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ABSTRACT  

FREQUENCY OF SUBLETHAL THERMAL STRESS EVENTS DETERMINES  

TOLERANCE TO SUBSEQUENT HIGH TEMPERATURE CHALLENGES  

IN CALIFORNIA MUSSELS  

By  

Christine Prince  

December 2017  

Climate change models predict increased frequency and intensity of extreme thermal 

events, suggesting that exposure to stressful high temperatures will likely become more common 

for many organisms. I investigated how frequency of exposure to sublethal temperature stress 

impacted the relative shell growth and size-specific tissue mass of the California mussel, Mytilus 

californianus. Mussels were exposed in the lab to 32 °C during simulated low tides 0, 1, 4, or 7 

days per week for 8 weeks or transplanted into rocky intertidal plots exhibiting a range of thermal 

conditions in the field for 12 weeks, then challenged with repeated exposures to a more extreme 

temperature (36, 39, or 42 °C) for 5 sequential days. As predicted by theory, increased frequency 

of exposure to sublethal heat stress invoked a cost to individuals, expressed as reduced shell 

growth or size-specific tissue mass, but also resulted in higher survival following subsequent 

exposure to potentially lethal temperatures.  

Keywords: climate change, heat stress, growth, survival, trade-off, intertidal zone  
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CHAPTER 1 

 

INTRODUCTION  

Global average temperatures are increasing rapidly and are expected to continue to do so 

for the foreseeable future (Hayhoe et al., 2004; Intergovernmental Panel on Climate Change 

[IPCC], 2014). The intensity and frequency of extreme thermal events, typically defined as the 

outermost 10% of a given distribution, are also expected to increase (Moser et al., 2009; Hobday 

and Pecl, 2014). As a consequence, exposure to stressful temperatures will likely become more 

common in the future for many organisms (Easterling et al., 2000; Bell et al., 2004; Swain et al., 

2016). Biological consequences of increasing temperature have already been observed: 

distributions of many species have begun to shift poleward (Barry et al., 1995; Parmesan and 

Yohe, 2003; Sorte et al., 2010) and major alterations in population dynamics and community 

structure are consistent with predicted effects of climate change (Sala et al., 2000; Thomas et al., 

2004). Knowledge of how key organisms will likely respond to the complex challenges of 

climate change will be crucial to understanding how important ecosystem processes and 

functions may change, determining the success of future conservation and resource management 

efforts (Hooper et al., 2005; Cheung et al., 2009).  

Acute (relatively short-term) exposure to high temperatures often directly precedes mass 

mortality events in natural populations (Garrabou et al., 2009; Jones et al., 2009; Marbà and 

Duarte, 2010). Conversely, chronic (prolonged or repeated) exposures to sublethal yet stressful 

temperatures can to lead to acclimation, physiological changes that can increase an individual’s 

tolerance to a more extreme future environmental challenge (Somero, 2002). Many organisms 

defend against stressful environmental conditions by exhibiting a characteristic “heat shock 

response,” preferentially synthesizing a variety of proteins that refold denatured proteins  
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(Roberts et al., 1997; Tomanek and Somero, 1999), dismantle irrevocably damaged proteins 

(Hofmann and Somero, 1995), and defend against radical oxygen species (Lesser et al., 2010; 

Tomanek and Zuzow, 2010). Previous exposure to warmer temperatures has been shown to 

increase both the onset temperature of an organism’s induced heat shock response and the 

temperature at which the response is maximal (Tomanek and Somero, 1999; Buckley et al., 

2001). By preventing the aggregation of damaged proteins and facilitating their renaturation, the 

heat shock response can play a particularly important role in the acclimation of organisms to 

more stressful thermal conditions (Parsell and Lindquist, 1993).   

Organisms living near the boundaries of their distributions may live very close to their 

thermal tolerance limits, with associated constraints on their potential capacity for acclimation to 

higher temperatures (Helmuth et al., 2002; Somero, 2010). Stillman (2003) demonstrated that 

prior exposure to elevated temperature led to increases in both upper and lower thermal limits of 

cardiac function of four congeneric species of porcelain crabs. Yet the upper thermal limits of 

the two warmer-adapted and more heat-tolerant species did not increase nearly as much as did 

the limits of the cooler-adapted species. More generally, although lower thermal limits appear to 

be quite plastic, upper thermal limits are often highly conserved across taxa and largely fixed, 

creating a physiological barrier that may constrain potential acclimation to higher temperatures 

(Stillman, 2003; Araujo et al., 2013). Increased environmental variability can lead to an increase 

in the maximum temperature to which organisms are exposed, increasing the risk that species' 

tolerance limits will be exceeded (Gaines and Denny, 1993; Martin and Huey, 2008). Maximum, 

rather than average, environmental conditions are often what determine the risks of physiological 

stress or mortality to individuals (Denny, 1995; Gedan et al., 2011), and even short-term 
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exposure to temperatures that exceed organisms’ thermal tolerance limits can result in high 

mortality rates within a population (Harley, 2008).  

For individuals that are capable of thermal acclimation, activation of the heat shock 

response may require a significant energetic investment (Hawkins, 1991), imposing trade-offs 

between survival and other life history traits (Krebs and Loeschcke, 1994; Somero, 2002; Petes 

et al., 2008). Life history theory predicts that an increase in the proportion of energetic resources 

allocated to one physiological process necessarily decreases the available energy to be invested 

elsewhere (Stearns, 1992). Elevated temperature stress that stimulates the heat shock response is 

associated with higher metabolic rates (Roberts et al., 1997; Somero, 2002). Energy invested in 

these activities may explain observed reductions in individual growth rates (Schneider et al., 

2010). For this reason, individual growth has been identified as a simple indicator of potentially 

important impacts of environmental stress over time and space (Widdows et al., 2002; Dahlhoff, 

2004). Current theory suggests that if resources increase or the relative energetic cost of thermal 

defense decreases, then an individual’s investment in defense will increase (Tuomi et al., 1983; 

Cohen and Mangel, 1999), a prediction that has been supported by experimental data (e.g., 

Fitzgerald-DeHoog et al., 2012). The potential effects of increasing frequency of sublethal 

temperature exposure on the heat shock response are less clear. Cohen and Mangel’s (1999) 

model also predicts that as the probability of an extreme stress event increases, investment into 

defense against the stress will increase up to a critical level. Above that level, it is presumably no 

longer cost effective to build defenses, and relative energetic investment is predicted to taper off 

or even decrease. However, other models (e.g., Poitrineau et al., 2004) suggest that when the 

frequency of stress events is high, selection may favor increased investment in a constitutive 

(always available) defense.  
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Regardless of the initial level of defense deployed by an individual, a related question is 

whether responding to multiple consecutive challenges sets a limit to the potential for 

acclimation to buffer an organism from the negative effects of exposure to high temperatures. As 

temperature variability is predicted to increase in many regions of the globe, exposure to 

stressful temperatures will likely become more common or prolonged for many organisms. 

