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Abstract

American-style options are contracts traded on financial markets. These
are derivatives of some underlying security or securities that in contrast to
European-style options allow their holders to exercise at any point before
the contracts expire. However, this advantage aggravates the mathematical
formulation of an option’s value considerably, explaining why essentially no
exact closed-formed pricing formulas exist. Numerous price approximation
methods are although available, but their possible areas of application as
well as performance, measured by speed and accuracy, differ. A clearing
house offering real-time solutions are especially dependent on fast pricing
methods to calculate portfolio risk, where accuracy is assumed to be an
important factor to guarantee low-discrepancy estimations. Conversely,
overly biased risk estimates may worsen a clearing house’s ability to manage
great losses, endangering the stability of a financial market it operates.

The purpose of this project was to find methods with optimal performance
and to investigate if price approximation errors induce biases in option port-
folios’ risk estimates. Regarding performance, a Quasi-Monte Carlo least
squares method was found suitable for at least one type of exotic option. Yet
none of the analyzed closed-form approximation methods could be assessed
as optimal because of their varying strengths, where although the Binomial
Tree model performed most consistently. Moreover, the answer to which
method entails the best risk estimates remains inconclusive since only one
set of parameters was used due to heavy calculations. A larger study in-
volving a broader range of parameter values must therefore be performed in
order to answer this reliably. However, it was revealed that large errors in
risk estimates are avoided only if American standard options are priced with
any of the analyzed methods and not when a faster European formula is em-
ployed. Furthermore, those that were analyzed can yield rather different risk
estimates, implying that relatively large errors may arise if an inadequate
method is applied.
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Chapter 1

Introduction

1.1 American Options and Risk

F inancial markets consist of various traded instruments such as op-
tions,1 stocks and futures to name a few. In this thesis, our focus

will be directed towards American-style options, where price estimations
become cumbersome since their holders have the right to exercise any time
prior to these financial contracts’ expirations. As a consequence of this,
mathematical formulations of their values involve optimal stopping times,
making them more complex than the European-style counterparts where
exercise is only possible at the time of expiration [1]. It is therefore hard,
if not impossible [2] to derive exact closed-formed pricing formulas, why
simulations and analytical approximations need to be applied.2 Yet this
increases the probability of incorrect pricing, something that may affect an
option portfolio’s estimated risk and hence also capital earmarked to act as
a cushion for potential losses incurred from it.

An example of importance to this thesis that may be affected by this problem
is a clearing house, which will also be the topic of the following section. It acts
as a market’s hub by streamlining trades as well as taking on risks inherited
from portfolios of great values belonging to large financial institutions. To
manage this however, the clearing house acquires collaterals from the insti-
tutions that are based on risk estimations. How sensitive estimated portfolio

1See Chapter 2 for a formal definition of options.
2The American nondividend-payment vanilla call and perpetual options are however

special cases with known closed-form pricing formulas [2].
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Introduction Clearing House

risk is because of incorrect pricing has not been widely investigated since
there is a lack of papers available concerning this subject. However, there
are reasons to believe it depends on the pricing method chosen, portfolio
positions and proportions of American-style options. Should it be sensitive,
a clearing house faces the risk of acquiring too little collateral in order to
manage a large loss, or conversely, too much which could as well be danger-
ous since a financial institution may need the faulty excess in its operation.
It is then important to find and apply robust as well as reliable methods
that can estimate prices with high precision in order to guarantee sound risk
estimates.

1.2 Clearing House

A clearing house (CH) is as mentioned a financial infrastructure that plays
a crucial role when it comes to risk estimations as well as handling traded
instruments like American-style options, and serves to mitigate the risk
they induce [3]. Without clearing houses, trades would become much more
complicated where two counterparties with matching bids would have to
find each other on their own on the market. They would also have to rely
on each other that obligations written in the traded contract will be fulfilled
[3] and keep track of all their outstanding positions. A simplified example
of a market like this is depicted in Figure 1, panel (a), where four market
members (A, B, C and D) have various positions to one another. The arrows
here show their mutual positions of arbitrary values in each trade. In the
event of a defaulting member, an exacerbating effect may arise since it is
very likely that it has also performed trades with other members. The result
of this is that even though only one member had financial difficulties, it
may also cause others to default due to failed incomes needed to cover their
own outstanding positions [4]. With the presence of a CH, the issues stated
above are resolved since the complex web of positions disappears. In place
of one member has to trade directly with another member, it only needs
to interact with the CH since it takes the role as the counterparty to all
members [3] which we see in Figure 1, panel (b).3

Another big benefit with a CH, among others, is that it ensures that
obligations will be met and thereby removes the risk that a member makes a
loss when its de facto counterpart defaults [3]. However, this implies that the

3Accessing membership of the CH is however restricted to financial institutions with
great resources and with good creditworthiness in order to reduce the risk of a member
defaulting [3].
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(a) Trading without clearing.
Each market member has several
positions and counterparties.

Clearing
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(b) The clearing house acts as a
counterparty to all market mem-
bers and nets a clearing mem-
ber’s outstanding positions.

Figure 1.1: Panel (a) shows a market with trades of values marked by ar-
bitrary values, wherein every market member has several counterparties. By
introducing a clearing house, the number of counterparties for each member
reduces to one as shown in panel (b).

CH requires a large amount of capital in order to enable trade settlements
to counterparties a defaulting member indirectly was responsible for. So to
manage potential great losses, a CH has a hierarchical chain of strategies for
exploiting its resources in such situations, designated as the default waterfall
[3]. It consists of several steps in which capital is utilized, but where the
first is the only one associated with this project. This is known as the initial
margin, a certain level of collateral members involved in a trade need to
transfer to the CH and orientate to, such that potential losses most likely
can be covered. It is estimated by considering the worst case scenarios of the
trade’s involved instruments’ values [3, 5]. So, collateral is transferred to the
CH in conjunction with a trade, but the risk level of a member’s portfolio
may alter as its constituting instruments’ values change. In reflection of
this, additional collateral may hence have to be collected in order to align
with the initial margin [5]. Calculations are therefore frequently performed
to estimate the risk in a member’s portfolio, possibly constituting a broad
range of financial instruments, ensuring that a correct amount of collateral
is always acquired to prevent great losses [3].
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Introduction Project Purpose

Since a CH plays a central and important role for the stability of the
financial markets it operates, it is important that the initial margins and
risk calculations are accurate, especially if the managed portfolios are of
enormous values. Would these be too low and a member would default,
it may force the CH to use capital further down the steps of the default
waterfall,4 or even worse, being unable to settle trades since all possible
capital has been drained and in effect default itself. The latter would of
course be a significant crisis for the entire market and luckily this has not
occured often [3]. The fact that a CH works as a backbone for and facilitates
financial markets highlights the importance of reliable risk calculations to
improve its ability to cover losses if a member would default.

1.3 Project Purpose

Cinnober Financial Technology AB develops software solutions to clearing
houses around the world and therefore also deals with risk calculations.
With their real-time clearing solutions, subjects such as initial margins are
updated more often than was previously done before. This enables a CH to
frequently alter the initial margin to match the level of risk a portfolio of
instruments carries, which may vary due to market conditions. The CH can
hence reduce the risk of severe losses it may incur since it can acquire more
collateral on short notice if necessary, but also allow its members to decrease
their collateral, should the level of risk be reduced. This ensures that an
adequate amount of collateral is continuously collected and also that each
member can use its capital more effectively. To enable this, one must apply
accurate pricing methods that are also fast when implemented in a suitable
software.

This project aims to help Cinnober investigate and answer what methods
are best suited to price American-style options accurately when computation
times are limited. Further, they are also interested in how incorrectly priced
American-style options affect a portfolio’s corresponding risk estimate that
is of great importance when determining initial margins. This raises the
questions whether erroneously priced options imply significant errors in
risk estimates and also if these risk estimates deviates too much from the
correct values when a certain percentage of European-style options also
comprises a portfolio. This could be of interest since if the measured risk

4Something that may affect other clearing members financially even though the purpose
of a CH is to prevent this as long as it is possible.
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is acceptable given a certain (presumably high) percentage, or even if it
is independent of such a level, an incorrect way of estimating prices may
enable fast calculations.5 If risks would be unacceptable no matter what,
it is important to adopt a method that ensures the correct amount of risk
collateral is collected in light of market conditions. This project’s purpose
is therefore to explore these questions in order to understand what methods
are most appropriate for real-time clearing and how risk is affected by
incorrectly priced American-style options.

To answer these questions properly, the outline of the thesis will be as follows;
we begin by elaborating the theory regarding both European- and American-
style options and why the latter are problematic in order to get a basic
overview of the subject we will deal with. Subsequently, we carry on by look-
ing at pricing methods that apply the theory dealt in the foregoing chapter,
specifically, we begin with closed-form approximations formulas devoted ex-
clusively to standard/vanilla call and put options. Two numerical methods
will then be presented that are applicable to a broad range of American-style
options, but which are better suited for the ones with more than one under-
lying security due to their inability to produce compelling results within a
reasonable amount of time. This is then followed by how the pricing methods
were implemented and applied for portfolio risk estimations. As a resolution,
an analysis of the obtained results is performed, where also the most impor-
tant findings are stated.

5To be clear, a portfolio consisting of European-style options exclusively is assumed
to have no or negligible risk estimation error, especially when we only consider vanillas
that can be priced exactly with the Black-Scholes formula. So, if a high percentage of
the included options in a portfolio is of European-style, the induced error in risk implied
by deliberately pricing the remaining American-style the same (although erroneously) and
fast way may be negligible.
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Chapter 2

Option Theory

Preface

As was mentioned at the end of the previous chapter, we will now explore
the theory of options in order to shed light on the subject we are about
to deal with. Firstly, we will look at the very basic definition and lastly
have a brief overview of the mathematical definitions surrounding option
pricing that is useful to have seen when we later will look at different pricing
methods.1

We will start by looking at the theory of European-style options and later that
of American-style since they are closely related. In this way we will better
understand their differences and why the field of the latter is so problematic.

2.1 Definition

An option is a derivative of an underlying security or combination of
securities, e.g. stocks, currencies, interest rates. The holder of an option
is the part who buys this financial contract from the issuing counterpart
denoted as the writer. The price paid is determined by the contract’s
underlying security/securities among other explanatory variables. In return

1Remark: Throughout this thesis we will encounter the terms price and value. To
be clear, they mean the same thing. Here though, we are only interested in options’
values/prices for the purpose of risk calculations solely, not selling. The term price may
incorrectly suggest the latter and it is therefore good to clarify the project’s purpose in
detail.
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for paying, the holder has the option to exercise (buy or sell the underlying
security/securities at a price agreed upon in advance) anytime before or
only at the time of maturity, i.e. the contract’s expiration, depending on
if it is of American- or European-style respectively. The writer is however
obligated to fulfill its part written in the contract in compensation for the
received payment [4].

As mentioned above, the holder can exercise the option by buying or selling
the underlying security or securities at a predetermined price known as the
strike price. There are two types of options that distinguish this exercise
decision:

Call The holder has the right but not the obligation to buy the under-
lying security/securities at the strike price.

Put The holder has the right but not the obligation to sell the under-
lying security/securities at the strike price.

Options may be structured in various styles and with different combinations
as was mentioned earlier. The simplest examples are those that only have
a single underlying security, why they are sometimes denoted as vanilla
options [4]. Exotic options are those that in some ways depend on several
underlying securities or for instance, the historic movements of a single
security within their lifetimes.2 These can also be regarded as calls or puts
in their nature, where an example of this can be a basket put option which
gives the holder the choice of selling the underlying securities constituting
the basket to a determined strike price similarly to a vanilla put [6].

The example described above is one of many styles other than plain vanilla
financial contracts that are traded and the majority of all options are in fact
of American-style [4]. Since it is possible to exercise any time within the
lifetime of these options, there is no simple way to price them in contrast to
European-styled.

2.2 Pricing Options

2.2.1 European Options

European-style options do not suffer from an optimal exercise decision and
hence not a vast pricing complexity since there is only one point in time

2A good example is an Asian option whose value depends on the underlying security’s
average value during the option’s lifetime.
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of uncertainty concerning the underlying securities, namely the time of
maturity. Also, there exists a single known value that governs whether
exercise should occur or not, the strike price. These characteristics entail
that pricing an European-style option can be done by closed-formed formulas
or relatively easy (depending on how accurate you want your solution to be)
numerical pricing algorithms.

Perhaps the most applied and known example of this is the Black-Scholes
formula for pricing European vanilla call options from 1973 by Fischer Black
and Myron Scholes [7]. Following the outlines given in [1], they used a set
of preliminary assumptions, omitted here though, and that only two assets
primarily constitute the market, as defined in Definition 2.1 known as the
Black-Scholes model.

Definition 2.1. Black-Scholes Model This model is represented by the
two processes

dBt = rBtdt, (2.1)

dSt = µStdt+ σStdW̄t. (2.2)

Here Bt is a riskless asset, r is the risk-free interest rate and S is the un-
derlying stock price movement following a geometric brownian motion. The
constants µ and σ are the stock’s drift rate as well as volatility respectively.
Time is denoted as t and W̄t is a Wiener process, also known as a Brownian
motion in physics contexts [4].

Since the Wiener process is crucial for our understanding of the assumed
behavior of a stock movement, we also look at its definition as presented by
Björk [1], that is

Definition 2.2. Wiener Process The Wiener process W is defined as

i. W̄0 = 0

ii. The differences W̄u − W̄t and W̄s − W̄r are independent, where r < s ≤
t < u.

iii. W̄t − W̄s ∼ N [0, t− s] given s < t.

iv. The trajectories of W̄ are continuous.

Here N [0, t− s] is the normal distribution with mean 0 and variance t− s.

8
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Based on this, the properties of the Wiener process and that the stock follows
a geometric brownian motion (GBM), we have that the stock price is log-
normally distributed [4] or formally ln(St

Ss
) ∼ N [(µ− σ2

2
)(t− s), σ2(t− s)], as

well as we can write the stock price movement at a point in time as

St = Sse
(µ−σ

2

2
)(t−s)+σ(W̄t−W̄s).

The equation above is a standard way of modeling stock prices in Monte
Carlo simulations and we will in Chapter 4 see a generalization that is used
in two of the numerical methods to be presented.

Returning to the derivation, they then introduce an option value function
Vt(St) contingent on a single underlying stock on this market. By applying
Itô’s lemma3 on the stochastic price process of Vt(St), they ended up with
Black-Scholes equation defined as

Theorem 2.1. Black-Scholes Equation An option value function Vt(St)
that satisfies this equation is free from arbitrage possibilities.

∂V

∂t
+ rS

∂V

∂S
+

1

2
S2σ2∂V

2

∂S2
− rV = 0, (2.3)

VT (ST ) = Φ[ST ], (2.4)

where Φ[ST ] is the contract’s payoff function at the time of maturity t = T
and serves as the boundary value.

where V ’s and S’s dependence of t have been have suppressed to ease nota-
tions [1]. From this partial differential equation (PDE), V can be shown to
be

Theorem 2.2. Risk Neutral Valuation The value of the financial contract
under risk neutral condition.

Vt(St) = e−r(T−t) Et,S

[
Φ[ST ]

]
(2.5)

Here S is driven by a risk neutral process.

by using the Feyman-Kač proposition [1].4 Important to note is that the
expection value is taken with t and St fixed, as to explain the subscripts, and

3Itô’s lemma describes the stochastic differential of a process that is contingent on
another process with a particular stochastic differential [1].

4For a thorough discussion surrounding the Feyman-Kač proposition and the general
derivation, see [1].
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under risk neutral conditions in order to avoid arbitrage5. As a consequence
of this, the S-process leading to the solution in Equation (2.5) is defined as

dSt = rStdt+ σStdWt (2.6)

and not as in Equation (2.2) even though this was used to derive the final
solution. In Equation (2.6) we also see that there is a new Wiener process,
W , under risk-neutral valuation in place of the former W̄t to notify this fact.

Using Equation (2.5), different types of explicit value functions can be
derived, although limited by how complex Φ[ST ] is. One should remember
that this derivation and the PDE was solved for a contract contingent on
a single underlying stock and that a d-dimensional problem would require
a differential equation that is likely too complex to be solved analytically.
Yet, the common thing with one-dimensional problems is that the general
solution to every PDE looks the same and as in Equation (2.5), only that
the payoff function is now dependent on more than one stock, that is
Φ[S1

T , S
2
T , ..., S

d
T ] [1].

If we return to the simpler vanilla call with strike price K, the payoff
function would be defined as Φ[ST ] = max(ST −K, 0) and generate a payoff
diagram in resemblance to Figure 2.1, panel (a). In panel (b), we can also
see the payoff diagram of a put option with Φ[ST ] = max(K − ST , 0) just to
get a visual feeling of how the two option types differ. In panel (a), we see
the holder’s payoff at the option’s time of maturity and also the price paid
to the writer when he or she issued it, this clarifies the fact that if the payoff
function is zero, there is still an incurred loss of C paid for the contract. The
writer’s payoff function is intuitively the opposite and would want the stock
price to be lower than the strike such that he or she avoids the obligation
to sell the underlying stock at a price lower than that can be done on the
market. The same arguments also apply to the put option where its price is
set to P .

5The possibility to make a profit by trading securities that are mispriced [4].
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Φ[ST ]− C

ST
−C

K

(a) European vanilla call with
strike price K and price C.

Φ[ST ]− P

ST

K − P

−P
K

(b) European vanilla put with strike price
K and price P .

Figure 2.1: Vanilla European options with their respective payoff functions
Φ(ST ) translated downward by the prices paid to hold the contracts.

Using the call’s payoff function just discussed, Black and Scholes derived in
their paper [7] the arbitrage free price of a call, C.

Proposition 2.3. Black-Scholes Formula The arbitrage free value of a
call option Ct(St) at time t is

Ct(St) = StN
[
d1

]
− e−r(T−t)KN

[
d2

]
, (2.7)

where N [·] denotes the standard normal cumulative distribution function.
The arguments d1 and d2 are defined by

d1 =
1

σ
√
T − t

{
ln

(
St
K

)
+

(
r +

1

2
σ2

)
(T − t)

}
, (2.8)

d2 = d1 − σ
√
T − t. (2.9)

The Black-Scholes formula is one example of an exact formula for an option
and is also used to price put options, with a payoff function as panel (b) in
Figure 2.1, by using the put-call parity.6 When it comes to pricing options
on dividend-paying stocks though, the formula in Equation (2.7) is slightly
changed, as is the approach to derive it and this was first performed by
Merton [8] the same year, 1973. The only difference we have to bother
about however, is that we interchange St in Equation (2.7) and (2.8) with

6An expression that couples the option prices of a put and a call with the same under-
lying security, defined as Ct(St)− Pt(St) = St −Ke−r(T−t).
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Ste
−δ(T−t) where δ is the continuously compounded dividend yield [4].

