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Abstract

Disease mapping and spatial statistics have become an important part of modern day statistics and have 
increased in popularity as the methods and techniques have evolved. The application of disease map­
ping is not only confined to the analysis of diseases as other applications of disease mapping can be 
found in Econometric and financial disciplines. This thesis will consider two data sets. These are the 
Georgia oral cancer 2004 data set and the South African acute pericarditis 2014 data set. The Georgia 
data set will be used to assess the hyperprior sensitivity of the precision for the uncorrelated heteroge­
neity and correlated heterogeneity components in a convolution model. The correlated heterogeneity 
will be modelled by a conditional autoregressive prior distribution and the uncorrelated heterogeneity 
will be modelled with a zero mean Gaussian prior distribution. The sensitivity analysis will be per­
formed using three models with conjugate, Jeffreys' and a fixed parameter prior for the hyperprior 
distribution of the precision for the uncorrelated heterogeneity component. A simulation study will be 
done to compare four prior distributions which will be the conjugate, Jeffreys', probability matching 
and divergence priors. The three models will be fitted in WinBUGS® using a Bayesian approach. The 
results of the three models will be in the form of disease maps, figures and tables. The results show 
that the hyperprior of the precision for the uncorrelated heterogeneity and correlated heterogeneity 
components are sensitive to changes and will result in different results depending on the specification 
of the hyperprior distribution of the precision for the two components in the model. The South African 
data set will be used to examine whether there is a difference between the proper conditional autore­
gressive prior and intrinsic conditional autoregressive prior for the correlated heterogeneity component 
in a convolution model. Two models will be fitted in WinBUGS® for this comparison. Both the hy­
perpriors of the precision for the uncorrelated heterogeneity and correlated heterogeneity components 
will be modelled using a Jeffreys' prior distribution. The results show that there is no significant dif­
ference between the results of the model with a proper conditional autoregressive prior and intrinsic 
conditional autoregressive prior for the South African data, although there are a few disadvantages of 
using a proper conditional autoregressive prior for the correlated heterogeneity which will be stated in 
the conclusion.

Keywords: Acute Pericarditis, Bayesian Statistics, Conditional Autoregressive Model, Disease 
Mapping, Oral Cancer, Standardised Mortality Ratio.
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Chapter 1

Introduction

1.1 Overview

The evolution and discovery of new diseases is a continuous problem in the world today. The met­
hodology and technology used to examine these diseases have experienced a rapid transformation in 
the past decade. Many different techniques are available to examine diseases, some of which are com­
plex and expensive to perform. A relatively straightforward and fast way to analyse a disease is using 
disease mapping.

Disease mapping is a useful tool in the analysis and detection of patterns in diseases and involves 
mapping characteristics of a disease onto a region where the disease occurs. More recently, disease 
mapping has increased in popularity as the computational power of computers has improved along 
with the software used to produce disease maps. Evidence of the evolution of disease mapping is 
shown in the large amount of free and open source software available which can produce disease 
maps. The method is popular as it is a good way to visualise the characteristics of a disease. There 
are many different applications of disease mapping, some of which are more popular than others. The 
application which applies to this thesis is the analysis of the relative risk of contracting and dying from 
a disease. Two diseases are considered, oral cancer in Georgia in 2004 and acute pericarditis in South 
Africa in 2014.

A Bayesian approach will be used in this thesis. The Bayesian approach requires a prior distri­
bution to be used along with the likelihood function to derive the posterior distribution, the conjugate 
prior and Jeffreys’ prior will be used as the prior distributions and will be combined with the Poisson 
likelihood to derive the posterior distributions. The reasons for using the conjugate prior mainly stem 
from the use of WinBUGS® which requires a closed form prior to be specified. The use of the Poisson 
likelihood is justified in Section 2.8. There are many different methods to perform simulations. These 
methods include Rejection Sampling, Gibbs Sampling, Importance Sampling and many other numeri­
cal methods. Any choice of method will give a similar result. WinBUGS® automatically selects and 
performs this analysis.

1
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1.2 Objectives and Contributions

This thesis will cover two objectives. The first objective is to examine the sensitivity of the hyperprior 
distribution of the precision of the uncorrelated heterogeneity and correlated heterogeneity. The first 
objective will be done using three prior distributions which are the Jeffreys’ prior, conjugate prior and 
a fixed parameter prior. The fixed parameter is used to analyse the effect of not allowing estimation 
and flexibility in the model, as a prior distribution would typically allow. The three priors will be 
used to create three models on the Georgia oral cancer 2004 data set. The second objective will be 
to assess whether there is a difference between the improper conditional autoregressive (ICAR) and 
proper conditional autoregressive (PCAR) models. The correlated heterogeneity will be assigned the 
PCAR and ICAR models as a prior distribution, and the Jeffreys’ prior will be used as the hyperprior 
for the precision of both the uncorrelated heterogeneity and correlated heterogeneity components.

The first contribution to the field of spatial epidemiology is that the hyperprior of the precision 
of the uncorrelated heterogeneity was sensitive to changes, although the Jeffreys’ prior and conjugate 
prior produced comparable results. The prior with a fixed parameter and the other two priors had signi­
ficantly different results for the Georgia oral cancer 2004 data set. The hyperprior of the precision for 
the correlated heterogeneity was more sensitive than the hyperprior of the precision of the uncorrelated 
heterogeneity and thus should be selected carefully. The second contribution to the field of spatial 
epidemiology is that there was no significant difference in the results for the South African acute peri­
carditis 2014 data set for the correlated heterogeneity with ICAR and PCAR prior distributions.

1.3 Thesis Outline

Chapter 2 provides the definitions and explanations of terms that are relevant to this thesis. A des­
cription and overview of disease mapping are provided in Section 2.2. In Chapter 2, definitions and 
equations used in this thesis are defined, it provides a concise but brief overview of epidemiology, the 
fundamentals of spatial epidemiology and a summary of the Poisson distribution. Other topics relevant 
to spatial analysis are also included in this chapter. Some of the fundamentals of Bayesian statistics are 
also defined in Chapter 2, and this definition includes the well-known Bayes’ Theorem, different types 
of priors as well as the advantages and disadvantages of using these priors. An analysis to compare 
prior distributions is done in Chapter 2. This chapter also mentions different models which can be used 
in spatial epidemiology.

The data analysis and results are stated in Chapter 3. The chapter explains the limitations and 
challenges of the type of data used in spatial epidemiology. The results of the models are given in 
disease maps, and tables and conclusions are drawn. Summary statistics are also provided as well as 
interpretations.

Concluding remarks and findings are given in Chapter 4, possibilities for further investigations are



CHAPTER 1. INTRODUCTION 3

also stated in this chapter.
Appendix A contains the certificates used to collect the data and Appendix B contains the data. 

Further results are included in Appendix C. The RStudio ® and WinBUGS ® code is provided in 
Appendix D.



Chapter 2

Literature Review

2.1 Introduction into Epidemiology

Epidemiology is defined by the World Health Organization (2017) as any study of the causes and 
the distribution of diseases or health events and the use of such a study in the prevention, control 
and precautionary measures taken in disease control. Rothman (2012) summarises the definition of 
epidemiology as the “study of the occurrence of an illness.”

The first known epidemiologist was John Graunt (1620-1674). His work included summarising 
data collected about the plague in England. This data had been collected for a number of years prior 
to the birth of Graunt. Graunt published research and summarised his results and findings, which was 
titled, according to Rothman (2012), “Natural and Political Observations Mentioned in a Following 
Index, and Made Upon the Bills of Mortality.” In Graunt’s findings, the first estimate of the London 
population was done, and he wrote the first reports for time trends in which he adjusted for the popula­
tion sizes. His findings were a breakthrough in epidemiology research. Other notable names mentioned 
in Rothman (2012) are Wade Hampton Frost (1880-1938), Janet Lane-Claypon (1877-1967), Florence 
Nightingale (1820-1910) and John Snow (1813-1858).

Centers for Disease Control and Prevention (CDC) (2012) says that a patient in a study is the com­
munity and all of the individuals in the study are put together collectively. The main characteristic of 
epidemiology research is that the data is collected for a disease that has a population at risk, according 
to Coggon et al. (2009). This population includes healthy and sick patients who are counted as if they 
had the study disease. The study requires a target population which measurements are not usually 
drawn from and only conclusions should be drawn from the target population. The measurements for 
any epidemiological investigation must be selected from a study population, which may be chosen 
from the target population. The public health problems associated with epidemiological studies are 
listed in Centers for Disease Control and Prevention (CDC) (2012) as:

• Environmental exposures

4
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• Infectious diseases

• Injuries

• Noncontagious diseases

• Natural disasters

• Terrorism

The 21st century saw a significant increase in the number of epidemiological studies done. The increase 
was due to improvements in computers, data collection and epidemiological methods and techniques. 
Studies previously had little attention from the media until the 1950’s when some studies had a signifi­
cant impact on various diseases worldwide, a few of these studies are named in Rothman et al. (2008) 
as:

• Avian Influenza

• Severe acute respiratory syndrome (SARS)

• Vaccination and autism

• Passive smoking and health

• Acquired immune deficiency syndrome (AIDS)

The increase in the number of studies has not been without controversy as the reliability and validity 
of methods used have often been questioned. This is most notable in the differences which arise 
between randomised studies in the Women’s Health Initiative Randomised Controlled Trial done by 
the Writing Group for the Women’s Health Initiative Investigators (2002) and unrandomised studies 
done by Stampfer & Colditz (1991). The goal of epidemiological studies is stated by MacMahon 
& Pugh (1970) as an examination of the relationships which may provide information into disease 
prevention.

2.2 Disease Mapping

Lawson et al. (2003) mention that the earliest application of disease mapping was done by Snow in 
1854, where a map of addresses was put together for cholera victims relating to the proximity of the 
water supply. Recently, disease mapping has experienced substantial growth as it is a vital tool for 
disease prevention. Present-day disease mapping can incorporate geographic information systems as 
well as many statistical applications and procedures together. In disease mapping, confounders arise 
because of the nature of populations. Confounders are defined by Lesaffre & Lawson (2012) as known
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explanatory variables which account for the influence of variables affecting the study population. The 
confounders are considered in a disease mapping sense via the introduction of random effects into the 
model. Other variables to be considered are deviation indices. These are variables which are related to 
a range of “poverty-related explanatory variables.”

Disease mapping has also spread across many topics including ecological, geographical, health and 
spatial studies. Lawson et al. (2003) separate the main activities of disease mapping and lists them as 
disease mapping, disease clustering and ecological analysis.

For the disease mapping activity, which is mainly used in the health sector, an estimate of the “true 
relative risk” is found over a region or map. This application is mainly used for disease prevention 
and resource allocation. Disease clustering is used to determine where diseases are clustered most in 
a region. Lawson et al. (2003) state that this application is mainly used in environmental assessments. 
An ecological analysis is primarily used in epidemiological research to provide a “geographical distri­
bution of disease in relation to explanatory covariates, usually at an aggregated spatial level.”

There are two situations listed by Lawson et al. (2003) which are most used in the geographic 
spread of disease. These are: firstly, a study has a fixed period for which it takes place and secondly, 
the location of the observations of interest are recorded. This type of study is called a case-event 
analysis. Often the locations are street addresses or postal codes, and the privacy of information is 
a limiting factor in these types of studies because of the sensitive nature of the information which is 
collected. To address the limitations of the case-event analysis study, the tract count analysis study may 
be used. The tract count analysis study mentioned by Lawson et al. (2003) is based on the premise that 
the counts of the observations of interest within a small region are often recorded instead of using the 
locations of street addresses. The regions are arbitrary and may be used for census information.

For this thesis, we downloaded the map shape files which are freely available from a number 
of websites including the Global Administrative Areas available at (h ttp :/ /g a d m .o rg /c o u n try ) . 
The shape files were then imported into Quantum Geographic Information System (QGIS)®(2016) 
available at ( h t t p : //www. qgis . o rg /e n /s i t e / )  and imported into WinBUGS® developed by Lunn 
et al. (2000). These maps are then used as the disease maps for the study and provide a graphical 
representation which simplifies the analysis of the diseases which are analysed. The disease maps used 
in this thesis are used to analyse the posterior expected exceedance probability (PP) and relative risk

(RR).
Figure 2.1 is an example of a disease map of the number of observed deaths in South Africa by

province in 2014. The data are from Statistics South Africa (2015).

http://gadm.org/country
http://www.qgis.org/en/site/
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Figure 2.2 is an example of further simplification of the observed number of deaths in South Africa 
in 2014 by municipal district, and the data are obtained from Statistics South Africa (2015).

Figure 2.2: The observed number of deaths in South Africa by municipal district in 2014.

2.3 Disease Clustering

Clustering is defined by Lawson (2009) as “any spatially-bounded region of significantly elevated 
(reduced) risk.” This relates to the correlated heterogeneity in relative risk models. This type of
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clustering is used when the relative risk is similar in neighbouring regions. Clustering is used to 
determine whether there is a relationship between a region and the layout of a disease. Tango (2010) 
refers to this relationship as examining the distribution of a disease to determine whether the disease 
is distributed at random or whether clusters develop within a time period or in a region, provided 
confounding variables have been accounted for in the study.

Within the topic of clustering, there are different types of clustering, namely: global clustering and 
hot-spot clustering. Global clustering is referred to by Lawson (2009) to occur when a region has a peak 
in risk. Hot-spot clustering relates to any region that can be clustered and does not have the assumption 
of a neighbourhood criterion. Hot-spot clustering is often used in epidemiology when a disease is 
relatively new and the behaviour of the disease is not well understood. Other classifications are made by 
Tango (2010) who separates clustering into three main groups. These groups are temporal clustering, 
spatial clustering and space-time clustering. Temporal clustering is used to determine whether diseases 
occur in close proximity within a specific time period. Spatial clustering is used to determine whether 
diseases occur in close proximity to specific regions and space-time clustering is a combination of both 
spatial and temporal clustering.

Clustering may be used when there is some sort of grouping within the data set. The groupings 
are defined before the study and are known to the researcher. Sometimes it may be useful to define 
clusters in a residual term in the data. Lawson (2009) gives an example of this by letting y  denote the 
count of deaths in the ith group of a region. Let the average count be denoted by i  and the model be 
denoted by: lo g (ij) =  a  +  q , where e  contains the residual terms. Then model a  to contain all of 
the non-residual terms such that e  must contain all of the residual clustering terms, e  can consist of 
clustered and unclustered terms. A pure noise term can be introduced into a  to isolate e  as the cluster 
term.

In this thesis, possible disease clusters are identified using the posterior expected exceedance pro­
bability.

Lawson (2014) states that clustering is used to:

• Find the cause of a disease.

• Detect disease cluster alarms.

• Assist in Public Health applications.

2.4 Spatial Correlation

2.4.1 Overview

Lesaffre & Lawson (2012) define spatial correlation as a “fundamental feature of Geo-referenced data” 
which comes about from a local human population which “varies in spatial density and in susceptibi­
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lity” to the disease which is being investigated. Douglas et al. (2000) state that many studies do not 
account for spatial correlation (autocorrelation) in the interpretation of their results because: (1) the 
assumption of independent observations is often necessary for many experiments, (2) an overlap in 
the data is created and affects the data collected at each data point and this results in the sample size 
being reduced, (3) hypothesis testing is affected and according to Douglas et al. (2000) if the spatial 
correlation exists in the data, the probability of rejecting the null hypothesis may be higher than if 
there were no spatial correlation, which would lead to false results and (4) the correlation between 
data points also makes it difficult to determine a probability distribution of the test statistic as the as­
sumption of independence is broken. Researchers often have to use an “approximate distribution.” 
Lawson (2009) states that: (a) spatial correlation is geographical and comes about because locations 
that share the same boundaries may have related values of outcome variables whereas locations that are 
not in close proximity to other locations may have values of outcome variables which differ to other 
locations, (b) autocorrelation affects the formulation of the structure of the likelihood for regions that 
contain correlation and (c) an individual contribution to the likelihood may be assumed independent 
of other contributions and this allows the likelihood to be derived as the product of probabilities. The 
spatial distribution of a control disease may be used according to Lesaffre & Lawson (2012) for case 
event data because expected rates are unavailable and the spatial variation in the disease of interest is 
compared to the spatial variation of the control disease. The choice of control disease may be contro­
versial. The control disease must be chosen with age-sex structures analogous to the disease of interest 
according to Lesaffre & Lawson (2012).

Besag et al. (1991) advise that the observed events can be considered as independent in the case 
where the disease of interest is deemed to be rare and noncontagious. Considering that there were 16 
deaths from acute pericarditis in a population size of 54001953 in South Africa in 2014 and a crude 
death rate (CDR) of 0.000296 deaths per 1000 people. Then it is reasonable to assume that the event 
of death as a result of acute pericarditis is a rare event although the disease is frequently diagnosed. 
The nature and characteristics of acute pericarditis show that the disease is also noncontagious. Based 
on the information from Besag et al. (1991) it is, therefore, reasonable to assume independence for the 
observed events of acute pericarditis.

The nature and characteristics of oral cancer also show that the disease is noncontagious. For the 
Georgia oral cancer data in 2004, there are 218 deaths in total in a population size of 8769252. An 
examination of the CDR reveals that there are 0.02486 deaths per 1000 people in Georgia and therefore 
it is fair to assume that death from oral cancer is a rare event in Georgia and independence of observed 
events may be assumed. The technology and methods used to treat oral cancer are improving rapidly 
which contributes to the low number of deaths.
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Figure 2.3: The neighbouring regions in South Africa.

Figure 2.4: The neighbouring regions in Georgia.

Figures 2.3 and 2.4 show the neighbouring regions in South Africa and Georgia, respectively, and 
show the regions which share borders. These figures are produced using the packages maptools, 
written by Bivand & Lewin-Koh (2013), and spdep, written by Bivand & Piras (2015), in RStudio®. 
The code is based on the method by Hijmans (2016). The shape files for both South Africa and 
Georgia were downloaded from the Global Administrative Areas website available at ( h t t p : //gadm . 
o rg /c o u n try ) . The shape file for both South Africa and Georgia are imported into RStudio® using the

http://gadm.org/country
http://gadm.org/country
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readShapeSpatial function from the maptools package. This function converts the shape file into a 
spatial data frame object which can be read and edited in RStudio®. The regions of interest, provinces 
for South Africa and counties for Georgia, are then extracted from the spatial data frame object. This 
is easily done as it requires only matrix notation. The next step is to extract the coordinates for each 
of the regions. The coordinates function in the spdep package is used to extract this information. The 
function returns a matrix containing the x  and y coordinates for the centres of each region. This is used 
for the nodes that are connected by the red lines in Figures 2.3 and 2.4 . The neighbours of each region 
are now required to complete the information needed for the figures. This is done by the poly2nb 
function, available from the spdep package, which creates a neighbours list object. The figures can 
now be plotted by plotting the shape file and then adding the centre of each region accompanied by the 
lines which connect them, which are obtained from the neighbours list object.

2.4.2 Moran’s Autocorrelation Coefficient

The Moran’s Autocorrelation Coefficient, developed by Patrick Alfred Pierce Moran (1950) in the 
paper named “Notes on Continuous Stochastic Phenomena”, can be thought to be an application of the 
“Pearson product-moment correlation coefficient.” The Pearson’s correlation coefficient is well-known 
and given as:

po
E  ( x -  x )  (y»

n / \ 2 n
E (x i -  x ) E [yi
i=1 v 7 i=1

(2.1)

Equation 2.1 measures the strength of the linear relationship between two variables, x  and y. The 
difference between Moran’s Autocorrelation Coefficient, denoted by I, and the “Pearson product- 
moment correlation coefficient”, p0, is that Pearson’s correlation coefficient measures the linear re­
lationship between two independent variables, x  and y, whereas Moran’s Autocorrelation Coefficient 
measures the relationship between yi and yj where i =  j  and thus in the “Pearson product-moment 
correlation coefficient” there will be no linear relationship between yi and yj when i =  j  (Paradis, 
2017). When observations are measured in close proximity to one another, it is to be expected that 
the relationship between these observations will be higher than observations that are further apart, to 
account for this Paradis (2017) suggests that weights, denoted by wij , must be assigned to each pair of 
observations. These weights are values of 0 or 1, with a weight of 1 given to pairs who are in close 
proximity and a value of 0 assigned to pairs who are in further proximity. The Moran’s Autocorrelation 
Coefficient is well-known and given by:
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where the weight assigned to the pair yyi , y /j  , where i =  j , is denoted by Wj and S0 is the sum of all 
weights which are measured.

An adjustment can also be made for observations that are in close proximity to one another. This 
adjustment involves scaling the distance between all the pairs.

A model should be assessed to check if there is a residual spatial structure in the data after the 
model has been fitted. A model which fits the data adequately should have little spatial correlation 
in the residual of the data after the model has been fitted, as stated by Lawson (2009). In the case 
of a simulation, an estimate of the spatial structure may be obtained and averaged over the posterior 
sample. The Moran’s Autocorrelation Coefficient is a popular choice for the assessment of the spatial 
structure. The Moran’s Autocorrelation Coefficient is defined by Lawson (2009) for a simulation in 
terms of quadratic forms as:

I
r e s 'W  re s

(2.2)
r e s 'r e s

where r e s  is a vector of residuals containing the N  residuals from each region and W  is an adjacency 
matrix with 0 or 1 elements for the regions with elements wij .

2.5 Methods for Comparison of Populations

2.5.1 Overview

The mortality rate often needs to be compared over different geographical regions. These kinds of 
studies are most used by Medical Health Professionals. There are a number of methods which are 
used to compare mortality rates over different regions, one of the most commonly used methods is, 
according to Ahmad et al. (2001), (1) the age-specific rate over time and (2) the CDR, which is the 
total number of deaths per 1000 people in a year as defined by Sankoh et al. (2014) and is a function 
of the underlying age structure of the population. These comparisons, however, are inappropriate 
when a comparison is made between two populations with different age structures. Every geographic 
region has a different age structure, although regions which are in close proximity to each other may 
have very similar age structures with minor differences, the regions which are not in close proximity 
have notable differences in the underlying age structure. Waller & Gotway (2004) state that the age- 
specific rates of two or more regions may differ because of only the difference of the underlying 
age structure in those regions, instead of differentiating due to the “age-specific risk” of the disease.
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Thus, as Julious et al. (2001) explain, any analysis of the crude mortality rate for these regions are 
affected by these confounding differences in age structures of the study populations. The differences 
in age structure are most notable between low-and middle-income countries (LMICs) and high-income 
countries, according to Sankoh et al. (2014). For these studies to be completed, the effect of the age 
structure of each of the study populations needs to be minimised. This minimisation is defined by 
Julious et al. (2001) as age standardisation.

Age standardisation allows population mortality rates to be compared irrespective of the underlying 
population structure and according to Waller & Gotway (2004), standardisation provides a method to 
remove the effect of age and enables a comparison of populations in different regions. Each population 
in the study region is divided into age and sex subsets. Julious et al. (2001) state that standardisation 
in the populations of interest is calculated by determining a weighted average of the subset speci­
fic mortality rate. The method of standardisation introduces a standard population. Examples of a 
standard population which are commonly used in research are named in Waller & Gotway (2004) 
as “superpopulation, containing the study population” and the “total subpopulation.” The weights in 
standardisation show the relationship between the age distributions of the population of interest and 
the standard population.

Ahmad et al. (2001) name some of the methods for age standardisation as: (1) direct and indirect 
standardisation, (2) the geometric mean, (3) equivalent average death rates, (4) life table rates, (5) 
cumulative death rates and (6) the comparative mortality index. The most common techniques of 
standardisation are direct and indirect standardisation as stated by Julious et al. (2001). Standardisation 
is defined by Keiding (1987) as a method used when data are divided into n age groups and a standard 
population has n 1,n 2, . . .  ,n n observations in each group. The n 1,n 2, . . .  ,n n observations along with 
“age-group specific death rates” denoted by Z1, ( 2 , . . . ,  (n are contrasted with a population of interest 
with grouping denoted by A 1 ,A 2, . . . , A n (Keiding, 1987). The expected number of deaths are then

n
calculated by ^  n ^  and can be compared with the observed number of deaths in the population of

i=1
interest. This comparison is the standardised mortality ratio (SMR). Fleiss et al. (1981) provide reasons 
for standardisation as:

• A single rate is easier to interpret and use than many rates in the same population.

• When the size of a region is small, then any rates calculated based on observations in that region 
may be unreliable for obtaining results over many regions. •

• Some subset of a population which the study is to be conducted on may not allow for age-specific 
rates to be calculated.
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2.5.2 Direct Standardisation

2.5.2.1 Direct Standardisation History

Direct standardisation, according to Ahmad et al. (2001), was developed because crude rates were 
deemed inappropriate in studies when the underlying age structure of a region was different to another 
region. There was thus the need to develop a measure which was independent of the age structure. 
Sir Edwin Chadwick made use of “the mean at death” as a measure to solve this problem in London, 
England. This measure was later shown by Neison (1844) to be dependent on the underlying age 
structures of the populations because the mortality increased with age and thus “the mean at death” 
measure was also inappropriate for such studies. Neison (1844) then developed the method of direct 
standardisation by making a comparison of the mean age with the “crude mean age at death”. Neison 
(1844) also was the first person to use standard populations and indirect standardisation.

The first report of Neison’s direct standardisation method was, according to Ahmad et al. (2001), 
in the Registrar General’s report in 1883. The report made use of data in the 1881 population census of 
England and used the population of Wales as the standard population. It was later determined that one 
standard population needed to be used for the studies as in earlier studies a new standard population 
had to be calculated each time a new study was conducted. Studies then made use of a population 
census as a standard population. This was done in 1901.

2.5.2.2 Direct Standardisation Method

Direct standardisation is used by Carneiro et al. (2011) when the “group-specific” outcome rates of 
the population of interest are known. The calculation of which results in a standardised death rate 
which is a weighted average of the age-specific rates. This accounts for the different age structures 
of the populations of interest as stated by Ahmad et al. (2001). Waller & Gotway (2004) describe the 
problem which direct standardisation solves as “how many cases would we observe in the standard 
population if the observed age-specific rates of the disease applied?”. Direct standardisation results 
in a rate that shows the number of deaths that we expect if the populations of interest had the same 
underlying age structure. The directly standardised death rate (DSR) is calculated by Julious et al. 
(2001) for the population of interest as:

When comparing two populations which have similar underlying age groups, then the selection of the

(2.3)

where Nis is the count of people in the ith group of the standard population, y* is the count of deaths in 
the ith group of the population of interest, to* is the count of people in the ith group of the population 
of interest, Nps is the total count of people in the standard population and n is the number of groups.
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standard population does not have a significant impact on age-groups or time periods. This is not 
usually the case in reality, thus the DSR is generally affected by the choice of the standard popula­
tion, since each region or population may have small differences in the underlying age structure than 
another region or population. Ahmad et al. (2001) compare two populations, denoted by X  and Y, by 
calculating each DSR as:

n
D S R y  CiY

i=1

and
n

D S R x  = Y1 Zix
i=1

n is
n

n is
i = l

n is
n

n is
i =l

where n is is the population in the middle of the year in the standard population of the ith age group, ( iX 
and ( iY are the death rates in each population for the ith age group and n is the number of groups. A 
comparative mortality ratio (CMR) is calculated by the ratio of D S R y  and D S R X . CMR is calculated 
in Julious et al. (2001) as:

C M R
Nis yi

mi

V  N  X l2 - NisNisi=1

(2.4)

where Nis, yi and m i are given in Equation 2.3 and Yi is the count of deaths in the ith group of the 
standard population.

The confidence interval for CMR is calculated by Julious et al. (2001) as:

exp
CMR_______ .

Z a XSE(CMR) 1 .
CMR

C M R  X exp
Z a XSE(CMR)" 

CMR 1

where S E (C M R )  is the standard error of the CMR and is calculated by:

S E  (CMR) N N i2s
i=1

2 , m 2

where Nis , yi and m i are given in Equation 2.3. The log of the standard error of CMR is used by 
Julious et al. (2001) and is given by:

log (SE  (C M R ))
S E  (CMR)  

C M R

Waller & Gotway (2004) use direct standardisation when the following data are available: 

• Age specific rates from the population of interest.
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• The number of people who may experience an event in the standard population.

• The total number of people who observed an event in the standard population. 

Figure 2.5 provides the idea behind direct standardisation and is found in Naing (2000).

Figure 2.5: The direct standardisation method.

2.5.3 Indirect Standardisation

2.5.3.1 History of Indirect Standardisation

Keiding & Clayton (2014) state that indirect standardisation was originally proposed by Neison (1844). 
Neison later published a survey on “the rate of mortality among persons of intemperate habits” in 1851 
which applied indirect standardisation. Another application of indirect standardisation was by Farr 
(1859) in which “age-specific death rates for 1849-1853” were used. H. Westergaard, a Danish econo­
mist and statistician, used indirect standardisation in his research named “Die Methode der Erwartungs- 
massig Gestorbenen” which translates to “The Method of Expected Deaths” as explained by Keiding 
& Clayton (2014). Westergaard also showed the importance of introducing confounders into a spatial 
model. Westergaard later introduced a method to calculate the standard error of the expected number 
of deaths. This expected number of deaths is important because it may be used to reduce the effect of 
age on the model and the standard error of the expected number of deaths may be used to measure the 
effectiveness of this.

2.5.3.2 Indirect Standardisation Method

Indirect standardisation is an approximation to direct standardisation and is used when the data is not 
available for direct standardisation (Curtin & Klein, 1995). Indirect standardisation is described by 
Waller & Gotway (2004) to answer the question of “what would the expected number of cases be in
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the study population if people in the study population contracted the disease at the same rate as people 
in the standard population?”. When a rare disease occurs in a population, the age-specific rate can be 
unstable, especially when the number of people within each region is small. The addition of one case to 
the data has a notable effect on the age-specific rate of that region and it is thus preferable to use indirect 
standardisation. Confidentiality and privacy of health data limit the use of direct standardisation and 
hence indirect standardisation becomes preferable as stated by Waller & Gotway (2004).

Indirect standardisation estimates the expected number of deaths in the population of interest as if 
the age-specific of a standard population had been applied (Carneiro et al., 2011). It is used when there 
are no specific rates for the population of interest but the total number of deaths and the population 
structure are both known. Indirect standardisation uses a standard age-specific death rate (ASDR) 
which is applied to the population of interest to calculate the expected counts. This assumes that the 
standard ASDR applies to the population.

Lesaffre & Lawson (2012) provide a method to account for autocorrelation and obtained expected 
rates for the disease which is being investigated based on the “age-sex structure of the local population.” 
Estimates of the “local relative risks” may also be calculated from the ratio of observed to expected 
counts and are called the standardised mortality ratios (SMRs). Lawson et al. (2003) calculate SMRs 
by using the formula 9 =  yi where yi is the observed count in the ith region, ei is the expected count 
in the same region and 9 is an estimate of the relative risk in that region. The SMR, in Equation 2.5, is 
derived using the likelihood by:

L(^i9i|yi

l(ei9i|yi

y i

(ei9i) exp[ -ei9i

i=1
N N N

It- I ,=  Y I  yi ( ln(ei9i)j  - Y 1  ( ei9v  -  S  l n ( y
i=1 i=1 i=1

and differentiating this with respect to ei9i and equating to zero:

dl(e i9i lyi)  d E  y d M M ) -  E  ( ei9i ) -  E  l n ( y A\  ) _ i = 1 ^  / i=1^ / i=1
dei9i dei9i

yi
ei9i

- 1 .

i

So
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1

yi

9i

yi
ei9i
ei9i
yi
ei

The SMR is calculated in Julious et al. (2001) as:

S M R

N
m i —

i=1
N
E  m i j ti=1

(2.5)

where Nis, yi and m i are given in Equation 2.3 and Yi is given in Equation 2.4.
There are a number of disadvantages of using SMRs because a small change in the expected value 

causes a substantial change in the SMRs and when the expected value is estimated to be close to zero, 
a large SMR value is calculated. We conclude that the SMR is therefore unstable. The variance is also 
affected by small changes to the expected counts since the variance of the SMR is proportional to —. 
The SMR is zero when the observed count is zero but the expected value ei may vary significantly. 
The SMR may also be biased depending on the type of information used in the model. The bias 
arises especially in models where the data are made up of people who have not been exposed to a 
disease together with those who have been exposed to the disease. This bias is investigated in Jones 
& Swerdlow (1998). Methods to improve the estimates of SMRs are covered in Lawson et al. (2003). 
The most common methods involve smoothing the SMR which requires adding extra components to 
the model. This smoothing is done by assigning a prior distribution to the model as stated by Lawson 
(2003). Conclusions based on the SMR will thus not be drawn for this thesis and conclusions will be 
based on the relative risk.

Waller & Gotway (2004) propose that indirect standardisation requires the following data:

• Age-specific rates for the standard population.

• The number of people who may experience an event in the population of interest.

•  The total number of people who experienced an event in the population of interest.

In this thesis, the indirect standardisation method is used as there are no specific rates for the population 
of interest but the total number of deaths and the population structure are both known for the South 
African and Georgia data.

Figure 2.6 provides the idea behind indirect standardisation and is found in Naing (2000).
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Figure 2.6: The indirect standardisation method.

2.5.4 Indirect Standardisation versus Direct Standardisation

Julious et al. (2001) state that SMR is not appropriate for comparing populations as the regions have 
different denominators. When comparing Equation 2.5 with Equation 2.4, one may note that SMR 
is calculated based on the population of interest and the CMR is calculated based on the standard 
population. The calculation of SMR depends on the weights of age and gender groups hence the SMR 
is dependent upon the population of interest. Thus, for different regions, the weights of the age and 
gender groups will be different and thus affect the SMR as explained by Julious et al. (2001). In 
contrast, the CMR will have the same weights, as the CMRs are calculated from the same standard 
population. This means that each SMR is standardised to a different population.

An important advantage of indirect standardisation is that the method does not require the age 
groups of the observations to be given as proposed by Keiding & Clayton (2014). When a comparison 
is made between indirect and direct standardisation, Pickle & White (1995) suggest expressing the 
equation for indirect standardisation in terms of the indirectly age-adjusted rate (IAR) at the ith region
as:
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IARi S M R i
crude rate in 

standard population

(2.6)

The first part of Equation 2.6 incorporates the proportion of weighted averages in which crude 
proportions of the population of interest and the standard population are weighted by the underlying 
age-distribution of the population of interest. The second part of the equation is a weighted average of 
the crude rate of the standard population where the weights are calculated from the age-distribution of 
the standard population. This shows that for indirect standardisation the weights for each population 
are different whereas in direct standardisation, weighting is made to be dependent upon the standard 
population. Indirect standardisation is therefore dependent on the underlying age distribution of the 
population of interest and may pose problems when a comparison is required to analyse two different 
populations in two different regions as explained by Waller & Gotway (2004).

There are certain and strict conditions where indirect and direct standardisation give similar results, 
these conditions are stated in Pickle & White (1995) as:

• When the age-specific rates in the population of interest are the same as the age-specific rate in 
the standard population.

• When the age-specific rates in the population of interest are determined to be proportional to the 
age-specific rate in the standard population.

• When the population distribution of the population of interest can be expressed as proportional 
to the population distribution of the standard population.

Julious et al. (2001) state that SMRs should only be used to compare regions or populations with the 
same age structures.

2.5.5 The Standard Population

2.5.5.1 History of the Standard Population

In Section 2.5.2.1, the need of one international standard population was explained. Historically, this 
lead to the 1901 population census in England being used as the standard population for both England 
and Wales.

Ahmad et al. (2001) state that the United States also used the 1901 England standard population in 
their studies. This was used until 1940 when it was proposed that the 1901 standard population was
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vastly different to the population in the United States at the time. The United States then used its 1940 
population census as its standard population. The main problem with the standard population was when 
to change it to a new standard population as the development of a new standard population was very 
time consuming and it was difficult to determine when the standard population still reflected the current 
population. A new standard population was later introduced as the 1940 standard population was 
deemed to not fully represent the current population at the time. This standard population was based 
on the year, 2000, population estimates. The new standard population was introduced by Rosenberg & 
Anderson (1998) in a report for the National Center for Health Statistics (NCHS).

There was a need for a standard population which could be applied to several countries, according 
to Ahmad et al. (2001). The idea of the international standard population was first proposed by Ogle 
(1892) in his article “Proposal for the Establishment and International Use of a Standard Population.” 
Ogle (1892) used the population estimates of seven different European countries. His standard, howe­
ver, was never widely used. Many more standard populations have been developed but never adopted 
because of the debate whether one standard population is favourable over another standard popula­
tion, as explained by Ahmad et al. (2001). The solution to this debate was to create three standard 
populations with each standard population having a different purpose. The first standard population 
has a higher weighting in the lower age groups which is intended to be used for African countries 
and was developed by Davies et al. (1962). The second standard population was based on estimates 
from the Scandinavian population. This standard population had a higher weighting in the older age 
groups and was designed to be used in Western Europe. It was given the name “European” standard 
population and proposed by Doll & Cook (1967), according to Ahmad et al. (2001). The third stan­
dard population, named the “World” standard, was based on the populations of forty-six countries and 
was developed by Segi (1960). The “World” and “European” standards are used by the World Health 
Organization (WHO) in the calculation of age-standardised death rates. Table 2.1 shows the trend in 
standard population from 1970 — 1995 and can be found in Ahmad et al. (2001):

Table 2.1: The changes in standard populations of US males (1970-1995) in age-adjusted circulatory disease 
mortality rates per 100 000 people.

Standard Population 1970 1975 1980 1985 1990 1995 Change in percentage 
from 1970 — 1995

Segi 459.5 399.0 350.3 305.8 256.8 232.3 —49.4
WHO World Standard 550.9 482.2 426.7 373.7 315.0 285.4 —48.2

Scandinavian 720.1 630.4 557.8 488.4 411.6 372.4 —48.3

2.5.5.2 Derivation of the Standard Population

Ahmad et al. (2001) introduce the idea that the standard population should reflect the average age- 
structure over 25-30 years of the population(s) of interest. The standard populations are therefore 
only re-estimated every 25-30 years to incorporate this average. The effect of historical events such
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as war and plagues are removed by using the average world population. The United Nations Popu­
lation Division calculates the population age-structures by age and sex for each country biannually. 
The average world population structure is based upon estimates of the populations of each of these 
countries. Estimation is done every 5 years from 1950 and estimated up until 2025.

2.5.5.3 The Choice of Standard Population

The choice of the standard population is important because different regions have different underlying 
age structures. The use of an inappropriate standard population results in a higher or lower weighting 
on age groups in the calculation of the ratios and hence leads to false results. For example, LMICs 
have a larger percentage of the population under the age of fifteen than higher income countries.

The standard population used for comparing two populations must be the same. Ahmad et al. 
(2001) state that a standard population is utilised for a number of years whereby the underlying age- 
structure of the population will change. Therefore, it is difficult to match a standard population to a 
population of interest as the underlying age-structure of the population of interest is forever changing. 
Ahmad et al. (2001) propose that selecting one standard population over another standard population 
because of matching age-structures is “insufficient justification” for the selection because of the chan­
ging age-structures. The standard population should be selected such that the average age-structure of 
the population(s) of interest are reflected over the time of the study in the standard population.

Data from Ahmad et al. (2001) and Sankoh et al. (2014) are combined to produce the following 
table:
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Table 2.2: The standard populations for age groups showing different population structures.