Although there is no currently recognized universal definition of a “heat wave,” many scientists 

use three to five days of unusually high maximum (and sometimes also minimum) temperatures 

in a given area (e.g., Pezza et al., 2012). To date, the physiological capacity of individuals to 

withstand such repeated stressful exposures has not been explored in great detail. The cumulative 

effects of multi-day stress events may overwhelm whatever prior physiological acclimation 

might have occurred, such that individuals that survived the initial event may still eventually die 

after the second, third, or fourth exposure.   

Due to daily variation in tidal height, the rocky intertidal zone is regularly subjected to 

both aquatic and aerial conditions, and has long been considered a “natural laboratory” for 

investigating ecological patterns in relation to local environmental conditions (Connell, 1972; 

Somero, 2002). Organisms in rocky intertidal systems experience extremely high levels of 

environmental variability over relatively small spatial and temporal scales (Denny, 1995; Denny, 

2006), allowing this habitat to serve both as an early warning system and predictive tool for the 

impacts of climate change (Barry et al., 1995; Sagarin et al., 1999; Helmuth et al., 2006). Given 

its inherent variation in temperature (Somero, 2002; Denny et al., 2011), the rocky intertidal 

zone is an ideal system to examine how thermal history influences potential trade-offs between 

survival and other demographic traits. This is particularly true for ectotherms that cannot 

physiologically regulate their body temperature (Tb), such that Tb’s are tightly linked to local 
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environmental conditions (Huey and Kingsolver, 1989; Martin and Huey, 2008; Angilletta, 

2009).  

My study focuses on how prior frequency of exposure to sublethal high temperature 

stress will impact the demographic performance of the California mussel, Mytilus californianus, 

and their capacity to survive multiple consecutive high temperature challenges. Mytilus 

californianus is a characteristic member of rocky intertidal communities along the west coast of 

North America. The mid-intertidal zone extends from just below average sea level to the upper 

limit of the average lowest tides; within this zone, mytilid mussels are competitively dominant 

and are ecologically important as a food source for many species (Paine, 1966; Robles and 

Desharnais, 2002). Additionally, mytilids act as ecosystem engineers, providing valuable 

ecosystem functions that include habitat provisioning and nutrient cycling (Borthagaray and 

Carranza, 2007; Arribas et al., 2014). Sessile benthic organisms such as mussels are attractive 

candidates for studies examining thermal stress effects because they cannot behaviorally mitigate 

environmental temperatures (except for minor adjustments in gape and orientation) and must 

instead rely primarily on physiological defenses (Roberts et al., 1997; Harley, 2008). Mytilus 

californianus exhibits a high degree of plasticity both survival and growth in response to 

variation in temperature (Dahlhoff and Menge, 1996; Fitzgerald-DeHoog et al., 2012; Connor 

and Robles, 2015), making this species a good candidate for investigating life-history trade-offs 

induced by activation of the heat-shock response and the potential limits of such acclimation.  

I specifically tested the hypothesis that increasing exposure frequency to high 

temperature stress would lead to significant reductions in mussel size-specific tissue mass and 

shell growth under controlled conditions in the lab and when exposed to naturally variable 

temperature conditions in the rocky intertidal zone. I also tested whether the survival patterns of 



6 

 

these experimental mussels in response to a subsequent series of consecutive high temperature 

challenges differed in relation to prior thermal history.  
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CHAPTER 2  

MATERIALS AND METHODS  

Collection and Maintenance of Animals  

All sampling and field experimentation was done in the mid-rocky intertidal zone at  

Abalone Cove Shoreline Park, Rancho Palos Verdes, California (33° 44' 11" N, 118° 22' 12" W) 

(Fig. 1). This site is characterized by variable wave exposure and a topographically complex 

shoreline typical of many intertidal sites in the Southern California Bight (Ricketts et al., 1985; 

Dailey and Reish, 1993). Mussels were haphazardly collected from 1.4 to 1.8 m above mean 

lower low water (MLLW), placed in a cooler, and returned to the CSULB marine laboratory for  

  

FIGURE 1. Map of California with the location of the field site on the Palos Verdes 

Peninsula marked in the inset.   

processing. The mussels were kept in a recirculating seawater system at 16 °C, exposed to 

natural daylight cycles and a daily simulated tidal regime. Experimental mussels were fed a 

twice daily ration of cultured marine microalgae consisting of 30% Isochrysis sp., 30% 

Thalassiosira weissflogia, 20% Pavlova sp., and 20% Tetraselmis sp. (Shellfish Diet; Reed 

Mariculture, Campbell, CA), averaging 235 μl of algal concentrate per gram of wet tissue mass. 



8 

 

During each feeding, 30 ml of the cultured microalgae concentrate was added to the 

approximately 80 L-seawater table, and the mussels allowed to feed for three hours during which 

water flow was stopped. Air pumps provided aeration for the seawater and kept the 

phytoplankton in suspension. Over that time interval, mussels were typically able to clear most 

of the provided food, as assessed visually by changes in water clarity. In principle, algal rations 

for experimental mussels were within the range of daily chlorophyll values potentially 

experienced by individuals along the Southern California Bight (Lucas et al., 2011; Fitzgerald-

Dehoog et al., 2012). In practice, however, mussels in the lab may have gotten less energy on a 

daily basis due to the pulsed nature of the feeding regime in the lab, compared to a more constant 

supply of food in the field.  

