (YASR 

18-30) were implemented to describe severity of current psychopathology in 

both groups. 

The socio-economic status (SES) of the respective family was computed based 

on the mean occupational status of both parents. The occupational status 

ranged from 1 to 5 (1 = unskilled worker; 5 = highly skilled, leading position). 

Handedness was assessed according to the Edinburgh Handedness Inventory 

scale (Oldfield, 1971), in which positive values indicate right-handedness and 

negative values indicate left-handedness. 

4.3.3. Autism-specific assessment instruments 

Patients were diagnosed according to ICD-10 criteria (World Health 

Organization, 1992), employing a semi-structured clinical interview, the German 

version of the Autism Diagnostic Observation Schedule (ADOS; Lord et al., 

2000; see Rühl et al., 2004 for the German version), and the Autism Diagnostic 

Interview–Revised (ADI-R; Rutter et al., 2003; see Bölte et al., 2006 for the 
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German version) administered by experienced clinicians (psychiatrists, clinical 

psychologists). The ADOS is a direct observation measure, assessing social 

communication and stereotyped, restricted behaviour within a social interaction 

situation. The ADI-R is a standardized interview for caregivers of autistic 

individuals and encompasses the three domains of “social interaction”, 

“communication”, and “restrictive, repetitive and stereotyped behaviours and 

interests”. The ADI-R could not be obtained in five of the ASD patients.  

       

4.3.4. Data acquisition  

For each participant, magnetoencephalography (MEG) resting state recordings 

were obtained for five minutes each with eyes open (fixating) and eyes closed, 

respectively. Only analysis of the data obtained from the resting state 

recordings with eyes closed will be reported in the present study. 

The acquisition of the MEG data was performed in line with the guidelines for 

“good practice” of MEG recordings (Gross et al., 2012). A whole-head system 

(Omega 2005; VSM MedTech, Port Coquitlam, BC, Canada) with 275 axial 

gradiometers was used to record the MEG signals. Signals were recorded 

continuously at a sampling rate of 1200 Hz in a synthetic third-order 

gradiometer configuration and filtered online with fourth-order Butterworth filters 

with a 300 Hz low pass and a 0.1 Hz high pass (Data Acquisition Software 

Version 5.4.0, VSM MedTech, BC, Canada). During the complete recording 

participants’ head position relative to the gradiometer array was localized via 

three head localization coils that were placed on the nasion and 1 cm anterior of 

the tragus of each ear. In order to detect artifacts, the horizontal and vertical 

electrooculogram (EOG) and the electrocardiogram (ECG) were recorded via 

six electrodes. These were placed distal to the outer canthi of both eyes to 

record horizontal eye movements, above and below the right eye to record 

blinks and vertical eye movements and below both collarbones to record the 

ECG. The impedance of each electrode was kept below 15 kΩ, as measured 

with an electrode impedance meter (Astro-Med Electrode Impedance Meter, 

Model F-EZM5, Grass Technologies, Natus Neurology Inc., Warwick RI, USA). 

Structural MR images were obtained with a 3 T Siemens Allegra or Trio scanner 
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(Siemens Medical Solutions) using a standard T1 sequence (3D MPRAGE 

sequence, 176 slices, 1 × 1 × 1 mm voxel size). Before acquisition of the 

structural images, vitamin E pills were placed at the former positions of the 

MEG head localization coils to enable co-registration of MEG data and 

structural MR images.  

4.3.5. MEG data analysis 

Preprocessing 

MEG data analysis was performed with MATLAB (MATLAB 2012; The 

MathWorks) and the open source MATLAB toolbox FieldTrip (Oostenveld et al., 

2011; Version 2013 11-11). During preprocessing, the continuous recordings of 

five minutes were split into data epochs of 1 s each. Line noise was removed 

using a discrete Fourier transform filter at 50,100 and 150 Hz. Further, FieldTrip 

artifact-rejection routines were used to automatically reject epochs containing 

muscle or sensor jump artifacts. For further cleaning of the data, independent 

component analysis (ICA; Makeig et al., 1996) was performed using the 

extended infomax (runica) algorithm implemented in fieldtrip/EEGLAB. ICs 

displaying a strong correlation with EOG and ECG channels were removed from 

the data. Additionally, data was visually inspected for residual artefacts.  

In order to minimize movement related inaccuracies, the mean head position in 

the resting state datasets was calculated for each participant and only epochs in 

which the head position did not deviate more than 5 mm from the mean head 

position were considered for analysis. 

Source grid creation  

To perform MEG source analysis with individual head models, individual source 

grids were created by transforming the structural MR image for each participant 

to a T1 MNI template (http://www.fil.ion.ucl.ac.uk/spm). This way an individual 

transformation matrix was obtained for each participant. Next, the inverse of 

each participants’ transformation matrix was warped with a regular dipole grid 

(based on T1 template, spacing 15mm, resulting in 478 grid locations inside the 
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brain), thereby obtaining a dipole grid for each participant in participant space. 

Using this approach every brain area was located at the same grid point for all 

participants allowing calculation of multi-participant statistics. A realistic single 

shell forward model (Nolte, 2003) was used to compute the lead-fields for each 

grid location. 

Source time course reconstruction  

In order to enable a whole brain analysis of active information storage (AIS), we 

reconstructed the source time courses for all 478 source grid locations inside 

the brain. Whole-brain source time course reconstruction was performed using 

a time-domain beamformer filter (linear constrained minimum variance; LCMV, 

Van Veen et al., 1997) applied on MEG sensor data filtered broadly with 8 Hz 

high pass and 150 Hz low pass. For each of the 478 source grid location three 

orthogonal filters in x, y, and z direction were computed and the sensor data 

were projected through the LCMV filters. From the resulting three time courses 

per location via singular value decomposition the time course in direction of the 

dominant dipole orientation was obtained and used for calculation of active in-

formation storage (AIS). 

Analysis of active information storage  

AIS describes how much of the information in the next time step of a process is 

predictable from its immediate past state (Lizier et al., 2012). High AIS values 

indicate that a signal is both rich in information and predictable at the same 

time. Detailed definition of AIS is given in Lizier et al., (2012; methods part) and 

Wibral et al., (2014; see also Gómez et al., 2014 and Brodski-Guerniero et al., 

2017 for applications on MEG data). 

In order to determine the history dimension and optimal embedding delay 

parameter for AIS computation, the Ragwitz’ criterion (Ragwitz and Kantz, 2002) 

as implemented in the TRENTOOL toolbox (Lindner et al., 2011) was used for 

each participant and each of the source locations separately. As differences in 

history dimension may induce a bias on the estimated values, we chose the 

history dimension of 6 over all participants and source locations for computation 
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of AIS. This means that 6 samples were chosen, spaced at an embedding delay 

interval that was individually determined per subject based on that subject's 

signal autocorrelation decay time and the optimization via the Ragwitz criterion. 

AIS was computed with 4 nearest neighbours (recommended by Kraskov et al., 

2004) in the joint embedding space using the Kraskov-Stoegbauer-Grassberger 

estimator (Kraskov et al., 2004; algorithm 1), as implemented in the open 

source Java Information Dynamics Toolkit (Lizier, 2014). Also, as a different 

number of data points may induce a bias in the estimation, AIS was computed 

on embedded data only up to the minimal number of data points over 

participants (number of data points entering the analysis: 149987; number of 

epochs: 127, 1 s length, sampling rate 1200 Hz). AIS values were averaged 

across time points for each source location and participant before statistical 

analysis. 

Statistical analysis on AIS  

For investigation of the mean difference in AIS between ASD patients and NTC 

for each participant, the AIS values were further averaged over all 478 source 

locations and a Wilcoxon rank sum test was performed to test for AIS differ-

ences between groups. In order to examine a potential correlation of AIS and 

age, Pearson’s r and Spearman’s rho were calculated for each group sepa-

rately. 