Age Group World Average sub-Saharan Africa Asia Segi Scandinavian
0 -  4 8.86 16.25 12.19 12 8
5 -  9 8.69 14.74 12.02 10 7

10 -  14 8.60 13.13 11.90 9 7
15 -  19 8.47 10.81 10.78 9 7
20 -  24 8.22 8.41 8.72 8 7
25 -  29 7.93 6.90 7.26 8 7
30 -  34 7.61 5.73 6.51 6 7
35 -  39 7.15 4.76 5.93 6 7
40 -  44 6.59 4.03 5.31 6 7
45 -  49 6.04 3.44 4.56 6 7
50 -  54 5.37 2.86 3.78 5 7
55 -  59 4.55 2.45 3.19 4 6
60 -  64 3.72 2.03 2.68 4 5
65 -  69 2.96 1.65 2.07 3 4
70 -  74 2.21 1.22 1.47 2 3
75 -  79 1.52 0.81 0.89 1 2
80 -  84 0.91 0.44 0.46 0.5 1

85+ 0.63 0.35 0.28 0.5 1
Total 100 100 100 100 100

Comparison of standard populations

Africa
W ord
Asia
Segi
Scandinavian

25-29 40-44 55-59 70-74 85+

Age Group

Figure 2.7: A comparison of standard populations.

When comparing the percentage of the population of the World and sub-Saharan Africa, it is easily 
seen that the lower age structures and higher age structures differ significantly. The World standard
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population is thus inappropriate for many LMICs. Table 2.3 shows the differences between the World 
average and sub-Saharan Africa population structures.

Table 2.3: A comparison of the world average and sub-Saharan Africa population structures.

Age Group World Average sub-Saharan Africa Difference
0 -  4 8.86 16.25 -7 .3 9
5 -  9 8.69 14.74 -6 .0 5

10 -  14 8.60 13.13 -4 .5 3
15 -  19 8.47 10.81 -2 .3 4
20 -  24 8.22 8.41 -0 .1 9
25 -  29 7.93 6.90 1.03
30 -  34 7.61 5.73 1.88
35 -  39 7.15 4.76 2.39
40 -  44 6.59 4.03 2.56
45 -  49 6.04 3.44 2.60
50 -  54 5.37 2.86 2.51
55 -  59 4.55 2.45 2.10
60 -  64 3.72 2.03 1.69
65 -  69 2.96 1.65 1.31
70 -  74 2.21 1.22 0.99
75 -  79 1.52 0.81 0.71
80 -  84 0.91 0.44 0.47

85+ 0.63 0.35 0.28
Total 100 100

For this thesis, the standard populations are the mid-year population estimates for South Africa 
in 2014 and Georgia in 2004, as comparison is made over one population. The mid-year population 
estimates from Statistics South Africa (2014) for South Africa by age and sex in 2014 are shown in 
Table 2.4. The mid-year population estimates by county for Georgia are given in Tables B.1 and B.2 
in Appendix B.1.
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Table 2.4: The mid-year population estimates by age and sex for South Africa in 2014.

Age Group Male Female Total
0 -  4 2892219 2827110 5719329
5 -  9 2692433 2644277 5336710

10 -  14 2580229 2543497 5123726
15 -  19 2624166 2593395 5217560
20 -  24 2662829 2604288 5267117
25 -  29 2515096 2439436 4951532
30 -  34 2034229 2056054 4090283
35 -  39 1739688 1763529 3503217
40 -  44 1482086 1639736 3121822
45 -  49 1270867 1482603 2753470
50 -  54 1089941 1287789 2377730
55 -  59 907807 1086583 1994390
60 -  64 703921 866257 1570178
65 -  69 492791 683675 1176466
70 -  74 327812 503451 831263
75 -  79 202623 328254 530877

80+ 147270 286011 433281
Total 26366008 27635944 54001953

2.6 Conditional Independence

Lawson (2009) states that under a variety of conditions it may be possible to use the conditional in­
dependence of the data given the parameters at a “higher level of the hierarchy.” Suppose the count 
data from the ith region is denoted by yi , then the count data may be assumed to be independent of 
other count data outcomes when given information about other model parameters. That is, let 0 be a 
parameter vector then the conditional yi |0 can be assumed to have an independent contribution to the 
experiment which means that “dependence only exists unconditionally” according to Lawson (2009). 
This method does not cover all situations because there can still be “residual correlation effects” after 
adding confounders. The method of hierarchical modelling is then introduced via conditional indepen­
dence.

2.7 Hierarchical Modelling

A Bayesian hierarchical model is defined by Lesaffre & Lawson (2012) as a model with statistical 
procedures for data which has a hierarchical structure. This data is referred to as clustered data and is 
often correlated. A defining feature of hierarchical modelling is that the observed counts, denoted by 
yij , where the units are represented by i and within groups are represented by j  are used to estimate
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values of the population distribution of the when the values of are unknown as stated by Gel- 
man et al. (2014). The hierarchical model prevents model overfitting by incorporating the population 
distribution into the model, this allows for some dependency between the parameters in the model. 
Non-hierarchical methods cannot incorporate many parameters into a model and there is little or no 
dependence between parameters. Thus the parameters do not always fit the data well which leads to 
model overfitting. The frequentist method to approach clustered data according to Lesaffre & Law­
son (2012) is the generalised estimating equations (GEEs) method first used by Liang & Zeger (1986). 
The Bayesian method accounts for the randomness in the parameters by assigning a distribution to each 
parameter thus fixed and random effects do not have to be considered in the Bayesian methodology.

Each parameter in a hierarchical model has its own distribution and, according to Lawson (2009), 
the distributions are most often derived by the experimenter and control the values of each para­
meter. The posterior distribution is derived by the formula: n(y|0) a  L(dly)n(d) where n(d) ~  
gamma(a, ft) is the prior distribution and likelihood given in Lawson (2009) as:

N
l (% )  « n

i=1

The parameters of the prior distribution (a, ft) may possess their own distributions, such parameters 
are regarded as stochastic. These parameters are called hyperparameters and they possess hyperprior 
distributions. The parameters may also be assigned a value by the experimenter; this is only when the 
experimenter has a good background in the field and has past experiences.

Lesaffre & Lawson (2012) outline two reasons for using the Bayesian hierarchical model over the 
equivalent frequentist method, these reasons are:

• The Bayesian hierarchical model considers all possible uncertainties in each model parameter 
and allows for prior knowledge to be incorporated into the model.

• The Markov Chain Monte Carlo (MCMC) method used to sample from the posterior distribution 
enables flexibility and reduces the effect of the parametric assumptions used in the frequentist 
methods.

yi
ei0\ exp[ - e i9

Figure 2.8 represents an example of a hierarchical model.
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Figure 2.8: An example of a hierarchical model.

2.8 The Poisson Distribution

The Poisson distribution is a discrete probability distribution and is a special case of the binomial distri­
bution. The Poisson distribution was formed by a French Mathematician called Simeon Denis Poisson 
(1781-1840) in 1837 in his work “Recherches sur la probability des jugements en matiere criminelle 
et en matiere civile” which translates to “Research on the Probability of Judgments in Criminal and 
Civil matters,” according to West (2008). West (2008) states that Simeon Denis Poisson’s work was 
formulated around random variables that involve positive count data in a specific time period, where 
the length of the interval is given.

Simeon Denis Poisson derived the Poisson distribution, which is a limiting factor of the binomial 
distribution, by using the Law of Small Numbers. Another contribution to the Poisson distribution was 
made by the Polish-German economist-statistician Ladislaus Bortkiewicz (1868-1931) who in 1898 
investigated the number of deaths of soldiers in the Prussian army accidentally killed by horse kicks 
as stated by Selvi & Nishanthi (2012). King (1998) states that the Poisson probability distribution is 
derived using three principles.

The three principles are:
Firstly, suppose we have an observation denoted by i and we consider the time interval for the 

events in which observation i occurs. The total number of events which have occurred at the end of 
the time interval are denoted by Zi which is thus also a random variable. The derivation of the Poisson 
distribution requires the formation of the events during the unobserved interval. The total number 
of events which have taken place in the time t during the period of observation i are denoted by the 
random variable Zti. The probability of an event occurring and not occurring is added to the total
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number of events during the interval from t to t +  A t and is given in King (1998) as:

P  Z'(t+At)i =  zti +  l|Z ti =  zu^ =  A A t +  o(A t) or

P ( Z(t+At)i =  Zti|Zti =  zti^ =  1 — {AAt +  0(A t)}

(2.7)

(2.8)

where o(A t) represents the probability that more than one event takes place in time A t and when 
it is divided by A t, A t tends to 0 as A t becomes small, that is A t / A t  ^  0 as A t gets small. The 
unconditional probability P ^Z (t+At)i =  zti +  l j  can be written as two mutually exclusive events as 
stated by King (1998).

Secondly, the two mutually exclusive events are namely, the events zti which have taken place in 
the time period t and another event which takes place in the next A t interval and the events zti +  1 
have all taken place during time t and no other events occur in the interval from t to t +  A t. The sum 
is a combination of Equations 2.7 and 2.8 and is then written by King (1998) as:

P ^Z (t+At)i =  zti +  ^  =  P ^Zti =  zti^ AAt  +  P ^Zti =  zti +  ^  ( 1 — A A t ĵ. (2.9)

For the derivation of Equation 2.9, two principles are required. The first one is that two events may 
not occur at exactly the same time hence o( A t) does not appear in Equation 2.9 and the second being 
that we assume the probability of an event taking place in the interval from t to t +  A t is independent 
of all the other events taking place before time t. Thus Equation 2.9 can be represented as the product 
of the marginal probabilities as said by King (1998). The change in time for P (Zti =  zti +  1) is 
represented in Equations 2.10 and 2.11 for when A t gets small:

d P ^Zti =  zti +  ^

dt
lim
At^Q

P ( Z (t+At) =  zti +  ^  — P (yZti =  zti +  ^

t

A P  (yZtA =  zti^ — P (yZtA =  zti +  ^

-  AP Z ti =  0

when zti +  1 >  1, 

when zti +  1 =  1.

(2.10)

(2.11)

The third and last principle is that no events have taken place before the start of the time interval, 
that is no events have taken place before t =  0, then King (1998) shows that P (Z Qi =  0) =  1 and then 
the distribution can be formed. Equation 2.11 is used and is solved as:

P Z
d P  Zt

A- i 0

dt
exp(-At), (2.12)

0

which is a special case of the exponential distribution. King (1998) then substitutes Equation 2.12 into
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Equation 2.11 which results in:

P  Zti =  1 =  Ate-At,

by solving this Equation and by substituting positive integers in place of Zti, the Poisson distribution 
is formed.

The Poisson probability density function (PDF), denoted by / ( zi |A, t ), is well-known and given
as:

/ zi | A, t
(At)zie xt 

zi!
0

for when t >  0, A >  0 and zi 
Otherwise.

0 , 1 , 2 , . . .

This can also be written as:

^ zi |A
\ zi e A 

zi!
0

for when A > 0 and zi 
Otherwise.

0,1, 2 , . . .

The cumulative distribution function (CDF) is well-known and given as:

F( z i |  A,t .-A
LZiJ \i

Y  j for zi
i=Q

0 , 1 , 2 . . .

The expected value and variance of the Poisson distribution are well-known and given as:

E  (Y) =  A, 

Var(Y)  =  A.

Figure 2.9 represents the Poisson density function for different values of A:
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Figure 2.10 shows the CDF for the Poisson distribution for different values of A :

An important property of the Poisson distribution according to Ross (2010) is that a Poisson random
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variable may approximate a binomial random variable when the parameters of the binomial distribution 
are denoted by n and p respectively where n and p are small and for n > 0 and 0 <  p < 1. Ross (2010) 
shows this property using the following idea:

Consider a binomial random variable, denoted by Z, with parameters denoted by n and p respecti­
vely and let A =  np then:

P Z  = i
n!

p* 1 — p

When n is large and p is small,

n — i j  !i! 

n !

n — i^ !i!

n ( n — 1) . . .  (n  — i +  1) A* ( 1 — -

’a’
*

'1  — A
n n

n* i! 1 — -‘ n

i — A
n

n ( n  — 1 ) . . . ( n  — i +  1

-

n*
1^  1 

1 — A y  «  1 .
n

n—i

n

i

Therefore,

P ( Z  =  i ) ~  e- - f .

When dealing with count data suppose that yi, y2, . . . ,  yN are the observed events of interest and 
assumed to be independent Poisson random variables with parameter y*, i = 1 ,  2, . . .  ,N.  Suppose the 
model has x*, i =  1 , 2 , . . . ,  N  explanatory variables, then the model is written by Osei (2010) as:

yi = x'i /3.

This model, however, may result in any real number but the value of y* must be non-negative. 
A logarithm is thus introduced into the model to allow y* to only assume non-negative values. Osei 
(2010) names this as the canonical link, denoted by n  =  log(y^  such that n  =  x'i3. The resulting 
generalised linear model (GLM) with canonical link is:

log (y*) =  x*3,
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where 3  is the “expected change in the log of the mean per unit change in the predictor variable, x*.” 
The likelihood for this model is:

N
L (y* |x*) = n

*=1

exp( — y A  y f

y*!
5

where y* =  exp ( x*3 ). The log likelihood is then:

N
l (y i|xi) = ^  { - y* +  y ^ g ^ y * )  — log(y*!) }.

*=i

Note: The above equations are just general for a Poisson distribution with parameter A, slightly 
different notation will be used in this thesis, but will be defined accordingly.

2.8.1 Problems with the Poisson Distribution when using Count Data

2.8.1.1 Overview

The Poisson regression model is used by Berk & MacDonald (2008) when an experiment involves 
count data. The Poisson regression model is often used, as the formulation and application of the 
model is relatively simple. Techniques and methods which are used in a normal regression model 
are also valid for the Poisson regression model which makes it more appealing than other competing 
models. An important characteristic of the Poisson distribution is that the mean and variance, A, are 
both equal. In count data, the mean and variance of the Poisson regression model should therefore be 
the same, but in practice this is not always the case.

2.8.1.2 Overdispersion

Overdispersion is defined by Yang et al. (2007) to occur when data has a higher variance than the mean 
and the characteristic of equal mean and variance in the Poisson distribution is therefore violated. 
This is often the case in count data. Overdispersion in a model means that the standard errors are 
underestimated and incorrect inference is made on each regression parameter. There are numerous 
methods to deal with overdispersion, one of the most common is named in Yang et al. (2007) as the 
generalised Poisson (GP) distribution.

Tests are available to determine whether a model shows overdispersion which includes, the likeli­
hood ratio (LR) test, the Wald test and the score test.
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2.8.1.3 Underdispersion

Underdispersion is thought by Giuffre et al. (2011) to be less common in count data than overdis­
persion. Underdispersion occurs when the mean of the Poisson regression model is higher than the 
variance of the model. This leads to bias in the model. Many factors may cause underdispersion but 
one of the more common factors is a repulsion in the data as proposed by Kokonendji et al. (2008).

Underdispersion may be detected by the Fisher index, which is the proportion of the variance and 
the mean. A Fisher index of 1 indicates that the data has an equal mean-variance relationship and an 
index of less than or greater than 1 indicates that there is underdispersion or overdispersion in the data.

2.9 Bayesian Statistics

Bayesian statistics is based on the concept of estimating an unknown state of nature with a probability. 
Bolstad (2004) states that the Bayes’ theorem is used for estimation in Bayesian statistics and it allows 
one to assume a parameter is a random variable. The basic concepts of Bayesian statistics were first 
described by Thomas Bayes (1710-1761) who, in his essay, described the Bayes’ theorem of inverse 
probability, along with other concepts. He described how the understanding of an experimenter (sub­
jective belief) could be used in statistical inference. This description lead to what is known today as 
prior and posterior belief. After an experiment has run and there are results, the prior belief is updated 
and called the posterior belief. The essay, by Thomas Bayes, was only published in 1763, two years af­
ter the death of Thomas, nevertheless Bayesian Statistical Sciences have been further developed based 
on applications of his theorem as explained by Press (2009). Later on, other approaches to Bayesian 
statistics were developed.

The well-known Bayes’ theorem is given by:
n

Let A and B 1, . . . ,  Bn be events where each B * is disjoint, U B * =  Q, where Q is the sample*=1
space, and P  ( BA >  0 for all i. Then:

p ( B j l A )
P { A \B , )  P [ B j )

S  P  ( a ' B  ) p  ( b 0

(2.13)

When an experiment has values of H  =  \̂ H1, H2, . . . ,  Hnj  where H  are unknown and an ex­
perimenter has a prior belief which can be expressed in terms of the prior frequency function P (H ) 
and there exists some random variables denoted by E =  Ê n1, En2, . . . ,  E nk j  which form a random 
sample from P ( E |H ) as in Lee (2004). The joint distribution in this experiment can be in the form of:

P (E|H) =  p (Eni, En2 , . . . ,  Enk|h ) =  P ^ h ) P ^ h ) . . .  p (Enfc|h ) . (2.14)
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Then using Equations 2.13 and 2.14 to obtain the posterior distribution as in Lee (2004):

=  P  (E |H  )P  (H ) =  P  (E \H  )P (H )
( 1 ) /  P (E |H )P (H )dH P (E ) .

Hence, the following relation is made:

P (H |E ) =  c P (E |H )P (H ) where c is a constant and L ( H \ E ) =  P (E |H ). 

And then,
P (H |E ) a  P (E |H )P (H ).

These equations give the relation:

posterior a  prior x likelihood.

The Bayes’ theorem does not give one an indication of what prior to use when conducting an 
experiment.

2.9.1 Priors

2.9.1.1 Objective Prior

According to Press (2009), Thomas Bayes used the Bayes’ theorem when some data had a binomial 
distribution with an unknown parameter p; this implies that he used a prior in which all outcomes had 
an equal probability. This prior is an objective prior.

Objectivity, more commonly known as frequency probability, is defined in Press (2009) as when 
an experimenter has very little or no knowledge prior to an experiment. There is also very little known 
about the unknown parameters in the experiment. Objective priors are limited to experiments which 
are repeated a large number of times. The advantages of using objective priors are defined in Press 
(2009) as:

• Many experiments have little information known prior to the experiment.

• Experiments repeated by different researchers result in similar results, unlike the subjective prior 
experiments.

• Objective priors are often used in public policy priors.

The disadvantages of using objective priors are stated in Press (2009) as:

• The parameters are assumed to be independent when in fact they are dependent and have a 
significant correlation.



CHAPTER 2. LITERATURE REVIEW 35

• The objective prior can produce results which are undesirable in inference.

• A reader cannot see the experimenters’ state of mind at the time of defining the prior.

• Improper priors sometimes cause indeterminacies when determining Bayes’ factors.

2.9.1.2 Subjective Prior

The term subjective is often used in Bayesian statistics and is defined by Press (2009) as a personal 
opinion of an individual. Press (2009) states that the Bayes’ theorem gives the extent of subjectivity 
about some unknown event after it has occurred and then gives the relation of two types of information.

The one type of information separates the subjects that have been observed this is called the “ob­
jective portion” of posterior belief. The other type of information is the extent of an individual’s sub­
jectivity about an unknown event. This may be skewed by past experiences or past experiments with 
these events. Subjectivity is important in Bayesian statistics since an experiments’ results may be in­
fluenced by an experimenters personal opinions. The advantages of using subjective priors, according 
to Press (2009) include:

• The subjective prior distribution always integrates to one in the continuous case and sums to one 
in the discrete case.

• The subjective prior does not have a big effect on the posterior distribution.

• The subjective prior gives the reader an understanding of what the experimenter was thinking at 
the time of the experiment as well as a look into the state of mind of the experimenter.

• There is often insufficient information available to use the objective prior.

The disadvantages of using subjective priors are included in Press (2009) a s :

• It may be difficult in some experiments to assess the subjective prior distribution which results in 
a meaningless probability distribution. Hyperparameters are created when a parameter indexes 
a subjective prior, these may also be difficult to assess.

• Since each experimenter may have a different subjective prior, the results of one experiment may 
not be meaningful to another experimenter who uses a different subjective prior. •

• Sometimes the subjective prior is difficult to solve mathematically.
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2.9.1.3 Reference Prior

The idea of the reference prior was first described in a paper written by Bernardo (1979) and adapted 
by Jim Berger and other authors as stated in Jordan (2010). The reference prior is a prior distribution 
with the aim of maximising a chosen measure of distance between the posterior distribution and the 
prior distribution as data are observed. There are many measures of distances which can be chosen by 
the experimenter and may be dependent on the type of experiment and the data used in the experiment. 
This is done because an experimenter wants the data of the experiment to have a maximum effect on 
the posterior distribution. The Jeffreys’ prior is equivalent to the reference prior in the one-dimensional 
parameter case as explained by Jordan (2010).

The reference prior, denoted by P (a), is determined by taking the expectation of the measure of 
distance given the distribution of a model for the data in the experiment. This is expressed in Jordan 
(2010) as:

P*(a) =  argmaxI ( a ,T ),

where

I  (a, T ) J  P (t) J  P ( a \t)log
P  (a\t)
P  (a)

dadt P(a, t)log
P(a, t)

P  ( a )P  (t)
dadt.

2.9.1.4 Other Priors

The method used by Robert (2007) is to check for good frequentist properties but it is very unusual 
to derive such a prior. Frequentist properties are those which are maintained on average, rather than 
being conditional on a variable. Sun (1997) states that matching priors are important noninformative 
priors and these matching priors lead to posterior confidence regions. The noninformative prior is used 
when little or no information is available to an experimenter prior to an experiment. In some cases the 
likelihood rules over the prior significantly, this may be the case for two reasons. The first reason is that 
researchers’ may have two different prior beliefs about an experiment, which may result in different 
outcomes for the same experiment. Then it is reasonable to use a reference prior which is an account 
of both researchers’ prior beliefs and is ruled by the likelihood. The other reason is that the results 
of any experiment are meant to increase the knowledge of a reader. Otherwise the experiment is a 
failure, if this is the case then the likelihood will dominate the prior as explained by Lee (2004). This 
noninformative prior for 0 is denoted by: n (0) =  c ,where 0 < 0 < ro  and c is some constant. This 
is not a proper density since it does not integrate to one.

In the next section, various priors will be given for ~  Pois^d^j . The priors will be derived for 
a general case of y \ ,y2, . . .  ,yN independent Poisson distributions.
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2.9.1.5 Probability Matching Prior

The probability matching prior (PMP) is defined in Datta & Sweeting (2005) as a prior distribution 
where the posterior probabilities of some region are similar to the coverage probabilities, either by the 
exact value of the probability or by the approximate value of the probability. In very rare or limited 
cases the probability matching prior has an exact coverage probability. The probability matching prior 
is widely considered as a nonsubjective prior. This prior is widely used as the data does not have to 
be identically and independently distributed (IID) as the prior can be extended to cover the dependent 
case. A matching prior is second-order when the coverage probability is not similar to the credible 
level by values which are of the order n -1, as explained in Datta & Sweeting (2005). The algorithm 
below is valid for location families and one-sided confidence intervals and is given by Raubenheimer 
& Van der Merwe (2014) as:

• Derive the likelihood function for the vector 0 =  91,92, . . .  ,9k

function by L ^0 |yb y2, . . . ,  where 0 is unknown.

• Derive the inverse Fisher information matrix, I -1 (0), for 0.

• Suppose the probability matching prior is denoted by t(0), then derive:

1. V t(0 )

and denote the likelihood

at(o) at(o) 
ae i a$2

at(o)
aek

2. V t(0) at(o) at(o) 
aei ae2

at(6)
aek

Let n (0) =  ^_  y«(Q)i-1w
Vt(0)I-1(0)Vt(0)

When the differential equation YI Ter { ^ (0 )n (0 )} =  0 holds then n (0) is a probability mat-
j=1

ching prior.

Theorem 2.1. The probability matching prior fo r  the Poisson distribution is:

nPM (0) rc Z
i=1

Proof. Let t (0 ) denote the product of n Poisson rates with ranging powers, then t(0 ) =  H W
i=1

The Poisson PDF will then have the form:

Hyif t i
9 f  exp( —9,

yd
for yi =  0,1, 2 , . . .
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The likelihood for this distribution is:

/ \ ™ 9T e x p ( —9i)
m  9i |y j  — i—

i=1

which results in a log likelihood as:

n n
l(dily?) =  Constant+ Z  y i log^ i )  — Z

i=1 i=1

Differentiation of the log likelihood with respect to 9i yields:

Olhily,

09,,
y  — 1 where i =  1, 2 , . . .  ,n
9i

and the second derivatives are:

d 2U9i[yt

d92

d 2l(9ilyt

d9i d9j

y±
92

0 where i =  j.

With expectation of the second derivatives:

—E
'0 2l(9 t lyty

=  — E yi
_ d92 _ 9?J

=  9?E
yi

*  9i
9 - 1.
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The Fisher matrix and inverse Fisher matrix are:

Let

then,

' 1
0i 0 0 . . 0
0 1 0 . . 0

F  (6) = 02

0 0 0 . . 0n -

91 0 0 . . 0

F -1 (6) =
0 92 0 . . 0

0 0 0 . . 9n

V 't(6)
dt(6) 3t(6) 3t(6)
391 392 "■ 39n

b A v" T I  9b.
i=1

b2 92 n
i=2

bnftb"- T I  9b
i=n

V ' t (6 )F -1 (6) 9b b2^22 " ^ [  9b . . . bn9bnn - 1 X[  9b
i=1 i=2 i=n

b^ 1 n  9b b292T I  9b- . . .  bntfr n  9b-

i=1 i=2 i=n

91 0 0 .
0 92 0 .

0 0 0 .

0
0

9n
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V 't(0 )F  - i (0 )V t(0 ) tie;* n  ej* ^ 2  n  ej*. . .  n  ej*
i= 1 i=2 i=n

n
b;e11-1 n  e j

i=in
M 2 2" 1 I I  ej*

i=2

bnen--1 n  ej*
i=n

n n n n
*?ej1-1 n  ej* n  ej* +  6 |e j2-i n  ej* n  ej* + . . .  +  t f e ^ -1 n  ej* I I  ej

i=1 i=1 i=2 i=1 i=n i=1

n n
j 2 1 T z)j*

Let

E  b.2 n  n  e j* ) ( ei1 - i  n  ej* +  ej2-1 n  ej* + . . .  +  e j--1 J J  e
i=1 i=2 i=nvi=1

n bi2

vi=1
n

E *  I I  «f
„ i=i vi=i

n'(0)
V t ( 0 ) F - i (0)

v /V ,t (0 )F - i (0)V t(0)

Let the prior, n(0),  be given as:

n (0 )
■ s  ( * )

2

i
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then n (0) is a PMP if and only if ^  -Jd.
i= 1

ni(0)n(0) 0.

ni(0)n(0)

_d_
d f i
_d_
w 2

ni(0)n(0) 

n?(0)n(0)

bi

_d_
W i
_d_
W 2

b2 . . .  b

b1 =  0

b2 =  0

• • • £

d
d0n

d_
d9i

Vn(0)n(0)

ni{0)n(0)

_d_
89n

bn 0

0.

Thus npM (0 ) k
n

E  b?^-1

1
2

is a probability matching prior.

2.9.1.6 Jeffreys’ Prior

Box & Tiao (1992) give the following motivation for using the Jeffreys’ prior: 

•  The Jeffreys’ prior is invariant under monotone transformations.

□

• The Jeffreys’ prior can be extended to the multiparameter case.

• There is a lack of information in an experiment.

• The Jeffreys’ prior is locally uniform and noninformative.

Kass & Wasserman (1996) propose a set of formal rules to select a prior distribution based on the 
rules previously outlined by Jeffreys’. Rules for using a prior distribution in a problem which involves 
estimation involves assigning an equal probability to each parameter value. When the parameter space 
has a bounded interval, then the prior density is determined to be constant. Another case involves 
using an improper prior. The last case is used when the standard deviation is unknown and this prior is 
invariant to power transformations of the parameters as stated by Kass & Wasserman (1996).

Theorem 2.2. The Jeffreys’ prior fo r  the Poisson distribution is:

_  1

( n  \  2

n  ^ i j  .
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Proof. The Fisher information matrix for the Poisson distribution is given by:

F (0)

i t  0 0
&20 1  0

0 0 0

Then the Jeffreys’ prior is a/ F (0 ) which is:

in ■

\ / F w

0- 2 0 0 
_ 1

0 02 2 0 

0 0 0

Thus the Jeffreys’ prior is:

0

0

_ 1
0n 2

n j (0) k  ( n  0i
vi=1

1

□

2.9.1.7 Conjugate Prior

A conjugate prior is a prior distribution which comes from the same family as the posterior distribution. 
Conjugate priors are often used because of simplicity since the posterior distribution will always have 
a closed form and inference will correspond to that of the prior distribution. Lawson (2009) shows that 
a conjugate prior is derived by observing the kernel of the relationship between the “prior-likelihood 
product.”

A conjugate prior may not work in a hierarchical model with a high number of parameters, but 
Lawson (2009) uses conditional conjugacy to check if a model is adequate.

Theorem 2.3. The conjugate prior associated with a single Poisson likelihood is:

(0) k  0a- 1exp( -[0 )  gamma(a, [).

Proof. Since the posterior distribution is:

n(0\y) k  L (0|y )^(0),

where
n(0) k  0a21exp(-[0) ,
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and

Then:

L (0\y) « n  0yi e x p ( - 0).
i= 1

(0\y) k  0a 1exp( -[0 )  Y \  0yiexp(-0)
i= 1

oc

oc

n
a+ Y' yi — 1

0 i=1 e x p ( - [0 n0)

«+E yi — 1 
0 i=1 exp ( - » ( [  +  « ))

g a m m J  a +  E  yi , [  +  n
i= 1

Since the posterior distribution comes from the same family as the prior distribution, the prior 
distribution (0) k  0a 2 1exp( -[0 )  is a conjugate prior. □

2.9.1.8 Divergence Prior

The divergence prior is equal to the absolute value of the fourth root of the Fisher information number 
as in Ghosh et al. (2011). This prior is a “unique optimising prior” and makes use of the Kullback- 
Leibler (KL) distance between the prior distribution and the associated posterior distribution and the 
Bhattacharyya-Hellinger divergence proposed by Bhattacharyya (1943) and Hellinger (1909). The 
proof of the divergence prior can be found in Ghosh et al. (2011).

Theorem 2.4. The divergence prior fo r  the Poisson distribution is:

nD (0) k  0i

1
4

Proof. The Fisher information matrix for the Poisson distribution is given by:

' 1
01 0 0 .. . 0

F  (0 ) =
0 1

02 0 .. . 0

0 0 0 . . . 0n
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The absolute value of the fourth root of the Fisher information matrix is then:

V F ( 0 )

■ _1
02 4 0 0 

_ 1
0 0— 4 0

0

0

_ 1
0 0 0 . . .  02 4

Thus the divergence prior is:

ffD (0 ) K 0i

1
4

□

2.9.2 Empirical Bayes

Empirical Bayes is said by Marshall (1991) to reduce the mean square error by pooling estimates over 
the regions in the study. Let the area under study be made up of N  regions. Suppose that the events 
in the study are measured over several years. Let Qi be the event rate per annum at the ith region. 
Suppose that the cumulative events in the ith region, denoted by r i , are Poisson random variables with 
conditional mean given by Marshall (1991) as:

E ^r i\Qi^ =  kiQi ,

where ki is the number of “person-years at risk.” The ratio of x i =  ^  is a “crude estimator” of Qi and 
is also the maximum likelihood of Qi. xi has a mean E(xj \Q^  =  Qi which is conditional on Qi and 
variance v a r ^ Q ^  =  e  also conditional.

Suppose that r i are assumed to be independent and Qi has a prior distribution with parameters 
Ci =  E e (q ^  and Li =  vare (q ^  for the mean and variance respectively. The unconditional mean 
and variance of x i are given in Marshall (1991) as:

E x^xi^ =  E e ( E (xi\Qi)^ =  E 0 (Qi) =  Ci,

and unconditional variance

V a r J  xi varey E  (xi \Qi) J +  E f  ( var (;xi \Q, 

v a re ( Qi) +  E e ( Q

Ci
=  Li +  ~j~.ki
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Applying the shrinkage estimator derived by Efron & Morris (1973), the best linear Bayes estimator 
of Qi when the values of Ci and Li are known is:

Q i Ci +  Fi ( xi — C i ),

where Fi Li

Li+Ci
tional variance of xi .

varQ ei

varx x
which is the proportion of the prior variance of Qi to the uncondi-

2.9.3 Posterior Distribution

The posterior distribution is derived by:

n(0 \y) K L(0\y)n(0).

The posterior distributions in this section will be given for a single Poisson likelihood. 

Theorem 2.5. The posterior distribution using the Jeffreys’ prior and Poisson likelihood is:

n

n j (0\y) k  0^=1
1

exp(—n0) ~  gamma Z ) y i  +
i= 1

1
2

Proof. Let n J (0) k  0 2 then the posterior distribution is:

^ j (0\y) k  n
i=1

0yiexp(—0) /  1

2

yi - 1
k  0i=1 exp(—n0)

1n

E yi +  2 , n ).

□

Theorem 2.6. The posterior distribution using the probability matching prior and Poisson likelihood
is:

n

npM(0\y) k  0
yi n

2 exp(—n0) ~  gamma yi +
i=1

1
2

Proof. Let n PM (0) k (0
1— ̂  2 by letting bi =  1 and considering a single likelihood, then the posterior
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distribution is:

npM (% ) oc
j  0yiexp(-d)

i=l y i
0-  2

j  0yiexp(—0 )(0k  i I 0yi exnl — 0)1 0 2

i=l
n

E  yi - 1
k  0i= 1  exp(—n0)

/ n

E  yi
1

~  gamma  > ^ i  +  o ,n
ii=l 2'

□

Theorem 2.7. The posterior distribution using the divergence prior and Poisson likelihood is:

n o (0|y) k  0
n

yi 1

exp(—n0) ~  gamma ] > > i  +
. i=l

3
4

Proof. Let n o (0) k  0 4 then the posterior distribution is:

no(0|y) k  j  0yie x ^  ( 0 - 4

i=l
n E  yi- 4 , r.,

k  0i=1 exp(—n0)

f c~  gamma\ 2_^ yi +  - ,  n
3

i

□

Theorem 2.8. The posterior distribution using a conjugate prior and Poisson likelihood is:

a+ j t  yi-1 , x f  ST'
nC (01 y) k  0 i=1 exp(—0(ft +  n)J ~  g a m m ^  a +  yi, ft +  n
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Proof. Let nc (0) k  0a lexp(—ft0) ~  gamma(a, ft) then the posterior distribution is:

nc (0|y) k

k

oc

0a lexrp(—ft0) Y \  0yiexp(—0)
i=l

a+ Y' yi-l
0 i= 1  e x p (—ft0  — n 0 )

n
a+ Y] yi-l , x

0 i=1 exp(y—0 (ft +  n))

gamma a+ E  yi,ft + n
i=l

□

Properness of a density requires two properties to be satisfied. The first property is the density 
must integrate to one in the continuous case and sum to one in the discrete case. The second property is 
f  (t) >  0, for all t. For all these prior distributions, the resulting posteriors follow a gamma distribution 
and therefore are all proper.

2.9.4 Choice of Prior Distribution

The choice of which prior distribution will give the best results is controversial and is often subjective. 
Four priors will be considered in this section and a simulation study based on the coverage rate is done 
to determine which prior will be ideal and produce the best results. The parameters of the conjugate 
prior distribution for the South African data are estimated from previous studies dating back from 2010 
until 2013 for which, the mean and variance are calculated for each province and summed to yield the 
total mean and variance for 2010-2013. The parameters of the prior are then estimated by using the 
mean and variance of a gamma distribution and solving for the two parameters, a  and ft. This resulted 
in a  =  13.78723 and ft =  0.765957. The data used to determine the values of a  and ft is listed in 
Table 2.5 and is based on the number of deaths due to acute pericarditis that took place in South Africa 
between 2010-2013.

The parameters for the Georgia oral cancer data are calculated based on approximately 30% of the 
data used in the study. The 30% of the data had a mean of 1.347826 and a variance of 5.78744 which 
resulted in parameters with values of a  =  0.3139 and ft =  0.2329 for the Georgia data respectively, 
these parameters will be used in model 1 in Section 3.3.2.2.
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Table 2.5: The observed number of deaths of acute pericarditis (Classification number: 130) in South Africa by 
province in 2010-2013.

Province 2010 2011 2012 2013 Total Mean Variance
Eastern Cape 1 1 2 2 6 1.5 0.3333

Free State 0 2 0 1 3 0.75 0.9167
Gauteng 3 6 3 3 15 3.75 2.25

KwaZulu-Natal 9 5 4 2 20 5 8.6667
Limpopo 4 2 0 1 7 1.75 2.9167

Mpumalanga 0 1 0 0 1 0.25 0.25
North-West 0 1 1 1 3 0.75 0.25

Northern Cape 0 0 0 3 3 0.75 2.25
Western Cape 1 6 2 5 14 3.5 5.6667

Total 18 24 12 18 72 18 23.5

The simulation algorithm is well-known and has the following steps:

1. For a given 0, simulate data from a Poisson distribution.

2. Using the data simulated in step 1, simulate 0 from the posterior distribution.

3. Using the data simulated in step 1, repeat step 2 n times. In this case nT =  10000.

4. Order the values obtained in step 3 in ascending order, such that 0(l), 0(2), 0(3),... 0(loooo).

5. The 95% credibility interval will be the values of 0(25O), 0(975O).

6. Repeat steps 1 to 3, nT =  10000, times then determine the number of credibility intervals which 
contain the true parameter 0.

7. Calculate the average interval length and standard deviation of the intervals as follows:

1 nj
Average length =  — Ij

ni j=l

and

Standard Deviation I
2
,

where Ij is the interval length of the j th interval and nI is the number of intervals.
The results from the simulation study are given in the tables that follow and also include the average 

interval length and standard deviation. Code for this simulation can be found in the Appendix C.5. The 
main criteria for the selection of the prior distribution is the mean coverage rate followed by the mean
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standard deviation and mean interval length. The mean coverage rate should be close to the theoretical 
value of 0.95 for a good prior distribution.

Table 2.6: The coverage rate, mean and standard deviation of the conjugate prior when a =  13.78723, fi = 
0.765957 and ut = 10000.

Value of 6 1 2 3 4 5 6 7 8 9 Mean
Coverage Rate 0.9491 0.9523 0.9526 0.9532 0.9505 0.9515 0.9472 0.9545 0.9514 0.9514

Mean Length 8.7620 9.3020 9.8110 10.2976 10.7625 11.2054 11.6361 12.0488 12.4504 10.4751

Standard Deviation 0.0904 0.0941 0.0976 0.1042 0.1091 0.1131 0.1182 0.1206 0.1252 0.1081

Table 2.6 shows the results of the simulation for the conjugate prior with the South African data 

parameters for a  and ft. The mean coverage rate is 0.9514 which is a difference of 0.0014 from the 

theoretical value of 0.95. The mean interval length is high at 10.4751 and the mean standard deviation 

is 0.1081.

Table 2.7: The coverage rate, mean and standard deviation of the conjugate prior when a = 0.3139, fi = 0.2329 
and ut  =  10000.

Value of 6 1 2 3 4 5 6 7 8 9 Mean
Coverage Rate 0.9497 0.9483 0.9492 0.9493 0.9537 0.9506 0.9468 0.9496 0.9496 0.9496

Mean Length 4.0776 5.5413 7.6313 8.8781 9.514 10.9244 11.8121 12.389 13.127 9.3216

Standard Deviation 0.0620 0.0843 0.0943 0.1034 0.1104 0.1217 0.1287 0.1256 0.1305 0.1068

The parameters, a  and ft, of the Georgia data give the results shown in Table 2.7. The mean 

coverage rate is close to the theoretical value of 0.95 with a difference of only 0.0004. The mean 

interval length is high at 9.3216, a high mean interval length was also seen in the South African data.