The mussels used for both the laboratory and field experiments had a mean ± SD shell 

length of laboratory and field experimental mussels of 3.0 ± 0.3 cm (n = 480) and 2.7 ± 0.4 cm 

(n = 480), respectively; this small size class of M. californianus was chosen for its high growth 

rate (Coe and Fox, 1942). Individuals were marked using small plastic tags with distinct numeric 

and color combinations (Brushy Mountain Bee Farm, Moravian Falls, NC), which were attached 

to the shell with an acrylic adhesive. Mussel shell length was measured to the nearest 0.1 mm 

with digital calipers, both before and after the experimental period. Mussel shell mass was 

measured to the nearest 0.01 g after each experimental period as well. Size-specific (relative) 

mussel growth was calculated as the difference between final and initial shell length, divided by 

initial length. At the end of each experiment, mussel wet tissue mass was measured to the nearest 

mg. Size-specific tissue mass (condition) was measured by dividing mussel wet tissue mass by 

final shell length. Dry tissue mass was not used to calculate condition because many mussel 
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samples were frozen and stored at -80˚C for future analyses, however wet and dry mussel masses 

were highly correlated (n = 288, r = 0.83, p < 0.001).   

Laboratory Experiment  

Mussels used for the laboratory study were kept in glass dishes (5 cm x 1 cm, diameter x 

height) on a recirculating seawater table in the CSULB Marine Laboratory from 26 July – 19 

October 2014. Mussels were acclimated to the 16˚C water for four weeks (Angilletta, 2009), 

after which the experiment was run for eight weeks. In order to test how the frequency of 

thermal stress affects the relative shell growth and size-specific tissue mass of M. californianus, 

tagged individuals were randomly assigned to one of four treatment groups: aerial exposure to 

sublethal temperature stress 0, 1, 4, or 7 days per week. Mussels were placed in groups of five 

into small glass dishes to facilitate their removal for exposure to daily stress without damaging 

their byssal threads (n = 24 dishes per treatment). Dish locations on the seawater table were 

rotated daily to minimize potential location effects through time.   

During the experimental period, mussels were exposed to a simulated tidal regime with a 

daily low tide of six hours’ duration. During aerial exposure, mussel dishes were placed into one 

of 12 experimental chambers (eight dishes per chamber) and mussel temperature was 

manipulated using computer controlled heat lamps with 250-W ceramic emitters. The control 

box for each lamp (Herpstat Pro, Spyder Robotics, Rochelle, IL) received input from a dedicated 

temperature probe inside the associated chamber. The bare end of the probe was placed in the 

center of the chambers and was comparable in size, color, and temperature to an experimental 

mussel (based on previous calibrations against live animals). The initial assignment of exposure 

frequency treatment to experimental chamber was randomized, as was the initial placement of 

dishes within the chambers. Subsequently, each day I rotated which heating chamber the dishes 
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were assigned to, as well as their position within the heating chambers. The mussels exposed to a 

sublethal temperature treatment on a given day were heated to 32˚C, which has been found to 

elicit a heat stress response in M. californianus (Roberts et al., 1997) without significant 

mortality (Denny et al., 2011; Fitzgerald-Dehoog et al., 2012). Those not receiving a sublethal 

temperature treatment were still placed in their assigned heating chambers and positions, but 

were exposed to ambient air temperature during the simulated low tide, which was 

approximately 18°C. For those receiving the sublethal temperature treatment, I increased the 

temperature in each chamber (other than the unheated controls) by 8˚C per hour until 32˚C was 

reached, representative of the rate of temperature change mussels in the field might experience 

on a hot day (Roberts et al., 1997; Denny et al., 2009). Once 32˚C was reached, it was 

maintained for four hours, at which point the heat lamps were turned off. Mussel dishes were 

returned to the seawater table at the end of six hours to recover. Dish locations on the seawater 

table were rotated daily to minimize potential location effects. For logistical reasons I maintained 

the same daily schedule throughout the experiment, rather than attempting to mimic the natural 

local mixed-semidiurnal tidal cycle. Though this experimental design did not explicitly match 

the timing of local low tides, it does provide some insight into the potential responses of mussels 

to variation in frequency of prior exposure to sublethal temperature stress.  

At the end of the 8-week experimental period, I subjected the mussels to a simulated 

“heat wave” to test whether the frequency of temperature stress in a mussel’s recent thermal 

history had an effect on the probability of survival when exposed to subsequent repeated high 

temperature challenges. Each exposure frequency treatment group was partitioned into three 

peak temperature treatment groups (n = 8 dishes per sublethal exposure treatment): 36, 39, or 42 

°C temperature challenge per day for 5 days, allowing for a fully factorial design. These specific 



11 

 

temperatures were chosen to represent moderate to severe thermal stress levels potentially 

experienced by mussels in the field (Denny et al., 2011), and to allow for direct comparison with  

previous studies (Fitzgerald-DeHoog et al., 2012). The same schedule was followed for both the 

chronic and subsequent repeated high temperature exposure regimes, differing only in the daily 

thermal maxima and total time spent at the target temperature (Fig. 2). One mussel was removed 

from each dish one hour before and after the first thermal challenge was completed, and its gill 

tissue excised. Shell length, shell mass, gill and body wet tissue mass of these individuals were 

recorded, and their tissue samples immediately placed in siliconized epitubes and stored at -80˚C 

for potential future analyses of protein content or other biochemical markers. Each morning, 12 

hours after each previous high temperature challenge, I assayed post-exposure mussel survival 

before subjecting the remaining surviving mussels to the next challenge. Gaping mussels that did 

not respond to their soft tissue being prodded were considered dead, and were removed; I then 

quantified their final shell length, and tissue and shell mass. After the fifth and final consecutive 

high temperature challenge, I measured all remaining mussels.   

 

FIGURE 2. Illustration of the temperature stress profiles used. Mussel body temperature 

was raised from ambient seawater temperature to the target peak temperature at a rate of 

8˚C h-1. The maximum temperature was held steady until total elapsed time was 6 h.  
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Field Experiment 

Mussels were randomly assigned to one of 24 experimental plots along a horizontal 

transect 1.3 m above MLLW (n = 20 mussels per plot). Plot locations were chosen to represent a 

range of thermal conditions based on differences in compass orientation, wave exposure, and 

slope (Harley, 2008; Fitzgerald-Dehoog et al., 2012). Tidal heights were determined with a 

surveyor’s level relative to a benchmark where still tide height had been measured repeatedly (B. 

