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Abstract
At RISE Research Institutes of Sweden, there is an interest
in computer simulations of the physics related to ionization
gauges. The objective of this thesis is to find out if the open
source code Warp can be used for simulating the physics of
interest.

In this thesis it is explained what an ionization gauge
is and the physics and the governing mathematical equa-
tions of the simulations are described. How those governing
equations are solved and the algorithms used in Warp is also
discussed in this thesis.

The results of the simulations are presented in the the-
sis and a discussion of which parts of Warp that need to
be further developed to successfully simulate the physics is
carried through.





Referat

Simulering av en Bayard-Alpert joniserande
tryckgivare med PIC-koden Warp
På RISE Research Institutes of Sweden, är man intresserad
av att göra datorsimuleringar av fysiken bakom joniserande
tryckgivare. Målet med denna uppsats är att ta reda på om
det är möjligt att använda den öppna källkoden Warp för
att genomföra simuleringar av fysiken som man är intres-
serad av.

I den här uppsatsen förklaras det vad en joniseran-
de tryckgivare är och fysiken och de styrande matemetis-
ka ekvationerna bakom simuleringarna beskrivs. Hur dessa
styrande ekvationer löses och algoritmerna som används i
Warp diskuteras också i denna uppsats.

Resultaten från simuleringarna presenteras i uppsatsen
och det förs en diskussion om vilka delar utav Warp som
behöver vidareutvecklas för att framgångsrikt kunna simu-
lera fysiken.
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Chapter 1

Introduction

1.1 Objective

At RISE Research Institutes of Sweden, there is an interest in making computer sim-
ulations of ionization gauges. There are certain properties of the ionization gauges
that are of special interest, such as the sensitivity of the gauges and the ion collec-
tion efficiency. These concepts will be explained in this thesis. RISE also wants to
investigate if the open source code Warp can be used for making the simulations of
the ionization gauges.

The main objective of this thesis is to investigate if it is possible to carry through
simulations of ionization gauges and obtain reasonable results of certain properties
of the gauges. To understand the outputs of the simulations, some physical and
mathematical theory will be explained in this thesis as well. Some concepts that
will be described are

• The input parameters of the model.

• Physics related to ionization gauges and which simplifications of the physics
that have been made.

• Mathematical equations used in the simulations and some explanation of what
those equations mean.

• Which algorithms that are used in the simulations and what advantages and
disadvantages they have.

• Which numerical methods that are used to solve the mathematical equations
and to make the simulations.
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CHAPTER 1. INTRODUCTION

1.2 Ionization gauges and the principles behind them
According to [1], an ionization gauge is a device used to measure pressures up to
10−1 Pa. According to [2], pressures of size 10−12 Pa have been measured by ioniza-
tion gauges, but there are several variants of ionization gauges and the limit of the
lowest measurable pressure depend on which type of ionization gauge that is being
used. In this work, the gauge type of interest is called Bayard-Alpert ionization
gauge and an example of a gauge of such kind is shown in Figure 1.1. Important
principles of a gauge of such kind for the simulations in this work, is explained
further below in this section. Further details can be found in [3].

Important parts of the ionization gauge simulated in this work are:

• the hot cathode

• the ion collector

• the anode grid

These parts are illustrated in Figure 1.1 and their functionality in the ionization
gauge is explained below. More information about Bayard-Alpert ionization gauges
can be found in for example [3].

An electron current run through the hot cathode and due to the high tempera-
ture of the cathode, electrons are emitted from it. According to [4], the emission
depends on the work function. The work function is the minimum amount of energy
needed to eject an electron from a surface, cf. [5]. In [3] it described that the anode
grid is positively charged and will attract the electrons emitted from the cathode,
even though many of the electrons that are traveling from the cathode towards the
anode grid do not collide with the anode grid. Instead, some of these electrons
ionize some of the gas molecules that exist in the environment where the cathode,
anode grid and ion collector are placed.

The ion collector is placed inside of the anode grid and the ion collector is grounded.
Positive ions that are generated by the electrons from the hot cathode are collected
by the ion collector. This way, a positive ion current that can be measured is pro-
duced. If the electron current from the hot cathode is constant, the ion current is
directly proportional to the gas density

Ii ∝ Ie · ρ (1.1)

where Ie is the electron current from the hot cathode, ρ is the gas density and Ii is
the ion current. According to [6], at constant temperature the gas density is directly
proportional to the low pressure p that is to be measured. This means that the ion
current can be used as an indicator of the pressure:

Ii ∝ Ie · p (1.2)
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1.3. WARP

In [3], equation (1.2) is expressed as

Ii = S · Ie · p (1.3)

where S is the gauge sensitivity factor and the product Ie ·S is the sensitivity of the
gauge. There are several parameters that can affect the sensitivity of a gauge, such
as the pressure in the gauge, which type of gas that is used and the geometry of the
gauge. One important objective of this work is to investigate this gauge sensitivity
factor by doing computer simulations.

Another interesting parameter related to ionization gauges is the ion collection
efficiency. It is defined as the number of ions collected by the ion collector divided
by the total number of ions created in the ionization gauge.

1.3 Warp
Warp is the name of the software used for the simulations in this work. In [7] there
is information about the software Warp and how to use it. They state that Warp
is an open source code that have been developed since the 1980s. It is designed to
simulate charged particle beams and the name Warp comes from the codes ability
to simulate bent ("warped") Cartesian meshes. In this work however, no particle
beams nor bent Cartesian meshes will be implemented.

In [8] it is mentioned that Warp uses a particle in cell (PIC) model to describe
electrostatic or electromagnetic fields, and the core routines of Warp solves finite-
difference representations of Maxwell’s equations. The code that handles computa-
tionally intensive tasks is written in Fortran while Python is used for the high level
controlling framework.

1.4 Model description
In [9] there is a description of a model of a Bayard-Alpert ionization gauge. That
model was used as a template for the model of the ionization gauge implemented
in the Warp code in this thesis. The anode grid of the ionization gauge that was
implemented in the simulations in this work, consists of several toruses placed right
above each other, instead of the spiral formed anode grid used in [9]. A CAD model
of the ionization gauge implemented in Warp were made in the software FreeCAD,
and is shown in Figure 1.1.

In Figure 1.1, the arcs shaped as a "V" placed upside down represent the filaments
and electrons are emitted only from the filament to the left in the picture. The
two sticks inside of the anode grid represent the modulators and the thin stick at
the centre represents the ion collector. The thin toruses are together referred to as

3



CHAPTER 1. INTRODUCTION

the anode grid. The thicker sticks that join the anode grid together are made for
holding up the anode grid and are referred to as the grid supports.

Figure 1.1: A model of the Bayard-Alpert ionization gauge implemented in the
Warp simulations in this work.
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1.4. MODEL DESCRIPTION

Table 1.1: Numerical data over the model of the ionization gauge implemented in
Warp. The columns x, y and z show where the items of the gauge are placed in the
domain. All the units are given in millimeters if nothing else is stated.

Item x y z Height Diameter Potential [Volt]
Ion collector 0 0 5 42 0.05 0
Emitting cathode -22 0 5 30 0.18 +50
Non emitting cathode 22 0 5 30 0.18 +50
Modulator 1 13.5 0 5 42 0.7 +150
Modulator 2 -10.3 10.3 5 42 0.7 +150
Grid support 1 -12.4 12.4 5.5 44 0.7 -
Grid support 2 12.4 12.4 5.5 44 0.7 -
Grid support 3 12.4 -12.4 5.5 44 0.7 -
Grid support 4 -12.4 -12.4 5.5 44 0.7 -
Anode grid torus * 0 0 0.26 +150

* The poloidal radius of the anode grid torus is 0.065 millimeter and the toroidal
radius is 17.5 millimeter. There are 23 anode grid toruses and their centres in the
toroidal direction are separated 2 millimeters from each other. The poloidal and
toroidal directions are shown in Figure 1.2.

(a) (b)

Figure 1.2: In picture (a), the arrow shows the poloidal direction of
the torus. In picture (b), an additional arrow shows the toroidal direc-
tion of the torus. Pictures by DaveBurke - Own work, CC BY 2.5,
https://commons.wikimedia.org/w/index.php?curid=10416598
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CHAPTER 1. INTRODUCTION

1.5 Input and output parameters
The input parameters in the simulations carried through in this work are the number
of emitted electrons from the hot cathode (the electron current Ie), the pressure
inside the domain, which type of gas molecules the particles represents and the
temperature in the domain. The number density n stands for number of moles of
the gas particles in the domain. n is calculated from the chosen pressure via the
ideal gas law

pV = nRT (1.4)

where V is the volume that contains the gas, T is the temperature and R is the
ideal-gas constant, cf. [5].

The parameters that are to be computed in this work are the sensitivity of the
gauge and the ion collection efficiency. The ion current Ii is an output of the simu-
lations and if the ion current is known, the sensitivity of the gauge can be calculated
from equation (1.3).

The computational domain in which the ionization gauge is placed have reflective
boundaries, which means that the particles are reflected by the walls of the domain.

6



Chapter 2

Physics related to the simulations

In this work, the presence of an electric field E and a magnetic field B will give rise
to motion of the particles in the domain Ω. All relationships between an electric
field and a magnetic field and their sources, can be expressed byMaxwell’s equations
[5]. Maxwell’s equations are used for calculating the electric and magnetic field in
the simulations in this work and together with Newtons second law, Maxwell’s equa-
tions govern the motion of the particles in the simulations. Therefore, Maxwell’s
equations will be stated and explained in Section 2.1.

Other physical laws that are used for calculating the fields and the motion of the
particles are derived from Maxwell’s equations. In Section 2.2 and Section 2.3,
those derivations will be carried through. Some additional physics that need to be
considered in the particle simulations in this work is described in Section 2.4.

2.1 Maxwell’s equations
Maxwell’s equations consist of four equations that all can be expressed in integral
form or in differential form [10]. The integral form and the differential form are
mathematically equivalent, meaning that if the integral form holds then the differ-
ential form holds and vice-versa.

2.1.1 Gauss law for electrical fields

Gauss law for electrical fields in integral form is stated as
˛
∂ν
E • n dσ(x) = 1

ε0

ˆ
ν
ρ dx (2.1)

where ∂ν is a closed surface and ν is a volume bounded by the surface ∂ν [10]. ρ
is the charge density and ε0 is the vacuum permittivity. Equation (2.1) says that
the total electric flux through a closed surface is proportional to the total electric
charge inside of that surface [5]. According to the divergence theorem stated in

7



CHAPTER 2. PHYSICS RELATED TO THE SIMULATIONS

Appendix B, the left hand side of equation (2.1) can be expressed as
˛
∂ν
E • n dσ(x) =

ˆ
ν

(
∇ •E

)
dx (2.2)

and from equations (2.1) and (2.2) one gets that
ˆ
ν

(
∇ •E

)
dx =

ˆ
ν

ρ

ε0
dx (2.3)

Since the test volume ν is arbitrary, equation (2.3) implies that

∇ •E = ρ

ε0
(2.4)

Equation (2.4) is referred to as Gauss law in differential form [10].

2.1.2 Gauss law for magnetism
Gauss law for magnetism in integral form is stated as

˛
∂ν
B • n dσ(x) = 0 (2.5)

where ∂ν again is a closed surface. Equation (2.5) is comparable to equation (2.1),
where one difference is that the right hand side of equation (2.5) always is zero.
The reason is that no magnetic monopoles that could be sources of magnetic fields
have empirically been found [5]. According to the divergence theorem stated in
Appendix B, the integral in equation (2.5) can be rewritten as

˛
∂ν
B • n dσ(x) =

ˆ
ν

(
∇ •B

)
dx (2.6)

and then it must hold that ˆ
ν

(
∇ •B

)
dx = 0 (2.7)

Equation (2.7) holds for an arbitrary test volume ν if

∇ •B = 0 (2.8)

and equation (2.8) is referred to as The differential form of Gauss law for magnetic
fields [10].

2.1.3 Faraday’s law in integral form
Faraday’s law in integral form is expressed as

˛
∂S
E • τ dx = − ∂

∂t

ˆ
S
B • n dσ(x) (2.9)

8



2.1. MAXWELL’S EQUATIONS

where S is a surface in 3 dimensions and ∂S is the closed curve that makes up the
boundary of S. The total magnetic flux ΦB through the surface S is expressed as

ΦB =
ˆ
S
B • n dσ(x) (2.10)

and equation (2.9) states that an electric field is induced by changing the magnetic
field or the magnetic flux in time. If the magnetic field is not constant in time, the
line integral in equation (2.9) is non-zero, which means that the induced electric
field is nonconservative. Such fields are called nonelectrostatic fields [5]. According
to Stokes theorem in Appendix B, is

˛
∂S
E • τ dx =

ˆ
S

(∇×E) • n dσ(x) (2.11)

which means that
ˆ
S

(∇×E) • n dσ(x) =
ˆ
S

(
− ∂

∂t
(B)

)
• n dσ(x) (2.12)

Equation (2.12) holds for an arbitrary surface S if

∇×E = −∂B
∂t

(2.13)

and equation (2.13) is referred to as Faraday’s law in differential form [10].

2.1.4 Ampère’s circuital law

The fourth of Maxwell’s equations is Ampère’s circuital law which can be stated in
integral form as

˛
∂S
B • τ dx = µ0

(ˆ
S
J • n dσ(x) + ε0

∂

∂t

ˆ
S
E • n dσ(x)

)
(2.14)

where S is a surface in 3 dimensions and ∂S is a closed curve that makes up the
boundary of the surface S. µ0 is the magnetic constant, J is the volume current
density and the first surface integral on the right hand side of equation (2.14) rep-
resent the total current passing through the surface S. The second term within
the parenthesis in the right hand side of equation (2.14) is called the displacement
current. This current is proportional to the time derivative of the electrical flux
that is passing through the surface S. The displacement current in equation (2.14)
means that changing an electric field induces a magnetic field.