Other values of a  and ft for the conjugate prior are also considered and are given in the following 

tables:

Table 2.8: The coverage rate, mean and standard deviation of the conjugate prior when a =  0.5, fi =  6 and 
ut  =  10000.

Value of 6 1 2 3 4 5 6 7 8 9 Mean
Coverage Rate 0.9514 0.9483 0.9508 0.9534 0.9530 0.9543 0.9497 0.9461 0.9479 0.9505

Mean Length 0.8123 1.1162 1.3692 1.5834 1.7703 1.9393 2.0947 2.2391 2.3755 1.7

Standard Deviation 0.0129 0.0152 0.0170 0.0186 0.0200 0.0213 0.0225 0.0239 0.0253 0.0196

The mean coverage rate for the simulation when using a  =  0.5 and ft =  6 is closer to 0.95 than 

when the South African data parameters were used. The Georgia parameters have a difference of 

0.0004 from the theoretical value of 0.95 which is less than the difference in the mean coverage rate in 

Table 2.8. The mean interval length, for a  =  0.5 and ft =  6, is much smaller than the mean interval 

length for the South African and Georgia parameters.
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Table 2.9: The coverage rate, mean and standard deviation of the conjugate prior when a  =  3, fi =  5 and 
ut  =  10000.

Value of 6 1 2 3 4 5 6 7 8 9 Mean
Coverage Rate 0.9483 0.9525 0.9530 0.9512 0.9493 0.9478 0.9522 0.9516 0.9490 0.9505

Mean Length 1.4228 1.6880 1.9200 2.1280 2.3179 2.4945 2.6587 2.8139 2.9613 2.2672

Standard Deviation 0.0173 0.0196 0.0215 0.0236 0.0251 0.0267 0.0283 0.0291 0.0309 0.0247

Table 2.10: The coverage rate, mean and standard deviation of the conjugate prior when a =  8, fi =  0.25 and 
ut  =  10000.

Value of 6 1 2 3 4 5 6 7 8 9 Mean
Coverage Rate 0.9537 0.9469 0.9471 0.9490 0.9495 0.9494 0.9513 0.9499 0.9506 0.9497

Mean Length 9.8099 10.7483 11.6158 12.4221 13.1857 13.9066 14.5905 15.2428 15.8745 13.0440

Standard Deviation 0.1047 0.1151 0.1224 0.1289 0.1375 0.1458 0.1507 0.1570 0.1607 0.1359

The results from the conjugate prior simulation show that the South African data parameters gave 

the poorest coverage rate out of all the conjugate priors. The South African data parameters, therefore 

will not be used as the parameters of the hyperprior distributions. The mean interval length of the 

simulation when using the parameters a  =  8 and ft =  0.25 has the highest interval length of all the 

conjugate priors and thus will not be used. The Georgia data parameters give the closest mean coverage 

rate to the theoretical value of 0.95 than all of the other parameters and thus the Georgia parameters 

will be used in the hyperprior distribution.
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Figure 2.11: The average interval length of the conjugate prior distributions with different values of a, fi and 
6.

The prior distributions are chosen based on the smallest average interval length, after first exami­

ning the average coverage rate and average standard deviation. The prior distributions with parameters 

a  =  0.5, ft =  6 and a  =  3, ft =  5 show the smallest average interval lengths in Figure 2.11, alt­

hough the coverage rates of these two prior distributions are not better than some of the other prior 

distributions considered in this simulation study.
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Figure 2.12: The standard deviation of the conjugate prior distributions with different values of a, fi and 6.

The prior distributions with the lowest standard deviations are considered the best prior distributi­
ons after first considering the average coverage rate. Figure 2.12 shows the standard deviation for the 
conjugate prior distributions in the study. The prior distributions with parameters a  =  0.5, ft =  6 and 
a  =  3, ft =  5 show the lowest standard deviations.
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The coverage rate of conjugate prior distributions
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Figure 2.13: The coverage rate of the conjugate prior distributions with different values of a, fi and 6.

Figure 2.13 shows the coverage rate for the conjugate prior distributions in the simulation study. It 
is difficult to make conclusions based on the figure as the coverage rate changes with the value of 6. 
The average coverage rate is thus used. It may also be possible to consider the most constant coverage 
rate and then consider the bias associated with the different prior distributions as an alternative to the 
average coverage rate.

Table 2.11: The coverage rate, mean and standard deviation of the Jeffreys’ prior with nT =  10000.

Value of 6 1 2 3 4 5 6 7 8 9 Mean
Coverage Rate 0.9489 0.9528 0.9474 0.9509 0.9536 0.9508 0.9474 0.9480 0.9480 0.9498

Mean Length 4.2922 5.7344 6.8974 7.9176 8.8441 9.6819 10.4208 11.1544 11.7925 8.5261

Standard Deviation 1.5973 1.8482 1.9099 1.9458 1.9417 1.9376 1.9624 1.9842 2.0183 1.9050

The mean coverage rate for the Jeffreys’ prior is 0.9498, a slight difference of 0.0002 from the 
theoretical value of 0.95. This is the closest mean coverage rate to the theoretical value of 0.95 out of 
all of the prior distributions considered in this thesis. The mean of the average interval length is 8.5261 
compared to 8.5295 and 8.7764 of the probability matching prior and divergence prior, respectively. 
The Jeffreys’ prior and probability matching prior should produce almost the same results as the pos­
terior distribution of both prior distributions was shown to be the same in Section 2.9.3. There are 
slight differences between the results of the Jeffreys’ prior and probability matching prior due to the 
randomness in the simulation.
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Table 2.12: The coverage rate, mean and standard deviation of the probability matching prior with nT =  10000.

Value of 6 1 2 3 4 5 6 7 8 9 Mean
Coverage Rate 0.9515 0.9523 0.9521 0.9533 0.9523 0.9497 0.9521 0.9541 0.9511 0.9521

Mean Length 4.3056 5.7349 6.9308 7.9156 8.8248 9.6969 10.4216 11.1379 11.7978 8.5295

Standard Deviation 1.5965 1.8411 1.9203 1.9391 1.9599 1.9636 1.9568 1.9391 1.9820 1.8998

The results of the simulation of the probability matching prior are given in Table 2.12. The results 
show that the Jeffreys’ prior has slightly better results as the mean coverage rate is closer to the theore­
tical value of 95% and mean length of the interval is lower than that of the probability matching prior 
although the mean standard deviation is slightly higher in the results of the Jeffreys’ prior than in the 
results of the probability matching prior.

Table 2.13: The coverage rate, mean and standard deviation of the divergence prior with nT =  10000.

Value of 6 1 2 3 4 5 6 7 8 9 Mean
Coverage Rate 0.9546 0.9507 0.9518 0.9503 0.9502 0.9527 0.9516 0.9514 0.9470 0.9511

Mean Length 4.7439 6.0651 7.1926 8.1571 9.0602 9.8545 10.6342 11.3377 11.9419 8.7764

Standard Deviation 1.4699 1.7355 1.8298 1.8847 1.9308 1.9234 1.9447 1.9250 1.9350 1.8421

A comparison of the results of the divergence prior in Table 2.13 and the results of the Jeffreys’ 
prior in Table 2.11 shows that the Jeffreys’ prior produces better results than the divergence prior. The 
mean coverage rate is closer to the theoretical value of 95% and mean interval length of the Jeffreys’ 
prior is lower than that of the divergence prior. The mean of the standard deviation of the divergence 
prior is, however, lower than the mean of the standard deviation of the Jeffreys’ prior. This is a slight 
difference of only 0.0629.
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The standard deviation for the prior distributions

0

Figure 2.14: The standard deviation of the prior distributions.

The average interval length for the prior distributions

Conjugate South Africa
Conjugate Georgia
Jeffreys
Probability Matching
Divergence

Figure 2.15: The average interval length of the prior distributions.
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The average interval length increases as the value of 9 increases, this is evident in Figure 2.15.

The coverage rate for the prior distributions

Conjugate South Africa
Conjugate Georgia
Jeffreys
Probability Matching
Divergence

Figure 2.16: The coverage rate of the prior distributions.

The simulation results show that Jeffreys’ prior has the highest mean coverage rate and thus is the 
best prior of all the priors considered in the simulation. The Jeffreys’ prior will thus be used in the 
South African and the Georgia models. The Georgia models will also use the conjugate prior with the 
Georgia data parameters, as this was the second best prior in the simulation. The last Georgia model 
will have a fixed parameter for the precision of the uncorrelated heterogeneity (UH) component.

2.10 Markov Chain Monte Carlo (MCMC)

Gelman et al. (2014) define MCMC as a method whose fundamental property is to draw samples of 
9 from a proposal distribution and then sequentially drawing samples closer and closer to the target 
posterior distribution, denoted by n(9|y). The defining property of an MCMC is that the distribution 
of the sampling values depends only on the last value sampled. A more formal definition is provided 
by Gelman et al. (2014) which says that a Markov chain is a sequence of random variables, denoted 
by 91,92, . . .  ,9k, such that for any k , the distribution of 9k depends only on the previous value of the 
chain 9k-1 given the preceding history of the chain. The MCMC method is widely used in Bayesian 
statistics.
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2.10.1 The Gibbs Sampling Algorithm

2.10.1.1 Overview

The Gibbs sampler was first used by Geman and Geman in 1984 who applied the algorithm in image 
processing, according to Casella & George (1992). Earlier versions of the algorithm appeared in at 
least 1953 and it was eventually adapted by Hastings in 1970. Lesaffre & Lawson (2012) state that 
the Gibbs distribution was applied to the intensity of the pixels in an image. The distribution can 
have millions of unknowns and hence Geman and Geman, developed in 1984, a sampling algorithm 
to enable inference from the distribution. The Gibbs Sampling Algorithm only became popular in the 
1990’s when Gelfand and Smith showed its potential in statistical applications, and this was one of 
the reasons for the revival of Bayesian statistics as explained by Casella & George (1992). The main 
condition for the use of the Gibbs sampler is that one must be able to specify and sample from all the 
conditional distributions of the parameter, that is for a parameter 0 and data y  =  |y i ,  y2, . . .  ,yN^ , 
one must be able to specify and sample from:

h { (9i |92 ,93, . . . , 9p, y ); (92|9i , 93, . . .  , 9p, y ); . . .  (9P|9i , 92 , .. . , 9p-i, y ) } .

2.10.1.2 The bivariate Gibbs sam pler

Lesaffre & Lawson (2012) define the bivariate Gibbs sampler as follows:
Suppose the joint distribution of the parameters 9i and 92 is given by: n^9 i ,92ly^ with data y  =

y i ,y2, . . .  ,yN^ and suppose that the joint distribution is uniquely determined by all its conditional

distributions, such that it is determined by: n^9 i 192, y  j  and n (d 219i , y  j . We want to obtain a sample

from the joint distribution n(^9i , 92|y j  but as this is a complex distribution we must first obtain starting 
values which may be estimates or initial guesses. For this case only one starting value is needed, 
suppose we use two starting values and we denote them by 90 and 90, respectively. The sampler then
samples to obtain 9k and 91k where k =  1, 2 ,   Thus each iteration of the Gibbs sampler cycles
through the sub-vectors of 0, drawing each subset conditioned on all the other values. The sampler 
forms 9\,92,92,92, ,93,93,... which is a chain of dependent values where 9k is only dependent on 
the previous value 9k— such that 9k is independent of the entire preceding history of the chain. The 
sampled values are taken as draws from the posterior distribution ^ 9 i ,92| ^  after a burn-in period 
denoted by N B. The initial part of the chain is discarded, there are a number of methods to determine 
the number of iterations before the burn-in period. The algorithm is given in Lesaffre & Lawson (2012) 
as:

• Starting values 90,90

• Sample 9(i) from n (d i 1920, y  j
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• Sample 9!(i) from n (o 219(i), y  j

-------------------------- N b ^B urn-in  period

• Sample 92k') from n ^ 9 i |92k -i) , y ^

• Sample 92k') from ^ 9 2|9(k-i),y ]

2.10.1.3 The general Gibbs sam pler

A general algorithm for the Gibbs sampler is provided in Lesaffre & Lawson (2012) and is given as: 

Starting with initial values O0 =  ^90, 90,.. ., 90  ̂ the algorithm performs these d steps at iteration

(k +  1):

• Sample 9ik+i) from ^ 9i |9k,. . . , 9 kd- i) , 9 kd , y^

• Sample 9('k+1') from n ( 9219ik+i) ,93k , . . .  ,9>k , y \

Sample 9(k+l) from 9d|9(k-i), 92k+i), . . . ,  , y  j

2.10.1.4 Advantages of the Gibbs sam pler

The advantages of the Gibbs sampler are given in Lawson (2009) as:

• A single new 9 value is computed at each iteration.

• When the conditional distributions are simple, the chain may converge faster.

• The sampler is often used in simpler hierarchical modelling applications.

• The implementation of the algorithm is straightforward.

• It can be extended to other sampling applications, for example, reversible Gibbs sampler and 
Random-scan Gibbs sampler.

• The Gibbs sampler can be combined with other algorithms to sample from full conditionals.

• The Gibbs sampler is used in many statistical programs.

• The Gibbs sampler can simplify complex problems by converting high-dimensional problems 
into lower-dimensional problems.
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2.10.1.5 Disadvantages of the Gibbs sam pler

Lawson (2009) provides the following disadvantages:

• One may be unable to specify all of the conditional distributions.

• Derivation of the conditional distributions may be time-consuming.

• Block updates of parameters may not be available in Gibbs sampling.

• The Gibbs sampler is not often used in complex problems.

• The Gibbs sampler may not converge.

• The posterior distribution must be known.

2.10.2 The Metropolis-Hastings Algorithm

2.10.2.1 Overview

The Metropolis-Hastings algorithm was developed by Metropolis in 1953 with an intended purpose in 
mechanical physics as explained by Lesaffre & Lawson (2012). The algorithm was further developed 
by Hastings in 1970 with the application being in a statistical sense. The algorithm remained virtually 
unused as the processing power and efficiency of computers was very poor in the 1970’s. With the 
increase in processing power and efficiency of computers in the 1990’s and the re-emergence of Bay­
esian statistics, the algorithm became more and more popular. The algorithm can be used to simulate 
from any distribution as long as the analytical form of the distribution is known. This is in contrast 
to the Gibbs sampler which requires the posterior distribution and the conditional distributions to be 
known. The Gibbs sampler is a special case of the Metropolis-Hastings Algorithm.

2.10.2.2 The M etropolis-Hastings Algorithm

The Metropolis-Hastings algorithm needs a target distribution, denoted by n, to be defined before the 
algorithm is executed. A proposal density, denoted by q(y|x), is defined in Robert & Casella (1999) as 
taken in terms of the ruling quantity in the model. The algorithm works well when the proposal density 
is symmetric q(y|x) =  q(x|y), then the probability with which the new value, which is generated by 
the algorithm, is accepted is the ratio probability of the new value and the previous value. When the 
new value has a higher probability than the current value, the new value is chosen and these values 
when put together then make up a sample from n. The proposal density also works well when 
can be determined up to a constant value which is independent of the value of x, as written by Robert 
& Casella (1999).

Let x (0) be an arbitrary initial value and given the value of x 2̂ , where t =  1 ,2 ,. . . ,  then the 
Metropolis-Hastings algorithm is executed by Robert & Casella (1999) in the following steps:
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1.
Simulate Yt ~  q(y |x2t') )

2.

3.

Let p(x ,y ) min n(y)q(x|y) 1 
n(x)q(y|x),

Sample X (t-i)
Yt with probability p ( x 2t),Yt

x (t) otherwise

An advantage of using the Metropolis-Hastings algorithm is that the values of yt may be used such that 
the ratio of:

n (yt)

n x(t)

may be decreased. Metropolis-Hastings algorithm only depends on:

n \Vt) 

n(^x2t)̂ j

and
q (x (t)|yt)

q yt | x2t)

as written by Robert & Casella (1999).
There are many methods available to construct a proposal density, one of which is the random-walk 

proposal which is written as: X n-i  =  X n +  tn where tn is distributed as a symmetric random variable 
around 0 and is simulated independent from X n, X n - i , X n-2, ....

One must also consider the variance of the proposal density as the size of the variance affects the 
acceptance ratio of the chain. If the variance is too small, the chain will have a high acceptance ratio 
and the chain will move slowly over the sample, reducing efficiency. If the variance is too large many 
proposal values will be rejected and the chain will stay in one place for a long time, which also reduces 
the efficiency of the chain. Therefore the variance of the proposal density must be chosen carefully to 
ensure a good acceptance ratio and a high chain efficiency.

2.10.2.3 Advantages of the M etropolis-Hastings Algorithm

According to Lawson (2009), the advantages include:

• The algorithm does not require full conditional distributions.
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• There are an infinite number of proposal densities which result in a Markov chain that converges 
to the target density.

• The algorithm can simulate from any distribution as long as the analytical form is known.

• Enables block updates for a parameter.

• The algorithm is often used in complex problems.

2.10.2.4 Disadvantages of the M etropolis-Hastings Algorithm

According to Lawson (2009), the disadvantages include:

• Selection of the proposal density may be difficult.

•  The convergence of the algorithm is slower than the Gibbs sampler.

• It is more difficult to implement than the Gibbs sampler.

• The algorithm may not converge.

• The algorithm does not guarantee the new value will be accepted.

2.11 Convergence and Diagnostic Tests

2.11.1 Overview

For the MCMC method, convergence needs to be determined up to a number of iterations. The purpose 
of convergence, proposed by Lawson (2009), is to determine whether the distribution of the sampled 
values reaches the equilibrium distribution of the Markov chain. A burn-in period, which varies bet­
ween experiments, also needs to be determined. The burn-in period is the number of iterations needed 
to ensure independent and accurate samples are provided. A poor burn-in period results in a Markov 
chain getting stuck at one point. Lesaffre & Lawson (2012) reiterate that convergence is not easily 
determined and convergence needs to be determined to ensure the posterior distribution is represented 
accurately. Convergence may be easily determined in simple problems but in more complex problems 
graphical and diagnostic tests are required. Lawson (2009) says that determining convergence is con­
sidered an art rather than a science.
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2.11.2 Convergence of an Algorithm

Brooks et al. (2003) state that because it is difficult to determine the number of iterations and since 
a parameters state might change between iterations, one needs to choose a parameter which uniquely 
defines the model. It is easier to monitor the convergence of this single parameter than the convergence 
of the entire model. This is more commonly known as determining convergence for a marginal distri­
bution. Lesaffre & Lawson (2012) define convergence as an “asymptotic property” of a Markov chain 
for which the distribution of 9k, denoted by nk (9), tends to the equilibrium distribution as k ^  ro. 
Brooks et al. (2003) explain that another way to detect convergence is to let as many parameters as 
possible keep their interpretation as they are sampled from one model to another. This will allow these 
parameters to be checked and then convergence can also be checked. This process uses the “ analysis 
of variance (ANOVA)-type decomposition” output.

Lesaffre & Lawson (2012) name two elements to check for convergence, these are (1) monitor the 
stationarity of the Markov chain and (2) check the accuracy of the posterior summary measures. The 
stationarity element involves determining the burn-in part of the algorithm, that is to determine the 
iteration, n0, such that k >  n0, then 9k may be sampled from the posterior distribution. The accuracy 
element ensures that the posterior summary measures are sampled with a predetermined degree of 
accuracy.

2.11.3 Techniques to Determine Convergence

Many techniques may be used to determine convergence. The more popular techniques are the ones 
which are built into statistical software, and according to Lesaffre & Lawson (2012), many techniques 
are very complex and difficult to analyse thus are not used often. Experimenters may use a combination 
of techniques because each technique has its own weaknesses.

Cowles & Carlin (1996) propose two areas to focus on when trying to determine convergence. 
Firstly, the number of iterations are predetermined by looking at the Markov transition kernel and 
secondly, is using diagnostic tools to analyse the output of the Markov chain. Lesaffre & Lawson 
(2012) separate the techniques into two categories, namely graphical techniques and diagnostic tests.

2.11.3.1 G raphical Techniques

2.11.3.1.1 Trace Plot A trace plot is one of the most simple and important graphical techniques. 
Lesaffre & Lawson (2012) use the trace plot to monitor the Markov chain univariately by plotting each 
parameter on its own plot. The trace plot is drawn by evaluating the lag of the likelihood. The main 
purpose of the trace plot is to show the chain mixing rate and convergence of the model.

2.11.3.1.2 Autocorrelation Plot The autocorrelation plot is used to show the correlation of lags. 
Lesaffre & Lawson (2012) use the autocorrelation plot to show the mixing rate of the chain.
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2.11.3.1.3 Cross-Correlation Plot The cross-correlation plot is used to show model over-specification. 
It is used as a measure of the correlation between variables.

2.11.3.2 Diagnostic Tests

2.11.3.2.1 Brooks-Gelman-Rubin (BGR) Diagnostic The BGR diagnostic is used when the pos­
terior is multi-modal according to Lesaffre & Lawson (2012). The steps of the BGR diagnostic are 
described in Cowles & Carlin (1996) as:

1. Before the algorithm is implemented, an overdispersed estimate of the target distribution is obtai­
ned. The initial values are then generated from the overdispersed estimate.

2. After the Gibbs Sampler has been executed for n iterations. The last n iterations are used to 
obtain another target distribution of the scalar quantity as a student’s t-distribution.

Disadvantages of the BGR diagnostic include:

• The initial values of the overdispersed estimate may be difficult to find. This step needs an 
experienced user.

• Normal approximation for analysing convergence may be unreliable.

2.11.3.2.2 Geweke Diagnostic Lesaffre & Lawson (2012) suggest that the Geweke diagnostic tests 
the stationarity of a Markov chain by analysing the means of the first part of the chain to the means 
of the last part of the chain. This method creates a space between the two means which implies that 
they can be treated as independent. Let the number of iterations in the chain be denoted by nT and the 
number of iterations in the first and last part of the chain be denoted by nA and n B, respectively. Let 
9A and 9b denote each mean. Then a frequentist significance test can be used to test the stationarity of 
the chain:

Z A -
B .
I B .
ub

Lesaffre & Lawson (2012) explain that since the elements of a Markov chain are dependent, nA
S2and nB underestimate the variances and the means are dependent. Cowles & Carlin (1996) introduce 

the assumption that the nature of the MCMC algorithm and g, where g are the output values of the 
algorithm, imply a spectral density denoted by Sg (w). When this assumption is made then E^g(9)^ 
can be estimated by:

g n T

nT  / \
E  g i ^ A
i=l v 7

nT

for n iterations and the asymptotic variance is given by Cowles & Carlin (1996) as Sg(0). 
n T
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2.11.4 Improving Convergence

There are many methods and techniques available to improve convergence but since every problem 
is unique, some methods and techniques improve some problems while others have no effect. The 
type of application of the problem will determine which techniques and methods will work the best. 
The methods and techniques to improve convergence are separated into the categories: Burn-in period, 
Thinning, Choice of initial values, Transformation, Reparameterisation and the number of chains.

2.11.4.1 Burn-in Period

Brooks (1998) explains that the number of iterations in the burn-in period is important because the 
burn-in period is designed to limit the “inferential bias” created by the starting values. The burn-in 
period changes between different problems and hence estimation of the burn-in period is a common 
problem. When “geometric ergodicity” is valid, Brooks (1998) defines the transition density, denoted 
by n'(x, •), which has k steps as:

W (x ,•) -  nO! < M(x)p\

where p t  R and for some value of M. The algorithm may be stopped when |n '(x, •) — n (•) | <  t, when 
t > 0 and then the burn-in period is estimated by:

N*b
log { t / M (x)} 

log(p) ,
where p e R, k > 0.

This, however, is seldom used as it is challenging to show that there is a “geometric rate of conver­
gence to stationarity.”

Diaconis & Stroock (1991) introduced a method for determining the bounds for the second largest 
eigenvalue and the spectral gap in a reversible Markov chain. The method uses the discrete version of 
the poincare inequality and according to Brooks (1998), the method is used to estimate the flow rate of 
the chain between states to bound a convergence rate.

Edwards & Sokal (1988) generalise the Monte Carlo algorithm to arbitrary models and essentially 
provides a way to estimate the convergence rate of an arbitrary model based on Cheeger’s inequality, 
according to Brooks (1998).

2.11.4.2 Thinning

Brooks (1998) states that since each problem is different, the number of iterations that the Markov chain 
runs for varies from problem to problem. The computation time and processing power of computers 
may be a limiting factor in choosing the number of iterations. The method of thinning is then used 
to reduce the number of iterations. Lesaffre & Lawson (2012) define thinning as a method to lower
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the autocorrelation by only saving every kth value of the chain. This method, for lags that are greater 
than one, may minimise autocorrelations until they are all zero. Lesaffre & Lawson (2012) state that 
the new Markov chain where every kth value has been saved has a higher Monte Carlo error than the 
original chain.

Brooks (1998) proposes the method to estimate the sample size of an IID sample. Since the standard 
deviation is given by ^ n , where a is the standard deviation of the posterior distribution of 9, and if an 
estimate of a is available then the approximate sample size can be calculated.

2.11.4.3 Choice of Initial Values

The initial values will be independent of the MCMC output after the burn-in period. Brooks (1998) 
explains that the choice of initial values will affect the speed and performance of the chain.

Lesaffre & Lawson (2012) introduce the idea that the choice of the initial values may affect the 
mixing rate of the Markov chain. The mixing rate may be low when the initial values are chosen 
such that the posterior probability is closer to zero. The chain may then get ’stuck’ in an area for a 
long period of time. The technique to identify this problem involves using a trace plot. The trace plot 
will have an increasing or decreasing line when the initial values are chosen such that the posterior 
probability is close to zero in that area. When more than one chain is run, Gelman & Rubin (1992) 
proposed that the distribution of the initial values must be overdispersed with respect to the target 
distribution, in order to detect convergence accurately.

Methods for selecting initial values are listed in Brooks (1998) as: assigning hyperparameters to 
fixed values, removing missing data and checking to see if the initial values may be estimated from the 
maximum likelihood. Gelman & Rubin (1992) suggest a mode-finding algorithm to find areas where 
the density is high. The initial values are then generated by sampling from t-distributions at these areas.

2.11.4.4 Reparam eterisation

Reparameterisation is used to reduce the correlation between variables in a Markov chain, according 
to Brooks (1998). High correlation between variables changes the way in which the MCMC algorithm 
runs. The algorithm has a slower convergence and a higher computation time when there is correlation 
between the variables. Lesaffre & Lawson (2012) say that reparameterisation may remove constraints 
on parameters. Reparameterisation in a linear regression is done by centring the regressors and is 
written in Lesaffre & Lawson (2012) as:

y — fio +  p ix +  t -,

then 9 — (j30, P1, changes to 9* — ^P0, P1, a )  where P0 — P0 +  P19 .
Brooks (1998) introduces approximate orthogonalisation which is used to obtain posterior para­

meters which are uncorrelated. This method, however, is only used in simple problems and it is not
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appropriate for more complex problems. Another method proposed by Gelfand et al. (1995) is hierar­
chical centring which may be used in more complex problems but it can only be used when a model 
has a linear structure.

2.11.4.5 Transform ations

Transformations are used when there is multicollinearity in the regressors, according to Lesaffre & 
Lawson (2012). Centring of the regressors is achieved by dividing each value of the regressor by its 
corresponding standard deviation. This method reduces the multicollinearity of the regressors.

2.11.4.6 The Num ber of Chains

The decision to run a Markov chain with more than one chain has its advantages and disadvantages. 
When one long chain is used, according to Brooks (1998), the result is a chain which will approxi­
mate the target distribution much better than any number of smaller chains would. When using more 
than one chain, the number of iterations that are removed for the burn-in period is more than that of 
one chain; this leads to additional computation time. The exploration of a sample is important and 
according to Brooks (1998), many chains explore the sample better and faster than a single chain does. 
Brooks (1998) proposes the regenerative method as an alternative to using many chains. This method 
uses a single chain which is restarted at “regeneration times”, to yield many replications which are 
closer to the target distribution than any number of independent chains are.

2.12 Autocovariate Models

The autocovariate models incorporate spatial autocorrelation by predicting whether the response vari­
able at one region replicates any response variable of a nearby region. Dormann et al. (2007) propose 
that this is modelled by incorporating a “distance-weighted” function of nearby response variables into 
the explanatory variables of the model and is named the autocovariate. The autocovariate can model 
spatial correlation from “conspecific attraction, limited dispersal, contagious population growth, and 
movement of censored individuals between sampling sites” as written by Dormann et al. (2007). The 
model which does not include the autocovariate is represented as:

y =  X p  +  ^

including the autocovariate changes the model to:

y — Xft  +  pQ + 1 ,
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where p is the coefficient of the autocovariate Q. The autocovariate at any region i is calculated by 
Dormann et al. (2007) as:

N

Q i  ^   ̂ w i j y j  (2.15)
j e k i

N

E  w i j  y j

Q l — ------- , (2.16)
E  w i j

j z k i

where Equation 2.15 is the weighted sum and Equation 2.16 is the weighted average and y j  is the 
observed value at region j  surrounded by the group of k  neighbours and w ij  is the weight of region 
j 's  impact on region i .

2.12.1 Random and Spatial Effects

The natural logarithm of the hierarchical model enables a spatial and random effects term to be included 
in the model as in DiMaggio (2012). The random effects in the model are said to cover the possible 
“group-level heterogeneity”. Random effects allow for the presence of spatial autocorrelation and 
spatial heterogeneity in the model. Osei (2010) proposes that assigning a prior distribution for spatial 
effects creates a “spatial dependency structure” which considers the nature of the distribution of the 
regions in the area under study. There are two types of random effects named in Osei (2010) as additive 
and multiplicative random effects.

Overdispersion is very common in count data as mentioned in Section 2.8.1.2 and may be solved 
by using mixture models. Lawson (2009) recommends introducing a prior distribution modelled for 
the relative risk or introducing a random effect into the predictor term, both of which account for 
overdispersion. The Poisson-gamma model assigns a prior distribution to the relative risk and will 
be considered in later sections. Another recommendation to account for overdispersion is introduced 
by Osei (2010) who models the parameter A of the Poisson distribution by introducing a parameter 
t ,  which is an unobserved random variable to the model by either addition or multiplication. The 
first method being additive random effects and the second being multiplicative random effects. A 
conditional autoregressive (CAR) term which accounts for spatial effects is also included in the model. 
The CAR is derived by a group of “spatial neighbourhoods”, where each neighbourhood contains 
nearby spatial observations which are in close proximity. An example of a model is given in DiMaggio
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(2012) as:

y i  ~  p o i s \ ^ i J

l o 9 ^ i ^  —  B n  +  T 1 +  T 2,

where T 1 is the random effects term, T 2 is the spatial effects term and B n  is the log-linear terms 
which contain confounders. The CAR model makes use of additive random effects to allow for spatial 
heterogeneity.
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2.12.2 Log-Normal Model

An extension of the canonical link function in Section 2.8 is to include a UH term, the link function 
then becomes:

n i — {x i P  +  v i  y) ,

where v i is the uncorrelated random effect as introduced by Lawson (2009). The UH is assigned a zero 
mean Gaussian prior distribution as proposed by Spiegelhalter et al. (2003) and is modelled as:

Vi -  N (0,0).

Lawson (2009) provides two disadvantages of using the UH model with a relative risk modelled by 
a gamma prior distribution, these are:

The gamma distribution does not have an easy and flexible way of generalising the distribution 
to include spatially correlated parameters and “covariate adjustments” are difficult to model using a 
gamma distribution. Thus Lawson (2009) incorporates a log normal distribution to account for the 
additional variation in the model when the random effects are correlated. These are incorporated via 
additive random effects. A model with both UH and correlated heterogeneity (CH) may add more 
flexibility, Besag et al. (1991) propose that this can be modelled as:

ni  — e x p ^ x i ^  +  S i  +  v/J>,

where S i  is the CH component, v i  is as specified earlier and x i are the explanatory variables. The prior 
distributions of S i  and v i can be modelled by a variety of methods, although the Improper CAR (ICAR) 
and Proper CAR (PCAR) models will be considered for this research.

2.12.3 Conditional Autoregressive (CAR) Models

Suppose that there exists a set of spatially correlated Gaussian random effects, denoted by S 1 , S 2 , . . . ,  S N , 

for the N  regions in the area under the study and suppose that the joint distribution of the random ef­
fects are:

S -  M V N  (^ ,w S ),

where S is a vector containing S i , i  — 1, 2 , . . .  , N  and is distributed as a multivariate normally dis­
tributed random variable of N-dimension, n  is a mean vector of 1 x N  dimension, u  is a strictly 
non-negative value which governs the variability of S i  and £  is a N  x N  positive definite matrix as in 
Spiegelhalter et al. (2003). The “between-region” covariance matrix u £  is expressed in Osei (2010)
as:

u £  — u ( I  -  p W ) 1M , (2.17)
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where I  is an identity matrix of N  x N  dimension, M  is a diagonal matrix of N  x N  dimension 
containing values, denoted by m ii, which are proportional to a conditional covariance S fS j  and W  is 
a weight matrix of N  x N  dimension with values, denoted by w j , representing the spatial correlation 
between region i and j  and p is a representation of the amount of spatial dependence.

The joint multivariate Gaussian model is expressed in Spiegelhalter et al. (2003) as:

where S— denotes the whole vector S excluding the value of Si. When there are no explanatory varia­
bles then pi =  xip  =  0 and Equation 2.18 can then be written as:

Theorem 2.9. When there are no explanatory variables then the joint distribution of the random effects 
are:

S ~ M V N (0 ,u E ),

where wE is given in Equation 2.17.

Proof. The Brook expansion developed by Brook (1964) may be written as:

(2.18)

(2.19)

n(z) = -N  n(z ilz i ,z 2 , . .. ,z—  ,Xi+1, . . . , x N) 
n(x) ~=\  n ( x i |z i,z2 ,.. . ,z i- i ,X i+ i, . . . ,  Xn )
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and thus:

n (S )
n (0)

N

n
n (S i|S i, S 2 , . . . ,  Si-i, 0i+1, . . . , 0N)
n (0i |S i , S 2 , . . .  , S i - i , 0i+ i , . . .  , On )

exp< : ( Si -  pJ2 wijSj -  PE0N ) 2umi i \ ^ ij-j- ( \  j<i j>i

i=i exPS -  2urnii( 0i -  PT ,WV SJ -  P E 0j )  
 ̂ \  j<i j>i J

N (W exP \  -
i=i 
N

exp

Si -  pE wv SE  —  pE wv Svj<i j<i

__i_
2wmi

i=i
N

S2 -  2SipT ,w i j  Sv + ( p E wv S j ]
j < i  j < i

W exp{ -  2um u
i=i

S 2 -  2pSiE) wi j  Sj

exp \ n
2 u J 2  m ii

j<i
N N
E  S2 -  2p  E  E Siwij s ji=i i=i j<i

2
i

2

2

i

p J2wv s j
j<i

N N N
Since W  is symmetric then 2p ^  E S iwij Sj =  p E  E  Siwij Sj and thus:

exp

i=i j<i i=ij=i

i N
E  s f  -
i=i

N
2p E  E Siw ij Sj

i=i j<i
1 ( i N

E  S2
i=i

N N
-  p E E  Siwij Sj 

i=ij=i
N

2uJ2 mui=l
/ — exp < n
J ^ 2 ^ 2  mii

exp 2w
N

S i2
i=i

N N
p E E  SiwijSj

i=ij=i
E  m -  ̂

exp s ' (  i  -  p w y ^ M j  1 si
2

M V N ^ 0 , u (I  -  pW ) iM^) 

M V ^  0 ,w E ) .

□

The use of the covariance matrix E requires the matrices W  and M  and the parameter p to be spe­
cified. The CAR model requires E to be symmetric positive definite such that the following conditions 
are met, as outlined in Spiegelhalter et al. (2003):

1. The matrix E must be symmetric such that wij mjj =  wjim ii.
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2. When p =  0 there is no spatial dependence.

3. The value of p must be in-between pmin and pmax such that p ^ n  and pmiax are lowest and highest 
eigenvalues of M -  2 W M  2 .

4. Var(S3 |Si) =  u m ii > 0 such that m ii > 0.

5. Since spatial dependence is mostly positive, p is constrained to be between 0 and pmax.

An alternative is to use the Simultaneous Autoregressive Model which does not require W  to be sym­
metric.

Figure 2.17: A simplified doodle for the model, not including all nodes.

2.12.3.1 Im proper CAR (ICAR) Model

This model’s foundation dates back to 1987 when Kunsch (1987) developed lattice models for intrinsic 
autoregressions. These autoregressions were based on a two-dimensional lattice and could be applied 
to intrinsic models for which stationarity is only assumed when parameters change value. These models 
were built based on spatial distributions and permit the use of a “singular normal joint distribution” 
based on Lawson (2009).

Besag et al. (1991) show that the ICAR model is a CAR model where the covariance matrix £  is 
semi-definite, whereas the CAR model has a positive definite covariance matrix as mentioned earlier. 
The ICAR model creates weights by:

W ij
ne if regions i and j  are adjacent 

Otherwise.0
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and w i i  is also 0 and set m i i  =  —  where ne i  is the number of neighbours of region i. The ICAR model
n e i

also requires:

p 1 pm a x .

Since p = 1 ,  m i i  =  —  and w i j  =  —  and since there are no explanatory variables in both data 
sets then Equation 2.19 will now change to the following equation for the ICAR model:

^  S j u
S i|S -i -  N  > , —

'  n e i  n e i
\ j e n e i

WinBUGS® requires unnormalised weights and sets Z ij =  1 for i and j  adjacent regions and 0 
Z.. N

otherwise and sets wij =  ^  where Zik =Y^ wij .
i j=i

A constraint which requires the random effects in the model sum to 0 is proposed by Besag & 
Kooperberg (1995) and includes an additional intercept term with a U( - r o ,  ro) prior which is location 
invariant and gives the same result as an unconstrained parameterisation without an additional intercept 
term, this is modelled as in the Equation 2.20. The prior distribution for the parameter u  must be 
included in the model and be modelled in terms of precision as t =  ^ . This prior is very sensitive 
because the posterior variance in the random effect will be affected by the prior variance as written 
by Spiegelhalter et al. (2003). The prior distribution is usually modelled by a gamma distribution 
whose parameters need to be selected sensibly as a large prior variance places most of the prior focus 
away from 0. Various suggestions are available for the parameters of the gamma distribution. The one 
proposed by Kelsall & Wakefield (1999) has parameters of a =  0.5 and ft =  0.005.

The model that is applied to both data sets is the CAR model which contains components from both 
the UH and CH models and is implemented in WinBUGS®. The model has the following parameters:

Vi  ^  

L ^ V i )  =

E ( v i )  =

l o g ( ^ i )  =

P o i s ^ j)  where i
N

n

N  y iM exp{ - p i

i=l V i !

e i$ i  p i

1, 2 , . . . ,  N  and pi

log{e%)  +  fto +  Vi +  S i,

eiO i

(2.20)

where 9i is the relative risk in the ith region, ei is the expected number of events taking place in the 
ith region, v% ~  norm(p  =  0 ,0) is the uncorrelated heterogeneity, S% is the ICAR model prior and 
is the intercept term due to the requirement that the random effects in the model must sum to 0. The 
model focuses on making inference on the relative risk of each region. The following link is assumed:

log{pi) =  Vi,
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then

Pi  =  e? ,

which results in the Bayesian linear model given by:

V i  =  x i f t  +  +  V i  +  S i .

The relative risk is modelled by:

di exp +  V i  +  S i 1

where xift is not modelled as there are no explanatory variables in the data. 
The prior distribution for the vector S  is written by Lawson (2009) as:

n ( S | u )  «  - V e x p \  -

—  \  i  j e n e ,

S i  -  S j

2

which is an application of a “Markov random field.” There are various methods for weighting schemes 
for regions.