Allen, unpublished data). Experimental mussels were placed in their respective plots on 6 July 

2015 and to facilitate byssal thread attachment, covered with black plastic mesh (8 mm x 8 mm 

mesh size) attached to the rock with stainless steel bolts and washers and plastic wall anchors; 

they were collected and brought back to the lab on 12 October 2015.   

Plot temperatures were recorded every 12 minutes to the nearest 0.5˚C with small data 

loggers (Thermochron iButton, Maxim Integrated Products, Sunnyvale, CA) installed in a 

spherical brass housing (2.5 cm diameter) painted matte black. iButtons were wrapped in 

Parafilm (Parafilm M, Pechiny Plastic Packaging, Inc., Chicago, IL) and sealed into a drilled and 

tapped hole in the housing with silicone (GE Silicone II Kitchen & Bath Caulk, Momentive 

Performance Materials Inc., NC). The brass housings screwed onto plastic fittings bolted to the 

substratum. I could not use biomimetic loggers due to the small size of experimental mussels; 

however, the spherical shape, the thermally absorptive black coloration, and thermally 

conductive brass material of the housings allow the iButton to provide a standard temperature 

measure of each plot that is not influenced by the orientation of the sun or housing (Denny et al., 

2011). That said, it should be noted that the temperatures of the housings may therefore not 

exactly match those of the nearby mussels. Temperature loggers were placed in the center of 

each experimental plot and their data used to build plot-specific thermal histories (e.g., Fig. 3).   
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FIGURE 3. Temperature record of an experimental plot in the mid-intertidal zone at  

Abalone Cove Shoreline Park, Rancho Palos Verdes, CA, from 26 July to 20 September 

2015. Red lines denote 28 and 32 ˚C, sublethal thermal stress thresholds for Mytilus 

californianus.  

  

Several temperature metrics were assessed using the temperature data collected from 

each plot: the average daily temperature maximum, the average daily temperature range, the 

average number of times per week (frequency) experimental plots exceeded 28 and 32˚C, and the 

proportion of time plots exceeded 28 and 32˚C over the sampling period (henceforth referred to 

as cumulative time above 28/32˚C). Previous research has shown induction of molecular thermal 

defenses in California mussels at these temperatures without significant mortality (Roberts et al., 
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1997; Denny et al., 2011; Fitzgerald-Dehoog et al., 2012); I therefore chose 28˚C and 32˚C as 

the sublethal temperature stress thresholds.  

Fourteen weeks after they were first transplanted, I brought the surviving experimental 

mussels to the CSULB Marine Laboratory and placed them on the recirculating sea table in the 

same glass dishes that were used in the laboratory experiment. I partitioned the survivors from 

each plot into one of four groups: individuals exposed to a peak temperature of 36, 39, or 42˚C, 

or individuals not exposed to any subsequent temperature challenges (pre-exposure control). The 

shell length and wet tissue mass of the pre-exposure control individuals were recorded 

immediately and their tissue samples were stored at -80˚C for future molecular analyses.   

The remaining mussels were subjected to the same experimental conditions during the 

five consecutive high temperature exposures as in the laboratory experiment. Mussels were 

placed in groups of five into small glass dishes to facilitate their removal for exposure to daily 

stress. Each day the mussels were fed a twice-daily ration (once before the simulated low tide 

and another after) of cultured marine microalgae. During the simulated 6-hour low tide, mussel 

dishes were placed in heating chambers where their location was rotated daily. The chambers 

were heated by 8˚C per hour using 250-W ceramic emitters until the desired temperature was 

reached (36, 39, or 42˚C) and then shut off at the end of six hours. Each morning after each high 

temperature exposure I assayed post-stress mussel survival before subjecting the surviving 

mussels to the next thermal challenge. After the fifth and final high temperature challenge, I 

collected tissue samples and quantified shell length, and shell and tissue mass of all remaining 

mussels.  
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Statistical Analyses  

All statistical analyses were done using RStudio 0.98.1091. I checked the data for 

normality and homogeneity of variances with residuals plots prior to fitting the relevant models.  

Because individuals within experimental lab dishes (n = 5 mussels per dish) or field plots (n = 20 

mussels per plot) were not independent replicates, mussel growth, condition, and survival were 

averaged within a dish or plot to avoid pseudoreplication (Hurlbert, 1984).  

Analyses of Variance (ANOVAs) were used to quantify the effect of prior frequency of 

exposure to sublethal temperature stress on the relative shell growth and condition (size-specific 

tissue mass) of experimental mussels after 8 weeks in the laboratory. Tukey's HSD post hoc tests 

were used to identify differences among treatment means when the main test was statistically 

significant. ANOVAs were also used to determine the effect of maximum (peak) exposure 

temperature on the proportion of mussels surviving after each of five consecutive high 

temperature challenges. A Wilcoxon signed rank test was performed to compare overall patterns 

of mussel survival across all five consecutive thermal challenges as a function of peak exposure 

temperature. A Wilcoxon signed rank test was also performed among mussels exposed to 42˚C 

to examine the effect of prior frequency of exposure to high temperature stress on the proportion 

of mussels surviving across all five consecutive thermal challenges.   

Linear regressions were used to quantify changes in the relative growth and condition of 

experimental mussels in the field in response to variation in thermal history under natural 

conditions, using the six calculated temperature stress metrics as the independent variables. 

