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ABSTRACT 

Segmentation of scanned tissue volumes of three-dimensional (3D) computed 

tomography (CT) images often involves—at least partially—some manual 

process, as there is no standardized automatic method. There is a need to 

develop fully automatic approaches, not only to improve the objectivity of the 

task, but also to increase the overall speed of the segmentation process. Here we 

extend a 3D local binary patterns (LBP) -based trabecular bone segmentation 

method with adaptive local thresholding and additional segmentation 

parameters to make it more robust yet still perform adequately when compared 

to traditional user-assisted segmentation. We estimate parameters for the new 

automated adaptive multiscale LBP-based 3D segmentation method (AMLM) in 

our experimental setting, and have two micro-CT (µCT) scanned bovine 

trabecular bone tissue volumes segmented by both the AMLM and two 

experienced users. Comparison of the results shows superior performance of the 

AMLM suggesting the strong potential for this solution to perform automatic 

bone segmentation. 
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TIIVISTELMÄ 

Skannattujen kudosrakenteiden segmentointi kolmiulotteisista (3D) 

tomografiakuvista tehdään usein ainakin osittain manuaalisesti, sillä 

standardoitua automaattista menetelmää ei ole. Täysin automatisoitujen 

lähestymistapojen kehitys on tarpeen, sillä se parantaisi sekä segmentoinnin 

objektiivisuutta että sen kokonaisnopeutta. Tässä työssä laajennamme 

automatisoitua local binary patterns (LBP) -perustaista trabekulaarisen luun 

3D-segmentointimenetelmää adaptiivisella paikallisella kynnystyksellä ja 

segmentoinnin lisäparametreilla tavoitteenamme vahvistaa menetelmää mutta 

säilyttää silti riittävä suorituskyky verrattuna perinteiseen käyttäjäavusteiseen 

segmentointiin. Arvioimme koejärjestelyssämme parametrit uudelle 

automatisoidulle adaptiiviselle moniasteikkoiselle LBP-pohjaiselle 3D-

segmentointimenetelmälle (AMLM), ja teetämme sekä AMLM:n avulla että 

kahden kokeneen käyttäjän toimesta binäärisegmentoinnit kahdelle mikro-

tietokonetomografialla (μTT) tuotetulle kuvalle naudan trabekulaarisesta 

luukudoksesta. Tulosten vertailu osoittaa AMLM:n suorituskyvyltään selkeästi 

paremmaksi, mikä antaa vahvan viitteen tämän menetelmän soveltuvuudesta 

automatisoituun luusegmentointiin. 

 

Avainsanat: LBP, mikro-TT, trabekulaarinen luu, segmentointi. 
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1. INTRODUCTION 
 

This thesis presents a novel automated multiscale local binary patterns (LBP) based 

three-dimensional (3D) segmentation method (AMLM), which extends an existing 

trabecular bone tissue specific segmentation method with customized adaptive local 

thresholding to improve its robustness. We estimate scanner and resolution specific 

thresholding parameters using bone phantom scans at three resolutions, and then 

evaluate the adaptive thresholding by comparing automated and traditional 

binarization results of two bovine subchondral bone samples scanned with the same 

equipment.  

The ultimate purpose the work was to improve the diagnostics of joint and bone 

diseases. Our approach was based on automatic segmentation of trabecular bone 

from computed tomography (CT). The context is the configuration and development 

of an existing automated multiscale LBP-based segmentation method (MLM) that 

was implemented in MATLAB. The method was designed specifically for trabecular 

bone tissue, and its main purpose is to accurately determine the shape of continuous 

border regions between dense bone and other tissue for detailed structural analysis.  

The results of this thesis have been collected and rewritten into a conference article 

that was accepted and presented at the Scandinavian Conference of Image Analysis, 

SCIA, and can be found under the following reference: 

 

Kaipala J, Bordallo López M, Saarakkala S & Thevenot J (2017) Automatic 

segmentation of bone tissue from computed tomography using a volumetric 

local binary patterns based method. Scandinavian Conference in Image 

Analysis (SCIA), Tromsø, Norway. [1] 

1.1. Objectives 

 

The thesis focuses on the development of automated trabecular bone segmentation, 

and specifically the MATLAB scripted MLM implementation, which is the problem 

domain of the research.  

Our original objective was to improve the performance of the scripted MLM and 

define data specific segmentation parameters: 

 

1) Optimization of MATLAB segmentation scripts for speed and robustness 

2) Definition of segmentation parameters based on the data to analyze 

 

Additionally, we were going to support the work with: 

 

3) Assessment of the effects of image resolution and artifacts 

4) Comparison of the segmented data between different imaging modalities 

such as micro-CT (µCT) and cone-beam CT (CBCT) 

 

These objectives evolved, as writing a conference paper from this study has been 

suggested. To improve the relevance of the manuscript to be submitted, the main 

focus was given to the suggested methodology as a novel approach for segmentation. 

The following new main objectives were set after we were already familiar with the 
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technical details of the segmentation method and could hypothesize ways to build on 

its functionality. 

 

5) Extension of an LBP-based segmentation method with volumetric adaptive 

thresholding and additional label 

6) Comparison of parameterized automatic thresholding results with 

traditional user-assisted thresholding 

1.2. Contributions 

The scientific contributions of this thesis have both methodological and practical 

applications.  

The first set of contributions is referred to the analysis and optimization of the 

existing scripts for the computation of the segmentation. In this context, we describe 

how the segmentation scripts were optimized for speed and robustness, and apply 

quantitative methods to both the original and optimized versions of the scripts to 

estimate our success. We measure the relative performance of script versions by 

segmenting the same test data with compatible configurations.  

The methodological contributions include the extension of the original 

segmentation method with customized adaptive local thresholding and an additional 

label to improve its robustness. To our knowledge, the method has not been adapted 

to volumetric segmentation of medical data before, and our work is also the first 

attempt to combine the underlying adaptive thresholding methods this way. 

For this, we extend the method with an additional segmentation label. Our addition 

of the new label is based on the hypothesis that it gives the AMLM conceptual 

symmetricity compared to the original border label, and its inclusion would 

complement the set of likely partial volume voxels in the tissue border area. It also 

gives more calculation options to improve the accuracy of subsequent volumetric 

LBP analysis.  We will not be able to evaluate its effect, because the actual structural 

analysis is outside the scope of this work, but we can estimate its effect on the 

performance and make sure it remains acceptable.  

We introduce two empirical methods for dynamic configuration of scanner and 

resolution specific segmentation parameters. We estimate binarization parameters by 

extracting trabecular bone structural parameters from µCT scanned phantom 

segmented using different configurations at three levels of resolution, and evaluate 

results by comparing them to the corresponding nominal values. To adjust LBP-

based neighborhood parameters, we evaluate segmentations created with different 

parameters by their structural similarity (SSIM) to the ground truth (GT). 

We evaluate the configured adaptive binarization method by comparing its 

performance and GT similarity to corresponding values measured for traditional 

user-assisted binarization using the same trabecular bone volumes. 

Additionally, we assess the effects of image resolution and artifacts in our 

experiments, and compare segmentations of µCT and CBCT scans of a trabecular 

bone sample.   
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1.3. Structure 

As stated before, this master thesis extends our published conference paper. The 

structure of the thesis follows common conventions of scientific research. 

The rest of this thesis is organized as follows:  

Chapters 2, 3, 4 and 5 present the theoretical background. First, we justify the 

research by introducing common bone and joint diseases, and by explaining how 

they are linked with the microstructure of trabecular bone. We give overview of 

digital image segmentation and its challenges, and introduce MLM as a method 

specifically tailored for the segmentation of trabecular bone structure. We provide 

background on the general principles of CT imaging and typical visual artifacts that 

are encountered with this modality. 

Chapter 6, related to the materials used, gives more detailed account of the 

equipment and methods used in this work.  

Chapter 7 presents the results, describing the details of our work process, and 

presenting measurements and other observations from our research. 

Chapter 8 discusses and interprets the results and the significance of individual 

findings in the context of our objectives. Chapter 9 draws conclusions of the overall 

work and its significance.  

Appendices support our summarized results with details of the measurements to 

define the segmentation parameters.  
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2. ANALYSIS OF OSTEOARTHRITIC TRABECULAR BONE 
 

Osteoarthritis (OA) is a major degenerative joint disease. [2] It affects articular bone, 

cartilage and synovium, especially in weight-bearing joints like the hip and the knee. 

Its end-stage symptoms include disabling pain and stiffness, as subchondral bone 

deforms, and adjacent cartilage tissue calcifies or wears out. The disease develops 

gradually, and while it may take decades before any life-affecting symptoms, their 

appearance is often synonym to an advanced stage of the condition. 

Early diagnosis of OA improves its treatment results. Mature cartilage tissue is 

resilient but has very limited self-repair ability. Moreover, clinical treatment is 

generally palliative and does not heal damaged joint tissues. Primary treatments 

include pain relief and supportive measures that slow OA progress, with joint 

replacement surgery as last option. Detection of OA signs at an early stage is 

beneficial, because it gives more treatment options and can result in improved long-

term health. [3,4] 

Analysis of trabecular bone structure can support diagnosis and research. There are 

many phenotypes of OA, as well as internal and external factors and mechanisms 

that affect its onset. [5] Articular health is a system of fine balance between chemical 

and mechanical factors, and OA develops as a symptom of this imbalance, whether 

initiated by mechanical trauma or other factors. Therefore, early and reliable 

diagnosis of OA can benefit from several different methods. Analysis of subchondral 

bone microstructure is one possible approach. 

Metabolically active trabecular bone is constantly under natural process of 

resorption and remodeling, and this bone formation process responds to mechanical 

and biological factors. [5,6] Trabecular bone microstructure is known to reflect the 

health of the articular bone and cartilage. Late OA remodeling includes such changes 

as increased bone mineral density and more plate-like structure. There is also some 

indication that trabecular bone defects can precede cartilage damage, although not by 

a causal relationship. [7] 

Volumetric trabecular bone structure is difficult to image and analyze in a clinical 

setting. [8] The size of trabecular features is typically a few hundred micrometers or 

less, and microscale resolution must be attained in vivo with low radiation dose, 

which induces noise and resolution related artifacts. Nevertheless, the data can be 

linked with textural parameters derived from other modalities. it is also possible to 

image trabecular bone structure ex vivo, which can help identify potential disease 

indicators.  

OA is our primary focus in this context, but the potential of trabecular bone 

microstructure analysis is not limited just to OA. The bone resorption mechanism 

causes also age-related bone loss i.e. osteoporosis (OP). Therefore, it is likely that 

similar trabecular bone analysis methods could be used to assess the stages of both 

diseases. 

LBP has been recently adapted for segmentation and analysis of trabecular bone. 

[9,10] µCT and volumetric LBP-based analysis was used successfully on 

subchondral trabecular bone samples in a previous research. There, most structural 

and textural parameters correlated strongly with severity of OA. The same 

characterization applies also to bone tissue changes in OP. [11] 

LBP-based trabecular bone segmentation is under-investigated subject, and there is 

room for research and experimentation. LBP-based segmentation (and analysis) has 

already been automated with MATLAB scripts, but it is still a work in progress.  
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3. SEGMENTATION PROBLEM 
 

Image segmentation is a process that classifies image constituents into two or more 

groups that represent some distinct aspects of the data to highlight relevant image 

features for further analysis. The simplest segmentation task is binarization by 

thresholding, which defines imaged object boundaries by dividing constituents into 

background and foreground depending on whether their grayscale value meets a 

selected gray-value threshold. There are several more complex thresholding methods 

that are classifiable by the locality of their thresholds, by the assumptions made 

about voxel connectivity, and by the extent that they can be automated. Examples of 

common methods are Otsu’s method [12], region growing methods [13], and shape-

based methods like geodesic active contours [14]. 

Segmentation is one of the most difficult problems in image processing and 

remains an active area of development. [15]. Despite decades of research, there exists 

no universal segmentation method that would produce best results in all cases. One 

reason is that there is no absolute GT, and therefore, a single right answer. Another 

reason is that segmentation methods vary in their sensitivity to artifacts and image 

quality. Most segmentation methods are specialized and perform best on the object 

and modality they were designed for. In practice, segmentation methods are 

considered and selected separately for each task. 3D segmentation faces additional 

challenges due to large datasets, and because computationally intensive segmentation 

algorithms, like shape-based algorithms, require much more memory and calculation 

power than simple thresholding. 

Nowadays, volumetric imaging is often used in the medical field, from devices 

such as magnetic resonance imaging or CT, and several applications require 

volumetric segmentation of tissues. [16] One of the biological structures that is 

relevant to assess in 3D is the metabolically active trabecular bone, this one being at 

upmost interest in studies of musculoskeletal disorders. Pathological bone conditions 

such as OA and OP are linked to small changes in trabecular bone microstructure 

that can be assessed from 3D µCT images. [17]  

However, while high-resolution imaging can be used for in vitro CT studies, the 

clinical resolution is limited due to radiation levels which must be kept low. [18] 

Low-resolution imaging increases the impact of artifacts such as the partial volume 

effect (PVE), and leads to challenging segmentations. PVE comprises a class of 

imaging resolution related artifacts that limit how well a reconstructed voxel can 

represent its object location. [19] 

Segmentation should be ideally a completely automatic process, but this remains a 

difficult goal to reach. The lack of generic automated algorithms increases the effect 

of human factors like time consumed, interpersonal variance and systematic error. 

Together these factors have negative effect on 3D scanned image segmentation and 

subsequent structural analysis as well as clinical diagnosis. 

LBP-based methods represent a promising but still under-investigated alternative 

solution to conventional manual and semi-automatic 3D segmentation methods. 

[9,16] 
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4. MULTISCALE LBP-BASED 3D SEGMENTATION 
 

This chapter describes the baseline method utilized for the segmentation of the bone. 

This is a multistage process that utilizes CT scans as an input and produces a 

segmented and labelled image. 

4.1. Overview 

The bone analysis process consists of three parts: 1) Estimation of segmentation 

parameters, 2) automatic volumetric LBP-based segmentation, which is further 

divided to binary thresholding and edge labeling, and 3) volumetric LBP-based 

analysis of the segmented bone microstructure from segmentation results from the 

previous step.  This last step is outside of the scope of this work, however. These 

steps are illustrated in Figure 1. 

 

 

 

Figure 1. Overview of the trabecular bone analysis process. 

 

The segmentation method is not fully automatic in the sense that it requires 

configuration of several parameters, whose optimal values depend on the scanning 

setting (that is, medium, modality, resolution, etc.). These parameters affect the 

Estimation of 
parameters 

• Binarization 

• Labeling 

Initial 
binarization 

• Base for further 
labeling 
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labeling 

• Borders 

Structural 
analysis 

• Of tissue border 
regions 

SEGMENTATION 
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automatic segmentation, which is critical for the accuracy of the subsequent 

structural analysis of the segmentation. 