For finding the specific source locations at which AIS values differed between 

groups, an independent samples permutation t-test was performed across all 

potential source locations over the whole brain. To account for multiple com-

parisons across the 478 source locations, a cluster-based correction method 

(Maris and Oostenveld, 2007) was used. Clusters were defined as adjacent grid 

points whose t-values exceeded a critical threshold corresponding to an uncor-

rected alpha level of 0.05. For these clusters we defined cluster values as the 

sum of t-values in a particular cluster. Cluster values were tested against the 

distribution of cluster values obtained from 5000 permuted data sets. Signifi-

cance was assessed based on an alpha value of 0.05. For the significant clus-

ters, the brain areas showing (local) peaks in the t-map were reported. For 
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these locations, we also calculated Spearman’s and Pearson’s correlations of 

AIS with age. 

In order to assess the relationship of AIS values and ADI-R ratings of symptom 

severity (Bölte et al., 2006) linear regression analysis with AIS as response 

variable and the ADI-R algorithm scores as the predictor variable was calcu-

lated for all 478 brain locations. To account for multiple comparisons across 

brain locations, a cluster-based correction method was performed on the t-

values of the beta coefficients (t = beta/standard error). Clusters significance 

was assessed in the same way as for the independent sample t-statistic de-

scribed above (5000 permutations, alpha 0.05). Linear regression analysis was 

performed separately for each of the three ADI-R domains “communication” 

(ADI-R com), “social interactions” (ADI-R soc) and “restrictive, repetitive and 

stereotyped behaviours and interests” (ADI-R rit). Please note that ADI-R 

scores were available for 14 of the 19 ASD patients only, and thus this part of 

the analysis is based on a smaller sample size than the rest. 

Correlation analysis of AIS and beamformer reconstructed source power 

We further investigated the relationship of AIS and spectral power in individual 

epochs using Spearman’s correlations. The frequency bands for correlation 

analysis were determined based on the averaged and normalized spectrum (by 

multiplication with frequency to account for the 1/f shape of the non-normalized 

spectrum) of the peak sources showing significant differences in AIS between 

groups. The spectrum was calculated from the reconstructed source time 

courses using a multitaper approach (Percival and Walden, 1993) with 2 Sle-

pian tapers (Slepian, 1978) for a frequency interval from 8 to 150 Hz in 2 Hz 

steps. The averaged spectrum over sources, participants and epochs revealed 

three frequency bands: 8-14 Hz (alpha); 14-36 Hz (beta) and 36-150 Hz 

(gamma). Epoch-by-epoch power in these frequency bands was used for calcu-

lation of the Spearman’s correlation with epoch-by-epoch AIS. For each partici-

pant, Spearman’s rho was computed for correlation of the median epoch-by-

epoch power in the predefined frequency bands with the epoch-by-epoch AIS. 

In order to test the significance of the correlation, for each participant the ep-
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ochs were randomly permuted 5000 times and correlation was re-calculated for 

the permuted data sets. For each participant an original correlation value larger 

(or smaller) than 99.9998% (threshold Bonferroni adjusted for the 38*3*3 multi-

ple comparisons) of the correlation values obtained for the permuted data sets 

was considered to be significant. At the second level, a binomial test was used 

to assess whether the number of participants showing significant correlations 

could be explained by chance. The median correlation values over participants 

and their significance based on the binomial test are reported. 

Complexity analysis 

As the average information contained in a signal (i.e. entropy; Shannon, 2001) 

defines the upper bound of AIS (Lizier et al., 2012; Wollstadt et al., 2016), we 

also quantified the differential entropy (e.g. Cover and Thomas, 2012) at the 

brain locations showing significantly decreased AIS for patients. Thereby we 

aimed to investigate whether decreased AIS in ASD was also associated with 

decreased (differential) entropy values. Differential entropy was calculated from 

the continuous signals using the Kozachenko-Leonenko estimator (Kozachenko 

and Leonenko, 1987) with 4 nearest neighbours as implemented in the Java 

Information Dynamic Toolkit (Lizier, 2014). To avoid a bias for the estimation of 

entropy based on a differential amount of epochs, the minimal number of 127 

epochs was also used for entropy estimation of all participants. Wilcoxon rank 

sum test was used to access the differences in differential entropy between the 

ASD patients and the NTC group. 

Statistical analysis using Bayesian Statistics 

As non-significant effects were found for the difference in entropies between 

groups as well as for the correlation of AIS values and age, we additionally 

report Bayes factors (BF; Jeffreys, 1998) to clarify these findings. BFs allow 

direct quantification of the weight of evidence in favor of the null or the 

alternative hypothesis (Dienes, 2014) – a measure that cannot be obtained just 

by failing to reject the null-hypothesis in a frequentist approach. BFs were 

computed with the BayesFactor package (Morey et al., 2015 p.2) in R (R Core 
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Team, 2016). Default (medium width) prior settings for linear regression were 

used (Jeffrey-Zellner-Siow mixture of g-priors, Rouder and Morey, 2012, see 

also Liang et al., 2008, section 3), not favoring the null or alternative hypothesis 

in advance. For equal priors for the null and the alternative hypothesis a BF of 

for instance 3 indicates that the posterior odds are 3:1 in favor of the alternative 

hypothesis, i.e. that the alternative hypothesis is three times more probable than 

the null hypothesis given the data and the prior probabilities of both hypotheses. 

Three types of BF comparisons were performed in the present study:  

 

1. For average AIS (over the whole brain) as a response variable we com-

pared BFs for a linear regression with age as a predictor variable, with a 

linear regression with group (i.e. ASD or NTC) as a predictor variable.  

2. For AIS in difference areas (mean over the brain areas showing a signifi-

cant difference in AIS between the NTC and the ASD group) as a re-

sponse variable we compared BFs for a linear regression with age and 

group as predictor variables with a linear regression including only group 

as a predictor variable. Note that here the factor group was included in 

the “null model” as the brain areas were pre-selected based on a group 

comparison in the independent samples t-test.  

3. For differential entropy as the response variable we compared BFs for a 

linear regression with group as predictor variable with a linear regression 

“null model” including the intercept only.  

4.4. Results 

4.4.1. Group characteristics 

Nineteen ASD patients and nineteen NTC participated in the experiment. The 

patients were diagnosed with either high functioning autism (n = 12), Asperger 

(n = 6) or atypical autism (n = 1). Eight of the participants in the ASD group 

received medication (2x Risperidon, 3x psychostimulant, 2x SSRI, 1x 

Risperidon, psychostimulant and SSRI). Main characteristics for both groups 

are summarized in Table 4.1.  
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NTC and ASD were well matched with regard to IQ (p = 0.861), handedness (p 

= 0.388), and socio-economic status (SES) (p = 0.097). The ASD group was 

younger than the NTC group (p = 0.041), so age was controlled for during 

analysis. As expected from the in- and exclusion criteria, several first and 

second order scales of the Y(A)SR (t-values) differed between groups. 

Table 4.1. Summary of group characteristics 

 ASD (mean ± SD) NTC (mean ± SD) Statistics 
(Wilcoxon rank sum 
test) 

IQ 109.4 (±16.4)  109.6 (±18.6) p = 0.861 

Age 18.7 years (±3.4)  21.6 years (±3.8) p = 0.041 

Handedness 69.5 (±47.5) 65.5 (±51.6) p = 0.388 

SES 3.3 (±1.03) 3.9 (±0.79) p = 0.097 

Y(A)SR SR  61.6 (±11.9) 51.9 (±3.3) p = 0.006 

Y(A)SR KB 57.3 (±10.3) 52.6 (±4.3) p = 0.169 

Y(A)SR ADP 57.4 (±9.5) 51.5 (±2.5) p = 0.036 

Y(A)SR SP 59.7 (±13.6) 52.8 (±6.2) p = 0.06 

Y(A)SR SZ 60.3 (±10.9) 50.4 (±1.8) p = 0.0005 

Y(A)SR AP 59.6 (±10.7) 52.3 (±3.4) p = 0.013 

Y(A)SR AV 53.6 (±5.8) 51.7 (±3.5) p = 0.153 

Y(A)SR DV 53.3 (±4.7) 52.4 (±3.9) p = 0.577 

Y(A)SR INT 57.1 (±13.1) 47.2 (±6.5) p = 0.019 

Y(A)SR EXT 49.8 (±7.7) 45.7 (±8.5) p = 0.156 

 
SES = socio-economic status; SR = withdrawn; KB = somatic complaints; ADP = 
anxious/depressed; SP = social problems; SZ = thought problems; AP = attention 
problems; DV = delinquent behavior; AV = aggressive behavior; INT = internalizing; 
EXT = externalizing 

4.4.2. Analysis of average predictable information 

Comparison of average predictable information as measured by active 

information storage (AIS) between the ASD and NTC group revealed a 

significantly reduced mean AIS for the ASD group (Wilcoxon rank sum test, p = 

0.031; median ± SD: ASD 2.02 ± 0.08; NTC 2.08 ± 0.06; Figure 4.1.) 