ANOVAs were also conducted to determine the effect of peak exposure temperature on the 

proportion of mussels surviving after each of five consecutive high temperature challenges. A 

Wilcoxon signed rank test performed to compare overall patterns of mussel survival across all 
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five consecutive thermal challenges as a function of peak exposure temperature. Linear 

regressions were also used to quantify the effects of the six calculated temperature metrics on the 

proportion of mussels surviving five consecutive exposures to 39˚C (mussels in this treatment 

group exhibited the most variation in survival in response to multiple thermal challenges).  
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CHAPTER 3  

RESULTS  

Lab Experiment  

With the exception of one individual that died and was immediately replaced on the 

second day, there was no mortality during the initial chronic sublethal exposure period. Observed 

growth rates were generally quite low in experimental mussels; nevertheless, increasing 

frequency of exposure to sublethal high temperature stress during simulated low tides led to 

statistically significant reductions in both relative shell growth (Fig. 4a; Table 1) and condition 

(Fig. 4b; Table 2). Post-hoc tests revealed that mussels exposed once per week did not differ 

significantly from controls for either shell growth or condition; however, mussels exposed four 

or more times per week were increasingly negatively affected.   

 
FIGURE 4. Effects of prior frequency of exposure to sublethal high temperature stress on 

mean (± SE) (a) relative shell growth and (b) condition of M. californianus (n = 24 

replicates per treatment group, 5 mussels per replicate) after eight weeks in the laboratory. 

Differing letters indicate significant differences among treatments at the α = 0.05 level with 

Tukey’s HSD test following ANOVA.  
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Comparable results were also observed when mussel condition was estimated using shell 

mass rather than shell length as a covariate.  

TABLE 1. Effects of Prior Frequency of Exposure to Sublethal High Temperature Stress 

on Relative Shell Growth of Experimental Mussels, After Eight Weeks in the Laboratory 

(ANOVA)  

Source  df  SS  MS  F  P  

Exposure Frequency  3  5.07 x 10-5  1.69 x 10-5  8.45  < 0.001  

Residual  92  1.84 x 10-4  2.00 x 10-6  --  --  

   

 

TABLE 2. Effects of Prior Frequency of Exposure to Sublethal High Temperature Stress 

on Condition of Experimental Mussels, After Eight Weeks in the Laboratory (ANOVA)  

Source  df  SS  MS  F  P  

Exposure Frequency  3  2.09 x 10-4  6.97 x 10-5  13.50  < 0.001  

Residual  92  4.75 x 10-4  5.17 x 10-6  --  --  

 

  

Mussels  exposed to 36˚C or 39˚C exhibited very little mortality over the five consecutive 

simulated low tides; in contrast, the proportion of mussels surviving following exposure to 42˚C 

was significantly reduced after a single high temperature exposure and continued to decline over 

the rest of the five-day exposure period (Fig. 5a; Tables 3 and 4). Within the group of mussels 

consecutively exposed to 42˚C, survival patterns differed as a function of prior frequency of 

exposure to sublethal high temperature stress (Fig. 5b; Table 5). While survival among those 

previously exposed once or four times per week did not differ significantly from controls over 

the five consecutive simulated low tides, survival of mussels exposed seven times per week was 
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significantly different from that of mussels with no prior exposure history. However, by the end 

of the five-day exposure period, the proportion of mussels surviving did not differ among 

exposure frequency treatments (Fig. 5b; Table 6).  

 

 

 (a) (b) 

 
 1 2 3 4 5 1 2 3 4 5 

 Number of Acute Challenges   

  

FIGURE 5. Mean (± SE) proportion of mussels surviving five consecutive high 

temperature challenges, by day, as a function of (a) peak exposure temperature (n = 32 

replicates per treatment group, 4 mussels per replicate) and (b) among mussels exposed to 

42˚C, prior frequency of exposure to sublethal high temperature stress (n = 8 replicates per 

treatment group, 4 mussels per replicate), after eight weeks in the laboratory.  

   

  

TABLE 3. Effects of Peak Exposure Temperature (39 Versus 42˚C) on the Proportion of 

Mussels Surviving Consecutive High Temperature Challenges Across Five Days Compared 

to Individuals Exposed to 36˚C, After Eight Weeks in the Laboratory (Wilcoxon Signed 

Rank Test)  

Source  Coefficient  SE  Z  P  

39˚C  -0.0089  0.0592  -0.15  0.880  

42˚C  -0.3679  0.0638  -5.76  < 0.001  
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TABLE 4. Effects of Peak Exposure Temperature on the Proportion of Mussels Surviving  

Five Consecutive High Temperature Challenges, by Day, After Eight Weeks in the  

Laboratory (ANOVA)  

Source  df  SS  MS  F  P  

Day 1  

Peak Temperature  2  0.06  0.03  5.74  0.005  

Residual  93  0.47  0.01  --  --  

Day 2  

Peak Temperature  2  0.06  0.03  5.74  0.005  

Residual  93  0.47  0.01  --  --  

Day 3  

Peak Temperature  2  1.28  0.64  21.46  < 0.001  

Residual  93  2.77  0.03  --  --  

Day 4  

Peak Temperature  2  1.28  0.64  21.46  < 0.001  

Residual  93  2.77  0.03  --  --  

Day 5  

Peak Temperature  2  2.46  1.23  32.59  < 0.001  

Residual  93  3.51  0.04  --  --  

   

TABLE 5. Effects of Prior Frequency of Exposure to Sublethal High Temperature Stress  

Among Individuals Exposed to 42˚C on the Proportion of Mussels Surviving Consecutive  

High Temperature Challenges Across Five Days, Compared to Unexposed Controls After 

Eight Weeks in the Laboratory (Wilcoxon Signed Rank Test)  

Source  Coefficient  SE  Z  P  

1 Exposure/Week  0.161  0.140  1.15  0.250  

4 Exposure/Week  0.180  0.139  1.30  0.195  

7 Exposure/Week  0.343  0.136  2.52  0.012  
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TABLE 6. Effects of Prior Frequency of Exposure to Sublethal High Temperature Stress  

Among Individuals Exposed to 42˚C on the Proportion of Mussels Surviving Five 

Consecutive High Temperature Challenges, by Day, After Eight Weeks in the Laboratory 

(ANOVA)    

Source  df  SS  MS  F  P  

Day 1  

Exposure Frequency  3  0.04  0.01  0.83  0.490  

Residual  28  0.43  0.02  --  --  

Day 2  

Exposure Frequency  3  0.04  0.01  0.83  0.490  

Residual  28  0.43  0.02  --  --  

Day 3  

Exposure Frequency  3  0.69  0.23  3.29  0.035  

Residual  28  1.97  0.07  --  --  

Day 4  

Exposure Frequency  3  0.69  0.23  3.29  0.035  

Residual  28  1.97  0.07  --  --  

Day 5  

Exposure Frequency  3  0.11  0.04  0.46  0.716  

Residual  28  2.28  0.08  --  --  

  