Hence, equation (2.14) states that the line integral of B around the closed curve
∂S is proportional to the total current that passes through the surface S plus the
time derivative of the electric flux that passes through the surface S. This is further

9



CHAPTER 2. PHYSICS RELATED TO THE SIMULATIONS

explained in [5]. By Stokes theorem in Appendix B, the left hand side of equation
(2.14) can be rewritten as

˛
∂S
B • τ dx =

ˆ
S

(
∇×B

)
• n dσ(x) (2.15)

and equation (2.14) can therefore be stated as
ˆ
S

(
∇×B

)
• n dσ(x) = µ0

(ˆ
S
J • n dσ(x) + ε0

∂

∂t

ˆ
S
E • n dσ(x)

)
. (2.16)

Since S is an arbitrary surface, equation (2.16) holds if

∇×B = µ0
(
J + ε0

∂E

∂t

)
. (2.17)

Equation (2.17) is referred to as the differential form of Ampère’s circuital law [10].

2.1.5 Summary of Maxwell’s equations

Below is a summary of Maxwell’s equations.

Gauss law for electric fields

Integral form Differential form¸
∂ν E • n dσ(x) = 1

ε0

´
ν ρ dx ∇ •E = ρ

ε0

Gauss law for magnetism

Integral form Differential form¸
∂ν B • n dσ(x) = 0 ∇ •B = 0

Faraday’s law

Integral form Differential form¸
∂S E • τ dx = − ∂

∂t

´
SB • n dσ ∇×E = −∂B

∂t

Ampère’s circuital law

Integral form Differential form¸
∂SB • τ dx = µ0

( ´
S J • n dσ + ε0

∂
∂t

´
S E • n dσ

)
∇×B = µ0

(
J + ε0

∂E
∂t

)
10



2.2. PHYSICS DERIVED FROM MAXWELL’S EQUATIONS

2.2 Physics derived from Maxwell’s equations

2.2.1 Electromagnetic case
In the electromagnetic case, the electric and magnetic fields E and B are time-
dependent. Faraday’s law in integral form stated in equation (2.9), Section 2.1,
shows that in this time-dependent case the electrical field is not a conservative field
if the magnetic field changes in time. It was also stated in Section 2.1 that the
magnetic field B is divergence free, so from the Helmholtz theorem in Appendix B
one get that B can be expressed as

B = ∇×A (2.18)

where A is the magnetic vector potential. By combining equation (2.18) with Fara-
day’s law in differential form in equation (2.13), one get that

∇×
(
E + ∂A

∂t

)
= 0. (2.19)

In Appendix B it is stated that if the curl of a vector field is zero everywhere, that
vector field can then be written as the gradient of a scalar potential. This means
that one can write

E + ∂A

∂t
= −∇φ (2.20)

and the electrical field can be expressed as

E = −∇φ− ∂A

∂t
(2.21)

By applying the divergence to Ampère’s circuital law, expressed by equation (2.17),
one gets

∇ • (∇×B) = ∇ •
(
µ0J + µ0ε0

∂E

∂t

)
(2.22a)

∇ • J = −ε0
∂(∇ •E)

∂t
(2.22b)

∇ • J = −∂ρ
∂t

(2.22c)

Here, Gauss law (equation (2.4)) and the fact that the divergence of any vector is
zero was used. Equation (2.22c) is referred to as the continuity equation, which
states that the charge per unit time leaving a volume V will decrease the charge
left inside of volume V . See for instance [10] for further details about the continuity
equation and the electromagnetic case.

2.2.2 Electrostatic case
Problems involving time-independent fields are referred to as electrostatic prob-
lems. The reason for that name is that the time derivative of the magnetic field is

11



CHAPTER 2. PHYSICS RELATED TO THE SIMULATIONS

zero, which means that the magnetic field is static. In this case, Faraday’s law in
differential form given by equation (2.13), reduces to

∇×E = 0 (2.23)
and from the Helmholtz theorem in Appendix B, it holds that

E = −∇φ (2.24)
From equation (2.24) and equation (2.4) one get that

4φ = − ρ
ε0

(2.25)

Equation (2.25) is Poisson’s equation.

Also, Ampère’s law in differential form given by equation (2.17), gets reduced to
∇×B = µ0J (2.26)

See for instance [10] for further details.

In an electrostatic case, a potential difference between a point a and a point b
can be expressed as

φ(b)− φ(a) = −
ˆ b

a
E • τ dx (2.27)

where the electric potential φ is a scalar function dependent on the x-, y- and
z-coordinates in space. If the potential on the surfaces of conducting objects is
constant, equation (2.27) reduces toˆ b

a
E • τ dx = 0 (2.28)

which means that the electric field is perpendicular to those surfaces. This is ex-
plained further in [5].

Summary of important equations in the electrostatic case

The Maxwell’s equations in differential form in the electrostatic case are summarized
as

∇ •E = ρ

ε0
∇ •B = 0
∇×E = 0
∇×B = µ0J

and the equations
E = −∇φ
4φ = − ρ

ε0
are derived from Maxwell’s equation in the electrostatic case.

12



2.3. PARTICLE MOVEMENT

2.3 Particle movement
In this work, motion of particles such as neutral molecules, ions and electrons are
simulated. Therefore, this section will describe the physics that govern the motion
of such particles.

It is explained in [5] that the electric force on a particle p with charge qp and
velocity vp is

FE = qpEp (2.31)
and the magnetic force on the same particle is

FB = qp
(
vp ×Bp

)
(2.32)

If both an electric and a magnetic field affect the particle, the total force on that
particle is

F p = FE + FB = qp
(
Ep + vp ×Bp

)
(2.33)

which is referred to as the Lorentz force. Newton’s second law states that

F p =
dpp
dt

(2.34)

where pp = mpvp is the particles momentum and mp is the particles mass. By
combining equation (2.33) and equation (2.34), an expression relating the particle
velocity to the electric and magnetic fields E and B is stated as

dvp
dt

= qp
mp

(
Ep + vp ×Bp

)
(2.35)

If constant magnetic and electric fields are present, the electric fields can be divided
into two components as

E = E⊥ +E‖ (2.36)
where E⊥ is the component perpendicular to the magnetic field and E‖ is the
component parallel to the magnetic field [11]. If only the component E‖ is present,
it will give the particle a constant acceleration in the direction of the magnetic field.
This is because the cross product

vp ×Bp (2.37)

given in equation (2.35) becomes zero. The velocity vector parallel to the magnetic
field will be denoted v‖.

According to [12], if E⊥ is zero, the particle will only make a circular motion
in the plane perpendicular to the magnetic field, due to the cross product in (2.37).
The velocity vector that describes this circular motion will be denoted vg and the
radius of this circular particle motion is called the gyration radius, expressed as

rg = mp|vg|
|qp||B|

(2.38)

13



CHAPTER 2. PHYSICS RELATED TO THE SIMULATIONS

This radius is also known as the Larmor radius or the cyclotron radius. The fre-
quency of the circular particle motion is called gyrofrequency, expressed as

ωg = qp|B|
mp

(2.39)

and the gyroperiod is
τg = 1

ωg
. (2.40)

If E⊥ 6= 0, the particle will start to drift in the plane perpendicular to the
magnetic field while keeping the gyration motion. This drift velocity is called E×B
drift and is expressed as

vd = E ×B
|B|2

(2.41)

which means that it is perpendicular to E⊥ and independent of the particle charge.
The velocity of the particle can finally be expressed as the sum of the three vectors

vp = v‖ + vd + vg (2.42)

where the velocity vectors vd and vg express the particle motion in a plane perpen-
dicular to the magnetic field. The velocity of the particle in that plane is expressed
by the vector

v⊥ = vd + vg (2.43)

does not change if the electric and magnetic field remain constant.

2.4 Additional physics needed for the simulations

2.4.1 Debye length
Plasma is defined as ionized gas that approximately is electrically neutral in average
[11]. This electrical neutrality of plasma is referred to as quasi-neutrality and is
fulfilled for spatial dimensions larger than a characteristic length called the Debye
length, denoted λd. At distances shorter than λd, charges can be separated so that
clouds of positively charged particles and clouds of negatively charged particles
appear. These clouds give rise to space charges and local electrical fields in the
plasma [13]. It is stated in [14] that the mass of the ions is much greater than the
mass of the electrons which leads to that the electrons move much faster than the
ions. If the ions are considered to be fixed in space compared to the movements of
the electrons, the Debye length can be expressed as

λd =
√
kBTeε0
neq2

e

(2.44)

where kB is Boltzmann’s constant, Te is the temperature of the electrons, ne is the
number density of the electrons and qe is the elementary charge.
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In this work the plasma is made up by neutral molecules, positive ions and electrons.
The pressure in the simulations is in the range 10−8 − 1 Pa, hence the plasma is
defined as low-pressure plasma.

2.4.2 Electron speed
The work function, denoted W , is the minimum amount of energy needed to eject
an electron from a surface, cf. [5]. The kinetic energy of an electron is

Ek = mev
2
e

2 (2.45)

where me is the mass and ve is the speed of an electron. If an electron should be
able to escape from the hot cathode, it is necessary that

Ek > W (2.46)

and the initial speed of an electron emitted from the hot cathode is calculated as

v =
√

2W
mp

(2.47)

There are list of values of the work function for different types of materials available,
for example in [15]. In this work the value 5 eV is used. It is also taken into account
that the electrons have to escape from the applied potential on the emitter, which
is 50 V. This way, the speed the electrons when they are emitted is calculated to
be 4.42·106 m/s. For more information about the work function, see for instance [15].

The mass of an electron is about 9.1 · 10−31 kg and its charge is about 1.6 · 10−19 C,
cf. [5]. For an electron, the fraction qp

mp
in equation (2.35) is of magnitude 1011 C

kg
and it can be concluded that an electron will move very fast if a force is acting on
it. The mass of the hydrogen ions (one proton) that are simulated in this work,
is several orders of magnitudes larger than the mass of the electrons and from the
electrons perspective, the ions are almost not moving at all.

2.4.3 Boltzmann electrons
To simulate the motion of the electrons correctly, it is necessary to have a small
time step. But with a small time step many iterations of the simulation has to be
carried through to simulate the motion of the ions. For large scale systems, the
computations may be heavy if the electrons are represented as macro particles [16].

The computations can be simplified by considering the electrons as a fluid [16].
According to [17], the charge density from the charged particles in the plasma is
expressed as

σ = ni · qi + ne · qe (2.48)
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where ni and ne is the number density of the ions and electrons and qi and qe is the
charge of the ions and electrons, respectively. The number density of the electrons
is given by

ne = n0 exp
( qeφ

kBTe

)
(2.49)

where φ is the potential due to the charged particles in the plasma and n0 is the
initial number density of the electrons, unperturbed by the potential φ. The relation
2.49 is called the Boltzmann relation, cf. [12]. Since the charge of the ions is

qi = −qe

the charge density from the particles in the plasma is expressed as

σ = −qe
[
ni − n0 exp

( qeφ

kBTe

)]
(2.50)

2.4.4 Plasma frequency and impact ionization
According to [12], a perturbation of the electron density in a plasma generates an
electric field, which brings back the electrons towards their original position. The
electrons will pass through their original position and then return towards their
original position again. This back and forth oscillation of the electrons happen
with high frequency and is referred to as the electron plasma frequency, ωpe. This
frequency is defined as

ωpe =
√
n0 qe
ε0me

(2.51)

where me is the mass of an electron.

According to [11], electron impact ionization means that an electron interact with
a molecule so that the molecule loses one of its electrons:

e− +A⇒ A+ + 2e− (2.52)

where A is a neutral molecule, A+ is a positive ion and e− is an electron.
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Chapter 3

Mathematical equations and algorithms

3.1 Known physical quantities
This section describes the known input parameters in the simulations. The output
of the simulations will depend on the values of those input parameters. Important
physical quantities that are known are

• the voltage of the conducting objects

• the electron current Ie from the hot cathode

• which type of gas that fills the domain and the gas density

The voltages of the conductive objects are set to the same values as the voltages of
the conductive parts of the ionization gauge described in [9]. Those voltages can
also be found in Table 1.1.

The electron current Ie is set to 10 mA. The electrons are represented by so called
macro particles, a concept described in more detail in Section 3.3.2. The number
of such macro particles emitted from the hot cathode is a known input parameter.
The initial speed of the electrons emitted from the hot cathode is also known and
is calculated from the work function, described in Section 2.4. The velocities of the
electrons and their starting positions on the hot cathode are randomized.

The gas that fills the domain Ω consist of hydrogen molecules exclusively. The
density of the gas is 2.47 · 1016 particles per m3 and is calculated from the ideal gas
law, equation (1.4). The volume V in the ideal gas law is just the volume of the
domain Ω, the pressure p was set to 10−4 Pa and the temperature T was 293.15 K.

The time step ∆t is given a value at the beginning of the simulations. The size
of ∆t must however fulfill some criteria regarding stability of the solutions of the
governing equations.

17
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In this work Dirichlet boundary conditions are applied to all the electric fields at
the boundaries of Ω. Dirichlet boundary conditions are described in Section 3.2.1.
Reflective boundary conditions can be applied to the particles, which means that
the particles will bounce back if they collide with a wall that make up a boundary
of Ω. There are also absorbing boundary conditions, so that the particles are ab-
sorbed if they collide with a boundary wall. Both reflective boundary conditions
and absorbing boundary conditions were used in different simulations in this work.