The first proper segmentation step, binarization, defines tissue region and provides 

threshold values that are used in the labeling step.  

The final segmentation step, LBP-based labeling, takes the original volume and its 

binarization mask from the previous step and labels regions that represent tissue 

borders labels. The resulting reduced data set—trabecular bone border regions—is 

base for the structural analysis step, which investigates markers linking the bone 

microstructure and articular or bone diseases. The continuous geometry and gray-

values of the labeled border voxels are all-important for the analysis. However, these 

border regions are also naturally sensitive to PVE, especially at low resolutions, 

where large voxels are less likely to coincide with the tissue border. 

The segmentation method is still a work in progress, and it has parameters whose 

values are arbitrary. One such parameter is the scaling factor of the global 

thresholding level. Global binarization can cause problems anyway, for example 

when artifacts cause variation in local intensity over the segmented area, which 

distorts the segmentation result. 

We replaced the original binarization step with a locally adaptive method, 

hypothesizing that it would improve the binarization result in a general case without 

degrading the overall segmentation speed too much. Secondly, we increased the 

information content of the segmentation result with an additional fourth label. We 

took a methodical brute force approach to parameter configuration. That is, we 

segmented with several sets of parameters and selected those that compared best 

against ideal results, separately for both binarization and labeling steps. 

4.2. Introduction to LBP 

Here we discuss briefly the principle of LBP before explaining how its principle has 

been applied to the segmentation method and how it is configured.  

LBP is an image operator that assigns each pixel a descriptor value, which is 

obtained by thresholding gray-values of a pixel neighborhood point pattern and 

interpreting the result as a binary number. This LBP code can be used to classify 

different neighborhood patterns. 

LBP code can be regarded as a binary number, where bit positions correspond to 

ordered set of neighborhood points. A bit value represents the logical relation of a 

neighborhood point to the center pixel gray-value. Figure 2 illustrates the principle of 

the 8-bit LBP code calculation using a circular neighborhood with eight ordered 

members.  

The circular LBP operator takes or interpolates the P neighboring point gray-

values 𝑔𝑝 at radius R from the center pixel, thresholds them using the center pixel 

gray-value 𝑔𝑐, then encodes non-negative results at (zero-based) neighbor positions p 

into binary values 2𝑝 and calculates their sum. [20]  

The original LBP method was introduced for image texture analysis, where it has 

been shown to be both computationally efficient and insensitive to global variations 

of grayscale values. [20–23] The LBP operator is traditionally used to classify 

texture patterns, which has little to do with actual segmentation. 
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Figure 2. 8-bit LBP code calculation of a pixel (solid black) in plane with eight LBP 

neighbors (gray). The code value is the sum of the bit values of the neighborhood 

elements (solid gray) whose interpolated gray-value (number inside the element) 

equals or exceeds the center pixel gray-value. In this example, the LBP code is 

1+4+8+16+32+64 = 125.  

 

The original LBP neighborhood consisted of the eight pixels adjacent to a center 

pixel, but the model has since been extended to larger and circularly shaped 

neighborhoods with bilinear interpolation. [20] The above figure represents an early 

variant with the original rectangular grid replaced by a circular neighborhood. The 

circle does, however, correspond more naturally to the volumetric neighborhood of 

the LBP-based segmentation, which will be discussed next. 

4.3. Multiscale LBP-based 3D segmentation 

MLM is a novel automated segmentation method that has been suggested as an 

alternative to the common binary thresholding for analyzing bone microstructures in 

CT images. [16] It has recently been validated for the segmentation of µCT scans of 

osteoarthritic trabecular bone and the subsequent statistical analysis. [9]  

MLM is based on LBP but differs from it in certain ways. Major difference from 

traditional LBP is that patterns are evaluated using a global threshold instead of the 

voxel gray-value or other local threshold. In other words, pattern elements are 

defined in effect by their tissue membership instead of their relative local activity.  

In addition, MLM examines neighborhood patterns on two nested levels in a 3D 

volume, firstly for the voxel itself and secondly for its inner neighborhood points. 

Figure 3 illustrates the geometry of the MLM neighborhood. The method groups and 
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analyzes the nested patterns to label continuous bone structures and their edges and 
to set disconnected bone voxels to the background. 

This figure represents the LBP-inspired volumetric neighborhood of the 
segmentation method. Its structure corresponds to the local neighborhood pattern in 
the previous LBP image but in three dimensions. In general, the inner neighborhood 
consists of a spherical set of 𝑁𝑁1 vertices at radius 𝑅𝑅1, and the full outer neighborhood 
set comprises 𝑁𝑁1 patches of small spherical caps further away at radius 𝑅𝑅2 in the 
direction of each inner neighborhood point. Outer neighborhood patches are based on 
the polar vertex neighborhood of a vertex sphere with radius 𝑅𝑅2 and 𝑁𝑁2 uniformly 
distributed vertices.  

 

 

Figure 3. Partial multiscale neighborhood of a voxel (solid black, at the origo of this 
frame) in the default neighborhood configuration. The spherical inner neighborhood 
at radius R1 = 1, consists of 26 points (gray). The remaining points (solid black) at 
radius R2 = 2 at the top represent the outer neighborhood cluster of the topmost inner 
neighborhood point (solid gray). 

 
Functionally, the method models oriented continuous local surfaces in 3D to 

define edges of complex trabecular tissue and to and assign edge labels to 
corresponding voxels. 

Firstly, in contrast to regular LBP operators, the multiscale LBP-based method 
does not actually describe patterns. The difference is subtle, but the segmentation 
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variant evaluates a minimal set of patterns to assign a (border) label to the center 

voxel as needed. 

Secondly, pattern constituents are evaluated based on the relation of their gray-

values to a separately calculated threshold value instead of the center voxel like in 

LBP. The center voxel is also compared to the threshold value, which therefore 

becomes an implicit super-layer in this neighborhood hierarchy. 

Thirdly, the segmentation method extends the basic pattern with additional nested 

7-point
1
 neighborhood (or sometimes two) for each spherical neighborhood point. 

Every point in the spherical inner neighborhood projects similar umbrella-dome-

shaped nested neighborhood away from the center voxel. This nested neighborhood 

level represents the sense of depth and direction, which improves tissue edge 

detection and classification of its borders.  

The theoretical number of possible patterns is so large that it makes the estimated 

number of particles in the observable universe seem vanishingly small in 

comparison. However, the segmentation method is required to label only border 

voxels, in addition to making possible adjustments to the initial binarization. 

Therefore, the method combines patterns, treats neighborhoods as units, and 

evaluates them only when necessary.  

4.4.  Local mean based thresholding 

Binarization by thresholding is a basic type of segmentation in medical imaging. The 

calculation of the gray-value threshold is the main problem, and there are two main 

approaches. The threshold value can be global, i.e. the same gray-value for all 

voxels, or it can be calculated for each voxel. Global thresholding methods are 

generally fast and automate efficiently. Local thresholding methods are less sensitive 

to artifacts like noise and local differences in attenuation. They are also 

computationally more complex than global methods, and they do not scale as well to 

large volumes. 

Since artifacts are common in medical images, global thresholding does not 

always produce satisfactory segmentation. There are modalities like CBCT imaging 

where local (adaptive) thresholding is considered more reliable.  

There are two promising two-dimensional (2D) local methods described in the 

literature: Bradley’s (mean) method and adaptive (mean) thresholding. Both methods 

have existing MATLAB implementations that are so fast and scalable in 2D that they 

could be expected to perform reasonably well also when adapted to 3D. 

An important feature of both mean thresholding methods is that the calculation of 

neighborhood mean values can be conducted very efficiently by using a pre-

calculated integral image, which eliminates explicit sum calculation for local means. 

The revised calculations comprise simple addition and subtraction of indexed values, 

and the number of operations is fixed regardless of the kernel size W. This makes 

mean filtering based adaptive thresholding methods fast compared to e.g. median 

filtering. The performance gain is advantageous in 3D image analysis, where datasets 

can be very large. Hence, for this application, these computationally simple and 

relatively fast mean adaptive thresholding algorithms present therefore a promising 

local alternative to global thresholding. 

 

                                                 
1
 Certain neighborhood parameters may produce 6-point neighborhoods. 
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Bradley’s Method 

Bradley’s method was introduced for 2D binarization of digital grayscale documents 

with varying levels of illumination [24]. The principle of the method is simple. First, 

a local threshold array 𝑩(𝑥, 𝑦) is created by mean filtering (blurring) a 2D source 

image 𝒇(𝑥, 𝑦) and downscaling the result 𝒇µ(𝑥, 𝑦) by T percent. The source image is 

then compared to the threshold map, and each pixel with gray-value equal to or 

greater than its corresponding local threshold value is assigned to the foreground.  

The method requires two external parameters, (isotropic) mean filter kernel size W 

and downscaling adjustment percentage T. The actual threshold map 𝑩(𝑥, 𝑦) is 

 𝑩(𝑥, 𝑦) = (1 −
𝑇

100
) 𝒇µ(𝑥, 𝑦) , (1) 

where the mean filtered image 𝒇µ can be expressed as 

 𝒇µ(𝑥, 𝑦) =  
1

𝑊2
∑ ∑ 𝒇(𝑥, 𝑦)

𝑦+𝑟
𝑗=𝑦−𝑟

𝑥+𝑟
𝑖=𝑥−𝑟  .  (2) 

Here, r is the axial extent of the filter mask from its center, and W is short for 

2𝑟 + 1, being the actual width of the mean filter kernel. 

 

Adaptive thresholding 

The other 2D method, adaptive mean thresholding [25], is very much like Bradley’s 

method. The difference is that it subtracts an arbitrary constant value C from the 

mean filtered image instead of downscaling it with a weight factor. The threshold 

calculation can be done using the following: 

 𝑩(𝑥, 𝑦) = 𝒇µ(𝑥, 𝑦) − 𝐶 .  (3) 

 This adaptive thresholding method is known also as mean–C in some other 

contexts. 

 

Hybrid thresholding 

Our thresholding method is a generalized 3D adaptation of two existing 2D binary 

thresholding methods, the adaptive mean thresholding and Bradley’s method. The 

volumetric extension of the mean formula can be expressed as 

 

 𝒇µ(𝑥, 𝑦, 𝑧) =  
1

𝑊3
∑ ∑ ∑ 𝒇𝑧+𝑟

𝑘=𝑧−𝑟
𝑦+𝑟
𝑗=𝑦−𝑟

𝑥+𝑟
𝑖=𝑥−𝑟 (𝑥, 𝑦, 𝑧) , (4) 

 

and the corresponding hybrid formula that incorporates both previously introduced 

2D methods becomes 

 

 𝑩(𝑥, 𝑦, 𝑧) = (1 −
𝑇

100
) 𝒇µ(𝑥, 𝑦, 𝑧) + 𝐶 . (5) 

 

The hybrid method requires three external parameters: mean filter kernel size W, 

local mean volume scaling percent adjustment T and constant adjustment C. 

To our knowledge, this is the first time in published research that these 2D 

methods have been extended to 3D. 
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4.5. AMLM as an extension of MLM 

AMLM is an extension of MLM with the same basic principles. The extended 
method can be described mostly in the same way as MLM. The most significant 
difference between MLM and AMLM is that the latter integrates the previously 
introduced hybrid adaptive method to threshold and evaluate neighborhood patterns. 
This and other distinguishing features of AMLM are highlighted in Figure 4.  
 

 

 

Figure 4. Major features that make the workflow of AMLM segmentation different 
from the segmentation with MLM. 

 
MLM uses a global value for its initial thresholding and LBP calculations. We 

replaced it with a map of local threshold values for this experiment to make the 
method more robust, especially if the gray-value intensity varies over the imaged 
region. This does not come without a tradeoff, as the additional complexity results in 
a slight negative effect on the performance, but still neglectable for the present 
experiment. 

A related but distinct new feature of AMLM is that pattern constituents (and tissue 
membership in general) are defined by the relations to interpolated local thresholds 
instead of a single global threshold. We hypothesize that improves the robustness of 
the pattern evaluation in the LBP-based segmentation step, although the dynamic 
interpolation step also makes the method less efficient. 

The original MLM segmentation explored and labeled only the voxels lying 
immediately outside the binarized tissue and labeled them as border. We reversed the 
classifying algorithm to label also the inner border region. The additional analysis 
step naturally adds to the segmentation time. 

MLM segmentation 

Binarized with 1-parameter 
global method 

Pattern values defined by the 
global threshold 

Patterns analyzed for outer 
edges 

AMLM segmentation 

Binarized with a 3-parameter 
local adaptive 3D method 

Pattern values defined by 
interpolated local thresholds 

Patterns analyzed for both 
inner and outer edges 
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5. ARTIFACTS IN COMPUTED TOMOGRAPHY 

5.1. Overview 

Artifact is any feature of a reconstructed image of a scanned object that differs from 

the ideal image. [26] In practice, reconstruction algorithms cannot perfectly model 

physical media and measurement devices, which means that artifacts are inevitable. 

Any phase of CT image acquisition can and will cause artifacts. First, artifacts are 

inherent to the physical imaging process. Secondly, reconstruction models 

approximate the image acquisition process because of practical reasons or lack of 

data. Thirdly, scanned media or scanning equipment may possess features or 

imperfections that further break the model. In any case, artifacts are side effects of 

the image acquisition process and do not represent features of the imaged object. 

Artifacts lower the quality a scanned image, and it is important to minimize their 

effect. Post-processing can remove many artifacts from a reconstructed CT volume. 

5.2. Principles of computed tomography 

The idea behind CT is based on mathematical reconstruction of a volume from 

measurements of multiple x-ray projections at different angles through a succession 

of planes. [27] Figure 5 illustrates the principle of the projection data acquisition 

process.  

The first CT scanners were built in the early 1970s. In a simple early model, linear 

projections were obtained by translating a single narrow x-ray beam and detector in 

parallel steps across the imaging plane, creating a view for each orientation. The 

measurement plane was then positioned to the next slice, and the acquisition process 

was repeated. Although later scanner generations have significantly improved on the 

basic design with fanned beams and multiple detectors, among other things, the basic 

principles remain the same. 

Actual CT images are calculated or estimated from the view projections with a 

suitable reconstruction process on a powerful computer. Several different 

reconstruction methods have been introduced, including algebraic reconstruction 

technique and filtered back projection. Advanced computer technology has enabled 

more developed methods like model-based iterative reconstruction (MBIR). Best 

algorithms produce higher quality images with thinner slices and lower doses, which 

is desirable for clinical imaging. 