In order to exclude that the group difference in average predictable information 

was related to age differences between participants, a correlation analysis of 

AIS and age was performed for each group. No significant correlation with age 

was found for any of the groups (ASD Spearman’s correlation rho = 0.36, p = 

0.135; Pearson correlation r = 0.19, p = 0.428; n = 19; NTC Spearman’s 

correlation rho = 0.06, p = 0.815; Pearson correlation r = 0.15, p = 0.530, n = 
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19). To further clarify these non-significant results, we also calculated the ratio 

of Bayes Factors for a linear regression with average AIS as a response 

variable and group (i.e. ASD or NTC) as a predictor variable and a linear 

regression with the same response variable and age as a predictor variable. 

The resulting Bayes Factor ratio of 3.15 indicated that the observed average 

AIS values were more than three times more likely to occur when group was 

considered the predictor than when age was considered the predictor. In other 

words, the calculated Bayes Factor ratio indicated that group was a better 

predictor on average AIS than age. Thus, it is unlikely that the observed group 

differences on average AIS were based on age differences only. 

 

Figure 4.1. Comparison of average AIS between groups. Each boxplot shows the 
distribution of averaged AIS values for all participants within the ASD or NTC group, 
respectively (n ASD = 19, n NTC = 19). These values have been obtained by averaging 
AIS for all 478 sources inside the brain for each subject. Horizontal dotted lines mark 
the median of each group. The asterisk indicates a significant difference in average AIS 
between groups (Wilcoxon rank sum test p = 0.03).  

4.4.3. Whole brain analysis of predictable information 

Spatially resolved comparison of AIS between the ASD and NTC group at the 

MEG source level revealed a significant group difference in posterior cingulate 

cortex (PCC), supramarginal gyrus (SMG) and precuneus (Prec) (Figure 4.2.A). 
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At these areas AIS was significantly reduced for ASD compared to NTC (Figure 

4.2.B).  

In order to exclude age-related effects, again correlations with age as well as 

Bayes Factor comparisons were performed. No significant correlation was 

found for AIS (averaged over the three sources) and age for any of the groups 

(ASD Spearman’s correlation rho = -0.04, p = 0.873; Pearson correlation r = 

0.312, p = 0.19; n = 19; NTC Spearman correlation rho = 0.16, p = 0.499; 

Pearson correlation r = 0.02, p = 0.927, n = 19). Further, Bayes Factors were 

computed based on a linear regression with AIS as response variable and 

group as a predictor variable, and a linear regression with the same response 

variable and group as well as age as predictors. Please note that here the factor 

group was included in both models, as the brain areas had been pre-selected 

based on the group comparison. The resulting Bayes Factor ratio of 3.25 

indicated that the observed AIS values were more than three times more likely 

to occur with group as a predictor than with group as well as age as predictors. 

This means that a model with group as the only predictor predicted the AIS 

values better than when age was included as an additional predictor. Thus, 

similar to the global AIS effect, group differences in AIS at the identified specific 

sources were not likely to be driven by differential age. 

4.4.4. Complexity analysis 

In order to study whether lower AIS in ASD might be associated with decreased 

signal complexity, we also computed a measure of entropy in PCC, SMG and 

Prec. None of these areas showed significant differences in entropy between 

groups (Wilcoxon rank sum test, PCC p = 0.599, SMG p = 0.350, Prec p = 

0.884, Figure 4.3.). Additionally, a Bayes factor of 0.34 for a linear regression 

with entropy (averaged over the three brain areas) as response variable and 

group as predictor variable indicated that the present entropy values were 2.94 

(1/0.34) times more likely to be observed in case of the validity of the null 

hypothesis, i.e. when group is not a proper predictor for entropy. This suggests 

that there was no difference in entropy between groups and thus differences in 

AIS for these source locations were not likely to be based on differences in 
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signal complexity in these areas. 

 

Figure 4.2. Statistical comparison of AIS between groups at the MEG source 
level. Left: Results of whole-brain independent samples permutation t-metric 
contrasting the ASD and NTC group (n ASD = 19, n NTC = 19, t-values masked by p < 
0.05, cluster correction). Peak brain locations are highlighted with white circles. For 
each brain location MNI coordinates are shown at the top. An exemplary brain slice is 
shown for each brain location; z-values are displayed below each brain slice. Right: 
Illustration of the distribution of AIS values for each brain location and for the ASD and 
NTC group, respectively. Dotted horizontal lines mark the median of each group. PCC 
= posterior cingulate cortex; SMG = supramarginal gyrus; Prec = precuneus. 
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Figure 4.3. Post-hoc complexity analysis. Boxplots illustrate the distribution of 

entropy values across participants. Entropies are displayed as z-scores across all 

estimates for both groups. Dotted horizontal lines mark the median of each group. n.s. 

= not significant based on Wilcoxon rank sum test. PCC = posterior cingulate cortex; 

SMG = supramarginal gyrus; Prec = Precuneus. 

4.4.5. Correlation of predictable information and power in individual 

epochs 

In order to study the relation of AIS and spectral power over individual epochs in 

PCC, SMG and Prec, we correlated single epoch AIS values with the power in 

different frequency bands during the same epochs (Table 4.2.). Correlation 

analysis revealed a strong positive correlation in the alpha band and a 

moderate positive correlation in the beta band.  
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Table 4.2. Correlation of epoch-by-epoch AIS values and power in PCC, 
SMG and Prec 
 PCC SMG Prec 

8-14 Hz (alpha) rho = 0.69* 
 

rho = 0.71* 
 

rho = 0.74* 

14-36 Hz (beta) rho = 0.35* rho = 0.35* 
 

rho = 0.40* 

36-150 Hz (gamma) rho = -0.13 
 

rho = -0.13 
 

rho = -0.12 

* = significant correlation, based on binomial test 

4.4.6. Correlation of predictable information and ADI-R scores 

In order to further assess whether predictable information relates to autistic 

traits, we performed a whole brain linear regression analysis of AIS and the 

three ADI-R algorithm scores for the ASD group (n = 14 as ADI-R scores were 

not available for all of the patients). Regression analysis was performed 

separately for the three domains: communication (ADI-R com), social 

interactions (ADI-R soc) and restrictive, repetitive and stereotyped behaviours 

and interests (ADI-R rit). There was a significant cluster for the regression of 

AIS and ADI-R rit (Figure 4.4.). This cluster encompassed four peak areas, 

including sources in the cerebellum and the precuneus. The source in 

precuneus was located slightly more anterior compared to the precuneus area 

found in the group comparison of AIS (see MNI coordinates in Table 4.3.). All of 

the brain areas in the significant cluster showed negative t-values, indicating a 

negative relationship of AIS and ADI-R rit. In other words, lower AIS in these 

areas was associated with higher ADI-R rit scores, i.e. a higher degree of 

impairment in this domain. No significant clusters were found for the regression 

of AIS and ADI-R com or ADI-R soc. 

Table 4.3. Peak voxels for the significant cluster in the regression analysis 
of AIS and ADI-R rit (see Figure 4.4.) 
No  MNI Coordinates Label 

1 x = -5, y = -65, z = -5 Left Lingual gyrus / Cerebellum 
(culmen) 

2 x = -20, y = -50, z = 25 Left Precuneus 

3 x = -20, y = -50, z = -35 Left Cerebellum  

4 x = -5, y = -65, z = -50 Left Cerebellum (Lobule VIII) 
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Figure 4.4. Linear regression analysis of AIS and ADI-R scores. Results of linear 
(permutation) regression with ADI-R rit scores as predictor variable and AIS as 
response variable (ASD only, n = 14, t-values masked by p < 0.05, cluster correction). 
Z-values are shown below each brain slice. Peak voxels are highlighted with white 
circles and numbers; corresponding MNI coordinates and labels are given in Table 4.3. 