In contrast, exotic options may lack closed form solutions as was previously
discussed, but since there is only one exercise opportunity and the fact that
the risk-neutral valuation formula looks the same, methods such as Monte
Carlo simulation can address this problem without that much of a hassle.

2.2.2 American Options

If the complexity of pricing options increases for exotic European options, it
is already remarkably high for the vanilla American calls and puts. So why
is that? Since exercise is possible any time prior to the time of maturity,
there is an imposed constraint that the option value must be in excess of
or equal to the value of its payoff function throughout its entire lifetime
in order to avoid arbitrage. That is, would the American-style option be
erroneously valued and thus not fulfill this, a profit could be made by buying
and shortly thereafter exercise it. Just before though, one must net the
position by either short sell or buy the underlying security at the market
price depending on if it is a call or a put and thus, all these operations then
result in an arbitrage payoff [9]. This important constraint must hence be
embodied in the problem formulation, aggravating it considerably.

For the one dimensional problem, this constraint alters the Black-Scholes
Equation in Equation (2.3) to an inequality since the former boundary con-
dition is supplemented with two more. Because we will be working with
dividends henceforward, we jump directly to the modified PDE that includes
a constant continuous dividend7 factor δ seen in the following boundary value
problem [1, 9].

Proposition 2.4. The American one dimensional problem with payoff func-
tion Φ[St] satisfies

∂V

∂t
+ (r − δ)S∂V

∂S
+

1

2
S2σ2∂V

2

∂S2
− rV ≤ 0, (2.10)

VT (S) = Φ[ST ], (2.11)

Vt(Sf (t)) = Φ[Sf (t)], (2.12)

∂V (Sf (t))

∂Sf (t)
=
∂Φ[Sf (t)]

∂Sf (t)
, (2.13)

where S ∈ [0, Sf ] for dividend-paying calls and S ∈ [Sf ,∞) for puts and
Sf (t) is continuously differentiable.

7To see derivation of the Black-Scholes Equation with dividends, see [1].
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As we can see, the boundary value problem is dependent on an unknown free
boundary, Sf , whose characteristics depends on option-style. This boundary
defines a region in which the option is optimally exercised, but since it is
unknown, it is practically impossible to find a specific closed-form valuation
formula based on Proposition 2.4. Despite this limitation, a general solution
exists and whose formulation is in close resemblance to the one for European
options seen in Equation (2.5). This solution is seen in the following proposi-
tion and is deduced from optimal stopping theory, which however is a subject
beyond the scope of this project.

Proposition 2.5. Based on optimal stopping theory, we have the American
option value Vt(St) defined as

Vt(St) = sup
t≤τ≤T

e−r(τ−t) Et,Sτ

[
Φ[Sτ ]

]
, (2.14)

where the expected value is taken in with respect to risk-neutral valuation and
τ is the optimal stopping time defined by

τ = inf{t ≥ 0 : St = Sf (t)}.

Specifically, τ is the first time the underlying stock hits the free boundary
[1, 6].

To visualize this, consider an example with the American vanilla call option
with dividend payments (since the nondividend-paying call collapses to its
European counterpart) and its exercise boundary as in Figure 2.2.

In Figure 2.2, we see a scenario in which the underlying stock price S moves
until it hits the free exercise boundary Sf at the optimal stopping time τ ,
where it is therefore exercised to yield an immediate payoff of Sτ − K. So
why is it a good idea to exercise early? Perhaps the most evident example
is to consider a put option when its underlying stock price is close to zero.
Then it can be favorable to exercise because the maximum possible profit is
at hand and waiting any longer increases the risk that the stock price will
rise, hence reducing the possible gain [4]. When it comes to call options the
discussion becomes less evident and it is only when the underlying stock
pays dividends this becomes optimal as previously noted.

Since it can be optimal to exercise early, this extra benefit must be taken
into account when valuing the American-style options in order to avoid
arbitrage opportunities. The main problem arising as a consequence of
this is the unknown free boundary and that the Black-Scholes equation
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S

t

Sτ

τ T

K

S0

Continuation zone

Early exercise zone

Sf (t)

Figure 2.2: American vanilla call option (on a dividend-paying stock) with
strike price K and its optimal exercise boundary Sf (t). We also see its un-
derlying stock’s movement and the optimal time of exercise at t = τ . The
entire blue shaded area marks the continuation zone where the option is not
exercised optimally.

becomes an inequality. Even more problematic is the case when we look
at d-dimensional American option problems and their free boundaries, but
as in the European case, the expression in Equation (2.14) that solves the
PDE can be applied to these as well. It is only a question of how the payoff
function is defined, why Φ[Sτ ] can be replaced by Φ[S1

τ , S
2
τ , ..., S

d
τ ] [6] hence

giving us a general guideline to find the values of American-style options,
something that will be elaborated in the upcoming chapters.

In these chapters we will explore the theory and procedures of specifically cho-
sen closed-form approximation formulas and also three numerical approaches.
Two of these numerical methods also extend to the even trickier exotic op-
tions to which no known approximation formulas exist, thus making them
more flexible. There are however a lot of available models to tackle the pric-
ing problem and a delimitation has been made by considering possible speed,
complexity, precision and generality. The candidates that have been found
most applicable and fitted these descriptions will now be presented in the
subsequent chapters, beginning with closed-form approximations formulas
devoted exclusively to options on a single underlying security.
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Chapter 3

Closed-Form Approximation
Methods

Preface

Here we will look at the best closed-form approximation formulas available
today that are limited to American vanilla options. The fact that these
pricing methods are analytical makes them attractive from a computational
speed point of view compared to numerical methods and after all, we seek
methods where the combination of this and precision is optimized.

The methods’ full underlying theories are more or less abstract, tedious and
are for obvious reasons better to explore in the original papers, why much of
it will be omitted. However, basic assumptions in order to understand their
approaches are presented and most importantly, their rather awful expres-
sions.

3.1 Bjerksund and Stensland

We begin by looking at an approximation method by Bjerksund and
Stensland [10] originally developed in 1993 but later enhanced 2002, why
we will only look at the resulting formulas from the latest version in a
moment. First however, it is useful to note some basic facts about the
two models and their main difference. So, in the two models, they use
the same assumptions as in the Black-Scholes methodology but with the
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supplement of a continuously compounded dividend yield δ as in Merton [8]
and they also assume that the option price is generally defined by Equation
(2.14). Furthermore, in their first model from 1993 they approximate the
true (but still unknown) exercise boundary, Sf , for a call option discussed
in the previous chapter with a simple horizontal line. With a simple
exercise boundary of this sort, they derived a formula that resembles a
European up-and-out call [10]. One might argue that a horizontal line is an
exceptionally bad approximation if we compare it to Figure 2.2 in Chapter
2, however, Glasserman [6] actually discusses that the imposed exercise
boundary’s location and form compared to the true one is not too crucial
for a model’s precision. Yet, this does not mean that a boundary that
has got the shape of the true boundary does not outperform the simpler one.1

Based on this fact, the major improvement by Bjerksund and Stensland in
their 2002 version was to include another line and separate the two into the
time periods I and II at different vertical displacements,2 together better
mimicking the decreasing function we saw in Figure 2.2. Hence we have that
the exercise boundary Sf (t) will be defined as

Sf (t) =

{
X, t ≤ t′

x, t′ < t ≤ T.

An example similar to the one given by Bjerksund and Stensland [10] depict-
ing how Sf ’s two lines are placed is seen in Figure 3.1.

As was mentioned previously, we omit the rather complex theory of this
model and therefore jump abruptly to the long expressions resulting from
the derivation made by Bjerksund and Stensland as well as stating almost
exactly what is given in [10], although with notations matching this thesis.
So, to price a vanilla call option with price c we have the main formula

c = α(X)Sβ0 − α(X)ϕ(S0, t
′ | β,X,X) + ϕ(S0, t

′ | 1, X,X)

−ϕ(St0 , t | 1, x,X)−Kϕ(S0, t
′ | 0, X,X) +Kϕ(S0, t

′ | 0, x,X)+

α(x)ϕ(S0, t | β, x,X)− α(x)Ψ(S0, T | β, x,X, x, t′)+
Ψ(S0, T | 1, x,X, x, t′)−Ψ(S0, T | 1, K,X, x, t′)

−KΨ(S0, T | 0, x,X, x, t′) +KΨ(S0, T | β, 0, K,X, t′).

(3.1)

1It is reasonable to believe that a function better resembling the true optimal exercise
boundary than a simple horizontal line, or the like, entails a too cumbersome problem
to be solved analytically which is a plausible explanation since such models seem to be
non-existent.

2In all pricing methods presented in the thesis, time is specified in years.
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S

t

X

t′

x

K

T

Continuation zone

Early exercise zone

I

II

Sf (t)

Figure 3.1: Representation of the approximate exercise region composed of
two horizontal lines. The entire shaded area in blue denotes the continuation
region.

Here α and β are defined as

α(x̃) = (x̃−K) x̃−β,

β =
(1

2
− ξ

σ2

)
+

√( ξ
σ2
− 1

2

)2

+ 2
r

σ2
,

where ξ = r− δ. Further, we have two values defining the exercise boundary
lines seen in Figure 3.1;

X = B0 + (B∞ −B0)(1− eh(T )), (3.2)

x = B0 + (B∞ −B0)(1− eh(T−t′)) (3.3)

and Bjerksund and Stensland [10] sets t′ to

t′ =
1

2

(√
5− 1

)
T.

Appearing in the expressions of Equations (3.2) and (3.3) we have

B∞ =
β

β − 1
K,

B0 = max
[
K,
( r

r − ξ

)
K
]
,

h(t̃) = −
(
ξt̃+ 2σ

√
t̃
)( K2

(B∞ −B0)B0

)
.
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We now continue by looking at the two functions ϕ and Ψ as well as their
auxiliary functions, beginning with ϕ defined as

ϕ(S0, T | γ,H,X) = eλTSγ0

(
N
[
−

ln(S0/H) + (ξ + (γ − 1
2
)σ2)T

σ
√
T

]

−
(X
S0

)κ
N
[
−

ln(X2/(S0H)) + (ξ + (γ − 1
2
)σ2)T

σ
√
T

])
.

(3.4)

In Equation (3.4), λ and κ are defined by

λ = −r + γξ +
1

2
γ(γ − 1)σ2,

κ =
2ξ

σ2
+ (2γ − 1),

respectively. With this in mind, we are now ready to look at the final function
Ψ defined as

Ψ(S0, T | γ,H,X, x, t′) = eλTSλ0

(
N1

[
[d1, D1]

]
−
(X
S0

)κ
N1

[
[d2, D2]

]

−
(
x

S0

)κ
N2

[
[d3, D3]

]
+

(
x

X

)κ
N2

[
[d4, D4]

])
,

where we have the two 2-D multivariate normal cumulative distribution
functions N1[·] and N2[·]. These are distributed as N1[~0,Σ1] respectively
N2[~0,Σ2] with covariances defined as

Σ1 =

 1
√

t′

T√
t′

T
1

 and Σ2 =

 1 −
√

t′

T

−
√

t′

T
1

 .

After all these tedious expressions, we conclude by looking at the final ones
appearing as arguments of the 2-tuple vectors evaluated in the two multi-
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variate normal cumulative distributions, that is

d1 = −
ln(S0/x) + (ξ + (γ − 1

2
)σ2)t′

σ
√
t′

,

d2 = −
ln(X2/(S0x)) + (ξ + (γ − 1

2
)σ2)t′

σ
√
t′

,

d3 = −
ln(S0/x)− (ξ + (γ − 1

2
)σ2)t′

σ
√
t′

,

d4 = −
ln(X2/(S0x))− (ξ + (γ − 1

2
)σ2)t′

σ
√
t′

,

D1 = −
ln(S0/(H)) + (ξ + (γ − 1

2
)σ2)T

σ
√
T

,

D2 = −
ln(X2/(S0H)) + (ξ + (γ − 1

2
)σ2)T

σ
√
T

,

D3 = −
ln(x2/(S0H)) + (ξ + (γ − 1

2
)σ2)T

σ
√
T

,

D4 = −
ln(S0x

2/(HX2)) + (ξ + (γ − 1
2
)σ2)T

σ
√
T

.

With all expressions given above, we are now able to price American vanilla
call options, but in order to price corresponding put options, Bjerklund and
Stensland [10] introduce a transformation defined as

p(S0, K, T, r, ξ, σ) = c(K,S0, T, r − ξ,−ξ, σ),

where p is the put price. The input parameters seen above implicitly alter
the exercise boundary to be an increasing function and of course also the
payoff function in contrast to what characterizes a call option.

We thus have explicit expressions enabling us to price both call and put
options without the need of simulation, which is a good thing when many
types of vanilla options have to be priced in a short amount of time as is
the case of portfolio risk estimation in real-time clearing. Since time and
precision are desirable, we will look at another two methods for comparison
purposes and where we begin with the one developed by Barone-Adesi and
Whaley.
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3.2 Barone-Adesi and Whaley

In this model from 1987 by Barone-Adesi and Whaley [11] lies Black and
Scholes’ model assumptions once again as a foundation for the derivation.
But the distinction here compared to the Bjerksund-Stensland model is that
Barone-Adesi and Whaley do not impose an exercise boundary in advance,
rather, they start by assuming that both the European and American vanilla
options follow the same partial differential equation.

To be more concrete, remember the PDE we saw in the previous chapter for
American options; the equality was to capture the behavior of the European
case, whereas the inequality handles the American characteristics of the op-
tion. The latter is because there might be a point in time where early exercise
is possible, hence invoking the potential premium value it implies. Barone-
Adesi and Whaley, however, work only with the equality and discusses that

ε(S, t′) = V A
t′ (S)− V E

t′ (S) (3.5)

also follows this PDE and where now t′ = T−t, V A
t′ (S) is the American option

price and V E
t′ (S) its European counterpart. Suppressing ε(S, t′)’s dependence

of t′ and S, we have

∂ε

∂t′
+ ξS

∂ε

∂S
+

1

2
S2σ2 ∂ε

2

∂S2
− rε = 0.

They then perform a few transformations of this PDE and state that the
solution can be written in the form of

ε(St′ , T ) = h(t′)f(S, t′) (3.6)

as well as setting h(t′) = 1 − e−rt
′
. Since this is the most crucial part

in their approach, the derivations that follow are omitted to save space.
Nevertheless, they end up with a PDE where they are able to neglect a term
that, based on the properties of Equation (3.6), approaches zero in the limit
where the option either have got a very short or very long time to maturity.

Because this term vanishes, what is left is a second-order ordinary differential
equation (ODE) which, regarding the complexity of American options, is
relatively easy to solve. The solution to that ODE is then substituted in
Equation (3.5), solved for V A

t′ (S) and subject to the boundary conditions we
saw in the previous chapter. Nevertheless, using these boundary conditions
the problem of an unknown boundary (stock price) defined as Sf still
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remains.3

One might think that we are back to where we started, but using the bound-
ary conditions and the fact that the option is exercised exactly when the
stock price hits Sf , they end up with the nonlinear equation

φ(Sf −K) = V E
t′ (Sf ) + φ

[
1− e−δt′N [φd(Sf )]

] Sf
λ
, (3.7)

where

d(Sf ) =
ln(Sf/K) + (ξ − σ2

2
)t′

σ
√
t′

λ =
[
− (β − 1) + φ

√
(β − 1)2 + 4

α

h
)
]
/2.

Here α = 2r
σ2 , β = 2ξ

σ2 , φ = 1 for calls and φ = −1 for puts. So with Equation
(3.7) we are not lost, on the contrary, we have an equation that can be solved
implicitly by using some relatively easy numerical method. Important to
note here is that the exercise boundary Sf is not the same for the put and call
as previously mentioned, this should be apparent by the different expressions
(based on φ) from which they are solved. However, the fact the same notation
is used for the two may raise confusion and is therefore good to bear in mind.

At this point, it is worthwhile to highlight the distinction between the two un-
til now presented models where Bjerksund and Stensland from the very start
impose a specific form of the exercise boundary. In contrast, Barone-Adesi
and Whaley instead obtain a boundary value Sf implicitly from Equation
(3.7) as a consequence of their different approach. So, once this boundary
value has been obtained numerically, we obtain the American option price
using the solution for V A

t′ (S) defined as

V A
t′ (S) =

{
V E
t′ (S) + A(S/Sf )

λ, φ(Sf − S) > 0

φ(S −K), φ(Sf − S) ≤ 0
(3.8)

and where A = φ
(Sf
λ

)[
1− eδt′N [φd(Sf )]

]
.

We now have expressions with which we can calculate American option prices
that although require us to calculate Sf by Equation (3.7) in advance. To

3Previously Sf denoted a decreasing (increasing) function of time for the American call
(put). In this model it is just a single stock price and not a function, but since it has got
the same meaning, we stick to the same notation.
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do that, we also need to make an initial guess and Barone-Adesi and Whaley
use the following for a call option

Sf = K + [Sf (∞)−K][1− eh∞ ]

where

Sf (∞) =
K

1− 1/λ∞

λ∞ =
[
− (β − 1) + φ

√
(β − 1)2 + 4α)

]
/2.

h∞ = −φ(ξt′ + 2σ
√
t′)

[
K/[φ(Sf (∞)−K)]

]
.

For the put option, we instead use the similar expression

Sf = Sf (∞) + [K − Sf (∞)][1− eh∞ ].

Thus, we can with the formulas above price American vanilla options rela-
tively easy and fast even though the method requires us to find Sf numeri-
cally, which by all means are no heavy calculations. In addition, the method
is based on the fact that a term is omitted as a consequence of being close to
zero when using either a very short or long time to maturity, why it should
provide good estimations in those specific cases. An estimated price when
using a time maturity that is in between those limits might not be as accu-
rate and we will therefore move on to the closely related method by Ju and
Zhong formed to address this issue.

3.3 Ju and Zhong

Here we have a pricing method that enhances the model by Barone-Adesi
and Whaley and which was presented by Ju and Zhong [12] in 1999.
Specifically, they begin by assuming that the difference in Equation (3.5) can
be described by the PDE from the previous chapter using only an equality,
that is, in accordance with the Barone-Adesi and Whaley model. They then
assume that the solution can be written in resemblance to Equation (3.6),
but it is also here the two methods differ.