The zero-mean Gaussian prior distribution was assigned by Besag et al. (1991) to the uncorrelated 
heterogeneity v% in each region. This prior is written as:

n(v) a  0
N
2 exp

1
20

N

i=1
>

where — and 0 have these priors for the South African models:

— ~  gamma[a1, ft1

0  ~  gamma[a2 ,ft2

and the following priors for the Georgia models: 
Model 1:

— ~  gam m aya3,/3sj 

0 ~  gamma(a4,04).

Model 2:
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u  ~  g am m a(a5, 35

6 ~  gamma(a6,36)

Model 3:

u  ~  gamma(^a7,37^

6 =  constant.

The posterior distribution for the South African models have the form:

N
S , v , u , ^ \yA «  Y I

exp\ - et9i 1 I eiQ
Vi-

Vi

i=1

1
~ N  

U 2
1

2u-X —N eXP\ \ S i  — SJ
i  j e n e i

f i N ^
X0 - ^ exp l — —  v2 > X g a m m ^ « i ,^ ^  X gamma (a 2,32

26 ^r  i=1

The posterior distribution for Georgia model 1 is as follows:

n ( S , v , u , 6 \yA «  YI

Model 2:

N

i=1

exp[ - eiQi I I eiQ
Vi!

1
_ N 

U 2

1
2u-x —  exp \  —— Y Y Y  \ Si — s j

i  j e n e i

( i N ^
X0 - ^exp^ —■—  v2  ̂ X gamma( a 3 ,@̂ j X gamma(a4,34) .

n ( S , v , u , 6 \yA «
N

i=1

exp I -eiQi I I eiQ
Vi!

Vi
1

_ N 
U 2

1
2u-x —  exp \  —— Y Y Y  \ Si — s j

i  j e n e i

( 1 N ^
X0- ^ exp<̂  —■—  v2  ̂ X gamma ( a 5,3 ^j x gamma(a6,3 6).

2

2

2

75

Model 3:
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N
n ( S , v , u , 6 \yA  «  Y I

i = 1

exp I -eiQi) I eiQ
Vi !

1
~ N

U 2

1
2—X  —  e x p \  — —  ( S i  —  S j

i  j e n e i

, N  f  1 ^  A  (  \
X 6  2 exp<̂  — —  Vi  ̂ x gamma\a7, 3 7  j  X constant.

The parameters, a  and ft, are determined in Section 2.9.4. The advantage of using such a model is 
shown in Lawson (2009) as conditional moments:

£ ( S i \S - i )  =  Si

v a r(S i\S - i)  =  —
nei

S  \S-
u

N  S,„ —i
n e i

2

where S i  =  V  -S j , the average calculated over the districts of the it h  region.
n e i

j e n e i

Thus an advantage of using this model is that the conditional moments are easy to calculate and are 
functions of the regions in the study.

The justification for using both CH and UH components in the model is provided in Lawson (2009). 
The CH and UH components must be used in the model because unobserved effects within the region 
under study can arise in different forms. The UH effect is included in the model to model uncorrelated 
additional variation. In the absence of prior information, there is little justification not to include both 
effects, and it is straightforward to include both effects in the form of an additive random effect in the 
model. These effects may not be identified, but focus may be on the “total effect of the unobserved 
confounding,” then the sum of these effects can be identified and forms part of the model.

The intraclass correlation coefficient (ICC) may be calculated from the variance components of the 
UH and CH components as:

Let 6 V and 6 s  denote the variance of the UH and CH components respectively, then the “relative 
variance contribution/intraclass correlation” is given by ^  ^  , as in by Lawson (2009). This “relative 
variance contribution” is only useful when the components may be identified.

The WinBUGS® function for the ICAR model is the car.normal function. The following parame­
ters are required for the ICAR model as is copied from Spiegelhalter et al. (2003):

S[1 : N] ~  car.normal(a d j [], w e ig h t s [], n w m \\, omega),

where:
adj  [] is a vector containing the identification numbers of the neighbours of each region and is
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generated using the adjacency matrix in the mapping tool menu in GeoBUGS®(2003).
w e ig h ts  [] is a vector containing the unnormalised weights for each pair of regions and having the 

same length as the a d j  [] vector. This is generated as a vector of 1’s by assigning m ij =  1 (wij =  n r ) 
if regions i and j  are adjacent and 0 otherwise. This is the standard CAR model proposed by Besag 
etal. (1991).

n u m  [] is a vector the same length as the number of regions in the study and contains the number 
of neighbours (nei) for each region. This vector is created using the adjacency matrix in the mapping 
tool menu in GeoBUGS®R .

omega is a value which is the precision of the CAR prior or the inverse scale parameter when using 
the Laplace prior. This may be assigned a gamma prior distribution in the model.

The intercept term 3o is assigned a flat prior distribution and must be used in a CAR model that has 
random effects.

2.12.3.2 Proper CAR (PCAR) Model

Another form of the Gaussian Markov random field (GMRF) model is the PCAR model. Suppose p is 
as defined earlier and to ensure definiteness of £ , the covariance matrix, p must lie in the interval pm in  

and pm ax  such that pm ln  and pm lax  are the lowest and highest eigenvalues of M - 2 W M  2 , as mentioned 
earlier. Thus the range of p is a function of the eigenvalues of the matrix M - 2 W M 2 . This is different 
to the ICAR model where p is fixed, as explained in Spiegelhalter et al. (2003). The distribution which 
arises is thus proper assuming that the properties of M  and W  are met. A straight forward uniform 
distribution, U (pm in , pm a x ) , may be given as a hyperprior for p, as mentioned by Besag & Kooperberg 
(1995). The biggest advantage of using this type of model is that the results will be similar to those 
produced by the fully specified Gaussian covariance model because the model does not have to perform 
a matrix inversion during sampling. The model may also be used as a data likelihood as it is proper and 
the variance and correlation parameters are specified, and this is in contrast to the ICAR model which 
is improper and therefore cannot be used as a data likelihood. There are two types of specifications 
which will be considered in this research. The specifications are for the elements of the matrices M  
and W  and the parameter p. The first specification is made by Besag et al. (1991) and is used in the 
ICAR model, this specification is:

and

w ij
ner. if regions i and j  are adjacent. 

0 Otherwise.

m i
1

n e i

p  1 p m a x .
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The second specification, which is used in the PCAR model, is proposed by Cressie & Chan (1989) 
and Stern & Cressie (1999):

w i j  =

and

if regions i and j  are adjacent 

0 Otherwise.

1
'mii ,

ei

(2.21)

(2.22)

p e (p m i n  i pm a x  ) ,

where ei  is the expected number of events at the i t h  region.
The model with no trend is then written as:

^ - i  -  t (  ej  y  s
\  j e n e i

The WinBUGS® function for the PCAR model is the car.proper function. The following parame­
ters are required for the PCAR model, as is copied from Spiegelhalter et al. (2003):

S [1 : N ]  ~  car.proper(m u [], W [], a d j [], n u m [], M [], omega, p),

where:
m u [] is a vector containing the means for each region, this may be given a prior distribution, 

defined in the data or calculated within the model.
a d j  [], omega and n u m [] are the same as in the ICAR model.
W  [] is a vector of normalised weights of each pair of regions. The ICAR model used unnormalised 

weights.
M  [] is a vector containing the diagonal values of M  denoted by m ii and has length N.
p is a value which specifies the strength of the spatial dependence and is constrained by the highest 

and lowest eigenvalues of M -  2 W M 2.
The bounds are created by using the parameters of the PCAR model as:

m in( W [], a d j [], n u m [] , M []) and max( W [], a d j [], n u m [] , M []).
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2.12.3.3 Differences Between the Choice of Covariance m atrix  in ICAR and PCAR models

The difference between the choice of wij =  and w,Ji j f  is that ^  wij =  1 under wij =  -1-
j=i

whereas in w i j — this is not the case. The difference between choosing p =  pmax in the ICAR

model gives the highest spatial relationship but the covariance matrix is singular at this value, resulting 
in an improper prior distribution for the relative risk. Letting p  e  (p m i n , p m a ^  change according to 
the data results in a positive-definite matrix. The conditional correlation is also different as shown 
by Stern & Cressie (1999) with differences resulting from the choice of p  and w ij . The partial or 
conditional correlation is written as: p 2 w i j w j i  =  c o r r 2 { 9 i 9 j  | ^ i- j } . When w ij  =  n e .  and p  = 1  in

the ICAR model then: p 2 w i j w j i  =  such that the partial correlation is a function of the

number of neighbours and gives results similar to those given by the product of the partial variances.

p 2 for whenWhen w i j ^  I and p e (pmix, pmax) then the partial correlation is: p2w i j  w j i

p e (pmin, pmax) is independent of the form of m ii.

i

2.12.4 Poisson Process Model

The Poisson process model is used by Bernardinelli et al. (1995) when a disease is not contagious and 
does not often occur in the regions under study. Let {D i } , i = 1 ,  2 , . . .  N, denote the set of all events 
taking place in all regions under the study and let ei  denote the expected number of events in region i . 
Events recorded in the study should be addressed locations of each event, as stated by Lawson (2009). 
It is assumed that events are Geo-coded as a point with reference to the same scale as the entire region 
under the study and it is also assumed that all events within a region are documented.

Lawson (2009) does not consider incomplete documentation of events and model’s data documen­
ted as a heterogeneous Poisson process with a first order intensity denoted by A(s). Another assumption 
which needs to be made to use the model is that events are assumed to be “independently spatially- 
distributed” and ruled by the first order intensity, A(s). The unconditional likelihood, which requires 
events to be independent, is given in Lawson (2009) as:

where

{D i}|^ my n  A(Di |^ ) ex^ - A t )  ,

N

^  W i A ( D i |̂ ) ,

i = !

AT «
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where T  is the region under study and At is the integral of the intensity in the region, A{Di\rf)  is the 
first order intensity of events in the ith region and rf is a vector of parameters. When likelihood based 
inference is required in the study, the likelihood is maximised with reference to the parameters in the 
vector rf.

This method may prove to be challenging as the integral At may not always be easily solved. Law­
son (2009) proposes the method of numerical integration to solve this problem. Numerical integration 
is used along with assigning a weighting method to the likelihood. An example of a weighting method 
used by Lawson (2009) is:

{D i} =  £  ;J A(DiW>)j - A t ,

N

where wi is the weight and At wiA{Di\ r f ) . At is an approximation and hence a more accurate
i =!

method needs to be used. Mark & Turner (1992) approximate the integral in this equation:

l(9; x i , x 2 , . . . , x n ,  T ) =  log^Ae^  x i |F x ^ ^  - ^  A ^ x l F ^ j  dx

by using a weighted sum:

p T  N  /  \

J  A ^ x l F ^ j d x  =  w j A ^ D j l F D j j

Substitution then results in the following equation:

l(9) =  £  N hlAe  ( D j | F ^  -  Ae ( D j |F d^ J  .

It can be shown that this equation represents the “weighted log likelihood of independent Poisson 

variates with parameters Ae ^D j  |FDj^ .”

Lawson (2009) applies this method to spatial data as:

L ( W r f  =  ^  w j ( j2 -  ln ^ D k  -  A ^ D k
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where

A(u|rf)du
' T

N

E
k = i

wkA Dk |rf

where Ik is an indicator function and I k =  1 for an event and 0 otherwise. The intensity A(S |rf) may 
also be modelled by specifying the intensity in terms of two functions. The two functions are important 
as one function models the risk associated with the study region and the other function accounts for 
the core population for the study region.

2.12.5 Conditional Logistic Model

Conditional logistic regression is said by Greenland et al. (2000) to have been produced to reduce 
“sparse-data biases” resulting from the use of ordinary logistic regression. The conditional logistic 
regression is used in large samples of data but may show a significant amount of bias when there are 
too many parameters in the model or when there is no consistency in the matched sets. Lawson (2009) 
says that conditional logistic regression is used when bivariate cases arise in data, and these cases 
require conditional inference.

In this model, there are events which fall under control, denoted by yi =  0, and case events denoted 
by yi =  1, where yi is a binary variable linked with each location or address. The case events are 
defined by Lawson (2009) as Ui where i =  1 ,2 , . . .  ,b and control events are Ui where i =  b + 1 , . . .  , N  
where N  =  n +  b, the total number of events in the study. The events (case and control) are assumed to 
be distributed as a heterogeneous Poisson process model with an associated intensity parameter given 
as A(U|rf) for case events and A0(U |rf0) for control events. The addition of these events results in 
a heterogeneous Poisson process with an associated intensity parameter given by Lawson (2009) as 
A0 ^U |rf0 j  +  A(U|rf) =  A0 ^U |rf0 j  ^1 +  Ai (U |rfi) j . The case events and control events conditional 
probability at location i is given by Lawson (2009) as:

=  A0 ( U j |r fo ) Ai ( Ui|rfi )

A0 ^ Ui |rf0 ^ ^  +  Ai (Ui |rf l ) ^

=  Ai (Ui|rfi )
1 +  Ai (Ui1 rf l )

=  Pi

(2.23)

and,
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P { y i  =  ° )
1 +  Ai ( U i 1 r f  1)

1 -  P i .

1

If Equation 2.23 is used in a model then the likelihood function of case and control events becomes:

L (rf i |U) =  II P^I1 -  P i

i  e c a s e s  i  e c o n t r o l s

e x p ( n i ( Vz 

1 +  e x p i^ i )

where n  =  x i f t  and x i  is the i t h  row of a design matrix containing covariates and f t  is the associated 
vector of parameters with length P .

=

2.12.6 Binomial Model

The binomial model is used when a study is based on small regions and count data of events is measured 
within each region. Let the study be made up of a total of m  small regions with the observed count 
of each region denoted by y i . The assumption of a finite population in each region is made by Lawson 
(2009) with the population of the m  regions denoted by n i  where i =  1, 2, . . . , m. The model is then 
the observed counts conditional on the population count. Then the model is given in Lawson (2009) 
as:

y i  ~  bin(pi , n i ) ,

where pi is the probability of an event taking place in region i, i =  1, 2 , . . .  ,m,  and with a likelihood 
given as:

L { y i lP i , n i ) = n P^ (1 -  Pi)ni-m.n i

i = i  \  P i  /

A link function for the model is usually chosen. The more popular link function is the logit link 
function given in Lawson (2009) as: ( )

P i
e x P ^ i )

1 +  e x P ^ i )

2.13 Model Diagnostics

There are many different types of model diagnostics which are applied in different situations and 
dependent on the problem at hand. A misspecified model results in poor estimation and usually has no
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or limited use.

2.13.1 Deviance Information Criterion (DIC)

The Deviance Information Criterion (DIC) was proposed by Spiegelhalter et al. (2002) and is com­
monly used in goodness-of-fit (GOF) measures. The DIC is directly available in WinBUGS® and is 
calculated by:

D I C  =  2E % (D ) -  D [ E e \ y(0 ) } ,  

where D is the deviance and is given by Lawson (2009) as:

D =  2 H y l0f i t ) - i [ y l0s a t

and compares a fitted model to a saturated model and y is the data in the model. The DIC may also be 
calculated by: o |

D I C  =  D  +  pD = 2D -  D  (

where pD  is the effective number of parameters and D  is the average deviance calculated by Lawson 
(2009) as:

G

d  =  - 2  E  ( l  * *( ylB‘ ) / G ) ,
g = i

where G is the number of posterior samples and D (j) j  is the deviance of the posterior expected para­

meter estimate 0, and is calculated by:

D (0) =  - 2 l(y |0).

Lawson (2009) states that models may have an incorrect pD  when the overdispersion in the model 
results in D ^  > D . This may also be caused by the poor choice in the hyperpriors of the hierarchical 
model and poor choices of variances in prior distributions. A more robust method to calculate the 
effective number of parameters based on the posterior variance of the deviance is given in Gelman 
et al. (2014) as:

1 1  G 2
pd  =  2 G r r  E  ( D (y,0,J) -  D )  •

g=i

1 G 2
var(D)  =  g ^ y  E  ( D (09) -  D)  =  2pD,

g=i

which is derived from the output of an MCMC chain. Another method which can be calculated from
the output of the MCMC chain is an estimator of the variance and is given by Lawson (2009) as:
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and then the DIC becomes:
D I C  =  D  +  var(D).

2.13.2 Posterior Predictive Loss

Gelfand & Ghosh (1998) introduced a criterion for model choice by minimising the posterior loss for 
a known model and then selecting the model under the study which minimises the criterion. Let y* 
denote the ith observation from the predictive data and let 0 (,) denote all the parameters at the j th 
iteration in the MCMC. Then y* is calculated by Lawson (2009) as:

n (y * |y) =  J  n (y * |0 (j)) n (0 (j)|y ) d 0 (j).

This is calculated for the model with a Poisson likelihood by assigning: y* ~  Pois^(ei0 ĵ'>). The 
squared error loss can then be defined as:

L *(y,y *) =  (y -  y * Y ,

where L * (y, y*) =  f ( y , y*
The mean squared predictive error (MSPE) can then be written by Lawson (2009) as:

M S P E ,  =  E { i s  -  y * ) '

n T

where nT is the sample size. The overall MSPE is then calculated by:

(y i -  y*,)2M S P E  =
i , nT x G

where G is the “sampler sample size.” The mean absolute predictive error (MAPE) can also be calcu­
lated as:

M A P E ,  =  J ]
i

|y*-  y*j I
nT

and the overall MAPE is then:

M A P E  = |y  -  y*, I
nT x Gi ,

The model with a smaller MAPE or MSPE would be the better model to use. The MAPE and 
MSPE are calculated for all the models in this study and are based on the method used by Lawson 
(2009).
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2.13.3 Assessing Relative Risk

The risk of each region may be assessed using an exceedance probability. The exceedance probability 
may also be used to detect and assess unexpected clustering or accumulation of the disease in the 
model. The most basic form of the exceedance probability is denoted by Lawson (2009) as:

q C  =  P  ( 0 i  > c ) .

This is thus an estimate of the number of times the relative risk surpasses the relative risk of 1, 
0i =  1, which is referred to as the “null risk value.” The exceedance probability can be a tool used 
to check for ’hot- spot’ clusters and regions which have a higher risk than usual. After a MCMC 
has run and convergence for the sample has been reached, let the converged sample be denoted by: 
{0Nb+i, 0Nb +2, . . . ,  0Nb +np}, as in Lawson (2009). Then the exceedance probabilities are calculated
as:

)  =  ^  I  (0“  >c)
9 = N b +  i

G

where G  =  n p . The average of q l  for each region will yield the posterior expected exceedance pro­
bability which is denoted as PP. High values of q l  indicate that a region has a high and unusual risk. 
Lawson (2009) warns that the PP may be model dependent which is the result of the PP being applied 
to any underlying model.

The value of the parameter c  in qiC must be specified, which may cause a problem in the calculation 
of q l .  Let the exceedance probability of interest be denoted by P , this is the probability in which is 
said to be unusual in the model. Then there is a trade-off between c  and P  . Different values of c  will 
lead to different unusual exceedance probabilities which in turn affect P  as exceedance probabilities 
are compared to P  to determine if the exceedance probability is unusual. Thus the value of P  or c  must 
be fixed.

2.13.4 Residuals

2.13.4.1 Overview

A common technique used in a model goodness-of-fit is the analysis of the residuals of the model. The 
residuals represent the difference between the observed value and the expected value, this difference 
is known as the deviance, as defined by Lunn et al. (2012). Residuals may be used to analyse various 
short falls in the model, some of which are named in Lunn et al. (2012) as: autocorrelation, the shape 
of the distribution and the fit of the model. The general case of a residual is defined as:

rm =  yi -  yi, (2.24)
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where yi is the fitted value of the model.

2.13.4.2 Pearson Residuals

The standardised form of the Pearson residual is well-known and defined as:

y i -  ^ y i |0)

where y i  is the i t h  observed value, E (yi | ^  is the expected value of the i t h  observed value given the 

parameter 0 and v a r ( y i l0^ is the variance of the i t h  observed value given the parameter 0.  The Pearson 
residual, rp , has a mean of 0 and a variance of 1 and thus the residuals are assumed to occur between 
-2 and 2, as explained by Lunn et al. (2012).

2.13.4.3 Bayesian Residuals

The Bayesian residual is defined by Lawson (2009) as:

1 G

r B i  =  y i  -  G  E  E (y i | 0 ? >)  ,
G g= i

where 0 (g) is a vector of values resulting from the sampling of the posterior distribution and 
is the expected value resulting from the output of the posterior distribution.

In the case of a model with a Poisson likelihood with mean parameter e i 0i , the Bayesian residual 
can be approximated by:

1 G

r B i  y i  G  )  '  e i 0i

G  g= i

for the case when a constant region rate is applied to the model. Another parameterisation is to use 
the posterior expected value, e i 0i , as the fitted value and then the Bayesian residual is calculated in 
Lawson (2009) as:

r  B i  y i  e i  0i ,

which follows from Equation 2.24.

2.13.4.4 Deviance Residuals

The deviance residual is defined by Lunn et al. (2012) as:

r d i  =  s i g n ^ / D i , (2.25)
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where s ig n  is the ith sign of the result of yi — y i and Di is the ith standardised deviance defined as:

D (0 ) =  E Di(e) =  —2l°g n (y |0) +  2l°g n (y |0i(y)) (2.26)

where 0i(y) is the “saturated estimate” as in Lunn et al. (2012).

Theorem 2.10. The standardised deviance for the Poisson distribution when yi ~  P°iss°n(0i) is:

D(»)  =  2
i=i

y i l ° g
yi
i

yi (2.27)

Proof. Let 0i denote the ith maximum likelihood estimate of the fitted model and let 0i =  yi under the 
saturated model. The likelihood of the fitted model is then:

N eXP\ 0 i )0T
l [ 0i [yA  = n  ■

i=i yi

and the likelihood of the saturated model is:

N  ex p [  —0i ) 0 ; 

L h i ' i y A  = n  -

y i

i=i yi

The log likelihood of the fitted model is then:

N

l ( 9i |yi ) = Y ^
i=i L

yil°g[0i) — 0i — l°g

and the log likelihood of the saturated model is:

N

l( ̂ y i )  =Y1
i=i L

yi l°g[0i) — 0i — l°g

Substituting the log likelihoods into Equation 2.26 results in:

D(0)
2 E

i=i L
y i l ° g [ 0 ■. \  — l°g

+  2 E
yil°g 0i — l°g

2 l ° g [ y i ! y i l ° g i +  (9i +  y il ° g

2 +  y i l ° g \  t

i
i .

di — l°g
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Since Bi =  yi under the saturated model, then the deviance is:

n
D(O)  = 2 £

i=l
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Chapter 3

Data Analysis

3.1 Data Protection and Privacy

The sensitive nature of the data used in health research is critical. Health data may contain significant 
amounts of personal information which require confidentiality. Medical records are often difficult 
to access due to current legislation. Government and Departments of Health may also be reluctant 
to release this data as it has a susceptible nature. Elliott & Wartenberg (2004) explain that current 
legislation in the United States is the Privacy Rule introduced by Department of Health and Human 
Services (2002) which came into effect from 2003 and is part of the Health Insurance Portability and 
Accountability Act (1996). This legislation prevents epidemiology studies somewhat as data cannot 
be used if the initial intention that it was collected for was for a different purpose, although consent 
may be given to use the data depending on the circumstances. The legislation in the United Kingdom 
allows for this data to be used although security and safe practices to protect the data must be put into 
place. The nature of epidemiology studies makes them an important part of health research and as 
such, legislations are often changed.

Another problem in spatial studies, according to Elliott & Wartenberg (2004), is that certain studies 
break the privacy of the communities and neighbourhoods in their study regions. For example, regions 
with a high disease rate may cause many residents to move to other communities or regions or the 
property values of that region will decrease significantly. Thus the introduction of legislation into 
these studies is vital for the protection of data but also for the growth of medical research.

Historically, legislation for the protection of personal information was poor in South Africa. The 
growth of industries, information technology and storage options resulted in a change in South Afri­
can Law to protect private information. The introduction of the Protection of Personal Information 
Act No. 4 introduced in 2013, according to South African Government (2013), changed the way in 
which personal data is protected. The Act states that personal information relates to any information 
regarding “education, medical, financial, criminal or employment history of a person” and includes 
many other topics. Other legislation relating to the confidentiality of medical records are given by

89
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DLA Cliffe Dekker Hofmeyr (2012) under the Health Professions Act, No. 56 (HPA) introduced in 
1974. This Act relates to health care providers and provides guidelines and rules which are set by the 
Health Professions Council of South Africa (HPCSA). The Act prevents medical staff from sharing 
patient information without the patient’s consent. DLA Cliffe Dekker Hofmeyr (2012) says that the 
information can be shared when there are:

1. “Statutory provisions” in place.

2. Instructions to do so by a court or law.

3. Justifications that the information is in the public interest.

HPCSA also provides guidelines for the safe storage of patient information as is required by the Na­
tional Health Act, No. 61 introduced in 2003. Other Acts and legislation relating to privacy and data 
protection can be found in the South African Law Reform Commission (2005).

Other data limitations are mentioned in Pickle (2002). In spatial research, many data limitations 
arise from the ability to track and identify patients from mortality data that are downloadable from 
Departments of Health. This makes it difficult to download data since this information must be by law, 
confidential. There are a few methods available to cover identities of patients which have recently been 
developed.

The identification of patients is evident in the United States as the data sets are small and thus 
the National Center For Health Statistics does not release mortality data for a county over a year, this 
information may be published over several years.

Another problem mentioned by Pickle (2002) is that covariate data may not be available or collected 
with the mortality data. Information about confounder variables such as lifestyle, family history and 
other variables are not collected and these variables may have a significant impact on the results of 
research. Environmental factors such as climate, the level of pollution, water quality and exposure to 
dangerous chemicals are also rarely used and not collected.

Another limitation is medical records of patients which may release more information about a 
disease but may not be used because of privacy and confidentiality.

3.2 Calculation of Expected Values

The expected values are calculated for the Georgia data based upon the statewide incidence rate. The 
standard population is selected as the population of Georgia as all counties in the study are a subset of 
the Georgia population. The population of each county is recorded along with the number of deaths. 
The total number of deaths in Georgia will be the sum of all the deaths in all of the counties. The
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expected values will be calculated by:
N
£  Vi
i =  1ei =  m i—-----

£  m i
i= 1

where m i is the population in the county. The mid-year population estimates by county for Georgia 
are given in Tables B.1 and B.2 in Appendix B.1.

The expected values for the South African data are calculated in the same way as the Georgia 
expected values are calculated. Both sets of expected values are calculated in RStudio®(2015). The 
South African data used for the calculation are given in Table 3.1.

Table 3.1: The mid-year population estimates in South Africa by province in 2014.

Province Population
Eastern Cape 6786880

Free State 2786757
Gauteng 12914817

KwaZulu-Natal 10694434
Limpopo 5630464

Mpumalanga 4229323
North-West 3676274

Northern Cape 1166680
Western Cape 6116324

Total 54001953

3.3 Georgia Data

Georgia was founded as a British colony in 1733 which makes the state the youngest of the 13 British 
colonies, according to Reese (2010). The name Georgia was derived from George II who arrived on 
the land in 1733. The capital of Georgia is Atlanta. Georgia is most famous for its plantations and had 
the most number of plantations in the South by the 1950s.

The oral cancer for Georgia in 2004 by county is listed in Tables B.3 and B.4, the data can be found 
from the Georgia Department of Public Health Data Warehouse available at ( h t t p s : / / o a s i s . s t a t e . 
ga .u s ) . Figure 3.1 shows the observed deaths in each county. The expected values are calculated based 
upon the statewide incidence rate.

https://oasis.state.ga.us
https://oasis.state.ga.us
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Figure 3.1: The observed number of deaths of oral cancer in Georgia in 2004.

3.3.1 Cancer

3.3.1.1 Overview

Cancer results in the second highest number of deaths worldwide after cardiovascular disease, accor­
ding to Sudhakar (2009). Recent breakthroughs in treatment and technology have lead to a reduction 
in the number of deaths caused by cancer. Early identification is a major factor in the survival rate of 
a patient who has cancer as treatment methods may not be effective against cancer in later stages of 
tumours.

Cancer has been identified as early as 1600 B.C in Egypt. This was human bone cancer as stated by 
Sudhakar (2009). Other early records of cancer were found in manuscripts also in Egypt. There was 
no treatment available historically, surgery may have been performed for surface tumours but survival 
was still low after surgery.

Cancer is caused by the rapid growth of cells in a region of the body, and the growth becomes 
uncontrollable. Although cancer may be formed in many regions of the body and there are numerous 
types of cancer, the common characteristic is cells which proliferate, split and continue to split when 
healthy cells would die off and new cells would grow to replace the dead cells as written by Sudhakar 
(2009). Cancer may be spread through blood and veins and cells may travel from one region of the 
body to another region via the blood and start to grow in this region.
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One of the causes of cancer is thought to be a damaged deoxyribonucleic acid (DNA) which should 
be repaired by the body but is not repaired, another cause may be due to the inheritance of damaged 
DNA through family or damaged caused by lifestyle as mentioned by Sudhakar (2009). Depending on 
the type of cancer, a solid tumour is often formed, but in some cancers, a tumour may not be formed. 
One example of this type of cancer is leukaemia, where cancer cells occur in the blood. Some tumours 
which grow are not cancerous and are referred to as noncancerous or a benignant tumour.

3.3.1.2 Treatm ent

The removal of cancer via surgery meant that sometimes cancer would be able to reoccur and tumours 
could grow again. The discovery of anaesthesia in 1846 resulted in a breakthrough in cancer treat­
ment. Surgeons, named by Sudhakar (2009) as Bilroth, Handley and Halsted started to remove cancer 
tumours along with the lymph nodes. A surgeon named Paget, later discovered that cancer could be 
spread from a tumour to another part of the body through the blood, this is referred to as metastasis.

Methods to treat cancer were later developed and are named in Sudhakar (2009) as Chemotherapy, 
Hormonal therapy, Radiation therapy, Adjuvant therapy and Immunotherapy.

3.3.1.3 O ral Cancer

The term oral cancer used in this research refers to malignant neoplasms of lip, oral cavity and pharynx 
as specified by Georgia Department of Public Health Data Warehouse available at ( h t t p s : / / o a s i s . 
s t a t e  .g a .u s ) . Oral cancer is defined by Kirita & Omura (2015) as a malignant neoplasm that grows 
in the oral region of a body. The oral region of the body is exposed to constant bacteria present 
in the environment, exposure due to smoking, pollution as well as chemicals present in food and 
alcohol. Other exposures named in Kirita & Omura (2015) are “mechanical stimuli” and are “ill-fitting 
prosthetic appliance” and are identified by several conditions which fall under carcinogenesis.

Early identification of cancer is vital in the treatment and survival of the cancer patient as outlined 
in Section 3.3.1.1. This identification is easier in oral cancer than in other cancers as identification of 
oral cancer can be made by a combination of palpation and optical observation. Oral cancer may be 
spread to other parts of the body which is also another reason for early detection.

3.3.2 Georgia Model

3.3.2.1 Model Param eters

The model with both UH and CH components is referred to as the convolution model, where the CH 
component is modelled using an ICAR prior and is used to model the Georgia data and is proposed 
by Lawson (2009). The number of iterations are set at nT = 50000 and the burn-in period is set 
at N b = 12000. Convergence is visually checked in the trace plots and the kernel densities of the

https://oasis.state.ga.us
https://oasis.state.ga.us
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relative risks are analysed and model diagnostics are performed. The model fit for each model will be 
accessed using a quantile-quantile (Q-Q) plot of the deviance residuals. The deviance residuals of a 
model perform similarly to ordinary residuals in a “standard normal-theory linear regression model,” as 
proposed by Montgomery et al. (2015). The SMR is smoothed by assigning a prior distribution to the 
calculation of the SMR values. A further nA =  20000 iterations are used for each model to calculate 
the DIC. The code for the Georgia model is written by Lawson (2009) and modified to produce the 
following models.

3.3.2.2 Conjugate P rior

The Georgia model with a conjugate prior for the precision of the uncorrelated heterogeneity, deno­
ted by v in Section 2.12.3.1, is assigned a conjugate hyperprior distribution for the precision. This 
model will be referred to as model 1. The conjugate hyperprior distribution is a gamma distribution 
as the data is assumed to follow a Poisson distribution and the posterior distribution is also a gamma 
distribution. The parameters of the conjugate prior are derived from the data, this is done in Section 
2.9.4, and resulted in parameters with values of a = 0.3139 and ft = 0.2329, respectively. The CH 
component is modelled by the ICAR prior which has a gamma hyperprior distribution for the precision 
with parameters with values of a =  0 .1 and ft =  0 .0001, respectively.

Table 3.2: An analysis of the burn-in period for model 1.

County Percentage
Bryan 0.7544
Clinch 0.7688
Coweta 0.7419
Early 0.7856
Glynn 1.0949

Jackson 1.0953
Jenkins 1.4500
Liberty 0.8640

McIntosh 0.8004
Monroe 0.5864

Richmond 0.7264
Spalding 0.9011
Taliaferro 0.6182

Union 0.9019
Warren 0.9035
Wilkes 0.6282

A rule of thumb proposed by Woodward (2016) is that the burn-in period should be such that the 
Monte Carlo (MC) error is less than 5% of the standard deviation for a statistic. Approximately 10% 
of the counties in the model are randomly selected as the number of counties in the model are too
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numerous to list in a table. These randomly selected counties are given in Table 3.2 and it may be seen 
that all the selected counties have an MC error which is less than 5% of the standard deviation for the 
relative risk and thus the burn-in period of Nb =  12000 may be considered as sufficient. Other results 
based on this model can be found in Appendix C.1.

The convergence of the model is assessed by the trace plots and kernel densities. Figures C.3 and 
C.4 show the trace plot and kernel densities for a sample of randomly selected counties as there are 
too many counties to include all of them in the results. These randomly selected counties will remain 
the same for the three models to make the comparison easier. The convergence for the model is easily 
seen in the trace plots in Figures C.3 and C.5 and the kernel densities in Figure C.4. The trace plot of 
the deviance in Figure C.5 also shows convergence.

Model fit was assessed using a Q-Q plot of the deviance residuals, Figure C.1, and a histogram of 
the Bayesian residuals, Figure C.2. The calculation of the Bayesian residuals is outlined in Section 
2.13.4.3. Figure C.1 shows that the model fits the data adequately although there is evidence that the 
model has heavy tails. The histogram of the Bayesian residuals, Figure C.2, also shows that there is 
evidence that the Bayesian residuals have heavy tails. Other model fit statistics are given in Table 3.3. 
Selected results of the deviance residuals are given in Table C.1.

The calculation of the deviance residuals is given in Section 2.13.4.4. The deviance residuals are 
implemented in WinBUGS® by calculating the deviance contributed by each county using Equation 
2.27 in Section 2.13.4.4. Equation 2.27 is implemented in WinBUGS® as: Ds[i] < —2 * ((y[i] * 
log(y[i]/mu[i])) — (y[i] — mu[i])). The next step is to determine the sign in Equation 2.25 which 
requires the step function in WinBUGS®. The step function performs similarly to an i f  statement in 
other programming languages. The step function returns a value of 1 if the result from the variables 
inserted into the function are greater than or equal to 0 and will return a value of 0 otherwise. The code 
to determine the sign is: sign[i] < —2 * step(y[i] — mu[i]) — 1. The step function will thus return a 
value of 1 if the result of y [i] — mu[i] is greater than or equal to 0 and will return a value of 0 otherwise. 
The result of the step function will then be multiplied by 2. Thus if the step function returned a value 
of 1, it would be multiplied by 2 to give 2 and if the step function returned a value of 0, it would be 
multiplied by 2 to give 0. The last part is to subtract 1, then if we have a value of 2 and subtract 1, the 
result will be a 1 and if we have a value of 0 and subtract 1 the result will be -1. This then completes 
the sign part of Equation 2.25. The deviance residual contributed by each county is thus calculated by 
the following code: dev.res[i] < —sign[i] * sqrt(Ds[i]). The code for the calculation of the deviance 
residuals is written by Lunn et al. (2012).
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Table 3.3: The model diagnostics of model 1.

Statistic Mean Standard
Deviation

Monte 
Carlo E rro r

95% Confidence Interval
2.5% 97.5%

MAPE 0.9933 0.0869 8.514E-4 0.8302 1.17
MSPE 2.752 0.701 0.004819 1.736 4.465

Deviance 378.1 15.52 0.3272 348.3 408.7
pE 0.7719 0.06582 0.001917 0.6381 0.8941
pV 0.2016 0.07488 0.003093 0.06286 0.3495
p s 0.02651 0.04703 0.002974 3.614E-5 0.163

Moran’s I 0.006929 0.03249 7.83E-4 -0.06331 0.06427
DIC 416.772
pD 38.704

Dbar 378.068
Dhat 339.364

The model diagnostics of model 1 are given in Table 3.3 and will be used to make comparisons 
with the other two models for the Georgia data. The MAPE and MSPE are calculated for all three 
models and the method of the calculation is explained in Section 2.13.2.

The calculation of the MAPE and MSPE statistics are easily accomplished in WinBUGS®. The 
predicted value, denoted by yj , is determined by assuming that the predictive values have a Pois­
son distribution and thus: yj  ~  Poiss^ b̂ ) . In WinBUGS®, this is accomplished by: ypred[i] ~  
dpois (^ [i] ) . The numerator of the equation used to calculate the MAPE is |y — yj  | which is implemen­
ted in the model as: PPL2[i] < —abs(ypred[i] — y[i] ) , where the function abs results in the absolute 
value. The MAPE is then calculated by averaging the sum of PPL2 as: MAPE =  mean( PPL2 [ ] ) . 
The MSPE is calculated using the pow function as: PPL[i] < —pow(ypred[i] — y[i] , 2) which is the 
numerator, (y  ̂ — yj ) 2, in the equation for the MSPE. The MSPE is then obtained by averaging the 
sum of PPL, as: MSPE < —mean( PPL[]).

The statistics, denoted by pE, pV and pS, represent the proportion of the total variation in the mo­
del due to the expected values, unobserved non-spatial factors and unobserved spatial factors, respecti­
vely. The calculations of these statistics are based on the method of Lunn et al. (2012). The calculation 
requires the log of each expected value to be calculated, this is done by: Lexp[i] < —log(e[i] ) , where 
e[i] is the expected value of the ith county. This code needs to be executed within the model Loop. The 
standard deviation of the log expected value, UH component and CH component are then calculated by: 
sdE < —sd(Lexp[ ] ), sdV < —sd(v[]) and sdS < —sd( S [ ] ), respectively. The sum of each of the va­
riances is required to calculate the proportions, the sum is: sum < —sdS*sdS+ sdV*sdV+ sdE*sdE. 
Each proportion is then calculated by dividing the variance of each statistic by the sum of the variances 
of all the statistics. The code required is: pS < —sdS * sdS/sum, pV < —sdV * sdV/sum, and 
pE < —sdE * sdE/sum for the proportion of the unobserved spatial factors, unobserved non-spatial 
factors and variation due to the expected values, respectively. There is 77.19% of the total variation in



CHAPTER 3. DATA ANALYSIS 97

the model due to the expected values and is represented by pE . The proportion of the total variation 
in the model due to the unobserved non-spatial factors, pV, is 20.16% and the proportion of the total 
variation in the model due to unobserved spatial factors, pS, is 2.651%.

The deviance is calculated using the built in deviance function in WinBUGS® and is calculated as
378.1.

The DIC is also calculated by a built in function in WinBUGS® and based on a further nA =  20000 
iterations after n T =  50000 iterations are run. The DIC is 416.772.