Voxels of initial projection images are not necessarily isotropic. Slice step and 

thickness values vary, and helical CT acquires projections in a single slice that 

advances smoothly along its rotation axis, instead of step by step. Adjacent layers 

(whether helical or planar) may be interleaved or even have a gap between them. 

Regardless of the design, reconstruction algorithms conventionally produce a stack 

of slices with isotropic voxels. 
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Figure 5. CT arrangement. Axial slice through patient is swept out by narrow (pencil-

width) x-ray beam as linked x-ray tube–detector apparatus scans across patient in 

linear translation. Translations are repeated at many angles. Thickness of narrow 

beam is equivalent to slice thickness. (This research was originally published in 

JNMT. Goldman LW. Principles of CT and CT technology. J Nucl Med Technol. 

2007;35:115-128. © by the Society of Nuclear Medicine and Molecular Imaging, 

Inc.)  

5.3. Artifact types in computed tomography 

Boas and Fleischmann classify CT image artifacts into a number of visual categories. 

[26] Their account is summarized below with the addition of details of PVE by 

Erlandsson et. al. [19] 

First, images can have concentric bright or dark ring artifacts centered on and 

perpendicular to the scan rotation axis. They are caused by imperfect detector 

elements. They can be reduced by recalibration before scanning and by post-

processing algorithms after scanning. 

Statistical noise causes random white and dark streaks in directions of greatest 

attenuation (least activity). Noise artifacts can be compensated by combining data 

several images or by using MBIR models that add information to the image. 

Beam hardening and scatter both manifest as dark streaks between highly 

attenuated regions in the image. Both phenomena are due to inappropriate increase in 
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detected activity, although they are caused by different mechanisms. Beam hardening 

is caused by higher attenuation of the low-energy part of the radiation spectrum, 

distorting the attenuation model by making the end section of the beam “harder” or 

less likely to be further attenuated by tissues. Beam scatter is apparent when photons 

are diverted to detectors that would have otherwise seen low activity. Beam 

hardening can be reduced by using a monochromatic or high energy beam, multiple 

scans with different energies, or by post-processing methods. Scatter is reduced by 

blocking photons that arrive detectors at an angle, or its effect can be estimated and 

subtracted at detectors, or iterative reconstruction can attempt to correct it. 

PVE comprises a class of imaging resolution related artifacts that limit how well a 

reconstructed voxel can represent its object location. [19] The effect causes blurring 

at the edges of regions with different densities like demonstrated in Figure 6. There 

are two main factors that contribute to PVE: apparent voxel activity spill-in and spill-

out caused by the imaging system transfer function, and tissue-fraction effect caused 

by the averaging of heterogenous activity (tissue) within a voxel, e.g. close to the 

edges of the scanned object. In CT context, PVE usually refers to the tissue-fraction 

artifacts. Its effects increase with the voxel size, and they can best be avoided by 

using a thin acquisition section width. 

 

 

      

Figure 6. On the left, the reconstructed slice of sample 2 scanned at 35 µm resolution 

demonstrates a typical PVE-related blurring effect that occurs at tissue regions 

despite that trabecular bone is a high contrasts object with distinct borders. On the 

right, a slice from the same region scanned at 9 µm. 

 

Motion artifacts, detected visually as blurring and double images, are caused by 

the movement of the scanned object during acquisition. In a broad sense, they 

represent a type of PVE that is dependent on the temporal instead of spatial imaging 

resolution. 

Out-of-field artifacts appear as streaks or shading through the whole image. They 

arise from object regions that are outside the scanned region that cause attenuation 

that is not properly accounted for by the reconstruction algorithm. 

Metal artifacts are caused by high attenuation regions that are out of the 

operational range that a scanner or reconstruction process can handle. The artifacts 

often appear as severe streaking, which can be reduced with specialized software. 
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6. MATERIALS AND METHODS 
 

This chapter describes the utilized materials and the methodology utilized for 

obtaining the data. The materials comprise the scanned media, the uCT device and 

the software and hardware utilized for the analysis. Scanned media were cylindrical 

subchondral trabecular bone samples (diameter 10 mm, length 20 mm) of two bovine 

lateral proximal tibiae and a cylindrical 8 mm diameter thickness calibration 

phantom (SkyScan SP-4001, Bruker MicroCT) containing four 2 mm wide 

aluminum foil plates with nominal thicknesses of 20 µm, 50 µm, 125 µm and 250 

µm (±10% tolerance). All samples were wrapped in foam and oriented horizontally 

(in proximal-distal orientation) for scanning.  

We scanned the media using a µCT device (Skyscan 1172, Bruker microCT, 

Kontich, Belgium) set up with an Al (0.5 mm) filter, complete 360° rotation, a step 

size of 0.5°, and averaging of three frames. We used three camera settings: 4000 × 

2672 pixels (1 × 1 binning), 2000 × 1336 pixels (2 × 2 binning), and 1000 × 668 

pixels (4 × 4 binning), enabling resolutions of 8.71 μm, 17.42 µm, and 34.84 µm. 

These resolutions are referred to by the next highest integer sizes (9 µm, 18 µm, and 

35 µm). Respective exposure time, acceleration voltage, and current settings were: 

1300 ms, 50 kV, 500 µA; 350 ms, 50 kV, 500 µA; 90 ms, 40 kV, 476 µA (phantom) 

/ 500 µA (samples). We reconstructed and analyzed the CT image stacks with 

manufacturer provided software (NRecon and CTAn, Bruker microCT).   

We selected thresholding/segmentation volume of interest (VOI) from the middle 

of the scan volumes. The volumes were small enough to facilitate effective 

processing and large enough to produce meaningful trabecular measurements (6.7 

mm x 6.7 mm x 6.7 mm). 

We had access to several CT (including µCT and CBCT) image stacks of lapine, 

bovine, and human trabecular bone samples for testing. For the comparison of the 

segmentations of different modalities, we received two different scans of a 

cylindrical trabecular bone sample. One was a µCT scanned volume with 7 µm 

resolution (SkyScan 1272, Bruker MicroCT, Kontich, Belgium), and the other was a 

CBCT (Verity, Planmed Oy, Helsinki, Finland) scanned volume at 100 µm 

resolution. 

The given µCT and CBCT scans were binarized with different methods 

(Bradley’s, Otsu’s) and with different parameters in effort to find matching volumes 

and structures. We registered both the original volumes and their segmentations 

manually with DataViewer (version 1.5.2.5, Bruker MicroCT) and automatically 

with DataViewer and MATLAB (version R2016a 64-bit, MathWorks). 

We developed the automatic segmentation scripts with MATLAB  and performed 

the automatic segmentation of the VOIs on a laptop (Fujitsu Lifebook NH532, Intel® 

Core™ i5-3210M CPU @ 2.50GHz with two cores, four logical processors, 16 GB 

RAM) using the previously selected thresholding and neighborhood parameters. 

The code was managed with SourceTree front-end for Git and hosted on a free 

BitBucket repository
2
.  

                                                 
2
 https://jukka_kaipala@bitbucket.org/kaipalainc/full-analysis.git 
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6.1. Optimization of the segmentation scripts 

We used two objective quantitative criteria to make statements about the 

maintainability of the code resulting from our changes: cyclomatic complexity (CC) 

and line count statistics. We calculated the CC with MATLAB’s own code checking 

functionality on a method level for the original, new or changed, and all MATLAB 

files. We used a general-purpose line counting tool (cloc v1.70, GPL v2) to extract 

code, blank, and comment line statistics for the same file categories, likewise on a 

method level.  

6.2. Definition of segmentation parameters 

We made two major modifications to the original segmentation method, one for the 

binarization step and one for the LBP-labeling step. We designed also two 

experimental settings to dynamically define parameter configurations, where the 

optimal values depend on data and modality. 

Firstly, we replaced global thresholding with a new adaptive thresholding method 

to improve its robustness. This is a significant change that has the most potential 

impact on the AMLM segmentation result, since it changes the LBP-threshold. 

Secondly, we added inner tissue label to the LBP-based segmentation in addition 

to the previously labeled outer border. 

Several parameters affect segmentation. Binarization parameters (W, T, C) 

configure the initial volumetric thresholding, which in effect determines the 

segmented tissue volume. Neighborhood parameters (N1, R1, N2, R2) define the 

multiscale geometry for the actual LBP-based segmentation algorithm, which further 

segments the inner and outer object borders in the initial binary volume and relabels 

disconnected voxels to the background. 

We estimated these two parameter sets separately, firstly because they do not have 

a large effect on each other, and secondly because coupling would be impractical due 

to large number of possible parameter combinations. 

 

Hybrid adaptive binarization and its parameter configuration 

 

There are several adaptive binarization methods available for MATLAB, but no 

method was satisfactory for our purposes, at least not out of the box. We ended up 

combining two fast methods that generate local threshold values by adjusting down 

the mean filtered image gray-values. 

The first method, appropriately-named "adaptive mean thresholding", subtracts a 

constant value from the gray-values of mean filtered image to produce the threshold 

array. The second one, Bradley's method, is otherwise similar, but it downscales the 

mean filtered image gray-values proportionally by a fraction instead of a fixed 

amount. 

We adapted these methods into 3D and combined them together as formulated in 

equation (5). The benefit of this hybrid method is that it is highly customizable. On 

the downside, the new method depends on three parameters: 

 

1) Mean filter size W is the simplest parameter to configure first, because its 

acceptable range can be estimated from the imaged feature size and the VOI 

size, and it accepts only odd positive integer values. 
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2) The mean filtered image gray-values are usually downscaled, which means that 

T is positive. 

3) Constant C is in practice a positive real number.  

 

There are plausible default values for the two constituent 2D methods (with just 

two parameters each), but not for our hybrid method, at least not with 3D medical 

images. Therefore, we had to make measurements to determine credible values for 

the parameters. We estimated the parameters W, T, and C for the hybrid binarization 

method using a limited brute force approach.  

We calculated the volumetric trabecular bone thickness (Tb.Th) of segmented µCT 

thickness phantom scans for all three resolutions using a number of different 

thresholding parameter sets. We ignored the least reliable measurements of plates 

with nominal thickness less than double the voxel size (20 µm plate at the 18 µm 

resolution, 20 µm and 50 µm plates at the 35 µm resolution). We calculated 

parameter combinations that best matched the nominal and measured phantom plate 

thicknesses for each resolution. We used the mean of relative (percent) plate 

thickness errors between the nominal and measured values as a goodness indicator. 

The results yielded resolution specific thresholding parameters (W, T, C) for 

configuring the automatic segmentation. 

 

Configuration of the AMLM neighborhood parameters 

 

Like with MLM, configuration of the AMLM requires four neighborhood 

parameters. Two parameters control the primary inner neighborhood: the number of 

points on the neighborhood sphere N1, and its radius or distance from the center 

voxel R1. Similarly, for the nested outer neighborhoods, one parameter, N2, defines 

how close the seven neighborhood points are to each other
3
, and the other parameter, 

R2, sets their distance from the center voxel. 

We configured the four LBP parameters by assessing SSIM between the 

normalized raw GT volume and segmentations of two trabecular bone samples at 

three different resolutions. SSIM index represents an objective measurement of 

visual similarity. It is based on the computation of three terms: the luminance term, 

the contrast term and the structural term. The overall index is a multiplicative 

combination of the three terms. We used the MATLAB implementation of the index 

calculation for volumes. 

We configured AMLM to use the default (global) MLM thresholding and tested 

only different neighborhood parameters combinations. In addition to the default 

neighborhood parameter values, we set two additional alternative test values for each 

parameter, one slightly smaller and one larger than the default value. The inner 

neighborhood density N1 was assigned arbitrary candidate value set of 18, 26 

(default), and 38. The remaining parameter sets were derived from these values with 

rules that would produce also the default parameter combination: R1 value set was 

N1/26, N2 was defined as N1*3, and R2 = N1/26+1.  

Four independent sets of three parameters resulted in 3
4
 = 81 unique parameter 

combinations to test. Denoting a parameter combination with {𝑅1, 𝑅2, 𝑁1, 𝑁2}, the set 

of all test parameter sets was 𝑅1 × 𝑅2 × 𝑁1 × 𝑁2, where 𝑅1 ∈ {0.69, 1.00, 1.46}, 
𝑅2 ∈ {1.69, 2.00, 2.46}, 𝑁1 ∈ {18, 26, 38} and 𝑁2 ∈ {54, 78, 114}.  
                                                 
3
  This parameter value stands for the number of uniformly distributed points that the umbrella-shaped 

neighborhood would cover if its dome were stretched into a full sphere. 



25 

 

We segmented all trabecular bone sample VOIs into four labels using several sets 

of parameters about the default values. We measured also the segmentation times. 

Next, we calculated the structural SSIM index between the normalized GT volume 

and the segmented CT volumes to represent goodness of segmentation. We 

calculated linear correlations of the SSIM index with the different parameter 

combinations to indicate goodness of parameters. After that, we analyzed the results 

starting with the most correlated parameter, and selected the best set neighborhood 

parameters for the automatic segmentation. 

6.3. Evaluation of automated adaptive binarization 

The hybrid adaptive 3D thresholding method was compared to traditional user-

dependent segmentation. First, the method had to be configured with our 

experimentally derived values for each of the three resolution settings. We performed 

automatic AMLM binarization on the six volumes, of the two trabecular bone 

samples scanned at three different resolutions, that we had already used for the 

configuration of neighborhood parameters. 

The same volumes were binarized by two experienced users separately with CTAn 

(version 1.14.4.1). Both people experimented with their preferred image operations 

and parameters (filters, morphological, segmentation) until the results were visually 

acceptable, and measured the time spent on each VOI. 

Next, we measured the values of structural parameters BV/TV and Tb.Th from 

both sets of segmented volumes with CTAn (version 1.16.4.1+ 64-bit). For GT 

reference, we analyzed the same parameters from the highest resolution VOIs, which 

we thresholded automatically (Otsu’s method). We compared the measurements of 

the traditional user-assisted segmentation and AMLM segmentation to each other 

and to the GT. 

Finally, we configured the 35 µm AMLM thresholding also visually with an 

experimental segmentation preview tool that we developed with MATLAB for this 

purpose. With its help, we previewed sample 1 to select a set of thresholding 

parameters and used them to segment both samples with AMLM.  
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7. RESULTS 

7.1. Optimization of the segmentation scripts   

Our initial task was to optimize the provided segmentation scripts and improve their 

robustness. We started the work by getting familiar with MATLAB, which is an 

established interpreted scripting language and programming environment. Its 

strengths lie in efficient matrix calculations, which give the language its name 

(MATrix LABoratory). It was designed for numerical computing but has since 

evolved to a full featured programming language.  