Ju and Zhong however, set that f(S, t′) = f1 + f2 where the case of f2 = 0
entails the same solution as in the previous model. Keeping this supplemental
function though, it will serve to correct the solution implied by f1 = A(S/Sf )

λ

mainly in between the limits where the discussed term in the PDE does not
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vanish. They then set f2 = εf1 where ε is a correction parameter and assumed
to be a small number. Using this, they end up with a new PDE where they
neglect a derivative term involving ε as well as making the simplification that
1+ε is constant. By using these approximations, they obtain an ODE slightly
different to the one of the Barone-Adesi and Whaley model as a consequence
of including f2. Using the solution for this ODE, plugging it into Equation
(3.5) and solving for V A

t′ (S) as before we get

V A
t′ =

{
V E
t′ (S) +

hA(S/Sf )λ

1−b(ln(S/Sf ))2−c ln(S/Sf )
, φ(Sf − S) > 0

φ(S −K), φ(Sf − S) ≤ 0,
(3.9)

where hA = φ(Sf −K)− V E
t′ (Sf ). Further we have

b =
(1− h)αλ′

2(2λ+ β − 1)
,

c = − (1− h)α

2λ+ β − 1

[ 1

hA

∂V E(Sf )

∂h
+

1

h
+

λ′

2λ+ β − 1

]
,

λ′ = − φα

h2
√

(β − 1)2 + 4α
h

,

∂V E(Sf )

∂h
=
Sfn[d(Sf )]σe

ξt′

2r
√
t′

− φδSfN [φd(Sf )]e
ξt′/r+

φKN
[
φ(d(Sf )− σ

√
t′)
]

and n[·] is the normal probability density function. Finally, the last
unknown here is the exercise boundary Sf and it is once again found by
solving Equation (3.7) numerically due to simplifications made by Ju and
Zhong [12].4

However, these expressions do not apply when r = 0, why we have the
following formulas for a call in that scenario;

λ =
[
− (β − 1) + φ

√
(β − 1)2 +

8

σ2t′
]
/2,

b = − 2

σ4t′2
[
(β − 1)2 + 8

σ2t′

] ,
4Conveniently, this also means that we use the same initial guesses as in the Barone-

Adesi and Whaley model.
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c = − φ√
(β − 1)2 + 8

σ2t′

(
Sfn[d(Sf )]e

−δt′

hAσ
√
t′

− φ2δSfN [φd(Sf )]e
−δt′

hAσ2

2

σ2t′
−

4

σ4t′2
(
(β − 1)2 + 8

σ2t′

)).
Despite this special case for a call option, Ju and Zhong [12] discuss that
it should be sufficient to use the original expressions with an interest rate
close to zero, i.e. the limit value.

To summarize, by including the correction parameter f2 instead of using
merely f1 corresponding to the function in Equation (3.6), this method
better approximates prices in regions where the assumptions made by
Barone-Adesi and Whaley are weak, that is in situations where times to
maturities are not very long or short. Further, since this model is based on
Barone-Adesi Whaley, it should perform about equally well regarding speed
and perhaps even better when it comes to reliability in precision.

Common for all methods presented in this chapter is the lack of ability to price
high-dimensional and exotic American options, a subject that aggravates the
complexity even more as we already know. We will therefore move on and
look at a pair of methods that can handle this, but which use numerical
schemes instead of closed-form analytical expressions.
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Chapter 4

Numerical Methods

Preface

Throughout this chapter we will look at several numerical methods to
which we can approximate Bermudan options. These are characterized
by a limited amount of exercise opportunities compared to the infinitively
many of American options within their respective lifetimes. However, using
numerical methods to price the latter require us to discretize time and
consequently also the spacing between exercise opportunities. In addition,
increasing the amount of exercise opportunities (i.e. using smaller time
steps to mimic continuous time) will logically improve the following pricing
methods’ estimates and thus approach the true values, but unfortunately to
the price of heavier computations.

Two of methods presented below are possible to apply for both exotic and
vanilla options, but mostly for the former due to their inability to perform
well in precision and speed simultaneously.1 Before we explore these however,
we will take a look at the Binomial Tree method limited to vanilla options.

1Since we have already looked at closed-form approximation formulas that intuitively
are fast, we consider the numerical methods exclusively suited for exotic options where
approximation formulas are non-existent.
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4.1 Binomial Tree

Even though the primary focus of the selected numerical methods is to
tackle the more complex exotic options, we will here begin with a method
limited to vanilla options that is also relatively simple, namely the Binomial
Tree by Cox, Ross and Rubinstein [13] from 1979. This method is commonly
used as a benchmark in papers presenting new option pricing methods since
its estimates converge to the true values when using infinitesimal small time
steps [4], that is, when the number of exercise opportunities approaches
infinity as a genuine American-style option. However, even if the Binomial
Tree estimates are often regarded as true values when the time step is
sufficiently small (∼ 1

10 000
), they come at a high price; long computational

times. This is a consequence of the trees’ exponential growth, something
that is not appropriate when speed is an important factor. We will briefly
look at this model as presented by Hull [4] since it will also here work as a
benchmark to vanilla calls and puts in the analyses to come.

The simple idea of the method is that the initial stock price St0 either in-
creases or decreases with growth factors u and d respectively (u > d), where
d = 1

u
. This results in that the tree recombines meaning that, given the ini-

tial price, an upward movement followed by a downward equals a downward
movement followed by a upward. There are also assigned probabilities to the
events occurring, where{

u, with probability p

d, with probability 1− p.

Similar to the Black-Scholes model we must use risk-neutral valuation and
extend this to the idea that the stock price evolves with a drift rate equal
to the risk-free interest rate r minus any possible dividend yield δ in order
to avoid arbitrage possibilities [4]. We therefore impose the restriction that
the discrete expectation value of the growth rate described by the up and
down factors matches the continuously compounded arbitrage-free rate in
the following way

pu+ (1− p)d = e(r−δ)∆t, (4.1)

where ∆t = ti+1 − ti is the discretized time step. Conversely, would we
have an up factor return of u < e(r−δ)∆t , we could short sell the stock and
invest it at the risk-free interest rate r, or contrary, if d > e(r−δ)∆t we could
borrow money and invest it in the stock. That is, both cases yield unwanted
arbitrage payoffs.
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Hull [4] uses Equation (4.1), reshuffles it and finds that new expression’s
variance is

pu2 + (1− p)d2 − e2(r−δ)∆t.

Assuming also that the stock price is log-normally distributed as discussed
in Chapter 2, we match the variance defined there with the new expression’s
equivalent in the following way

pu2 + (1− p)d2 − e2(r−δ)∆t = σ2∆t,

where σ is the volatility of the underlying stock. Given these statements, it
is possible to derive the important parameters needed to construct the tree
which is defined in [4] accordingly

p =
a− d
u− d

(4.2)

u = eσ
√

∆t (4.3)

d = e−σ
√

∆t (4.4)

a = e(r−δ)∆t, (4.5)

from which we can construct the tree by

Sj,i−jti = St0u
jd i−j, j = 0, 1, ..., i, (4.6)

where i is the time step index. Using Equation (4.6) with the auxiliary
expressions shown in Equations (4.2-4.5), we are able to construct a tree
similar to the one seen in Figure 4.1.

Once we have constructed the tree of stock prices, we consider the option
values belonging to the nodes at the time of maturity, tm, as known and
equal to the payoff function Φ[Sj,i−jtm ]. In the example shown in Figure 4.1,

we therefore set the node values to Φ[Sj,i−jt3 ]. At times t < tm, we proceed
using dynamic programming by working through the tree from the end with
the known values toward the root node and sought option price at t0 by using

V j,i−j
ti = max

[
Φ
[
Sj,i−jti

]
, e−r∆t E

[
Vti+1
|Sj,i−jti

]]
. (4.7)

In this equation, it is worthwhile to point out the expression
e−r∆t E

[
Vti+1
|Sj,i−jti

]
, which is known as the continuation value and is

defined as the discounted expected value of the two option values emanating
from node {j, i− j} given Sj,i−jti . That is, it is the option’s present value as
a consequence of refraining immediate exercise and thereby holding it until
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St0 , Vt0

S10
t1

S01
t1

S20
t2

S02
t2

S30
t3

S03
t3

S11
t2

S21
t3

S12
t3

V 10
t1

V 01
t1

V 20
t2

V 02
t2

V 11
t2

Φ[S30
t3

]

Φ[S21
t3

]

Φ[S12
t3

]

Φ[S03
t3

]

t0 t1 t2 t3

Figure 4.1: The figure depicts a binomial tree with three time steps. The
interior nodes which are highlighted with grayish color is to emphasize the
fact that the stock values at these nodes are already calculated since the tree
recombines. Remark: The superscripts denote number of up and down steps.

the following time step.

After having seen the example above it is worth to remark a key feature
of the specific dynamic programming employed in this and the models to
come, namely that we do not have to impose an unknown and presumingly
complicated exercise boundary, nor do we need to find one implicitly. It
is simply not necessary when we model the underlying stock(s) and this
points out a big difference compared to the analytical approximation methods
elaborated in the previous chapter. Returning to the continuation value, we
will in the two upcoming numerical models see that this concept is also
crucial, but where the ways we evaluate it differ. In this model though, we
utilize the up and down probabilities shown above and assign those to the
two option values at time ti+1 emanating from the node in question at ti.
In Example 4.1.1, we see how we apply these probabilities to estimate the
expectation values when we as here work with discrete events.
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Example 4.1.1. Continuation value. Consider Figure 4.1 and specifically
node 20. Assume that we know the probability of an up move p and we want
to use Equation 4.7 to find the node value V 20

t2
. Since the terminal nodes

30 and 21 are known (V 30
t3

= Φ[S30
t3

] and V 21
t3

= Φ[S21
t3

]) we estimate V 20
t2

=

max
[
Φ
[
S2,0
t2

]
, e−r∆t

[
pV 30

t3
+ (1 − p)V 21

t3

]]
, revealing how we can calculate a

continuation value. �

If the option would be an European vanilla call or put, the continuation
statement would be the only thing we would have to bother about when we
recursively work toward the root node since immediate exercise is not allowed.
Yet, since we are analyzing American options, there might be nodes where
early exercise is favorable and we must therefore keep track of the larger
of this premium value and the discussed continuation value, explaining the
necessity of a maximum function in Equation (4.7).

4.2 Random Tree

This Monte Carlo method by Broadie and Glasserman [14] from 1997 creates
a non-recombining tree since the tree nodes represented by the underlying
stock(s) price movements are randomly generated by using a geometric
brownian motion (GBM) formula in contrast to the deterministic up and
down probabilities we saw earlier in the Binomial Tree. Consequently, a
large number of trees and thereby tree estimates must be replicated in
order to approximate the true value by the law of large numbers. Another
difference is that this method allows an arbitrary number of branches, b,
emanating from every node, making the tree potentially extremely large.

To calculate the value of the option, we begin at the time of maturity, tm and
work backward in time in a similar fashion as in the Binomial Tree method.
Here though, we use a generalized version of the dynamic programming ex-
pression we saw earlier, defined as

Vt(St) = max
[
Φ
[
St
]
, e−r∆t E

[
Vt+1(St+1)| St

]]
, (4.8)

to account for options contingent on multiple underlying stocks. Hence we
use the notation St = {S1

t , S
2
t , ..., S

d
t } where d is the number of underlying

stocks.
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4.2.1 Generating Stock Prices

To create stock price paths for every underlying stock in every replication,
we will apply a generalized version of the GBM we saw in Chapter 2 (that
also invokes dividend yields) and under risk-neutral valuation.2 This means
that each stock will have drift rate of r − δβ, where β = 1, 2, ..., d denotes
which stock. With this in mind, the generalized GBM takes the form of

Sβti = Sβti−1
e(r−δβ− 1

2
σ2
β)(ti−ti−1)+

√
ti−ti−1

∑d
k=1 Aβk Zk,i , (4.9)

where i = 1, 2, ...,m. Further on, we will assume that time is discretized uni-
formly by replacing ti−ti−1 with ∆t. The vector Zi contains independent and
identically distributed (i.i.d.) random variables Zi = [Z1,i, Z2,i, ..., Zd,i]

T ∼
N [~0, I ], where ~0 is the zero vector and I is the identity matrix. Moreover, A
is the Cholesky matrix capturing the stocks’ mutual correlations, ρ, and is
derived from the relation

AAT = Σ =

 σ2
1 . . . ρ1dσ1σd
...

. . .
...

ρd1σ1σd . . . σ2
d

 (4.10)

by using the positive definite covariance matrix Σ of the stocks’ returns [6].
The lower triangular Cholesky matrix A is thus the multivariate equivalence
of volatility we have to apply when we generate paths for several, possibly
correlated, stocks simultaneously.

We will soon see how we can construct a random tree of stock prices generated
by the GBM in Equation (4.9) and of course also its corresponding option
values at time t0, which in fact are two for every replication. For starters, we
must therefore understand how these two values are obtained and why they
are needed.

4.2.2 Low and High Estimator

It may sound strange that we will need to calculate two prices for every
replication in order to estimate the true value V of the option, but valuing
the option as we did in the Binomial Tree will induce a high bias V̂ , which

2Since the general solution to the PDE describing an American-style option’s value we
saw in Chapter 2 lies as a foundation for the numerical methods in this chapter and the
fact that it is under risk-neutral valuation, the underlying stocks must have drifts equal
to the risk-free interest rate, subtracted by possible stock-specific dividend yields, when
we generate their respective paths.
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is why we also need a low bias estimator v̂ to create an unbiased confidence
interval [14]. The expression in Equation (4.8) is although valid for both the
high and low estimator, but their strategies as to estimate the continuation
value in it differ which we will soon see. Remark: since we will work
recursively with estimated values, hats has been introduced to distinguish
them from the true values.

Before jumping directly to these strategies, we introduce similar notation as
Glasserman [6], where j1j2...jm and ji ∈ {1, 2, ..., b}, in order to trace every
node from the overall parent node at t0. Since we will work backward in time,
our ”initial values” will be the payoff function values at the time of maturity,
tm, precisely as in the Binomial Tree and these are the same for both the
high and low estimator, i.e.

V̂ j1j2...jm
tm = v̂j1j2...jmtm = Φ

[
Sj1j2...jmtm

]
. (4.11)

For t < tm however, the high estimator is similar to what we saw in the
Binomial framework only that we do not work with probabilities anymore,
that is

V̂ j1j2...ji
ti = max

[
Φ
[
Sj1j2...jiti

]
,

1

b
e−r∆t

b∑
j=1

V̂ j1j2...jij
ti+1

]
(4.12)

and it is possible to show that this expression is biased high by using
Jensen’s inequality,3 but the proof is formally given in [6].

To adjust for the inconvenience of a biased high-estimator, the low estimator
for t < tm is set to

v̂j1j2...jiti,k
=

{
Φ
[
Sj1j2...jiti

]
if 1

b−1
e−r∆t

∑b
j=1, j 6=k v̂

j1j2...jij
ti+1

≤ Φ
[
Sj1j2...jiti

]
,

e−r∆t v̂j1j2...jikti+1
else,

(4.13)
where k = {1, 2, ..., b}. This is this done b times where the continuation value
is either the omitted discounted value one time step ahead or the immediate
exercise value at the current time step depending on the condition stated in
Equation (4.13). These b values are then averaged simply as

v̂j1j2...jiti =
1

b

b∑
k=1

v̂j1j2...jiti,k
(4.14)

3Jensen’s inequality shows the connection between a convex function, f , evaluated at
the expectation of a stochastic variable, X, versus taking the expectation value of the
same function evaluated at the same stochastic variable , i.e. f

[
E[X]

]
≤ E

[
f [X]

]
.
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to obtain the biased low estimator. The strategy to show that this way of
estimating the expectation value really is biased low is nearly the same as
for the high estimator and the proof can be found in [14]. An example of a
random tree with b = 3 and three possible exercise opportunities, {t0, t1, t2 =
tm}, is depicted in Figure 4.2 to visualize its construction and how we keep
track of every node.

t

v̂t0 , V̂t0
St0

v̂1
t1
, V̂ 1

t1

S1
t1

S2
t1

S3
t1

v̂2
t1
, V̂ 2

t1

v̂3
t1
, V̂ 3

t1

Φ
[
S11
t2

]
Φ
[
S12
t2

]
Φ
[
S13
t2

]
Φ
[
S21
t2

]
Φ
[
S22
t2

]
Φ
[
S23
t2

]
Φ
[
S31
t2

]
Φ
[
S32
t2

]
Φ
[
S33
t2

]

t0 t1 t2

Figure 4.2: A random tree, with branch parameter b = 3 and three exercise
opportunities, showing the low and high estimators together with the generated
underlying stocks. At maturity, t = tm, both V̂ j1j2

t2 and v̂j1j2t2 are equal and
considered as known values, why only the payoff function given different stock
scenarios is shown (see Equation (4.11)).

Once we have worked through the entire tree and obtained both v̂t0 as well
as V̂t0 , we have our first ”samples” and we have to replicate the tree and this
procedure n times in order to create 1− α confidence intervals set as

CI =

[
v̄t0(n, b)− z1−α

2

sv(n, b)√
n

, V̄t0(n, b) + z1−α
2

sV (n, b)√
n

]
. (4.15)

Here v̄t0(n, b) and V̄t0(n, b) are the sample means, s(n, b) is the standard
deviation (with the subscript indicating which estimator) after n tree
replications and z1−α

2
is the standard normal quantile at significance level

α. As we can see in Equation (4.15), the high estimator’s upper confidence
bound and the low estimator’s lower bound are merged, together forming
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the method’s confidence interval. In this way we can with probability 1− α
ensure that the true value V0 will be enclosed in this confidence interval
compared to the confidence intervals of either the low or the high estimator
solely. Using either one of those intervals instead, we would face the risk
that the true value is located outside their bounds with greater probability
since they are skewed upwards and downwards respectively.

However, in [14] it is shown that both the low and high estimator converge
to V0 as b → ∞ and/or n → ∞, meaning that also CI → V0 [6], tempting
one to assign large values to these parameters. Yet, the tree will grow expo-
nentially and so will also the computational time, considerably limiting the
types of options the method can handle conveniently. The method is there-
fore restricted to plain Bermudan options and more specifically, Glasserman
[6] argues that five exercise opportunities is the critical limit before compu-
tational time gets unmanageable. Still, the method is attractive because it is
relatively easy to price high-dimensional options and Broadie et al. [15] also
suggest that Richardson extrapolation may be used to approximate values
of American options by blending Bermudan options with different number
of exercise opportunities. In the same article, they also propose a variance
reduction technique closely related to antithetic variates which also happens
to reduce the need of data storage and this will be the theme of the next
section.