The posterior average estimate of the Moran’s Autocorrelation Coefficient has been calculated for 
the Georgia models. The calculation of the Moran’s Autocorrelation Coefficient is given in Section
2.4.2. The calculation of the posterior average estimate of the Moran’s Autocorrelation Coefficient 
requires a significant amount of computations and there is a high computation time associated with 
the calculation. Since there is a large amount of computation involved in the calculation, we have 
performed some of the calculation in RStudio® and the rest of the calculation in WinBUGS®. The 
first part of the calculation, which is done in RStudio'®, is to calculate the cumulative sum of the 
neighbours of all of the counties, with the first neighbour of the cumulative sum given the value of 0, 
csum[1] <  —0. The cumulative sum is the cumulative sum of the number of neighbours vector. The 
number of neighbours, denoted num[],  is produced using the adjacency tool in GeoBUGS®. The 
cumulative sum of the neighbours is used to select the elements of the residuals for the calculation. 
The code for the cumulative sum is:

csum < — rep(0, 160)

csum[1] < — 0

for(i in 2 : (159 +  1)) {
csum[i] < — sum(num[1 : (i — 1)])}

The loop starts at 2 since the first neighbour of the cumulative sum is given the value of 0. The next 
step, which is also done in RStudio'®, is to determine which elements of the neighbouring residuals 
will be selected. The code to determine the index of the elements which will be selected is as follows:

x < — rep(0, 159)

g < — rep(0, 159)

for(i in 1 : 159) {
x[i] < — csum[i] +  1

g[i] < — csum[i +  1]}

where x [i] is the lower index of the element which will be selected for the ith county and g[i] is the 
upper index of the element which will be selected for the ith county.
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The results produced in RStudio® are then inserted into WinBUGS® as data, these results are the 
cumulative sum of neighbours and the lower and upper indexes for the elements of the neighbouring 
residuals that will be selected.

The first step in the WinBUGS® part of the calculation is to determine the standardised Bayesian 
residuals, this is done by: r e s [ i ]  <  — (y[i]  — m u [ i ] ) / s q r t ( m u [ i ] ) .  The next step is to produce the 
adjacency matrix, W e [ ] ,  of the residuals for the neighbouring counties. The code is:

f o r ( k  i n  1 : s u m N u m N e i g h )  {

W e [ k ]  <  — r e s [ a d j  [k]]} ,

where s u m N u m N e i g h  is the sum of the number of neighbouring counties, s u m ( n u m []). The sum 
of the neighbouring residuals is then calculated by: e s t a r [ i ]  <  — s u m ( W e [ x [ i ]  : g [ i ] ] ) , where x [] 

and g [] are inserted as data and calculated in RStudio®. The difference between the i th residual value 
and the mean residual value is then calculated as: d e [ i ]  <  —r e s [ i ]  — m e a n ( r e s [ ] )  and the difference 
between the i th neighbouring residual and the mean of the neighbouring residuals is: d . e s t a r [ i ]  <  

—e s t a r [ i ]  — m e a n ( e s t a r [ ] ) .  The numerator of Equation 2.2 is calculated as: d t[ i ]  <  —d e [ i ]  * d . e s t a r [ i ]  

and the denominator of Equation 2.2 is calculated as: db[i]  <  —p o w ( d . e s t a r [ i ] ,  2 ) and the estimate of 
the Moran’s Autocorrelation Coefficient is then the numerator divided by the denominator: M o r a n  <  

— s u m ( d t [ ] ) / s u m ( d b [ ] ) .  The estimate of the Moran’s Autocorrelation Coefficient is 0.006929 which 
indicates that there is little autocorrelation left in the model after the model has been fitted.

Figure 3.2: The SMR for model 1.
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The SMR in Figure 3.2 has been smoothed by assigning a prior distribution to the calculation of 
the SMR. The smoothing is proposed by Lawson (2009) in which a prior distribution, denoted by 
eps2, is included in the calculation of SMR. The code for the calculation is: smr [i] < — (y[i] +  
eps2)/ (e[i] +  eps2) where the prior distribution is assigned as follows: eps2 ~  dnorm(0, 1000). This 
prior results in very small values being added and subtracted to the numerator and denominator of the 
SMR calculation. Figure 3.2 shows that there are eight counties which experience relatively high SMR 
values and are listed in Table 3.4.

Table 3.4: The selected results of the SMR of model 1.

County
SMR 95% Confidence 

IntervalMean Standard
Deviation MC E rro r

2.5% 97.5%
Glascock 12.550 2.258 0.005733 10.374 16.740

Taylor 13.790 1.960 0.009412 10.780 18.360
Wilkinson 12.100 1.473 0.007073 9.758 15.480

Stewart 8.713 9.210 0.045610 5.733 15.310
Irwin 8.276 0.994 0.004769 6.706 10.560
Cook 7.515 0.525 0.002519 6.606 8.654

Jeff Davis 9.563 0.885 0.004249 8.086 11.530
Jenkins 9.524 1.359 0.006531 7.458 12.710

The highest SMR values occur at Glascock and Taylor with posterior expected SMR values of 
12.550 and 13.790, respectively. The high SMR value for Glascock is a result of a lower expected 
number of deaths of 0.065 and this combined with 1 death in the county result in a high SMR value. 
Taylor has 3 observed deaths and an expected value of 0.2218. This low expected value relative to a 
high number of deaths results in a high SMR value. This is one of the disadvantages of using the SMR 
as mentioned in Section 2.5.3.2.

Another disadvantage of using the SMR is that counties with a 0 observed number of deaths result 
in a SMR value of 0 (without smoothing), irrespective of the value of the expected number of deaths 
and is illustrated in the disease map in Figure 3.2.

Counties with relatively high observed values and a small expected value result in a large SMR 
value.
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Figure 3.3: The relative risk for model 1.

The “null risk value,” which is a relative risk value of 1, is usually the value in which there is no 
difference in the experimental and control groups. In this case, there would be no difference between 
the study region and the standard population. A relative risk value which is less than one indicates that 
there is a lower probability of the event of interest occurring in the study county than what we would 
expect from the standard population and a relative risk value which is higher than 1 indicates that there 
is a higher probability of the event of interest occurring in the study county than what we would expect 
from the standard population. There are 88 counties which are between 1-1.5 which means that there 
is a higher probability of deaths occurring in these counties than what would be expected from the 
standard population. Some of the 88 counties may have a relative risk which is marginally higher than 
1 or equal to 1 and thus would not be significant enough to indicate a high risk of contracting and dying 
from oral cancer. There are 45 counties which have a relative risk which is less than 1 and we would 
expect that the probability of a death occurring in these counties is lower than we would expect from 
the standard population. There are 9 counties which have a relative risk more than or equal to 2, these 
counties are given in Table 3.5. It would be expected that there is a higher probability of a death taking 
place in these counties than in the standard population.
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Table 3.5: The selected results of the relative risk of model 1.

County
Relative Risk 95% Confidence 

IntervalMean Standard
Deviation MC E rro r 2.5% 97.5%

Wilkinson 2.839 1.871 0.02259 0.8008 7.772
Jeff Davis 2.705 1.704 0.01946 0.7812 7.131

Taylor 2.934 2.010 0.02557 0.8113 8.271
Jenkins 2.246 1.552 0.01777 0.5931 6.394
Tattnall 2.235 1.244 0.01270 0.7088 5.393
Irwin 2.187 1.450 0.01693 0.5886 6.005
Cook 2.498 1.519 0.01626 0.7353 6.413
Dooly 2.091 1.335 0.01404 0.5848 5.571
Upson 2.030 1.091 0.01059 0.6653 4.848

Taylor has the highest relative risk with a relative risk of 2.934, this follows from the results of 
the SMR. The relative risk is also higher than 1 which would indicate that there are more deaths in 
the county than we would expect from the standard population. All of the counties in Table 3.5 have 
relative risks which are higher than 1 and thus the same can be concluded.

Figure 3.4: The posterior expected exceedance probability for model 1.

The calculation of the PP is outlined in Section 2.13.3. The code to calculate the PP involves using 
the s t e p  function in WinBUGS®. The calculation ofthePP is as follows: P P  [i] <  — step(theta[i] —1 +
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eps), where theta[i] is the relative risk in the ith county and eps < —0 .000001 is the prior distribution. 
The step function will return a value of 1 if theta[i] — 1 + eps > 0 and will return a value of 0 when 
theta[i] — 1 + eps < 0. The PP is then averaged over the number of samples of the model.

The PP gives an indication of which counties would be expected to have unusual or unexpected 
clusters in the disease. The disease map of the PP follows from the disease map of the relative risk in 
that the counties with high relative risk also have a high PP value. There are 12 counties which have 
PP values which are less than 0.2. Most of the counties show that there is little evidence of clustering 
in the Georgia data for model 1. There is 1 county which has a PP value greater than or equal to 0.95. 
Counties which have high PP values are given in Table 3.6.

Table 3.6: The selected results of the posterior expected exceedance probability of model 1.

Posterior Expected Exceedance Probability

County Mean Standard
Deviation MC E rro r

Richmond 0.9516 0.2145 0.001118
Jenkins 0.8537 0.3534 0.002379
Tattnall 0.9021 0.2972 0.002074

Jeff Davis 0.9331 0.2499 0.001806
Coffee 0.8476 0.3594 0.002523
Irwin 0.8526 0.3545 0.002862

Berrien 0.8137 0.3894 0.002679
Cook 0.9174 0.2753 0.001860
Dooly 0.8432 0.3636 0.002803
Taylor 0.9418 0.2341 0.001536
Upson 0.8745 0.3313 0.001973

Whitfield 0.8616 0.3453 0.002176
Wilkinson 0.9376 0.2419 0.001684

The highest PP value for model 1 is the Richmond County which has a PP value of 0.9516, this 
may indicate that there is unusual or unexpected clustering in the county. The confidence intervals for 
the PP are not given in Table 3.6 as all of the confidence intervals have a lower bound of 0 and an upper 
bound of 1.

Using the notation from Section 2.13.3, let the threshold level be c = 1  and the exceedance pro­
bability of interest be P = 0.95. There is only 1 county which exceeds the exceedance probability of 
interest, 0.95, which is Richmond and thus there may be evidence of unusual or unexpected clustering 
occurring in this county although further investigation is necessary to prove this and is not covered in 
this thesis. The PP value of Richmond only marginally exceeds 0.95 so evidence for clustering may be 
insignificant but still needs further investigation.
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3.3.2.3 Jeffreys’ P rior

This model will be referred to as model 2. This model also has the CH component modelled by 
the ICAR prior with a gamma hyperprior distribution for the precision with parameters of a = 0.1 
and P = 0.0001, respectively, the same parameters as model 1. The hyperprior distribution for the 
precision of the UH component is modelled by a gamma distribution with parameters of a  =  0.5 and 
P = 0.0001, respectively, which are the parameters of the Jeffreys’ prior.

Table 3.7: An analysis of the burn-in period for model 2.

County Percentage
Bryan 0.7981
Clinch 0.8742
Coweta 1.3595
Early 1.1788
Glynn 1.4469

Jackson 1.6961
Jenkins 1.3726
Liberty 0.9528

McIntosh 0.8075
Monroe 0.7489

Richmond 0.9866
Spalding 1.1233
Taliaferro 0.7990

Union 0.9316
Warren 1.0775
Wilkes 0.8325

Table 3.7 shows the proportion of the MC error to the standard deviation for the relative risk of 
model 2. All of the proportions are well below 5% and thus the burn-in period is adequate at NB =  
12000.

The convergence of model 2 will be assessed by trace plots and kernel densities, as was the case for 
model 1. The trace plots and kernel densities for model 2 are given in Figures C.8 and C.9 in Appendix 
C.2. The trace plots and kernel densities show that the model does converge. The model fit is assessed 
by the Q-Q plot of the deviance residuals and a histogram of the Bayesian residuals. Other model 
fit statistics are given in Table 3.8. The Q-Q plot, Figure C.6, shows that the model fit is adequate 
although there is evidence of heavy tails, as in model 1. The histogram of the Bayesian residuals also 
shows the heavy tails which can be seen in Figure C.7.

The DIC will be compared with the other models to determine which model is the better model to 
use when analysing the Georgia data.
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Table 3.8: The model diagnostics of model 2.

Statistic Mean Standard
Deviation

Monte 
Carlo E rro r

95% Confidence Interval
2.5% 97.5%

MAPE 1.021 0.08917 0.001344 0.8553 1.201
MSPE 2.843 0.6853 0.006855 1.811 4.459

Deviance 386.7 15.63 0.5154 355.5 416.8
pE 0.8092 0.06853 0.002589 0.6679 0.9306
pV 0.05832 0.07442 0.00455 6.795E-5 0.2573
p s 0.1325 0.07661 0.004055 0.001683 0.2905

Moran’s I -0.01164 0.0342 0.001063 -0.08282 0.05126
DIC 419.436
pD 32.046

Dbar 355.343
Dhat 387.390

The model diagnostics of model 2 are given in Table 3.8. The proportion of unobserved non­
spatial factors, pV, is 5.832% of the total variation in the model which is 14.328% lower than model 
1. This is the result of changing the parameters of the hyperprior distribution of the precision of the 
UH component in model 2. The proportion of unobserved spatial factors, pS, is 13.25% of the total 
variation in the model, compared with 2.651% in model 1. This is a difference of 10.599% which 
shows that the CH component is dominant over the UH component in model 2, whereas in model 1 the 
UH component was dominant over the CH component.

The MAPE and MSPE are 1.021 and 2.843, respectively and in model 1 the MAPE and MSPE are 
0.9933 and 2.752, respectively. This is a difference of 0.0277 and 0.091 for the MAPE and MSPE, 
respectively. The MAPE and MSPE are both lower in model 1 than in model 2 which indicates that 
model 1 is better than model 2.

The DIC of model 1, 416.772, is lower than that of model 2, 419.436. The difference in DIC 
of 2.664 is not significant as this difference is less than 10. The deviance of model 1 is also lower 
than that of model 2 by a difference of 8.6 which indicates that model 1 is the better model. The 
posterior estimate of the Moran’s Autocorrelation Coefficient is -0.01164 which indicates that there is 
little autocorrelation left in the model after the model has been fitted.
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Figure 3.5: The SMR for model 2.

The disease map for the SMR of model 2 displays similar results to those of model 1. The only 
difference between the two disease maps is that in model 1 there are 75 counties which have a SMR 
of 0 whereas in model 2 there are 74. The other difference is that model 2 has 62 counties in category 
0.0-2.5 whereas model 1 has 61. There are 8 counties which have SMR values which are greater than 
7.5, these counties are given in Table 3.9.

Table 3.9: The selected results of the SMR of model 2.

County
SMR 95% Confidence 

IntervalMean Standard
Deviation MC E rro r

2.5% 97.5%
Glascock 12.510 1.642 0.007308 10.420 15.350

Taylor 13.780 1.949 0.010650 10.790 18.270
Wilkinson 12.100 1.466 0.007982 9.764 15.410

Stewart 8.774 17.790 0.090030 5.739 15.120
Irwin 8.272 0.989 0.005385 6.710 10.520
Cook 7.513 0.522 0.002824 6.609 8.635

Jeff Davis 9.560 0.881 0.004778 8.090 11.500
Jenkins 9.518 1.352 0.007391 7.463 12.640

The highest SMR value occurs in Taylor with a value of 13.780, this follows from the results of 
model 1. Comparing Table 3.9 with Table 3.4, the SMR results from model 1, most of the mean SMR
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values in Table 3.9 are higher than those of Table 3.4, with Stewart being the only county in the table 
which is lower in model 1 than in model 2.

Figure 3.6: The relative risk for model 2.

The relative risk of the model only has 1 county which is less than 0.5 and a further 43 which 
are between 0.5 and 1. This would indicate that there is a low probability of deaths occurring in these 
counties than we would expect from the standard population. There are 81 counties who have a relative 
risk between 1 and 1.5 whereas in model 1 there were 88 counties between 1 and 1.5. High relative 
risk values occur at 7 counties, these are listed in Table 3.10 along with 2 other counties which had 
high relative risk values for model 1.
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Table 3.10: The selected results of the relative risk of model 2.

County
Relative Risk 95% Confidence 

IntervalMean Standard
Deviation MC E rro r 2.5% 97.5%

Wilkinson 2.261 1.301 0.02777 0.8489 5.6740
Jeff Davis 2.273 1.236 0.02373 0.8515 5.5310

Taylor 2.358 1.418 0.02949 0.8606 6.0370
Jenkins 2.108 1.299 0.01783 0.6629 5.5460
Irwin 2.161 1.232 0.01776 0.7389 5.4090
Cook 2.087 1.167 0.02087 0.7271 5.1550
Dooly 2.032 1.074 0.01547 0.7461 4.7950

Tattnall 1.932 0.928 0.01627 0.7856 4.3120
Upson 1.773 0.839 0.01291 0.7188 3.9370

The highest relative risk value is at Taylor for model 2, this was also the highest relative risk value 
for model 1. The difference in relative risk for Taylor in the 2 models is 0.576, with model 1 having a 
higher relative risk for Taylor with a value of 2.934. The relative risk values in Table 3.10 are all lower 
than those from model 1 in Table 3.5. The biggest difference between the 2 tables is in Wilkinson 
which has a difference of 0.578 between the two models. The standard deviation in all the counties 
listed in Table 3.10 are lower than those of model 1 in Table 3.5.

Figure 3.7: The posterior expected exceedance probability for model 2.
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There is only 1 county which has a PP value higher than or equal to 0.95, this is the same as model 
1. The other categories in model 2 show a different number of counties than what is shown in model 1. 
The category for the PP less than 0.2 has 13 counties for model 2 where model 1 has 12, a difference of 
1. The next category, with PP values between 0.2 and 0.4, has 27 counties for model 2 and 31 counties 
for model 1 which is a higher difference than the previous category. The third category, 0.4-0.6, has 
39 counties for model 2 compared with 67 for model 1, a difference of 28. Other categories with 
high differences between model 2 and 1 are the 0.6-0.8 category which has 57 counties for model 2 
compared with 35 for model 1, a difference of 22.

Table 3.11: The selected results of the posterior expected exceedance probability of model 2.

Posterior Expected Exceedance Probability

County Mean Standard
Deviation MC E rro r

Richmond 0.9500 0.2179 0.001312
Jenkins 0.8778 0.3276 0.002370
Tattnall 0.9138 0.2807 0.002134

Jeff Davis 0.9426 0.2326 0.001866
Coffee 0.9019 0.2974 0.002699
Irwin 0.9097 0.2866 0.002659

Berrien 0.8507 0.3564 0.002838
Cook 0.8982 0.3023 0.002270
Dooly 0.9080 0.2890 0.002697
Taylor 0.9451 0.2277 0.001628
Upson 0.8763 0.3292 0.002244

Wilkinson 0.9403 0.2369 0.001803
Whitfield 0.8495 0.3575 0.002801

Let the threshold level be c =  1 and the exceedance probability of interest be P =  0 .95. There is 
only 1 county which is equal to the exceedance probability of interest, 0.95, which is Richmond and 
thus there is no evidence of unusual or unexpected clustering in the model as the PP of Richmond does 
not exceed the exceedance probability of interest. Further investigation into clustering is required as 
further simulations may result in the PP of Richmond exceeding the exceedance probability of interest.

3.3.2.4 Fixed Param eter P rior

The model with a fixed parameter for the UH component prior distribution will be called model 3. 
The code for this model is written by Lawson (2009). The CH component which is modelled by the 
ICAR prior has a hyperprior distribution for the precision with parameters a = 0 .005 and ft = 0.005, 
respectively. The UH component will be modelled with a zero mean Gaussian distribution with a 
precision parameter of 0 .000001. This choice is common in research although it is a poor choice for 
the Georgia data as will be shown in this Section.
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Table 3.12: An analysis of the burn-in period for model 3.

County Percentage
Bryan 0.5385
Clinch 0.5198
Coweta 0.4995
Early 0.5153
Glynn 0.4839

Jackson 3.2868
Jenkins 3.2139
Liberty 3.0505

McIntosh 0.5128
Monroe 0.5238

Richmond 0.6205
Spalding 0.4905
Taliaferro 0.4946

Union 0.5465
Warren 0.5019
Wilkes 0.5123

The analysis of the burn-in period, which is set as N B = 12000, shows that since all of the pro­
portions of the MC error to the standard deviation of the relative risks are well below 5%, the burn-in 
period is sufficient. The convergence of model 3 is very poor for some of the counties. The trace plots 
for the relative risks of the selected counties are given in Figures C.13 and C.14. The trace plots in 
Figure C.13 show very poor convergence for counties Clinch, Early and Glynn and for Figure C.14 
poor convergence is shown in counties McIntosh, Taliaferro and Wilkes. These are only the counties 
which were randomly selected, other counties in the model also have poor convergence.

The kernel densities in Figure C.15 show poor shapes for the counties which did not show con­
vergence in the trace plots. The kernel density of the deviance also shows a poor shape and the trace 
plot of the deviance shows poor convergence. The Q-Q plot for the deviance residuals for model 3 
are shown in Figure C.11 and the histogram of the Bayesian residuals shown in Figure C.12 show that 
the model fit is poor. The Bayesian residual histogram shows that the Bayesian residuals have a heavy 
negative skew. Thus we may conclude based on the trace plots, kernel densities, Q-Q plot and the 
histogram of the Bayesian residuals that the model does not fit the data adequately and convergence 
is only reached for some of the counties and not all counties in the model. The model will still be 
analysed and compared to models 1 and 2 and used only for illustrative purposes.

The model diagnostics are shown in Table 3.13.
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Table 3.13: The model diagnostics of model 3.

Statistic Mean Standard
Deviation

Monte 
Carlo E rro r

95% Confidence Interval
2.5% 97.5%

MAPE 1.048 1.572 0.03634 0.6604 2.836
MSPE 2.952 2.625 0.04349 1.547 5.717

Deviance 836.6 4495.0 53.53 286.4 3689.0
pE 4.089E-6 6.955E-7 4.082E-9 2.942E-6 5.664E-6
pV 1.0 2.911E-5 1.927E-6 0.9999 1.0
p s 9.731E-6 2.907E-5 1.927E-6 6.336E-9 1.078E-4

Moran’s I -0.007194 0.04278 3.902E-4 -0.09282 0.0766
DIC 448.447
pD 110.120

Dbar 338.326
Dhat 228.206

The most notable difference between model 3 and models 1 and 2 is the proportion of the total 
variation due to the unobserved non-spatial factors, pV, which is 100% for model 3. This is the re­
sult of the fixed parameter for the prior distribution of the UH component. Models 1 and 2 have a 
gamma hyperprior distribution which allows the precision to be estimated by the model and vary while 
model 3 has a fixed value and thus the precision will not vary and cannot be estimated. The fixed 
value of the precision may be changed to reduce the proportion of the variation total due to unobserved 
non-spatial factors. The high proportion of the total variation due to unobserved non-spatial factors 
means that the proportions of the total variation due to unobserved spatial factors and due to the ex­
pected values are both reduced. The proportion of the total variation due to the unobserved spatial 
factors, pS, is 0.0009731% compared to 2.651% of model 1 and 13.25% of model 2, differences of 
2.65% and 13.25%, respectively. The proportion of the total variation due to the expected values is 
only 0.0004089% whereas model 1 has 77.19% and model 2 has 80.92%, differences of 77.19% and 
80.92%, respectively.

The MAPE and MSPE in model 3 are both higher than those of models 1 and 2 which indicates 
that models 1 and 2 are the better models. This is expected as the model fit of model 3 to the Georgia 
data is very poor. Another indication of poor fit is provided by the deviance, in model 3 the deviance 
is 836.6 which compares to 378.1 of model 1 and 386.7 of model 2. The standard deviation of the 
deviance of model 3 is also significantly higher than the standard deviation of the deviance for models 
1 and 2.

The DIC of model 3 is higher than models 1 and 2 which is to be expected and thus model 3 is the 
worst model out of the 3 models. Model 1 is thus the best model out of the 3 models.

The estimate of the Moran’s Autocorrelation Coefficient is -0.007194 which indicates that there is 
little autocorrelation left in the model after the model has been fitted. The low autocorrelation follows 
from the results of models 1 and 2.
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Figure 3.8: The SMR for model 3.

The disease map of the SMR of model 3 has a few differences from that of models 1 and 2. The 
differences in the disease maps are small and are due to the nature of the simulation. The similar results 
in the SMR values of all 3 models are expected since the SMR is calculated from the data and all 3 
models are run off the same data. The prior distribution of the SMR results in small differences in the 
SMR values across the 3 models.

Table 3.14: The selected results of the SMR of model 3.

County
SMR 95% Confidence 

IntervalMean Standard
Deviation MC E rro r 2.5% 97.5%

Glascock 12.780 1.780 0.008803 9.850 16.580
Taylor 13.800 1.979 0.011010 10.800 18.390

Wilkinson 12.110 1.484 0.008257 9.771 15.500
Stewart 8.778 5.340 0.028500 5.744 15.380
Irwin 8.281 1.001 0.005570 6.715 10.580
Cook 7.518 0.526 0.002932 6.612 8.660

Jeff Davis 9.568 0.889 0.004951 8.095 11.550
Jenkins 9.532 1.374 0.007645 7.469 12.730

The SMR values for model 3 in Table 3.14 are similar to those from models 1 and 2. The highest 
SMR in model 3 occurs at Taylor which is consistent with models 1 and 2.
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Figure 3.9: The relative risk for model 3.

The relative risk for model 3 is different to the relative risk of both models 1 and 2. The difference 
is due to the UH component because the relative risk incorporates the UH component. The relative 
risk for models 1 and 2 seems to be scaled down whereas in model 3, the scaling does not happen 
and thus the relative risks have very high values. The scaling of the relative risks in models 1 and 2 
makes the comparison of each relative risk to the “null risk value” of 1, easier. The high relative risks 
of model 3 are far away from 1 and possibly indicate very high probability of more deaths occurring 
in these counties than we would expect from the standard population. This results in a false indication 
of a high probability of more deaths when it is not the case. The counties with high relative risk values 
do mostly follow from those of models 1 and 2, this is apparent in Table 3.15 which shows the same 
counties as models 1 and 2.
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Table 3.15: The selected results of the relative risk of model 3.

County
Relative Risk 95% Confidence 

IntervalMean Standard
Deviation MC E rro r 2.5% 97.5%

Taylor 13.670 8.169 0.045510 2.719 33.600
Wilkinson 11.990 7.167 0.036640 2.463 29.460

Jenkins 9.422 6.831 0.036060 1.122 26.840
Dooly 6.998 5.041 0.024390 0.832 19.710
Irwin 8.248 6.022 0.034850 0.993 23.390
Cook 7.514 4.521 0.024830 1.508 18.580

Jeff Davis 9.547 5.660 0.028930 1.920 23.390
Glascock 15.510 15.830 0.082830 0.393 57.950
Stewart 8.136 8.261 0.041950 0.194 30.250
Tattnall 5.318 3.152 0.017760 1.063 12.940
Upson 4.360 2.610 0.014340 0.871 10.820

Table 3.15 shows the selected results of the relative risks of model 3 and follows from those of 
models 1 and 2 in which the same counties appear. The relative risks are much higher in model 3 than 
in models 1 and 2 and mostly follow from the SMR values. It is difficult to draw conclusions based on 
the high relative risk values.

Figure 3.10: The posterior expected exceedance probability for model 3.
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The disease map of the posterior expected exceedance probability for model 3 is different to the 
disease maps of models 1 and 2. One would expect this result as the PP follows from the relative risk 
values. Since model 3 has high relative risk values, the PP is also relatively high in those counties. 
There are 10 counties which have a PP value greater than or equal to 0.95 compared with 1 in both 
models 1 and 2. The high relative risks in model 3 give a false indication of the PP values for each 
county. One would conclude that there are a number of counties which show evidence of possible 
clustering when in fact this is not the case.

Table 3.16: The selected results of the posterior expected exceedance probability of model 3.

Posterior Expected Exceedance Probability

County Mean Standard
Deviation MC E rro r

Richmond 0.9695 0.1719 0.001373
Jenkins 0.9800 0.1400 6.71E-4
Tattnall 0.9785 0.1451 7.59E-4

Jeff Davis 0.9956 0.0663 3.83E-4
Irwin 0.9747 0.1569 7.78E-4

Berrien 0.9345 0.2474 0.001428
Cook 0.9911 0.0940 4.99E-4
Dooly 0.9650 0.1838 9.79E-4
Taylor 0.9985 0.0384 1.93E-4
Upson 0.9654 0.1826 8.94E-4

Whitfield 0.9212 0.2694 0.001443
Wilkinson 0.9979 0.0461 2.16E-4

The selected results for the PP of model 3 show mostly the same counties with high PP values as 
models 1 and 2 showed. The PP values for the selected counties are significantly higher than those in 
both models 1 and 2 which is a result of the higher relative risk values in model 3.

3.4 South African Data

The data is collected via the civil registration system which is part of the Department of Home Affairs. 
Data collection is important to analyse the current health system within the country. The collection of 
death data is required by the Births and Deaths Registration Act introduced in 1992, (South African 
Government, 1992). This Act stipulates that deaths should be registered no later than 72 hours after the 
death took place according to Statistics South Africa (2015). These death notifications, found in Figure 
A.1, are collected by the Department of Home Affairs and are processed fortnightly by Statistics South 
Africa which produces statistical releases based on the data collected.

The South African data for acute pericarditis (Classification number: 130) is given in Table 3.17 
along with the expected values, which are calculated based upon the province-wide incidence rate. The
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disease map for the observed values is given in Figure 3.11.

Table 3.17: The observed number of deaths and expected values of acute pericarditis (Classification number: 
130) in South Africa by province in 2014.

Province
Num ber of 
Observed 

Deaths

Num ber of 
Expected 

Deaths
Eastern Cape 3 2.0108547

Free State 1 0.8256759
Gauteng 2 3.8264741

KwaZulu-Natal 1 3.1686066
Limpopo 2 1.6682253

Mpumalanga 0 1.2530874
North-West 3 1.0892270

Northern Cape 1 0.3456705
Western Cape 3 1.8121786

Total 16 16

Figure 3.11: The acute pericarditis deaths in South Africa by province in 2014.

3.4.1 Acute Pericarditis

Imazio et al. (2007) state that pericarditis is caused by an inflammation of the pericardium in the heart. 
The pericardium is a sac which surrounds the heart and contains many blood vessels and is made 
up of visceral and parietal layers as stated by Lange & Hillis (2004). These layers are distanced by 
the pericardial cavity and contain between 15 to 50 ml of fluid. Pericarditis may cause no pain at 
all and may be lethargic which is common in patients who have tuberculosis, according to Lange &
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Hillis (2004), but in other cases, pain may be severe and occur suddenly without warning. Pain often 
resonates behind the breast bone and changes depending on the position of the patient. Patients may 
experience relief from pain by shifting location or sitting upward. Pain may often spread to different 
parts of the body including the arms, neck and shoulders.

Diagnosis of acute pericarditis is challenging and is thought by Imazio et al. (2007) to be a process 
of exclusion.

3.4.1.1 Causes

Lange & Hillis (2004) state that in 90% of cases, the cause of acute pericarditis is unknown or thought 
to be a viral disease. In the other 10% of cases, the cause of acute pericarditis is believed to be 
“transmural myocardial infarction” along with other infections and associated with a “dissecting aor­
tic aneurysm”. Table 3.18 from Lange & Hillis (2004) shows the causes, treatments and estimated 
incidence for acute pericarditis.

3.4.2 Results for ICAR model

The ICAR model outlined in Section 2.12.3.1 is run for the South African data in Table 3.17. The UH 
component is modelled with a zero mean Gaussian distribution with a hyperprior distribution for the 
precision as a gamma distribution with parameters a  =  0 .5 and f t  =  0 .0005, respectively, which is 
the Jeffreys’ prior. The precision of the ICAR prior distribution is modelled using a gamma hyperprior 
distribution with parameters a = 0 .5 and ft = 0 .0005, respectively. These parameters, a = 0 .5 and 
ft = 0 .0005, are proposed by Kelsall & Wakefield (1999) and are the parameters of the Jeffreys’ prior. 
The model is run for nT = 50000 iterations and a further n A = 20000 for the calculation of the DIC. 
The convergence and burn-in period of the model are accessed by the BGR diagnostic and trace plots. 
Figure 3.12 shows the BGR plots for the deviance and the relative risk of all the provinces. The BGR 
is a tool to check for convergence and used to get an idea of the burn-in period, as outlined in Section 
2.11.3.2.

There are four chains run for the deviance and relative risk in all provinces. These chains are run for 
nT =  50000 iterations using different initial values. The convergence of the model is assessed by trace 
plots, which are given in Figures 3.13 and 3.14, and kernel densities of the relative risks and deviance. 
The model fit is assessed by a Q-Q plot of the deviance residuals, a histogram of the Bayesian residuals, 
a box plot of the ranked standardised Bayesian residuals, a box plot of the ranked deviance residuals 
and a plot of the Bayesian residuals versus the fitted values of the model. The deviance in both of the 
South African models is the saturated deviance which is calculated as the sum of the deviance of each 
province.



Table 3.18: The causes, treatments and estimated incidence rates for acute pericarditis.

C ondition
Estim ated

Incidence

C lin ical

In d ications and  Tests
Treatm ent

Unknown 85-90% Aspirin, NSAIDs

Infectious

Viral 1-2% Acute and convalescent viral titers, viral cultures, serologic test for HIV Aspirin, NSAIDs

Bacterial 1-2% Fever, elevated white-cell count; examination of pericardial fluid Antibiotics, drainage of pericardial fluid

Tuberculous 4%
Chest radiography, tuberculin skin test, histologic examination, cultures, Multidrug antituberculous

and measurement of adenosine deaminase level in pericardial fluid and tissue therapy and prednisone

Acute Myocardial 

Infarction
NA

Electrocardiography, serum troponin 

or creatine kinase, echocardiogram
Aspirin (avoid NSAIDs)

Aortic Dissection <1%
Magnetic resonance imaging, computed 

tomography, transesophageal echocardiography
Urgent surgery

Trauma NA Clinical history NSAIDs (avoid aspirin)

Neoplasm 7%
Constitutional symptoms, lymphadenopathy; NSAIDs, glucocorticoids

chest radiography, examination of pericardial fluid (by intrapericardial instillation)

Chest-wall Irradiation <1% Clinical history NSAIDs

Uremia NA Serum blood urea nitrogen and creatinine levels Initiate or intensify dialysis

Cardiotomy or 

Thoracic Surgery
<1%

Clinical history, evidence of polyserositis; 

chest radiography, erythrocyte sedimentation rate
Aspirin, NSAIDs

Autoimmune or 

Inflammatory Disease
3-5%

Rheumatoid factor, complement levels, 

antinuclear antibodies
Aspirin, NSAIDs, glucocorticoids

Adverse Drug Reaction <1% Clinical history; eosinophil count Discontinue drug; aspirin, NSAIDs
Where NS AID is a nonsteroidal anti-inflammatory drug.
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Figure 3.12: The BGR plots for the ICAR model from top left: Deviance, Eastern Cape, Free State, Gauteng, 
KwaZulu-Natal, Limpopo, Mpumalanga, North-West, Northern Cape and Western Cape.

Figure 3.12 shows that the model does converge as the red line, which is the ratio of pooled and 
within, appears to be stable around the value of 1. The blue line also appears to be stable after nT =  
10000 iterations.
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Table 3.19: The statistics from the BGR for the ICAR model.

Iteration

Range

Unnormalised Normalised as plotted BGR

ratio
of pooled 

chains
mean within 

chain
of pooled 

chains
mean within 

chain
251-500 5.217 5.316 0.9814 1.0000 0.9814

501-1000 3.977 3.967 0.7480 0.7461 1.0030
751-1500 3.881 3.846 0.7300 0.7233 1.0090
1001-2000 3.713 3.743 0.6985 0.7040 0.9921
1251-2500 3.976 4.000 0.7478 0.7524 0.9939
1501-3000 4.277 4.309 0.8046 0.8105 0.9927
1751-3500 4.097 4.158 0.7706 0.7821 0.9853
2001-4000 4.118 4.150 0.7745 0.7807 0.9921
2251-4500 4.090 4.076 0.7693 0.7667 1.0030
2501-5000 4.050 4.050 0.7617 0.7618 0.9999
2751-5500 3.838 3.834 0.7220 0.7212 1.0010
3001-6000 3.792 3.791 0.7132 0.7130 1.0000
3251-6500 3.888 3.885 0.7313 0.7308 1.0010
3501-7000 3.908 3.903 0.7351 0.7342 1.0010
3751-7500 3.864 3.860 0.7267 0.7261 1.0010
4001-8000 3.902 3.920 0.7340 0.7374 0.9953
4251-8500 3.918 3.904 0.7369 0.7342 1.0040
4501-9000 3.844 3.832 0.7230 0.7209 1.0030
4751-9500 3.852 3.826 0.7244 0.7197 1.0070
5001-10000 3.833 3.814 0.7210 0.7174 1.0050
5251-10500 3.862 3.843 0.7265 0.7229 1.0050
5501-11000 3.916 3.905 0.7366 0.7346 1.0030
5751-11500 4.000 3.996 0.7524 0.7517 1.0010
6001-12000 4.012 4.012 0.7547 0.7546 1.0000

Table 3.19 shows the results of the BGR convergence diagnostic applied to the deviance and relative 
risks of the model. From the BGR ratio, it may be seen that the model reaches convergence between 
501-1000 iterations as this is the first time that the BGR ratio reaches 1. Gelman & Hill (2007) propose 
that a BGR ratio of 1.1 is an “acceptable limit” for convergence. The burn-in period may also be 
determined from Table 3.19. Although interpretation may be slightly subjective, the burn-in period is 
between iterations 5751-11500 as the statistics in the table become more stable around these iterations. 
The burn-in period is therefore set at NB =  12000 as this is above 11500 and ensures stability in the 
statistics.
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Table 3.20: An analysis of the burn-in period for the ICAR model.

Province Percentage

Eastern Cape 0.7517
Free State 0.5317
Gauteng 0.7660

KwaZulu-Natal 1.0253
Limpopo 0.5530

Mpumalanga 0.9240
North-West 1.2775

Northern Cape 1.0941
Western Cape 1.2102

The proportion of the MC error to the standard deviation of the relative risks of the ICAR model 
are used to assess whether the burn-in period of N B =  12000 is sufficient. This proportion, expressed 
as a percentage in Table 3.20, has been calculated for all the relative risks of the provinces and all of 
the percentages are below 5% which indicates that the burn-in period of NB =  12000 is sufficient.

iteration

12000 20000 30000

iteration

40000 50000

12000 20000 30000
iteration

40000 50000

12000 20000 30000
iteration

40000 50000

Figure 3.13: The trace plots for multiple chains for the South African data for the ICAR model from top left: 
Deviance, Eastern Cape, Free State, Gauteng, KwaZulu-Natal and Limpopo.
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Figure 3.14: The trace plots for multiple chains for the South African data for the ICAR model continued from 
top left: Mpumalanga, North-West, Northern Cape and Western Cape.

Figures 3.13 and 3.14 show the trace plots for the four chains for the relative risk of all the provinces 
and the deviance of the ICAR model. The trace plots show that convergence is reached in the relative 
risks of all the provinces as well as the deviance. This may be shown by covering the trace plots by a 
“thick pen.” All four chains remain stable within an interval.

The model was run with a single chain for n T =  50000 iterations with a burn-in period of N B =  
12000 iterations and the following results were produced:

12000 20000 30000 40000 50000
iteration

Figure 3.15: The trace plot for the intercept term in the ICAR model.