The ionization cross sections of the gas molecules can be calculated by the source
code in Warp. One can also choose to set a value to the ionization cross sections
explicitly. Both ways were tried out in different simulations carried through in this
work.

There are also other parameters that can affect the outcome of the simulations
and can be set before a simulation is initialized. Some examples are the size of the
mesh applied to Ω and how many electrons or gas molecules that are represented
by the macro particles.

3.2 Physical quantities to compute
Maxwell’s equations on both integral and differential form are stated and explained
in Section 2.1. Here are Maxwell’s equations in differential form summarized:

∇ •E = ρ

ε0
(3.1a)

∇ •B = 0 (3.1b)

∇×E = −∂B
∂t

(3.1c)

∇×B = µ0(J + ε0
∂E

∂t
) (3.1d)

While a simulation is running, the particles keep changing their positions and ve-
locities and these quantities have to be updated in every time step. The position
xp and the velocity vp of a particle are related by

dxp
dt
≡ vp (3.2)

and it is explained in Section 2.3 that the acceleration of a particle is given by

dvp
dt

= qp
mp

(
Ep + vp ×Bp

)
(3.3)

Maxwell’s equations and equation (3.3) describe how charged particles and elec-
tromagnetic fields interact [18]. Equations (3.2) and (3.3) are referred to as the
equations of motion, cf. [19].
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Some other important equations in the electrostatic case are

E = −∇φ (3.4)

and Poisson’s equation
4φ = − ρ

ε0
(3.5)

They are explained in Section 2.2.2.

3.2.1 Boundary conditions
Dirichlet, Neumann and periodic boundary conditions are available in Warp. The
boundary conditions are applied on the boundary of Ω, denoted ∂Ω. In Warp,
different types of boundary conditions can be applied on different parts of ∂Ω [7].

Dirichlet boundary conditions

Here is a definition of what a Dirichlet boundary condition is. The definition is
taken from [20], but can also be found in a lot of other literature, cf. [21].

Definition: Let
L(u) = f (3.6)

be a second order differential equation on a domain D ∈ Rn with boundary ∂D.
Boundary conditions on the form

u(r) = ϕ(r), r ∈ ∂D (3.7)

are called Dirichlet boundary conditions.

In this work, the function u represents the electrostatic potential φ and the dif-
ferential equation (3.6) represents Poisson’s equation, given by equation (3.5). The
function ϕ in equation (3.7) is given by a constant value on all the boundaries on
the domain Ω in the simulations carried through in this work, which means that
the boundary condition

φ|∂Ω = V (3.8)

where V is a constant, is applied in the simulations. The problem of finding the
potential function φ from Poisson’s equation can be reformulated by introducing a
new potential

φ̃ = φ− V (3.9)

and by using the linearity of the Laplace operator, one gets that

4φ̃ = 4φ−4V︸︷︷︸
=0

= − ρ
ε0

(3.10)
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From equation (3.4) and linearity, it holds that

−∇φ̃ = −∇φ+∇V︸︷︷︸
=0

= E (3.11)

hence, without knowing the value of V , the electrical field can be calculated with
equations {

4φ̃ = − ρ
ε0

∇φ̃ = −E

where φ̃|∂Ω = φ|∂Ω − V = 0. These types of boundary conditions are referred to as
homogeneous Dirichlet boundary conditions.

In Warp, Dirichlet boundary conditions are applied to the surfaces on the con-
ducting objects automatically [8]. The hot filament, the ion collector and the anode
grid of the ionization gauge are represented by conducting objects in this work.

3.3 The Particle in Cell (PIC) method

3.3.1 Motivation for using the PIC method
In this work, the domain Ω is filled with neutral gas molecules and electrons for
ionizing the gas molecules, so that positively charged ions will be generated. Lets
assume that Ω contains N charged particles in total. In [22] it is described that
an interaction force will occur between each pair of the charged particles, where
the force from the charged particle p′ that affect the charged particle p is given by
Coulomb’s law on vector form as

F pp′ = qpqp′

4πε0|xp − xp′ |2
·
xp − xp′

|xp − xp′ |
(3.12)

In equation (3.12), qp and qp′ are the charges and xp and xp′ are the positions of
particle p and p′ respectively. The term

xp − xp′

|xp − xp′ |

is a unit vector that indicates the direction of the force coming from particle p′ and
affects particle p. According to the principle of superpositions of forces, the total
force acting on particle p from the rest of the charged particles is given by the vector
sum of the forces from those particles (cf. [5]). Lapenta [22] expresses this vector
sum as

F p =
N−1∑
k=1

F pp′
k

(3.13)

where the force F pp′
k
is calculated from equation (3.12) and origins from particle p′k.

According to [23], each particle in Ω change their position by solving the ordinary
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differential equations (3.2) and (3.3). A numerical scheme for the advance of particle
p is stated in [23] as

vnew
p = vold

p + ∆t
mp

F p (3.14a)

xnew
p = xold

p + ∆t vnew
p (3.14b)

where ∆t is a suitable time step. This method of calculating the forces acting upon
the particles and their motions is referred to as the particle-particle method [23].

To calculate the force F pk
for all theN charged particles, one would have to evaluate

equation (3.12)
N−1∑
k=1

(N − k) = N(N − 1)
2 (3.15)

times in total. N is generally large in plasma simulations [16]. In this work par-
ticularly, the gas that is to be ionized in the simulations has a number density of
size 1016, and due to the size of the domain Ω in this work, about 1012 neutral
gas molecules would have to be initialized at the beginning of the simulations. The
number of created ions is an output of the simulations and according to Section
1.2, not all of the neutral gas should be ionized. But even if a small fraction of the
neutral gas molecules turn into ions, N might be large. From equation (3.15), one
can conclude that the number of times Coulomb’s law has to be applied is of size
O(N2). These calculations becomes heavy for a computer to make if N is large,
and an algorithm with a better scaling in N is to prefer for the simulations in this
work. An example of such an algorithm is the Particle in Cell (PIC) method. The
complexity of the PIC method is O(N +Mlog(M)), where M is the number of grid
points on the mesh [24]. M is generally much smaller than N . In this work, the
great benefit with using the PIC method is that the number of computations that
the computer needs to perform becomes relatively small compared to for example
the particle-particle method.

According to Verboncoeur [19], the most complete description of PIC is given in
[25].

3.3.2 The basics of PIC

In [16] it is written that the PIC method is commonly used for simulation of plasma.
In a PIC code many physical particles, such as neutral gas molecules, positive ions
and electrons, are represented by macro particles. Other names for macro particles
are for example finite-sized particles, clouds, computational particles or super par-
ticles, but since the name "macro particles" is used in [26] that name will be used
in this work as well.
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The ratio of number of physical particles per macro particles is called the spe-
cific weight, cf. [16]. This means that the relationship between the macro particles
and the physical particles is expressed as

Nph = (specific weight) ·Nmacro (3.16)

where Nph is the number of physical particles and Nmacro is the number of macro
particles. If the motion of Nph physical particles would have been simulated as
explained in Section 3.3.1, then from equation (3.12) it is clear that singularities
would appear if the position of particle p and particle p′ coincides, so that

|xp − xp′ | → 0

This issue does not need to be handled if macro particles are used instead of point
charges [25]. It is explained in [22] that macro particles have a finite size and if they
are far away from each other, they interact via Coulombs law in the same way as
point charges would do. But if the macro particles get closer to each other, they will
eventually start to overlap. In that case, the region where the particles overlap gets
neutralized, meaning that the forces on the overlapping parts cancel. The bigger the
overlapping part of the two particles get, the weaker the interacting force between
the particles get and if they would overlap each other completely, the interacting
force would be zero. This way, the singularities that occurs from Coulomb’s law
in equation (3.12) if point particles are used, disappear if macro particles are used
instead.

The positions and the velocities of the macro particles are defined in a continu-
ous phase space [25]. This means that the macro particles can be placed anywhere
in Ω and be given any velocity. The values of the electric and the magnetic field
on the other hand, are not given at every spatial position in Ω. Instead, those
field values are defined only at discrete points in Ω and the field values are then
interpolated from those discrete points onto the positions of the macro particles.
When the interpolation is done, the movement of the macro particles can be cal-
culated from equations (3.2) and (3.3) and after the particles have moved, particle
boundary conditions are checked. Source terms needed for updating the electric or
the magnetic field are then interpolated from the updated positions of the parti-
cles onto the discrete points in Ω [19]. This procedure is referred as the PIC loop,
which is shown and explained in more detail in the following sections in this chapter.

In the PIC method, the field values, the particles positions and the particles veloc-
ities are defined at discrete times. The particles positions and velocities are often
updated with the leapfrog method, which require few operations and little computa-
tional storage [19]. In the leapfrog method the quantities that are to be updated are
defined on a staggered grid in time, which means that some quantities are defined at
different times than others [21]. A standard way to implement the leapfrog method
in plasma simulation codes is to use Boris method [16]. In Warp, a version of Boris
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method is implemented for moving the particles [27]. These methods and how they
are implemented in Warp will be explained in Section 3.5.

3.3.3 Electromagnetic PIC
It is explained in [28] that in the electromagnetic PIC, equation (3.1c)

∇×E = −∂B
∂t

and equation (3.1d)
∇×B = µ0(J + ε0

∂E

∂t
)

are solved in order to calculate the particles positions, velocities and the electromag-
netic fields. The two remaining equations of Maxwell’s equations, equation (3.1a)
and equation (3.1b), does not have to be solved in the electromagnetic case since
they are satisfied anyway, given that certain initial conditions at time t = 0 are sat-
isfied. Below, those initial conditions will be given and the proofs of that equations
(3.1a) and (3.1b) are satisfied will be carried through.

Theorem 1. If Faraday’s law

∂B

∂t
= −∇×E

is satisfied all the time and provided that

∇ •B(t = 0) = 0

is satisfied, then
∇ •B = 0

is satisfied all the time.

Proof. The time derivative of the divergence of the magnetic field is

∂
(
∇ •B

)
∂t

= ∇ •
∂B

∂t
= ∇ •

(
−∇×E

)
and since the divergence of the curl of any vector field is equal to zero, it holds that

∂
(
∇ •B

)
∂t

= 0 ⇒ ∇ •B = C

where C is a constant in time. Since it was assumed that

∇ •B(t = 0) = 0

the constant C must be zero and it holds that

∇ •B = 0

is satisfied all the time.
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Theorem 2. If the continuity equation (2.22c) and Ampère’s circuital law, stated
respectively as

∂ρ

∂t
+∇ • J = 0

∇×B = µ0(J + ε0
∂E

∂t
)

are satisfied all the time, and provided that

∇ •E(t = 0) = ρ

ε0

is satisfied, then
∇ •E = ρ

ε0

is satisfied all the time.

Proof. By taking the time derivative of the terms in Gauss law, one gets

∂

∂t

(
∇ •E − ρ

ε0

)
= ∇ •

( 1
µ0ε0
∇×B − 1

ε0
J
)
− 1
ε0

∂ρ

∂t
= − 1

ε0

(
∇ • J + ∂ρ

∂t

)
where Ampère’s circuital law and that fact that the divergence of the curl of any
vector is zero, was used. The right hand side of the equation above contains the
continuity equation and since it is provided that the continuity equation is satisfied
at all times, it holds that

∂

∂t

(
∇ •E − ρ

ε0

)
= 0 ⇒ ∇ •E − ρ

ε0
= C

where C is a constant in time. Since it was given that

∇ •E(t = 0)− ρ

ε0
= 0

the constant C must be zero and

∇ •E = ρ

ε0

is satisfied all the time.

Due to Theorem 1 and Theorem 2, equation (3.1a) and equation (3.1b) are not
solved explicitly in the electromagnetic PIC algorithm.

In Warp, an electromagnetic field solver called EM3D and an electrostatic field solver
called MultiGrid3D are implemented. At an early state of this work, ionization
of the gas molecules was observed if EM3D was used and no ionization of the gas
molecules was observed with the field solver MultiGrid3D. Therefore, the author of
this thesis first intention was to use EM3D for the simulations.
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The problem with EM3D was that the electric fields did not make physical sense.
The field values became extremely high at the boundaries of the domain and the
electric field looked very chaotic. The author of this thesis also discovered that if
the time step was set explicitly when MultiGrid3D was used, motion of particles
and ionization of the gas molecules was observed. Therefore, the field solver EM3D
was replaced by the field solver MultiGrid3D.

3.3.4 Electrostatic PIC

According to [26], the electrostatic PIC scheme goes through the following steps at
each iteration in time:

1. The charge qi of the macro particles is deposited onto the nodes of the mesh
generated on Ω.

2. The electrostatic potential φ is computed on the nodes of the mesh, through
equation (3.5).

3. The electric field E is computed on the nodes of the mesh, through equation
(3.4).

4. The electric field is interpolated from the nodes of the mesh to the macro
particles by a gather operation.

5. The velocities and the positions of the macro particles are updated by solving
equations (3.2) and (3.3).

In other literature additional steps to the PIC loop are added, cf. [19] or [16].
Magnetic fields generated by the plasma are neglected in the electrostatic case and
only externally generated magnetic fields are taken in to account. This means
that the magnetic field does not have to be recalculated at each time step. If the
boundary conditions for the magnetic field are defined, the magnetic field can be
calculated from the field solver of the PIC code [29]. Since the electrical field changes
every time the particles move, the electrical field gets recalculated at every time step
[28]. Figure 3.1 illustrates how these steps keep repeating in an electrostatic PIC
loop.