  

Field Experiment  

Average daily temperature maximum and range, average frequency of exposure to 28 and  

32 ˚C, and cumulative time above 28 and 32 ˚C varied across plots, presumably due to 

differences in wave splash, compass orientation, and slope (e.g., Harley, 2008; Miller et al., 

2009; Denny et al., 2011). Mussel loss during the initial exposure period varied among 

experimental plots in the field, however, it was unlikely due to high temperature stress as 

average daily maximum temperatures ranged from 22.2 to 28.6 °C. There were, however, 

multiple large wave events during the study period that produced hydrodynamic forces sufficient 

to remove several data loggers; mussel losses were greatest after such events, suggesting that 
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most mortality was due to insufficient byssal thread attachment strength (see also Carrington et 

al., 2009). I saw no evidence of predation on mussels (i.e., drill holes). Relative shell growth was 

negatively related to all six temperature metrics; in contrast, mussel condition did not 

significantly vary in response to any of these variables (Figs 6, 7; Tables 7, 8).  

Mussels exposed to 36˚C exhibited no mortality over the five consecutive simulated low 

tides; in contrast, the proportion of mussels surviving following exposure to 39 or 42˚C was 

significantly reduced after a single high temperature exposure and continued to decline over the 

rest of the five-day exposure period (Fig. 8; Tables 9, 10). None of the six plot temperature 

metrics were significant predictors of the proportion of mussels surviving 5 consecutive 

exposures to 39˚C (Table 11). 
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FIGURE 6. Mean relative shell growth of M. californianus in the mid-intertidal zone (n = 

23 plots, 3–17 individuals per plot) as a function of (a) average daily temperature 

maximum, (b) average daily temperature range, (c) average frequency of exposure to 28˚C, 

(d) average frequency of exposure to 32˚C, (e) cumulative time above 28˚C, and (f) 

cumulative time above 32˚C. Lines represent the least squares regression equations 

relating relative shell growth to plot temperature metrics (Table 7).  
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FIGURE 7. Mean condition of M. californianus in the mid-intertidal zone (n = 23 plots, 3– 

17 individuals per plot) as a function of (a) average daily temperature maximum, (b) 

average daily temperature range, (c) average frequency of exposure to 28˚C, (d) average 

frequency of exposure to 32˚C, (e) cumulative time above 28˚C, and (f) cumulative time 

above 32˚C. Lines represent the least squares regression equations relating mussel 

condition to plot temperature metrics (Table 8).  
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TABLE 7. Least Squares Regression Equations Relating Relative Shell Growth of  

Experimental Mussels in the Field to Plot Temperature Metrics, After 14 Weeks in the 

Field  

Temperature Metric  Intercept Coefficient  F  P  r2  

Average Daily Maximum  0.200  -0.006  5.53  0.029  0.21  

Average Daily Range  0.093  -0.006  5.55  0.028  0.21  

Average Frequency of Exposure to 28˚C  0.069  -0.009  5.92  0.024  0.22  

Average Frequency of Exposure to 32˚C  0.066  -0.018  5.94  0.024  0.22  

Cumulative Time Above 28˚C  0.065  -0.007  6.52  0.023  0.22  

Cumulative Time Above 32˚C  0.064  -0.021  6.33  0.020  0.23  

 

TABLE 8. Least Squares Regression Equations Relating Relative Condition of 

Experimental Mussels in the Field to Plot Temperature Metrics, After 14 Weeks in the 

Field 

Temperature Metrics  

Coefficient  

Intercept  F  

(x1,000)  

P  r2  

Average Daily Maximum  0.015  -0.02  0.01  0.908  0.001  

Average Daily Range  0.015  -0.05  0.04  0.842  0.002  

Average Frequency of Exposure to 28˚C  0.015  -0.08  0.07  0.788  0.004  

Average Frequency of Exposure to 32˚C  0.015  -0.07  0.01  0.914  0.001  

Cumulative Time Above 28˚C  0.015  -0.12  0.24  0.628  0.011  

Cumulative Time Above 32˚C  0.015  -0.35  0.26  0.618  0.012  
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FIGURE 8. Mean (± SE) proportion of mussels surviving five consecutive high 

temperature challenges, by day, as a function of peak exposure temperature (n = 21-23 

plots, 4 mussels per plot) after 14 weeks in the field.  

  

  

TABLE 9. Effects of Peak Exposure Temperature (39 Versus 42˚C) on the Proportion of 

Mussels Surviving Consecutive High Temperature Challenges Across Five Days Compared 

to Individuals Exposed to 36˚C, After 14 Weeks in the Field (Wilcoxon Signed Rank Test)  

Source  Coefficient  SE  Z  P  

39˚C  - 0.7242  0.0973  - 7.44  < 0.001  

42˚C  - 2.0186  0.1442  - 13.99  < 0.001  
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TABLE 10. Effects of Peak Exposure Temperature on the Proportion of Mussels Surviving 

Five Consecutive High Temperature Challenges, by Day, After 14 Weeks in the Field 

(ANOVA)  

Source  df  SS  MS  F  P  

Day 1  

Peak Temperature  2  1.261  0.6307  11.87  < 0.001  

Residual  63  3.349  0.0532  --  --  

Day 2  

Peak Temperature  2  7.015  3.507  41.63  < 0.001  

Residual  63  5.307  0.084  --  --  

Day 3  

Peak Temperature  2  10.09  5.047  98.12  < 0.001  

Residual  63  3.24  0.051  --  --  

Day 4  

Peak Temperature  2  10.044  5.022  97.78  < 0.001  

Residual  63  3.236  0.051  --  --  

Day 5  

Peak Temperature  2  10.982  5.491  126.2  < 0.001  

Residual  63  2.742  0.044  --  --  

  

  

TABLE 11. Least Squares Regression Equations Relating Among Individuals Exposed to 