The intercept term @0 converges as is shown in the trace plot. The intercept term is needed as the 
random effects in the model sum to 0.
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Figure 3.16: The trace plots for South African data for the ICAR model from top left: Eastern Cape, Free State, 
Gauteng, KwaZulu-Natal, Limpopo and Mpumalanga.

Figure 3.17: The trace plots for South African data for the ICAR model continued from top left: North-West, 
Northern Cape and Western Cape.

Figures 3.16 and 3.17 also show the convergence of the relative risks of the ICAR model which is 
to be expected as convergence was shown for multiple chains.
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Figure 3.18: The density kernel for the relative risks of the South African data for the ICAR model from top left: 
Eastern Cape, Free State, Gauteng, KwaZulu-Natal, Limpopo, Mpumalanga North-West, Northern 
Cape and Western Cape.

The density kernels for the relative risks are shown in Figure 3.18. The density kernel plot gives an 
estimate of the shape of the marginal posterior distribution for each relative risk. The densities have a 
heavy tail. All of the densities seem to have a maximum around 1.

Table 3.21: The model diagnostics of the South African data for the ICAR model.

Statistic M ean
Standard

Deviation

MC

E rro r

95% Confidence 
Interval

2.5% 97.5%
MAPE 1.461 0.3972 0.002155 0.7778 2.333
MSPE 3.774 2.343 0.01192 1.111 9.889

pE 0.9569 0.09267 0.001765 0.6207 0.9993
pV 0.02647 0.07265 0.001765 2.416E-4 0.2711

QR60 1.321 0.7269 0.0145 1.031 3.063
pS 0.01667 0.06089 0.001737 6.883E-5 0.2245

Saturated Deviance 10.44 1.928 0.02203 6.451 14.95
DIC 32.074
pD 1.45

Dhat 29.174
Dbar 30.624

The MAPE and MSPE of the ICAR model are relatively low values and are similar to those calcu­
lated for the PCAR model.

The quantile ratio (QR) is calculated for the relative risks and is used to assess the between-province 
variation in the relative risks. The QR shows the extent of the spread of the “empirical distribution” of 
the relative risks as in Lunn et al. (2012). The 60% QR, denoted by QR60, is calculated for the model 
by using the ranked() function in WinBUGS®, which will rank the relative risks of the provinces
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and then the calculation involves estimating the “exponentiated difference” between the relative risks 
at the provinces with 80% and 20% quantiles which are then ranked. The code to calculate QR60 is:
Q R 60 < —r a n k e d (r r [], 8)/ r a n k e d (r r [], 2).

The QR is calculated as 1.321 which indicates that there is a relatively low heterogeneity in the 
relative risks of the middle 60% of the provinces in the model.

The amount of spatial to unstructured variation in the model is assessed. The variation contributed 
by the unobserved spatial factors is 1.667% of the total variation in the model, this is denoted by p S  in 
Table 3.21. The variation contributed by the unobserved non-spatial factors, denoted by pV, is 2.647% 
of the total variation, with the other 95.69%, pE, of the total variation is due to the expected values of 
the provinces.

The DIC is 32.074, resulting from the model being run for an additional n A =  20000 iterations. 
The posterior mean of the deviance, Dbar, is 29.174.

Figure 3.19: The density kernels for the standardised Bayesian residuals of the South African data ICAR model 
from top left: Eastern Cape, Free State, Gauteng, KwaZulu-Natal, Limpopo, Mpumalanga, North­
West, Northern Cape and Western Cape.

Lawson (2009) proposes two features of residuals in a model when the model fits the data well. 
The first feature is that the residuals should be symmetric and centred around 0. Although the centring 
around 0 is an approximation due to the nature of the simulation in the model. The second feature is 
that the residuals must show a random pattern and show no particular structure. Figure 3.19 shows 
the density kernels for the residuals in each province in the South African ICAR model. Based on the 
Figure, Eastern Cape, Free State and Limpopo appear to be approximately centred around 0. KwaZulu- 
Natal, Mpumalanga and North-West have centres which are further away from 0. An approximate 
symmetry of the kernel densities is shown in Eastern Cape, Free State, North-West and Western Cape 
which may indicate a good model fit for these provinces. The symmetry of the other provinces appears 
to be skewed.
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Figure 3.20: The ranked box plots of the standardised Bayesian residuals of the South African data for the 
ICAR model from left to right: KwaZulu-Natal, Mpumalanga, Gauteng, Free State, Limpopo, 
Eastern Cape, Western Cape, Northern Cape and North-West.

Figure 3.21: The ranked box plots of the deviance residuals of the South African data for the ICAR model from 
left to right: Mpumalanga, KwaZulu-Natal, Gauteng, Free State, Limpopo, Eastern Cape, Western 
Cape, Northern Cape and North-West.

Figure 3.20 shows the ranked box plots of the standardised Bayesian residuals in the South African
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ICAR model. The ranking is achieved in WinBUGS® by plotting the box plot and then ranking the box 
plots by right-clicking on the plot and selecting properties and then selecting special and selecting 
the box named ranked. WinBUGS® provides two options for the ranking of the box plots. The first 
option is to rank by the mean and the second option is to rank by the median. Figures 3.20 and 3.21 
makes use of the ranking by mean option. This is the method proposed by Lunn et al. (2012).

We expect all of the standardised Bayesian residuals to occur between, as explained in Section 
2.13.4, -2 and 2. The box plots of all the provinces in Figures 3.20 and 3.21 show that all of the stan­
dardised Bayesian residuals do occur inside this bound. North-West is very close to occurring outside 
this bound. The standardised Bayesian residuals that occur outside this bound are then classified as 
outliers. Since none of the box plots of the standardised Bayesian residuals in the ICAR model occur 
outside of this bound, there are no Bayesian residuals which can be classified as an outlier.

The ranked box plots of the deviance residuals also show that all of the deviance residuals are 
between -2 and 2. The whiskers of the box plot of the deviance residuals for the North-West are much 
shorter than the box plot of North-West for the standardised Bayesian residuals.

Table 3.22: The statistics from the Bayesian residuals of the South African data for the ICAR model.

Province
Bayesian Residual 95% Confidence 

IntervalMean Standard
Deviation MC erro r

2.5% 97.5%
Eastern Cape 0.9258 0.6194 0.004785 -0.4678 1.8980

Free State 0.1650 0.2568 0.001421 -0.3893 0.5735
Gauteng -1.7100 1.0520 0.007847 -3.9750 0.1699

KwaZulu-Natal -2.0370 0.8872 0.008782 -3.9250 -0.4344
Limpopo 0.3113 0.5091 0.002780 -0.8099 1.1320

Mpumalanga -1.2150 0.3600 0.003093 -1.9900 -0.5715
North-West 1.8380 0.4216 0.005140 0.9020 2.3880

Northern Cape 0.6370 0.1316 0.001392 0.3584 0.8140
Western Cape 1.0820 0.6464 0.008066 -0.4070 2.0000
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Table 3.23: The deviance residuals of the ICAR model.

Province
Deviance Residual 95% Confidence 

IntervalMean Standard
Deviation MC erro r 2.5% 97.5%

Eastern Cape 0.6448 0.4425 0.002901 -0.2644 1.477
Free State 0.2039 0.2787 0.001473 -0.3455 0.740
Gauteng -0.9309 0.5047 0.004340 -1.8940 0.096

KwaZulu-Natal -1.3240 0.4469 0.004640 -2.1610 -0.397
Limpopo 0.2725 0.3928 0.002003 -0.5093 1.033

Mpumalanga -1.5430 0.2334 0.002103 -2.0010 -1.074
North-West 1.4730 0.4009 0.003986 0.6212 2.184

Northern Cape 0.8958 0.2338 0.001869 0.4195 1.315
Western Cape 0.7723 0.4586 0.004218 -0.2000 1.606
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Figure 3.22: The Bayesian residuals versus the fitted values of the ICAR model.

The second feature shown by residuals when a model fits the data well, proposed by Lawson (2009), 
is that there should be a random pattern in the residuals. Figure 3.22 shows the plot of the Bayesian 
residuals versus the fitted values for the ICAR model. Based on the figure, the pattern shown by the 
Bayesian residuals is reasonably random although the pattern of the Bayesian residuals after 2.5 shows 
an increase in the space between the Bayesian residuals. These two provinces, after a fitted value of 
2.5, are Gauteng and KwaZulu-Natal which show that the model may not fit well to these provinces. 
KwaZulu-Natal seems to have a poor model fit and this is shown throughout the plots.
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The Q-Q plot of the deviance residuals for the ICAR model shows a reasonable fit for most of the 
provinces. Most of the provinces show adequate model fit although some provinces are further away 
from the straight line than other provinces are. Based on the two features proposed by Lawson (2009), 
the model fits the data adequately.

Figure 3.24: The SMR of the South African data for the ICAR model.

KwaZulu-Natal and Mpumalanga have the lowest SMR values out of all the provinces. There are
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1 and 0 observed deaths with expected number of deaths of 3.1686 and 1.253 for KwaZulu-Natal and 
Mpumalanga, respectively. A low number of observed deaths and relatively high expected values con­
tribute to the low values for SMR. The high expected value for KwaZulu-Natal results from the large 
population of the province at 10694434, which is the second highest population of a province in South 
Africa after Gauteng. The combination of a large population size and a small number of observed 
deaths result in a small SMR value. Mpumalanga has the sixth largest population size of all the pro­
vinces in South Africa but since the observed number of deaths is 0, the SMR is also approximately 
0. The highest SMR values are at the North-west and Northern Cape with 3 and 1 observed deaths 
and expected number of deaths of 1.0892 and 0.3457 respectively. The low expected number of deaths 
with respect to the number of observed deaths result in a high SMR value. The low expected number 
of deaths is a result of a small population size in these provinces. The Northern Cape and North-West 
have population sizes of 1166680 and 3676274, respectively, which are the smallest and third smallest 
populations, respectively. Therefore the relative risk is a better estimate of the risk of a disease than the 
SMR is, as the relative risk is not a function of the expected values whereas SMR is calculated based 
on the expected values and thus is influenced by the population size of the province.

Table 3.24: The SMR of the South African data for the ICAR model.

Province
SMR 95% Confidence 

IntervalMean Standard
Deviation M C E rro r

2.5% 97.5%
Eastern Cape 1.4920 0.007775 0.00004145 1.477 1.508

Free State 1.2110 0.008173 0.00004347 1.196 1.228
Gauteng 0.5226 0.003961 0.00002114 0.515 0.530

KwaZulu-Natal 0.3155 0.006860 0.00003661 0.302 0.329
Limpopo 1.1990 0.003791 0.00002021 1.192 1.207

Mpumalanga 0.0008 0.025410 0.0001354 -0.052 0.047
North-West 2.7560 0.051330 0.0002733 2.660 2.861

Northern Cape 2.910 0.180500 0.0009529 2.606 3.309
Western Cape 1.6560 0.011500 0.00006131 1.634 1.679

Table 3.24 shows the results from the MCMC simulation with nT = 50000 iterations. The SMR 
for Mpumalanga is 0.0008 which is expected as the observed number of deaths is 0. The SMR would 
usually be 0 in this province as the observed value is 0 but because the SMR has a prior distribution, 
this is not the case although the approximation is very close. The Northern Cape, which has the lowest 
expected number of deaths in the model, has the highest SMR value which is attributed to the low 
expected number of deaths.
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Figure 3.25: The relative risk of the South African data for the ICAR model.

Table 3.25: The relative risk of the South African data for the ICAR model.

Province
Relative Risk 95% Confidence 

IntervalMean Standard
Deviation MC E rro r

2.5% 97.5%
Eastern Cape 1.0320 0.3113 0.002340 0.5526 1.7410

Free State 1.0110 0.3138 0.001669 0.5164 1.6990
Gauteng 0.9677 0.2756 0.002111 0.4833 1.5650

KwaZulu-Natal 0.9547 0.2808 0.002879 0.4382 1.5590
Limpopo 1.0110 0.3065 0.001695 0.5183 1.7010

Mpumalanga 0.9666 0.2894 0.002674 0.4478 1.5810
North-West 1.0710 0.3997 0.005106 0.5587 1.9510

Northern Cape 1.0520 0.3901 0.004268 0.5375 1.8940
Western Cape 1.0590 0.3582 0.004335 0.5547 1.8780

The relative risk of acquiring and dying from acute pericarditis is shown in Figure 3.25 and Table 
3.25. KwaZulu-Natal, Mpumalanga and Gauteng have the lowest relative risk of all the provinces 
and are all below 0.97. This result is different from the SMR values as Mpumalanga had the lowest 
SMR value but does not have the lowest relative risk value which is now KwaZulu-Natal. Although 
KwaZulu-Natal had the second smallest SMR value. Western Cape, Northern Cape and North-West 
have high relative risk values with the highest associated with North-West at 1.071. The SMR was 
highest at the Northern Cape which is now third highest for the relative risk. All of the relative risks 
are not far away from 1 which is regarded as the “null risk value” and resulted in a low PP. It can thus 
be said that the risk of contracting and dying from acute pericarditis in South Africa is low when using 
the ICAR model.
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Figure 3.26: The posterior exceedance probability of South African data for the ICAR model.

Table 3.26: The posterior exceedance probability of the South African data for the ICAR model.

Posterior Expected Exceedance Probability

Province Mean Standard
Deviation

MC
E rro r

Eastern Cape 0.4925 0.4999 0.002652
Free State 0.4690 0.4990 0.002522
Gauteng 0.4235 0.4941 0.003162

KwaZulu-Natal 0.4098 0.4918 0.003744
Limpopo 0.4701 0.4991 0.002553

Mpumalanga 0.4235 0.4941 0.003305
North-West 0.5131 0.4998 0.003337

Northern Cape 0.5025 0.5000 0.003108
Western Cape 0.5084 0.4999 0.003646

Using the notation from Section 2.13.3, let the threshold level, denoted by c,  be equal to 1. This is a 
fair number as it is the “null risk value.” The PP is then the posterior expected exceedance probability 
calculated as the proportion of relative risk values which surpass the threshold of 1. Figure 3.26 shows 
the PP for all provinces in the model and it can be seen that the PP is below 0.52 for all provinces. This 
means that the province with the highest relative risk value only surpasses 1 less than 52% of the time. 
The highest values of the PP occur at Western Cape, Northern Cape and North-west. This is expected 
as these 3 provinces have the highest SMR and relative risk values.

If the exceedance probability of interest, P, is as high as 0.9 then Figure 3.26 shows that there are 
no unusual or unexpected clusters of the disease in the model. There will also be no provinces with 
a higher than expected relative risk. Lowering the exceedance probability of interest, P, to 0.5 will
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result in unusual or unexpected clusters of the disease in the model but is not commonly done as this 
information is not useful as P  is low.

Figure 3.27: The box plot of the relative risk of the South African data for the ICAR model from the left: Eastern 
Cape, Free State, Gauteng, KwaZulu-Natal, Limpopo, Mpumalanga, North-West, Northern Cape 
and Western Cape.

The box plot of the relative risks shows that the relative risks are mostly centred around 1 with 
North-West, Western Cape and Northern Cape just above 1. The last three box plots which correspond 
to North-West, Northern Cape and Western Cape do show a long tail above the value of 1, which is 
expected as the standard error for these 3 provinces is higher than the standard deviations of all the 
other provinces.

Additional figures are available in Appendix C.4.

3.4.3 Results for PCAR model

The PCAR model is given in Section 2.12.3.2 and is also based on the data in Table 3.17. The precision 
for the PCAR prior distribution is assigned a gamma hyperprior distribution with parameters of a  = 0.5 
and P = 0.0005, respectively, which are the parameters of the Jeffreys’ prior. The UH component is 
assigned a zero mean Gaussian distribution with the hyperprior of the precision modelled using a 
gamma distribution with parameters of a  = 0.5 and P  =  0.0005, respectively, which are again the 
parameters of the Jeffreys’ prior. These are the same parameters as the ICAR model in Section 3.4.2.
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Model assessment is performed in the same way as the ICAR model in Section 3.4.2. The BGR plots 
for the deviance and the relative risk in all provinces for the PCAR model are given in Figure 3.28. 
The model is run for nT = 50000 iterations and four chains are used with four different sets of initial 
values, as with the ICAR model in Section 3.4.2.

The implementation of the PCAR model is based on the method by Spiegelhalter et al. (2003). 
The PCAR model is implemented in WinBUGS® by firstly calculating mu which are the elements 
proportional to a conditional covariance £ i |S j  and are contained in the vector M . The elements mu 
are calculated using Equation 2.22 which is written in WinBUGS® as: M [i ] <  — 1/ e [i ]. The next step 
is to calculate the cumulative sum of the neighbours vector. This is the same cumulative sum that was 
calculated for the Moran’s Autocorrelation coefficient in the Georgia models although this is done in 
WinBUGS® for the PCAR model and not in RStudio®. The first element of the cumulative sum is 0 
which is implemented as: csum[ 1] < —0 and the rest of the cumulative sum is calculated by starting 
at the second element using a loop as:

fo r  (i in 2 : (N  +  1)) {

csum[i] < — sum(num[1 : (i  — 1)])},

where n u m  is the vector of the number of neighbours for each province. The next step is to determine 
an index matrix, denoted by pick [], which will contain the index of the elements of the weight vector W  

and will have N  columns and number of rows equal to the number of elements in W . The pick [] matrix 
is calculated such that the ith column contains a value of 1 in all of the J  rows such that, csum[i] < 
J  < csum[i +  1] and 0 otherwise. This is done such that, W  at the elements of W [(c s u m [i ] +  1) : 
csum[i +  1]], are the set of weights w j  corresponding to the spatial correlation between provinces i 
and j . The code for the pick [] matrix is:

fo r(k  in 1 : sumNumNeigh) {

for(i in  1 : N ) {

pick[k,i] <  — step(k — csum[i] — epsilon) * step(csum[i +  1] — k), 

where epsilon is equal to 0.0001.
The vector W  can now be calculated using the inprod() function in WinBUGS®. The inprod() 

function is used to calculate the inner product of two vectors. The inprod() function is used to deter­
mine which province is associated with which element in W .  This is done using the inner product of 
the kth row of the pick[] matrix and the expected value, which is the denominator in Equation 2.21,
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given as:

w ij

\  2
e i

e j
if regions i and j  are adjacent

0 Otherwise.

Thus the inprod() function results in 0 and 1 elements which will determine which provinces are 
adjacent. The last part of the calculation of the vector W  is to take the square root of the proportion of 
the expected values of the adjacent provinces. The element k of the vector W  is thus calculated as:

W [k ] <  —sqrt(e[adj[k]]/inprod(e\\,pick[k, ])) .

The PCAR prior can now be implemented using:

S [1 : N ] ~  car.proper(m u [], W [], a d j [], n u m [], M [], omega, p),

where m u [] is assigned a prior distribution as: alpha ~  dnorm(0, 0 .0001) and omega is assigned a 
Jeffreys’ prior and p has a uniform distribution which is bounded in WinBUGS® as:

rho.min < — min.bound(W  [], a d j  [], n u m [], M  []) 

rho.max < — max.bound(W  [], a d j  [], n u m [], M  []).

Figure 3.28: The BGR plots of the PCAR model from top left: Deviance, Eastern Cape, Free State, Gauteng, 
KwaZulu-Natal, Limpopo, Mpumalanga, North-West, Northern Cape and Western Cape.
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Table 3.27: The statistics from the BGR of the PCAR model.

Iteration

Range

Unnormalised Normalised as plotted BGR

ratio
of pooled 

chains
m ean within 

chain
of pooled 

chains
mean within 

chain
748-995 3.944 4.007 0.9579 0.9732 0.9842

996-1490 3.679 3.728 0.8935 0.9055 0.9868
1243-1985 4.028 4.046 0.9783 0.9827 0.9956
1491-2480 3.934 3.992 0.9554 0.9696 0.9854
1738-2975 3.814 3.826 0.9262 0.9292 0.9968
1986-3470 3.840 3.817 0.9326 0.9270 1.0060
2233-3965 3.794 3.768 0.9213 0.9150 1.0070
2481-4460 3.928 3.899 0.9538 0.9469 1.0070
2728-4955 3.928 3.918 0.9540 0.9515 1.0030
2976-5450 4.083 4.048 0.9915 0.9830 1.0090
3223-5945 4.063 4.028 0.9867 0.9782 1.0090
3471-6440 3.998 3.976 0.9708 0.9657 1.0050
3718-6935 4.048 4.046 0.9830 0.9825 1.0010
3966-7430 4.070 4.050 0.9883 0.9836 1.0050
4213-7925 4.033 4.038 0.9795 0.9806 0.9989
4461-8420 4.020 4.033 0.9762 0.9795 0.9966
4708-8915 4.012 4.035 0.9743 0.9799 0.9943
4956-9410 4.057 4.072 0.9852 0.9889 0.9963
5203-9905 4.063 4.069 0.9867 0.9882 0.9985

5451-10400 3.998 3.999 0.9709 0.9711 0.9998
5698-10895 4.001 3.996 0.9718 0.9703 1.0010
5946-11390 4.054 4.041 0.9844 0.9815 1.0030
6193-11885 4.063 4.060 0.9868 0.9859 1.0010
6441-12380 4.062 4.055 0.9866 0.9848 1.0020

The PCAR model seems to show convergence slower than the ICAR model. The blue line is also 
closer to the red line in the PCAR model and seems more stable than in the ICAR model.

Convergence for the PCAR model is only reached at iterations 1986-3470, which is slower than the 
ICAR model which reached convergence at iterations 501-1000. From Table 3.27, it may be seen that 
stability is reached at iterations 5946-11390 and thus the burn-in period is again set to NB =  12000. 
This is the same burn-in period as the ICAR model in which stability was reached at iterations 5751­
11500.
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Table 3.28: An analysis of the burn-in period of the PCAR model.

Province Percentage

Eastern Cape 0.7048
Free State 0.6042
Gauteng 0.7695

KwaZulu-Natal 0.8801
Limpopo 0.5417

Mpumalanga 0.7727
North-West 1.2028

Northern Cape 1.0193
Western Cape 0.7466

As with the ICAR model, and keeping with the rule of thumb proposed by Woodward (2016), the 
proportion of the MC error to the standard deviation of the relative risk is calculated. All of these 
proportions are well below 5% and thus, it can be concluded that the burn-in period of NB =  12000 is 
sufficient, which is the same conclusion as in the ICAR model.

12000 20000 30000 40000 
iteration

50000

12000 20000 30000 40000 
iteration

50000

12000 20000 30000 40000 50000
iteration

Figure 3.29: The trace plots for multiple chains of the South African data for the PCAR model from top left: 
Deviance, Eastern Cape, Free State, Gauteng, KwaZulu-Natal and Limpopo.
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Figure 3.30: The trace plots for multiple chains of the South African data for the PCAR model continued from 
top left: Mpumalanga, North-West, Northern Cape and Western Cape.

The trace plots in Figures 3.29 and 3.30 show that the relative risk and the deviance show conver­
gence in all provinces. The multiple chains cover each other and start from different initial values thus 
show convergence.

12000 20000 30000 40000 50000
iteration

iteration iteration

Figure 3.31: The trace plots of the South African data for the PCAR model from top left: Eastern Cape, Free 
State, Gauteng, KwaZulu-Natal, Limpopo and Mpumalanga.
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Figure 3.32: The trace plots of the South African data for the PCAR model continued from top left: North-West, 
Northern Cape and Western Cape.

The PCAR model was run with a single chain of nT =  50000 iterations with a burn-in period of 
N b =  12000 and produced the trace plots in Figures 3.31 and 3.32. The trace plots show the model 
converged for the relative risks in all of the provinces.

Figure 3.33: The density kernels for the relative risk of the South African data for the PCAR model from top 
left: Eastern Cape, Free State, Gauteng, KwaZulu-Natal, Limpopo, Mpumalanga, North-West, 
Northern Cape and Western Cape.

The density kernels show a maximum of approximately 1 for the relative risks in all the provinces.
All of the provinces show a heavy tail towards the right.
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Table 3.29: The model diagnostics of the South African data for the PCAR model.

Statistic M ean
Standard

Deviation

MC

E rro r

95% Confidence 
Interval

2.5% 97.5%
MAPE 1.461 0.399 0.002174 0.7778 2.333
MSPE 3.766 2.345 0.01171 1.111 9.889

pE 0.9449 0.1033 0.002736 0.6222 0.9989
pV 0.02744 0.07497 0.001854 2.37E-4 0.2663

QR60 1.379 0.7671 0.01596 1.039 2.967
pS 0.02768 0.07518 0.001969 2.174E-4 0.25

Saturated Deviance 10.51 1.868 0.01758 6.885 14.99
DIC 32.139
pD 1.441

Dhat 29.257
Dbar 30.698

The MAPE is the same for both models, while the MSPE is higher in the ICAR model with a 
difference of 0.008. The quantile ratio, QR60, is 1.379 for the PCAR model and indicates that there is 
relatively low heterogeneity in the risk across the middle 60% of the provinces. The QR is higher in 
the PCAR model than in the ICAR model with a difference of 0.058.

The amount of variation attributed to the unobserved spatial factors, pS, is 2.768% of the total 
variation in the model. This compares to 1.667% in the ICAR model. The variation attributed to the 
unobserved non-spatial factors, pV, is 2.744% of the total variation in the model which is higher than 
the 2.647% in the ICAR model. The other 94.49% of the variation in the model is due to the expected 
values of the provinces.

The DIC is calculated based on an additional nA =  20000 iterations, as in the ICAR model, and 
resulted in a DIC value of 32.139. This is slightly higher than the ICAR model, which has a DIC value 
of 32.074. The difference in the saturated deviance between the two models is 0.07 over nT =  50000 
iterations, which is not a significant difference.
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Figure 3.34: The density kernels of the standardised Bayesian residuals of the South African data for the PCAR 
model from top left: Eastern Cape, Free State, Gauteng, KwaZulu-Natal, Limpopo, Mpumalanga, 
North-West, Northern Cape and Western Cape.

Based on Figure 3.34, Eastern Cape, Free State and Limpopo appear to be approximately centred 
around 0. KwaZulu-Natal, Mpumalanga, North-West and Western Cape have centres which are further 
away from 0. An approximate symmetry of the kernel densities is shown in Eastern Cape, Free State, 
North-West and Western Cape which may indicate a good model fit for these provinces. The symmetry 
of the other provinces appears to be skewed, with heavy tails occurring at Free State, KwaZulu-Natal, 
Limpopo and Mpumalanga.
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Figure 3.35: The ranked box plots of the standardised Bayesian residuals of the South African data for the 
PCAR model from left to right: KwaZulu-Natal, Mpumalanga, Gauteng, Free State, Limpopo, 
Eastern Cape, Western Cape, Northern Cape and North-West.

Figure 3.36: The ranked box plots of the deviance residuals of the South African data for the PCAR model from 
left to right: Mpumalanga, KwaZulu-Natal, Gauteng, Free State, Limpopo, Eastern Cape, Western 
Cape, Northern Cape and North-West.

The ranked box plot of the standardised Bayesian residuals in Figure 3.35, show that all of the
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standardised Bayesian residuals in the PCAR model occur between -2 and 2, thus there are no outliers 
in the model as with the ICAR model. The North-West is again very close to occurring above 2.

The ranked box plots of the deviance residuals for the PCAR model all occur between -2 and 2 and 
thus there are no outliers in the PCAR model. The whiskers of the box plot of the deviance residuals 
of the North-West are shorter than those of the box plot of the standardised Bayesian residuals for the 
North-West, as was concluded for the ICAR model.

Table 3.30: The statistics from the Bayesian residuals of the South African data for the PCAR model.

Province
Bayesian Residual 95% Confidence 

IntervalMean Standard
Deviation MC erro r

2.5% 97.5%
Eastern Cape 0.9285 0.6277 0.004333 -0.5052 1.911

Free State 0.1575 0.2869 0.002026 -0.4725 0.5889
Gauteng -1.707 1.032 0.007437 -3.943 0.0962

KwaZulu-Natal -2.049 0.8697 0.007079 -3.925 -0.5027
Limpopo 0.3108 0.5125 0.003164 -0.8222 1.133

Mpumalanga -1.224 0.3787 0.002789 -2.05 -0.5658
North-West 1.819 0.4437 0.005242 0.776 2.396

Northern Cape 0.6269 0.1843 0.001834 0.254 0.8335
Western Cape 1.128 0.5761 0.004475 -0.1782 2.011

Table 3.31: The deviance residuals of the PCAR model.

Province
Deviance Residual 95% Confidence 

IntervalMean Standard
Deviation

MC erro r
2.5% 97.5%

Eastern Cape 0.654 0.4386 0.002821 -0.2408 1.485
Free State 0.2029 0.2972 0.001971 -0.4014 0.773
Gauteng -0.9363 0.4918 0.003991 -1.886 0.04419

KwaZulu-Natal -1.336 0.431 0.003684 -2.158 -0.4744
Limpopo 0.2737 0.3891 0.002281 -0.4986 1.017

Mpumalanga -1.547 0.2388 0.001986 -2.017 -1.081
North-West 1.463 0.4145 0.004286 0.5604 2.195

Northern Cape 0.8957 0.2719 0.002036 0.3275 1.371
Western Cape 0.8055 0.4293 0.00291 -0.07843 1.616

There are small differences between the Bayesian residuals in the PCAR and ICAR models. The 
biggest difference between the Bayesian residuals of the two models occurs at the Western Cape with 
the Bayesian residuals having values of 1.082 and 1.128 for the ICAR and PCAR models, respectively. 
This is a difference of 0.046, which is not a significant difference. The other provinces all have very 
small differences between the two models.

As with the Bayesian residuals, the deviance residuals for both models are also very similar.
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F i t t e d  V a l u e

Figure 3.37: The Bayesian residuals versus the fitted values of the PCAR model.

The Bayesian residuals versus fitted values are given in Figure 3.37 and show a fairly random 
pattern. The pattern seems to change after 2.5 on the fitted values, the figure shows an increase in the 
spacing after 2.5 than the spacing before 2.5.

Figure 3.38: Q-Q plot of the deviance residuals of the PCAR model.
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The model seems to fit the data adequately as the normal Q-Q plot shows that most of the points 
are close to the straight line. There is a province at -1.5 which is further away from the straight line 
than all the other provinces and indicates the model does not fit well to this province. This is different 
to the Q-Q plot of the ICAR model.

Figure 3.39: The SMR of the South African data for the PCAR model.

The PCAR model produces the same figure as the ICAR model for the SMR. As in the ICAR 
model, KwaZulu-Natal and Mpumalanga have the lowest SMR values. The highest values of the SMR 
are again North-West and the Northern Cape. The same conclusions can be drawn from the PCAR 
model that were drawn from the ICAR model.

Table 3.32: The SMR of the South African data for the PCAR model.

Province
SMR 95% Confidence 

IntervalMean Standard
Deviation MC E rro r

2.5% 97.5%
Eastern Cape 1.4920 0.007741 0.00004084 1.4770 1.5080

Free State 1.2110 0.008138 0.00004283 1.1970 1.2280
Gauteng 0.5226 0.003944 0.00002082 0.5148 0.5302

KwaZulu-Natal 0.3155 0.006830 0.00003606 0.3019 0.3286
Limpopo 1.1990 0.003775 0.00001991 1.1920 1.2070

Mpumalanga 0.0007 0.025300 0.00013340 -0.0522 0.0467
North-West 2.7560 0.051110 0.00026930 2.6610 2.8600

Northern Cape 2.9100 0.179800 0.00094090 2.6070 3.3080
Western Cape 1.6560 0.011450 0.00006040 1.6340 1.6790

The SMR values in Table 3.32 give almost the same means as the ICAR, with the only difference in 
the SMR value of Mpumalanga. In the ICAR model, the mean SMR value at Mpumalanga is 0.0007581
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whereas in the PCAR model the value is 0.0007134. The mean SMR value at Mpumalanga is slightly 
higher than the PCAR model with a difference of only 0.0000447. Other slight differences do occur in 
the standard deviations and MC errors between the two models. The standard deviations are slightly 
different for the two models, with the PCAR model having a slightly lower standard deviation for all 
the provinces. The MC error, as with the standard deviation, is slightly lower for the PCAR model than 
for the ICAR model.

Figure 3.40: The relative risk of the South African data for the PCAR model.

Table 3.33: The relative risk of the South African data for the PCAR model.

Province
Relative Risk 95% Confidence 

IntervalMean Standard
Deviation M C E rro r

2.5% 97.5%
Eastern Cape 1.0300 0.3130 0.002206 0.5434 1.712

Free State 1.0240 0.3522 0.002128 0.4984 1.805
Gauteng 0.9696 0.2720 0.002093 0.4994 1.560

KwaZulu-Natal 0.9632 0.2786 0.002452 0.4759 1.547
Limpopo 1.0130 0.3085 0.001671 0.5267 1.692

Mpumalanga 0.9757 0.3032 0.002342 0.4595 1.628
North-West 1.0830 0.4018 0.004833 0.5536 2.017

Northern Cape 1.0750 0.5235 0.005336 0.4881 2.136
Western Cape 1.0360 0.3204 0.002392 0.5457 1.760

The relative risk is slightly higher for the ICAR model than the PCAR model in provinces Gauteng 
and the Western Cape. All the other provinces have a slightly lower relative risk in the ICAR model. 
The highest difference is 0.023. The same can be concluded for the PCAR model as was concluded
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for the ICAR model, in that the relative risk of contracting and dying from acute pericarditis in South 
Africa in 2014 has a relatively low risk.

Figure 3.41: The posterior exceedance probability of the South African data for the PCAR model.

Table 3.34: The posterior exceedance probability of the South African data for the PCAR model.

Posterior Ex pected Exceedance Probability

Province Mean Standard
Deviation

M C E rro r

Eastern Cape 0.4887 0.4999 0.002814
Free State 0.4750 0.4994 0.002656
Gauteng 0.4257 0.4944 0.003089

KwaZulu-Natal 0.4146 0.4927 0.003332
Limpopo 0.4693 0.4991 0.002616

Mpumalanga 0.4332 0.4955 0.003117
North-West 0.5265 0.4993 0.003634

Northern Cape 0.4914 0.4999 0.002407
Western Cape 0.4943 0.5000 0.002807

The PP for the PCAR model shows that there is a slight difference in the PCAR model compared 
to the ICAR model. The biggest difference occurs at the Western Cape where the ICAR model has a 
slightly higher value than the PCAR model with the difference being 0.0141. There are three provinces 
where the PP for the ICAR model is lower than the PP for the PCAR model, these occur at Gauteng, 
KwaZulu-Natal and Mpumalanga. The standard deviation for the PP in the ICAR model is lower 
or equal to the standard deviation for the PP in the PCAR model in 7 provinces. There are slight 
differences in the standard deviations and MC errors in the two models.
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The PP shows that there is no usual or unexpected clustering of the disease in the PCAR model 
when the exceedance probability, P, of interest is set at 0.9.

The confidence intervals for the PP are not given in Table 3.34 as all of the confidence intervals 
have a lower bound of 0 and an upper bound of 1.0.

Figure 3.42: The box plot of the relative risk of the South African data for the PCAR model from the left: Eas­
tern Cape, Free State, Gauteng, KwaZulu-Natal, Limpopo, Mpumalanga, North-West, Northern 
Cape and Western Cape.

The box plot for the relative risk of the PCAR model is centred around 1 with North-West, Western 
Cape and Northern Cape slightly higher than all the other provinces. The Northern Cape shows a 
heavier tail than all the other provinces which is expected because of the high standard deviation of the 
relative risk in the province.



Chapter 4

Conclusion

4.1 Concluding Remarks

Oral cancer in Georgia in 2004 was modelled for 3 models. The best model, based on the DIC, 
MAPE and MSPE, was model 1 which had a conjugate hyperprior distribution for the precision of 
the UH component. The parameters of the conjugate hyperprior distribution were calculated based 
upon approximately 30% of the data in the model. The difference between models 1 and 2 was not 
significant as the difference in the DIC values of the two models was only 2.664. We considered a 
difference of more than 10 in the DIC to be a significant difference. There was, however, differences 
between the results of the two models even though the difference in the DIC was small. The difference 
in DIC was significant between models 1, 2 from model 3. This difference in DIC from model 3 was 
29.011 and 31.675 for models 2 and 1, respectively. The results produced for models 1 and 2 were 
comparable, and both models fitted the data adequately whereas model 3 had a poor fit to the data and 
produced significantly different results to those of models 1 and 2. The results of model 3 were only 
used for illustrative purposes as the model fit was poor.

The sensitivity of the hyperprior for the precision of the UH component was illustrated by changing 
from a hyperprior which allows for some flexibility and estimation in the model to a fixed parameter 
for the precision which does not allow flexibility or estimation in the model. It was therefore important 
to select the hyperprior distributions for the precision of the UH component carefully. The same can 
be concluded with the precision of the ICAR prior. This hyperprior for the precision of the ICAR prior 
was also sensitive to changes and should be selected with care.

The variation in the model due to the unobserved non-spatial factors and unobserved spatial factors 
may be changed by manipulating the hyperpriors for the precision, as was illustrated in models 1 
and 2. It was often the case that either the UH component was dominant over the CH component or 
vice versa, although the dominance was not known before the model was run and could only be seen 
after the model was run. The CH component was more dominant over the UH component in model 2 
whereas the UH component was more dominant over the CH component in model 1.
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The fixed parameter in model 3 resulted in a very high proportion of the total variation in the model 
due to the unobserved non-spatial factor. This was higher than the variation due to the expected values 
and is not desirable in any model. The variation due to the unobserved non-spatial factor may be 
reduced by changing the value of the fixed parameter.

The ICAR and PCAR models for the South African data show that there was no significant diffe­
rence between the ICAR and PCAR models based on the model diagnostics. The DIC for each model 
was 32.074 and 32.139 for the ICAR and PCAR models, respectively. The difference in DIC was only 
0.065 which was not large enough to consider a significant difference between the two models.

The model diagnostics also show that there was a slightly higher proportion of the total variation 
due to the expected values in the ICAR model, a difference of 1.20% from the PCAR model. The 
proportion of the total variation due to the unobserved spatial factors was higher in the PCAR model 
with 2.77% compared with the 1.67% in the ICAR model, a difference of 1.10%. The remaining 
proportion of the total variation was due to the unobserved non-spatial factors which was higher in the 
PCAR model than in the ICAR model. Although these proportions may be changed by changing the 
parameters for the hyperprior distributions for both models.

The other results from both models were very similar apart from very slight but insignificant diffe­
rences. Other differences occurred in the standard deviation of statistics that were calculated for both 
models, however, these differences change from variable to variable and it was difficult to conclude 
which model results had a lower or higher standard deviation than the other model.

The results from the ICAR and PCAR models showed that it was possible to use either model and 
still obtain very similar results for the PCAR and ICAR models for acute pericarditis in South Africa 
in 2014. Both the ICAR and PCAR models also showed that there was a low risk of contracting and 
dying from acute pericarditis in all provinces in 2014. The ICAR model seems to be the more popular 
model among researchers. We found the disadvantages of the PCAR as:

• The implementation of the PCAR model was more complex than the ICAR model.

• The WinBUGS® code for the PCAR model was clumsy.

• The PCAR model had a longer computation time than the ICAR model. This became evident 
when the number of parameters and number of regions in the model increased. Some of the 
computations may be done in RStudio® and the result of these computations may be inserted 
into WinBUGS® as data as a temporary fix for the longer computation time.

• The PCAR model only worked for models with a small number of regions and a small number 
of parameters. The PCAR model could not be run for the Georgia data as a result. •

• The choice of initial values in the PCAR model may lead to a trap error in WinBUGS®, thus the 
specification of initial values in the PCAR model was more difficult than in the ICAR model.
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• An incorrect specification of the bounds of the parameter p ,  the amount of spatial dependence, 
in the PCAR model resulted in incorrect results.