Code vectorization is a MATLAB language specific speed optimization technique. 

It means restructuring of loop-based calculations on scalars into more efficient 

matrix operations on arrays (vectors).  

Another language specific speed optimization technique is the possibility to 

compile user methods into native code, but it increases function call overhead and is 

not suitable for all methods.  

Other common optimization techniques avoid inefficient coding patterns that 

waste or abuse limited resources that are either limited (RAM, graphical objects, file 

system) or inherently less efficient (network, file system). Preallocation of arrays is 

important in MATLAB, because the addition of a new element on the fly, e.g. in a 

loop, forces the creation of a new instance and copy the original array data. Method 

inlining eliminates calling overhead and is also an efficient speed optimization 

technique with frequently called local methods. 

These are only general speed optimization guidelines. In practice, optimization 

requires extensive profiling experimentation with different alternative solutions, as 

well as taking care to keep the code modular and maintainable. For this reason, we 

took care to follow recommended MATLAB coding conventions
4
 where the 

guidelines were not in full conflict with the original coding style. 

As an early version, the scripts were written for functionality and had not been 

optimized yet. Segmentation speed was an obvious target for improvement. 

Inefficient memory use presented another problem, because it limited the size of 

volumes that could be segmented in addition to hindering the performance of the 

method. 

 

Maintainability  

 

We adapted the original main script into a self-contained method, so that it could be 

easily called from other methods. We modularized much of the code into nested 

functions to control individual method sizes. Configuration constants for 

segmentation and testing were placed in a separate class.  

The extracted code statistics, summarized below in Table 1, show that the new and 

edited script files contain proportionally more blank and comment lines than the 

original code. Moreover, the final scripts have much lower mean and median CC on 

the method level.  

The final scripts have also about 60% more lines of code compared to the original. 

Most of the new functionality consists of the binarization module and its support 

methods (user interface, file I/O, test/debug, parameters). The new code was 

generally structured and documented to facilitate code maintenance.  

                                                 
4
 https://se.mathworks.com/matlabcentral/fileexchange/46056-matlab-style-guidelines-2-0 
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Table 1. Comparison of code characteristics of the original and final scripts 

File 

category 

File 

count 

Total 

lines 

Code 

lines 

Blank 

lines 

Comment 

lines 

Code/total 

lines ratio 

(%) 

Avg. 

CC 

Median 

CC 

Original 55 7820 4923 1868 1029 63.0 17.3 12.0 

Final/all 80 14745 8008 2869 3868 54.3 9.4 6.0 

Edited 35 6662 3013 1018 2631 45.2 6.2 3.5 

 

Performance 

We explored the coding style and functionality by stepping through the code while 

running the scripts on the provided image stacks. We used the profiling and 

debugging tools of MATLAB to locate performance bottlenecks in the code on 

function and statement level. We profiled the code by segmenting lapine trabecular 

bone image stacks that were the built-in source material for the original scripts. 

The profiler indicated that performance bottlenecks were related to file I/O (mask 

and data stacks), inefficient memory management (preallocation and release), and 

vectorizable scalar loops. Data structures were regularly validated against the 

original intermediate results using test functions during development. Table 2 shows 

that the optimized scripts allocated less memory and outperformed the original 

version, even though the optimized script includes the performance impact of local 

thresholding in LBP-based segmentation. This configuration does exclude the effects 

of local binarization and the additional border label. 

 

Table 2. Performance comparison of the original and optimized scripts 

Run 

state 

Script 

version 

Allocated 

(GiB) 

Freed 

(GiB) 

Peak 

memory 

usage 

(GiB) 

File 

I/O 

time 

(s) 

Other 

processing 

time (s) 

Total 

execution 

time (s) 

Clean Original  14.38 6.55 2.61 60 279 338 

Optimized 6.04 5.98 2.61 48 38 86 

Rerun Original 14.38 14.39 2.61 52 161 213 

Optimized 5.95 5.94 2.61 47 31 78 

Skeleton
5
 5.30 5.29 2.61 5 27 32 

 

 

All values are averages of three measurements. Run state ‘clean’ stands for initial 

segmentations in a freshly loaded MATLAB 2016a development environment, and 

‘rerun’ stands for any subsequent runs. The run state has a large effect on the original 

script performance. Time and memory usage is as reported by the MATLAB profiler.  

We estimated the effect of our additional AMLM border label on the segmentation 

speed separately. In this experiment, we segmented our two bovine trabecular bone 

volumes using both label configurations. Table 3 summarizes our results.  

                                                 
5
 Static VOIs, empty frames not written. 
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Table 3. Performance impact of the additional AMLM label 

Sample, resolution Segmentation 

time, 3 labels (s) 

Segmentation 

time, 4 labels (s) 

Segmentation time 

increase (%) 

1, 9 µm 342 404 18 

1, 18 µm 56 63 13 

1, 35 µm 6 8 33 

2, 9 µm 354 397 12 

2, 18 µm 56 60 7 

2, 35 µm 6 7 17 

Combined total 820 939 15 

 

 

Note that the low-resolution volumes are segmented in a few seconds, and their 

time increase percentages are not reliable at this measuring accuracy.  

7.2. Definition of segmentation parameters 

First, we scanned the two subchondral trabecular bone samples of bovine tibia in 

three resolutions. We post-processed reconstructed volumes to reduce noise, ring 

artifacts and beam hardening artifacts.  

Binarization parameters 

We selected a thickness phantom with four aluminum foils, with nominal thickness 

values comparable to the trabeculae of the samples we were going to scan. We 

scanned the phantom in three resolutions that we were going to use for scanning our 

actual samples. 

Next, we picked plausible initial parameters visually for the best resolution, 

selected a number parameter sets about the initial values, and separately segmented 

each foil of the phantom VOI with all parameter sets.  

We measured the mean volumetric Tb.Th of the segmented phantom foils for each 

parameter set and selected the one (parameter set) with the smallest mean relative 

error, where nominal foil thickness is assumed to be the actual thickness.  

Lower resolutions required more iterations of the same principle, although we 

were able (or forced) to fix the window size value for the other two. Due to the low 

resolution, there were fewer foil widths to measure, which made evaluation of 

parameters more unreliable. For this reason, we constructed a visual configuration 

tool to assist with the configuration of parameters for the 18 µm and 35 µm 

resolutions. Figure 7 shows a sample screenshot of the tool. With it, we could adjust 

a group of multiple parameter combinations on the fly. More importantly, we were 

able to visually compare their effects on the binarization of a volume and quickly 

eliminate parameter combinations that simply did not work out.  
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Figure 7. Screenshot of the interactive binarization preview tool. The viewing 

direction is limited XY- and WT-planes, but the view may be moved freely in the 

image stack and configuration space. The top left image represents the original 

volume and the bottom left image the default binarization (Otsu’s method) for 

reference. 

 

We selected the thresholding parameter values in Table 4 for each resolution based 

on the measurements of phantom scans segmented with different parameters.  

 

Table 4. Selected thresholding parameters for each resolution based on segmented 

phantom scan measurements. W (px) = mean filter kernel size; T (%) = mean image 

downscaling adjustment; C*256 = downscaled mean image absolute adjustment as 

normalized fraction value multiplied by 256; µ𝛿 (%) = mean percent error from the 

nominal phantom plate thickness 

Resolution W (px) T (%) C*256 µ𝛿 (%) 

9 µm (4 plates) 7 17 18 2.951 

18 µm (3 plates) 5 30 30 2.492 

35 µm (2 plates) 3 40 60 7.072 

 

 

Note the relatively large mean percent error between the Tb.Th measured from the 

binarized foil segmentation and its nominal thickness at the lowest resolution. As 

illustrated in the following graphs, in Figure 8 through to Figure 11, segmented foil 

thickness is sensitive to small parameter value changes when nominal foil thickness 
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(20 µm as opposed to 250 µm) is relatively close the nominal resolution, even if the 
resolution is high (9 µm).  

 
 

 

Figure 8. Measured Tb.Th of 20 µm (left) and 250 µm (right) foils segmented from 9 
µm volumes with different values of W, T, C.  

 
 

 

Figure 9. Measured Tb.Th of 50 µm foils segmented from 9 µm volumes with 
different values of W, T, C. 
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Figure 10. Measured Tb.Th of 125 µm foils segmented from 9 µm volumes with 
different values of W, T, C. 

 
 

 

Figure 11. Measured Tb.Th of 125 µm foils segmented from 9 µm volumes with 
different values of W, T, C. 

 
Comparison of the thickness profiles underlines the more chaotic nature of the 

PVE-dominated segmentation of small features with respect to small parameter value 
changes. 
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Neighborhood parameters 

We segmented the VOI at three resolutions using all parameter combinations and 

calculated their SSIM with the GT. We determined sample correlation coefficients µr 

between the parameter values and corresponding SSIM index and thresholding time, 

and averaged them over the VOIs in Table 5. The results show that both SSIM and 

segmentation time express the strongest linear dependency on the inner 

neighborhood radius parameter 𝑅1.  

 

Table 5. Average sample correlation coefficients µ𝑟 of the tested neighborhood 

parameter values with similarity and segmentation time; constant values are 𝑅1 = 

1.46 and 𝑁1 = 38; SD = standard deviation 

Con-

stant 

para-

meter 

Corre-

lated 

para-

meter 

SSIM Segmentation time 

 µ𝑟 SD  µ𝑟 SD 

-  𝑅1 0.996742300 0.000789079 0.870272193 0.012790265 

 𝑁1 0.055986465 0.002272591 0.170243243 0.063093335 

 𝑅2 -0.003343024 0.000537735 0.007627258 0.038023432 

 𝑁2 0.000336614 0.001993851 -0.030461281 0.005478575 

 𝑅1  𝑁1 0.912460769 0.011077648 0.826272783 0.041962928 

 𝑅2 -0.031314714 0.045380142 0.053173526 0.121071452 

 𝑁2 0.047020701 0.053080101 -0.105909680 0.013584591 

 𝑅1, 𝑁1  𝑅2 -0.003343024 0.000537735 0.007627258 0.038023432 

 𝑁2 0.000336614 0.001993851 -0.030461281 0.005478575 

 

 

Keeping the inner radius 𝑅1 constant with the parameter value that gives the 

greatest similarity, the next set of averaged correlations show that 𝑁1 is the next 

relevant parameter whose value correlates with SSIM. Measurements of the 

remaining parameters 𝑅2 and 𝑁2 do not significantly correlate with SSIM when the 

more significant parameters 𝑅1 and 𝑁1 were set constant with values that maximized 

their contribution to SSIM. However, the data in Figure 5 show that segmentation 

with the default outer neighborhood radius R2 = 2 was interestingly about 6% faster 

than segmentation using either higher or lower R2 value. 

Based on these results, we selected the neighborhood parameter values for 

automatic segmentation as 𝑅1 = 1.46 (=38/26), 𝑁1 = 38, 𝑅2 = 2, and 𝑁2 = 78. 
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Figure 12. Dependency between average segmentation time and outer neighborhood 

radius R2 with R1 = 1.46 and N1 = 38. 

7.3. Evaluation of automated adaptive binarization 

We binarized the two samples again using the estimated parameters values. For 

comparison, we had the same VOIs binarized also by two experienced users using 

their preferred methods. 

The AMLM segmentation was performed using the previously selected 

thresholding and neighborhood parameters. Meaningful analysis requires parameters 

that indicate trabecular bone quality and can be compared to our other measurements. 

We therefore measured two common trabecular bone structural parameters, BV/TV 

and Tb.Th. See example with CTAn screenshot in Figure 13.  
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Figure 13. CTAn provided trabecular parameters for sample 1, resolution 35 µm. The 

arrows to the right indicate BV/TV and Tb.Th values on the third and twelfth data 

rows respectively. 

 

Binary thresholding and complete trabecular border segmentation times were also 

included, as shown in Table 6. The data include measurements using the alternate 

visual setup for the 35 µm volumes, as well as the GT reference measurements. The 

35 µm resolution BV/TV and Tb.Th measurements of the original AMLM 

configuration are markedly different from the other measurements. Binarization 

times are very small compared to trabecular segmentation times.  

Table 6 shows also measurements from volumes that were segmented with 

alternative parameters. These parameter values were derived visually for the low-

resolution scan, because the parameters were difficult to nail down with objective 

measurements and numerical methods.  
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Table 6. Measurements from AMLM segmentation results except where indicated; * 

= Automatic Otsu’s thresholding of the best resolution (that is, GT); ** = Binarized 

using the alternative thresholding parameters (W = 3, T = 53, C = 60) 

Sample, 

resolution 

BV/TV (%) Tb.Th (µm) Binarization 

time (s) 

Segmentation 

total time (s) 

1, 9 µm 23.22052 184.70 2 404 

1, 9 µm * 21.42417 180.18 n/a n/a 

1, 18 µm 24.30018 193.43 1 63 

1, 35 µm 18.09582 156.93 0 8 

1, 35 µm ** 24.34506 190.31 0 n/a 

2, 9 µm 15.78273 205.81 1 397 

2, 9 µm * 14.39293 201.80 n/a n/a 

2, 18 µm 16.25249 210.43 0 60 

2, 35 µm 11.60439 176.42 0 7 

2, 35 µm ** 12.53121 208.24 0 n/a 

 

 

We measured the BV/TV and Tb.Th of the traditionally binarized volumes as 

reference for comparison with the automatic segmentation as shown in Table 7. 

Segmentation takes several minutes, and time deviation is large. Measured BV/TV 

and Tb.Th values tend to be greater at lower resolutions. 

Finally, we measured the volumetric trabecular thickness of all binarizations, as 

well as the GT for reference. Measurements from automatic segmentation were 

closer to GT. Measurement of bone volume percentage yielded similar results as 

expected, although they were slightly less pronounced.  

 

Table 7. Average measures from traditional binary segmentation; SD = standard 

deviation 

Sample, 

resolution 

BV/TV 

(%) 

SD Tb.Th 

(µm) 

SD Binarization 

time (s) 

SD 

1, 9 µm 24.6 1.62 201 10.7 573 216 

1, 18 µm 24.7 3.52 204 22.2 227 66 

1, 35 µm 27.1 2.26 237 1.98 1069 694 

2, 9 µm 16.8 1.06 222 9.25 562 308 

2, 18 µm 17.1 1.41 225 13.0 355 177 

2, 35 µm 18.3 1.26 243 9.41 366 93 

 

 

Comparison of automatic AMLM segmentation results to traditional segmentation 

in Figure 14 shows that the bone structural parameter measurements from AMLM 

are slightly lower but comparable to traditional segmentation, with percent ratios 

over 90%. The measures taken from the lowest resolution VOIs are significantly 

lower, with percent ratios mostly below 70%.  
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Figure 14. Percent ratio of the automatic and traditional segmentation measurements 

for different VOIs (sample, resolution). * = Segmented using the alternative AMLM 

thresholding parameters. 