39˚C the Proportion of Mussels Surviving Five Consecutive High Temperature Challenges 

to Plot Temperature Metrics (Day 5), After 14 Weeks in the Field (ANCOVA)  

Temperature Metric  Intercept Coefficient  F  P  r2  

Average Daily Maximum  0.94  -0.019  0.19  0.670  0.01  

Average Daily Range  0.511  -0.007  0.03  0.866  0.01  

Average Frequency of Exposure to 28˚C  0.486  -0.016  0.10  0.7554  0.01  

Average Frequency of Exposure to 32˚C  0.483  -0.014  0.04  0.839  0.01  

Cumulative Time Above 28˚C  0.492  -0.063  0.21  0.653  0.01  

Cumulative Time Above 32˚C  0.511  -0.074  6.33  0.568  0.02  
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CHAPTER 4  

DISCUSSION  

My overall results were consistent with the theoretical prediction that increasing 

frequency of sublethal environmental stress can result in increased tolerance to more extreme 

subsequent thermal challenges, but at a physiological cost to individuals – a trade-off. Mussels 

exposed more often to chronic heat stress in the laboratory exhibited a decrease in relative 

growth and condition compared to less frequently stressed individuals but were more likely to 

survive subsequent exposure to more extreme high temperatures. Similarly, intertidal mussels 

experiencing higher average daily maximum temperatures during aerial exposure in the field 

grew significantly less than those living in cooler locations on the shore, although they did not 

differ with respect to condition. I found no support for the idea that there was a threshold 

frequency of exposure to sublethal stress above which individuals would reduce their investment 

in thermal defenses (e.g., Cohen and Mangel, 1999); individuals exposed daily to sublethal high 

temperatures were the most likely to survive subsequent high temperature challenges. The degree 

to which acclimation can provide an effective defense against high temperature stress does 

appear to have limits, however, as mussel survival following subsequent more extreme high 

temperature exposures was negatively related to both peak temperature and number of 

consecutive exposures. Cumulative effects of multi-day stress events can eventually prove lethal 

for many individuals, even at lower peak temperatures, as has been found for other species of 

mussels in the few studies investigating this phenomenon (Jones et al., 2009; Sorte et al., 2011b).  

Although there is growing recognition that physiological stress may have important 

implications for population persistence and species interactions in the face of global climate 

change, we still lack a general framework for understanding how increasing temperature 
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variation will influence organismal responses in natural ecosystems. My results suggest that both 

the frequency and intensity of stress exposure can affect expression patterns of defensive traits at 

the individual level, with associated decreases in growth and condition (see also Fitzgerald-

Dehoog et al., 2012; Connor and Robles, 2015). Activation of the heat shock response requires 

energetic investment into several defense pathways associated with protein synthesis and 

degradation (Martin et al., 1991; Somero, 2002), and the costs may be compounded by 

reductions in metabolic activity during aerial exposure (Widdows et al., 1979; Widdows and  

Shick, 1985), which could further reduce the potential scope for growth of intertidal mussels.  

 Responses of mussels in the field to temperature variation did not exactly match those of 

individuals in the lab. In particular, there was no apparent relationship between frequency of 

prior exposure to sublethal stress and either individual condition or the proportion of mussels 

surviving subsequent exposures to a more extreme high temperature. This may be explained in 

part by the observation that mussels in the intertidal zone did not experience the same range of 

thermal conditions as was achieved in the lab; for example, the plot that most frequently 

exceeded 32˚C only did so on average 1.93 times per week, versus a maximum of seven 

exposures per week in the lab. This may be due in part to the timing of my experiment – during 

the summer, many of the most extreme low tides in southern California occur at night or early in 

the morning, such that intertidal organisms are covered by water during the hottest part of the 

day (Helmuth et al., 2002). Repeating the experiment at a different time of year might produce 

very different results. Additionally, I did not attempt to duplicate the constant feeding conditions 

available in natural ecosystems (at least during high tide conditions). Given my results, it seems 

likely that while experimental mussels in the field consumed enough energy to maintain tissue 

mass and increase in shell length, mussels in the lab were slowly starving in the face of 
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increasingly frequent thermal stress. Although I designed the feeding regime in the lab using 

food ration levels that would in theory supply individuals with sufficient energy to support 

growth, the overall lack of a growth response (and loss of condition) suggests I was not 

successful. Assuming the experimental mussels in the lab were able to clear most of the provided 

food during each 3-hour interval, they would have experienced a full stomach twice per day, 

versus being able to feed more continuously in the field. It’s not clear what physiological effects 

might result from such a different in temporal patterning of ingestion, but it seems likely that 

some exist. Finally, although most of the experimental mussels should have been 

prereproductive due to their small size (Suchanek, 1981), some spawning was observed during 

the initial acclimation period of the laboratory study. No subsequent spawning was observed, 

however, nor did any of the mussels show appreciable gonad development at the end of the 

experiment.  

It should be noted that observed reductions in mussel condition in the lab were not 

statistically significant at fewer than four exposures per week, suggesting that condition may be 

less responsive to temperature effects than growth. The shell growth and tissue growth of mytilid 

mussels are generally uncoupled, and Hilbish (1989) noted a relatively large or rapid increase in 

shell length can lead to an apparent reduction in tissue condition. This may explain the apparent 

(although not statistically significant) decrease in condition in the one exposure per week 

treatment group. Growth rates in that group were somewhat elevated relative to the control 

group, perhaps due to positive effects of moderate warming on physiological processes (Miller et 

al., 2015). If tissue mass did not increase at the same rate, my estimates of condition would 

decline, even if no actual tissue mass was lost.  
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The observation from the lab experiment that decreased mussel growth and condition was 

associated with increased survival is consistent with life history theory that predicts increasing 

energy allocation demand for one physiological process decreases the amount of energy 

available for others, leading to negative correlations between phenotypic expression levels of 

competing traits (Charnov, 1989; Stearns, 1992; Roff, 2000). Not surprisingly, exposure to a 

higher peak temperature led to higher mussel mortality rates, both after a single exposure and 

multiple exposures over time. Though my observation of higher levels of mortality at 42˚C 

agrees with observed lethal thermal tolerance limits for M. californianus (Denny et al., 2011), 

my laboratory mussels had generally higher survival rates than expected. Even though the two 

experiments were done in the same way, it is possible that temporal variation in when the 

mussels were tested (after eight weeks in the lab versus 12 weeks in the field) or differences in 

some unmeasured parameter (e.g., relative humidity; Miller et al., 2009) may have been 

important. Another possibility is that prior exposure to low food stress preconditioned mussels in 

the lab to be more tolerant of a subsequent thermal stress; similar results have been found for 

other combinations of stressors (e.g., temperature and heavy metal exposure; Tedengren et al., 