4.5. Discussion 

In line with the theory of impaired predictive coding mechanisms in autism 

spectrum disorder (ASD) we tested the hypothesis that predictable information 

in neural signals is reduced in ASD patients. In line with this hypothesis we 

found average predictable information to be reduced in individuals with ASD 

compared to neurotypical controls (NTC) during resting state 

magnetoencephaography (MEG) recordings. In addition to the reduction of 

average predictable information in ASD, we found specific reductions of 

predictable information in posterior cingulate cortex (PCC), supramarginal gyrus 

(SMG) and precuneus (Prec). Here, predictable information was strongly 

associated with alpha band activity (8-14 Hz) and moderately with beta band 

activity (14-36 Hz). Importantly, none of the group differences in predictable 

information could be accounted for by differences in age between the 

participants or by differences in signal complexity between groups. In addition, 
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ASD patients showed a negative relationship between predictable information 

and symptom severity in the domain of restricted, repetitive, and stereotyped 

behaviors and interests (ADI-R rit) in several brain areas including the 

cerebellum, suggesting a potential clinical relevance of predictable information 

in ASD research. 

In the following we will relate our results to previous findings and predictive 

coding accounts of perception in ASD. 

 4.5.1. Average predictable information is reduced in ASD 

Our finding of reduced average predictable information in ASD is in line with a 

recent report by Gómez et al. (2014). They studied predictable information 

using the AIS measure (Lizier et al., 2012) in ASD patients and NTC in the pre-

stimulus interval of a face detection task. In all but one of the twelve studied 

brain regions they found at least a tendency towards a reduction of AIS in ASD. 

The present study confirms this general finding of reduced predictable 

information in ASD – while overcoming several shortcomings of the predecessor 

study: First, the present larger sample of 38 (19 patients, 19 controls) improved 

statistical power in contrast to the small sample size of 22 (10 patients, 12 

controls) in the previous study (Gómez et al., 2014). Second, in contrast to the 

region-of-interest approach by Gómez and colleagues, applying a whole-brain 

approach allowed to study the (average) differences in AIS between groups 

based on a large amount of sources (~500 inside the brain) covering all 

potential brain areas. Thus, the present study demonstrated that overall AIS is 

reduced in patients with ASD. 

4.5.2. Predictable information at PCC, SMG and Prec is reduced in ASD  

Whole-brain analysis of AIS additionally enabled to determine the brain areas at 

which predictable information was particularly reduced for ASD patients. This 

was the case for PCC, SMG and Prec. These three brain areas belong to the 

default mode network (DMN; Mason et al., 2007; Buckner et al., 2008; Raichle, 

2015), which is known to be engaged during passive (internally focused) tasks 

or epochs - corresponding to the resting state design of the current study. 
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Atypicalities in the DMN for ASD patients have been reported as reduced 

activation of the DMN nodes (Kennedy et al., 2006) or as altered, mainly 

diminished connectivity between the nodes (e.g. Cherkassky et al., 2006; Weng 

et al., 2010; Washington et al., 2014). However, hyperconnectivity of posterior 

nodes has also been reported, namely to medial and anterior temporal lobe 

regions (Monk et al., 2009; Lynch et al., 2013). Further, ASD atypicalties in the 

DMN may also be related to anatomical differences such as a relative increase 

of gray matter volume in several brain areas including the PCC in ASD patients 

(Waiter et al., 2004). Interestingly, internal thoughts which mainly involve activity 

in the DMN (e.g. Buckner et al., 2008) are also reported to differ considerably 

between NTC and ASD patients (Hurlburt et al., 1994). Extending previous 

findings of ASD-related atypicalities in the DMN, our results show that for ASD 

patients also the amount of predictable information is particularly reduced in 

posterior nodes of the DMN during resting state periods. It should be noted that 

reductions of predictable information in ASD may appear in brain regions other 

than the DMN, when the task requires specific predictions (see Gómez et al., 

2014). 

4.5.3. Complexity is not reduced in PCC, SMG and Prec 

Noteworthy, decreased predictable information within the DMN as assessed by 

AIS was not associated with decreased signal complexity in these areas. This is 

of importance as the AIS measure quantifies both the complexity and 

predictability of neural processes. High AIS values are observed for predictable 

signals, rich cortical dynamics or a combination of both. In particular, 

complexity, which can be measured as signal entropy (i.e. average information 

content), defines the upper limit for AIS. Thus, in principle, reduced AIS in ASD 

patients could also have resulted from a reduced signal complexity. Indeed, 

reduced EEG signal complexity has been observed during a visual matching 

task for ASD patients (Catarino et al., 2011) as well as during resting state 

recordings for children with a high risk of developing ASD (Bosl et al., 2011). 

However, these previous findings were not replicated in our study using 

differential entropy as a measure of complexity. Our Bayesian analysis favored 

the hypothesis that there is no difference in entropy and thus complexity 
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between ASD patients and NTC for the three DMN areas. Note that at the 

descriptive level even the sign of the marginal differences in entropy between 

groups was not the same over brain areas. These findings suggest that neural 

signals in the DMN for patients and controls were equally rich in cortical 

dynamics; however, they were structured in a less predictable manner for the 

ASD group. In the following, we relate our findings to predictive coding accounts 

of ASD. 

4.5.4. Reduced predictable information in the light of predictive coding 

accounts of ASD 

Recently it has been argued that the DMN may play a key role in predictive 

coding by acting as a top level of the predictive hierarchy, being responsible for 

initiating predictions that cascade down to categorize sensory input and drive 

motor activity (Barrett and Satpute, 2013; Barrett, 2017). This high impact in 

predictive processing is in line with the key functions associated with the DMN 

like episodic memory retrieval (posterior parietal and PCC regions), future 

planning, self-referential thoughts (dorsomedial pre-frontal cortex; PFC), and 

integrating sensory and interoceptive signals (ventromedial PFC) (e.g. Buckner 

et al., 2008; Whitfield-Gabrieli and Ford, 2012; Raichle, 2015). In particular, the 

posterior regions of the DMN like the Prec and PCC have been linked to 

memory-related processing, i.e. retrieving information from memory and 

anticipating the future (Wagner et al., 2005; Bar, 2007; Buckner et al., 2008). 

Bar (2007) linked the DMN even more directly to the continuous generation of 

(memory-based) predictions in the brain. Extending this line of thought, Fiser et 

al. (2010) have suggested that spontaneous brain activity (as for instance within 

the DMN during resting state recordings) reflects the historically informed prior 

beliefs about the world (see also Sadaghiani et al., 2010). Based on these 

suggestions our findings of decreased predictable information in ASD within the 

DMN seamlessly fit into the account of reduced use of prior knowledge or 

“weaker” prior beliefs in ASD (Pellicano and Burr, 2012a). As the neural signals 

in the DMN for ASD patients were structured in a less predictable manner 

during rest, we might speculate that this reflects the impairment of ASD patients 

to represent the high-level regularities of the environment in their spontaneous 
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activity. 

The fact that this effect was found at posterior nodes of the DMN could indicate 

that there is a deficit in retrieving information from memory (Raichle, 2015) in 

order to generate appropriate predictions. One hypothetical mechanism for this 

deficit could be related to the previously reported functional hyperconnectivity 

between the PCC and medial and anterior temporal lobe regions (Lynch et al., 

2013): if too much or non-specific information is retrieved more or less at 

random during rest, it may impair the ability to generate stable predictions that 

would show as AIS. 

Aside from this speculation, our data strongly suggest that the brain areas 

receiving the information from the DMN will need to deal with information that is 

less predictable. This may result in difficulties to learn (or change) new 

predictive models, leading to even more unreliable representations of the world. 

Reduced reliability or precision of prior knowledge for forming of top-down 

propagated predictions may further result in an imbalance of bottom-up and top-

down influences in ASD (Friston et al., 2013; Lawson et al., 2014). A relative 

increase of the influence of bottom-up propagated prediction error may lead to 

the feeling of being overwhelmed by sensory information (Grandin, 1992), as 

weak or imprecise predictions will be less efficient in explaining away sensory 

inputs, thus leaving more feed-forward sensory information to be processed by 

relatively limited central resources; the relative imbalance also allows to explain 

the apparent paradox that ASD patients often perceive self-produced sounds 

not as equally unpleasant as external, unexpected sounds (Kanner, 1943).  