4.2.3 Antithetic Branching

This version of creating a random tree demands that the branching parame-
ter b is an even number since for a node containing the stock prices Sj1j2...jiti

generated by the GBM in Equation (4.9), we also create an antithetic mate.
That is, a node with stock prices generated by applying the same vector
of i.i.d. random variables as was used to obtain Sj1j2...jiti , but with opposite
signs. In Figure 4.3 we see how we use the i.i.d. random vectors to generate
stock paths.

With this type of strategy to construct a random tree, we can reduce the
variations in the estimates, but also the amount of random variables and
hence storage space needed. Concerning the variations, these can be reduced
due to that if a random variable is very large, it will give rise to a high stock
price that may be far beyond the log-normally distributed stock’s mean.
The inclusion of the same random variable with an opposite sign will then
yield a very low stock price located far away in the other direction, such that
these extreme values will more or less offset each other [15]. This offsetting
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−Zt1,1

Zt1,2

−Zt1,2

Zt2,1
−Zt2,1
Zt2,2
−Zt2,2

t0 t1 t2

Figure 4.3: Illustrative figure of how the i.i.d. random vectors are used at
every node and where the second subscript indicates which vector. Remark:
Branches from the remaining three nodes at t = t1 are omitted to save space,
but the principle is the same.

would seldom occur when we as in the original version generate new random
numbers for every node, implying a larger bias in its estimates.

Broadie et al. [15] present an algorithm of how we can work through the tree
in a similar fashion as was done originally. To calculate the high estimator
V̂ we proceed as was done before using Equation (4.12), but the strategy
to evaluate the low estimator, v̂, is slightly changed. It is explained in the
following algorithm where we assume every antithetic mates are placed next
to each other as in Figure 4.3.

1. Separate two antithetic mates, k and k+ 1 from the b
2

pairs emanating
from a parent node to calculate the node value as

v̂j1j2...jiti,l
=

{
Φ
[
Sj1j2...jiti

]
if 1

b−2
e−r∆t

∑b
j=1, j 6=k,k+1 v̂

j1j2...jij
ti+1

≤ Φ
[
Sj1j2...jiti

]
,

1
2
e−r∆t

[
v̂j1j2...jikti+1

+ v̂j1j2...jik+1
ti+1

]
else.

(4.16)
This strategy is conducted for all mates why we will have l = 1, 2, ..., b

2
.

2. Once we have b
2

low estimates for the node in question, we average
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these to get the low estimator, i.e.

v̂j1j2...jiti =
2

b

b
2∑
l=1

v̂j1j2...jiti,l
. (4.17)

The remaining procedure is then the same as in the original Random Tree
method where we finally construct the confidence intervals using Equation
(4.15).

4.3 Least Squares Monte Carlo

We will now consider a somewhat different method, compared to the
previous ones in this chapter, that uses least squares regression to solve the
complex pricing problem. Here we will employ a methodology similar to
Longstaff and Schwartz [16], why we henceforth will denote this model as
LSM (Longstaff-Schwartz Method). The theory presented will although be
in style of Glasserman [6] where a more explicit description of the algorithm
is elaborated and that also differs slighty from the original method, which
is worth to be noted. As in the other two numerical methods to price
options, we will also here use dynamic programming but slightly different to
Equation (4.8) as we will soon see.

In the method, we simply assume that the continuation values at each time
step, Cti(Sti), can be written as a linear combination of some set of basis
functions ψj(Sti), with j = 1, 2, ...,M . More specifically, we have

Cti(Sti) = βTti ψ(Sti), (4.18)

where βTti = [βti,1, βti,2, ..., βti,M ] and ψ(Sti) = [ψ1(Sti), ψ2(Sti), ..., ψM(Sti)]T .
These basis functions are set freely, but preferably with respect to the
financial derivative in question to better resemble the true value.

The continuation values, as have been described previously, are the dis-
counted expected value seen in the right expression of Equation (4.8). So,
at each time step, it is the maximum of this and the immediate exercise
premium we must evaluate in order to estimate the true value. Before
we can do that however, we must use Equation (4.18) with an unknown
coefficient vector βTti . To find its constituting elements for a time step ti, we
will now make use of least square regression.
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To find the coefficients, we will first need to construct a path, t0, t1, ..., tm,
of the underlying stock vector Sti using the GBM in Equation (4.9) n times,
such that we can set up a system of equations in similarity to Equation (4.18),
that is

Ψ[Sti ] βti = Πti,V , (4.19)

where we have

Ψ[Sti ] =


ψT (Sti,1)
ψT (Sti,2)

...
ψT (Sti,n)

 and Πti,V =


e−r∆t Vti+1,1

e−r∆t Vti+1,2

...
e−r∆t Vti+1,n

 .
Thus we have that Ψ[Sti ] is a n ×M sized matrix containing n replications
of the M basis functions that may or may not be functions of Sti . Also, a
second subscript is introduced here to indicate replication. We then use least
square regression to solve for β̂ti in Equation (4.19), that is

β̂ti =
(

ΨT [Sti ] Ψ[Sti ]
)−1

·ΨT [Sti ] · Πti+1,V̂
. (4.20)

From the resulting β̂ti , we can now determine the estimated continuation
value for a single replication l at time step ti as

Ĉti(Sti,l) = β̂Tti ψ(Sti,l) (4.21)

and l = 1, 2, ..., n. In Figure 4.4 we see an illustration of how the method
works at the penultimate nodes when using a vanilla put.4 Looking at this
figure, it should become clear that the choice of basis functions is important
in order to get a good fit when we perform the least square regression, it is
after all with these we approximate the continuation values.

Following Glasserman [6], we will now look at how we can utilize the presented
theory to estimate an option’s price using the following algorithm:

1. Use the GBM in Equation (4.9) to simulate the d underlying stocks’
prices at the specified exercise opportunities t1, t2, ..., tm n times inde-
pendently of each other.

2. We need initial values and as usual we consider the option values at tm
as known. Thus we have V̂tm,l = Φ

[
Stm,l

]
.

4Illustrating an exotic option would be much more difficult, why we restrict ourselves
to a vanilla option to get the basic idea of the method.
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Figure 4.4: In the figure, we see how the continuation values at tm−1 for
an American put is obtained when using three replications and a hypothetical
choice of basis functions. Red dots represent the regressands at the terminal
nodes whereas blue dots are the values obtained by the expression in Equation
(4.21) for every replication.

3. For every time step tm−1, tm−2, ..., t1, we estimate β̂ti and Ĉti(Sti,l) with
Equations (4.20) and (4.21) respectively.

3.1. Set the option value estimate at time ti and replication l to

V̂ti,l =

{
Φ
[
Sti,l
]

if Φ
[
Sti,l
]
≥ Ĉti(Sti,l),

e−r∆t V̂ti+1,l else.

4. Finally, set the discounted mean value of all replications at t = t1 as
our estimation of the option value, namely

V̂t0 = e−r∆t
1

n

n∑
l=1

V̂t1,l.

So, with this method we can like in the Random Tree method estimate
prices of a broad range of American-style options since it allows us to handle
d-dimensional problems. Another thing to note with the LSM method is the
way we estimate the option values for every time step and replication which,
as previously mentioned, differs somewhat from Equation (4.7). Instead of
taking the maximum of the immediate exercise Φ

[
Sti,l
]

and the continuation

value Ĉti(Sti,l), we just use the continuation value as benchmark to determine
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whether we set the value of V̂ti,l to the discounted value of V̂ti+1,l or the
immediate exercise.

In conclusion, we remember that this is a Monte Carlo method and hence
we expect the estimated values to fluctuate every time we apply it, but less
dramatically when number of replications is large as a consequence of the
law of large numbers. A large number of replications can although be time
consuming and we will therefore look at two methods and their very basic
ideas to overcome this problem.

4.3.1 Antithetic Variates

To reduce the variance in the estimates without using a larger number of
replications, we can exploit antithetic variates in similarity to the antithetic
branching procedure used in the Random Tree method, only that what we
will see here is the original theoretical approach that is readily applicable to
other methods. Both however, are based on the fact that we can ”recycle”
i.i.d. normal random variables by just using opposite signs. Another
difference here is that we will generate another set of option values based on
the random vectors with opposite signs, yielding a total of 2n option values.

The principle is thus that we generate two option values for each replication
and the fact that the following two sets of i.i.d. normal random variables got
the same distribution,{

Z = {Z1, Z2,, ..., Zd} ∼ N [~0, I ]

−Z = {−Z1,−Z2,, ...,−Zd} ∼ N [~0, I ],

is of importance since this will entail that probabilistically unlikely prices
generated by GBM in Equation (4.9) and its corresponding option values are
offset in the same manner as was discussed in the section about antithetic
branching [6].

We will therefore denote Ṽt0,l as the sample using the same i.i.d. random

variables as V̂t0,l in the original LSM method, but with opposite signs. This
implies that these must be dependent and identically distributed, a fact we
will soon exploit when need their respective variances. Before doing that, we
define our antithetic variate V̂AV,l for a single replication l to be the mean of
the two related samples, i.e.

V̂AV,l =
V̂t0,l + Ṽt0,l

2
(4.22)
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and furthermore collect n of these new random variables defined in Equation
(4.22). These will thus form an i.i.d set, which is an important property in
order to rely on the law of large numbers such that V̂AV → Vt0 for a large
number n [17]. Hence, the antithetic estimator is simply the mean of all n
samples;

V̂AV =
1

2n

n∑
l=1

V̂t0,l + Ṽt0,l. (4.23)

To see why fluctuations will be reduced by using Equation (4.23), we evaluate
its variance;

Var[V̂AV ] = Var

[
1

2n

n∑
l=1

V̂t0,l + Ṽt0,l

]
=

1

4n2

n∑
l=1

Var[V̂t0,l] + Var[Ṽt0,l] + 2Cov[V̂t0,l, Ṽt0,l] =

[
Var[Ṽt0,l] = Var[V̂t0,l]

]
=

1

4n2

n∑
l=1

2Var[V̂t0,l] + 2Cov[V̂t0,l, Ṽt0,l] =
1

2n
Var[V̂t0,l] +

1

2n
Cov[V̂t0,l, Ṽt0,l].

(4.24)

and if we would have generated 2n replication without antithetic variates we
would have

Var[V̂t0 ] = Var

[
1

2n

2n∑
l=1

V̂t0,l

]
=

1

4n2

2n∑
l=1

Var[V̂t0,l] =
1

2n
Var[V̂t0,l]. (4.25)

It is the observation of the covariance term in Equation (4.24) that is the
decisive evidence of variance reduction compared to the variance in Equation
(4.25). This is due to that we earlier assumed that V̂t0,l and Ṽt0,l are identically
distributed, but since they depend on the same i.i.d. random variables but
with different signs, we have the condition that

Cov[V̂t0,l, Ṽt0,l] < 0,

finally leading us to the conclusion

Var[V̂AV ] < Var[V̂t0 ].

Hence we see that we do not have to generate 2n option value samples based
on entirely new random variables (something that may imply a much longer
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computational time) to get better precision in a Monte Carlo estimate, it
requires only a total of n replications. So, we can with this relatively easy
variance reduction method reduce the likelihood of unlikely option estimates,
presumably to a less amount of time than what would have been the case
otherwise.

4.3.2 Quasi-Monte Carlo

Instead of sampling two option values for every replication as in the antithetic
variate method, we will here look at how we sample the random variables.
Previously it has been assumed that the underlying stocks are modeled by
Equation (4.9) which in its stated form depends on i.i.d. normal random
variables. These can also be seen as

Z = {N−1[U1],N−1[U2], ...,N−1[Ud]}, (4.26)

where Uβ ∼ U [~0, I] are i.i.d. uniform random variables for each modeled
stock β. These uniformly distributed random variables can in fact be
replaced with something called a low-discrepancy sequence of deterministic
uniform numbers. Using these, Glasserman [6] argues that the rate of con-
vergence can be streamlined to the order of approximately O( 1

n
) compared

to O( 1√
n
) of a standard Monte Carlo method.

To give an intuition of how these deterministic uniform numbers can be
created, we will look at the Van der Corput sequence limited to problems in
one dimension. Despite this sequence’s lack of versatility, the foundation of
it imbues those that can tackle higher-dimensional problems and is therefore
a suitable, yet simple example to understand the basic idea of generating
a low-discrepancy sequence. So to create this specific sequence, we follow
Glasserman [6], where a positive integer k can be written as

k =
∞∑
j=0

aj(k)bj,

where b is an integer base b ≥ 2, aj(k) is a coefficient vector whose elements
take the values 1 or 0 (mostly zeros) depending on the mirrored binary
representation of k around the decimal point. This description might be
vague, but we will look at an example shortly that hopefully straighten out
the explanation.
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Before this example though, we introduce the radical inverse function that is
based on the expression above and defined as

αb(k) =
∞∑
j=0

aj(k)

bj+1
,

designed to generate a low-discrepancy sequence of uniform numbers. To see
how this radical inverse function works, we look at the same example that
is given in Glasserman [6], but with an extension to better understand the
composition of a(k) as seen in Table 4.1. Here b = 2 and we note that the
points of increasing k are placed uniformly alongside that of k = 1 on the
line [0, 1).

Table 4.1: Van der Corput sequence with base b = 2.

k Binary Mirrored Binary a(k) α2(k)
0 0 0 0, 0, 0, 0, . . . , 0 0
1 1 0.1 1, 0, 0, 0, . . . , 0 1/2
2 10 0.01 0, 1, 0, 0, . . . , 0 1/4
3 11 0.11 1, 1, 0, 0, . . . , 0 3/4
4 100 0.001 0, 0, 1, 0, . . . , 0 1/8
5 101 0.101 1, 0, 1, 0, . . . , 0 5/8
6 110 0.011 0, 1, 1, 0, . . . , 0 3/8
7 111 0.111 1, 1, 1, 0, . . . , 0 7/8

Since the primary goal of the numerical methods seen in this chapter is
to solve exotic options that often depend on several stocks, it is of course
insufficient to use a one-dimensional sequence. There are several rather com-
plicated ways to generate higher-dimensional sequences, why we omit that
theory since it is discussed in detail in Glasserman [6]. Still, it is worth men-
tioning one and for the context of financial problems, the Sobol’-sequence
has been proven favorable. It uses the base b = 2 and is constructed from
the Van der Corput sequence by specific permutation matrices [6].
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With a generated high-dimensional low-discrepancy sequence like Sobol’ at
our disposal, we simply replace the i.i.d. uniform random variables in Equa-
tion (4.26) with the quasi random numbers

ZQk = {N−1[α1
2(k)],N−1[α2

2(k)], ...,N−1[αd2(k)]}

for a given k when we generate the underlying stocks by Equation (4.9) in
what we will now call Quasi-Monte Carlo computations.

We conclude this chapter with two panels depicting uniformly distributed
(pseudo) random numbers and a two-dimensional Sobol’ sequence to visualize
their differences in the region [0, 1)2 as seen in Figure 4.5. Here we clearly
see the deterministic pattern of the generated Sobol’ points compared to the
the uniform random numbers.
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(a) Uniformly distributed random
numbers.
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(b) Quasi-random numbers using a Sobol’ sequence.

Figure 4.5: A representation of the difference between deterministic quasi-
random numbers and uniformly random numbers in 2-D, each with 1024
points.
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Chapter 5

Method

Preface

We have now seen four pricing methods that are applicable exclusively to
plain vanilla American options and also a couple of numerical versions that
have the ability to price a broad range of American-style options. Never-
theless, the latter suffer from the burden of time-consuming calculations,
making them less desirable for the context of vanilla options.

As a consequence of this, we will only devote our attention to the closed-
form approximation formulas when we evaluate how different pricing methods
affect portfolio risk, the main objective of this thesis. However, we will still
analyze how close the numerical methods’ resulting prices are to retrieved
benchmark prices to at least see how they perform and to answer which of
them is best to apply for a specific exotic option. In this chapter, a short
description will be given in order to explain how the different methods were
implemented and in what ways the final results were acquired.

5.1 Implementation

In this section a brief description will be presented of how every pricing
method was implemented and other relevant information regarding this.
Another thing to point out is that the entire project was carried out in
MATLABR© R2017a and calculations have hence been done by using matrix
operations wherever it was possible in order to speed up runtime.
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Another fact that relates to speed in calculations is the computer that was at
disposal. It was equipped with an IntelR© XeonR© E5-2630 2.60 GHZ processor,
6 cores and an installed physical memory (RAM) of 32 GB.

5.1.1 Closed-Form Approximations

There is actually not much to say about how the long closed-formed ap-
proximation formulas were implemented for obvious reasons, especially the
Bjerksund-Stensland model. This is also more or less the case for the two
other, Barone-Adesi and Whaley and Ju and Zhong models. Although, the
latter models require that we implicitly find the exercise boundary using
Equation (3.8) by applying a numerical method and here we will use Newton-
Raphson. To do that we simply subtract both sides with the left-hand side
such that we get an equation equal to zero, i.e.

0 = V E(Sf ) + φ
[
1− e−δt′N [φd(Sf )]

] Sf
λ
− φ(Sf −K)︸ ︷︷ ︸

f(Sf )

, (5.1)

where we set f to be the right-hand side and a function of Sf . Straightforward
calculations and some rearrangements then reveal that the derivative df

dSf
=

f ′(Sf ) is

f ′(Sf ) = φ

[
e−δt

′N [φd(Sf )
]
− 1

](
1− 1

λ

)
− e−δt

′
n[φd(Sf )]

λσ
√
t′

,

where φ2 = 1 have been used. We then use both f and f ′ to find the root Sf
of Equation (5.1) using the Newton-Raphson algorithm

Algorithm 1 Newton-Raphson (NR)

1: procedure NR(S0, K, r, t, T, σ, δ)
2: SOldf ← SSeedf

3: while |SNewf − SOldf | > ε do

4: SNewf ← SOldf − f(SOldf )

f ′(SOldf )

5: SOldf ← SNewf

6: return SfOld

where SSeedf is the initial guess value suggested by Barone-Adesi and Whaley
[11] given in Chapter 3. The tolerance parameter ε is set freely but will here
be ε = 10−8, deemed sufficiently small.
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5.1.2 Numerical Methods

5.1.2.1 Binomial Tree

The intuition behind the Binomial Tree method is not too complex, but
to write a computer-efficient code for a framework entailing exponentially
increasing storage might not be as obvious. Using the fact that the tree is
recombining, we do not need to compute the nodes ”within” the tree, that is,
the ones that were highlighted with grayish color in the example in Chapter 4.