4.2 Future Research

The sample size of each region should be increased and previous year's data for each region should 
be included in the model. This would enable an investigation into the trend of the relative risk in each 
region over time. The increase in sample size would also help the model produce more reliable results. 
The coordinates of each observation would also be helpful in analysing spatial correlation as well as 
the identification of clusters in the data. Cluster analysis should be performed on the data to check that 
there are no regions with unusual risk.

The complexity of diseases made it difficult to model a contagious disease as the independence 
of the data would be broken. The likelihood is based on the foundation that the data is independent 
thus an investigation into the methods and techniques required to perform such an analysis would be 
very interesting. Another issue, requiring further investigation, would be the analysis of a disease 
which results in a higher number of deaths. The Poisson distribution is used when there are a small 
number of deaths as a large number of deaths create a lot of overdispersion. It would be interesting to 
investigate which distribution would fit the data well in that case.

Defining a model which can handle multiple diseases at once and a mapping technique to map the 
output of such a model.

Investigating other applications of disease mapping in financial markets and econometric applica­
tions may also be a possibility.
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Figure A.1: Death notification for the capturing of data.
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Appendix B: Data

B.1 Georgia Data

Table B.1: The Georgia population by county in 2004.

County Population County Population County Population
Appling 17740 Clinch 6893 Glynn 71475

Atkinson 7985 Cobb 640346 Gordon 49426

Bacon 10283 Coffee 39383 Grady 23840

Baker 4024 Colquitt 42987 Greene 15330

Baldwin 45967 Colum bia 102934 Gwinnett 687468

Banks 16250 Cook 16268 Habersham 38491

Barrow 55032 Coweta 104089 Hall 156385

Bartow 87834 Crawford 12784 Hancock 9673

Ben Hill 17106 Crisp 22320 Haralson 27621

Berrien 17399 Dade 16028 Harris 27180

Bibb 154159 Dawson 18831 Hart 23966

Bleckley 12018 Decatur 27763 Heard 11273

Brantley 16222 D eK alb 666204 Henry 159971

Brooks 16127 Dodge 20319 Houston 123723

Bryan 26061 Dooly 12848 Irwin 9402

Bulloch 60832 D ougherty 94596 Jackson 48288

Burke 22867 Douglas 107377 Jasper 12588

Butts 21706 Early 11800 Jeff Davis 13433

Calhoun 6306 Echols 3926 Jefferson 16988

Cam den 46096 Effingham 43674 Jenkins 8490

Candler 10039 Elbert 20693 Johnson 9613

Carroll 99774 Em anuel 21579 Jones 26537

Catoosa 58866 Evans 10889 Lam ar 16567

Charlton 11378 Fannin 21873 Lanier 7824

Chatham 240818 Fayette 99443 Laurens 46329

Chattahoochee 15515 Floyd 94014 Lee 25965

Chattooga 25537 Forsyth 129639 Liberty 63254

Cherokee 173105 Franklin 21430 Lincoln 8284

Clarke 109752 Fulton 809481 Long 11355

Clay 3233 Gilm er 26175 Lowndes 96510

Clayton 255322 Glascock 2720 Lum pkin 24916
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Table B.2: The Georgia population by county in 2004 continued.

County Population County Population County Population
McDuffie 21256 Pulaski 10646 Toombs 26166

M cIntosh 12182 Putnam 19810 Towns 9872

M acon 14304 Quitman 2457 Treutlen 6949

M adison 26859 Rabun 15757 Troup 62001

M arion 7637 Randolph 7726 Turner 9310

M eriwether 22563 Richm ond 196883 Twiggs 10266

M iller 6135 Rockdale 76577 Union 19378

M itchell 23520 Schley 4070 Upson 27514

M onroe 23648 Screven 15047 W alker 64228

M ontgom ery 9040 Seminole 9065 W alton 70334

M organ 16604 Spalding 60588 W are 34991

M urray 39465 Stephens 25314 W arren 6195

M uscogee 185057 Stewart 5534 W ashington 21088

Newton 80603 Sumter 32902 Wayne 28227

Oconee 27904 Talbot 6775 W ebster 2549

Oglethorpe 13591 Taliaferro 1903 W heeler 6500

Paulding 106350 Tattnall 23034 W hite 24015

Peach 24818 Taylor 8918 W hitfield 91842

Pickens 26810 Telfair 14685 W ilcox 8882

Pierce 16755 Terrell 10453 Wilkes 10613

Pike 15474 Thomas 42762 W ilkinson 9968

Polk 39564 Tift 38622 Worth 21873

Total 8769252
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Table B.3: The oral cancer data by county in Georgia in 2004.

County Observed
Deaths

Expected
Value County Observed

Deaths
Expected

Value County Observed
Deaths

Expected
Value

Appling 1 0.4436 Clinch 0 0.1716 Glynn 0 1.7618

Atkinson 0 0.1978 Cobb 10 16.1476 Gordon 1 1.2117

Bacon 0 0.2551 Coffee 3 0.9723 Grady 1 0.5995

Baker 0 0.1049 Colquitt 1 1.0805 Greene 0 0.3865

Baldwin 2 1.1162 Colum bia 0 2.4836 Gwinnett 9 17.3028

Banks 0 0.3873 Cook 3 0.4013 Habersham 0 0.9624

Barrow 0 1.3930 Coweta 1 2.6018 Hall 7 3.9733

Bartow 2 2.1474 Crawford 0 0.3182 Hancock 0 0.2422

Ben Hill 1 0.4282 Crisp 1 0.5439 Haralson 2 0.6930

Berrien 2 0.4118 Dade 0 0.3948 Harris 1 0.6614

Bibb 6 3.8312 Dawson 0 0.4707 Hart 0 0.5770

Bleckley 0 0.2974 Decatur 0 0.7065 Heard 1 0.2788

Brantley 0 0.3837 D eK alb 11 16.6838 Henry 2 3.9382

Brooks 0 0.4041 Dodge 1 0.4815 Houston 5 3.0555

Bryan 1 0.6798 Dooly 2 0.2865 Irwin 2 0.2453

Bulloch 2 1.4899 Dougherty 4 2.3624 Jackson 2 1.2232

Burke 0 0.5725 Douglas 4 2.6472 Jasper 0 0.3177

Butts 0 0.5521 Early 0 0.2985 Jeff Davis 3 0.3165

Calhoun 0 0.1507 Echols 0 0.1013 Jefferson 1 0.4168

Camden 0 1.1137 Effingham 1 1.1027 Jenkins 2 0.2143

Candler 0 0.2517 Elbert 0 0.5162 Johnson 0 0.2367

Carroll 4 2.5080 Em anuel 1 0.5455 Jones 0 0.6477

Catoosa 3 1.4776 Evans 0 0.2777 Lam ar 2 0.4052

Charlton 0 0.2641 Fannin 2 0.5336 Lanier 0 0.1843

Chatham 4 5.8891 Fayette 0 2.5019 Laurens 1 1.1532

Chattahoochee 0 0.3335 Floyd 2 2.3211 Lee 1 0.7386

Chattooga 0 0.6556 Forsyth 1 3.2558 Liberty 2 1.5246

Cherokee 0 4.3129 Franklin 0 0.5297 Lincoln 1 0.2073

Clarke 1 2.5666 Fulton 24 20.1087 Long 1 0.2698

Clay 0 0.0819 Gilm er 1 0.6606 Lowndes 0 2.3650

Clayton 0 6.5417 Glascock 1 0.0650 Lum pkin 0 0.5907
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Table B.4: The oral cancer data by county in Georgia in 2004 continued.

County Observed
Deaths

Expected
Value County Observed

Deaths
Expected

Value County Observed
Deaths

Expected
Value

McDuffie 2 0.5313 Pulaski 0 0.2429 Toombs 1 0.6611

M cIntosh 0 0.2750 Putnam 1 0.4875 Towns 0 0.2502

M acon 0 0.3441 Quitm an 0 0.0609 Treutlen 0 0.1739

M adison 0 0.6743 Rabun 0 0.3953 Troup 3 1.5111

M arion 0 0.1756 Randolph 0 0.1810 Turner 0 0.2321

M eriwether 0 0.5617 Richm ond 10 4.8458 Twiggs 0 0.2580

M iller 0 0.1522 Rockdale 1 1.8967 Union 1 0.4841

M itchell 0 0.5886 Schley 0 0.0998 Upson 3 0.6939

M onroe 1 0.5784 Screven 0 0.3787 W alker 3 1.5648

M ontgom ery 0 0.2215 Seminole 0 0.2288 W alton 1 1.7762

M organ 1 0.4200 Spalding 1 1.5033 Ware 0 0.8793

M urray 0 1.0013 Stephens 1 0.6170 W arren 1 0.1544

M uscogee 4 4.5146 Stewart 1 0.1230 W ashington 1 0.5200

Newton 0 2.0129 Sumter 2 0.8116 Wayne 2 0.6962

Oconee 1 0.7145 Talbot 0 0.1626 W ebster 0 0.0574

Oglethorpe 0 0.3347 Taliaferro 0 0.0468 W heeler 0 0.1627

Paulding 4 2.6156 Tattnall 3 0.5677 W hite 1 0.5826

Peach 1 0.6090 Taylor 3 0.2218 W hitfield 5 2.2088

Pickens 1 0.6857 Telfair 0 0.3188 W ilcox 0 0.2146

Pierce 0 0.41280 Terrell 0 0.2704 Wilkes 0 0.2613

Pike 0 0.3889 Thomas 2 1.0861 W ilkinson 3 0.2516

Polk 1 0.9942 Tift 0 0.9920 Worth 2 0.5434
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B.2 South African Data

Table B.5: The South African data for acute pericarditis in 2014.

ID Date of B irth Age Gender Death Province Smoker Birth Province
1 09/07/1925 88 M WC Unavailable EC
2 14/04/1947 66 F EC No EC
3 16/12/1941 72 F EC Unspecified EC
4 21/11/2008 5 F NW NA NW
5 05/01/1928 85 F EC Unspecified Unspecified
6 04/01/2007 7 M LP NA LP
7 28/10/1963 50 M LP No LP
8 27/01/1961 53 M NW Unspecified Unspecified
9 28/12/1935 78 M WC Unspecified GP
10 20/05/1964 50 F NW Yes NW
11 16/11/1949 64 M GP Yes FS
12 04/07/1976 38 M FS Yes Foreign
13 11/03/1948 66 M WC No WC
14 06/06/1985 29 M GP Yes KZN
15 07/12/1989 24 F NC Yes NC
16 23/11/1965 49 M KZN Unspecified KZN
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Appendix C: Additional Results

C.1 Additional results for Georgia model 1

Normal Q-Q Plot

Theoretical Quantiles 

Figure C.1: Q-Q plot for model 1.
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Histogram of Residuals

- 3 - 2 - 1 0  1 2

Residual

Figure C.2: Bayesian residual histogram for model 1.

12000 20000 30000 40000 50000
iteration

Figure C.3: Selected trace plots for the relative risk of model 1, from left to right: Bryan, Clinch, Coweta, Early,
Glynn and Jackson.
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Figure C.4: Selected density kernels for the relative risk and deviance for model 1, from left to right: Bryan, 
Clinch, Coweta, Early, Glynn, Jackson, Jenkins, Liberty, McIntosh, Monroe, Richmond, Spalding, 
Taliaferro, Union, Warren, Wilkes and the deviance.

Figure C.5: Trace plot of the deviance for model 1.
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Table C.1: Selected results for the deviance residuals in model 1.

County Mean Standard
Deviation MC E rro r 95% Confidence Interval

2.5% 97.5%
Bryan 0.2453 0.5050 0.003857 -0.8445 1.1520
Clinch -0.5988 0.1893 0.001534 -1.0380 -0.2989
Coweta -0.6758 0.5872 0.004773 -1.8730 0.4308
Early -0.7609 0.2314 0.001978 -1.2900 -0.3843
Glynn -1.5370 0.4130 0.004861 -2.4320 -0.8162

Jackson 0.4890 0.6278 0.007161 -0.8519 1.6360
Jenkins 1.7600 0.5560 0.006520 0.5031 2.6980
Liberty 0.1903 0.6449 0.005760 -1.1430 1.3840

M cIntosh -0.7420 0.2260 0.001932 -1.2610 -0.3744
M onroe 0.3738 0.4807 0.002922 -0.6701 1.2310

Richmond 0.5723 0.9028 0.006524 -1.2350 2.3000
Spalding -0.2571 0.5469 0.005197 -1.3910 0.7574

Taliaferro -0.3170 0.1011 6.438E-4 -0.5555 -0.1607
Union 0.5473 0.4756 0.004521 -0.4676 1.3940

W arren 1.2150 0.3963 0.003438 0.3325 1.9020
Wilkes -0.7132 0.2150 0.001438 -1.2080 -0.3625

C.2 Additional results for Georgia model 2

Normal Q-Q Plot

- 2 - 1 0  1 2 

Theoretical Quantiles

Figure C.6: Q-Q plot for model 2.
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iteration iteration

Figure C.8: Selected trace plots for the relative risk of model 2, from left to right: Bryan, Clinch, Coweta, Early,
Glynn and Jackson.
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Figure C.9: Selected density kernels for the relative risk and deviance for model 2, from left to right: Bryan, 
Clinch, Coweta, Early, Glynn, Jackson, Jenkins, Liberty, McIntosh, Monroe, Richmond, Spalding, 
Taliaferro, Union, Warren, Wilkes and the deviance.

Figure C.10: Trace plot of the deviance for model 2.
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Table C.2: Selected results for the deviance residuals in model 2.

County Mean Standard
Deviation MC E rro r 95% Confidence Interval

2.5% 97.5%
Bryan 0.2201 0.4372 0.003551 -0.7268 1.0220
Clinch -0.6056 0.1741 0.001713 -1.0010 -0.3137
Coweta -0.8346 0.5035 0.007783 -1.8420 0.1607
Early -0.7724 0.2179 0.002897 -1.2540 -0.3982
Glynn -1.6060 0.4038 0.006276 -2.4530 -0.8749

Jackson 0.7276 0.5189 0.008204 -0.3896 1.6800
Jenkins 1.7910 0.4888 0.006527 0.6775 2.6200
Liberty 0.0613 0.5927 0.005937 -1.1710 1.1680

M cIntosh -0.7778 0.2116 0.001932 -1.2610 -0.4234
M onroe 0.3273 0.3894 0.003213 -0.5122 1.0420

Richmond 0.6388 0.8797 0.008625 -1.1560 2.2920
Spalding -0.1853 0.4305 0.004773 -1.0880 0.6341

Taliaferro -0.3273 0.08351 7.218E-4 -0.5191 -0.1883
Union 0.6100 0.4329 0.003908 -0.3363 1.3810

W arren 1.1910 0.3314 0.003494 0.4445 1.7660
Wilkes -0.7421 0.1840 0.001727 -1.1660 -0.4277

C.3 Additional results for Georgia model 3

Normal Q-Q Plot

- 2 - 1  O 1 2
Theoretical Quantiles

Figure C.11: Q-Q plot for model 3.
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Figure C.12: Bayesian residual histogram for model 3.

iteration iteration

12000 20000 30000 40000 50000 12000 20000 30000 40000 50000
iteration iteration

Figure C.13: Selected trace plots for the relative risk of model 3, from left to right: Bryan, Clinch, Coweta,
Early, Glynn and Jackson.
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Figure C.14: Selected trace plots for the relative risk of model 3 continued, from left to right: McIntosh, Ri­
chmond, Taliaferro and Wilkes.

Figure C.15: Selected density kernels for the relative risk and deviance for model 3, from left to right: Bryan, 
Clinch, Coweta, Early, Glynn, Jackson, Jenkins, Liberty, McIntosh, Monroe, Richmond, Spalding, 
Taliaferro, Union, Warren, Wilkes and the deviance.

Figure C.16: Trace plot of the deviance for model 3.
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Table C.3: Selected results for the deviance residuals in model 3.

County Mean Standard
Deviation MC E rro r 95% Confidence Interval

2.5% 97.5%
Bryan 0.3386 1.0220 0.005150 -1.686 2.299
Clinch -0.0024 0.0437 2.309E-4 -1.701E-7 0
Coweta 0.3349 1.0270 0.004769 -1.684 2.329
Early -0.0022 0.0440 2.155E-4 -4.787E-7 0
Glynn -0.0023 0.0455 2.17E-4 -9.680E-8 0

Jackson 0.2333 1.0290 0.005160 -1.814 2.242
Jenkins 0.2347 1.0290 0.005519 -1.810 2.226
Liberty 0.2388 1.0260 0.004748 -1.805 2.233

McIntosh -0.0020 0.0400 2.014E-4 -3.625E-7 0
Monroe 0.3382 1.0350 0.005563 -1.713 2.367

Richmond 0.0971 1.0640 0.005385 -2.011 2.131
Spalding 0.3426 1.0280 0.004985 -1.697 2.331

Taliaferro -0.0022 0.0425 1.999E-4 -2.141E-7 0
Union 0.3490 1.0250 0.005376 -1.675 2.340

Warren 0.3292 1.0220 0.004963 -1.696 2.321
Wilkes -0.0021 0.0389 2.022E-4 -1.213E-7 0

C.4 Additional Results for the ICAR model

i----------------------------------- 1------------------------------------1----------------------------------- 1----------------------------------- r

5.0 5.5 1.0 1.5 2.0

Figure C.17: Caterpillar plot for the relative risk for the South African data for the ICAR model.



APPENDIX C: ADDITIONAL RESULTS 177
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Figure C.18: SMR and relative risk model fit for South African data for the ICAR model.

Figure C.19: Relative risk and observed value model fit for the South African data for the ICAR model.
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C.5 Additional Results for the PCAR model

i----------------------------1---------------------------- 1-----------------------------1----------------------------1---------------------------- r
0 0  O.E 1.0 1.5 2.0 2 5

Figure C.20: Caterpillar plot for the relative risk for the South African data for the PCAR model.

5.0 -

2.0 -  

1.0 -  -  

0.0 - -

Figure C.21: SMR and the relative risk model fit for South African data for the PCAR model.
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The c ode  f o r  t he  n e i g h b o u r i n g  r e g i o n s  in Sou t h  A f r i c a .  
l i b r a r y  ( s p d e p ) 
l i b r a r y  ( m a p t o o l s  )
x<— r e a d  S h a p e  S p a t i a l  ( ”C : / Us e r s  / Downl oads  / Ap p Da t a /  L o c a l  /T em p/Z A F_adm _shp 
+/ZAF_adm1. shp ") 
x<—x[x$NAME_1,]
x $ v a l u e < — c (5 ,4 , 3 0 , 1 2  ,2 ,0 ,3 ,1 , 11)  
p a r  ( ma i =c  (0 ,0 ,0 , 0 ) )  
xy<— c o o r d i n a t e s  ( x )  
w<— p o l y 2 n b  (x , row . n a m e s = x $ I D _ 1 ) 
summary (w)
p l o t ( x , c o l  = ’ gr ay ’ , b o r d e r  = ’ b l ue  ’ , l wd=2)  
p l o t  (w,  xy , c o l  = ’ r ed ’ , lwd = 2 ,add=TRUE)

The c ode  f o r  t he  n e i g h b o u r i n g  r e g i o n s  in G e o r g i a .  
l i b r a r y  ( s p d e p ) 
l i b r a r y  ( m a p t o o l s  )
x<— r e a d S  h a p e  S p a t i a l  ( " C : / U s e r s  / R i c h a r d  / Document s  /US/USG. shp ” ) 
x<—x[x$NAME_2,]
x $ v a l u e < —c (1 , 0 , 0 , 0 , 2 , 0 , 0 , 2 , 1 , 2 , 6 , 0 , 0 , 0 , 1 , 2 , 0 , 0 , 0 , 0 , 0 , 4 , 3 , 0 , 4 , 0 , 0 , 0 , 1 , 0 ,  
0 , 0 , 1 0 , 3 , 1 , 0 , 3 , 1 , 0 , 1 , 0 , 0 , 0 , 1 1 , 1 , 2 , 4 , 4 , 0 , 0 , 1 , 0 , 1 , 0 , 2 , 0 , 2 , 1 , 0 , 2 4 , 1 , 1 , 0 , 1 ,
1 , 0 , 9 , 0 , 7 , 0 , 2 , 1  , 0 , 1  , 2 , 5 , 2 , 2 , 0 , 3 , 1  , 2 , 0 , 0 , 2 , 0 , 1  ,1 , 2 , 1  ,1 ,0 ,0 ,2 ,0 ,0 ,0 ,0 ,0 ,0 ,
0 , 1 , 0 , 1 , 0 , 4 , 0 , 1 , 0 , 4 , 1 , 1 , 0 , 0 , 1 , 0 , 1 , 0 , 0 , 0 , 1 0 , 1 , 0 , 0 , 0 , 1 , 1 , 1 , 2 , 0 , 0 , 3 , 3 , 0 , 0 ,
2 , 0 , 1  , 0 , 0 , 3 , 0 , 0 , 1  , 3 , 3 , 1  , 0 , 1  ,1 , 2 , 0 , 0 , 1  , 5 , 0 , 0 , 3 , 2 )
p a r  ( ma i =c  (0 ,0 ,0 , 0 ) )
xy<— c o o r d i n a t e s  ( x )
w<— p o l y 2 n b  (x , row . nam es= x$ID _2  )
summary (w)
p l o t ( x , c o l  = ’ gr ay ’ , b o r d e r  = ’ b l ue  ’ , l wd=2)

179
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p l o t  (w,  xy , c o l  = ’ r ed ’ , lwd = 2 ,add=TRUE)

The c ode  f o r  t he  l i n e  g r a p h  c o m p a r i n g  s t a n d a r d  p o p u l a t i o n s  . 
age<—c ( ’0 — 4 ’ , ’05 — 9 ’ , ’ 10 — 1 4 ’ , ’ 15 — 1 9 ’ , ’20 — 2 4 ’ , ’25 — 2 9 ’ , ’30 — 3 4 ’ , ’35 — 3 9 ’ , ’40 — 4 4 ’ , 
’45 — 4 9 ’ , ’50 — 5 4 ’ , ’55 — 5 9 ’ , ’60 — 6 4 ’ , ’65 — 6 9 ’ , ’70 — 7 4 ’ , ’75 — 7 9 ’ , ’80 — 8 4 ’ , ’85 + ’ ) 
age<— as . f a c t o r  ( a g e )
wo r l d < —c ( 8 . 8 6  , 8 . 6 9 , 8 . 6 , 8 . 4 7 , 8 . 2 2 , 7 . 9 3 , 7 . 6 1 , 7 . 1 5 , 6 . 5 9 , 6 . 0 4 , 5 . 3 7 , 4 . 5 5 , 3 . 7 2 ,  
2 . 9 6  , 2 . 2 1  , 1 . 5 2 , 0 . 9 1  , 0 . 6 3 )
a f r i c a < —c ( 1 6 . 2 5  , 1 4 . 7 4 , 1 3 . 1 3 , 1 0 . 8 1 , 8 . 4 1 , 6 . 9 , 5 . 7 3 , 4 . 7 6 , 4 . 0 3 , 3 . 4 4 , 2 . 8 6 , 2 . 4 5 ,
2 . 0 3  , 1 . 6 5  , 1 . 2 2  , 0 . 8  1 , 0 . 4 4  , 0 . 3 5 )
a s i a < —c ( 1 2 . 1 9  , 1 2 . 0 2  ,1 1 . 9 , 1 0 . 7 8  , 8 . 7 2 , 7 . 2 6 , 6 . 5 1 , 5 . 9 3 , 5 . 3 1 , 4 . 5 6 , 3 . 7 8 , 3 . 1 9 , 2 . 6 8 ,  
2 . 0 7  , 1 . 4 7  , 0 . 8 9  , 0 . 4 6  , 0 . 2 8 )
s eg i  <—c ( 1 2 , 1 0  , 9 , 9 , 8 , 8 , 6 , 6 , 6 , 6 , 5 , 4 , 4 , 3 , 2 , 1 , 0 . 5 , 0 . 5 )  
s c a n d < —c (8 , 7 , 7 , 7 , 7 , 7 , 7 , 7 , 7 , 7 , 7 , 6 , 5 , 4 , 3 , 2 , 1 , 1 )
p l o t  ( age  , a f r i c a  , m ain  = " Co mp a r i s o n  of  s t a n d a r d  p o p u l a t i o n s  " ,  x l a b  ="Age G r o u p " ,
y l a b  =" P e r c e n t a g e  of  P o p u l a t i o n  " ,  c o l = " r e d  ")
l i n e s  ( age  , wor l d  , c o l = "  b l u e  ")
l i n e s  ( age  , a s i a  , c o l  = ’ b l a c k  ’ )
l i n e s ( a g e , s eg i  , c o l = " g r e e n ")
l i n e s  ( age  , s cand , c o l = "  o r a n g e  ")
l eg <—c (" A f r i c a  " ," Wor l d"  ," A s i a "  ," S e g i " ," S c a n d i n a v i a n  ") 
col  <— c ( ’ Red ’ , ’ B lue ’ , ’ B l a ck  ’ , ’ G reen ’ , ’ O range ’ ) 
l e g e n d ( "  t o p r i g h t  " , l e g  , c o l  = col  , l wd=3)

The c ode  f o r  t he  P o i s s o n  d e n s i t y  f u n c t i o n  f i g u r e  . 
x<— seq ( 0 , 2 0 , 1 )
p l o t  ( d p o i s  (x , 1 ) ,  m ain  = " P o i s s o n  p r o b a b i l i t y  mass  f u n c t i o n  " ,  x l a b  ="Tim e " ,
y l a b  =""  , t y p e  = " l  " , c o l  = " b l a c k "  , l wd = 3 )
l i n e s ( d p o i s ( x , 4 )  , c o l  = " r e d "  , l wd  = 3)
l i n e s  ( d p o i s  ( x , 5 )  , c o l  = " g r e e n  " , lwd = 3)
l i n e s  ( d p o i s ( x , 1 0 )  , c o l = "  o r a n g e  " , l wd  = 3)
c o l o u r <—c ( " b l a c k " , " r e d " , " g r e e n " , " o r a n g e ")
l a b e l s  = c ( e x p r e s s i o n ( p a s t e (  l ambda  ," = 1")  , p a s t e  ( l ambda  ," = 2" )  , p a s t e  ( l ambda  ," = 5 ") 
, p a s t e  ( l ambda  ," = 1 0 " ) ) )
l e g e n d  ( " t o p r i g h t " ,  i n s e t  = 0 . 0 0 ,  l a b e l s  , c o l  = c o l o u r  , l wd=3)

The c ode  f o r  t he  P o i s s o n  c u m u l a t i v e  d i s t r i b u t i o n  f u n c t i o n .
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x<— seq ( 0 , 2 0 , 1 )
p l o t  ( p p o i s  (x , 1 ) ,  m ain  = " P o i s s o n  c u m u l a t i v e  d i s t r i b u t i o n  f u n c t i o n  " ,  x l a b = " T i m e "
, y l a b  = " " ,  t y p e  = " l  " , c o l = "  b l a c k "  , l wd = 3 )  
l i n e s ( p p o i s ( x , 4 )  , c o l  = " r e d "  , l wd  = 3) 
l i n e s  ( p p o i s  ( x , 5 )  , c o l  = " g r e e n  " , lwd = 3) 
l i n e s  ( p p o i s ( x , 1 0 )  , c o l = "  o r a n g e "  , l wd  = 3) 
c o l o u r <—c ( " b l a c k " , " r e d " , " g r e e n " , " o r a n g e ")
l a b e l s  = c ( e x p r e s s i o n ( p a s t e (  l ambda  ," = 1")  , p a s t e  ( l ambda  ," = 2" )  , p a s t e  ( l ambda  ," = 5 ") 
, p a s t e  ( l ambda  ," = 1 0 " ) ) )
l e g e n d  ( " b o t t o m r i g h t " ,  i n s e t  = 0 . 0 ,  l a b e l s  , c o l  = c o l o u r  , l wd=3)

The c ode  f o r  t he  c a l c u l a t i o n  of  p a r a m e t e r s  in t he  
c o n j u g a t e  p r i o r  d i s t r i b u t i o n  f o r  t he  G e o r g i a  d a t a .
y=c ( 1 , 0 , 0 , 0 , 2 , 0 , 0 , 2 , 1 , 2 , 6 , 0 , 0 , 0 , 1 , 2 , 0 , 0 , 0 , 0 , 0 , 4 , 3 , 0 , 4 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 1 0 , 3 , 1 , 0  
, 3 , 1 , 0 , 1 , 0 , 0 , 0 , 1 1 , 1 , 2 , 4 , 4 , 0 , 0 , 1 , 0 , 1 , 0 , 2 , 0 , 2 , 1 , 0 , 2 4 , 1 , 1 , 0 , 1 , 1 , 0 , 9 , 0 , 7 , 0 , 2 , 1 , 0  
,1 , 2 , 5  , 2 , 2 , 0 , 3  ,1 , 2 , 0 , 0 , 2 , 0 , 1  ,1 , 2 , 1  ,1 ,0 ,0 ,2 ,0 ,0 ,0 ,0 ,0 ,0 , 0 , 1  , 0 , 1  ,0 ,4 , 0 , 1  ,0 , 4 , 1  
, 1 , 0 , 0 , 1 , 0 , 1 , 0 , 0 , 0 , 1 0 , 1 , 0 , 0 , 0 , 1 , 1 , 1 , 2 , 0 , 0 , 3 , 3 , 0 , 0 , 2 , 0 , 1 , 0 , 0 , 3 , 0 , 0 , 1 , 3 , 3 , 1 , 0 ,  
1 , 1 , 2 , 0 , 0 , 1 , 5 , 0 , 0 , 3 , 2 )  
a =me a n ( y  [ 1 : 4 6 ] )  
b = v a r  (y  [ 1: 4 6 ] )  
b = a / b  
a=b a

The c ode  f o r  t he  c o n j u g a t e  p r i o r  s i m u l a t i o n  wi t h  t he  Sou t h  A f r i c a n  
p a r a m e t e r s  . 
t h e t a  <—rep ( 1 : 9  , 1) 
n< — 10000
c o u n t 2 < — r ep  ( 0 , l e n g t h ( t h e t a ) )
l e n g t h < — r ep  (0 , n)
sd2<— r ep  ( 0 , l e n g t h ( t h e t a ) )
l e n g t h b a r 2  <— r ep  (0 , l e n g t h  ( t h e t a  ))
t h e t a 2 < — m a t r i x ( c ( r e p ( 0 , n ) )  , n c o l  =n)
f o r  ( j  i n 1 : l e n g t h ( t h e t a  )){
f o r  ( i  i n 1: n)  {
y<— r p o i s ( n , t h e t a [ j ] )
t h e t a 2  <—r ga mma ( n  , s h a p e = y  + 1 3 . 7 8 7 2 3 ,  r a t e  = 1 . 7 6 5 9 5 7 )  
s o r t e d  <— s o r t ( t h e t a 2 )
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i n t e r v a l l o w e r < — s o r t e d  [ n * 0 . 0 2 5 ]  
i n t e r v a l h i g h e r < — s o r t e d  [ n * 0 . 9 7 5 ]  
l e n g t h  [ i ] < — i n t e r v a l h i g h e r  — i n t e r v a l l o w e r  
a<—n * 0 . 025  
b<—n * 0 . 975
i f  ( t h e t a 2  [ a ] >  i n t e r v a l l o w e r  ){ 
i f  ( t h e t a 2 [ b ] < i n t e r v a l h i g h e r ){ 
c o u n t 2 [ j ] < — c o u n t 2 [ j ]  + 1 }}}
l e n g t h b a r 2  [ j  ] <  — ( 1/ n)  * sum(  l e n g t h  )
sd2 [ j ] <— s q r t  ( ( 1  / ( n — 1)) * (sum ( ( l e n g t h A2)) — (n * l e n g t h b a r 2  [ j  ] A2 ) ) ) }

The c ode  f o r  t he  c o n j u g a t e  p r i o r  s i m u l a t i o n  wi t h  t he  G e o r g i a  
p a r a m e t e r s  . 
t h e t a  <—rep ( 1 : 9  , 1) 
n< — 10000
c o u n t 6 < — r ep  ( 0 , l e n g t h ( t h e t a ) )
l e n g t h < — r ep  (0 , n)
sd6<— r ep  ( 0 , l e n g t h ( t h e t a ) )
l e n g t h b a r 6  <— r ep  (0 , l e n g t h  ( t h e t a  ))
t h e t a 6 < — m a t r i x ( c ( r e p ( 0 , n ) )  , n c o l  =n)
f o r  ( j  i n 1 : l e n g t h ( t h e t a  )){
f o r  ( i i n 1: n){
y<— r p o i s ( n , t h e t a [ j ] )
t h e t a 6  <—r ga mma ( n  , s h a p e = y  + 0 . 3 1 3 9 ,  r a t e  = 1 . 2 3 2 9 )
s o r t e d  <— s o r t ( t h e t a 6 )
i n t e r v a l l o w e r  <— s o r t e d  [ n * 0 . 0 2 5 ]
i n t e r v a l h i g h e r  <— s o r t e d  [ n * 0 . 9 7 5 ]
l e n g t h  [ i ] < — i n t e r v a l h i g h e r  — i n t e r v a l l o w e r
a<—n * 0 . 025
b<—n * 0 . 975
i f  ( t h e t a 6  [ a ] >  i n t e r v a l l o w e r  ){ 
i f  ( t h e t a 6 [ b ] < i n t e r v a l h i g h e r ){ 
c o u n t 6  [ j ] < — c o u n t 6  [ j ] + 1}}} 
l e n g t h b a r 6  [ j  ] <  — ( 1/ n)  * sum(  l e n g t h  )
sd6 [ j ] <— s q r t  ( ( 1 / ( n  — 1)) * (sum ( ( l e n g t h A 2 ) )  — (n * l e n g t h b a r 6  [ j  ] A2 ) ) ) }

The c ode  f o r  c o v e r a g e  r a t e  p l o t  of  t he  c o n j u g a t e  p r i o r  d i s  t r i b  u t i o  ns  .
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p l o t ( t h e t a  , c o u n t 4 / n , y l i m  = r a n g e ( c ( c o u n t 4 / n , c o u n t 6 / n ) )  , t y p e  = "o"  , lwd = 2 ,
c o l  = " b l a c k  ” , x l a b  = e x p r e s s i o n ( p a s t e ( t h e t a ) )  , y l a b = "  C o v e r a g e  Ra t e  " ,
m ain  = "The c o v e r a g e  r a t e  of  c o n j u g a t e  p r i o r  d i s t r i b u t i o n s " )
l i n e s  ( t h e t a  , c o u n t 2 / n ,  c o l = " r e d "  , lwd = 2 , t y p e  =" o ")
l i n e s  ( t h e t a  , c o u n t 3 / n ,  c o l  = " g r e e n  " , lwd = 2 , t y p e  = ’ o ’ )
l i n e s  ( t h e t a  , c o u n t 5 / n ,  c o l = "  o r a n g e "  , l wd =2  , t y p e  = "o ")
l i n e s  ( t h e t a  , c o u n t 6 / n ,  c o l = "  p u r p l e  " , l wd =2  , t y p e  = "o ")
c o l o u r < —c (" b l a c k  " ," r e d  " ," g r e e n  " ," o r a n g e  " ," p u r p l e  ")
l ab1  = e x p r e s s i o n ( p a s t e (  a l p h a  ," = 0 . 5 "  ," " , b e t a  ," = 6 " ) )
l a b 2  = e x p r e s s i o n ( p a s t e (  a l p h a  ," = 8" ," " , b e t a  ," = 0 . 2 5 " ) )
l a b 3  = e x p r e s s i o n ( p a s t e (  a l p h a  ," = 3" ," " , b e t a  ," = 5 " ) )
l a b 4  = e x p r e s s i o n (  p a s t e  ( a l p h a  ," = 1 3 . 7 8 7  23"  ," " , b e t a  ," = 0 . 7 6 5  9 5 7 " ) )
l ab5  = e x p r e s s i o n (  p a s t e  ( a l p h a  ," = 0 . 3 1 3 9 "  ," " , b e t a  ," = 0 . 2 3 2 9 " ) )
l a b e l s = c  ( l a b1  , l ab2  , l ab3  , l ab4  , l a b 5 )
l e g e n d  (" r i g h t  " , i n s e t = 0 ,  l a b e l s  , c o l  = c o l o u r  , lwd = 2)

The c ode  f o r  s t a n d a r d  d e v i a t i o n  of  t he  c o n j u g a t e  p r i o r  d i s  t r i b  u t i o  ns  .
p l o t ( t h e t a  , sd4 , y l i m  = r a n g e ( c (  sd4 , s d 6 ) )  , t y p e  = "o " , l wd = 2 , c o l  = " b l a c k  " ,
x l a b  = e x p r e s s i o n (  p a s t e  ( t h e t a ) )  , y l a b = "  S t a n d a r d  D e v i a t i o n "  , m ain = " The
s t a n d a r d  d e v i a t i o n  of  c o n j u g a t e  p r i o r  d i s t r i b u t i o n s " )
l i n e s  ( t h e t a  , sd2 , c o l  =" r e d  " , l wd=2  , t y p e  ="o ")
l i n e s  ( t h e t a  , sd3 , c o l  =" g r e e n  " , l w d = 2 , t y p e  = ’o ’ )
l i n e s  ( t h e t a  , sd4 , c o l  =" o r a n g e  " , l wd =2  , t y p e  = " o ")
l i n e s  ( t h e t a  , sd5 , c o l  =" p u r p l e  " , l wd =2  , t y p e  = " o ")
c o l o u r < —c (" b l a c k  " ," r e d  " ," g r e e n  " ," o r a n g e  " ," p u r p l e  ")
l ab1  = e x p r e s s i o n ( p a s t e (  a l p h a  ," = 0 . 5 "  ," " , b e t a  ," = 6 " ) )
l a b 2  = e x p r e s s i o n ( p a s t e (  a l p h a  ," = 8" ," " , b e t a  ," = 0 . 2 5 " ) )
l a b 3  = e x p r e s s i o n ( p a s t e (  a l p h a  ," = 3" ," " , b e t a  ," = 5 " ) )
l a b 4  = e x p r e s s i o n (  p a s t e  ( a l p h a  ," = 1 3 . 7 8 7  23"  ," " , b e t a  ," = 0 . 7 6 5  9 5 7 " ) )
l ab5  = e x p r e s s i o n (  p a s t e  ( a l p h a  ," = 0 . 3 1 3 9 "  ," " , b e t a  ," = 0 . 2 3 2 9 " ) )
l a b e l s = c  ( l a b1  , l ab2  , l ab3  , l ab4  , l a b 5 )
l e g e n d  (" r i g h t  " , i n s e t = 0 ,  l a b e l s  , c o l  = c o l o u r  , lwd = 2)