While our results are fully compatible with predictive coding accounts of 

perception in ASD, which highlight the reduced use or (relative) precision of 

priors (Pellicano and Burr, 2012a; Friston et al., 2013; Lawson et al., 2014), they 

are not easily explained by accounts of merely increased bottom-up precision in 

ASD (Brock, 2012; Van de Cruys et al., 2014). This is because increased 

bottom-up precision should not be associated with decreased predictable 

information. 

Furthermore, our finding of the strong association of predictable information in 

resting state recordings and neural activity in low frequencies adds support to 

the hypothesis that low frequencies are the carrier of top-down propagated 
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information within the predictive coding framework (Bastos et al., 2012). 

Importantly, despite its correlation with low frequencies, predictable information 

also yields additional insights not immediately accessible by traditional spectral 

analysis (Gómez et al., 2014; Wollstadt et al., 2016; Brodski-Guerniero et al., 

2017). 

4.5.5. Predictable information in ASD is associated with symptom severity 

in the domain of restricted, repetitive, and stereotyped behaviors and 

interests (ADI-R rit)  

Studying predictable information in ASD may not only help to distinguish 

between competing theoretical accounts but may also have a potential clinical 

relevance. This is supported by the finding of a significant negative relationship 

between predictable information and the symptom severity in the domain of 

restricted, repetitive, and stereotyped behaviors and interests (ADI-R rit). The 

ADI-R rit domain captures mainly stereotypical motor behaviors like hand 

flapping as well as the insistence on sameness and routines. Thus, in contrast 

to deficits in social interactions (ADI-R soc) and communication (ADI-R com), 

the ADI-R rit domain of ASD symptoms is presumably most closely related to 

perceptual atypicalities and also predictive coding mechanisms in ASD. In fact, 

the behavioral abnormalities captured in this domain might represent 

techniques to control the exaggerated prediction error resulting from the 

imbalance of top-down and bottom-up information flow (Friston et al., 2013; 

Lawson et al., 2014) and reduce the anxiety associated with the inability to 

predict upcoming events (Sinha, 2002).  

The significant cluster for the regression of ADI-R rit scores and AIS included 

prominent peaks in the cerebellum – a brain area in which anatomical 

abnormalities (e.g. decreased number of Purkinje cells) have been observed 

most consistently in ASD (e.g. Brambilla et al., 2003; see also Fatemi et al., 

2012 for a review). Even more closely related to our findings, a significant 

negative correlation between rates of repetitive behavior and area measures of 

cerebellar vermis lobules VI – VII has been previously reported (Pierce and 

Courchesne, 2001). Based on this finding we might speculate that anatomical 

abnormalities in the cerebellum would also show a correlation with the AIS 
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measure. However, this remains to be tested in future investigations.  

4.5.6. Conclusion 

Resting state neural activity in patients with ASD shows less predictable 

patterns compared to controls. This is particularly the case for posterior regions 

of the default mode network. Further, in cerebellum and precuneus signal 

predictability is negatively associated with symptom severity in the domain of 

restricted and repetitive behaviors. 
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5. General Discussion 
 

In the following part, I am going to review the findings of the present work with 

respect to previous shortcomings in predictive coding research. As specified in 

the general introduction, these are the largely unexplored neural correlates of 

the use of prior knowledge in predictive coding (5.1.); the limited 

neurophysiological evidence for the neural implementation of predictive coding 

in the human brain (5.2.) and the lack of assumption-free approaches to study 

predictive coding mechanisms (5.3.). In the last paragraph of this chapter I will 

discuss potential limitations of the present work and give an outlook for future 

research (5.4.). 

5.1. The neural correlates of the use of prior knowledge in predictive 

coding  

In the present work, I introduced three studies exploring the neural correlates of 

the use of prior knowledge in the predictive coding framework. Each of the 

studies was designed to investigate key aspects of the way prior knowledge is 

represented, processed or applied to predict upcoming information in the 

human brain. All studies were based on magnetoencephalographic (MEG) 

recordings of human participants. 

In study 1 (chapter 2) a Mooney (Mooney, 1957) face detection task was used 

to induce prediction errors by the mismatch between sensory input and 

predictions. To this end I violated two predictions based on prior knowledge 

about faces from life-long experience: 1. Upright face orientation and 2. 

Illumination from the top. Violation of the predicted face orientation and 

illumination direction resulted in decreased accuracy and increased reaction 

times for face detection, confirming a successful induction of prediction errors in 

the experimental design. At the MEG source level the mismatch of sensory 

input and predictions based on life-long experience resulted in an early 

prediction error for the unexpected orientation and later prediction error for the 

unexpected illumination direction. The prediction error for the unexpected 

orientation was observed at visual brain areas. The prediction error for the 
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unexpected illumination direction was observed at brain areas involved in 

spatial working memory, reconstruction of 3-D shape from shading and error 

detection. Both prediction errors were reflected by increased high-frequency 

gamma band activity (> 68 Hz). Furthermore, for both prediction errors, high-

frequency gamma band activity was positively correlated with participants’ 

reaction times during face detection. This positive correlation suggests that the 

prediction errors for unexpected orientation and illumination direction reflected 

in high-frequency gamma band activity slowed down the processing. In addition 

to the two prediction errors, I observed increased high-frequency gamma band 

activity at mid-latency for the expected illumination direction at brain areas 

processing attention to internal representations. Last, a late interaction effect for 

violation of both expectations in high-frequency gamma band activity was 

located to visual brain areas, potentially representing a high-level prediction 

error. 

In study 2 (chapter 3) a Mooney face/house detection task with a block design 

was used to induce the (pre-)activation of relevant prior knowledge for face 

predictions. The amount of activated prior knowledge for face predictions was 

quantified as predictable information at the MEG source level with the 

information-theoretic measure active information storage (AIS; Lizier et al., 

2012). By application of AIS analysis to whole-brain source time courses in the 

pre-stimulus interval, I found that pre-activated prior knowledge for faces 

showed as increased predictable information in content-specific brain areas. 

These content-specific areas included the fusiform face area (FFA), occipital 

face area, posterior parietal cortex, and anterior inferior temporal lobe. In 

particular in brain area FFA the increase in predictable information was 

negatively correlated with reaction times, suggesting a behavioral relevance of 

the amount of pre-activated prior knowledge at the main face processing region. 

In addition, the increase in predictable information in all content-specific areas 

was positively associated with alpha and beta band activity (< 34 Hz) on a trial-

by-trial basis. Further, the trial-by-trial AIS values in content-specific brain areas 

allowed differentiating trials with face predictions from trials with house 

predictions by a classifier approach. Last, application of the information-

theoretic measure transfer entropy (TE; Schreiber, 2000; Vicente et al., 2011) to 
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the source time courses revealed top-down information transfer from posterior 

parietal cortex and anterior inferior temporal lobe to FFA in the pre-stimulus 

interval. This information transfer suggests that face predictions based on pre-

activated prior knowledge were transferred to FFA in a top-down manner in 

order to prepare for face detection. 

In study 3 (chapter 4) a resting state design was used to compare the amount of 

activated prior knowledge in the brain of patients diagnosed with autism 

spectrum disorder (ASD) and healthy controls. As in study 2, the amount of 

activated prior knowledge was quantified as predictable information by the AIS 

method. Using whole-brain AIS analysis at the MEG source level, I found that 

average predictable information was reduced for ASD patients. Moreover, for 

the ASD patients predictable information was particularly reduced at the 

posterior nodes of the default mode network i.e. the posterior cingulate cortex, 

supramarginal gyrus and precuneus. Similar to the results of study 2, 

predictable information at these areas was positively associated with neural 

activity in the alpha and beta frequency bands (< 36 Hz) on a trial-by-trial basis. 

In addition, for the ASD patients the amount of reduction in predictable 

information at the precuneus and cerebellum was correlated with symptom 

severity in the domain of restricted and repetitive behaviors, indicating a 

potential role of predictable information as a biomarker in ASD research. 