Broadie and Detemple [18] provide a clever pseudo-code that circumvent
the problem of a large storage need and are able to reduce the complexity
from O(m2) to O(m) and as a reminder, m is the the number of time steps.
Thus, we can calculate large trees at reasonable amount of times, such as
sizes of m = 10 000 to be used here to estimate true option values. Their
pseudo-code was hence implemented and presented below in Algorithm 2 is
a modified version (to match notation here) of the one given in [18].1

Algorithm 2 Binomial Method by Broadie and Detemple

1: procedure Binomial(S0, K, r, t, T,m, σ, δ)
2: for i = −m to m by 1 do . Preallocate vectors
3: V [i], S[i]

4: ∆t← T−t
m

a← e(r−δ)∆t b← a
√
eσ2∆t−1 . Initial values

5: ν ← a2 + b2 + 1 u← (ν +
√
ν2 − 4a2)/(2a) d← 1/u

6: p← (a− d)/(u− d) q ← 1− p D ← e−r∆t

7: p′ ← D · p q′ ← D · q S[0]← S0

8: for i = 1 to m by 1 do . Build tree
9: S[i] = S[i− 1] · u

10: S[−i] = S[−i+ 1] · d
11: for i = −m to m by 2 do . Values at terminal nodes tm = T
12: V [i] = max(φ(S(i)−K), 0)

13: for j = m− 1 to 0 by −1 do . Recursive option calculation
14: for i = −j to j by 2 do
15: V [i] = max(p′ · V [i+ 1] + q′ · V [i− 1], φ(S[i]−K))

16: return V [0]

1In [18] an important caveat is given regarding dividend yields. There the authors state
that abnormally large yields are not compatible with the pseudo-code given in Algorithm
2.
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5.1.2.2 Random Tree

In the Binomial Tree we had two nodes emanating from every parent node,
but with the Random Tree the number is set to b where potentially b � 2,
severely increasing the storage need and computational time. Moreover, if
that problem was not enough, we must also replicate the tree n times to
create a confidence interval and a point estimator that we will use as the
option price.

To solve this issue, Broadie and Glasserman [14] also present a pseudo-code
to decrease storage and increase speed. Contrary to the Binomial Tree
where the entire tree is implicitly built2, they build the tree and calculate
the option values part by part using depth-first programming which is
visualized and explained in the simplified example in Figure 5.1. This
example is similar to what is given in [6] but based on the tree in Chap-
ter 4. Here the white nodes imply that memory has been freed since we
do not need those values anymore, meaning that we can reduce storage space.

tt0 t1 t2

1

2

3

11

12

13

21

22

23

31

32

33

Figure 5.1: Example of depth-first programming illustrating how we can
free memory that is not needed anymore. White nodes here represent freed
memory and numbers denote branch paths.

To estimate the option values v̂1
t1

and V̂ 1
t1

of node 1 at t1 we only generate

2As we know, we do not create the entire tree, but all nodes are accounted for since the
interior ones are copies already calculated, which was meant by the line ”implicitly built”.
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stock prices at the nodes that are necessary, namely 1, 11, 12, and 13. Once
these are known, we free the memory of 11, 12, and 13 and continue with
the goal of estimating v̂2

t1
and V̂ 2

t1
. Now we only need stock prices at 21, 22

and 23 and after having generated as well as used them, we free memory
again. Figure 5.1 depicts the case where we have done the above steps and
are about to price v̂3

t1
and V̂ 3

t1
using option and stock values at 31, 32 and

33. Remark: it should be pointed out that when the values v̂1
t1

and V̂ 1
t1

are calculated, the stock prices at nodes 2 or 3 (as well as their emanating
nodes) have not been generated yet, they are simply not necessary. Likewise,
we do not need node 3 when we evaluate 2 for the same reason. When all
option values at t = t1 are known, we can then obtain the option prices v̂t0
and V̂t0 .

This strategy is of course applicable to even larger trees with more than two
time steps and three branches. In those cases, we also begin working with
the uppermost arc of nodes and then continue in the same manner we saw
in the example above, which should point out the principle of the depth-first
programming used here. Figure 5.1 also reveals that we at most need mb+ 1
nodes in the memory, something that is discussed in a general manner by
Glasserman [6]. Hence, we can with depth-first programming dramatically
reduce the complexity of the method, from the horrifying O((db)m) to the
more acceptable O(bdm), where we remember that d is the number of un-
derlying stocks. In Algorithm 3 we see a slightly modified version of the
pseudo-code (although limited to a single underlying stock) given in [14] to
perform depth-first programming that also inspired the implementation here.

5.1.2.3 Least Squares Monte Carlo

Finally, we have the least squares Monte Carlo method by Longstaff and
Schwartz and as was the case for the closed-formed approximation formulas,
there is actually not much to say about its implemenation. The only thing
worth noting though regards the Quasi-Monte Carlo method, where a 2-D
Sobol’ sequence was formed using MATLABR©’s built-in function sobolset.
In essence, it suffices to follow the theory presented in Chapter 4 to implement
this methods properly. This is because we do not suffer from exponentially
increasing tree that needs a special and clever implementation in order to
avoid an extreme computational time. For a single replication, we ”only”have
to generate dm + 1 stock prices implying a complexity of O(dm), obviously
much better than the Random Tree method.
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Algorithm 3 Random Tree by Broadie and Glasserman

1: procedure Random Tree(S0, K, r, t, T,m, b, σ, δ)
2: for i = 1 to m by 1 do . Preallocate vector
3: row[i]

4: for j = 1 to b by 1 do . Preallocate matrix
5: for i = 1 to m by 1 do
6: V [j, i]

7: V [1, 1]← Stock Price row(1) = 1
8: for i = 2 to m by 1 do . Uppermost arc of stock prices
9: V [1, i] = Stock Price row(i) = 1

10: i = m
11: while i > 0 do . Dynamic programming
12: if i = m and row[i] < b then
13: V [row[i], i] = Φ[Stock Price]
14: V [row[i] + 1, i] = Stock Price
15: row[i] = row[i] + 1

16: if i = m and row[i] = b then
17: V [row[i], i] = Φ[Stock Price]
18: row[i] = 0 i = i - 1

19: if i < m and row[i] < b then
20: V [row[i] + 1, i] = Stock Price row[i] = row[i] + 1
21: if i > 1 then
22: V [row[i], i] = Option Value
23: row[i] = 0 i = i - 1
24: for j = i+ 1 to m by 1 do
25: V [1, j] = Stock Price row(j) = 1

26: i = m
27: else
28: i = 0
29: if i < m and row[i] = b then
30: V [row[i], i] = Option Value
31: row(j) = 1 i = i− 1

32: return V [1, 1]
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5.2 Price Approximation

5.2.1 Vanilla Options

To evaluate model performances for vanilla options with the payoff function

Φ[S] = max
(
φ(S −K), 0

)
,

where φ = 1 for calls and φ = −1 for puts, the Binomial Tree method was
used as a benchmark using m = 10 000 time steps. This method’s prices
based on this number of time steps are as mentioned commonly considered
as true values in papers presenting new pricing models in order to evaluate
their precision. Thus this method was deemed appropriate to serve as a
benchmark in this project as well.

Since there are quite many input parameters for the models, we will restrict
our analysis to the inputs S0 = {90, 100, 110}, σ = {0.2, 0.4}, K = 100,
r = 0.04, δ = 0.08 and focus on T = 1 (year), even though results will
be presented also for T = 3 (years) in Appendix A. Surface plots will also

be shown depicting how the relative error RE = |V−V̂ |
V

, where V is the true

value and V̂ is the approximation, varies in regions where time to maturity
as well as the stock price range respectively as T = {0.5, 0.525, 0.55, ..., 3}
(years) and S0 = {90, 90.35, 90.7, ..., 110}. Volatilities used for the plots were
σ = {0.2, 0.4}, interest rates were r = {0.03, 0.1} and dividend yield was set
to δ = 0.08.

5.2.2 Exotic Options

For the exotic option case, we focus only on the American call max-option
with two underlying stocks and the payoff function

Φ[S] = max
(

max(S)−K
)
.

Here S = {S1, S2} and the true values for a specific set of input parameters
were retrieved from a paper by Broadie and Glasserman [14]. True values
for other exotic options, or the one in consideration here with more than
two stocks, are rare and cannot be evaluated with great certainty why they
are better omitted.

The parameters available in [14] were however S0 = {80, 90, 100, 110, 120},
δ = 0.1 and σ = 0.2 for both stocks. Remaining parameters were T = 1
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(year), ρ = 0.3, K = 100 and r = 0.05. For the Random Tree structure, we
use b = 50 and n = 100 replications, whereas n = 100 000 in the LSM.

In the Random Tree method, we have only discussed confidence intervals until
now, but it is more interesting to see a price approximation that would have
been used in a real-life situation, why we use the point estimator introduced
in [14] simply defined as

Price = 0.5 max(Φ[S], v̂) + 0.5V̂ .

In the LSM method, prices are directly acquired without the need of a point
estimator. On the other hand, we need a good choice of basis functions to
properly fit the regressand values Πti,V during the regressions. One example
is the set

ψ(Sti) =

[
1, S1

ti
, S2

ti
,
(
S1
ti

)2
,
(
S2
ti

)2
, S1

ti
· S2

ti
,
(
S1
ti

)3
,
(
S2
ti

)3
,
(
S1
ti

)2 · S2
ti
, S1

ti
·
(
S2
ti

)2
,Φ[Sti ]

]T
used in [6] for the same exotic option and this will also be used here. Note
that brackets are introduced to distinguish superscripts indicating underlying
stocks from exponents. We could of course have evaluated other basis func-
tions also, but since these ones have been shown to work sufficiently well, we
stick to them. After all, the point is to show how this method can perform
given a good choice of basis functions. However, an important remark is that
this do by no means indicate it was the best choice.

5.3 Portfolio Risk

5.3.1 Loss Distribution and Risk Measures

Now when we know how the different pricing methods were implemented
and tested, we move on to the perhaps most important part of the thesis,
namely how portfolio risk is affected by approximation errors in option
prices. This has been done in two ways, firstly by using a standard Monte
Carlo procedure and lastly by using historical simulation (HS). Using
these methods, we can create scenario losses Lk and subsequently a Loss
distribution, fL, from which we can extract a risk measure like Value at
Risk (VaR), henceforth considered to be a portfolio’s quantified risk estimate.
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Before we analyze these two methods, it is good to see how we can create
a loss distribution out of an arbitrary option portfolio Λ. We begin with
simulating losses Lk n times,3 where k = 1, 2, ..., n, using

Lk = −∆Λk = −
N∑
j=1

ηj ·
[
V j
t+∆t,k − V

j
t,k

]
. (5.2)

Here η is the integer position on a particular option which may be positive or
negative (i.e. long or short) and j = 1, 2, ..., N specifies the unique options
in the portfolio.4 Remark: since we use −∆Λ, losses are treated as positive
and not negative.

The distribution fL is then obtained by sorting the set L = {L1, L2, ..., Ln}
of scenario losses in an increasing order and from which we can estimate the
risk by e.g. VaR, explained in the following definition [19].

Definition 5.1. Value at Risk Value at Risk is defined from

Pr(L ≥ VaR(L)1−α) = α,

where a loss L will be greater than VaR with probability α.

This means that we find VaR1−α(L) as the loss distribution fL’s (1 − α)%-
quantile [6], or more concrete, by extracting the element fL(d(1−α)ne) once
we have estimated the distribution. Another risk measure, although not of
primary concern here, is Expected Shortfall (ES) where we instead consider
the expectational loss beyond VaR(L)1−α and it is defined in similarity to
[19].

Definition 5.2. Expected Shortfall Expected Shortfall is defined as

ES1−α := E[L|L ≥ VaR1−α(L)],

that is, the expectation value of the loss distribution’s tail beyond VaR1−α(L).

Thus, once fL is known, we simply take the mean value of all losses beyond
index d(1 − α)ne of fL to estimate ES1−α. In Figure 5.2 below, we see a
hypothetical loss distribution where VaR1−α(L) is the quantile situated at
the color transition between red and green. The area marked with red color
is to highlight the losses beyond VaR1−α(L) necessary in determining ES1−α.

3A ”loss” Lk for a scenario k may actually be a profit, but the purpose is to create a
loss distribution which is why we denote both profits and losses as merely losses.

4This means that we have N different options in the portfolio that may differ with
respect to underlying stock, time to maturity and strike price.
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Figure 5.2: Returns’ loss distributions can be skewed and possess fat tails,
based on stylized facts, thus assigning greater probability to extreme outcomes
contrary to a normal distribution [19]. The exact shape of an option port-
folio’s loss distribution, however, depends on its specific option positions.
Nevertheless, the figure should at least provide the basic intuition.

We now know how a loss distribution can be created given a portfolio Λ but
not how we obtain the unknown future values V j

t+∆t,k. It is here we now need
the Monte Carlo or the HS method to generate new stock prices at a time
t+ ∆t into the future.5

5.3.2 Monte Carlo Method

Here, new stock prices St+∆t given St are generated using the the price change
∆S = (∆S1,∆S2, ...,∆Sd) in line with the notation made by Glasserman
[6] instead of directly acquiring new prices through a GBM as previously.
Further, to simulate these price changes, we set the distribution of ∆S as

∆S ∼ N [~0 ,ΣS ·∆t], (5.3)

meaning that the price change is normally distributed. This assumption
is specifically used in [6] for the Delta and Delta-Gamma Approximation
methods to create loss distributions, but is also adopted here for simplicity.
As is mentioned in [6], the change in stock prices might anyway be van-
ishingly small for small time steps ∆t, hence motivating the choice of the
distribution seen in Equation (5.3). At the same time, we also avoid formal
risk-neutral prices, usually prohibited by risk regulations, we would obtain

5Stocks that are underlying securities to the portfolio’s constituting options. Yet, im-
portant to remember is that we only consider vanilla options in this thesis.
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by the GBM stated in Chapter 4.

Furthermore, Glasserman [6] discusses that this also means that we can as-
sume normally distributed returns R defined as

R =

(
∆S1

S1

,
∆S2

S2

, ...,
∆Sd
Sd

)
. (5.4)

At first glance, all this might be ambiguous but using a sufficiently small
time step, this definition of returns are comparable to those of a GBM [6].
So what do we need this for? The answer is that it is a simple approach to
how we can find the unknown matrix ΣS. By rewriting Equation (5.4) as
diag(S−1) ∆ST , where S−1 is to be understood as S−1 = ( 1

S1
, 1
S2
, ..., 1

Sd
) and

using the linear transformation property defined in [6] as

Definition 5.3. Linear Transformation Property If a normal variable
X, with mean vector µX and covariance matrix ΣX, is linearly transformed
by a matrix M we have

X ∼ N [µX,ΣX ] =⇒ MX ∼ N [MµX,MΣXM
T ],

implying that the operation MX is also normally distributed.

we have that

R ∼ N [~0, diag(S−1) · ΣS · diag(S−1) ·∆t].

We can now see that the ordinary covariance matrix Σ introduced in Chapter
4 must be Σ = diag(S−1) · ΣS · diag(S−1) because we work with stocks’
returns. The covariance Σ is relatively easy to construct if we know the
stocks’ variances and mutual correlations, why ΣS can be determined with
little effort.

Based on the result above, we draw independent price changes based on
Equation (5.3) by

∆Sk =
√

∆t · C Z,

where as usual Z = {Z1, Z2,, ..., Zd}T ∼ N [~0, I ] and C is the lower triangular
Cholesky factor of ΣS defined as CCT = ΣS. Using this, we find new stock
prices for a scenario k by St+∆t,k = St + ∆Sk, whose constituting stock prices
are used to revalue the options at t+∆t combined with the new and reduced
time to maturity T − t−∆t.
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5.3.2.1 Setup

To see how portfolio risk using Value at Risk (results for Expected Shortfall
is provided in Appendix A) is affected by pricing errors in the Monte Carlo
method, an arbitrary set of 60 fictitious options (vanilla calls and puts) was
defined and from which different portfolios could be composed. Half of these
options were American whereas the other half were their European replicas.
These options had either one or three years to maturity, different strike
prices and three underlying stocks in total. A detailed description of the set
is seen in Appendix B.

Further, for all stocks we have S0 = 100, σ = 0.2 and the mutual correlations
were set to ρ = 0.3 whilst the interest rate was r = 0.04. Using these inputs to
calculate option values and setting the number of replications to n = 5000,
a unit loss distribution matrix ΓL could be constructed for every pricing
method. This matrix facilitates the analysis of portfolio risk since when it is
obtained, which with n = 5000 might take long time, it requires only that we
multiply it with any portfolio position vector w (i.e. ∆Λ = w ΓL) to get its
corresponding vector ∆Λ and subsequently, loss distribution fL. An example
of its composition using 5000 scenarios and 60 options is seen in Example
5.3.1.

Example 5.3.1. Unit loss distribution matrix. This matrix collects losses
from all unique options in a specified set based on a unit long position on
each and every option. It can be set as

ΓL =


V 1
t+∆t,1 − V 1

t,1 V 1
t+∆t,2 − V 1

t,2 · · · V 1
t+∆t,5000 − V 1

t,5000

V 2
t+∆t,1 − V 2

t,1 V 2
t+∆t,2 − V 2

t,2 · · · V 2
t+∆t,5000 − V 2

t,5000
...

...
. . .

...
V 60
t+∆t,1 − V 60

t,1 V 60
t+∆t,2 − V 60

t,2 · · · V 60
t+∆t,5000 − V 60

t,5000


and any portfolio specific loss distribution can be obtained from it. �

Using the loss distribution matrices, VaR estimates for every method
could then be calculated where a time step of one week was used in this
analysis, that is ∆t = 1/52 (year).6 As was the case with comparing
different pricing methods, the Binomial Tree method with 10 000 time
steps is considered as the method implying the ”true” portfolio VaR. The
portfolios evaluated will contain a certain percentage of American and
European options where we will encounter notation such as 14%E (with

6About a week was chosen since it is approximately the duration of an option position
”disengagement” [6].
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rounded percentages) meaning that the portfolio consists of five European
options. In this case, we use a subset of all 60 options including (all) 30
American and the five first European options that follow in the list in
Appendix B, remaining ones are omitted. If we instead have 33%E, there
are 15 European options and 30 American options, where we use the first
15 European that follow (omitting the rest), thus the pattern should be clear.