25



CHAPTER 3. MATHEMATICAL EQUATIONS AND ALGORITHMS

Figure 3.1: The electrostatic PIC loop used in Warp.

Charge deposition (1.)

The charge deposition process will first be explained with the case with just one
macro particle p inside of a cell, as shown in Figure 3.2. Then the case with several
macro particles will be explained.

The corners of the cell in Figure 3.2 are nodes of the mesh generated on Ω and
the particle p have the charge qp. According to [26], the charge qp is interpolated
from the position particle p has in the cell, onto the nodes of the cell. The in-
terpolation is in Warp done by trilinear interpolation and a description of that
interpolation technique will be carried through here. The information of how this
technique works comes from [30].
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Figure 3.2: A particle in a cell.

The particle p in Figure 3.2 has a global position in Ω and also a local position
in the cell it is in. Let that local position inside the cell be given by the local
coordinates ξ, η and ζ, where

(ξ, η, ζ) ∈ [0, 1]3 ⊂ Ω

and where the origin of that local coordinate system coincides with node indicated
by (i, j, k). The charge at node (i, j, k) that is interpolated from the charge of
particle p, is denoted qi,j,k and given by

qi,j,k = qp · (1− ξ)(1− η)(1− ζ) (3.18)

Equation (3.18) shows that the closer particle p gets to the node (i, j, k), the bigger
part of its charge is distributed to that node. If the position of particle p would
coincide with the position of node (i, j, k), all of the charge qp would be distributed
to node (i, j, k). On the contrary, if particle p would be located at any other of the
nodes that belongs to the cell in Figure 3.2, the node (i, j, k) would not get any of
the charge qp.

The charge of particle p is distributed to each corner of the cell in Figure 3.2 the
exact same way as the charge is distributed from particle p to node (i, j, k). This
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means that the charges on the remaining seven nodes are calculated by

qi+1,j,k = qp · ξ (1− η) (1− ζ)

qi,j+1,k = qp · (1− ξ) η (1− ζ)

qi,j,k+1 = qp · (1− ξ) (1− η) ζ

qi+1,j+1,k = qp · ξ η (1− ζ)

qi+1,j,k+1 = qp · ξ (1− η) ζ

qi,j+1,k+1 = qp · (1− ξ) η ζ

qi+1,j+1,k+1 = qp · ξ η ζ

(3.19)

If the cell in Figure 3.2 is not located at the boundary of the computational do-
main, the node (i, j, k) will be the corner of 8 different cells and these cells may
contain several macro particles each. According to [25], the charges of all the macro
particles that are within these 8 cells are interpolated onto node i, j, k, with the
same interpolation technique used for every charged particle. As mentioned earlier,
this interpolation technique is trilinear interpolation in Warp. The charges are then
summed up for every mesh node in the domain and the total charge at node (i, j, k)
is here denoted qtot

i,j,k. This means that qtot
i,j,k is the sum of the interpolated charges

from the macro particles in the 8 cells that surrounds node (i, j, k). The charge
density at node (i, j, k) is calculated as

ρi,j,k =
qtot
i,j,k

Vcell
(3.20)

where Vcell is the volume of the cells in the domain. This way the charge densities
are saved at all the nodes of the mesh.

Computation of electric potential (2.)

When the charge density is distributed to all the nodes of the mesh, the electrostatic
potential is calculated by solving the electrostatic Poisson equation on the mesh
[26]. The electrostatic Poisson equation is given by equation (3.5) and in Warp,
Poisson’s equation for the electrostatic potential can be solved by either a multigrid
based solver or a fast Fourier transform solver [8]. In this work the multigrid solver
MultiGrid3D is used to solve Poisson’s equation. More details on how Poisson’s
equation is solved are given in Section 3.4.
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Computation of electric fields (3.)

The electric field is calculated from equation (3.4) [16]. How the calculation is done
is explained in Section 3.4.

Gather operation (4.)

The electric field is interpolated from the nodes of the mesh onto the macro par-
ticles [26]. This interpolation should be done via trilinear interpolation since that
interpolation technique was used for the charge deposition [25].

Particle push (5.)

The particles positions and velocities are updated from solving the ordinary differ-
ential equations (3.2) and (3.3) [16]. This step is described in more detail in Section
3.5.

3.4 Field solvers

3.4.1 The electrostatic MultiGrid3D solver
It is mentioned in [8] that the standard second-order finite-difference stencil is used
by the multigrid solvers for solving Poisson’s equation for the electrostatic potential.
In 2D the five point stencil is used and in 3D the seven point stencil is used. In
Warp the user can decide how fine the mesh applied to the domain Ω will be by
setting the parameters w3d.nx, w3d.ny and w3d.nz, which stands for the number
of grid points in the x-,y- and z-direction respectively. If the number of grid points
is defined in Warp, the distance between each grid point is then the same in each
direction. A grid of this type is referred to as a uniform grid [31].

Discretization

Here is an explanation of what the standard second-order finite-difference stencil is
and where it comes from. The electrostatic potential φ is the quantity that is to
be computed from Poisson’s equation, given by equation (3.5). The Laplacian is
defined as

4φ def=
∑
n

∂2φ

∂x2
n

(3.21)

and the discretization of the terms in equation (3.21) is made as

∂2φ

∂x2
n

≈ φi+1 − 2φi + φi−1
h2 (3.22)

where h is the distance between the grid points. In two dimensions, Poisson’s
equation is stated as

∂2φ

∂x2 + ∂2φ

∂y2 = − ρ
ε0

(3.23)
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Figure 3.3: 5 point stencil.

and the finite difference approximation of equation (3.23) becomes

φi+1,j − 2φi,j + φi−1,j
h2
x

+ φi,j+1 − 2φi,j + φi,j−1
h2
y

= −ρi,j
ε0

(3.24)

where

i = 0, 1, . . . , N,N + 1
j = 0, 1, . . . , N,N + 1

and N is the number of inner grid points on the mesh. In this work, the distances
between the grid points in Ω are equal in all direction, so that

hx = hy = hz
def= h.

In the two dimensional case, this means that equation (3.24) can be re formulated
as

4φi,j − φi−1,j − φi+1,j − φi,j−1 − φi,j+1 = h2 ρi,j
ε0

(3.25)

and from equation (3.25) it is clear that information from four neighbours to node
(i, j) is needed to calculate the potential on node (i, j). The name "stencil" refers
to the set of nodes used it the computations (cf. [32]), and in equation (3.25) are
five points involved. A visual expression of this five point stencil is given in Figure
3.3. To compute a solution to equation (3.24) the finite difference method can be
used. A description of the finite difference method applied to a problem with ho-
mogeneous Dirichlet boundary conditions is given below. The information behind
the description comes from [21].
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The electrostatic potential in this work is given by a constant value on the bound-
aries of domain Ω. As explained in Section 3.2.1, this is a situation where Poisson’s
equation can be reformulated so that homogeneous Dirichlet boundary conditions
are applied. If homogeneous Dirichlet boundary conditions are applied, the elec-
trostatic potential is zero on all grid points on the boundaries of the domain, such
that

φ̃i,0 = 0, ∀ i = 0, 1 . . . N + 1
φ̃0,j = 0, ∀ j = 0, 1 . . . N + 1

(3.26)

and the N2 linear equations

4φ̃1,1 − φ̃2,1 − φ̃1,2 = h2

ε0
ρ1,1

4φ̃2,1 − φ̃1,1 − φ̃3,1 − φ̃2,2 = h2

ε0
ρ2,1

...

4φ̃N,1 − φ̃N−1,1 − φ̃N,2 = h2

ε0
ρN,1

4φ̃1,2 − φ̃2,2 − φ̃1,1 − φ̃1,3 = h2

ε0
ρ1,2

4φ̃2,2 − φ̃1,2 − φ̃3,2 − φ̃2,3 = h2

ε0
ρ2,2

...

...

4φ̃i,j − φ̃i−1,j − φ̃i+1,j − φ̃i,j−1 − φ̃i,j+1 = h2

ε0
ρi,j

...

...

4φ̃N,N − φ̃N−1,N − φ̃N,N−1 = h2

ε0
ρN,N

(3.27)

have to be solved. The linear equations in (3.27) can be expressed as

Aφ̃ = h2

ε0
ρ (3.28)

where φ̃ is a vector that contains all the sought values of φi,j , ρ is a vector that
contains all the solutions ρi,j and A is an N2×N2 matrix on block tridiagonal form.
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From the equations in (3.27) one can conclude that

A =



4 −1 . . .
−1 4 −1 −1
0 −1 4 −1 −1

. . . . . . . . . . . .
. . . −1 4 0

−1 0 4 −1

−1 . . . . . . . . .
. . . −1 4


The extension to discretize Poisson’s equation in three dimension is straightforward.
The finite difference approximation becomes

φi+1,j,k − 2φi,j,k + φi−1,j,k
h2
x

+ φi,j+1,k − 2φi,j,k + φi,j−1,k
h2
y

+

+φi,j,k+1 − 2φi,j,k + φi,j,k−1
h2
z

= −ρi,j,k
ε0

(3.29)

and with equal step size in each dimension one get

6φi,j,k − φi−1,j,k − φi+1,j,k − φi,j−1,k

−φi,j+1,k − φi,j,k−1 − φi,j,k+1 = h2 ρi,j,k
ε0

(3.30)

Equation (3.30) show a seven point stencil.

In the 3 dimensional case, the matrix A is of size N3 × N3 and the time it takes
more time to solve equation (3.28) in the 3 dimensional case compared to the 2
dimensional case [21]. If Poisson’s equation is solved on a fine grid, then N is large
and there is a large number of equations to solve. On a coarser grid, the number of
equations is less. The class of methods called multigrid methods use the approach
to switch between this finer and coarser grids. MultiGrid3D is a multigrid, Poisson
solver in 3 dimensions [7].

3.5 Particle push

3.5.1 What the particle push is

The particle push in a PIC code is the algorithm that moves the macro particles in
the domain. Governing equations for the motion of the particles are the ordinary
differential equations (3.2) and (3.3), which are solved by a push algorithm. For a
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reminder, equations (3.2) and (3.3) are stated as

dxp
dt

= vp

dvp
dt

= qp
mp

(Ep + vp ×Bp)

respectively, where qp is the charge of the particle p and mp is the mass of the
particle p. The term

qp(Ep + vp ×Bp)

is referred to as the Lorentz force. There may be additional forces affecting the par-
ticles, such as gravitational force and centripetal force. It depends on the problem
if such forces should be included in the simulations, but generally the Lorentz force
is dominating and other forces are neglected [16].

Since the electric and the magnetic fields are know only at the grid points, the
field values are interpolated from the grid points to the spatial positions of the
macro particles [25]. This is called a gather operation [16]. According to [25], it is
desirable to use the same interpolation technique as used for interpolating the source
terms from the particles onto the grid points. Otherwise a self force may affect the
particles, which means that the particles accelerates itself. The interpolation used
in Warp is described in Charge deposition (1.), Section 3.3.4.

3.5.2 Considerations regarding the push algorithm

The number of macro particles in a plasma simulation may be large and a simulation
may also require many time steps. The equations of motion are solved for each
macro particle in the domain, so if N is the number of macro particles and nsteps is
the number of time steps, each differential equation that governs the motion of the
particles has to be solved

nsteps ·N

times. Since the governing equations of motion normally are solved many times
during a simulation, it is desirable to choose an algorithm that solves the differential
equations fast and at the same time do not require much computational storage
while solving them. Solving equations (3.2) and (3.3) with Euler’s explicit method
for instance, would require that 2N values of the particles positions and velocities
would have to be saved in each time step. The updated positions and velocities of
the particles would with Euler’s explicit method be calculated as

xn+1
p = xnp + ∆t · f1(tn,xnp ) (3.31a)
vn+1
p = vnp + ∆t · f2(tn,vnp ) (3.31b)
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where tn is the time at time step n, ∆t is the time difference between tn and tn+1

and

f1(tn,xnp ) = vnp (3.32a)

f2(tn,vnp ) = qp
mp

(En
p + vnp ×Bn

p ). (3.32b)

If a higher order method would be used, more floating points operations for solving
the equations of motion may be required. With the RK4 (Runge-Kutta) method
for example, the velocities of the macro particles would be calculated as

k1 = f2(tn,vnp )

k2 = f2(tn + ∆t
2 ,vnp + ∆t · k1

2 )

k3 = f2(tn + ∆t
2 ,vnp + ∆t · k2

2 )

k4 = f2(tn + ∆t,vnp + ∆t · k3)

vn+1
p = vnp + ∆t

6 ·
(
k1 + 2k2 + 2k3 + k4

)
which is more costly compared to Euler’s explicit method, with respect to the
number of floating point operations. Moreover, calculating the coefficients k1, k2, k3
and k4 that are needed for updating the position and the velocities of the particles
requires the vectors

xnp

vnp ,v
n+ 1

2
p ,vn+1

p

En
p ,E

n+ 1
2

p ,En+1
p

Bn
p ,B

n+ 1
2

p ,Bn+1
p

while Euler’s explicit method only requires those vectors evaluated at time tn.
Hence, by using the RK4 method more information needs to be stored in the com-
puter and since vectors evaluated at time tn+ 1

2 and tn+1 are needed at time tn, the
RK4 method seems difficult to use for solving the governing equations of motion.