 

We compared also the automatic adaptive binarization speed to traditional user-

assisted binarization, although the binarization time bars are difficult to make out in 

the figure. There is some variability in the data, but automatic binarization takes less 

than half a percent of the traditional binarization time in every case. Binarization 

time with the parameterized 3D hybrid method is negligible compared to traditional 

thresholding even at the highest resolution, where the VOI consists of 256
3
 or 

16,777,216 voxels.  

Figure 15 compares measured structural parameters of both AMLM and traditional 

segmentation to those of the best resolution VOIs (that is, GT). All measurements 

from AMLM segmented VOIs are closer to the GT than traditionally measured 

values.  

 

 

0

10

20

30

40

50

60

70

80

90

100

1, 9 µm 1, 18 µm 1, 35 µm 1, 35 µm * 2, 9 µm 2, 18 µm 2, 35 µm 2, 35 µm *

A
M

LM
/t

ra
d

it
io

n
al

 (
%

)  

Sample, resolution 



37 

 

 

Figure 15. Percent error of the automatic and traditional segmentation measurements 

compared to the best resolution raw image measurements. * = Segmented using the 

alternative AMLM thresholding parameters. 

7.4. Assessment of the effects of image resolution and artifacts 

The scanner was set up to reduced certain artifacts automatically (noise, beam 

hardening). PVE caused the most severe detected artifacts, especially in low-

resolution scans. Noise was reduced both by the scanner software and during 

reconstruction. Some motion artifact was detected, which was eliminated with a 

rescan. Beam hardening, scatter, and ring artifacts were present, and we reduced their 

effects in the reconstruction process. There were no metal artifacts. Overall, the 

image quality was very high. 

7.5. Comparison of segmented data from different modalities 

We could not get meaningful results from comparisons of reconstructed µCT and 

CBCT volumes of the same trabecular bone sample. The volumes did not have any 

markers to simplify registration. It was possible to reduce the degrees of freedom to 

two (z-rotation, z-position) because of the shape of the sample and known scaling 

factors, but neither automatic nor manual registration could be performed 

confidently, whether on raw of segmented volumes. For this reason and also due to 

the lack of further available samples, the comparison with CBCT was not feasible. 
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8. DISCUSSION 

Our overall purpose in this work was to further the CT-based study of bone and joint 

diseases by continuing the development of a novel specialized trabecular bone 

segmentation method.  

Our preliminary objective was to improve the performance of the segmentation 

scripts. The main goals of this work were to extend the automatic segmentation 

method with adaptive thresholding and additional label, to define sample and 

modality specific segmentation parameters, and to assess the modified method by 

comparing automated binarization results to traditional user-assisted 

binarization. Additionally, we assessed the effects of image resolution and 

artifacts, and compared segmented data between µCT and CBCT.  

 

Optimization of the segmentation scripts 

 

Overall, the evidence suggests that we succeeded in improving the performance of 

the segmentation script and made a visible effort to limit maintainability issues while 

optimizing the existing code and writing new features. Also, optimization needs had 

to be compromised with those of maintainability, because they required opposite 

design patterns. 

Maintainability 

The new script contains significantly more comment lines than the original, which is 

a weak indicator of better readability and maintainability of the code. It is difficult to 

interpret as a positive indicator based on mere statistics, because verbose 

commenting does not necessarily improve readability and maintainability. 

Nevertheless, many of our code comments describe the purpose and syntax of 

methods as recommended in MATLAB style guidelines. Other comments clarify the 

logic and function of more complex statements and blocks of code. For example, 

highly vectorized code is often less readable than corresponding scalar loop 

structure. 

However, the new script contains also many more code lines (+60%). The size of 

the code base is directly related with how difficult the management is and the 

number of programming bugs that it is likely to hide. Then again, part of the increase 

results from our coding style preference of short lines over short code blocks 

compared to the original style.  

Performance 

The new scripts have at least 50% smaller average CC on the method level, which 

suggests that we did improve the maintainability of the original code base. CC is 

controversial as a sole meter of quality code, but it is still an objectively measurable 

code property. Moreover, the findings agree with our tentative interpretation of the 

code line statistics. Also, we adhered consciously to the accepted MATLAB coding 

conventions during the project, and managed and documented our edits with the 

source code control system. Although these are not quantifiable facts, they add some 

confidence to positive claims about the results of the coding process. 

Performance data indicate that the optimized segmentation script runs up to about 

seven times (400-700%) faster than the original code. Improvement depends on the 
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configured optimization level. The new segmentation features, i.e. local thresholding 

and additional border label, have a relatively small negative effect (about 5 

percentage points) to this performance improvement. The negative performance 

impact is small in our setting, although the results suggest that it increases with the 

volume size and further depends on the characteristics of the volume data. 

The memory report data shows that the optimized script allocates less than half of 

the original amount of memory. This makes it more memory efficient, which is also 

a speed factor in MATLAB. There is a caveat though, because the memory report 

feature is unsupported and undocumented, even though it has been widely used in the 

MATLAB community for years. 

Extensions to the LBP-based segmentation method 

Like expected, the additional fourth segmentation label inevitably increases 

segmentation time. The increase about 15% compared to three-label segmentation of 

the trabecular bone samples used in this project. The performance impact is not 

critical, especially when considering that the original unoptimized method used 

hundreds of percent more time for segmentation.  

We hypothesize that our additional label and neighborhood parameter adjustments 

could improve the segmentation results for subsequent analysis of the trabecular 

bone microstructure. However, we did not investigate how the label would have 

affected the LBP-based structural analysis of the segmentation results. The 

assessment of the effect would have required comparative structural analysis, which 

was outside of the scope of this work.  

 

Estimation of thresholding parameters 

 

We were able to select thresholding parameters using our approach, but the process 

was time consuming and difficult to automate. A drawback of the new adaptive local 

thresholding is that it requires three external thresholding parameters. Optimal 

parameter values cannot be based on simple rules, and they must be determined 

experimentally for each tissue, imaging modality, and resolution, for example with a 

thickness phantom like here. Even then, parameter configuration takes time and the 

manual process is prone to inaccuracies, especially at low resolutions, which 

undermines the repeatability of automated segmentation.  

The configuration of thresholding parameters can be made easier and more reliable 

with an interactive thresholding preview tool, which facilitates experimenting with 

different parameters starting with reasonable default values. We developed such tool 

and used it to configure alternative thresholding parameters for the lowest resolution. 

The results show improved similarity with GT. The configuration tool also made the 

configuration process subjectively easier, faster, and more reliable. Although 

anecdotal, the improved results are encouraging, and it seems possible that a visual 

tool could help with the parameterization.  

The thresholding parameter estimates were expected to be less reliable at lower 

resolutions due to lower image quality and smaller number of phantom foils whose 

thickness could be measured. The large mean percent error at the lowest resolution is 

therefore not surprising. We think that a more reliable automated configuration must 

be based on additional information about the experimental setting, e.g. the µCT 

parameters. 
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Adjustment of neighborhood parameters 

We were able to find reasonable set of neighborhood parameters using our method. It 

was possible to automate the mechanical and repetitive segmentation and similarity 

analysis process with MATLAB scripts. In retrospect, we could have analyzed even 

larger number of parameters sets without serious problems.  

The first trabecular bone sample for this experiment had to be rescanned because it 

of slight blurring that could not be compensated during post-processing. We assume 

that the refrigerated sample had not had enough time to adjust to ambient 

temperature and humidity, which caused a motion artifact as the sample heated 

during the initial scan.  

The calculated correlation coefficient results show that both SSIM and 

segmentation time express the strongest linear dependency on the inner 

neighborhood radius parameter 𝑅1 and to a lesser degree with the corresponding 

count of points N1. The outer neighborhood parameters did not express significant 

linearity with measurements, but outer neighborhood radius R2 = 2 interestingly 

resulted in faster segmentation than either larger or smaller value. We believe that 

the smaller radius increases the likelihood of algorithmic conditions that lead to 

slightly more operations. With radii R1 = 1.46 and R2 = 1.69, the inner and outer 

neighborhoods are very close to each other, well within a voxel region. Therefore, 

points are more likely to be classified the same way, which makes the algorithm 

evaluate more points before it concludes. On the other hand, the largest outer radius 

value R2 = 2.46 increases the size of calculation arrays, because the outer 

neighborhood regions cover larger (voxel) block volume as the value of R2 crosses 

the integer border (here 2), making operations more expensive.  

 

Comparison of automatic and manual binarization 

 

According to the results, all AMLM binarized volumes had a quality edge over 

traditional user-assisted binarization. All measurements of structural parameters from 

AMLM binarized VOIs were closer to our GT than the traditionally binarized 

volumes. This was true especially for the measurements of Tb.Th, which is not 

surprising, because the AMLM binarization was parameterized with thickness 

measurements.  

We compared also the speed of automated AMLM binarization to traditional user-

assisted binarization. The automatic binarization took less than half a percent of the 

traditional method time in every case. The automatic method was clearly faster with 

these resolutions and volumes of interest. Note though, that this performance 

measurement does not account for the time spent on the configuration of 

segmentation parameters. Then again, we envision that it would be eventually 

possible to pick parameters that have previously produced good results in similar 

experimental setups. 

The new adaptive thresholding method turned out to be both fast and accurate 

compared to traditional user-assisted segmentation. Nevertheless, further testing is 

needed to confirm our hypothesis in more extensive experiments, especially 

comparative analysis of the segmented bone microstructure using data produced with 

different segmentation methods.  
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Assessment of the effects of image resolution and artifacts 

The µCT scanned samples of high quality and relatively free of artifacts. The effects 

of noise and tissue-fraction PVE became significant with the experimental 

configuration of binarization parameters, especially when analyzing low resolution 

volumes that contained small or low contrast features. 

 

Comparison of segmented data between different modalities 

 

Different imaging modalities were not considered, because we failed to get 

meaningful results from comparisons of reconstructed µCT and CBCT volumes of 

the same trabecular bone sample. The resolution difference was great, but the biggest 

problem was that the CBCT image resolution was simply too low for extracting 

information from the sample. Judging by visual comparison to the µCT volume, the 

raw CBCT volume featured more noise and PVE than trabecular structure. 

Recommendations 

The hybrid binarization method that we added to AMLM performs well once 

configured. In practice, the time required to configure the method can be significant 

and must be considered in a new setting. If there are only a few segmentations to 

make, the portion of time spent on configuration will dominate, which may be 

unacceptable unless justified by the objective automated segmentation. We 

recommend further investigation of the visual configuration tool to simplify the 

estimation of parameters. The configuration of thresholding parameters can be made 

easier and more reliable with an interactive thresholding preview tool, which 

facilitates experimenting with different parameters starting with reasonable default 

values. Further experiment should be conducted to eventually link the µCT 

parameters and the thresholding parameters to reach a fully automatic protocol. 

 

Suggestions for additional research 

 

As future work, the segmentation method could be tested with more varied data to 

determine how our results are able to generalize and to which extent they depend on 

the characteristics of the data. Also, the performance of the AMLM compared to the 

original method remains to be evaluated in statistical bone microstructure analysis. 

The 3D thresholding method might find use in other applications where speed or 

computational simplicity is important. 
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9. CONCLUSION 
 

In this study, we modified the multiscale LBP-based segmentation method with 

adaptive binarization, additional label, and dynamic configuration of parameters. We 

have demonstrated a successful application of the generalization of the adaptive 

mean thresholding and Bradley’s method in 3D as part of the segmentation. To our 

knowledge, neither of these thresholding methods has been adapted into 3D and 

applied to analysis of medical images before.  

We have shown how neighborhood parameter adjustment affects the perceived 

similarity of the segmentation result to the source volume and suggested more 

optimal values based on the results. 

We compared the automatic method to the traditional segmentation performed by 

two experienced users. The automatic method outperformed traditional segmentation 

in binarization speed by being about two hundred times faster in the worst case, and 

its relative BV/TV and Tb.Th measurement errors were respectively 33% and 57% 

smaller on the average. This indicates that the method was successful for the used 

equipment and samples. However, the varied Tb.Th measurement results indicate 

that the automatic segmentation method configuration is not reliable at low 

resolutions. Corresponding measurements of low-resolution VOI segmentation 

configured visually with adaptive thresholding tool are more in line with the other 

measurements, and further suggest that thresholding parameter configuration is a 

problem.  

We selected the hybrid adaptive mean thresholding method, because neither 

Bradley’s method nor Adaptive mean thresholding could produce generally 

satisfactory results by themselves, and mean filter was preferred over median and 

Gaussian filters because of its superior speed performance in this setting. This was 

also the reason why more sophisticated segmentation methods were rejected. 

However, these considerations will change if more efficient methods become 

available, or if computation power and memory become significantly less of a factor 

in the future. 