In the analysis, we will begin with no European options and 30 American
(0%E), then increase the the number of European in steps of five until we
use all 60 options in the set (50%E). Contrary, above 50% European options
(where we always use all 30 of them) we instead (somewhat confusingly)
exclude American options from the top of the list. E.g. if 67%E, we
instead omit the first 15 American options. Important to note is that the
American options were included similarly to the 30 European as earlier, i.e.
in steps of five. Here though, five American options were included from
the start since the pure European portfolio is already calculated by using
Black-Scholes-Merton formula for 0%E. To all this, we use a position vector
w (also called weights) that defines a unique portfolio.

The elements of the position vector w = [η1, η2, ..., η60] were set to random
integer numbers between -10 and 10, or in advanced imposed as zero if
the option corresponding to this element was not included in the portfolio.
For example, consider the portfolio w14%E, there we have a vector of 35
potentially nonzero elements (since we randomize), rest are forced to zero.
In contrast, for w75%E we have a vector beginning with 20 elements of zero,
then followed by 40 potentially nonzero elements. Since we are working
with random portfolio positions that might imply different VaR values (VaR
is portfolio-specific), many combinations of positions had to be examined.
Hence, for a given percentage of European options,7 10 000 randomized
position vectors were generated and means of all VaR and VaR relative error
values were taken. Moreover, a standard deviation, which is particularly
interesting, was estimated from the resulting relative errors in VaR. The
standard deviation can thus tell us in what range the relative error in
VaR corresponding to an arbitrary vector of positions might entail. This
approach might be loose, but was considered to be the best way of analyzing
VaR when extremely many combinations of positions on a list of 60 options
are possible. Again, VaR is portfolio-specific and a single VaR estimate
would be insufficient to draw any inferences from.

7That is, using a particular subset of the full set of options in Appendix B.
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This strategy of creating loss distributions is quite straightforward, how-
ever, when we draw price changes through a normal distribution we produce
scenarios that are not objective, which are more or less demanded in risk
regulations today. To at least see such an example, we will now look at the
strategy of HS where we in contrast obtain objective results that are market
implied.

5.3.3 Historical Simulation

Here we have a method that is less abstract than the one above since it
requires only historic stock prices of the underlying securities. What we do
is that we collect prices of the underlying stocks within a given window of
W days which needs to be sufficiently large such that many possible market
moments are captured.

We then transform the historic prices in the window for a given stock to
logarithmic returns, Yt, using the formula Yt = ln( St

St−1
). Later, we fix time

t and consider this to be ”today” where after we randomly draw returns
from the window for every day ahead until we reach the time t + ∆T . This
chain of returns is then transformed to obtain a stock price at t + ∆T , i.e.
St+∆t,k = Ste

YD1
+YD2

+...+YDh where D1 denotes the first draw, D2 the second
and so on up till h draws.8 This is then repeated n times in order to create
enough scenarios as in the Monte Carlo simulation. To get a feeling for this
method, a simple schematic example of how we draw three draws from a
window W is shown in Figure 5.3.

Time

D1

D3 D2

t t+ ∆t T

W

Figure 5.3: A schematic example how we draw logarithmic returns from the
window W up to the point in consideration, i.e. t+ ∆t.

We can also supplement this procedure by using Exponentially Weighted
Moving Average (EWMA) probabilities to increase the likelihood of drawing

8Important to note is that a specific draw can be drawn several time since we sample
with replacement.
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returns that better reflect the recent market conditions. These probabilities
are defined by

Prti(Yti) =
1− λ

λ(1− λW )
· λ(W+1)−i,

with the natural constraint
∑W

i=1 Prti = 1. For daily returns as we consider
here, λ = 0.94 is an adequate choice [19]. With HS in combination with
EWMA probabilities, we now also have a method that produces objective
prices that we can apply when we revalue the options at t+ ∆t in the same
manner as in the Monte Carlo method.

5.3.3.1 Setup

The setup here is similar to the one used in the Monte Carlo method, where a
set of 60 fictitious options are used and half of these are American respectively
European with different strikes and times to maturity.9 A detailed descrip-
tion is again shown in Appendix B. Contrary to the Monte Carlo setup, the
underlying stocks were now increased to five, where these were chosen to be
the following (along with their respective tickers in brackets) listed on The
New York Stock Exchange:

� The Boeing Company (BA)

� General Motors Company (GM)

� Wells Fargo & Company (WFC)

� Johnson & Johnson (JNJ)

� IBM Corporation (IBM)

Stock prices were collected using a window of 1000 trading days (W = 1000)
between 2013-12-10 and 2017-11-29 such that enough market movements
would be captured. Further, the vector St composed of ”known” stock
prices was assigned with the latest prices as of 2017-11-29, that is, what we
consider is ”today” in the simulation.

Even though the HS method is nonparametric the option revaluation step,
where we use the closed-form approximation formulas and the Binomial Tree
method, requires parameters. Beginning with the volatilities, these were

9Even though we use real market data, a restriction to only consider fictitious options
was made. The most important thing is that we collect the underlying stocks’ historic
market movements which the options are contingent on anyway.
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simply set as the standard deviation of every stock’s logarithmic returns in
the window whereas dividend yields were retrieved from Nasdaq, all these
are specified in the next chapter. The risk-free interest rate was set to
r = 0.021, matching the US 5-Year Treasury Yield as of 2017-11-30. In
conclusion, seven draws (h = 7) implying a time step of ∆t = 1/52 (same as
in the Monte Carlo method) were made for every 2000 scenarios (n = 2000)
to construct unit loss distribution matrices. Moreover, the way portfolios
were created was identical to that of the Monte Carlo method, in fact, the
same 10 000 position vectors for every subset mixture of American and
European options were used.10

We have now gone through the underlying theory of options necessary to
understand the subject and art of pricing American vanilla options using
different approximation methods. All this have then been boiled down to
how we can apply it for portfolio risk evaluation as we have seen in this
chapter. With this knowledge, we are now ready to jump to the main
results of this project, where we will begin with analyzing the methods’
performances.

10That is, the only difference here is that there are 60 new options from which we
construct new portfolios by using the same position vectors.
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Chapter 6

Results

6.1 Method Performance

We begin to look at all pricing methods’ performances by evaluating their
relative error (RE) using the Binomial Tree with m = 10 000 as a benchmark
and ”true value” for vanilla options, whereas we use retrieved prices from [14]
when we consider the exotic option.

6.1.1 Vanilla Options

In the following, we introduce the abbreviations BS02 for the 2002 Bjerklund
Stensland, JZ for Ju and Zhong, BAW for Barone-Adesi and Whaley and
BSM for the Black-Scholes-Merton model to ease notation.1 BSM prices
for European options are mainly included in the analysis to see how they
differ from their American counterparts. With this in mind, we now start by
looking at tabulated prices for a call as well as a put and then analyze how the
models perform in different parameter settings by evaluating relative error
surface plots. In these plots, we will encounter the term moneyness which is
simply defined as S0 −K for calls and K − S0 for puts.

1For the Black-Scholes-Merton model, we use the Black-Scholes formula in Chapter 2
with the referred substitution that allow us to price European options on dividend-paying
stocks.
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Table 6.1: Performances of different approximation methods and the Bino-
mial model with m time steps for the American call option. Time to maturity
T = 1 (year).

Binomial
m = 10 000

Binomial
m = 100

JZ BS02 BAW BSM

S0 = 90
σ = 0.2

Price 2.5861 2.5974 2.5846 2.5511 2.6362 2.4322
RE - 0.0044 0.0006 0.0135 0.0194 0.0595
Time (s) 0.8708 0.0004 0.0046 0.0067 0.0040 0.0017

S0 = 100
σ = 0.2

Price 6.2590 6.2511 6.2391 6.2000 6.2841 5.7686
RE - 0.0013 0.0032 0.0094 0.0040 0.0784
Time (s) 0.8213 0.0002 0.0039 0.0065 0.0038 0.0017

S0 = 110
σ = 0.2

Price 12.1367 12.1468 12.1077 12.0769 12.0930 10.9008
RE - 0.0008 0.0024 0.0049 0.0036 0.1018
Time (s) 0.8282 0.0002 0.0039 0.0066 0.0039 0.0018

S0 = 90
σ = 0.4

Price 8.9400 8.9635 8.9194 8.8937 9.0180 8.6140
RE - 0.0026 0.0023 0.0052 0.0087 0.0365
Time (s) 0.8742 0.0004 0.0060 0.0069 0.0059 0.0018

S0 = 100
σ = 0.4

Price 13.7023 13.6839 13.6618 13.6448 13.7639 13.1217
RE - 0.0013 0.0030 0.0042 0.0045 0.0424
Time (s) 0.8348 0.0002 0.0057 0.0066 0.0057 0.0019

S0 = 110
σ = 0.4

Price 19.4931 19.5103 19.4338 19.4262 19.5194 18.5428
RE - 0.0009 0.0030 0.0034 0.0014 0.0487
Time (s) 0.8260 0.0002 0.0057 0.0066 0.0057 0.0017

The remaining parameters were set to K = 100, r = 0.04 and δ = 0.08.
Here RE stands for the Relative Error and is calculated with the Binomial method
(m = 10 000) and time is the wall-clock time. Except for Binomial with m = 10 000,
these are mean values from 10 runs to obtain reliable time estimates.
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Table 6.2: Performances of different approximation methods and the Bino-
mial model with m time steps for the American put option. Time to maturity
T = 1 (year).

Binomial
m = 10 000

Binomial
m = 100

JZ BS02 BAW BSM

S0 = 90
σ = 0.2

Price 15.4309 15.4424 15.4324 15.4308 15.4392 15.4307
RE - 0.0007 0.0001 0.0000 0.0005 0.0000
Time (s) 1.2152 0.0004 0.0062 0.0073 0.0059 0.0018

S0 = 100
σ = 0.2

Price 9.5357 9.5174 9.5366 9.5359 9.5405 9.5359
RE - 0.0019 0.0001 0.0000 0.0005 0.0000
Time (s) 1.0382 0.0002 0.0056 0.0068 0.0057 0.0016

S0 = 110
σ = 0.2

Price 5.4369 5.4508 5.4373 5.4369 5.4396 5.4369
RE - 0.0025 0.0001 0.0000 0.0005 0.0000
Time (s) 1.1084 0.0002 0.0057 0.0067 0.0057 0.0016

S0 = 90
σ = 0.4

Price 21.6304 21.6548 21.6446 21.6298 21.6917 21.6125
RE - 0.0011 0.0007 0.0000 0.0028 0.0008
Time (s) 1.3291 0.0004 0.0077 0.0068 0.0077 0.0017

S0 = 100
σ = 0.4

Price 16.8977 16.8629 16.9099 16.8977 16.9474 16.8890
RE - 0.0021 0.0007 0.0000 0.0029 0.0005
Time (s) 1.0288 0.0002 0.0075 0.0065 0.0075 0.0016

S0 = 110
σ = 0.4

Price 13.0835 13.0928 13.0932 13.0834 13.1233 13.0790
RE - 0.0007 0.0007 0.0000 0.0030 0.0003
Time (s) 1.0400 0.0002 0.0075 0.0065 0.0075 0.0016

The remaining parameters were set to K = 100, r = 0.04 and δ = 0.08.
Here RE stands for the Relative Error and is calculated with the Binomial method
(m = 10 000) and time is the wall-clock time. Except for Binomial with m = 10 000,
these are mean values from 10 runs to obtain reliable time estimates.

61



Results Method Performance

0
4

2

10-3

10
00 -10

5

0
4

0.005

0.01

2
1000 -10

0
4

2

10-3

4

2
1000 -10

0
4

2

10-3

2

4

10
00 -10

(a) Call relative error surface of Binomial Tree with m = 100.
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(b) Put relative error surface of Binomial Tree with m = 100.

Figure 6.1: Relative error of prices from Binomial Tree (m = 100) with the
same method using m = 10 000 as a benchmark.

62



Results Method Performance

0
4

0.005

102

0.01

0
0 -10

0
4

0.005

102

0.01

0
0 -10

0
4

2

10

10-3

2

4

0
0 -10

0
4

2

10-3

4

102 00 -10

(a) Call relative error surface of Ju Zhong.

100
4

2

0

10-3

2

4

-100

0
4

0.5

10

10-3

2

1

0
0 -10

100
4 0

2

2

10-3

-100

4

0
4

2

10

10-3

2

4

0
0 -10

(b) Put relative error surface Ju and Zhong.

Figure 6.2: Relative error of prices from Ju and Zhongs’ method using
m = 10 000 as a benchmark.
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Figure 6.3: Relative error of prices from Barone-Adesi and Whaleys’
method using m = 10 000 as a benchmark.
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Figure 6.4: Relative error of prices from Bjerksund and Stenslands’ method
using m = 10 000 as a benchmark.
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Figure 6.5: Relative error of prices from Black-Scholes-Merton’s formula
using m = 10 000 as a benchmark.
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Comments on Tables

For the call option we see that all approximation methods perform about
equally well with precision mostly at the third decimal, but where Ju and
Zhongs’ model is the best overall and the Black-Scholes-Merton model per-
forms worst as expected. Suprisingly, we have that the Binomial Tree with
m = 100 performs best and is almost ten times faster than all closed-form
approximations.

The put option reveals that the Bjerksund and Stensland performs excep-
tionally well with precision at the fifth decimal, why we only see zeros. The
two related methods by Ju and Zhong and BAW also perform well, where
the former is slightly better, making its enhancement of BAW evident.
What is more interesting is that the Black-Scholes-Merton model results in
almost the true value for this set of input parameters and is beaten only by
Bjerksund Stensland model. Compared to the call option case, we now see
that Binomial Tree with m = 100 is less accurate for this set of parameters
and option-type, however, still producing prices that do not deviate much.

Regarding speed, the Random Tree method with m = 100 is always the
fastest as well as the two related models BAW and JZ are about equally fast.
BS02 is somewhat slower than these two methods even though it does not
need a numerical aid, but on the other hand it uses longer expressions and a
multivariate normal distribution two times per computation.

Comments on Figures

The summary and tables above is not enough to draw any final conclusions
about their true performances, a legitimate analysis requires that we stress
test the models using a broader range of input parameters and in the surface
plots we also vary the interest rate.

One thing that is interesting to see is the enhancement of Ju and Zhong
compared to BAW at the case of intermediate times to maturity. Here BAW
almost exclusively gets worse, but performs much better at short maturities
where its first approximations is valid (the second regards very long times
maturity, but we only look four years ahead). Another finding is that when
we look at all plots, increasing the volatility seems for most cases increase
error slightly. Further, increasing the interest rate changes the shape of all
surfaces and almost every time worsening the results. The model that seems
to perform consistently despite different inputs is in fact the Binomial Tree
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with m = 100 whereas the exceptional results for Bjerksund and Stensland
in the tables appear to be just a fluke as a consequence of the specific inputs
used (especially when using low risk-free interest rates).

6.1.2 Exotic Options

We now move on to the case of exotic options which unfortunately is a little
bit out of focus due to their complexity and our inability to easily acquire
other benchmark prices than those used here. With the single exotic option
considered, the idea is at least that we should be able to see some useful
results of how effective the models are when applying their respective variance
reductions methods. Whether or not one can extrapolate the found facts
about their performances to other option styles and inputs is although better
left unsaid. The results are now following in Table 6.3.
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Table 6.3: American max-option with time to maturity T = 1 (year) and two underlying stocks. Also including
95% confidence intervals (CI).

Random
Tree

Random
Tree (AB)

LSM
LSM
(AV)

LSM
Quasi

True

S0 = 80

Price 1.2185 1.2650 1.2574 1.2486 1.2523 1.259
CI [1.1608,1.2773] [1.1928,1.3388] [1.2311,1,2837] [1.2307,1.2665] -
RE 0.0322 0.0048 0.0013 0.0083 0.0053
Time (s) 191.9036 193.0081 3.4410 6.6126 3.6049

S0 = 90

Price 4.0276 4.0299 4.0449 4.0660 4.0664 4.077
CI [3.8595,4.1986] [3.8714,4.1899] [3.9972,4.0925] [4.0352,4.0967] -
RE 0.0121 0.0116 0.0079 0.0027 0.0026
Time (s) 190.8559 193.2802 4.1445 6,6519 3.4290

S0 = 100

Price 9.1074 9.0939 9.3723 9.3188 9.3338 9.361
CI [8.7896,9.4287] [8.7982,9.3903] [9.3034,9.4421] [9.2798,9.3578] -
RE 0.0271 0.0285 0.0012 0.0045 0.0025
Time (s) 191.6637 194.2802 4.10378 6.7364 3.4829

S0 = 110

Price 16.6423 16.7855 16.8880 16.9463 16.9153 16.924
CI [16.1922,17.0888] [16.3445,17.2233] [16.8005,16,9756] [16.9032,16.9893] -
RE 0.0166 0.0082 0.0021 0.0013 0.0005
Time (s) 191.4960 195.1984 4.24357 6.8800 3.5394

S0 = 120

Price 26.2261 25.6599 25.8922 25.9621 25.9685 25.980
CI [25.5744,26.8805] [25.0484,26.2658] [25.7923,25.9922] [25.9176,26.0067] -
RE 0.0095 0.0123 0.0034 0.0007 0.0004
Time (s) 190.0072 195.6748 4.346746 7.7617 3.6082

Remaining parameters were set to K = 100, r = 0.05, ρ = 0.3 and δ = 0.1 σ = 0.2 for both stocks. The number
of exercise opportunities was four; {0, T

3
, 2T

3
, T}, all in accordance to the numerical evaluation by

Broadie and Glasserman [14]. Following their set-up, the number of replications for the Random Tree methods
was n = 100, whereas the branching parameter was b = 50. For the Least Squares versions, the number of
replications was n = 100 000. Here RE stands for the Relative Error and time is the wall-clock time.
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Comments on Table

Compared to the vanilla option pricing methods, the Random Tree
method fails to produce the same accuracy and having relative errors
mostly at the second decimal place. Nor did the antithetic branching
improve the prices substantially and the confidence intervals are not much
narrower than the standard model. Another thing we note is that the vari-
ance reduction method is somewhat slower even though it requires less space.