5.2. Neurophysiological evidence for the neural implementation of 

predictive coding 

In the currently most influential proposal for a neural implementation of 

predictive coding in the human brain, Bastos and colleagues (2012) suggested 

that prediction errors should be linked to fast neural activity above 30 Hz, i.e. 

the gamma frequency band. I was able to provide neurophysiological evidence 

for this hypothesis in study 1. In this study, I found that prediction errors induced 

by the violation of expectations from life-long experience were indeed linked 

with fast neural activity. The findings indicate that specifically the high-frequency 

gamma band activity above 68 Hz is associated with prediction errors. The 

general association of prediction errors and gamma band activity is in line with a 
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bottom-up propagation of prediction errors from error units in superficial cortical 

layers – when the predominance of gamma band activity in these superficial 

layers (Buffalo et al., 2011) is considered. However, as described in the 

previous section, in addition to the high-frequency gamma band activity 

reflecting prediction errors I found an effect in the exact same frequency band 

which most likely did not represent a prediction error. This high-frequency 

gamma power increase occurred for the expected and not unexpected 

illumination and was not associated with changes in reaction times. As I found 

sources for this effect in brain areas known to be involved in processing of 

attention to memory representations, I suggest that high-frequency gamma 

band activity can also carry (this type of) attentional effects. In the predictive 

coding context, attentional effects are often conceptualized as regulation of the 

precision-weighting of prediction errors vs. predictions (Feldmann and Friston, 

2009, Friston, 2010). Recently, this precision-weighting mechanism has also 

been linked to oscillations in alpha frequencies (Sedley et al., 2016). Contrary to 

these findings, the present results show that attentional effects can also be 

associated with gamma band activity – a relationship which is well documented 

in earlier studies (Herrmann et al., 2004; Uhlhaas et al., 2011).  

Importantly, gamma band activity is linked to feed-forward propagation in the 

cortex (Bastos et al., 2015; Michalareas et al., 2016). Thus, the attentional effect 

in the gamma band conflicts with conventional views of predictive coding in 

which feed-forward propagation is limited to prediction errors (Clark, 2012). 

However, the following alternative explanation can also be considered: Gamma 

band activity dominates in the superficial layers of the cortex but is not limited to 

them (see Bastos et al. 2012, Figure 1C; Xing et al., 2012, Figure 3). Hence, the 

gamma band activity which I observed for the attentional effect might also 

represent a feedback signal originating from deeper cortical layers. Future 

research combining MEG or electroencephalography (EEG) with high resolution 

functional magnetic resonance imaging (fMRI), in which the different cortical 

layers can be resolved (e.g. Goense et al., 2012) may further clarify this 

interpretation. 
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In addition to the association of high-frequency neural activity and prediction 

errors, Bastos and colleagues (2012) also proposed an association of lower 

frequency activity with predictions – presumably in the beta frequency range 

(~12 – 30 Hz in the literature). This is line with other reports, in which the beta 

frequency range has been in the focus for signaling of top-down predictions 

(Bressler and Richter, 2015) or the status quo in general (Engel and Fries, 

2010). 

In the present work, I found a strong association of beta (~14 – 34 Hz) as well 

as alpha band activity (8 – 14 Hz) with the amount of activated prior knowledge 

in study 2 and 3. In study 2, this activated prior knowledge was closely linked to 

face predictions. In line with a potential link of predictions and neural activity in 

the alpha frequency band, Mayer and colleagues (2015) recently demonstrated 

that pre-stimulus alpha band activity can implement the prediction content for 

different letters. Similarly, Bauer and colleagues (2015) showed that pre-

stimulus alpha power is associated with the predictability of an upcoming target. 

These findings as well as the present results suggest that the power in the 

alpha frequency band is a likely candidate to implement predictions in the 

human brain – in addition to the power in the beta frequency band. 

In sum, the present results support Bastos’ theory of a representation of 

prediction errors in high and predictions in lower frequency activity – however 

with some modifications to the original proposal (Figure 5.1.).  

In addition to the modifications based on the present results, Bastos’ model may 

also be complemented by two types of feedback influences: The first type of 

influence which is missing in Bastos’ model is a potentially crucial modulatory 

influence of the prediction units of a higher cortical area on the prediction units 

of a lower cortical area – the back-propagation activated calcium signaling (BAC 

firing; Larkum, 2013). The BAC firing mechanism is based on the following 

physiological background: Feedback connections from layer 5/6 (higher area) 

mainly target the apical tuft dendrites of layer 5 pyramidal neurons in layer 1 

(lower area). Near the apical tuft, calcium dependent action potentials can be 

triggered. These can cause a sustained depolarization and thereby a high-

frequency bursting of axonal action potentials. However, the threshold for a 
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calcium dependent action potential is only reached when the synaptic input to 

the apical dendrites coincided with a back-propagating spike from the cell soma, 

i.e. when feedback input to the apical dendrites coincides with feed-forward 

input to the soma. Thus, strong bursting of layer 5 pyramidal cells can only 

occur if feedback and feed-forward input can be integrated.  

The second feedback pathway which is missing in Bastos’ proposal is the 

“extra-descending pathway” (Mumford, 1992). It includes superficial cells of a 

higher cortical areas projecting to deep cortical layers of the lower cortical area. 

This extra-descending pathway allows prediction errors of the higher cortical 

level to influence the predictions of the lower cortical area – maybe in order to 

enable the lower area to reinterpret the data in case of substantial error signals. 

I added both missing feedback influences with dashed lines to the circuit in 

Figure 5.1. 

5.3. An assumption-free approach to study predictive coding algorithms 

In the general introduction, I suggested that quantification of predictable 

information with the information-theoretic measure AIS may provide a largely 

assumption-free approach to study the neural correlates of prior knowledge in 

predictive coding. This assumption was confirmed in study 2 in which I found 

increased predictable information in face processing areas when faces were 

predicted. Importantly, calculation of predictable information with AIS does not 

require a-priori assumptions about the brain areas involved in making specific 

predictions as it allows finding these brain areas exclusively by the properties of 

their neural signals. This information-theoretic approach can be applied to a 

variety of designs in predictive coding research and also any type of 

neurophysiological recordings, at the circuit, layer or even single cell level. 
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Figure 5.1. Modified version of Bastos’ proposal (2012) for a neural 
implementation of predictive coding (schematic). Error units in the superficial 
cortical layers, in which high frequencies dominate, send prediction error signals in 
gamma frequencies to areas higher up in the cortical hierarchy (h-1 to h and h to h+1). 
Prediction units in the deep cortical layers, in which low frequencies dominate, send 
prediction signals in alpha and beta frequencies to areas lower in the cortical hierarchy 
(h+1 to h and h to h-1). Additionally, cells in the deep cortical layers send attentional 
signals in gamma frequencies to areas lower in the cortical hierarchy (h+1 to h and h to 
h-1). Orange indicates high frequencies, blue indicates low frequencies. The dashed 
orange line indicates the extra-descending pathway; the dashed blue line indicates the 
dendritic tree of a layer five neuron for illustration of the BAC firing pathway.  

Moreover, this approach does not only allow to find the brain areas involved in 

predictive processing, but also to quantify the amount of activated information 

(prior knowledge) at the analyzed brain areas – a quantity which is not directly 

available from neural activity as recorded with fMRI, EEG or MEG. The 

quantitative nature of predictable information as measured by AIS allows 

straightforward correlation analysis with behavioral parameters or parameters 

obtained from standardized questionnaires as well as comparisons between 

groups of participants. Such a group comparison of predictable information has 

for instance been applied in study 3 to compare a group of ASD patients and a 

group of neurotypical controls. In this study, I found that predictable information 

was reduced for ASD patients, in particular in the posterior nodes of the default 
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mode network. The information-theoretic calculation of predictable information 

by AIS allowed an interpretation of these results in terms of an impairment of 

predictive coding mechanisms in ASD disease: Independent of the nature of the 

underlying signal, high AIS values are observed when a signal is complex and 

has a predictable structure. As complexity was not differing between ASD 

patients and controls in the posterior nodes of the default mode network, 

reduced AIS at these areas suggested that the information stored in the neural 

signals at these brain areas was structured in a less predictable manner for 

ASD patients. This can be interpreted as the failure to represent environmental 

regularities in spontaneous brain activity, which has been suggested by Fiser 

and colleagues (2010). Further, the reduced amount of predictable information 

in the default mode network of the ASD brain should lead to the consequence 

that the brain areas receiving top-down predictions from the default mode 

network need to deal with less predictable, less reliable information. Hence, the 

present findings are in line with a reduced reliability, precision or use of prior 

knowledge in patients with ASD (Pellicano and Burr, 2012). A reduced amount 

of reliable information for predictions might also result in the failure to inhibit the 

gain of error units in superficial cortical layers and thus lead to an exaggerated 

precision-weighting of prediction errors compared to predictions (Lawson et al, 

2014). Thus, the present findings are also compatible with an imbalance of 

precision-weighting in patients with ASD (Friston, 2013, Lawson et al., 2014). 