The new binarization method was more reliable, which is no wonder since it is 

deterministic, but it was also faster and more accurate than traditional user-assisted 

segmentation. However, its initial configuration is a time-consuming process with 

this approach, even if parameters are set only once for each setting. Moreover, there 

is no guarantee that the results would always be optimal. More work is needed to 

streamline the adaptive method configuration. 
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Appendix 1. Segmented thickness phantom measurements for the 9 µm resolution 

 

Table 8. Tb.Th and percent error for all foils and segmentation parameters 

Parameter Volumetric Tb.Th (µm) Percent error (%) 

Foil Foil 

W T C 20 50 125 250 20 50 125 250 Mean 

5 14 17 17.42 39.27 121.05 246.71 12.89 21.45 3.16 1.31 9.70 

18 17.42 35.20 120.27 241.17 12.89 29.61 3.78 3.53 12.45 

19 0.00 34.83 115.24 240.52 100.00 30.35 7.81 3.79 35.49 

15 17 17.42 49.34 121.44 254.18 12.89 1.31 2.85 1.67 4.68 

18 17.42 41.00 121.13 249.42 12.89 18.00 3.09 0.23 8.55 

19 0.00 35.62 120.78 241.89 100.00 28.77 3.38 3.24 33.85 

16 17 17.42 52.05 124.34 256.83 12.89 4.10 0.53 2.73 5.06 

18 17.42 50.31 121.79 255.32 12.89 0.61 2.57 2.13 4.55 

19 0.00 43.08 121.17 251.63 100.00 13.85 3.07 0.65 29.39 

17 17 17.46 52.19 132.82 257.38 12.72 4.38 6.26 2.95 6.58 

18 17.42 52.11 125.84 257.07 12.89 4.23 0.67 2.83 5.16 

19 17.42 51.06 122.47 256.10 12.89 2.13 2.02 2.44 4.87 

7 14 17 17.85 51.97 121.13 247.83 10.73 3.94 3.10 0.87 4.66 

18 17.49 50.50 120.89 242.08 12.54 1.01 3.29 3.17 5.00 

19 17.44 45.37 119.65 240.38 12.82 9.26 4.28 3.85 7.55 

15 17 19.03 52.17 121.50 253.32 4.83 4.34 2.80 1.33 3.33 

18 17.69 52.04 121.17 249.79 11.53 4.07 3.07 0.08 4.69 

19 17.47 50.96 121.05 244.60 12.63 1.93 3.16 2.16 4.97 

16 17 21.98 52.20 123.30 256.25 9.90 4.39 1.36 2.50 4.54 

18 18.51 52.17 121.82 254.51 7.45 4.35 2.54 1.80 4.04 

19 17.58 52.08 121.19 251.53 12.10 4.16 3.05 0.61 4.98 

17 17 26.44 52.24 128.34 257.21 32.20 4.48 2.67 2.89 10.56 

18 20.84 52.20 124.22 256.45 4.21 4.40 0.62 2.58 2.95 

19 18.19 52.18 122.20 255.40 9.05 4.36 2.24 2.16 4.45 

9 14 17 29.80 52.19 121.16 248.28 48.98 4.39 3.07 0.69 14.28 

18 24.58 52.18 121.06 243.32 22.91 4.37 3.15 2.67 8.28 

19 20.15 52.16 120.61 240.47 0.76 4.32 3.52 3.81 3.10 

15 17 32.50 52.21 121.41 253.11 62.49 4.41 2.87 1.25 17.76 

18 28.32 52.20 121.19 249.81 41.58 4.39 3.05 0.08 12.28 

19 23.18 52.19 121.10 245.15 15.88 4.37 3.12 1.94 6.33 

16 17 33.86 52.24 122.53 255.87 69.32 4.49 1.98 2.35 19.54 

18 31.59 52.21 121.65 253.97 57.97 4.41 2.68 1.59 16.66 

19 26.90 52.20 121.20 251.35 34.52 4.39 3.04 0.54 10.62 

17 17 34.45 52.70 125.63 256.88 72.27 5.40 0.51 2.75 20.23 

18 33.44 52.26 123.18 256.23 67.21 4.51 1.46 2.49 18.92 

19 30.54 52.21 121.93 255.07 52.70 4.41 2.46 2.03 15.40 

11 14 17 34.53 52.25 121.18 248.55 72.63 4.50 3.06 0.58 20.19 

18 33.82 52.21 121.10 243.85 69.11 4.42 3.12 2.46 19.78 

19 31.75 52.20 120.91 240.81 58.76 4.41 3.28 3.68 17.53 

15 17 34.66 52.61 121.31 252.57 73.29 5.21 2.95 1.03 20.62 
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18 34.39 52.26 121.20 249.59 71.96 4.51 3.04 0.16 19.92 

19 33.36 52.21 121.14 245.50 66.80 4.42 3.09 1.80 19.03 

16 17 34.71 53.88 122.21 255.23 73.55 7.75 2.23 2.09 21.41 

18 34.62 52.62 121.54 253.52 73.08 5.24 2.76 1.41 20.62 

19 34.19 52.28 121.25 251.09 70.93 4.55 3.00 0.44 19.73 

17 17 34.72 56.84 124.32 256.60 73.62 13.68 0.54 2.64 22.62 

18 34.67 53.94 122.54 255.75 73.34 7.87 1.97 2.30 21.37 

19 34.55 52.63 121.69 254.36 72.74 5.26 2.65 1.74 20.60 
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Table 9. Tb.Th of 20 µm foil segmented with different values of W, T, C (µm) 

C
6
 W T 

14 15 16 17 

17 5 17.42114 17.42114 17.42114 17.457 

7 17.85487 19.03467 21.98004 26.44034 

9 29.79557 32.49897 33.86425 34.45438 

11 34.52608 34.65884 34.70929 34.7236 

18 5 17.42114 17.42114 17.42114 17.42114 

7 17.49184 17.69393 18.50962 20.84186 

9 24.5811 28.31598 31.59447 33.44189 

11 33.82291 34.39135 34.61504 34.66871 

19 5 0 0 0 17.42114 

7 17.43518 17.47462 17.58065 18.19097 

9 20.15177 23.17509 26.90368 30.54046 

11 31.75168 33.35993 34.18646 34.54797 

 

 

  

                                                 
6
 Normalized to integer range 0-255 
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Table 10. Tb.Th of 50 µm foil segmented with different values of W, T, C (µm) 

C W T 

14 15 16 17 

17 5 39.27318 49.34460 52.04919 52.18870 

7 51.96777 52.17197 52.19503 52.23777 

9 52.19417 52.20510 52.24366 52.70147 

11 52.24808 52.60695 53.87582 56.83908 

18 5 35.19732 41.00089 50.30652 52.11256 

7 50.50277 52.03735 52.17427 52.19760 

9 52.18305 52.19548 52.20646 52.25511 

11 52.20982 52.25585 52.62078 53.93521 

19 5 34.82747 35.61677 43.07648 51.06277 

7 45.36820 50.96417 52.08238 52.17935 

9 52.15802 52.18648 52.19717 52.20691 

11 52.20274 52.20993 52.27730 52.63241 
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Table 11. Tb.Th of 125 µm foil segmented with different values of W, T, C (µm) 

C W T 

14 15 16 17 

17 5 121.05474 121.43589 124.34008 132.81965 

7 121.12678 121.49825 123.29595 128.34271 

9 121.15928 121.40947 122.52592 125.63163 

11 121.17701 121.30839 122.20763 124.32447 

18 5 120.27483 121.13240 121.79060 125.83740 

7 120.88697 121.16737 121.82359 124.22490 

9 121.05805 121.18616 121.65136 123.17674 

11 121.09527 121.20110 121.54443 122.53677 

19 5 115.24303 120.78007 121.16634 122.47115 

7 119.65170 121.04711 121.18791 122.19777 

9 120.60562 121.10352 121.20406 121.92973 

11 120.90585 121.14057 121.24666 121.69323 
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Table 12. Tb.Th of 250 µm foil segmented with different values of W, T, C (µm). 

C W T 

14 15 16 17 

17 5 246.71355 254.17534 256.82845 257.38278 

7 247.83027 253.32201 256.25493 257.21331 

9 248.27827 253.11380 255.86906 256.87551 

11 248.55072 252.57162 255.22682 256.60354 

18 5 241.16777 249.41774 255.32078 257.06661 

7 242.08291 249.79400 254.50840 256.45301 

9 243.32450 249.80732 253.96501 256.22682 

11 243.84553 249.58902 253.52210 255.75472 

19 5 240.52281 241.88899 251.63212 256.10204 

7 240.38183 244.60025 251.52674 255.39922 

9 240.46502 245.14903 251.35153 255.07407 

11 240.80748 245.50359 251.09042 254.36148 
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Appendix 2. Segmented thickness phantom measurements for the 18 µm resolution 

 

Table 13. Tb.Th of foils segmented with different values of W, T, C (µm) 

Parameter Volumetric Tb.Th (µm) Percent error (%) 

W T C Foil Foil 

50 125 250 50 125 250 Mean
7
 Mean

8
 

3 50 47 34.84 138.13 248.40 30.32 10.50 0.64 13.82 5.57 

5 10 10 69.53 124.27 241.36 39.07 0.59 3.46 14.37 2.02 

5 14 17 62.18 104.95 241.15 24.36 16.04 3.54 14.65 9.79 

5 17 18 68.48 116.35 241.39 36.96 6.92 3.44 15.77 5.18 

5 18 18 69.22 124.88 241.44 38.44 0.10 3.42 13.99 1.76 

5 18 22 39.52 104.51 241.19 20.96 16.39 3.52 13.62 9.96 

5 22 22 67.37 124.99 241.45 34.74 0.01 3.42 12.72 1.72 

5 30 29 59.24 131.58 241.49 18.48 5.26 3.40 9.05 4.33 

5 30 30 48.11 125.36 241.46 3.78 0.29 3.42 2.49 1.85 

5 31 29 65.41 136.14 242.75 30.81 8.91 2.90 14.21 5.91 

5 31 30 56.70 131.50 241.50 13.39 5.20 3.40 7.33 4.30 

5 38 33 68.77 138.51 257.25 37.53 10.81 2.90 17.08 6.85 

5 38 34 69.44 138.22 245.93 38.89 10.57 1.63 17.03 6.10 

5 39 32 69.42 138.69 264.12 38.84 10.95 5.65 18.48 8.30 

5 39 35 64.53 138.33 250.71 29.06 10.66 0.28 13.34 5.47 

5 39 38 37.62 131.46 241.53 24.76 5.17 3.39 11.11 4.28 

5 39 39 35.35 125.32 241.55 29.30 0.26 3.38 10.98 1.82 

5 40 34 69.17 138.54 260.91 38.33 10.83 4.36 17.84 7.60 

5 40 37 52.30 137.92 244.68 4.60 10.33 2.13 5.69 6.23 

5 40 40 35.21 125.33 241.49 29.58 0.27 3.40 11.08 1.84 

5 50 29 69.63 167.16 277.82 39.26 33.73 11.13 28.04 22.43 

5 50 47 35.57 137.76 255.51 28.86 10.21 2.21 13.76 6.21 

5 100 85 50.73 138.15 257.69 1.45 10.52 3.07 5.01 6.80 

5 100 88 39.32 136.67 257.29 21.37 9.33 2.92 11.21 6.13 

5 100 92 34.88 125.77 257.27 30.25 0.61 2.91 11.26 1.76 

7 17 18 69.55 120.37 241.40 39.09 3.71 3.44 15.41 3.57 

7 30 29 69.43 131.57 241.48 38.86 5.26 3.41 15.84 4.33 

7 31 31 69.25 126.95 241.36 38.50 1.56 3.46 14.51 2.51 

7 38 32 69.54 138.54 257.19 39.07 10.83 2.88 17.59 6.85 

7 38 33 69.49 138.46 252.20 38.98 10.76 0.88 16.88 5.82 

7 50 47 57.74 137.46 242.76 15.48 9.97 2.89 9.45 6.43 

  

                                                 
7
 Foils: 50 µm, 125 µm, 250 µm 

8
 Foils: 125 µm, 250 µm 
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Appendix 3. Segmented thickness phantom measurements for the 35 µm resolution 

 

Table 14. Tb.Th of foils segmented with different values of W, T, C (µm) 

Parameter Volumetric Tb.Th (µm) Relative error (%) 

W T C Foil Foil 

125 250 125 250 Mean 

3 14 26 116.85 208.15 6.52 16.74 11.63 

3 14 28 82.85 208.18 33.72 16.73 25.22 

3 15 25 135.04 214.22 8.03 14.31 11.17 

3 17 17 139.22 275.08 11.38 10.03 10.70 

3 17 25 137.88 260.03 10.31 4.01 7.16 

3 17 26 138.26 241.87 10.61 3.25 6.93 

3 17 29 131.45 210.45 5.16 15.82 10.49 

3 30 30 139.24 276.14 11.39 10.46 10.93 

3 30 45 137.68 242.99 10.15 2.80 6.48 

3 40 45 139.22 275.79 11.38 10.32 10.85 

3 40 60 137.00 238.64 9.60 4.54 7.07 

3 40 65 106.98 208.39 14.42 16.64 15.53 

3 40 70 70.42 208.30 43.66 16.68 30.17 

3 40 80 69.68 207.33 44.25 17.07 30.66 

3 45 70 128.21 211.44 2.57 15.42 9.00 

3 50 70 138.65 271.22 10.92 8.49 9.70 

3 50 75 135.54 234.81 8.44 6.08 7.26 

3 50 80 103.37 208.43 17.30 16.63 16.96 

3 54 60 138.98 276.10 11.18 10.44 10.81 

3 100 127 138.82 275.67 11.05 10.27 10.66 

5 17 17 138.80 274.62 11.04 9.85 10.44 

5 17 19 139.21 274.46 11.37 9.78 10.58 

5 32 40 139.18 274.52 11.34 9.81 10.58 

13 14 24 134.64 211.15 7.71 15.54 11.62 

27 17 50 139.16 275.75 11.33 10.30 10.81 

27 17 64 138.00 263.54 10.40 5.42 7.91 
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Appendix 4. Effect of different neighborhood parameters on segmentation time and 

on similarity to GT at 9 µm resolution 

 

Table 15. Effect of different neighborhood parameters on segmentation time and 

similarity to the GT, fixed cubical 6.7 mm (256 x 256 x 256) VOI in 9 µm scan of 

bovine trabecular bone sample 1 

Neighborhood parameter MSE SSIM Segmentation time (s) 

R1 (px) N1 R2 (px) N2 

0.692 18 1.69 54 2245.7986 0.1689 189 

0.692 18 1.69 78 2245.8093 0.1689 183 

0.692 18 1.69 114 2245.9201 0.1688 183 

0.692 18 2 54 2245.7976 0.1689 183 

0.692 18 2 78 2245.7998 0.1689 180 

0.692 18 2 114 2245.8363 0.1689 181 

0.692 18 2.46 54 2245.7949 0.1689 184 

0.692 18 2.46 78 2245.8068 0.1689 184 

0.692 18 2.46 114 2245.8098 0.1689 184 

0.692 26 1.69 54 2245.7949 0.1689 189 

0.692 26 1.69 78 2245.7949 0.1689 189 

0.692 26 1.69 114 2245.7949 0.1689 190 

0.692 26 2 54 2245.7949 0.1689 192 

0.692 26 2 78 2245.7949 0.1689 190 

0.692 26 2 114 2245.7949 0.1689 189 

0.692 26 2.46 54 2245.7949 0.1689 191 

0.692 26 2.46 78 2245.7949 0.1689 191 

0.692 26 2.46 114 2245.7949 0.1689 192 

0.692 38 1.69 54 2245.7949 0.1689 201 

0.692 38 1.69 78 2245.7949 0.1689 202 

0.692 38 1.69 114 2245.7949 0.1689 203 

0.692 38 2 54 2245.7949 0.1689 200 

0.692 38 2 78 2245.7949 0.1689 199 

0.692 38 2 114 2245.7949 0.1689 198 

0.692 38 2.46 54 2245.7949 0.1689 205 

0.692 38 2.46 78 2245.7949 0.1689 203 

0.692 38 2.46 114 2245.7949 0.1689 203 

1 18 1.69 54 2150.9040 0.1770 189 

1 18 1.69 78 2154.7906 0.1766 189 

1 18 1.69 114 2149.8950 0.1771 184 

1 18 2 54 2147.2359 0.1773 185 

1 18 2 78 2152.4855 0.1768 185 

1 18 2 114 2150.2976 0.1770 184 

1 18 2.46 54 2152.4847 0.1768 187 

1 18 2.46 78 2156.9338 0.1764 187 

1 18 2.46 114 2149.9053 0.1771 188 

1 26 1.69 54 2137.0102 0.1783 197 

1 26 1.69 78 2138.1399 0.1781 192 

1 26 1.69 114 2138.9928 0.1781 193 
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1 26 2 54 2139.4689 0.1780 192 