A commonly used method for calculating the motion of the particles in PIC codes
is the leapfrog method, which has some similarities with Euler’s explicit method. In
Warp, the leapfrog method is implemented the Boris method is used for updating
the velocity vectors of the particles [8]. These methods will be explained in the fol-
lowing sections and in the end some modifications of the particle push implemented
in Warp will be described.

3.5.3 The leapfrog method
It is mentioned in Section 3.5.2 that the algorithm that moves the macro particles
should be fast and require little computer memory at each time step. According to
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[25], the leapfrog method has these properties and it has an acceptable accuracy.
The method is based on the discretizations

dv

dt
(tn) ≈ vn+ 1

2 − vn−
1
2

∆t =
Fnp
mp

dx

dt
(tn) ≈ xn+1 − xn

∆t = vn+ 1
2

(3.33)

of the governing equations of motion, and the numerical scheme of the leapfrog
method becomes 

v
n+ 1

2
p = v

n− 1
2

p + ∆t
mp
F n
p

xn+1
p = xnp + ∆t vn+ 1

2
p

(3.34)

The leapfrog method is of second order accuracy, while Euler’s explicit method only
is of first order [21]. From the equations in (3.34) it can be concluded that not
many floating points operations are needed and not much data has to be saved at
each time step in the leapfrog method. Figure 3.4 illustrates the staggered grid in
the leapfrog scheme.

Figure 3.4: Illustration of a leapfrog scheme. The particles positions are defined at
times n∆t and the velocities of the particles are defined on times (n+ 1

2)∆t.

The implementation of the leapfrog method is straightforward if the magnetic
field is zero, but otherwise some additional mathematics must be used to take care
of the term

v ×B
in the Lorentz force. The Boris method is the standard method for doing this in
plasma simulation codes [16].

3.5.4 The Boris pusher
Motivation for using Boris method

The leapfrog scheme is shown by the equations in (3.34). To make the equations
in this section tidier, the subscript ”p” will be left out. If the Lorentz force F n is
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expressed in terms of the electric and magnetic field, the equation for updating the
velocity vector becomes

vn+ 1
2 = vn−

1
2 + ∆t

( q
m

(En + vn ×Bn)
)

(3.35)

where the right hand side of equation (3.35) contains the unknown velocity vector
vn. One suggestion of how to modify equation (3.35) so it can be solved by the
leapfrog algorithm, is given in [33]. The approach is to first replace vn by the
average of the velocity vectors at time steps n+ 1

2 and n− 1
2 , such that

vn = vn−
1
2 + vn+ 1

2

2 (3.36)

By replacing the unknown velocity vector in equation (3.35) with the right hand
side of equation (3.36) and making the substitution

α
def= ∆t q

m

the equation

vn+ 1
2 = vn−

1
2 + αEn + α

2
(
vn−

1
2 ×Bn)+ α

2
(
vn+ 1

2 ×Bn) (3.37)

is obtained. In Appendix B it is stated that the cross product of two vectors can be
expressed by the product of a skew-symmetric matrix and a vector, which means
that one can make the substitutions

vn+ 1
2 ×Bn = R[×]v

n+ 1
2

vn−
1
2 ×Bn = R[×]v

n− 1
2

(3.38)

where R[×] is a skew-symmetric matrix as explained in Appendix B. By inserting
the substitutions made in (3.38) in equation (3.37) one gets

vn+ 1
2 = αEn +

(
I + α

2R[×]
)
vn−

1
2 + α

2R[×] v
n+ 1

2 (3.39)

where I is the identity matrix. An updating formula for the velocity vector can
then be expressed as

vn+ 1
2 =

(
I − α

2R[×]
)−1

[
αEn +

(
I + α

2R[×]) vn−
1
2

]
(3.40)

According to [16], implementing equation (3.40) in the leapfrog scheme will simulate
the motion of the particles in a physically correct way. The energy of the macro
particles will be conserved and the Larmor radius, given by equation (2.38), will be
correct. This is however an implicit method that require quite a lot of calculation
for each macro particle at each time step. It is mentioned in this thesis that the
number of macro particles in plasma simulations may be large, and in that case
an implementation of equation (3.40) in the leapfrog method will make the com-
putations of the macro particle motion slow [16]. An alternative approach to solve
equation (3.3) is to use the Boris method.
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Derivation of Boris method

Boris method is a way of calculating vn+ 1
2 in equation (3.35). The procedure of

doing that can be divided into three steps:

• Update the velocity vector vn−
1
2 by adding half of the electric impulse from

the electric field to it.

• Rotate the updated velocity vector in the plane perpendicular to the magnetic
field.

• Add the rest of the impulse from the electric field to the updated velocity
vector.

The magnetic field is interpolated from the mesh points onto the particles in the
same way as described in Section 3.3.4. In this section, the material that describes
the Boris method comes from Birdsall and Langdon [25] and some additional math-
ematics to clarify the derivation of Boris method have been added by the author of
this thesis.

In the Boris method, the substitution (3.36) is made for the unknown velocity
vector vn in equation (3.35) and equation (3.3) is discretized as

vn+ 1
2 − vn−

1
2

∆t = q

m

(
En + vn+ 1

2 + vn−
1
2

2 ×Bn) (3.41)

The two new vectors

v−
def= vn−

1
2 + ∆t

2
q

m
En (3.42a)

v+ def= vn+ 1
2 − ∆t

2
q

m
En (3.42b)

are introduced and by expressing the vectors vn+ 1
2 and vn−

1
2 in terms of v− and

v+, the electrical field term En in equation (3.41) cancels out and one ends up with
the equation

v+ − v−

∆t = q

m

v− + v+

2 ×Bn (3.43)

To continue the derivation, Theorem 3 is used.

Theorem 3. The vectors v− and v+, defined in equations (3.42a) and (3.42b),
have the same norm.

Proof. The proof is done by taking the scalar product of (3.43) with the vector
(v+ + v−). The left hand side of equation (3.43) becomes

(v+ + v−) • (v+ − v−)
∆t = 1

∆t
(
v+ • v+ + v− • v+ − v+ • v− − v− • v−

)
=

= 1
∆t
(
v+ • v+ − v− • v−

) (3.44)
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According to the properties (B.13) and (B.14) in Appendix B, the right hand side
of equation (3.43) can be rewritten as

q

m

v− + v+

2 ×Bn = − q

2mB
n × v+ − q

2mB
n × v− (3.45)

By introducing
α
def= − q

2m (3.46)

and taking the scalar product of the right hand side of equation (3.43) with the
vector (v+ + v−), one gets

α(v+ + v−) • (Bn × v+ +Bn × v−) = α
(
v+ • (Bn × v+) +

+ v− • (Bn × v+) + v+ • (Bn × v−) + v− • (Bn × v−)
) (3.47)

From the definition of the cross product, it holds that

v+⊥ (Bn × v+) ⇒ v+ • (Bn × v+) = 0 (3.48a)
v−⊥ (Bn × v−) ⇒ v− • (Bn × v−) = 0 (3.48b)

and the right hand side of equation (3.47) reduces to

α
(
v− • (Bn × v+) + v+ • (Bn × v−)

)
(3.49)

By using the properties (B.12) and (B.13) in Appendix B, one gets

v+ • (Bn × v−) = −v− • (Bn × v+) (3.50)

which shows that the term (3.49) is zero. Hence, by taking the scalar product of
(v+ + v−) with the terms in equation (3.43), one ends up with

1
∆t
(
v+ • v+ − v− • v−

)
= 0 ⇒ v+ • v+ = v− • v− (3.51)

which means that |v+| = |v−|.
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Figure 3.5: The vectors v−, v+ and the angle θ between them.

From Theorem 3 it is concluded that v+ is just a rotation of the vector v− in
the plane spanned by v+ and v−. Let the angle between the vectors v− and v+ be
θ, as shown in Figure 3.5. Equation (3.43) implies that

|v+ − v−|
∆t = q

2m
∣∣(v− + v+)×Bn

∣∣ (3.52)

and from Figure 3.5 and equation (3.52) it can be concluded that

tan
(θ
2
)

= |v
+ − v−|
|v+ + v−| = q∆t

2m
|(v− + v+)×Bn|
|v− + v+|

(3.53)

From how a cross product is defined, it holds that

|(v− + v+)×Bn| = |(v− + v+)||Bn| sin(ϕ) (3.54)

where ϕ is the angle between the vectors (v− + v+) and Bn in the plane spanned
by the vectors (v− + v+) and Bn. Since v+ is just a rotation of v− in the plane
perpendicular to the magnetic field Bn, sin(ϕ) = 1 in equation (3.54) and equation
(3.53) becomes

tan
(θ
2
)

= q∆t
2m |B

n| = q∆tB
2m (3.55)

where B = |Bn|.

Next step in Boris algorithm is to add a new vector to the vector v−. This new vec-
tor shall be perpendicular to both v− and Bn, which means that it can be expressed
as

v− × t (3.56)

where t is a vector parallel to Bn. The length of the cross product in (3.56) shall
be such that it just reaches the line that bisects the angle θ, if the cross product in
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(3.56) starts from the end of the vector v−. Figure 3.6 show how the cross product
in (3.56) is placed.

Figure 3.6: The vector v− × t reaches the line that intersect the angle θ.

The length of the vector t can be calculated geometrically from Figure 3.6, as

tan
(θ
2
)

= |t|
|v−|

= q∆tB
2m (3.57)

where equation (3.55) is used in the last step. This gives that

|t| = |v−|q∆tB2m (3.58)

and since v− and t are perpendicular,

|v− × t| = |v−| · q∆tB2m (3.59)

Equation (3.59) holds if t is chosen as

t = q

m

∆t
2 B (3.60)

The vector that is obtained after adding the cross product in (3.56) is defined as

v′
def= v− + v− × t (3.61)

and v′ follows the line that bisects θ in Figure 3.6. Next step is to find the vector
v′ × s that is added to v− so that the rotated vector v+ is obtained. The vector
v′ × s is shown in Figure 3.7 and since this cross product lies in the plane spanned
by v− and v+, the vector s has to be parallel to B. If s is chosen as

s = 2t
1 + |t|2 (3.62)
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Figure 3.7: The vectors v−, v+ and the angle θ between them.

the vector v+ can be computed as

v+ = v− + v′ × s (3.63)

The last step is to compute the velocity vector at time step n + 1
2 , according to

equation (3.42b):

vn+ 1
2 = v+ + ∆t

2
q

m
En (3.64)

A summary of Boris method is expressed in the pseudo code below.

for n = 1, 2, 3... do
Data: En,Bn,vn−

1
2

t = q∆t
2mB

n

s = 2 t
1+|t|2

v− = vn−
1
2 + q∆t

2mE
n

v′ = v− + v− × t
v+ = v− + v′ × s
vn+ 1

2 = v+ + ∆t
2

q
mE

n

end

3.5.5 Particle push in Warp
The modified Boris pusher used in Warp

According to [8], the default particle push in Warp is built on Boris method. If the
time step ∆t is large compared to the gyroperiod τg given by equation (2.40), the
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gyration radius (equation (2.38)) computed by Boris method will be too large [34].

In Warp, the problem with the spuriously large gyration radius is solved by an
updated version of the Boris algorithm. The velocity of a particle is computed as

veff = b(b • vB) + αvB,⊥ + (1− α)vd (3.65)

where vB is the velocity calculated by Boris method, b is a unit vector that points
in the same direction as the magnetic field and vB,⊥ is the velocity of the particle
in the plane perpendicular to the magnetic field, denoted as v⊥ in Section 2.3. α is
an interpolation coefficient and if α is set to

α = 1√
1 + (ωg∆t

2 )2
(3.66)

both the correct drift velocity and the correct gyration radius is calculated [27].
In equation (3.66) ∆t is the time step and ωg is the gyro frequency, explained by
equation (2.39).

It can be concluded from equations (2.39) and (2.40) that in regions where the
magnetic field is strong, the gyro period gets small. In regions where the mag-
netic field gets strong enough, the gyro period gets much shorter than other time
scales of interest and a very small time step is needed for the simulation of the
electron movement. According to [27], in such regions it is sufficient to approximate
the particle movement in the plane perpendicular to the magnetic field with the
E×B drift. The modified particle mover implemented in Warp can be used if such
simplifications are needed [27].

Output diagnostics

In [27] it is written that since the velocities in (3.34) are evaluated at a staggered
grid with respect to the positions, it is not possible to directly retrieve particle data,
inject new particles or change the time step dynamically. To solve this problem,
an algorithm that combines leapfrog steps with periodic special steps has been
implemented in Warp. Most of the time during a simulation the leapfrog steps are
given by equation (3.34), but to get synchronized data the velocity is updated a
half time step every now and then. To start the leapfrog sequence given in equation
(3.34), or to restart it after the positions and the velocities have been given at the
same time step, the velocities are updated with a half time step in a first iteration.

3.6 Calculation of ionization
A script called lpa_script.py is one of several example scripts available in Warp.
The script lpa_script.py was studied and used for learning how to set up simu-
lations in Warp. This script was changed little by little so that in the end it would
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simulate the ionization gauge described in Section 1.4. lpa_script.py was chosen
as a starting point because it simulated a mixture of neutral molecules, positive
ions and electrons. These kinds of particles also had to be included in the script for
simulating the ionization gauge.

After making some changes in lpa_script.py, ionization of the hydrogen molecules
was observed. However, lpa_script.py is a script for simulating laser-wakefield ac-
celeration and if atoms or molecules interact with near infrared strong laser pulses,
tunnel ionization can occur. Through a Python debugger it was found that the
observed ionization was computed from the script tunnel_ionization.py. The
result of the debugging is seen in Appendix D. When tunnel ionization happened,
the specific weight for the electrons was very high. After analytically having cal-
culated the specific weight so that 10 mA would be emitted from the hot cathode,
ionization was no longer observed.