For the LSM model, we can however see slightly narrowed confidence inter-
vals when we use antithetic variates and the method also produces results
that have less relative errors for all but two of the cases. This shows that
the variance reduction had an effect, although at the cost of longer com-
putational times. Most interesting results here is however the LSM using
Quasi-Monte Carlo. Here the resulting prices are basically second to none,
yielding accurate results even at the fourth decimal place in two cases. Not
only is it accurate, it is also the fastest method of them all. This in contrast
to the Random Tree methods that are, despite depth-first programming and
far less replications than in LSM, almost about 50 times slower.

6.2 Portfolio Risk

After having analyzed the different methods’ performances, we now continue
with the portfolio risk part using VaR at a confidence level α = 0.01. Shown
below in Table 6.4 and 6.5 are mean values for the relative errors and also
the important standard deviations in order to capture the span of VaR values
that an arbitrary vector with positions (that defines a portfolio and VaR is
portfolio-specific) on a given subset of options may yield. This is shown for
all rows except for the one corresponding to w0%E

u , simply because this is a
single portfolio using only a unit long position on all 30 American options,
which is highlighted by the subscript u.
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Table 6.4: Monte Carlo portfolio VaR for ∆t = 1/52 (year) using different
pricing methods and different positions. All values are mean values of 10 000
randomized integer portfolio positions on the 60 options between -10 and 10.
These options are listed in Appendix B.

Binomial
N = 10 000

Binomial
N = 100

JZ BAW BS02 BSM

w0%E
u

VaR99% 14.287956 13.985472 14.400976 14.806463 14.366683 16.875264
RE - 0.021628 0.007848 0.035019 0.005480 0.153320
sRE - - - - - -

w0%E

VaR99% 153.707073 153.673432 153.654880 153.567863 153.591219 150.430670
R̄E - 0.006172 0.001202 0.003616 0.001053 0.029794
sRE - 0.006859 0.001264 0.003931 0.000977 0.027899

w14%E

VaR99% 169.658666 169.617405 169.609804 169.530742 169.551793 166.622474
R̄E - 0.005617 0.001072 0.003218 0.000942 0.026131
sRE - 0.006086 0.001137 0.003545 0.000907 0.024920

w25%E

VaR99% 175.713284 175.658952 175.664747 175.592745 175.609956 172.823675
R̄E - 0.005580 0.001051 0.003072 0.000916 0.024817
sRE - 0.006676 0.001150 0.003463 0.000877 0.024148

w33%E

VaR99% 191.241256 191.232772 191.195998 191.115285 191.141578 188.480756
R̄E - 0.005068 0.000942 0.002819 0.000846 0.022321
sRE - 0.005672 0.001023 0.003051 0.000872 0.021925

w40%E

VaR99% 197.053870 197.031540 197.013544 196.953341 196.963323 194.439141
R̄E - 0.004976 0.000922 0.002754 0.000814 0.021868
sRE - 0.006012 0.001022 0.003198 0.000816 0.023354

w45%E

VaR99% 210.211891 210.186128 210.171452 210.105659 210.126140 207.776049
R̄E - 0.004532 0.000878 0.002614 0.000750 0.020217
sRE - 0.004896 0.000969 0.002893 0.000772 0.020073

w50%E

VaR99% 215.314671 215.306624 215.275881 215.213101 215.230639 212.978534
R̄E - 0.004453 0.000853 0.002575 0.000715 0.019549
sRE - 0.005329 0.000917 0.002871 0.000714 0.019298

w86%E

VaR99% 202.297186 202.269201 202.251215 202.164887 202.208969 199.860018
R̄E - 0.004288 0.000932 0.002731 0.000772 0.021087
sRE - 0.004606 0.001010 0.002888 0.000757 0.021498

w75%E

VaR99% 196.392835 196.376047 196.358672 196.340549 196.331627 194.506889
R̄E - 0.004331 0.000881 0.002631 0.000636 0.019964
sRE - 0.005221 0.001017 0.003135 0.000696 0.022018

w67%E

VaR99% 183.676768 183.646480 183.636115 183.598264 183.611104 181.653702
R̄E - 0.004080 0.000923 0.002737 0.000675 0.021229
sRE - 0.004877 0.001052 0.003075 0.000737 0.022346

w60%E

VaR99% 172.261958 172.241763 172.230990 172.268156 172.225222 170.885501
R̄E - 0.003993 0.000833 0.002470 0.000455 0.018839
sRE - 0.004798 0.001035 0.003158 0.000583 0.025643

w55%E

VaR99% 157.674479 157.670492 157.628234 157.529329 157.644719 156.293001
R̄E - 0.002610 0.000824 0.002110 0.000447 0.019385
sRE - 0.003126 0.001041 0.002512 0.000567 0.022748

The number of replications was n = 5000 and correlations between the three stocks were equal
to ρ = 0.3. Remaining parameters for all stocks was S0 = 100, δ = 0.02 and σ = 0.2, whereas
the risk-free interest rate was r = 0.04. Here w denotes the portfolio position vector with
fraction indicating number of European options and u stands for the unit portfolio (unit
long positions). Except for the unit portfolio, the positions range randomly between -10 and
10. R̄E is the relative error mean and sRE is the standard deviation for the 10 000 weights.
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Table 6.5: HS Portfolio VaR for ∆t = 1/52 (year) using different pric-
ing methods and different positions. All values are mean values of 10 000
randomized integer portfolio positions on the 60 options between -10 and
10. Window size was 1000 days ranging between 2013-12-10 to 2017-11-29.
Options are listed in Appendix B.

Binomial
N = 10 000

Binomial
N = 100

JZ BAW BS02 BSM

w0%E
u

VaR99% 6.333053 6.372454 6.301798 6.303850 6.295001 6.105141
RE - 0.006183 0.004960 0.004633 0.006045 0.037331
sRE - - - - - -

w0%E

VaR99% 143.507758 143.508882 143.380749 143.282936 143.299492 141.128324
R̄E - 0.005024 0.001036 0.002038 0.001774 0.018844
sRE - 0.005285 0.000689 0.001781 0.001892 0.013852

w14%E

VaR99% 164.220229 164.230923 164.109577 164.020095 164.042717 162.096406
R̄E - 0.004493 0.000893 0.001792 0.001532 0.015997
sRE - 0.004794 0.000696 0.001691 0.001686 0.013316

w25%E

VaR99% 170.104760 170.103446 169.998920 169.914318 169.933368 168.091900
R̄E - 0.004278 0.000844 0.001703 0.001435 0.014864
sRE - 0.004577 0.000710 0.001639 0.001560 0.012717

w33%E

VaR99% 173.226389 173.219217 173.121456 173.036160 173.052855 171.223994
R̄E - 0.004171 0.000817 0.001658 0.001450 0.014453
sRE - 0.004357 0.000655 0.001578 0.001665 0.012165

w40%E

VaR99% 179.221330 179.220533 179.118222 179.034891 179.053139 177.262842
R̄E - 0.004013 0.000785 0.001599 0.001379 0.013736
sRE - 0.004157 0.000622 0.001509 0.001508 0.011639

w45%E

VaR99% 186.501286 186.502453 186.404422 186.326980 186.341634 184.686668
R̄E - 0.003909 0.000743 0.001551 0.001301 0.012813
sRE - 0.004132 0.000609 0.001456 0.001465 0.011000

w50%E

VaR99% 199.079006 199.089719 198.987622 198.916571 198.927821 197.375860
R̄E - 0.003679 0.000706 0.001439 0.001187 0.011959
sRE - 0.003869 0.000606 0.001391 0.001370 0.011040

w86%E

VaR99% 181.334818 181.338463 181.277441 181.209194 181.224179 179.853959
R̄E - 0.003277 0.000585 0.001408 0.001124 0.011900
sRE - 0.003482 0.000554 0.001416 0.001426 0.011128

w75%E

VaR99% 175.541397 175.539077 175.488843 175.413656 175.434179 174.076512
R̄E - 0.003091 0.000594 0.001478 0.001167 0.012425
sRE - 0.003277 0.000581 0.001517 0.001539 0.011706

w67%E

VaR99% 172.450650 172.451728 172.399602 172.337470 172.386665 171.217024
R̄E - 0.003091 0.000578 0.001332 0.000514 0.010840
sRE - 0.003331 0.000575 0.001503 0.000572 0.011400

w60%E

VaR99% 166.925762 166.920452 166.888568 166.860842 166.867057 166.197550
R̄E - 0.002983 0.000518 0.001025 0.000513 0.006810
sRE - 0.003256 0.000522 0.001194 0.000568 0.006886

w55%E

VaR99% 156.205976 156.209139 156.181563 156.176756 156.180476 155.919275
R̄E - 0.001543 0.000373 0.000590 0.000297 0.003361
sRE - 0.001765 0.000442 0.000895 0.000344 0.004292

The number of replications was n = 2000, volatilities σ = [0.2089, 0.2394, 0.1914, 0.1422, 0.1881]
and dividend yields δ = [0.0231, 0, 0.0267, 0.0278, 0.0274] respectively corresponding to stocks
BA, GM, WFC, JNJ and IBM. Risk-free interest rate was r = 0.021 (US 5 Year Treasury
2017-11-30). Here w denotes the portfolio position vector with fraction indicating number of
European options and u stands for the unit portfolio (unit long positions). Except for the unit
portfolio, the positions range randomly between -10 and 10. R̄E is the relative error mean and
sRE is the standard deviation for the 10 000 weights.
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Comments on Tables

In Table 6.4 and the first row we have the portfolio with unit positions on all
American options solely to see how price errors affect risk under no influence
of possible error offsetting due to particular portfolio positions. Then, for
every row (each with a specified percentage of European and American
options from which 10 000 random portfolios are constructed from), relative
error mean values are shown to indicate what an arbitrary portfolio VaR
might be. Evidently, the BS02 performs best overall, even in the unit case,
with errors mostly at the fourth decimal place, closely followed by the model
of Ju and Zhong.

Apparently, all models seem to produce VaR estimates roughly on the same
order of magnitude even though the number of included European options
increases (which can be priced by the exact Black-Scholes formula). What
we also see is that their respective standard deviations are always of the
same order as their corresponding mean relative error, meaning that a VaR
outcome of a single portfolio might be ”far” (given the decimal place we are
talking about) from the mean. Hence, we virtually see no sign of that a
higher percentage of European options in a portfolio, based on mean relative
errors, would reduce relative error in risk in any way. Another thing we
note is that the different portfolio positions appear to more or less offset
pricing errors for all models, most evident when we look at the unit portfolio
using Black-Scholes-Merton. Here the relative error is about 15% and then
drops dramatically to a mean around 2% for all other rows when using
random positions. Even though this sudden drop, this model is still being
outperformed by the others which are tailored to price American options.

Almost the same results are then visible in Table 6.5 when we look at the
risk estimates based on historic data. The fact of using this instead of non-
objective data should although not matter that much for the context of an-
alyzing error in risk estimates. Something that differs to Table 6.4 however,
is that JZ method now performs best overall.
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Chapter 7

Discussion

7.1 Pricing Methods

We now carry on with analyzing the obtained results and we begin with
the different methods to price options. Regarding the methods limited to
vanilla calls and puts, it is hard to directly determine which is better or
worse since all seem to perform good in different input parameter settings
as we saw in the previous chapter.1 Here however, a remark is that a
broader range of input parameters would be needed to draw compelling
conclusions on performances. Examples of this are especially longer times
to maturity and other dividend yields. Yet surprisingly, the Binomial model
with m = 100 time steps produced the most consistent results whatever the
input parameters were in this project. Besides, it was also remarkably fast,
meaning that the accuracy might be increased even more if we allow longer
computational times matching those of the other methods.

Comparing speeds using MATLABR© is however not perfectly reliable and the
fairest condition to judge the models’ performances. Although MATLABR©

is nice to work in, it is a high-level language that consumes considerable
amount time especially in loops, why faster low-level ones are needed to truly
unravel the methods full potential. Another thing to note is that all methods
except the Binomial Tree use the normal cumulative and probability density
functions, where calls to these demand quite amount of computational time

1One can make use of this fact by considering an implementation that selects the
optimal method in response to the current input parameter setting, thus always producing
the most accurate prices.
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in MATLABR©. E.g. we see that even the Black-Scholes-Merton formula
that requires few lines of code and operations is rather slow compared to the
numerical Binomial Tree. The point is, if we would have used some other
language, function calls to the normal distribution functions would perhaps
require less effort, implying that the elapsed times would not be on the scales
we see here. However, we can see some indications of their speeds relative to
each other and important to remember is that the way the implementations
were done may have influenced the obtained results negatively. That is,
these could perhaps have been streamlined to yield better wall-clock times.
Further, it is always important to open up for the possibility that mistakes
in some of the implementations have been done, potentially inducing flawed
results.

Now considering the relative error plots. Here the methods mostly appear
to have smooth surfaces, but sometimes distinguishing themselves with
steep curvatures. This is not easy to explain since the reason for this may
lay within the complex mathematical framework of the different methods.
However, what probably is the reason for peculiar look of the Binomial Tree
(m = 100) surfaces is the fact that this model converges in an oscillatory
manner, which is shown graphically by Broadie and Detemple [18]. Since
this was the pricing method deemed to obtain most consistent results in
considerably short amounts of time, it is likely that if we increase the number
of time steps m, we would obtain surfaces with less oscillatory shapes and
most importantly, lower errors at wall-clock times still better than the others.

A method that outclasses all other implementations concerning the exotic
option is the Quasi-Monte Carlo version of the least squares model. We saw
that this method simply got the best of both worlds, speed and accuracy.
Whether or not it performs well for other exotic options as well is as
previously discussed left unsaid. The LSM along with the antithetic variate
version are however also performing well, but the two cannot produce a
compelling combination of precision and speed, this is specially clear when
the option is in the money, i.e. when the payoff function is non-zero (with
respect to the initial stock prices). Another thing that is important to note
is that we have to decide a good set of basis functions in order to obtain
good regression fits and in this thesis we only used one set, which may not
be the best choice. This method hence requires that we in advance know
what is the optimal set, this is of course not perfect but once we know it, it
should be readily applicable.

Regarding the Random Tree method, we can basically rule it out as an ade-
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quate model for real-time clearing based on the the observed computational
times. Also, the depth-first programming and the method itself is heavily
reliant on loops, why other programming languages might handle these
problems better, but since the computational times are already so slow, it is
hard to believe that the method can be fast enough for application regardless
of language. Moreover, it is not a wild guess that any other exotic option
would require the same amount of time when using the same parameter
settings. After all, we would build the tree of stock prices and calculate
the estimators almost in an exact same way. Further, its dependence of
a point estimator using the mean value of the low and high estimator is
not convincing. Both these should however converge to the true option
price according to the law of large numbers, but as we saw, the model is
exceptionally slow even for a number of replications that is not near the one
used in the least squares versions.

To summarize, none of the methods were even close to the speeds of the
ones tailored to vanilla options, but on the other hand, the option evaluated
was by far more complex. Unfortunately, it is hard to find benchmark prices
for exotic options, why this analysis was limited. It is therefore hard to say
if other parameter settings, e.g. one with an increased number of exercise
opportunities, would imply different results. Further, it is once again im-
portant to note that the implementations may not have been perfect, which
could have impacted both speed and precision. Despite this, the results in
this project at least give us some useful information about their performances
and applicability.

7.2 Error in Risk Estimates

When the approximation methods’ performances were analyzed based on
the tables, we saw that BS02 resulted in the best results for the put option
in one specific parameter setting. This is also what we see in the Monte
Carlo VaR table where essentially the same parameter setting was used.
As we know, it did not perform astonishingly well for the call options
however and one might therefore think that errors linked to these would
have offsetted the more accurate put prices, resulting in worse VaR values
than the Binomial Tree (m = 100) that performs most consistently. This is
not what we see though, in fact, it performs worst of all methods designed
for American vanilla options. It is not easy to explain this behavior but
it might be that, for the specific input parameters, the BS02’s very good
precision for put options prices outweighs the worse, although somewhat
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good, call prices such that good VaR estimates are attained compared to
the Binomial Tree (m = 100) with ”acceptable” prices for both calls and
puts in all parameter settings. Although, these ”acceptable” prices seem to
have been insufficiently precise in order to yield better VaR estimates than
all other methods in this particular parameter setting. An example that
supports this hypothesis is that for the BSM model the (understandably)
bad precision for the call options evidently offsets the very good precision
for puts (since we use about the same parameter setting here as when
the BSM provided surprisingly good put prices). Hence, the other meth-
ods’ call prices were probably enough precise such that this offsetting on
relative errors would not be in excess of those produced by the Binomial Tree.

Yet it is difficult to say which model is better or worse since only one
setting of input parameters was studied in the project, mainly due to heavy
calculations.2 Other input parameters might reveal different results why a
broader range of these must be used and analyzed. Using only one setting,
as here and in the tabulated prices, might delude ourselves to believe a
model like BS02 is the optimal choice for risk calculations. But varying the
parameters like was done in the relative error plots revealed otherwise, hence
clarifying the importance and need of a broader study with a wider range of
parameters to reliably answer what method is optimal. Moreover, a wider
range of portfolio positions would also be necessary to analyze as well as to
include exotic options (perhaps even other financial instruments) to better
mimic real portfolios. Other parameter settings might therefore result in
that the Binomial Tree with m = 100 time steps is in fact the optimal choice
because of its consistent price approximations. Similar discussion can also
be done for the historical simulation results where almost the same input
parameters were used. Here however, relative errors of BS02 and JZ where
about equal, supporting the discussion about that it is hard to say which
method is better or worse.

To conclude, the way the risk analysis was conducted by varying portfolio
positions and evaluating error mean values might not have been a flawless
approach, but as discussed, deemed necessary. Evaluating only a few portfo-
lios and their relative errors would not reveal an overall result since different
portfolio positions (which as we know may be extremely many for a given
set of options) might offset pricing errors, that in turn affect portfolio risk
estimates.

2Creating benchmark VaR estimates for Table 6.4 using n = 5000 replications with the
Binomial Tree method took nearly two days of computational time.
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Chapter 8

Conclusion

This project has uncovered useful results about performances of methods
limited to vanilla options, broadening the understanding of how they work
in different parameter settings. However, the analysis of exotic options
was unfortunately limited, why more styles need to be considered in order
to better evaluate and stress test the numerical methods. If more time is
devoted to this, it might be possible to find benchmark prices for other
option styles than the single one considered in this thesis, thus opening up
for a deeper and more legitimate analysis of model performances. Despite
this, the two methods used here gave us insight into their applicability
since after all, they should in principle work the same way regardless of
option style. Furthermore, the closed-form approximation methods and
the Binomial Tree provided valuable data of how they perform compared
to each other. Yet the answer to which is better or worse is unfortunately
inconclusive since all methods perform good in different settings. This is
of course inconvenient, but as mentioned, it is possible to benefit from this
fact by simply make an implementation that chooses the optimal method in
response to the current parameter setting, thus always producing the best
possible approximations.