1 26 2 78 2137.3513 0.1782 193 

1 26 2 114 2141.5018 0.1778 193 

1 26 2.46 54 2135.6574 0.1784 204 

1 26 2.46 78 2135.1519 0.1784 194 

1 26 2.46 114 2145.9684 0.1774 194 

1 38 1.69 54 2131.3817 0.1788 203 

1 38 1.69 78 2129.2150 0.1790 204 

1 38 1.69 114 2126.9313 0.1792 213 

1 38 2 54 2126.6385 0.1792 211 

1 38 2 78 2126.9034 0.1792 205 

1 38 2 114 2125.9435 0.1793 212 

1 38 2.46 54 2124.1361 0.1795 209 

1 38 2.46 78 2125.9438 0.1793 207 

1 38 2.46 114 2128.0567 0.1791 208 

1.46 18 1.69 54 1987.3756 0.1932 448 

1.46 18 1.69 78 1979.3045 0.1941 310 

1.46 18 1.69 114 1981.2285 0.1939 310 

1.46 18 2 54 1977.3584 0.1943 308 

1.46 18 2 78 1987.5815 0.1932 306 

1.46 18 2 114 1985.4729 0.1934 306 

1.46 18 2.46 54 1985.5360 0.1934 321 

1.46 18 2.46 78 1988.9079 0.1931 320 

1.46 18 2.46 114 1985.4732 0.1934 319 

1.46 26 1.69 54 1967.1020 0.1954 372 

1.46 26 1.69 78 1962.8346 0.1959 370 

1.46 26 1.69 114 1969.1435 0.1952 372 

1.46 26 2 54 1963.9886 0.1958 359 

1.46 26 2 78 1969.4611 0.1951 356 

1.46 26 2 114 1967.8634 0.1953 358 

1.46 26 2.46 54 1968.9943 0.1952 370 

1.46 26 2.46 78 1971.2314 0.1950 369 

1.46 26 2.46 114 1970.4606 0.1950 374 

1.46 38 1.69 54 1956.9966 0.1965 442 

1.46 38 1.69 78 1959.8632 0.1962 445 

1.46 38 1.69 114 1961.7200 0.1960 440 

1.46 38 2 54 1961.2966 0.1960 416 

1.46 38 2 78 1957.2300 0.1965 411 

1.46 38 2 114 1961.1955 0.1960 412 

1.46 38 2.46 54 1962.4289 0.1959 435 

1.46 38 2.46 78 1958.0720 0.1964 443 

1.46 38 2.46 114 1961.4991 0.1960 443 
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Table 16. Effect of different neighborhood parameters on segmentation time and 

similarity to the GT, fixed cubical 6.7 mm (256 x 256 x 256) VOI in 9 µm scan of 

bovine trabecular bone sample 2 

Neighborhood parameter MSE SSIM Segmentation time (s) 

R1 (px) N1 R2 (px) N2 

0.692 18 1.69 54 1619.2043 0.1147 311 

0.692 18 1.69 78 1619.4123 0.1147 175 

0.692 18 1.69 114 1619.4015 0.1147 177 

0.692 18 2 54 1619.2059 0.1147 176 

0.692 18 2 78 1619.2535 0.1147 176 

0.692 18 2 114 1619.2732 0.1147 176 

0.692 18 2.46 54 1619.2043 0.1147 178 

0.692 18 2.46 78 1619.2085 0.1147 179 

0.692 18 2.46 114 1619.2142 0.1147 179 

0.692 26 1.69 54 1619.2043 0.1147 185 

0.692 26 1.69 78 1619.2043 0.1147 184 

0.692 26 1.69 114 1619.2043 0.1147 185 

0.692 26 2 54 1619.2043 0.1147 185 

0.692 26 2 78 1619.2043 0.1147 185 

0.692 26 2 114 1619.2043 0.1147 188 

0.692 26 2.46 54 1619.2043 0.1147 186 

0.692 26 2.46 78 1619.2043 0.1147 187 

0.692 26 2.46 114 1619.2043 0.1147 186 

0.692 38 1.69 54 1619.2043 0.1147 201 

0.692 38 1.69 78 1619.2043 0.1147 196 

0.692 38 1.69 114 1619.2043 0.1147 196 

0.692 38 2 54 1619.2043 0.1147 197 

0.692 38 2 78 1619.2043 0.1147 196 

0.692 38 2 114 1619.2043 0.1147 196 

0.692 38 2.46 54 1619.2043 0.1147 198 

0.692 38 2.46 78 1619.2043 0.1147 198 

0.692 38 2.46 114 1619.2043 0.1147 198 

1 18 1.69 54 1544.9649 0.1208 184 

1 18 1.69 78 1540.1560 0.1212 180 

1 18 1.69 114 1544.9718 0.1207 178 

1 18 2 54 1543.4439 0.1208 177 

1 18 2 78 1540.1533 0.1212 183 

1 18 2 114 1540.1545 0.1212 182 

1 18 2.46 54 1545.0134 0.1208 181 

1 18 2.46 78 1543.4562 0.1208 181 

1 18 2.46 114 1545.0112 0.1208 181 

1 26 1.69 54 1533.6902 0.1218 186 

1 26 1.69 78 1529.3158 0.1221 192 

1 26 1.69 114 1533.6712 0.1218 189 

1 26 2 54 1533.9011 0.1217 186 

1 26 2 78 1536.0256 0.1215 187 

1 26 2 114 1532.4372 0.1219 185 
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1 26 2.46 54 1531.9113 0.1219 189 

1 26 2.46 78 1535.7054 0.1215 189 

1 26 2.46 114 1539.2971 0.1213 188 

1 38 1.69 54 1525.8423 0.1224 197 

1 38 1.69 78 1523.9764 0.1226 198 

1 38 1.69 114 1528.5673 0.1222 197 

1 38 2 54 1526.3611 0.1224 200 

1 38 2 78 1528.2949 0.1222 198 

1 38 2 114 1526.6798 0.1224 202 

1 38 2.46 54 1525.8312 0.1224 200 

1 38 2.46 78 1528.1270 0.1222 200 

1 38 2.46 114 1526.3450 0.1224 200 

1.46 18 1.69 54 1430.6925 0.1316 413 

1.46 18 1.69 78 1426.2402 0.1321 297 

1.46 18 1.69 114 1426.1060 0.1321 299 

1.46 18 2 54 1430.8071 0.1316 297 

1.46 18 2 78 1426.1979 0.1321 298 

1.46 18 2 114 1424.4407 0.1322 316 

1.46 18 2.46 54 1430.5313 0.1317 305 

1.46 18 2.46 78 1430.8341 0.1316 308 

1.46 18 2.46 114 1426.5838 0.1320 306 

1.46 26 1.69 54 1414.7779 0.1333 360 

1.46 26 1.69 78 1416.7222 0.1331 360 

1.46 26 1.69 114 1419.1071 0.1328 362 

1.46 26 2 54 1415.7799 0.1332 343 

1.46 26 2 78 1418.4078 0.1329 344 

1.46 26 2 114 1416.1551 0.1332 347 

1.46 26 2.46 54 1417.8027 0.1330 353 

1.46 26 2.46 78 1414.9937 0.1333 355 

1.46 26 2.46 114 1415.6210 0.1332 354 

1.46 38 1.69 54 1411.1106 0.1337 427 

1.46 38 1.69 78 1410.2555 0.1338 423 

1.46 38 1.69 114 1412.3720 0.1335 427 

1.46 38 2 54 1412.3459 0.1336 401 

1.46 38 2 78 1412.4809 0.1335 402 

1.46 38 2 114 1411.1403 0.1337 403 

1.46 38 2.46 54 1411.5248 0.1336 423 

1.46 38 2.46 78 1413.1094 0.1335 443 

1.46 38 2.46 114 1411.1251 0.1337 417 
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Appendix 5. Effect of different neighborhood parameters on segmentation time and 

on similarity to GT at 18 µm resolution 

 

Table 17. Effect of different neighborhood parameters on segmentation time and 

similarity to the GT, fixed cubical 6.7 mm (128 x 128 x 128) VOI in 18 µm scan of 

bovine trabecular bone sample 1 

Neighborhood parameter MSE SSIM Segmentation time (s) 

R1 (px) N1 R2 (px) N2 

0.692 18 1.69 54 2046.0355 0.2715 55 

0.692 18 1.69 78 2046.4170 0.2714 23 

0.692 18 1.69 114 2046.2209 0.2714 22 

0.692 18 2 54 2046.0391 0.2715 22 

0.692 18 2 78 2046.1356 0.2715 23 

0.692 18 2 114 2046.1332 0.2715 23 

0.692 18 2.46 54 2046.0315 0.2715 24 

0.692 18 2.46 78 2046.0315 0.2715 24 

0.692 18 2.46 114 2046.0705 0.2715 23 

0.692 26 1.69 54 2046.0315 0.2715 23 

0.692 26 1.69 78 2046.0315 0.2715 24 

0.692 26 1.69 114 2046.0315 0.2715 24 

0.692 26 2 54 2046.0315 0.2715 24 

0.692 26 2 78 2046.0315 0.2715 24 

0.692 26 2 114 2046.0315 0.2715 25 

0.692 26 2.46 54 2046.0315 0.2715 25 

0.692 26 2.46 78 2046.0315 0.2715 25 

0.692 26 2.46 114 2046.0315 0.2715 25 

0.692 38 1.69 54 2046.0315 0.2715 26 

0.692 38 1.69 78 2046.0315 0.2715 26 

0.692 38 1.69 114 2046.0315 0.2715 26 

0.692 38 2 54 2046.0315 0.2715 26 

0.692 38 2 78 2046.0315 0.2715 26 

0.692 38 2 114 2046.0315 0.2715 26 

0.692 38 2.46 54 2046.0315 0.2715 27 

0.692 38 2.46 78 2046.0315 0.2715 27 

0.692 38 2.46 114 2046.0315 0.2715 27 

1 18 1.69 54 1894.0138 0.2876 24 

1 18 1.69 78 1895.8107 0.2875 24 

1 18 1.69 114 1894.0087 0.2876 23 

1 18 2 54 1901.3047 0.2868 23 

1 18 2 78 1895.8189 0.2875 26 

1 18 2 114 1895.8184 0.2875 24 

1 18 2.46 54 1899.0472 0.2870 25 

1 18 2.46 78 1901.3454 0.2868 25 

1 18 2.46 114 1899.0559 0.2870 24 

1 26 1.69 54 1882.0199 0.2888 24 

1 26 1.69 78 1871.3462 0.2900 25 

1 26 1.69 114 1881.8658 0.2888 26 
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1 26 2 54 1880.4774 0.2891 25 

1 26 2 78 1872.8763 0.2899 26 

1 26 2 114 1881.5511 0.2890 25 

1 26 2.46 54 1877.8261 0.2893 26 

1 26 2.46 78 1879.4154 0.2892 26 

1 26 2.46 114 1882.3694 0.2888 25 

1 38 1.69 54 1860.6935 0.2912 27 

1 38 1.69 78 1854.0457 0.2920 27 

1 38 1.69 114 1857.3186 0.2916 27 

1 38 2 54 1854.8909 0.2919 28 

1 38 2 78 1858.7975 0.2915 27 

1 38 2 114 1858.4099 0.2914 29 

1 38 2.46 54 1860.6977 0.2912 29 

1 38 2.46 78 1865.5522 0.2907 28 

1 38 2.46 114 1856.7734 0.2917 28 

1.46 18 1.69 54 1652.7136 0.3153 65 

1.46 18 1.69 78 1641.2912 0.3166 55 

1.46 18 1.69 114 1644.2762 0.3163 55 

1.46 18 2 54 1653.8426 0.3152 55 

1.46 18 2 78 1641.0115 0.3166 55 

1.46 18 2 114 1638.5503 0.3168 55 

1.46 18 2.46 54 1655.0820 0.3149 55 

1.46 18 2.46 78 1653.8607 0.3152 55 

1.46 18 2.46 114 1641.0420 0.3165 55 

1.46 26 1.69 54 1624.4358 0.3186 56 

1.46 26 1.69 78 1618.4543 0.3193 56 

1.46 26 1.69 114 1627.3816 0.3183 56 

1.46 26 2 54 1623.3695 0.3187 55 

1.46 26 2 78 1626.0585 0.3185 55 

1.46 26 2 114 1626.4910 0.3185 55 

1.46 26 2.46 54 1627.0321 0.3183 56 

1.46 26 2.46 78 1621.5690 0.3190 57 

1.46 26 2.46 114 1621.1228 0.3190 57 

1.46 38 1.69 54 1610.6526 0.3202 64 

1.46 38 1.69 78 1614.4923 0.3198 64 

1.46 38 1.69 114 1616.9991 0.3195 64 

1.46 38 2 54 1616.9593 0.3195 61 

1.46 38 2 78 1613.6777 0.3199 61 

1.46 38 2 114 1612.9043 0.3200 61 

1.46 38 2.46 54 1601.9238 0.3211 69 

1.46 38 2.46 78 1614.1489 0.3198 68 

1.46 38 2.46 114 1613.7105 0.3199 65 
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Table 18. Effect of different neighborhood parameters on segmentation time and 

similarity to the GT, fixed cubical 6.7 mm (128 x 128 x 128) VOI in 18 µm scan of 

bovine trabecular bone sample 2 

Neighborhood parameter MSE SSIM Segmentation time (s) 