In the simulations of the ionization gauge, impact ionization is expected to hap-
pen, not tunnel ionization. Impact ionization is described in Section 2.4.4. There
is a Python script called ionization.py which contains a class called Ionization.
This class is made for generating particles from impact ionization and seem suited
for calculating the ionization of the hydrogen gas.

To use the class Ionization, first an object of the class Ionization has to be
created. Then the function add_ionization(...) which is implemented in the
class Ionization needs to be called once when the simulation is set up. The user
has to give the function add_ionization(...) the arguments target species, emit-
ted species and incident species. The target species are the neutral molecules that
can become positive ions, the emitted species are the positive ions and the electrons
that are added to the simulation if ionization occur. The incident species are the
particles that can collide with the target species so that positive ions are created.
In this work, the hydrogen molecules are a target specie, the protons and electrons
are the emitted species and electrons is the incident specie.

During the simulation, the function generate(...) in the class Ionization is
called at each iteration. In that function a one dimensional array called ncol is
generated, which have the same size as the number of macro particles representing
the incident species. Every element n in ncol is a floating point number, where

ncol[n] ∝ dp[n] · σ · vi[n] ·∆t (3.67)

In (3.67), dp[n] is the partial pressure at the position of incident specie number n, σ
is the ionization cross section that can be provided by the user, vi[n] is the velocity
of incident specie number n and ∆t is the time step. The partial pressure dp[n] is
defined at the grid points of the mesh and depend on how many target particles
that are in the vicinity of the grid points. dp[n] is interpolated from the grid points
of the mesh onto the position of incident specie number n.
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A higher the value of ncol[n] gives a higher probability that incident specie num-
ber n generates an ion. If that happens, the emitted species are generated at
approximately the same position the incident specie had when the ionization was
generated. Unfortunately, the class Ionization was not completely implemented
when the work with this thesis began. The problem with the class Ionization is
if a target specie turns in to a positive ion, that target specie is not deleted. So
by using the class Ionization to simulate ionization would increase the number of
macro particles every time a positive ion is created and therefore also increase the
pressure in the domain. The developers of Warp have now been informed about
this problem and the author of this thesis added some code to the class Ionization
that deletes the right number of target species if ionization occur.

Here, the code added to Ionization to delete the target species will be described.
The positions of the incident species that generate the ions are saved in arrays in
the class Ionization. Every particle in Warp has a unique identification num-
ber and the already implemented function getssn(...) return those identification
numbers. The user can give x-, y- and z-values to getssn(...), in which case
the function returns only the identification numbers of the macro particles that are
within those x-, y,- and z-values given by the user. It is also important to give
an argument that states for which particle group the user wants the identification
numbers.

In the code added in Ionization, getssn(...) returns the identification num-
bers of the macro particles within a region with the size of 8 mesh cells around
the position where the incident specie generated the ion. If there are several target
species within that region, one of those target species are removed randomly. If
there are no target species in that region, a target specie is removed randomly from
the computational domain.

In Warp, the particle data for all the macro particles is kept in a one dimensional
array, here denoted particleData[]. To find out which position the target specie
that is to be removed has in particleData[], the function selectparticles(...)
that already is implemented in Warp, is used. selectparticles(...) takes the
identification numbers of the macro particles as input arguments and return the
positions those macro particles has in the particleData[]. When those positions
in particleData[] are known, the program executes the code

put(ipg.gaminv,array_placement,0) (3.68)

where array_placement is an array with the particles placements in particleData[]
and gaminv is a parameter that every macro particle have. If gaminv is set to
zero, that particle will be removed from the simulation. The line of code in (3.68)
puts gaminv to zero for the particles with indices in particleData[] given by
array_placement.
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An other way to simulate ionization is to increase the specific weight of the elec-
trons to a value that is several orders of magnitudes greater than the value of the
specific weight computed originally. The number of generated ions in this case is
also dependent of the specific weight of the hydrogen molecules.
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Chapter 4

Simulation

4.1 Simulation setup

4.1.1 Conducting objects

Warp contains the script generateconductors.py, where different classes are im-
plemented from which geometrical objects can be created. Those objects are con-
ducing objects and in this work they were used to model the solid parts of the
ionization gauge that had a potential applied to them. There are several geometries
of the conducting objects available in Warp and the user can define some charac-
teristic parameters such as their length, height and potential. In this work, the ion
collector and modulators were created by ZCylinder, the hot cathode was made of
two conducting objects of type Cylinder and the anode grid was made by several
conducting objects of type ZTorus.

Conducting objects should be generated in the Python script after a field solver
have been registered with the command registersolver(...) and before the call
generate(...) is made. To make the conducting objects absorb particles, a parti-
cle scraper has to be created. A particle scraper was created for every conducting
object in this work.

As mentioned in Section 3.2.1, for the electric field Dirichlet boundary conditions
are applied to the boundaries of the conducting objects. More information about
conducting objects can be found in [7].

4.1.2 Classes created for this work

To be able to make the simulations and retrieve results from the simulations, some
classes were written and used in this work. Here is a summary of those classes and
some description of what they do.
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CreateConductingObjects

The class CreateConductingObjects contains all the conducting objects needed
for the simulation of the ionization gauge. Some parameters can be passed through
from the main script, for example their placement in the domain, the voltage, the
number of grid toruses, length and radius. A consistency check is implemented in
the function that generates the anode grid, such that no toruses are overlapping.

The particle scraper needed for absorbing particles on the conducting objects, is
initialized in the constructor of CreateConductingObjects. This scraper is used
by all the conducting objects of the class CreateConductingObjects.

WriteToFileClass

WriteToFileClass is a separate class for handling all the writing of data to separate
files and for printing relevant information to the screen during a simulation. For
example, functions for writing the positions of the particles, the velocities of the
particles and the strength of the electric and the magnetic fields at the positions of
the particles, are implemented in WriteToFileClass. Those functions build on the
in Warp already implemented functions

getx(), gety(), getz()

getvx(), getvy(), getvz()

getex(), getey(), getez()

which returns the the particles positions, velocities and electric and the elctric field
at the positions of the particles, respectively. Information about those functions
can be found in [26].

An alternative to retrieve the strength of the electric field at the positions of the
particles, is to use the function getselfe(). getselfe() returns the electric field
values at the grid points in the form of an array that looks like

[E,nx, ny, nz] (4.1)

The parameter E in (4.1) is an array with three elements. The first element contains
all the values of the electric field in the x-direction and the second and the third
element contain the values of the electric field in the y- and z-direction respectively.
The arrays nx, ny and nz are then used to specify at which grid points the user
wants to look at the electric field values. For example would

[E,nx, ny, nz] = [0, 10, 5, 19] (4.2)

return the x-compontent of the electric field at the 11th grid point in the x-direction,
the 6th grid point in the y-direction and the 20th grid point in the z-direction (the
first grid point corresponds to the value 0).
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Functions to visualize the electric field values on the xy-, xz- and yz-planes were
implemented in WriteToFileClass. The function for plotting the electric field on
the xy-plane for example, the user defines at which height in the z-direction the
xy-plane shall be. Then two for-loops are used to loop over all the grid points in
that xy-plane and write the spatial positions of the grid points and the values of
the electric field in the x-, y- and z-direction to a file. In Figure 4.1 those uniformly
distributed grid point are visualized in the xy-plane and in the xz-plane.

Figure 4.1: Grid points placed uniformly over the domain. The electrical field can
be plotted on those points.

PlasmaInjectorModified

In the script lpa_script.py a class PlasmaInjector is used to inject particles.
The positions or velocities of the particles can not be given as arguments to
PlasmaInjector. Instead, particles are placed with equal distance from each other
in a subsection of the domain defined by the user.

An updated version of PlasmaInjector was created for injecting electrons from
the hot cathode. This new class was called PlasmaInjectorPosition and the po-
sitions and the velocities of the particles had to be given as input arguments from
the user. How those positions and velocities are calculated is described in Section
4.3.
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When the simulations were run in parallel, every processor began to inject elec-
trons. If for example 30 processors were used for the computations, which was
usually the case, then 30 electrons would be injected into the domain at every iter-
ation instead of 1. First an attempt to make only one processor inject the electrons
was carried through. Then the variable lallindomain was found, which took care
of the problems with the parallelization. lallindomain was by default set to True.
When lallindomain was set to False instead, the processors would not add elec-
trons outside of their sub-domain. This way, only the processor or processors that
made the calculations of the part of the domain Ω where the hot cathode was placed,
would also add the electrons. The domain Ω was distributed among the processors
so that the hot cathode did not intersect any boarders of the sub-domains.

Further investigation showed that the class PlasmaInjector used the function

addparticles(...)

for injecting the plasma into the domain. addparticles is a function that be-
longs to the class Species, implemented in Warp. In contrast to PlasmaInjector,
addparticles can take the boolean lallindomain a an argument. Hence, the prob-
lem with the parallelization was already taken care of if the function addparticles
was used with the argument lallindomain=False.

Finally, a new version of PlasmaInjector was made. That class was called
PlasmaInjectorModified and it was used only for injecting the hydrogen molecules
at the very first iteration of the simulation. The only difference from the original
PlasmaInjector was that lallindomain=False. This class is used to fill up the
domain Ω with hydrogen molecules distributed with an equal distance away from
each other. This class works in the parallel version.

4.2 Tests of different parts of Warp
To evaluate the functionality of Warp, different parts of the software were tested
individually. Tested parts and the outcomes of the tests are given in the subsections
below.

4.2.1 Absorption of particles

By default, the particles that get absorbed by the conductive objects are deleted by
the Warp software. But by setting the variable lsavelostpart=True, the absorbed
particles are saved and this was used for controlling that the particles actually got
absorbed by the conductive objects. By filling the domain Ω with electrons and
installing the hot cathodes, the positions where those electrons were absorbed on
the cathodes could be plotted. Those positions are shown in Figure 4.2, where the
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shape of the cathodes appear. This indicates that the particles scraper is working
properly.

Figure 4.2: The small white dots show where the electrons are absorbed. The
radiuses of the both cathodes were temporary set to 1 millimeter in this experiment.

4.2.2 Field solvers

Electrical fields from different parts of the ionization gauge were generated. Fig-
ure 4.3 and Figure 4.4 show the electric field from the anode grid only. The
field is plotted on the equidistant mesh grid described in Section 4.1.2, under
WriteToFileClass. Dirichlet boundary conditions are applied on every bound-
ary of the domain. The reason why the field is perpendicular to the boundaries is
explained in Section 3.2.1 and by equation (2.27).

The electrical field from the hot, emitting cathode and the ion collector was also
computed. The result is shown in Figure 4.5.
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Figure 4.3: The magnitude of the electric field generated from the anode grid.

Figure 4.4: The electric field represented by vectors in the xz-plane. The color of
the vectors is the magnitude of the electric field.
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Figure 4.5: Electric field generated by the cathode and the ion collector.

4.2.3 Particle movement and the ion collector
Four positively charged hydrogen ions were placed inside of the anode grid with zero
velocity initially. Their starting positions are given in Table 4.1 and Figure 4.6 and
Figure 4.7 show how the ions move as time evolve. The ions are represented by the
red spheres and the arrows placed on each ion show their speed and their velocity
projected on the xy-plane and xz-plane respectively. The color of the arrows shows
the speed of the ions. In this simulation the electric field comes from the anode grid
and the ion collector. The radius of the ion collector in the figures is drawn bigger
compared to its radius in the simulation.

The ions did not get absorbed by the ion collector in this simulation. Other simula-
tions were made where the ion collector had a bigger radius and in those simulations
the ions got absorbed by the ion collector.
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Table 4.1: Starting positions of the ions

Ion / coordinate x y z
1 -0.005 -0.005 0.01
2 0.005 0.005 0.02
3 -0.005 0.005 0.03
4 0.005 -0.005 0.04

(a) (b)

(c) (d)

Figure 4.6: The ionization gauge from above. The color scale indicates the speed
of the ions. (a) The starting positions of the ions. (b) All ions have moved closer
to the ion collector. (c) The ions missed the collector and are moving away from it.
(d) The ions start moving towards the collector again.
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(a) (b)

(c) (d)

Figure 4.7: The same results as in Figure 4.6, but seen from the side of the ion
collector.

Figure 4.8 and Figure 4.9 show that the ions seem to follow the electric field lines.
The ions move towards the ion collector, which is the purpose of the construction
of the ionization gauge.
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(a)

(b)

Figure 4.8: The red spheres represent the ions moving in the electric field. Picture
(a) is from a time step right before picture (b).
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(a)

(b)

Figure 4.9: The same result as visualized in Figure 4.8, but in the x-z-plane. Picture
(a) comes before picture (b) in time.

57



CHAPTER 4. SIMULATION

4.3 Approach to simulate the ionization gauge
Specific weight of the macro particles

In the simulations carried through in this work, the electrons are represented by
macro particles. The number of real electrons Nelec that had to be emitted from
the hot cathode is calculated as

Nelec = ∆t · Ie
e

(4.3)

and the specific weight for the macro particles is calculated as

specific weight = Nelec

NMP,elec
(4.4)

In (4.3), Ie is the electron current and e is the elementary charge. In (4.4), NMP,elec

is the number of macro particles representing the electrons that are emitted from
the cathode at every time step. NMP,elec is an input parameter in the simulations
and in this work, only one macro particle representing an electron is emitted at each
time step. From the equations (4.3) and (4.4), the specific weight for the macro
particles representing electrons becomes approximately 6.2 · 106.