Importantly, the AIS analysis allowed to rule out accounts of merely increased 

bottom-up influences (Brock, 2012; Van de Cruys et al., 2014), as these are not 

supposed to be associated with reduced predictable information in the default 

mode network of ASD patients. 

Within the same study, the information-theoretic approach allowed also to find a 

negative correlation of predictable information with symptom severity in the 

domain of repetitive and stereotyped behaviors and interests. Previous 

accounts of ASD reported correlations between rates of repetitive behavior and 

anatomical abnormalities in the cerebellum (Pierce and Courchesne, 2001). 

Hence, the correlation between repetitive behavior and predictable information 

in the cerebellum in study 3 suggests that a reduced amount of activated prior 

knowledge and anatomical abnormalities in the cerebellum might be linked. 
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Summing up, quantifying the information storage in neural signals with the AIS 

method has a broad variety of applications in neuroscience research and can in 

particular provide a largely assumption-free approach to study the mechanisms 

of predictive coding in the human brain. 

5.4. Limitations of the present work and outlook for future predictive 

coding research 

As any measurement technique, MEG is also subject to technical limitations. 

While it is sensitive to brain sources with a tangential orientation (more precisely 

the tangential components of a source), radial source components are barely 

represented (Hämäläinen et al., 1993). Therefore, the MEG technique mostly 

captures the brain sources at the walls of the cortical sulci. When brain areas of 

interest are located at the bottom of cortical sulci or at the top of the cortical 

gyri, they are not well representable with the MEG technique. This might be an 

alternative explanation why I was not able to find any house prediction areas in 

study 3. This problem might be resolved by a combination of EEG, MEG 

recordings and AIS analysis, which should also allow finding prediction areas at 

the top of the cortical gyri and at the bottom of cortical sulci.  

The MEG technique is also limited in its spatial resolution. Although the spatial 

resolution is supposed to lie within the mm range (Hari et al., 1988), MEG is not 

sensitive enough to resolve individual cortical layers. In future, MEG (or EEG) 

recordings can be combined with high resolution fMRI recordings to clarify the 

contribution of different layers in predictive message passing.  

In addition to the technical limitations, many open questions remain regarding 

the neural correlates of predictive coding in the human brain. For example, 

evidence for distinct neural subpopulations for the representation of errors and 

predictions is still missing (Clark, 2012). In order to classify cell populations as 

error or prediction units, AIS and TE values may be subjected to correlation 

analyses (see Wibral et al., 2015). For the error units, the sum of AIS in the 

incoming signals is supposed to be negatively correlated with outgoing 

information transfer, as this means that these cells have increased output for 

unpredictable information. For the prediction units, the sum of AIS in the 
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incoming signals is supposed to be positively correlated with outgoing 

information transfer, which means that these cells have increased output when 

incoming information is more predictable (Wibral et al., 2015, Figure 4).  

Another open question is how predictions and the underlying models are 

updated by evidence accumulation or by prediction errors, respectively. To study 

these different types of prediction updates, analysis of predictable information 

as measured by AIS can also be applied. It might be hypothesized that 

predictable information would gradually increase when predictions are updated 

by evidence accumulation – as more information can be used for the 

predictions. However, predictable information might decrease when the 

predictions are updated by prediction errors as previously stored information for 

the predictions should be discarded.  

In summary, information-theoretic analysis methods may help to fill the gaps in 

predictive coding research and test the claims made in theoretical 

considerations (e.g. Friston, 2010, Bastos et al., 2012; Clark, 2012). Especially 

the claim of predictive coding as a universal and fundamental functional 

principle of the brain (e.g. Friston, 2010; Huang and Rao, 2011) requires also 

the accumulation of neural evidence in different modalities, different 

experimental designs and for different groups of participants.  

To give an example, the face detection task in study 1 could be repeated with 

ASD patients and additional AIS analysis. This would allow the investigation of 

questions that can’t be answered in a resting state design, e.g. how predictions 

are combined with sensory evidence in ASD.  

Application of the analysis of predictable information to other neuropsychiatric 

disorders than ASD may also become a potential focus of future research. 

Interestingly, current accounts suggest that schizophrenic symptoms like 

hallucinations might also be caused by an impaired precision-weighting of 

predictions and sensory evidence (Adams et al., 2013). Thus, the next step 

could be analyzing predictable information in patients diagnosed with 

schizophrenia to investigate this hypothesis.  
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5.5. Conclusion 

In this work, I investigated the neural correlates of the use of prior knowledge in 

predictive coding with three MEG studies. The results of these studies provide 

neurophysiological evidence for the neural implementation of predictive coding 

theory as proposed by Bastos et al. (2012) – in particular for an alpha/beta 

frequency channel for predictions and a gamma frequency channel for 

prediction errors. Furthermore, by application of information-theoretic measures 

to quantify predictable information in neural signals of healthy participants as 

well as ASD patients, I introduced a largely assumption-free method to study 

the neural correlates of predictive coding in the healthy and diseased human 

brain.  
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7. Zusammenfassung 

 

Während der Wahrnehmung unserer Umgebung greifen wir ständig auf 

gespeichertes Wissen aus unserer bisherigen Erfahrung zurück. Die Idee, dass 

solch ein Vorwissen für unsere Wahrnehmung essentiell ist, geht zurück auf 

Hermann von Helmholtz (1867). Dieser stellte die Theorie auf, dass 

Wahrnehmung einen Vorgang „unbewusster Schlussfolgerung“ darstellt, in dem 

Vorwissen es dem Gehirn erleichtert, die Ursachen für seinen sensorischen 

Input zu erschließen. Dieser Schlussfolgerungsvorgang soll im Gehirn mit Hilfe 

des „Predictive Coding“ Prinzips umgesetzt werden (z.B. Mumford, 1992; Rao 

et al., 1999; Friston, 2005, 2010; Hawkins and Blakeslee, 2005; Clark, 2012; 

Hohwy, 2013). So besagt die zurzeit populärste Variante der Predictive Coding 

Theorie („Rao und Ballard Version“ in Spratling, 2017), dass das Gehirn 

basierend auf Vorwissen Vorhersagen (predictions) in höheren kortikalen 

Arealen generiert, die dann an hierarchisch tiefer gelegene kortikale Areale 

geleitet werden. In den tiefer gelegenen kortikalen Arealen wird die durch die 

Vorhersage erwartete neuronale Repräsentation mit der tatsächlichen 

Repräsentation verglichen. Diskrepanzen resultieren dabei in einem 

Vorhersagefehler (prediction error), der wiederum aufwärts an die höheren 

kortikalen Areale geleitet wird, in denen als Konsequenz die Vorhersage 

angepasst wird. Dabei können mehrere Schleifendurchläufe stattfinden, bis der 

Vorhersagefehler minimiert und somit die wahrscheinlichste Ursache für die 

eingehende Information bestimmt wurde.  

Hinsichtlich der neuronalen Implementierung der Predictive Coding Theorie im 

Gehirn stellten Bastos und Kollegen vor wenigen Jahren die Hypothese auf, 

dass schnelle neuronale Aktivität im Gamma Frequenzbereich (> 30 Hz) die 

Weiterleitung eines Vorhersagefehlers an höhere kortikale Areale widerspiegelt, 

wohingegen langsamere neuronale Aktivität (< 30 Hz) mit der Weiterleitung von 

Vorhersagen an tiefere kortikale Areale in Zusammenhang stehen soll (Bastos 

et al., 2012). 