R1 (px) N1 R2 (px) N2 

0.692 18 1.69 54 1370.2942 0.1950 55 

0.692 18 1.69 78 1370.6182 0.1949 21 

0.692 18 1.69 114 1370.6228 0.1949 21 

0.692 18 2 54 1370.2904 0.1950 21 

0.692 18 2 78 1370.3734 0.1950 21 

0.692 18 2 114 1370.4179 0.1950 21 

0.692 18 2.46 54 1370.2901 0.1950 21 

0.692 18 2.46 78 1370.3019 0.1950 22 

0.692 18 2.46 114 1370.3508 0.1950 22 

0.692 26 1.69 54 1370.2864 0.1950 22 

0.692 26 1.69 78 1370.2864 0.1950 22 

0.692 26 1.69 114 1370.2864 0.1950 22 

0.692 26 2 54 1370.2864 0.1950 22 

0.692 26 2 78 1370.2864 0.1950 23 

0.692 26 2 114 1370.2864 0.1950 23 

0.692 26 2.46 54 1370.2864 0.1950 23 

0.692 26 2.46 78 1370.2864 0.1950 23 

0.692 26 2.46 114 1370.2864 0.1950 23 

0.692 38 1.69 54 1370.2864 0.1950 24 

0.692 38 1.69 78 1370.2864 0.1950 24 

0.692 38 1.69 114 1370.2864 0.1950 25 

0.692 38 2 54 1370.2864 0.1950 24 

0.692 38 2 78 1370.2864 0.1950 24 

0.692 38 2 114 1370.2864 0.1950 24 

0.692 38 2.46 54 1370.2864 0.1950 25 

0.692 38 2.46 78 1370.2864 0.1950 25 

0.692 38 2.46 114 1370.2864 0.1950 25 

1 18 1.69 54 1256.5706 0.2081 22 

1 18 1.69 78 1248.6254 0.2091 22 

1 18 1.69 114 1256.5495 0.2081 22 

1 18 2 54 1253.6605 0.2085 21 

1 18 2 78 1248.6019 0.2091 23 

1 18 2 114 1248.6118 0.2091 23 

1 18 2.46 54 1256.4176 0.2081 22 

1 18 2.46 78 1253.7046 0.2085 23 

1 18 2.46 114 1256.4204 0.2081 22 

1 26 1.69 54 1239.7922 0.2102 23 

1 26 1.69 78 1232.6480 0.2111 24 

1 26 1.69 114 1239.7829 0.2102 24 

1 26 2 54 1239.7901 0.2103 23 

1 26 2 78 1243.3559 0.2098 23 

1 26 2 114 1237.5891 0.2105 23 
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1 26 2.46 54 1236.9084 0.2106 24 

1 26 2.46 78 1242.8066 0.2099 24 

1 26 2.46 114 1248.2139 0.2092 23 

1 38 1.69 54 1228.1284 0.2117 25 

1 38 1.69 78 1225.2803 0.2121 25 

1 38 1.69 114 1232.6120 0.2112 25 

1 38 2 54 1229.4479 0.2115 25 

1 38 2 78 1231.8085 0.2113 25 

1 38 2 114 1229.8798 0.2115 27 

1 38 2.46 54 1228.1184 0.2117 25 

1 38 2.46 78 1231.9190 0.2113 26 

1 38 2.46 114 1229.7012 0.2115 27 

1.46 18 1.69 54 1101.5913 0.2294 60 

1.46 18 1.69 78 1096.2030 0.2303 55 

1.46 18 1.69 114 1096.0232 0.2303 55 

1.46 18 2 54 1102.1300 0.2294 55 

1.46 18 2 78 1096.1468 0.2303 55 

1.46 18 2 114 1093.8726 0.2306 55 

1.46 18 2.46 54 1101.1708 0.2295 55 

1.46 18 2.46 78 1102.1421 0.2294 55 

1.46 18 2.46 114 1096.4434 0.2302 55 

1.46 26 1.69 54 1082.0972 0.2324 55 

1.46 26 1.69 78 1084.5269 0.2320 55 

1.46 26 1.69 114 1087.2803 0.2316 55 

1.46 26 2 54 1083.2687 0.2322 55 

1.46 26 2 78 1086.5066 0.2318 55 

1.46 26 2 114 1083.7615 0.2321 55 

1.46 26 2.46 54 1085.3448 0.2319 55 

1.46 26 2.46 78 1081.6481 0.2324 55 

1.46 26 2.46 114 1082.8093 0.2323 55 

1.46 38 1.69 54 1077.4331 0.2332 62 

1.46 38 1.69 78 1076.0931 0.2333 61 

1.46 38 1.69 114 1078.7899 0.2329 61 

1.46 38 2 54 1078.7840 0.2329 58 

1.46 38 2 78 1078.9479 0.2329 59 

1.46 38 2 114 1077.5824 0.2331 59 

1.46 38 2.46 54 1077.7152 0.2331 63 

1.46 38 2.46 78 1079.8916 0.2328 65 

1.46 38 2.46 114 1077.3351 0.2332 61 
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Appendix 6. Effect of different neighborhood parameters on segmentation time and 

on similarity to GT at 35 µm resolution 

 

Table 19. Effect of different neighborhood parameters on segmentation time and 

similarity to the GT, fixed cubical 6.7 mm (64 x 64 x 64) VOI in 35 µm scan of 

bovine trabecular bone sample 1 

Neighborhood parameter MSE SSIM Segmentation time (s) 

R1 (px) N1 R2 (px) N2 

0.692 18 1.69 54 2307.9211 0.4295 5 

0.692 18 1.69 78 2308.3329 0.4294 4 

0.692 18 1.69 114 2308.2542 0.4294 3 

0.692 18 2 54 2307.8920 0.4295 4 

0.692 18 2 78 2308.1062 0.4295 4 

0.692 18 2 114 2308.1675 0.4295 3 

0.692 18 2.46 54 2307.9590 0.4295 4 

0.692 18 2.46 78 2307.8920 0.4295 4 

0.692 18 2.46 114 2308.1631 0.4295 4 

0.692 26 1.69 54 2307.8621 0.4295 4 

0.692 26 1.69 78 2307.8621 0.4295 4 

0.692 26 1.69 114 2307.8621 0.4295 4 

0.692 26 2 54 2307.8621 0.4295 4 

0.692 26 2 78 2307.8621 0.4295 4 

0.692 26 2 114 2307.8621 0.4295 4 

0.692 26 2.46 54 2307.8621 0.4295 4 

0.692 26 2.46 78 2307.8621 0.4295 4 

0.692 26 2.46 114 2307.8621 0.4295 4 

0.692 38 1.69 54 2307.8621 0.4295 4 

0.692 38 1.69 78 2307.8621 0.4295 4 

0.692 38 1.69 114 2307.8621 0.4295 4 

0.692 38 2 54 2307.8621 0.4295 4 

0.692 38 2 78 2307.8621 0.4295 4 

0.692 38 2 114 2307.8621 0.4295 4 

0.692 38 2.46 54 2307.8621 0.4295 4 

0.692 38 2.46 78 2307.8621 0.4295 4 

0.692 38 2.46 114 2307.8621 0.4295 4 

1 18 1.69 54 2057.7694 0.4523 4 

1 18 1.69 78 2061.5419 0.4522 4 

1 18 1.69 114 2057.7959 0.4523 4 

1 18 2 54 2068.2205 0.4511 4 

1 18 2 78 2061.5419 0.4522 4 

1 18 2 114 2061.5419 0.4522 4 

1 18 2.46 54 2067.0336 0.4514 4 

1 18 2.46 78 2068.3293 0.4511 4 

1 18 2.46 114 2067.0095 0.4514 4 

1 26 1.69 54 2036.9610 0.4540 4 

1 26 1.69 78 2020.1875 0.4554 4 
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1 26 1.69 114 2037.0843 0.4540 4 

1 26 2 54 2038.5902 0.4543 4 

1 26 2 78 2023.7654 0.4551 4 

1 26 2 114 2037.4402 0.4541 4 

1 26 2.46 54 2028.1766 0.4548 4 

1 26 2.46 78 2035.0326 0.4544 4 

1 26 2.46 114 2037.6599 0.4538 4 

1 38 1.69 54 2003.4144 0.4572 4 

1 38 1.69 78 1992.8589 0.4581 4 

1 38 1.69 114 1999.5319 0.4574 4 

1 38 2 54 1994.1911 0.4580 4 

1 38 2 78 2001.5789 0.4572 4 

1 38 2 114 1999.8458 0.4572 4 

1 38 2.46 54 2003.4144 0.4572 4 

1 38 2.46 78 2009.9996 0.4564 4 

1 38 2.46 114 1998.3842 0.4576 5 

1.46 18 1.69 54 1691.3226 0.4875 7 

1.46 18 1.69 78 1674.0872 0.4892 6 

1.46 18 1.69 114 1680.1205 0.4886 6 

1.46 18 2 54 1692.8496 0.4875 5 

1.46 18 2 78 1673.8144 0.4893 6 

1.46 18 2 114 1668.7564 0.4892 6 

1.46 18 2.46 54 1693.9476 0.4870 6 

1.46 18 2.46 78 1692.8068 0.4875 6 

1.46 18 2.46 114 1672.1410 0.4890 6 

1.46 26 1.69 54 1647.1383 0.4916 6 

1.46 26 1.69 78 1636.7067 0.4924 6 

1.46 26 1.69 114 1651.3794 0.4912 7 

1.46 26 2 54 1643.0788 0.4919 6 

1.46 26 2 78 1652.6116 0.4913 6 

1.46 26 2 114 1648.9700 0.4914 6 

1.46 26 2.46 54 1652.0169 0.4912 7 

1.46 26 2.46 78 1642.0402 0.4919 7 

1.46 26 2.46 114 1641.9744 0.4919 7 

1.46 38 1.69 54 1624.7432 0.4934 8 

1.46 38 1.69 78 1632.4303 0.4928 7 

1.46 38 1.69 114 1636.2045 0.4926 7 

1.46 38 2 54 1636.2929 0.4926 7 

1.46 38 2 78 1631.4503 0.4930 7 

1.46 38 2 114 1629.8086 0.4930 7 

1.46 38 2.46 54 1612.8309 0.4944 9 

1.46 38 2.46 78 1631.3082 0.4929 8 

1.46 38 2.46 114 1630.9776 0.4929 8 
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Table 20. Effect of different neighborhood parameters on segmentation time and 

similarity to the GT, fixed cubical 6.7 mm (64 x 64 x 64) VOI in 35 µm scan of 

bovine trabecular bone sample 2 

Neighborhood parameter MSE SSIM Segmentation time (s) 

R1 (px) N1 R2 (px) N2 

0.692 18 1.69 54 1516.1176 0.3208 5 

0.692 18 1.69 78 1516.5564 0.3207 3 

0.692 18 1.69 114 1516.7189 0.3207 3 

0.692 18 2 54 1516.1650 0.3208 3 

0.692 18 2 78 1516.1606 0.3208 3 

0.692 18 2 114 1516.1876 0.3208 3 

0.692 18 2.46 54 1516.1723 0.3208 3 

0.692 18 2.46 78 1516.1759 0.3208 3 

0.692 18 2.46 114 1516.3931 0.3208 3 

0.692 26 1.69 54 1516.0527 0.3208 3 

0.692 26 1.69 78 1516.0527 0.3208 3 

0.692 26 1.69 114 1516.0527 0.3208 3 

0.692 26 2 54 1516.0527 0.3208 3 

0.692 26 2 78 1516.0527 0.3208 3 

0.692 26 2 114 1516.0527 0.3208 4 

0.692 26 2.46 54 1516.0527 0.3208 4 

0.692 26 2.46 78 1516.0527 0.3208 4 

0.692 26 2.46 114 1516.0527 0.3208 4 

0.692 38 1.69 54 1516.0527 0.3208 4 

0.692 38 1.69 78 1516.0527 0.3208 4 

0.692 38 1.69 114 1516.0527 0.3208 4 

0.692 38 2 54 1516.0527 0.3208 4 

0.692 38 2 78 1516.0527 0.3208 4 

0.692 38 2 114 1516.0527 0.3208 4 

0.692 38 2.46 54 1516.0527 0.3208 4 

0.692 38 2.46 78 1516.0527 0.3208 4 

0.692 38 2.46 114 1516.0527 0.3208 4 

1 18 1.69 54 1342.3682 0.3409 3 

1 18 1.69 78 1330.8053 0.3424 4 

1 18 1.69 114 1342.3442 0.3409 3 

1 18 2 54 1337.1938 0.3415 3 

1 18 2 78 1330.8220 0.3424 4 

1 18 2 114 1330.7783 0.3424 3 

1 18 2.46 54 1343.0195 0.3406 4 

1 18 2.46 78 1337.3569 0.3415 4 

1 18 2.46 114 1343.0013 0.3406 4 

1 26 1.69 54 1315.9277 0.3439 4 

1 26 1.69 78 1306.3121 0.3452 4 

1 26 1.69 114 1316.0454 0.3439 4 
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1 26 2 54 1316.0790 0.3443 4 

1 26 2 78 1319.6967 0.3437 3 

1 26 2 114 1312.5200 0.3445 3 

1 26 2.46 54 1311.2590 0.3446 4 

1 26 2.46 78 1319.1407 0.3438 4 

1 26 2.46 114 1328.2486 0.3427 4 

1 38 1.69 54 1299.6164 0.3462 4 

1 38 1.69 78 1295.3121 0.3465 4 

1 38 1.69 114 1305.7182 0.3455 4 

1 38 2 54 1301.3270 0.3459 4 

1 38 2 78 1303.9648 0.3456 4 

1 38 2 114 1300.7691 0.3459 4 

1 38 2.46 54 1299.6164 0.3462 4 

1 38 2.46 78 1304.3693 0.3457 4 

1 38 2.46 114 1300.4051 0.3460 4 

1.46 18 1.69 54 1125.5650 0.3696 7 

1.46 18 1.69 78 1118.4032 0.3710 5 

1.46 18 1.69 114 1118.1140 0.3710 5 

1.46 18 2 54 1125.2866 0.3697 5 

1.46 18 2 78 1118.2943 0.3710 5 

1.46 18 2 114 1115.3532 0.3711 5 

1.46 18 2.46 54 1125.2833 0.3700 6 

1.46 18 2.46 78 1125.2857 0.3697 6 

1.46 18 2.46 114 1118.3570 0.3709 6 

1.46 26 1.69 54 1100.9804 0.3736 6 

1.46 26 1.69 78 1104.0403 0.3730 6 

1.46 26 1.69 114 1106.6723 0.3725 6 

1.46 26 2 54 1102.7815 0.3734 6 

1.46 26 2 78 1106.3295 0.3730 6 

1.46 26 2 114 1102.5365 0.3732 6 

1.46 26 2.46 54 1104.8694 0.3730 6 

1.46 26 2.46 78 1100.3125 0.3736 6 

1.46 26 2.46 114 1101.9713 0.3734 6 

1.46 38 1.69 54 1095.1796 0.3747 7 

1.46 38 1.69 78 1093.4396 0.3749 7 

1.46 38 1.69 114 1097.1749 0.3743 7 

1.46 38 2 54 1097.0867 0.3743 7 

1.46 38 2 78 1097.1580 0.3743 7 

1.46 38 2 114 1095.5828 0.3747 7 

1.46 38 2.46 54 1095.3275 0.3747 8 

1.46 38 2.46 78 1099.0972 0.3743 7 

1.46 38 2.46 114 1094.7728 0.3748 7 
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