The macro particles representing hydrogen are injected into the domain by the
function PlasmaInjectorModified. Two hydrogen macro particles are placed in
each cell and the specific weight of the hydrogen gas is calculated as

weightH = n · Vcell
NMP,H

(4.5)

where Vcell is the volume of a mesh cell and NMP,H is the number of macro particles
representing hydrogen. n is the number of hydrogen particles per m3 and this value
is calculated through the ideal gas law, given by equation (1.4).

Starting positions of the electrons

The cathodes in this work consist of two cylinders merged together, shaped as two
"V" tuned upside down. Figure 4.2 indicates the shapes and positions of those cath-
odes and only the cathode to the left in Figure 4.2 emits electrons. Compared to
the cathodes in [9], the geometry of the cathodes in this work was more easy to
implement in the code.

The starting positions of the electrons are randomized on the surface of the emitting
cathode. The random variables Y , Z and θ are used to generate a random starting
position. To describe this randomization algorithm, the two end points towards the
ground of the emitting cathode need to be defined. The left end point is denoted

[xend, yleft, zend]
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and the right point is denoted

[xend, yright, zend]

The x- and z-position of those points are the same and have therefore the same
notation.

The random variable Y takes the two values yright or yleft with equal probability. Z
and θ are uniformly distributed such that

Z ∈ Uniform(0,H)
θ ∈ Uniform(0,2π)

where H stands for the height of the hot cathode. The starting position of the
macro particles are then given by

xstart = rc · cos(θ) + xend (4.7a)

ystart = rc · sin(θ) + Y · H − Z
H

(4.7b)

zstart = Z + zend (4.7c)

where rc is the radius of the cylinders that makes up the emitting cathode. An
illustration of the randomized starting positions of the macro particles is given in
Figure 4.10.

Figure 4.10: The starting positions of the electrons are shown by the small, white
dots inside of the cube.
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The initial speed of the electrons v0 is set to 4.42 · 106 m/s. This speed is
calculated from the work function given that the cathode had a voltage of +50 volt.
The components of the initial velocity vector vstart of the electrons, are given by
random, spherical coordinates. Those coordinates are computed as

vx,start = v0 · cos(θ) sin(ϕ) (4.8a)
vy,start = v0 · sin(θ) sin(ϕ) (4.8b)
vz,start = v0 · cos(ϕ) (4.8c)

and it holds that |vstart| = v0. Here is

ϕ ∈ Uniform(0,π)

If more than one macro particle per iteration would be generated, the random vari-
ables Z, θ and ϕ would be random vectors. In that case, all the macro particles
would be generated either on the cylinder to the left or on cylinder to the right at
every iteration.

The Python function random.random() was used to generate all the random vari-
ables. random.random() generates a uniformly random number in the interval [0, 1).
More information about random numbers generated in Python can be found in [35].

Collecting the ions

Macro particles that are scraped on particle scrapers or absorbed on the walls of
the computational domain, are deleted in the source code of Warp by default. Since
the objective in this work is to simulate an ion current in the ion collector, it is
necessary to somehow count how many macro particles representing ions that get
absorbed on the ion collector. A macro particle representing several ions will be
denoted MPion.

To save particle data that has to do with macro particles that disappear from
the domain, one can set the variable

lsavelostpart = True

This way, it will be possible to retrieve the number of macro particles of a certain
specie that have disappeared. To return the number of disappeared MPion, the
function call

ions.getn(lost=1)

is made, where ions is an object that contains data about the hydrogen ions. This
call will return the total number of lost MPion and not only the number of MPion
that have been absorbed by the ion collector.

60



4.3. APPROACH TO SIMULATE THE IONIZATION GAUGE

To sort out the MPion that have been absorbed on the ion collector from the MPion
that have been absorbed or lost elsewhere in the domain, a for-loop on the following
form was implemented:

Data:
Wion: the specific weight of MPion
Ii: the ion current
t: elapsed time
for n = 1 to Total number of lost MPion do

if The position of lost MPion,n is on the ion collector then
Add the number of collected MPion by 1;

end
end
Ii = Wion·(collected MPion)

t ;
To verify the if-statement in the for-loop, built in functions that gives the co-

ordinates of the lost particles are used. A problem with this approach is that the
arrays that store the data of the lost particles, keep growing and growing as ions
disappear throughout the simulation. For simulations that run for a long time,
those arrays may be completely filled or it may take a very long time to execute
the for-loop. One solution could be to continuously count the particles absorbed by
the ion collector and then delete all the particles throughout the simulation, so that
not so much memory is needed to store all data. Unfortunately, no way to delete
lost particle data during simulation time was found. In the script that was used for
simulating the ionization gauge, all the data of the lost particles was saved.

Other attempts to improve the simulation

In Warp it is possible to create functions that removes particles on positions defined
by the user. To remove the particles, an array called gaminv is used. Every element
in gaminv corresponds to a particle and by setting an element in gaminv to -1, that
corresponding particle is removed.

This approach was used to create a function that removes particles close to the
boundaries of the domain. This way, the only lost ions that are saved are the ones
that disappear on the ion collector, provided that none of the other conducting
objects absorb the ions. This function worked well if the code was executed sequen-
tially, but in parallel the vector gaminv was divided to the different processors so
that an index error appeared. Warp uses the MPI library for message passing for
the parallelization [8]. It should also be mentioned that during a simulation, the
sum of the neutral particles and the positive ions should remain constant in order
to keep a constant pressure inside of the domain. So whenever the sum of neutral
particles and ions decreases, new neutral gas molecules are generated at random
positions in the domain so that the pressure remains the same.
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Attempts to switch the variable lsavelostpart between True to False during
simulation time were also made. The thought was that if lsavelostpart was
switch from False to True, the saved lost particles would be deleted. By setting
lsavelostpart=True again during simulation time, hopefully the counting of the
lost particles would be reset from zero. It turned out that if lsavelostpart was
switched from True to False during simulation time, the counting of the lost par-
ticles only paused until lsavelostpart was set to True again.

In order to speed up the computations, a mesh refinement can be applied on parts
of the computational domain where extra fine resolution is needed. This way, a fine
mesh don’t have to be applied on parts that are not important for the results and
computational time can be saved. The field solver that can handle mesh refinement
is called MRBlock3D, which is a class derived from the field solver MultiGrid3D.
Where in the domain a mesh refinement will be applied and how many times finer
the resolution in the x-,y- and z-direction will be is decided by the user.

An attempt to make a finer mesh of the domain where the anode grid is placed
was carried through. The original mesh was divided into 30 grid points in each
direction, but in the region where

x ∈ [−21, 21] millimeter
y ∈ [−21, 12] millimeter
z ∈ [15, 21] millimeter

the mesh was 4 times smaller in each direction. The mesh refinement did not seem
to have any impact on the absorption of the electrons, which is shown in Figure
4.11. This result is contrary to the results in Section 4.5.1, where the absorbed
electrons were collected more uniformly over the anode grid if the mesh was finer.
It is not clear why there is a difference, but one thought is that it has to do with
the size of the time step. In the case where the mesh was refined over the whole
domain, the time step also decreased. In the case where the mesh refinement was
applied only to a small part of the domain, the time step was still adapted to the
coarser part of the mesh.
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Figure 4.11: A mesh refinement was applied around the torus placed 18 millimeter
in the z-direction.

4.4 CFL-condition and stability
It is mentioned in [16] that a necessary constraint in all PIC codes is that the par-
ticles should not travel further than to a neighbouring cell in one iteration. It is
also mentioned that it is generally a good idea to let the particles travel a shorter
distance than a length of a cell in every iteration. Moreover, it is described in
Section 3.3.4 that the charge of the particles are interpolated onto the grid points
of the mesh. To avoid a situation where some grid points don’t get any charge
from a certain macro particle just because it is traveling more than one cell at each
iteration, the time step had to be adjusted.

Let a particle p have the velocity v = [vx, vy, vz] at an arbitrary time during a
simulation. If particle p should not travel more than to the neighbouring cell at
each time step, then the time step has to fulfill

∆t · vx < C ·∆x
∆t · vy < C ·∆y
∆t · vz < C ·∆z

where C is a constant smaller or equal to 1, ∆t is the time step and ∆x, ∆y and ∆z
are the length of a grid cell in the x-,y- and z-direction respectively. To calculate
an appropriate value of ∆t, the maximum values of the velocity components from
all the electrons in the domain are selected. Those components are here denoted
vx,max, vy,max and vz,max and are not necessary selected from the same electron.
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The velocity components of the ions and the neutral particles are not taken into
account, since they move so much slower than the electrons. The time step is then
calculated as

∆t = C ·min( ∆x
vx,max

,
∆y

vy,max
,

∆z
vz,max

) (4.9)

To avoid having to gather the maximum values of the velocity vectors of the electrons
at each time step, a pre-simulation was of 20000 iterations was carried through.
After 10000 iteration, the minimum values of the time steps was saved in a data file
every 100th iteration. Then the minimum value of those times steps was selected,
which was ∆t = 1.15 · 10−10 seconds. The time step in the long simulations that
will be described in Section 4.5.3, was set to ∆t = 1 · 10−10 seconds to be sure that
the time step would be small enough. The constant C was set to 0.7.
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4.5 Results of the simulations

Figure 4.12: A simulation in action.

Figure 4.12 shows the result from a simulation where the domain Ω is filled with
hydrogen molecules and electrons are emitted from the hot cathode. The small
dots represent the electrons, the bigger spheres represent the ions that have been
generated from the hydrogen during the simulation and the cube that surrounds
the ionization gauge and the particles represent the computational domain. The
simulation is running on 30 processors, so the domain is divided into 30 parts. Each
processor takes care of the computations of one of these parts each. The parts are
divided as 6× 5× 1 in the x-, y- and z-direction respectively.
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4.5.1 Issue with the absorption of electrons

If the anode grid is very thin, only certain parts of it will absorb electrons. If the
mesh where the anode grid is placed gets finer, the electrons will be absorbed more
uniformly on the grid. An example of this can be seen in figure 4.13.

(a) (b)

Figure 4.13: The white dots show the positions where the electrons are absorbed.
In (a) the domain is divided into 40×40×40 cells and in (b) the domain is divided
into 80×80×80 cells.

As an experiment, the anode grid was made thicker to see if it would affect
the absorption of the electrons. The anode rings radius was 0.8 millimeter in this
simulation. In Figure 4.14 it can be seen that the electrons are absorbed more
uniformly.
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Figure 4.14: The small dots represent the final destination of the electrons. The
emitting cathode is placed between the viewer and the anode grid in the picture.

4.5.2 The ionization

When some code was added to the class Ionization, the right number of neutral
hydrogen molecules was deleted if positive ions were generated. Before that code was
added, the number of neutral hydrogen molecules remained the same throughout
the simulation, even though positive ions were generated. To test if the new code
in the class Ionization worked, a simulation with a simple set up was made.
The domain was filled with neutral hydrogen molecules and electrons were emitted
from the centre of the domain. Figure 4.15 show the positions where the neutral
hydrogen molecules are deleted from the simulation and Figure 4.16 show those
positions again, together with the positions where the positive ions are added to
the simulation. It can be concluded that the ions are added at positions close to
where the neutral hydrogen molecules are deleted, which was the purpose of the
new code. It can also be seen that some of the gas molecules are deleted far away
from the cluster of ions. This may have to do with that if there are no neutral
hydrogen molecules nearby where an electron generate an ion, a neutral hydrogen
molecule is deleted randomly in the domain. A description of the added code is
found in Section 3.6.
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Figure 4.15: The small dots represent the positions where the neutral hydrogen
molecules are deleted from the simulation.

Figure 4.16: The bigger red spheres represent the positions where the ions are added
to the simulation.
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As described in Section 3.6, tunnel ionization occur if the specific weight of the
electrons is high enough. Figure 4.17 shows the results from two simulations where
this type of ionization is generated. The ions are generated because a macro particle
representing an electron is emitted from the centre of the domain and the only differ-
ence between the two simulations is the grid resolution in the z-direction (upwards
in the figure). Compared to Figure 4.17 (a), the mesh resolution in the z-direction
in Figure 4.17 (b) is coarser and the ionization also seems to propagate faster in the
z-direction in Figure 4.17 (b). The reason might be that at the beginning of the
simulation, one macro particle representing a gas molecule is placed at the centre
of each cell. This means that the distance between the macro particles increases in
the direction where the mesh get coarser. To be sure to avoid nonphysical results
due to the geometry of the mesh, cubic cells were used in the simulations.
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(a)

(b)

Figure 4.17: In picture (a), the number of grid points is 30 × 30 × 30. Picture (b)
has 30× 30× 20 grid points.
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4.5.3 Long simulations

Simulations where the electrons were represented by macro particles were carried
through. These simulations were made before the new code in the class Ionization
was added by the author of this thesis. One electron macro particle was emitted
at every time step and the specific weight was 6.2415 · 106, a value calculated from
equations (4.3) and (4.4). Since the electrons move so fast compared to the ions,
the simulations were planed to run for about two weeks. After two weeks time it
was assumed that enough ions would have been collected so an estimation of the
sensitivity of the gauge could be obtained.

First, a simulation with absorbing boundary conditions for the particles was made.
Two macro particles representing gas molecules were placed in each cell. The num-
ber of electrons in the domain did not seem to change significantly after the simu-
lation had run a couple of 100 000 iterations. This can be seen in figure 4.18.