Obwohl die Predictive Coding Theorie in den letzten Jahren deutlich an 

Popularität gewonnen hat (siehe z.B. Clark, 2012), und sogar die Hypothese 
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aufkam, sie könne eine universelle Erklärung der Gehirnfunktion liefern (Friston, 

2010; Huang and Rao, 2011), wirft die bisherige Forschung auf diesem Gebiet 

noch viele offene Fragen auf. Drei maßgebliche Lücken, die es in der Predictive 

Coding Forschung zu schließen gilt, sind die folgenden: 

1. Die neuronalen Mechanismen, die dem Einfluss von Vorwissen zugrunde 

liegen, sind nach wie vor weitgehend unerforscht. 

2. Bislang liegen nur wenige neurophysiologischen Evidenzen für die neuronale 

Implementierung des Predictive Coding Prinzips vor. 

3. Um die dem Predictive Coding Prinzip unterliegenden Mechanismen zu 

untersuchen, fehlen nach wie vor Methoden, welche sich nicht auf 

Vorannahmen stützen, z.B. über die spezifischen beteiligten Areale. 

Diese Lücken versuche ich in der vorliegenden Arbeit mit Hilfe von drei Studien 

zu schließen. In diesen drei Studien wird die neuronale Aktivität der Teilnehmer 

mit Magnetoenzephalographie (MEG) erfasst, was eine zeitaufgelöste Analyse 

der neuronalen Quellensignale ermöglicht. 

In Studie 1 („The faces of predictive coding“, publiziert im Journal of 

Neuroscience, 2015; n = 48) untersuche ich, wie sich Vorwissen aus unserer 

lebenslangen Erfahrung auf unsere Wahrnehmung auswirkt. Dabei liegt der 

Fokus auf den neuronalen Korrelaten von Vorhersagefehlern. Diese 

Vorhersagefehler werden durch die Verletzung von Vorhersagen erzeugt, die 

auf unserer (visuellen) Erfahrung mit Gesichtern basieren: 1. Die aufrechte 

Orientierung der Gesichter; 2. Die Beleuchtung von oben. Die Analyse der 

Verhaltensdaten aus Studie 1 zeigt, dass die Verletzung dieser Vorhersagen die 

Wahrnehmung von Gesichtern sowohl verlangsamt als auch erschwert. Auf 

MEG Quellebene beobachte ich einen frühen Vorhersagefehler für die 

unerwartete Orientierung in visuellen Gehirnarealen, sowie einen späteren 

Vorhersagefehler für die unerwartete Beleuchtungsrichtung in Arealen, die mit 

räumlichem Arbeitsgedächtnis, Rekonstruktion von Form aus Schattenwurf 

(shape-from-shading) und Fehlererkennung in Zusammenhang stehen. In 

Einklang mit der Theorie von Bastos et al. (2012) spiegeln sich beide 

Vorhersagefehler in erhöhter hochfrequenter Gamma-Band Aktivität (> 64 Hz) 

wider. 
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Für die nachfolgenden Studien wird die „klassische“ neurophysiologische 

Analyse durch informationstheoretische Analysemethoden ergänzt. Diese 

ermöglichen es, die neuronalen Mechanismen des Predictive Coding Prinzips 

mit nur wenigen Vorannahmen zu untersuchen (siehe Wibral et al, 2015). 

Hierbei verwende ich primär das informationstheoretische Verfahren Active 

Information Storage (AIS, Lizier et al., 2012). AIS lässt sich mit 

aktivitätsgetragenem Informationsspeicher übersetzen und ermöglicht zu 

quantifizieren, in welchen Arealen Information für den nachfolgenden 

Verarbeitungsschritt eines Prozesses aufrechterhalten wird. Deshalb verwende 

ich AIS in Studie 2 und 3, um in allen Gehirnarealen die „Menge“ an Vorwissen 

zu quantifizieren, die in neuronaler Aktivität aufrechterhalten wird. 

In Studie 2 („Information-theoretic evidence for predictive coding in the face-

processing system“, publiziert in Journal of Neuroscience, 2017; n = 52) 

untersuche ich, wie Vorwissen über Gesichter in Abhängigkeit von Relevanz in 

unserem Gehirn aktiviert und für Vorhersagen genutzt wird. Die Anwendung des 

informationstheoretischen Verfahrens AIS auf MEG Quellenebene zeigt, dass 

aktiviertes Vorwissen über Gesichter als erhöhtes AIS in Arealen der 

Gesichtsverarbeitung sichtbar wird. Insbesondere im fusiformen Gesichtsareal 

(FFA) ist die AIS Erhöhung negativ mit den Reaktionszeiten der Teilnehmer 

korreliert, was auf eine Verhaltensrelevanz der Menge des aktivierten 

Vorwissens in FFA hindeutet. Zusätzlich ist in allen Gesichtsverarbeitungs-

Arealen die Zunahme von AIS mit langsamer neuronaler Aktivität im Alpha und 

Beta Band assoziiert (ca. 8 bis 30 Hz) – übereinstimmend mit der Theorie von 

Bastos et al. (2012). Zuletzt demonstriert die Anwendung der informations-

theoretischen Methode Transfer Entropy (TE, Schreiber, 2000; Vicente et al., 

2011; Wibral et al., 2011), dass vor Stimulus Präsentation von dem hinteren 

Parietallappen (posterior parietal cortex) und von dem vorderen Bereich des 

unteren Schläfenlappens (anterior inferior temporal lobe) Informationen an FFA 

übertragen werden. Dieser Informationstransfer deutet daraufhin, dass 

aktiviertes Vorwissen über Gesichter zu FFA transportiert wird, um sich auf die 

Gesichtserkennung vorzubereiten.  
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In Studie 3 („Predictable information is reduced in autism spectrum disorder – a 

predictive coding study“, eingereicht bei Human Brain Mapping; n = 38) 

untersuche ich, ob Predictive Coding Mechanismen in Patienten mit Autismus-

Spektrum-Störung verändert sind. Dazu vergleiche ich die Aktivierung von 

Vorwissen bei Patienten mit Autismus und gesunden Kontrollprobanden. 

Vergleichbar zu Studie 2, wird in Studie 3 das informationstheoretische 

Verfahren AIS verwendet, um auf MEG Quellenebene die Menge des aktivierten 

Vorwissens zu berechnen. Ich finde, dass AIS im Mittel bei Patienten mit 

Autismus reduziert ist. Insbesondere finde ich eine Reduktion von AIS bei 

Autismus Patienten im hinteren Bereich des Ruhezustandsnetzwerks (default 

mode network). Vergleichbar zu Studie 2, sind auch in Studie 3 die AIS Werte 

mit langsamer neuronaler Aktivität im Alpha und Beta Frequenzband korreliert. 

Zuletzt finde ich in der Patientengruppe, dass die Reduktion von AIS in 

Precuneus und Kleinhirn mit der Symptomschwere im Bereich restriktiver, 

repetitiver und stereotyper Verhaltensweisen korreliert. Die Resultate von 

Studie 3 legen Veränderungen der Predictive Coding Mechanismen bei 

Patienten mit Autismus nahe. 

Zusammengefasst illustrieren die in dieser Arbeit präsentierten Ergebnisse die 

neuronalen Mechanismen, die dem Einfluss von Vorwissen zugrunde liegen. 

Sie liefern sowohl neurophysiologische Evidenzen für den Zusammenhang von 

hoch-frequenter neuronaler Aktivität und Vorhersagefehlern (Studie 1), als auch 

tiefer-frequenter neuronaler Aktivität und Vorhersagen/Vorwissen (Studie 2 und 

3). Damit unterstützen die vorliegenden Studien die von Bastos und Kollegen 

vorgeschlagene neuronale Implementierung des Predictive Coding Prinzips im 

Gehirn (Bastos et al., 2012). Durch die Anwendung des AIS Verfahrens führt 

diese Doktorarbeit zudem eine neue informationstheoretische Methode ein, die 

in Zukunft erleichtern sollte, die Mechanismen der Predictive Coding Theorie 

nahezu ohne Vorannahmen zu untersuchen. So könnte in Zukunft das AIS 

Verfahren für ein breites Spektrum an mit Predictive Coding assoziierten 

Paradigmen sowie für die Untersuchung verschiedener neuropsychiatrischer 

Erkrankungen wie z.B. Schizophrenie angewendet werden.  
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