Such an implementation might then entail very small deviations from
the true risk estimates, why an analysis of this sort might be a further
development. Regarding this topic, only one setting of input parameters
was used for each (that were similar) of the two methods to generate loss
distributions due to heavy calculations. This resulted in that it was difficult
to determine the different methods’ general ability to estimate portfolio risk
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and draw parallels to their precision in price approximation. A broader
range of parameter values and a larger set of unique options than the 60 used
here (per loss distribution-generating method) would therefore be required
in order to carefully answer these questions.

Besides this, useful results of the risk analysis have still been obtained. We
have for example seen that the percentage of European options does not seem
to reduce the relative errors in portfolio risk such that we can price Ameri-
can options erroneously deliberately in order to increase speed in calculations.
Even though this percentage was high, only minor reductions in errors were
observed. Thus it still requires us to price American options with any of the
methods developed for this purpose despite they are few compared to the
number of European in a mixed portfolio. This is as we have seen crucial
in order to reduce the relative error significantly. Also, the approximation
method with which we price options obviously does matter since risk esti-
mates can be at scales of thousandth or ten thousandth depending on choice.
This hence highlights the importance of accurately pricing American options
to ensure that risk estimates truly reflect corresponding market conditions,
especially in clearing houses where portfolios of potentially great values are
handled.
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[19] J. Dańıelsson, Financial Risk Forecasting. Wiley Finance, 2011. p. 9,
34, 76.

81



Appendix A

Supplementary Results

Table A.1: Performances of different approximation formulas and the Bino-
mial model with m time steps for the American call option. Time to maturity
T = 3 (years).

Binomial
m = 10 000

Binomial
m = 100

JZ BS02 BAW BSM

S0 = 90
σ = 0.2

Price 5.0806 5.0937 5.0989 5.0323 5.2313 4.2259
RE - 0.0026 0.0036 0.0095 0.0296 0.1682
Time (s) 0.8964 0.0004 0.0051 0.0067 0.0049 0.0018

S0 = 100
σ = 0.2

Price 8.9439 8.9316 8.9465 8.8885 9.0524 7.1676
RE - 0.0014 0.0003 0.0062 0.0121 0.1986
Time (s) 0.8221 0.0002 0.0048 0.0066 0.0049 0.0017

S0 = 110
σ = 0.2

Price 14.3025 14.3127 14.2923 14.2507 14.3242 10.9961
RE - 0.0007 0.0007 0.0036 0.0015 0.2312
Time (s) 0.8330 0.0002 0.0047 0.0069 0.0048 0.0019

S0 = 90
σ = 0.4

Price 15.4548 15.4847 15.4538 15.3810 15.8127 13.7430
RE - 0.0019 0.0001 0.0048 0.0232 0.1108
Time (s) 0.8701 0.0004 0.0050 0.0067 0.0051 0.0018

S0 = 100
σ = 0.4

Price 20.4706 20.4517 20.4474 20.3847 20.8183 17.9845
RE - 0.0009 0.0011 0.0042 0.0170 0.1214
Time (s) 0.8238 0.0002 0.0048 0.0066 0.0047 0.0017

S0 = 110
σ = 0.4

Price 26.1242 26.1540 26.0789 26.0229 26.4380 22.6724
RE - 0.0011 0.0017 0.0039 0.0120 0.1321
Time (s) 0.8177 0.0002 0.0048 0.0066 0.0047 0.0017

The remaining parameters were set to K = 100, r = 0.04 and δ = 0.08.
Here RE stands for the Relative Error and is calculated with the Binomial method
(m = 10 000) and time is the wall-clock time. Except for Binomial with m = 10 000,
these are mean values from 10 runs to obtain reliable time estimates.
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Table A.2: Performances of different approximation formulas and the Bino-
mial model with m time steps for the American put option. Time to maturity
T = 3 (years).

Binomial
m = 10 000

Binomial
m = 100

JZ BS02 BAW BSM

S0 = 90
σ = 0.2

Price 22.1615 22.1820 22.2126 22.1602 22.3714 22.1214
RE - 0.0009 0.0023 0.0001 0.0095 0.0018
Time (s) 1.0916 0.0004 0.0068 0.0068 0.0067 0.0016

S0 = 100
σ = 0.2

Price 17.2146 17.1863 17.2552 17.2141 17.3798 17.1968
RE - 0.0016 0.0024 0.0000 0.0096 0.0010
Time (s) 1.0284 0.0002 0.0067 0.0067 0.0066 0.0016

S0 = 110
σ = 0.2

Price 13.1674 13.1894 13.1982 13.1669 13.2970 13.1591
RE - 0.0017 0.0023 0.0000 0.0098 0.0006
Time (s) 1.0847 0.0002 0.0066 0.0065 0.0065 0.0016

S0 = 90
σ = 0.4

Price 32.0665 32.0931 32.1464 32.0326 32.5416 31.6386
RE - 0.0008 0.0025 0.0011 0.0148 0.0133
Time (s) 1.1459 0.0004 0.0069 0.0067 0.0067 0.0016

S0 = 100
σ = 0.4

Price 28.3305 28.2828 28.4187 28.3089 28.7862 28.0137
RE - 0.0017 0.0031 0.0008 0.0161 0.0112
Time (s) 1.0352 0.0001 0.0065 0.0065 0.0065 0.0016

S0 = 110
σ = 0.4

Price 25.0746 25.1194 25.1654 25.0595 25.5061 24.8354
RE - 0.0018 0.0036 0.0006 0.0172 0.0095
Time (s) 1.0318 0.0002 0.0065 0.0065 0.0065 0.0016

The remaining parameters were set to K = 100, r = 0.04 and δ = 0.08.
Here RE stands for the Relative Error and is calculated with the Binomial method
(m = 10 000) and time is the wall-clock time. Except for Binomial with m = 10 000,
these are mean values from 10 runs to obtain reliable time estimates.
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Table A.3: Monte Carlo portfolio ES for ∆t = 1/52 (year) using different
pricing methods and different positions. All values are mean values of 10 000
randomized integer portfolio positions on the 60 options between -10 and 10.
Options are listed in Appendix B.

Binomial
N = 10 000

Binomial
N = 100

JZ BAW BS02 BSM

w0%E
u

ES99% 14.953113 14.698011 15.072011 15.519217 15.042327 18.029416
RE - 0.017356 0.007889 0.036478 0.005931 0.170627
sRE - - - - - -

w0%E

ES99% 176.912874 176.876259 176.855105 176.753328 176.771542 173.110003
R̄E - 0.004914 0.001075 0.003317 0.001037 0.029637
sRE - 0.005635 0.001127 0.003649 0.000913 0.027825

w14%E

ES99% 195.166490 195.120122 195.113242 195.025047 195.036740 191.644051
R̄E - 0.004410 0.000952 0.002953 0.000923 0.026038
sRE - 0.004933 0.001014 0.003348 0.000834 0.025124

w25%E

ES99% 202.088180 202.030861 202.033872 201.950646 201.963917 198.728137
R̄E - 0.004403 0.000930 0.002803 0.000890 0.024610
sRE - 0.005728 0.000997 0.003274 0.000821 0.024221

w33%E

ES99% 220.113016 220.095645 220.062726 219.973545 219.993382 216.910328
R̄E - 0.003978 0.000829 0.002546 0.000817 0.022042
sRE - 0.004544 0.000893 0.002838 0.000813 0.021986

w40%E

ES99% 226.752882 226.718699 226.707553 226.635642 226.643318 223.717768
R̄E - 0.003945 0.000825 0.002515 0.000792 0.021644
sRE - 0.004857 0.000936 0.003032 0.000774 0.023397

w45%E

ES99% 241.838915 241.814989 241.794179 241.719734 241.735361 239.027722
R̄E - 0.003536 0.000776 0.002375 0.000718 0.019910
sRE - 0.004018 0.000850 0.002675 0.000708 0.020026

w50%E

ES99% 247.819956 247.808523 247.776588 247.704627 247.718621 245.109292
R̄E - 0.003489 0.000761 0.002355 0.000681 0.019276
sRE - 0.004353 0.000818 0.002681 0.000659 0.019056

w86%E

ES99% 232.800530 232.768198 232.750416 232.650612 232.694812 229.979054
R̄E - 0.003363 0.000827 0.002492 0.000734 0.020832
sRE - 0.003695 0.000877 0.002668 0.000696 0.021506

w75%E

ES99% 225.991709 225.973924 225.954541 225.931290 225.917403 223.797858
R̄E - 0.003382 0.000793 0.002426 0.000615 0.019742
sRE - 0.004248 0.000916 0.002975 0.000655 0.022223

w67%E

ES99% 211.155375 211.119253 211.109521 211.062273 211.076355 208.805983
R̄E - 0.003188 0.000831 0.002543 0.000647 0.020989
sRE - 0.003846 0.000933 0.002893 0.000672 0.022395

w60%E

ES99% 198.115825 198.095605 198.082593 198.120963 198.073254 196.511596
R̄E - 0.003143 0.000757 0.002298 0.000423 0.018650
sRE - 0.003676 0.000914 0.002977 0.000533 0.026540

w55%E

ES99% 181.461538 181.455937 181.408563 181.292351 181.425212 179.844672
R̄E - 0.002075 0.000747 0.001967 0.000419 0.019098
sRE - 0.002392 0.000910 0.002303 0.000505 0.022785

The number of replications was n = 5000 and correlations between the three stocks were equal
to ρ = 0.3. Remaining parameters for all stocks was S0 = 100, δ = 0.02 and σ = 0.2, whereas
the risk-free interest rate was r = 0.04. Here w denotes the portfolio position vector with

fraction indicating number of European options and u stands for the unit portfolio (unit long
positions). Except for the unit portfolio, the positions range randomly between -10 and 10.
R̄E is the relative error mean and sRE is the standard deviation for the 10 000 weights.
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Supplementary Results

Table A.4: HS Portfolio ES for ∆t = 1/52 (year) using different pricing
methods and different positions. All values are mean values of 10 000 ran-
domized integer portfolio positions on the 60 options between -10 and 10.
Window size was 1000 days ranging between 2013-12-10 to 2017-11-29. Op-
tions are listed in Appendix B.

Binomial
N = 10 000

Binomial
N = 100

JZ BAW BS02 BSM

w0%E
u

ES99% 6.747965 6.821561 6.720805 6.731374 6.716925 6.584441
RE - 0.010789 0.004041 0.002465 0.004621 0.024835
sRE - - - - - -

w0%E

ES99% 167.010567 167.003688 166.867949 166.745729 166.751097 164.176128
R̄E - 0.003686 0.000951 0.001868 0.001685 0.018833
sRE - 0.003754 0.000551 0.001500 0.001541 0.013343

w14%E

ES99% 191.369869 191.377181 191.246581 191.133647 191.148550 188.836650
R̄E - 0.003292 0.000789 0.001611 0.001404 0.015848
sRE - 0.003534 0.000573 0.001433 0.001319 0.013042

w25%E

ES99% 198.078555 198.065764 197.960118 197.854479 197.862582 195.675678
R̄E - 0.003169 0.000752 0.001515 0.001345 0.014641
sRE - 0.003346 0.000558 0.001361 0.001288 0.012330

w33%E

ES99% 201.549162 201.533571 201.431830 201.329055 201.334014 199.184973
R̄E - 0.003067 0.000720 0.001444 0.001339 0.014033
sRE - 0.003147 0.000523 0.001286 0.001337 0.011683

w40%E

ES99% 208.368875 208.362436 208.253219 208.149069 208.154617 206.028500
R̄E - 0.002933 0.000688 0.001420 0.001287 0.013464
sRE - 0.003004 0.000495 0.001231 0.001250 0.011070

w45%E

ES99% 217.071286 217.068272 216.963099 216.866032 216.874929 214.901136
R̄E - 0.002832 0.000656 0.001356 0.001168 0.012400
sRE - 0.002948 0.000493 0.001205 0.001162 0.010696

w50%E

ES99% 231.709124 231.708197 231.607276 231.517853 231.522833 229.674371
R̄E - 0.002652 0.000611 0.001261 0.001078 0.011414
sRE - 0.002762 0.000478 0.001171 0.001082 0.010429

w86%E

ES99% 211.135291 211.135899 211.071694 210.985940 210.995913 209.338743
R̄E - 0.002424 0.000494 0.001203 0.000998 0.011417
sRE - 0.002494 0.000441 0.001168 0.001143 0.010800

w75%E

ES99% 204.418348 204.411606 204.360150 204.266092 204.281075 202.628518
R̄E - 0.002309 0.000502 0.001271 0.001044 0.011912
sRE - 0.002358 0.000461 0.001264 0.001237 0.011458

w67%E

ES99% 200.835630 200.838468 200.779757 200.699543 200.749941 199.315895
R̄E - 0.002364 0.000488 0.001181 0.000534 0.010544
sRE - 0.002468 0.000453 0.001253 0.000533 0.011139

w60%E

ES99% 194.588034 194.584564 194.547069 194.508818 194.508912 193.681208
R̄E - 0.002266 0.000430 0.000915 0.000535 0.006614
sRE - 0.002352 0.000412 0.001039 0.000546 0.006817

w55%E

ES99% 181.678640 181.679958 181.651777 181.639625 181.647039 181.317472
R̄E - 0.000882 0.000321 0.000559 0.000277 0.003340
sRE - 0.000950 0.000346 0.000765 0.000293 0.004153

The number of replications was n = 2000, volatilities σ = [0.2089, 0.2394, 0.1914, 0.1422, 0.1881]
and dividend yields δ = [0.0231, 0, 0.0267, 0.0278, 0.0274] respectively corresponding to stocks
BA, GM, WFC, JNJ and IBM. Risk-free interest rate was r = 0.021 (US 5 Year Treasury
2017-11-30). Here w denotes the portfolio position vector with fraction indicating number
of European options and u stands for the unit portfolio (unit long positions). Except for
the unit portfolio, the positions range randomly between -10 and 10. R̄E is the relative error
mean and sRE is the standard deviation for the 10 000 weights.
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Appendix B

Portfolio Constituents

On the following two pages are the two sets (Tables B.1 and B.2) of 60
options which were used for the portfolio risk analysis. In these tables, the
first half corresponds to American options while the remainder are their exact
European counterparts. These sets were used to create unit loss distribution
matrices for every pricing method and from which many different portfolios
could be formed.
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Portfolio Constituents

Table B.1: 60 fictitious options that are used to construct different portfolios
in the Monte Carlo method. The first 30 options are American whereas the
following 30 are their exact European counterparts.

Option Type
A = American
E = European

C = Call
P = Put

Underlying
Security

Strike
Price

Time
to

Maturity
A C 1 80 1
A C 1 90 1
A C 1 100 1
A C 1 110 1
A C 1 120 1
A P 1 80 1
A P 1 90 1
A P 1 100 1
A P 1 110 1
A P 1 120 1
A C 2 80 1
A C 2 90 1
A C 2 100 1
A C 2 110 1
A C 2 120 1
A P 2 80 1
A P 2 90 1
A P 2 100 1
A P 2 110 1
A P 2 120 1
A C 3 80 3
A C 3 90 3
A C 3 100 3
A C 3 110 3
A C 3 120 3
A P 3 80 3
A P 3 90 3
A P 3 100 3
A P 3 110 3
A P 3 120 3
E C 1 80 1
E C 1 90 1
E C 1 100 1
E C 1 110 1
E C 1 120 1
E P 1 80 1
E P 1 90 1
E P 1 100 1
E P 1 110 1
E P 1 120 1
E C 2 80 1
E C 2 90 1
E C 2 100 1
E C 2 110 1
E C 2 120 1
E P 2 80 1
E P 2 90 1
E P 2 100 1
E P 2 110 1
E P 2 120 1
E C 3 80 3
E C 3 90 3
E C 3 100 3
E C 3 110 3
E C 3 120 3
E P 3 80 3
E P 3 90 3
E P 3 100 3
E P 3 110 3
E P 3 120 3
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Portfolio Constituents

Table B.2: 60 fictitious options that are used to construct different portfo-
lios in the historical simulation method. The first 30 options are American
whereas the following 30 are their exact European counterparts.

Option Type
A = American
E = European

C = Call
P = Put

Underlying
Security

Strike Price
Time

to
Maturity

A C 1 250 1
A C 1 265 1
A C 1 275 1
A P 1 250 1
A P 1 265 1
A P 1 275 1
A C 2 34 3
A C 2 44 3
A C 2 54 3
A P 2 34 3
A P 2 44 3
A P 2 54 3
A C 3 44 1
A C 3 54 1
A C 3 64 1
A P 3 44 1
A P 3 54 1
A P 3 64 1
A C 4 127 3
A C 4 137 3
A C 4 147 3
A P 4 127 3
A P 4 137 3
A P 4 147 3
A C 5 143 1
A C 5 153 1
A C 5 163 1
A P 5 143 1
A P 5 153 1
A P 5 163 1
E C 1 250 1
E C 1 265 1
E C 1 275 1
E P 1 250 1
E P 1 265 1
E P 1 275 1
E C 2 34 3
E C 2 44 3
E C 2 54 3
E P 2 34 3
E P 2 44 3
E P 2 54 3
E C 3 44 1
E C 3 54 1
E C 3 64 1
E P 3 44 1
E P 3 54 1
E P 3 64 1
E C 4 127 3
E C 4 137 3
E C 4 147 3
E P 4 127 3
E P 4 137 3
E P 4 147 3
E C 5 143 1
E C 5 153 1
E C 5 163 1
E P 5 143 1
E P 5 153 1
E P 5 163 1
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Appendix C

Portfolio Data

In Figure C.1 and panel (a) on the following page, we see the underlying
stocks’ movements in the 1000 day window employed in the historical simu-
lation method. The stock prices seen in this panel were then transformed to
the logarithmic returns we see in panel (b) intended for the probabilistically
weighted random draws.
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Portfolio Data
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(a) Stock prices that were transformed to logarithmic returns.
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(b) Logarithmic returns for HS draws.

Figure C.1: Market data for the HS window of 1000 trading days between
2013-12-10 and 2017-11-29.
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