Figure 4.18: Total number of electrons in the domain at different iterations. After
372 700 iterations the simulation was interrupted.

There is a boundary condition called prwall implemented in Warp, which is a
cylindrical wall that absorbs the particles that collide with it. prwall was used in
the simulation, with a radius of 30 millimeter. The cylindrical form was chosen to
shrink the domain and consequently save computational power. No ionization of the
hydrogen occurred and after about 372700 iteration a segmentation error appeared,
which interrupted the simulation.

Then a second simulation with reflective boundary conditions for the particles was
done. It was assumed that the reflective boundary conditions would generate more
ions, since more electrons that can generate ions would be in the domain. In a real
situation with an ionization gauge surrounded by a wall and electrons absorbed by
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the wall, the wall would after a while be negatively charged due to the negative
charge of the electrons. That would make the electrons repel from the wall. This
reasoning was used as a justification to use reflective boundary conditions for the
particles.

No boundary with shape of a cylinder that could reflect particles was found, so
the domain had the shape of a cube in this second simulation. Since no ionization
occurred in this simulation, it was interrupted manually.

In both of the simulations, two macro particles representing hydrogen molecules
were placed initially in each cell in the domain. For the field, Dirichlet boundary
conditions was applied to the boundaries of the domain.

4.6 Discussion and future work

A problem with the absorption of the macro particles on the conductive objects have
been observed. The macro particles that represents electrons are absorbed only on
certain parts, which is shown in Section 4.2.1. Furthermore, in the simulation with
the four ions in Section 4.2.3 the ions did not get absorbed by the ion collector.
This problem might be caused by the small dimensions of the parts of the ioniza-
tion gauge. Simulations with a bigger radius on the ion collector and bigger toruses
of the anode grid were carried through and then no problems with the absorption
of the particles were detected.

To carry through the simulations of interest successfully, it is essential that the
absorption of the particles works correctly. It is specially important that the ion
collector absorbs the macro particles that represents the ions. One way to make
the ion collector absorb more ions is to increase the radius of the ion collector. In
that case the model of the ionization gauge in this work would no longer have the
same measurements as the ionization gauge in [9]. Then, comparing the results in
this work with the results in [9] may no longer make sense.

In Section 2.4 it is explained that if the electrons are represented as macro par-
ticles, the time step in the simulations needs to be very small. Since both electrons
and ions have to be included in the simulation of the ionization gauge in this work,
many iterations are needed because the ions move so slowly compared to the elec-
trons.

To reduce the number of computations in the simulations, Boltzmann distributed
electrons that are available in Warp can be used instead of macro particles that
represent many electrons. There is a field solver called multigridbe3dsolve imple-
mented in Warp, which solves Poisson’s equation with a Boltzmann electron term
added. Attempts to use this field solver were carried through in this work, but a seg-
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mentation error occurred every time. It was found that multigridbe3dsolve was
not completely implemented in Warp and the developers were informed about this.
After they fixed that field solver, a segmentation error did not longer appear. In
this work, it was not accomplished to simulate ionization with multigridbe3dsolve
and in the source code where that field solver is implemented, the comment "The
parallel version does not yet work, it is just too complicated and not needed yet"
was found. Therefore, no more attempts to use multigridbe3dsolve were carried
through. But a future task is to make a simulation with such Boltzmann distributed
electrons. It can be tested if the class Ionization can be used together with Boltz-
mann distributed electrons as well.

Figure 4.19: Comments found in the source code.

The results of numerical simulations become more believable if they agree with
mathematical theory and with experiments [36]. In Section 4.2, electric fields gen-
erated by different conductive objects are visualized. At the boundary surfaces of
the domain and at the surfaces of the conductive objects, homogeneous Dirichlet
boundary conditions are applied and the field vectors are perpendicular to those
surfaces. This result agrees with the theory in Section 2.2.2. The electric fields
get stronger at spatial positions close to the solid objects that generate the fields,
which makes physical sense. It was also shown in Section 4.2 that the positively
charged ions were affected by the electric field according to the theory in Section
2.3. However, it is necessary to further investigate if the particle motion generated
by the magnetic field also works according to theory.

At the beginning of the work with this thesis, the article [9] was intended to be
used as a benchmark for the simulations in this work. For example, the sensitivity
of the ionization gauge simulated by Warp could be compared to the sensitivity of
the gauge simulated in the article [9]. If the results in this work would agree with
the results in [9], the results in this work would be more believable. Due to problems
with setting up a working simulation in Warp, there was not time to generate such
results with Warp that could be compared to the results in [9].

It should be tested if the class Ionization can be used to simulate the physics
of an ionization gauge of the type that is described in this thesis. At the beginning
of the work with this thesis, it was not understood how the class Ionization should
be used properly and after a while, the issues with that class were encountered. Now
when more knowledge is obtained and some problem with the code is fixed, it may
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be possible to simulate the physics of an ionization gauge successfully in Warp.
The results obtained after such simulations should be compared to already known
results, for example the results in [9].
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Appendix A

Definitions and notation

• The computational domain Ω ∈ R3 is a simplified representation of the phys-
ical domain that is to be simulated.

• Phase space is a space containing all the possible states of the particles po-
sitions and their velocities (cf. Encyclopedia of Mathematics [20]).

• A variable that is representing a vector quantity is written in bold front. Scalar
quantities are written in normal front. For example, v denotes a vector and ρ de-
notes a scalar.

• Variables used in numerical schemes can have indexes both at the top and at
the bottom, for example vni,j,k . The superscript n at the top indicates the time step
and the subscripts i, j and k at the bottom indicate the spatial position.

• The spatial position of a particle p at a time step n, is given by a vector de-
noted xnp . The electrical field in the computational domain is changing in both
time and space and to simplify the notation, the electrical field where particle p is
located at a time step n, is denoted

E(xnp ) not.= En
p

In the same way, a magnetic field at particle p:s position at time step n is denoted

B(xnp ) not.= Bn
p

• Line integrals along a curve C between the two points a and b are denotedˆ b

a
F • τ dx ≡

ˆ
C
F • τ dx

where F is a vector field and τ is the tangential vector of the curve C. If the curve
C is closed, meaning that a = b, the curve integral will be denoted˛

C
F • τ dx
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• Double integrals over a surface S will be denoted
ˆ
S
F • n dσ(x)

where dσ(x) is an infinitesimal area element of S and n is an outer normal unit
vector to σ(x). If the surface S is a closed surface, the double integral will be
denoted ˛

S
F • n dσ(x)

• Triple integrals over a volume V will be denoted
ˆ
V
f(x) dx.

where f is a scalar function.
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Used mathematical identities

The divergence theorem and Stokes theorem

Let F be a vector field and ∂ν a closed surface that bounds a volume ν. Then the
divergence theorem states that

˛
∂ν
F • n dσ(x) =

ˆ
ν
(∇ • F ) dx (B.1)

where n is the unit outward normal vector.

Let S be a piecewise smooth surface that is bounded by the closed curve ∂S. Then
Stokes theorem states that˛

∂S
F • τ dx =

ˆ
S

(∇× F ) • n dσ(x) (B.2)

where n is the unit outward normal vector. The divergence theorem and Stokes
theorem are explained further in Griffiths [10] for example.

The Helmholtz theorem

Let F (r) be a vector field with its divergence given by

D = ∇ • F (B.3)

and its curl given by
C = ∇× F (B.4)

If D and C goes to zero sufficiently fast as r → ∞ and F goes to zero as r → ∞,
then F is uniquely given by

F = −∇U +∇×W (B.5)

where
U(r) = 1

4π

ˆ
all space

D(r′)
|r − r′|

dσ′ (B.6)
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and
W (r) = 1

4π

ˆ
all space

C(r′)
|r − r′|

dσ′ (B.7)

Here, r and r′ are vectors from the origin of some coordinate system in the domain,
where r′ typically is a vector to the source of the vector field F and r 6= r′. r
is the magnitude of r. The Helmholtz theorem is proven and further explained in
Griffiths [10].

Potentials

In Griffiths [10], the statements below are made:

If the curl of a vector field F vanishes everywhere, then that vector field can be
written as the gradient of a scalar potential. The converse relationship also holds.

∇× F = 0 ⇐⇒ F = −∇φ (B.8)

If the divergence of a vector field F vanishes everywhere, then that vector field can
be expressed as the curl of a vector potential A. The converse relationship also
holds.

∇ • F = 0 ⇐⇒ F = ∇×A (B.9)

Second derivatives

It holds that the curl of a gradient is equal to zero

∇× (∇ • F ) = 0 (B.10)

and that the divergence of a curl also is equal to zero

∇ • (∇× F ) = 0 (B.11)

See for instance Griffiths [10].

Cross products and scalar products

Let

a = [a1, a2, a3]T ∈ R3

b = [b1, b2, b3]T ∈ R3

c = [c1, c2, c3]T ∈ R3

From the definition of the vector a× b it holds that

1. |a× b| = |a||b| sin(θ)
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2. a× b is orthogonal to a and b

Some properties of the cross product are

a • (b× c) = b • (c× a) = c • (a× b) (B.12)
a× b = −b× a (B.13)

a× (b+ c) = a× b+ a× c (B.14)

cf. Bertil Westergren [37]. The cross product of a and b can be expressed as

a× b = R[×]a (B.15)

where R[×] is a skew-symmetric matrix such that

R[×] =

 0 b3 −b2
−b3 0 b1
b2 −b1 0


Cf. Bernstein [38], Fact 3.10.1.

Some properties of the scalar product are

a • b = b • a (B.16)
a • (b+ c) = a • b+ a • c (B.17)

cf. Bertil Westergren [37].
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Installation of Warp

The simulations for this thesis were done in Warp version 4.5. To install Warp
4.5 the steps described by Grote [39] were followed. However, some steps in the
installation process had to be done differently from what is described by Grote [39].
The following changes were made:

The key word brew was replaced with zypper.

The key word gfortran was replaced with
gcc-fortran.

The bracket [’mpi’,’mpi_f77’] was replaced with [’mpi’].

The operation system openSUSE Leap 42.2 was used in this work.
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Debugging of the Warp code

Ionization

To find out from where in the Warp code the ionization was computed, a Python
debugger was used. It was found that the script tunnel_ionization was used for
that. The outcome of the debugging is shown below.

/home/olle/runs/
171024_Alexanders_script_long_simulation.py(389)inject_electrons()
->electrons_from_cathode.addparticles(x=x_, y=y_, z=z_, vx=vx_,
vy=vy_, vz=vz_, lallindomain=False)

> /usr/lib64/python2.7/site-packages/warp/particles/
tunnel_ionization.py(146)generate()
-> def generate(self,dt=None):

> /usr/lib64/python2.7/site-packages/warp/particles/
tunnel_ionization.py(304)generate()
-> for js in self.x[pg]:
(Pdb)
> /usr/lib64/python2.7/site-packages/warp/particles/
tunnel_ionization.py(305)generate()
-> self.flushpart(pg,js)
(Pdb)
–Call–
> /usr/lib64/python2.7/site-packages/warp/particles/
ionization.py(361)flushpart()
-> def flushpart(self,pg,js):
(Pdb)
> /usr/lib64/python2.7/site-packages/warp/particles/
ionization.py(363)flushpart()
-> if self.nps[pg][js]>0:
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(Pdb)
–Return–
> /usr/lib64/python2.7/site-packages/warp/particles/
ionization.py(363)flushpart()->None
-> if self.nps[pg][js]>0:
(Pdb)
> /usr/lib64/python2.7/site-packages/warp/particles/
tunnel_ionization.py(306)generate()
-> processlostpart(pg,js+1,top.clearlostpart,top.time,top.zbeam)

Multigrid solver that handles Boltzmann electrons

Attempts to use Boltzmann distributed electrons were made in this work and a
mismatch of the arguments of the field solver that handles Boltzmann distributed
electrons was found. Form the Python class MultiGrid3D, the function call
mu l t i g r idbe3dso lve ( iwhich , s e l f . nx , s e l f . ny , s e l f . nz ,

s e l f . dx , s e l f . dy , s e l f . dz∗ z fac t ,
s e l f . po t en t i a l , s e l f . source ,
r s ta r , s e l f . l inbend , s e l f . bounds ,
s e l f . xmmin , s e l f . ymmin , s e l f . zmmin∗ z fac t ,
s e l f . mgparam , mgiters , s e l f . mgmaxiters ,
s e l f . mgmaxlevels , mgerror , s e l f . mgtol , mgverbose ,
s e l f . downpasses , s e l f . uppasses ,
s e l f . lcndbndy , s e l f . laddconductor , s e l f . icndbndy ,
f3d . gridmode , conductorobject ,
i ondens i tygr id3d ,
s e l f . fsdecomp )

is made to a Fortran script f3d_mgrid_be.F. The call was received at
subrout ine mu l t i g r idbe3dso lve ( iwhich , nx , ny , nz ,

& nxguardphi , nyguardphi , nzguardphi ,
& nxguardrho , nyguardrho , nzguardrho ,
& dx , dy , dz , phi , rho ,
& r s ta r , l inbend , bounds ,
& xmmin , ymmin , zmmin ,
& mgparam , mgiters , mgmaxiters ,
& mgmaxlevels , mgerror , mgtol , mgverbose ,
& downpasses , uppasses ,
& lcndbndy , laddconductor , icndbndy ,
& gridmode , conductors , i ondens i tygr id3d ,
& fsdecomp )

It was found that the argument nxguardphi, nyguardphi, nzguardphi, nxguardrho,
nyguardrho and nzguardrho were missing in the function call. The developers of
Warp were informed about this and this problem is now solved.
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