2000). However, previous work with food and temperature stress in mussels suggests this is not 

the case here: proteomics analyses of M. californianus exposed to low food conditions found no 

evidence of elevated expression levels of heat shock and other stress proteins (B. Allen, 

unpublished data). Nor were those same mussels more resistant to a high temperature challenge 

than mussels held under high food conditions (Fitzgerald-DeHoog et al., 2012). As the 

laboratory and field experiments were conducted in different years, I cannot discount the 

possibility that different environmental conditions played a role in the observed differences in 

survival patterns;  
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for example, there may have been a selection event that occurred prior to my collection of 

mussel for the laboratory experiment, leaving behind primarily thermo-tolerant individuals.  

The fact that mussels generally exhibited increased mortality rates over repeated 

exposure events is intriguing, as it suggests there are limits to an individual’s acclimation 

potential. Prior exposure to sublethal stress confers some advantage to subsequent high 

temperature challenges, but the ability to survive one such event does not imply that several 

comparable events in close succession are equally survivable. This constraint may become more 

relevant in the future as the frequency and intensity of multi-day extreme weather events 

increases (Easterling et al., 2000). Such increases could result in further physiological pressure 

on intertidal organisms and increase the cost of thermal tolerance (Sorte et al., 2011a; Somero, 

2012).  

Aerobic capacity is thought to be a crucial component in determining the maximum 

thermal tolerance limits of an organism (Hoppeler and Weibel, 1998; Portner, 2001; Stillman,  

2003; Portner et al., 2006; Dowling and Simmons, 2009). During extended periods of emersion, 

M. californianus reduces its metabolic rate and often undergoes anaerobic respiration (Bayne et 

al., 1976; Widdows et al., 1979). Reduced aerobic capacity limits activation of the heat shock 

response, so during these time organisms must rely upon prior thermal defense activity (Portner, 

2001; Portner, 2002). If exposure to stress increases the oxygen deficit of an individual that must 

be repaid during the subsequent high tide, physiological limits on aerobic capacity may help 

explain the observed overwhelming impact of multiple thermal challenges on mussel survival. 

After several sequential exposures, accumulated damage beyond the ability of the individual to 

repair before the next stress may eventually lead to mortality. Mass mortality events due to 

extreme heat waves have already been documented, with bivalves among the most affected taxa 
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(Smith et al., 2006b; Harley, 2008; Garrabou et al., 2009; Jones et al., 2010). Tsuchiya (1983) 

recorded a mass die-off of Mytilus edulis following just three days of aerial exposures above 

40˚C, well within the range of conditions evaluated in this study.  

There are likely to be significant ecological consequences of reduced growth, condition, 

and survival in response to increasing temperature stress on rocky shores. Stress-induced 

reductions in growth or condition could have population and community level impacts 

independent of the effects of reduced mussel population abundances. The competitive ability of 

mussels to maintain dominance is driven by their ability to overgrow competitors and maintain 

percent cover (Petraitis, 1995; Robles and Desharnais, 2002). Furthermore, mussels move 

significant amounts of energy from the water column to the benthos and support many organisms 

at higher trophic levels (Menge, 1992; Ricciardi and Bourget, 1999). Smaller individuals 

generally allocate fewer resources to reproduction, leading to lower fecundity (Seed & 

Suchanek, 1992; Olafsson et al., 1994). Slower growth will also reduce the competitive ability of 

individuals (Petraitis, 1995) and may leave them vulnerable to predators for longer periods of 

time (Paine, 1976). Larger mussels are less vulnerable to predation (Paine, 1976; Robles et al.,  

1990) and have greater thermal inertia, potentially making them less vulnerable to thermal stress 

(Helmuth, 1999; Denny et al., 2011). Given that few species can compete effectively for space in 

the mid-intertidal zone with M. californianus under current conditions, changes in their 

abundance and biomass may significantly alter local community structure and associated 

ecosystem functions (Paine, 1966; Blanchette et al., 2006; Denny et al., 2009).  

Populations of M. californianus along the Southern California Bight have declined 

significantly since the 1970’s in terms of percent cover, bed thickness, and biomass, 

corresponding with similarly reductions in mussel bed community diversity over that same 
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period (Smith et al., 2006a, b). The researchers documenting these patterns could not attribute 

the mussel losses to habitat destruction, loss of byssal thread complexes, or pollution; rather, 

they attributed them directly to regional climactic shifts towards warmer sea surface and air 

temperatures. Of course, declines in one species may facilitate increases in the abundance of 

others. Warmer-adapted invasive mussel congeners found in more sheltered habitats have shown 

the potential to outgrow, survive better, and eventually displace their native counterparts as 

environmental conditions change (Schneider and Helmuth, 2007; Schneider, 2008; Tomanek and 

Zuzow, 2010; Lockwood and Somero, 2011). Whether such a shift will happen with open-coast 

species like M. californianus remains to be seen.  

Understanding the relationship between patterns of organism survival and their local 

environmental conditions is fundamental to predicting long-term climate change impacts. Our 

ability to effectively predict the consequences of increasingly common stressors on local 

community structure and associated ecosystem functions therefore hinges on the development of 

realistic models of organismal responses to these perturbations, particularly based on 

experiments done in natural systems. By explicitly partitioning the effects of increasing 

frequency and intensity of temperature stress on a key rocky intertidal species, this study 

advances our understanding of the potential for synergistic effects resulting from different 

aspects of thermal regimes. It also highlights the degree to which environmental challenges can 

overwhelm the acclimation potential of many individuals, an issue that is likely to become 

increasingly relevant in the coming decades. 
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