The c ode  f o r  mean i n t e r v a l  l e n g t h  of  t he  c o n j u g a t e  p r i o r  
d i s  t r i b  u t i o  ns  .
p l o t ( t h e t a  , l e n g t h b a r 4  , y l i m  = r a n g e ( c ( l e n g t h b a r 4  , l e n g t h b a r 6 ) ) , t y p e = " o " ,  lwd = 2 , 
c o l  = " b l a c k  " , x l a b  = e x p r e s s i o n ( p a s t e ( t h e t a ) )  , y l a b  = " Av e r a g e  I n t e r v a l  L e n g t h  "
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, ma i n  = "The a v e r a g e  i n t e r v a l  l e n g t h  of  c o n j u g a t e  p r i o r  d i s t r i b u t i o n s " )
l i n e s ( t h e t a  , l e n g t h b a r 2  , c ol  =" r e d  " ,  l w d = 2 , t y p e  ="o ")
l i n e s ( t h e t a  , l e n g t h b a r 3  , c o l  =" g r e e n  " ,  l wd =2  , t y p e  = ’o ’ )
l i n e s ( t h e t a  , l e n g t h b a r 5  , c o l  =" o r a n g e  " ,  l wd =2  , t y p e  = "o ")
l i n e s ( t h e t a  , l e n g t h b a r 6  , c o l  =" p u r p l e  " ,  l wd =2  , t y p e  = "o ")
c o l o u r < —c (" b l a c k  " ," r e d  " ," g r e e n  " ," o r a n g e  " ," p u r p l e  ")
l ab1  = e x p r e s s i o n ( p a s t e (  a l p h a  ," = 0 . 5 "  ," " , b e t a  ," = 6 " ) )
l a b 2  = e x p r e s s i o n ( p a s t e (  a l p h a  ," = 8" ," " , b e t a  ," = 0 . 2 5 " ) )
l a b 3  = e x p r e s s i o n ( p a s t e (  a l p h a  ," = 3" ," " , b e t a  ," = 5 " ) )
l a b 4  = e x p r e s s i o n (  p a s t e  ( a l p h a  ," = 1 3 . 7 8 7  23"  ," " , b e t a  ," = 0 . 7 6 5  9 5 7 " ) )
l ab5  = e x p r e s s i o n (  p a s t e  ( a l p h a  ," = 0 . 3 1 3 9 "  ," " , b e t a  ," = 0 . 2 3 2 9 " ) )
l a b e l s = c  ( l a b1  , l ab2  , l ab3  , l ab4  , l a b 5 )
l e g e n d  (" r i g h t  " , i n s e t = 0 ,  l a b e l s  , c o l  = c o l o u r  , lwd = 2)

The c ode  f o r  t he  s i m u l a t i o n  u s i n g  t he  J e f f r e y s  ’ P r i o r .  
t h e t a  <—rep ( 1 : 9  , 1) 
n< — 10000
c o un t 7  <— r ep  (0 , l e n g t h ( t h e t a  )) 
l e n g t h < — r ep  (0 , n)  
sd7<— r ep  ( 0 , l e n g t h ( t h e t a ) )  
l e n g t h b a r 7  <— r ep  (0 , l e n g t h  ( t h e t a  )) 
t h e t a 7 < — m a t r e i x ( c ( r e p ( 0 , n ) ) , n c o l = n )  
f o r  ( j  i n 1 : l e n g t h ( t h e t a  )){ 
f o r  ( i  i n 1: n)  { 
y<— r p o i s ( 1 , t h e t a [ j ] )
t h e t a 7  <—rgam m a(n= n  , s h a p e = y + 0.5 , r a t e  =1)
s o r t e d  <— s o r t ( t h e t a 7 )
i n t e r v a l l o w e r  <— s o r t e d  [ n * 0 . 0 2 5 ]
i n t e r v a l h i g h e r  <— s o r t e d  [ n * 0 . 9 7 5 ]
l e n g t h  [ i ] < — i n t e r v a l h i g h e r  — i n t e r v a l l o w e r
a<—n * 0 . 025
b<—n * 0 . 975
i f  ( t h e t a 7  [ a ] >  i n t e r v a l l o w e r  ){ 
i f  ( t h e t a 7 [ b ] < i n t e r v a l h i g h e r ){ 

c o u n t 7  [ j ] < — c o u n t 7  [ j ] + 1}}} 
l e n g t h b a r 7  [ j  ] <  — ( 1/ n)  * sum(  l e n g t h  )
sd7 [ j ] <— s q r t  ( ( 1 / ( n  — 1)) * (sum ( l e n g t h A2) — ( ( l e n g t h b a r 7 [ j ] A2) * n ) ) ) }
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The c ode  f o r  t he  s i m u l a t i o n  u s i n g  t he  p r o b a b i l i t y  m a t c h i n g  p r i o r  . 
t h e t a  <—rep ( 1 : 9  , 1) 
n< — 10000
c o u n t 8 <— r e p ( 0 , l e n g t h ( t h e t a ) )
l e n g t h < — r ep  (0 , n)
sd8<— r e p ( 0 , l e n g t h ( t h e t a ) )
l e n g t h b a r 8  <— r ep  (0 , l e n g t h  ( t h e t a  ))
t h e t a 8 < — m a t r i x ( c ( r e p ( 0 , n ) )  , n c o l  =n)
f o r  ( j  i n 1 : l e n g t h ( t h e t a  )){
f o r  ( i i n 1: n){
y<— r p o i s ( 1 , t h e t a [ j ] )
t h e t a 8  <—rgam m a(n= n  , s ha p e  =y — ( 1/ 2)  + 1 , r a t e  =1)
s o r t e d  <— s o r t ( t h e t a 8 )
i n t e r v a l l o w e r  <— s o r t e d  [ n * 0 . 0 2 5 ]
i n t e r v a l h i g h e r  <— s o r t e d  [ n * 0 . 9 7 5 ]
l e n g t h  [ i ] < — i n t e r v a l h i g h e r  — i n t e r v a l l o w e r
a<—n * 0 . 025
b<—n * 0 . 975
i f  ( t h e t a 8  [ a ] >  i n t e r v a l l o w e r  ){ 
i f  ( t h e t a 8 [ b ] < i n t e r v a l h i g h e r ){ 

c o u n t 8  [ j ] < — c o u n t 8  [ j ] + 1}}} 
l e n g t h b a r 8  [ j  ] <  — ( 1/ n)  * sum(  l e n g t h  )
sd8 [ j ] <— s q r t  ( ( 1 / ( n  — 1)) * (sum ( l e n g t h A 2 )  — ( ( l e n g t h b a r 8 [ j ] A 2 )  * n ) ) ) }

The c ode  f o r  t he  s i m u l a t i o n  u s i n g  t he  d i v e r g e n c e  p r i o r  . 
t h e t a  <—rep ( 1 : 9  , 1) 
n< —10000
c o u n t 9 < — r ep  ( 0 , l e n g t h ( t h e t a ) )
l e n g t h < — r ep  (0 , n)
sd9<— r ep  ( 0 , l e n g t h ( t h e t a ) )
l e n g t h b a r 9  <— r ep  (0 , l e n g t h  ( t h e t a  ))
t h e t a 9 < — m a t r i x  ( c ( r e p  (0 , n ) )  , n c o l = n )
f o r  ( j  i n 1 : l e n g t h ( t h e t a  )){
f o r  ( i i n 1: n){
y<— r p o i s ( 1 , t h e t a [ j ] )
t h e t a 9  <—rgam m a(n= n  , s h a p e = y + 0 . 75  , r a t e  =1)
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s o r t e d  <— s o r t ( t h e t a 9 )
i n t e r v a l l o w e r  <— s o r t e d  [ n * 0 . 0 2 5 ]
i n t e r v a l h i g h e r  <— s o r t e d  [ n * 0 . 9 7 5 ]
l e n g t h  [ i ] < — i n t e r v a l h i g h e r  — i n t e r v a l l o w e r
a<—n * 0 . 025
b<—n * 0 . 975
i f  ( t h e t a 9  [ a ] >  i n t e r v a l l o w e r  ){ 
i f  ( t h e t a 9 [ b ] < i n t e r v a l h i g h e r ){ 

c o u n t 9  [ j ] < — c o u n t 9  [ j ] + 1}}} 
l e n g t h b a r 9  [ j  ] <  — ( 1/ n)  * sum(  l e n g t h  )
sd9 [ j ] <— s q r t  ( ( 1 / ( n  — 1)) * (sum ( l e n g t h A 2 )  — ( ( l e n g t h b a r 9  [ j  ]A2) * n ) ) )  }

The c ode  f o r  c o v e r a g e  r a t e  l i n e  g r a p h  of  a l l  t he  p r i o r  
d i s  t r i b  u t i o  ns  .
p l o t ( t h e t a  , c o u n t 5 / n , y l i m  = r a n g e ( c ( c o u n t 6 / n , c o u n t 9 / n ) )  , t y p e  = "o"  , lwd=2
, c o l = " o  r a n g e  " , x l a b  = e x p r e s s i o n ( p a s t e ( t h e t a ) ) , y l a b = "  C o v e r a g e  Ra t e  " ,
m ain  = "The c o v e r a g e  r a t e  f o r  t he  p r i o r  d i s t r i b u t i o n s " )
l i n e s  ( t h e t a  , c o u n t 6 / n ,  c o l = "  p u r p l e  " , l wd =2  , t y p e  = "o ")
l i n e s  ( t h e t a  , c o u n t 7  / n ,  c o l  = " g r e e n  " , lwd = 2 , t y p e  = ’ o ’ )
l i n e s  ( t h e t a  , c o u n t 8 / n ,  c o l  = " b l a c k  " , l w d = 2 , t y p e  = "o ")
l i n e s  ( t h e t a  , c o u n t 9 / n ,  c o l = " r e d "  , lwd = 2 , t y p e  =" o ")
c o l o u r < —c (" o r a n g e  " ," p u r p l e  " ," g r e e n  " ," b l a c k  " ," r ed  ")
l a b e l s = c  (" C o n j u g a t e  Sou t h  A f r i c a  " ," C o n j u g a t e  G e o r g i a  " , "  J e f f r e y  s ’ " ,
" P r o b a b i l i t y  Ma t c h i n g  " ," D i v e r g e n c e  ")
l e g e n d ( " b o t t o m r i g h t " , i n s e t = 0 , l a b e l s  , c o l  = c o l o u r  , l wd = 2)

The c ode  f o r  a v e r a g e  i n t e r v a l  l e n g t h  l i n e  g r a p h  of  a l l  t he  p r i o r  
d i s  t r i b  u t i o  ns  .
p l o t ( t h e t a  , l e n g t h b a r 5  , y l i m  = r a n g e ( c ( l e n g t h b a r 6  , l e n g t h b a r 9 ) ) , t y p e = " o " ,  lwd=2
, c o l = " o  r a n g e  " , x l a b  = e x p r e s s i o n ( p a s t e ( t h e t a ) ) ,  y l a b  =" Av e r a g e  I n t e r v a l
L e n g t h " ,  m ain  = "The a v e r a g e  i n t e r v a l  l e n g t h  f o r  t he  p r i o r  d i s t r i b u t i o n s " )
l i n e s ( t h e t a  , l e n g t h b a r 6  , c o l  =" p u r p l e  " ,  l wd =2  , t y p e  = "o ")
l i n e s ( t h e t a  , l e n g t h b a r 7  , c ol  =" g r e e n  " ,  l wd =2  , t y p e  = ’ o ’ )
l i n e s ( t h e t a  , l e n g t h b a r 8  , c o l  =" b l a c k  " ,  l wd =2  , t y p e  ="o ")
l i n e s ( t h e t a  , l e n g t h b a r 9  , c o l  =" r e d  " ,  l w d = 2 , t y p e  ="o ")
c o l o u r < —c (" o r a n g e  " ," p u r p l e  " ," g r e e n  " ," b l a c k  " ," r ed  ")
l a b e l s = c  (" C o n j u g a t e  Sou t h  A f r i c a  " , "  C o n j u g a t e  G e o r g i a  " , "  J e f f r e y  s ’ " ,
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” P r o b a b i l i t y  Ma t c h i n g  ” D i v e r g e n c e  ")
l e g e n d ( " b o t t o m r i g h t " , i n s e t = 0 ,  l a b e l s  , c o l  = c o l o u r  , l wd = 2)

The c ode  f o r  s t a n d a r d  d e v i a t i o n  l i n e  g r a p h  of  a l l  t h e  p r i o r  d i s t r i b u t i o n s .
p l o t ( t h e t a  , sd5 , y l i m  = r a n g e ( c (  sd6 , sd7 )) , t y p e  = "o " , l wd = 2  ,
c o l = "  o r a n g e "  , x l a b  = e x p r e s s i o n (  p a s t e  ( t h e t a ) )  , y l a b = "  S t a n d a r d  D e v i a t i o n "  ,
m ain  = "The s t a n d a r d  d e v i a t i o n  f o r  t h e  p r i o r  d i s t r i b u t i o n s " )
l i n e s  ( t h e t a  , sd6 , c o l  =" p u r p l e  " , l wd =2  , t y p e  = " o ")
l i n e s  ( t h e t a  , sd7 , c o l  =" g r e e n  " , l w d = 2 , t y p e  = ’o ’ )
l i n e s ( t h e t a  , s d 8 , c o l = "  b l a c k " ,  l wd =2  , t y p e  = "o ")
l i n e s  ( t h e t a  , sd9 , c o l  =" r e d  " , l wd=2  , t y p e  ="o ")
c o l o u r < - c  (" o r a n g e  " ," p u r p l e  " ," g r e e n  " ," b l a c k  " ," r ed  ")
l a b e l s = c  (" C o n j u g a t e  Sou t h  A f r i c a  " , "  C o n j u g a t e  G e o r g i a  " , "  J e f f r e y  s ’ " ,
" P r o b a b i l i t y  Ma t c h i n g  " ," D i v e r g e n c e  ")
l e g e n d ( " b o t t o m r i g h t " , i n s e t = 0 , l a b e l s  , c o l  = c o l o u r  , l wd = 2)

The c ode  f o r  m odel 1 . 
m odel {
f o r ( i  i n 1:N) {
y [ i ]~ d p o i s  (mu[ i ])
mu[ i ] < - e  [ i ]  * t h e t a  [ i ]
smr [ i ] <  — ( y [ i ]  + eps2  ) / ( e [ i ]  + e p s 2 )
t h e t a  [ i ] < — exp (B0+v [ i ] + S [ i ])
v [ i ] ~dnor m (0 , p h i )
PP[  i ] < — s t e p ( t h e t a [ i ]  — 1+e p s )  
y p r e d  [ i ] ~ d p o i s  ( mu [ i  ])
PPL[ i ] < —pow( y p r e d  [ i] — y [ i ]  , 2)
PPL2 [ i ] < — abs ( y p r e d  [ i] — y [ i ]) 
r e s  [ i ] <  — (y[  i ] —mu[ i ])
Lexp [ i ] < — l og  ( e [ i ])
Ds [ i ] < — 2 * ((y [ i ] * l og ( y [ i ] / mu[  i ] ) )  — (y [ i] —mu[ i ] ) )  
s i g n  [ i ] <  — 2* s t e p  ( y [  i] —mu[ i ]) — 1 
dev . r e s  [ i ] < — s i g n  [ i ] * s q r t ( D s [ i ] ) }
S [ 1 :N]~ c a r  . n o r ma l  ( adj  [] , w e i g h t s  [] ,num [] , om ega) 
f o r ( k  in 1: sumNumNeigh) { 
w e i g h t s  [k] < — 1}
B 0 ~ d f l a t  ()
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eps < — 1 .0 E -6
e p s 2 ~ d n o r m ( 0 , 1 0 0 0 )
p h i ~ d g a mma ( 0 . 3  139 , 0 . 2 3 2 9 )
mape<—mean ( PPL2 [ ])
mspe<—mean ( PPL [ ])
omega~dgamma ( 0 . 1  , 0 . 0 0 0 1 )
sdS<— sd (S [ ] )
sdV<— sd (v  [ ] )
sdE<— sd ( Lexp [ ] )
sum<— sdS * sd S + sd V * sd V + sd E * sdE
pS<— sdS * sdS / sum
pV<— sdV * sdV / sum
pE<— sdE * sdE / su m }

The c ode  f o r  t he  f i r s t  p a r t  of  t he  c a l c u l a t i o n  o f  M o r a n ’ s I i n R S t u d i o .  
num=c ( 6 , 5 , 5 , 6 , 5 , 6 , 6 , 7 , 5 , 7 , 6 , 6 , 6 , 4 , 5 , 7 , 5 , 6 , 6 , 3 , 5 , 6 , 2 , 3 , 2 , 5 , 3 , 7 , 5 , 4 , 5 , 4 , 5 ,
8 . 6 . 3 . 5 . 7 . 5 . 6 . 1 . 7 . 5 . 5 . 6 . 6 . 6 . 4 . 5 . 3 . 4 . 5 . 1 0 . 5 . 5 . 4 . 4 . 5 . 4 . 1 0 . 6 . 4 . 4 . 9 . 3 . 6 . 7 . 6 ,
9 . 7 . 3 . 4 . 3 . 3 . 6 . 7 . 5 . 6 . 6 . 7 . 8 . 4 . 6 . 7 . 5 . 5 . 7 . 5 . 5 . 4 . 4 . 5 . 6 . 7 . 4 . 6 . 7 . 6 . 7 . 4 . 7 . 7 . 5 . 6 ,
4 . 3 . 6 . 7 . 7 . 6 . 5 . 5 . 5 . 4 . 4 . 5 . 6 . 3 . 2 . 6 . 4 . 5 . 4 . 4 . 3 . 8 . 3 . 4 . 8 . 7 . 6 . 8 . 7 . 6 . 6 . 4 . 6 . 7 . 4 . 6 ,
4 , 6 , 6  , 4 , 7 , 5  , 6 , 7 , 6 , 6 , 7 , 6 , 6 , 5  , 4 , 7 , 6 , 7 , 7 )
csum<— rep ( 0 , 1 6 0 )
csum [1]<  — 0
x<— r ep  ( 0 , 1 5 9 )
g<— r ep  ( 0 , 1 5 9 )
f o r  ( i i n 2 : (N+ 1)){
csum [ i ] < —sum(num [ 1: ( i — 1)])}
f o r ( i i n 1:15 9){
x [ i ] < —csum [ i ] + 1
g [ i ] < —csum [ i +1]}

The c ode  f o r  t he  s e c o n d  p a r t  of  t h e  c a l c u l a t i o n  o f  M o r a n ’ s I i n WinBUGS 
and c a l c u l a t e d  f o r  m odel 1 . 
m odel {
f o r ( i i n 1 :N) { 
y [ i ]~ d p o i s  (mu[ i ]) 
mu[ i ] < — e [ i ]  * t h e t a  [ i ]  
t h e t a  [ i ] < — exp (B0+v [ i ] + S [ i ])
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v [ i ] ~dnor m (0 , p h i )
r e s  [ i ] <  — (y [ i ] —mu[ i ] )  / s q r t  (mu[ i ])
e s t a r  [ i ] < —sum (We[x [ i ] : g [ i ] ])
de [ i ] < — r e s  [ i] — m ean( r e s  [ ] )
d . e s t a r  [ i ] < — e s t a r  [ i] — mean ( e s t a r  [ ])
dt  [ i ] < — de [ i ]  * d .  e s t a r  [ i ]
db [ i ] < —pow( d  . e s t a r  [ i ] , 2)}
S [ 1 :N]~ c a r  . n o r ma l  ( a d j  [] , w e i g h t s  [] ,num [] , om ega) 
f o r ( k  in 1: sumNumNeigh) { 
w e i g h t s  [k]<  — 1 
W e[k]< — r e s  [ a d j  [ k ] ] }
Moran<—sum ( dt  [ ] )  / sum ( db [ ])
B 0 ~ d f l a t  ()
p h i ~dgamma ( 0 . 3 1 3 9 , 0 . 2 3 2 9 ) 
omega~dgamma ( 0 . 1  , 0 . 0 0 0 1 ) }
l i s t  (N =159 , y=c (1 , 0 , 0 , 0 , 2 , 0 , 0 , 2 , 1  , 2 , 6 , 0 , 0 , 0 , 1  , 2 , 0 , 0 , 0 , 0 , 0 , 4 , 3  , 0 , 4 , 0 , 0 , 0 , 1  , 0 ,  
0 , 0 , 1 0 , 3 , 1 , 0 , 3 , 1 , 0 , 1 , 0 , 0 , 0 , 1 1 , 1 , 2 , 4 , 4 , 0 , 0 , 1 , 0 , 1 , 0 , 2 , 0 , 2 , 1 , 0 , 2 4 , 1 , 1 , 0 , 1 , 1 , 0 ,
9 . 0 .  7 . 0 . 2 . 1  , 0 , 1  , 2 , 5  , 2 , 2 , 0 , 3 , 1 ,2 ,0 ,0 ,2 , 0 , 1  ,1 , 2 , 1  ,1 ,0 ,0 ,2 ,0 ,0 ,0 ,0 ,0 ,0 , 0 , 1  , 0 , 1  , 
0 , 4 , 0 , 1 , 0 , 4 , 1 , 1 , 0 , 0 , 1 , 0 , 1 , 0 , 0 , 0 , 1 0 , 1 , 0 , 0 , 0 , 1 , 1 , 1 , 2 , 0 , 0 , 3 , 3 , 0 , 0 , 2 , 0 , 1 , 0 , 0 , 3  
, 0 , 0 , 1  , 3 , 3 , 1  , 0 , 1  ,1 , 2 , 0 , 0 , 1  ,5 , 0 , 0 , 3 , 2 ) ,  e=c ( 0 . 4 4 3 6  , 0 . 1 9 7 8  , 0 . 2 5 5 1  , 0 . 1 0 4 9  ,
1.1 1 6 2 , 0 . 3 8 7 3 , 1 . 3 9 3 , 2 . 1 4 7 4 , 0 . 4 2  8 2 , 0 . 4 1  1 8 , 3 . 8 3 1 2 , 0 . 2  9 7 4 , 0 . 3 8 3 7 , 0 . 4 0 4 1 , 0 . 6 7  9 8 ,
1 . 4 8 9 9 . 0 .  5 7 2 5 . 0 . 5 5 2 1 . 0 . 1 5 0 7 . 1 . 1  1 3 7 , 0 . 2 5 1 7 , 2 . 5 0 8 , 1 . 4 7 7 6 , 0 . 2  6 4 1 , 5 . 8 8 9 1 , 0 . 3 3 3 5 ,  
0 . 6 5 5 6 , 4 . 3 1 2 9 , 2 . 5 6 6 6 , 0 . 0 8 1 9 , 6 . 5 4 1 7 , 0 . 1 7 1 6 , 1 6 . 1 4 7  6 , 0 . 9 7  2 3 , 1 . 0 8 0 5 , 2 . 4 8 3 6 ,  
0 . 4 0 1 3 , 2 . 6 0 1 8 , 0 . 3 1 8 2 , 0 . 5 4 3 9 , 0 . 3  9 4 8 , 0 . 4 7  0 7 , 0 . 7 0 6 5 , 1 6 . 6 8 3 8 , 0 . 4 8 1 5 , 0 . 2 8 6 5 ,  
2 . 3 6 2 4 , 2 . 6 4 7  2 , 0 . 2 9 8 5 , 0 . 1 0 1 3 , 1 . 1 0 2 7 , 0 . 5  1 6 2 , 0 . 5 4 5 5 , 0 . 2 7 7 7 , 0 . 5 3 3 6 , 2 . 5 0 1 9 , 2 . 3 2 1  1 
, 3 . 2 5 5 8 , 0 . 5 2  9 7 , 2 0 . 1 0 8 7 , 0 . 6 6 0 6 , 0 . 0 6 5 , 1 . 7 6 1 8 , 1 . 2 1 1 7 , 0 . 5 9 9 5 , 0 . 3 8 6 5 , 1 7 . 3 0 2 8 ,  
0 . 9 6 2 4 , 3 . 9 7  3 3 , 0 . 2 4 2  2 , 0 . 6 9 3 , 0 . 6 6 1 4 , 0 . 5 7 7 , 0 . 2 7  8 8 , 3 . 9 3 8 2 , 3 . 0 5 5 5 , 0 . 2 4 5  3 , 1 . 2 2 3 2 ,  
0 . 3 1 7 7 , 0 . 3 1 6 5 , 0 . 4 1 6 8 , 0 . 2 1 4 3 , 0 . 2 3  6 7 , 0 . 6 4 7  7 , 0 . 4 0  5 2 , 0 . 1 8 4 3 , 1 . 1 5 3 2 , 0 . 7 3 8 6 , 1 . 5  246  
, 0 . 2 0 7 3 , 0 . 2 6 9 8 , 2 . 3 6 5 , 0 . 5 9 0 7 , 0 . 5 3 1 3 , 0 . 2 7  5 , 0 . 3 4 4 1 , 0 . 6 7  4 3 , 0 . 1 7 5 6 , 0 . 5 6 1 7 , 0 . 1 5 2 2 ,  
0 . 5 8 8 6 , 0 . 5 7 8 4 , 0 . 2 2 1 5 , 0 . 4 2 , 1 . 0 0 1 3 , 4 . 5 1 4 6 , 2 . 0 1 2 9 , 0 . 7 1 4 5 , 0 . 3 3 4 7 , 2 . 6 1 5 6 , 0 . 6 0 9 ,  
0 . 6 8 5 7 , 0 . 4 1 2 8 , 0 . 3 8 8 9 , 0 . 9 9 4 2 , 0 . 2 4 2 9 , 0 . 4 8 7 5 , 0 . 0 6 0 9 , 0 . 3 9 5 3 , 0 . 1 8 1 , 4 . 8 4 5 8 , 1 . 8 9 6 7 ,  
0 . 0 9 9 8 , 0 . 3 7 8 7 , 0 . 2 2 8 8 , 1 . 5 0 3 3 , 0 . 6 1 7 , 0 . 1 2 3 , 0 . 8 1 1 6 , 0 . 1 6 2 6 , 0 . 0 4 6  8 , 0 . 5  67 7 , 0 . 2 2 1 8 ,  
0 . 3 1 8 8 , 0 . 2 7  0 4 , 1 . 0 8 6 1 , 0 . 9 9 2 , 0 . 6 6 1  1 , 0 . 2 5 0 2 , 0 . 1 7 3 9 , 1 . 5  1 1 1 , 0 . 2 3 2 1 , 0 . 2 5 8 , 0 . 4 8 4 1 ,  
0 . 6 9 3 9 , 1 . 5  64 8 , 1 . 7 7 6 2 , 0 . 8 7 9 3 , 0 . 1 5  4 4 , 0 . 5 2 , 0 . 6 9 6 2 , 0 . 0 5 7 4 , 0 . 1 6 2 7 , 0 . 5 8 2 6 , 2 . 2 0 8 8 ,  
0 . 2 1 4 6 , 0 . 2 6 1 3 , 0 . 2 5  1 6 , 0 . 5 4 3 4 )  , num=c( 6  , 5 , 5 , 6 , 5 , 6 , 6 , 7 , 5 , 7 , 6 , 6 , 6 , 4 , 5 , 7 , 5 , 6 , 6 , 3 , 5  
, 6 , 2 , 3 , 2 , 5 , 3 , 7 , 5 , 4 , 5 , 4 , 5 , 8 , 6 , 3 , 5 , 7 , 5 , 6 , 1 , 7 , 5 , 5 , 6 , 6 , 6 , 4 , 5 , 3 , 4 , 5 , 1 0 , 5 , 5 , 4 , 4 , 5 ,
4 , 1 0 , 6 , 4 , 4 , 9 , 3 , 6 , 7 , 6 , 9 , 7 , 3 , 4 , 3 , 3 , 6 , 7 , 5 , 6 , 6 , 7 , 8 , 4 , 6 , 7 , 5 , 5 , 7 , 5 , 5 , 4 , 4 , 5 , 6 , 7 , 4 , 6
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, 7 , 6 , 7 , 4 , 7 , 7 , 5 , 6 , 4 , 3 , 6 , 7 , 7 , 6 , 5 , 5 , 5 , 4 , 4 , 5 , 6 , 3 , 2 , 6 , 4 , 5 , 4 , 4 , 3 , 8 , 3 , 4 , 8 , 7 , 6 , 8 , 7 , 6  
, 6 , 4 , 6 , 7 , 4 , 6 , 4 , 6 , 6 , 4 , 7 , 5 , 6 , 7 , 6 , 6 , 7 , 6 , 6 , 5 , 4 , 7 , 6 , 7 , 7 ) , a d j = c ( 1 5 1 , 1 3 8 , 1 3 2 , 1 1 3 , 8 0  
, 3 , 1 4 8  , 86 , 34 , 3 2 , 1 0 , 1 4 8 , 1  13 , 80 , 3 4 , 1  , 101 , 100  , 49 , 47 , 4 3 , 1 9 , 1 5 8 , 1 5 0 , 1  17 , 84 , 7 0 , 1 2 7  
, 97 , 78 , 69 , 68 , 5 9 , 1 4 7 , 1 0 8  , 78 , 69 ,67 , 2 9 , 1  1 5 , 1  1 2 , 1  10 , 6 4 , 5 7  , 33 , 2 8 , 1 5 6 , 1 4 2 , 1 3 4 , 7 7  ,
3 4 , 1 3 7 , 9 2 , 8  6 , 7 7 , 3 7 , 3 4 , 2 , 1 4 3 , 1  1 1 , 1 0 2 , 8 4 , 7  6 , 3  9 , 1 5 8 , 1 4 3 , 1  1 6 , 8 7 , 7  6 , 4 5 , 1 5  1 , 1 4 8 ,  
1 1 3 , 6 3 , 2 4 , 2 0 , 1 3 6 , 9 2 , 3 7 , 3 5 , 8 9 , 5 4 , 5 1 , 2 5 , 1 6 , 1 2 4 , 8 2 , 5 4 , 5 3 , 5 1 , 2 1 , 1 5 , 1 2 4 , 1 2 1 , 8 2 , 8 1  
, 5 3 , 1 2 6 , 1 0 7 , 1 0 2 , 8 5  , 79 , 7 5 , 1 3 5 , 1 2 0  , 49 ,47 , 30 ,4 ,63 , 2 4 , 1 3 , 1 3 8 , 1 3 2  , 5 4 , 5 3 , 1 6 , 1  10 , 74 
, 7 1 , 6 0 , 4 8 , 3 8 , 1 5 5 , 1 4 6 , 1 4 8 , 2 0 , 1 3 , 5 1 , 1 5 , 1 5 2 , 1 3 0 , 1 2 8 , 1 0 6 , 9 8 , 1 4 6 , 6 4 , 5 7 , 1 1 2 , 6 4 , 6 0 ,  
5 8 , 42 ,33 , 8 , 1 0 9 , 1 0 8  ,97 ,78 , 7 , 1 2 0 , 1  18 , 4 9 , 1 9 , 1 2 6  ,75 , 60 ,5 6 , 4 4 , 1 4 8  , 86 ,5 0 , 2 , 1  10 , 60 , 
4 8 , 2 8 , 8 , 1 4 8 , 1 3 4 , 8 0 , 7 7 , 1 0 , 9 , 3 , 2 , 1 5 9 , 1 3 7 , 1 3 6 , 1 0 1 , 3 7 , 1 4 , 1 2 1 , 9 4 , 9 0 , 1 3 7 , 9 2 , 3 5 , 1 4 ,  
1 0 , 1 4 1 , 1 2 6  , 99 , 7 4 , 6 0  , 56 , 2 2 , 1 4 5 , 1 3 3 , 1  1 1 , 1 0 2 , 1  1 , 1 5 9 , 1 5 6 , 1 4 2 , 1 2 9 , 8 8  , 4 6 , 1 4 6 , 1  12 , 
9 3 , 6 9 , 6 1 , 5 8 , 5 5 , 2 8 , 1 2 5 , 1 0 1 , 1 0 0 , 6 5 , 4 , 1 2 2 , 7 5 , 6 7 , 6 0 , 3 1 , 1 5 6 , 1 5 3 , 1 3 4 , 1 1 6 , 8 7 , 1 2 , 1 5 6  
, 1 2 9 , 1 1 6 , 9 6 , 7  6 , 4 0 , 1 5 9 , 1 3 5 , 1 0 1 , 8 8 , 1 9 , 4 , 1 1 0 , 6 0 , 3 3 , 2 2 , 1 2 5 , 1 0 0 , 3 0 , 1 9 , 4 , 9 2 , 8 6 , 3 2 ,
1 2 4 . 2 5 . 1 6 . 1 5 . 1 5 7 . 1 0 9 . 9 7 . 9 0 . 7  3 , 1 4 0 , 1 3 8 , 1 3 2 , 1 0 3 , 8 3 , 8 2 , 8 1 , 2 1 , 1 7 , 1 6 , 1 3 2 , 8 9 , 2 1 , 1 6  
, 1 5 , 1 4 4 , 1 0 5  , 93 ,61 , 4 2 , 1 2 6  , 60 , 38 ,31 ,1 15 , 64 , 27 ,8 , 69 , 67 , 60 , 42 ,2 8 , 1 2 7  ,97 ,7 3 ,6 , 67 , 
58 , 56 , 48 , 4 4 , 3 8  , 33 ,31 , 28 , 2 2 , 1  1 2 , 1 0 5  ,93 , 64 ,55 , 4 2 , 1 5 0 , 1 4 9 , 8 1  , 7 0 , 1 5 1  ,95 , 2 0 , 1 3  ,
1 5 5 . 1 4 6 . 1  1 2 , 1 0 5  ,61 , 57 ,28 , 27 , 8 , 1 3 6 , 1 0 1  , 4 3 , 1 3 1  ,1 1 7 , 1 0 9 , 1 0 8 , 1 0 4 , 7 0 , 1 4 7 , 1 2 2  , 69 ,
6 0 . 5 8 . 4 4 . 7 . 1 5 4 . 1 3 9 . 1 2 7 . 1 1 9 . 6 9 . 6 . 1 5 4 . 9 3 . 7  8 , 6 8 , 6 7 , 5 8 , 4 2 , 7 , 6 , 1 5 0 , 1 4 9 , 1 3 1 , 1 1 7 ,
66 , 62 ,5 ,1 1 5 , 1  10 , 2 2 , 1 4 1 , 1 3 0 , 1 0 6 , 9 9  , 97 , 59 , 5 2 , 1 4 1  ,38 , 2 2 , 1 2 6 , 1 2 2 , 1 0 7  , 4 4 , 3 1  ,18 ,
1 4 3 . 1  1 6 , 1  1 1 , 96 , 4 6 , 1 2 , 1  1 , 1 4 2 , 1 3 7  , 3 4 , 1 0  , 9 , 1 0 8  , 97 , 69 , 29 ,7 , 6 , 1  1 7 , 1 0 7 , 1 0 4 , 1 0 2 , 8 4 ,  
1 8 , 1 5 3 , 1 3 8 , 1 3 4 , 1 0 3 , 3 4 , 3 , 1 , 1 5 0 , 1 4 9 , 1 2 1 , 9 4 , 8 3 , 6 2 , 5 3 , 1 7 , 1 2 4 , 5 3 , 1 7 , 1 6 , 1 5 8 , 1 5 0 ,
1 4 0 . 8 7 . 8 1 . 5 3 . 1 5 8 . 1 4 3 . 1 1 7 . 1 0 2 . 7  9 , 1 1 , 5 , 1 4 5 , 1 2 6 , 1 1 4 , 1 0 2 , 1 8 , 9 2 , 5 0 , 3 2 , 1 0 , 2 , 1 5 8 ,  
1 5 3 , 1 4 3 , 1 4 0 , 8 3 , 4 5 , 1 2 , 1 5 9 , 1 3 5 , 1 2 9 , 4 7 , 4 0 , 1 3 2 , 9 5 , 9 1 , 5 4 , 1 5 , 1 5 7 , 9 4 , 5 2 , 3 6 , 1 5 1 , 1 3 2 ,  
9 5 , 8 9 , 8 6 , 5 0 , 3 7 , 1 4 , 1 0 , 1 5 4 , 1 4 4 , 6 9 , 6 1 , 5 5 , 4 2 , 1 5 7 , 1 4 9 , 1 3 1 , 1 2 1 , 9 0 , 8 1 , 3 6 , 1 5 1 , 9 1 , 8 9 ,
6 3 . 1 3 3 . 1 2 9 . 1 2 3 . 1 1 1 . 7  6 , 4 6 , 1 0 9 , 7  8 , 7  3 , 5 9 , 5 2 , 2 9 , 6 , 1 5 2 , 1 3 3 , 1 3 0 , 1 2 9 , 1 2 3 , 2 6 , 1 4 5 , 1 4 1  
, 1 3 0 , 1 2 6 , 1  14 , 72 , 3 8 , 1 2 5  , 49 , 43 , 4 , 1 5 9 , 1 3 6  ,65 , 47 ,43 ,35 , 4 , 1 4 5  ,85 , 84 , 79 , 3 9 , 1 8  ,1 1 , 
1 5 3 , 1 4 0 , 1 3 8 , 8 0 , 5 3 , 1 4 7 , 1 1 7 , 1 0 8 , 1 0 7 , 7 9 , 6 6 , 1 5 5 , 6 4 , 6 1 , 5 5 , 1 3 0 , 7 2 , 2 6 , 1 4 7 , 1 2 2 , 1 0 4 ,
7 9 . 7 5 . 1 8 . 1 4 7 . 1 0 9 . 1 0 4 . 7  8 , 6 6 , 2 9 , 7 , 1 5 7 , 1 3 1 , 1 0 8 , 9 7 , 6 6 , 5 2 , 2 9 , 1 1 5 , 7 1 , 4 8 , 3 3 , 2 2 , 8 ,  
1 3 3 , 9 6 , 7 6 , 3 9 , 1 1 , 6 4 , 6 1 , 4 2 , 2 8 , 8 , 1 5 1 , 1 4 8 , 1 3 , 3 , 1 , 1 4 5 , 1 2 6 , 9 9 , 8 5 , 1 1 0 , 7 1 , 5 7 , 8 , 1 5 6 ,
7 6 . 4 6 . 4 5 . 1 2 . 1 0 4 . 8 4 . 7  9 , 7 0 , 6 6 , 5 , 1 2 8 , 1 2 0 , 3 0 , 1 3 9 , 6 8 , 1 5 2 , 1 3 5 , 1 2 8 , 1 1 8 , 3 0 , 1 9 , 9 4 , 8 1  
, 3 6 , 1 7 , 1 4 7 , 1 0 7  ,75 , 67 , 4 4 , 1 3 3 , 1 2 9  , 98 , 9 6 , 8 2  ,51 , 1 7 , 1 6 , 1 0 0  , 49 , 4 3 , 1  1 4 , 9 9 , 8 5  ,75 , 56 
, 3 8 , 3 1 , 1 8 , 6 8 , 5 9 , 6 , 1 5 2 , 1 2 0 , 1 1 8 , 2 6 , 1 5 2 , 1 3 5 , 1 2 3 , 9 8 , 9 6 , 8 8 , 4 6 , 4 0 , 1 4 5 , 1 3 3 , 1 0 6 , 9 9 ,
9 8 . 7  2 , 2 6 , 1 5 7 , 1 4 9 , 1 0 9 , 9 4 , 7  0 , 6 6 , 1 5 1 , 1 3 8 , 9 1 , 8 9 , 5 4 , 5 3 , 2 1 , 1 , 1 4 5 , 1 3 0 , 1 2 3 , 1 1 1 , 9 8 ,  
9 6 , 3 9 , 1 5 6 , 1 5 3 , 8 0 , 4 5 , 3 4 , 9 , 1 5 2 , 1 2 9 , 1 2 0 , 8 8 , 4 7 , 1 9 , 1 0 1 , 6 5 , 3 5 , 1 4 , 1 5 9 , 1 4 2 , 7 7 , 3 7 , 3 5  
, 1 0 , 1 4 0 , 1 3 2 , 1 0 3 , 8 0 , 5 3 , 2 1 , 1 , 1 5 4 , 1 4 4 , 1 1 9 , 6 8 , 1 5 3 , 1 3 8 , 1 0 3 , 8 7 , 8 3 , 5 3 , 9 9 , 7 4 , 7 2 , 3 8 ,  
1 5 9 , 1 5 6 , 1 3 7 , 7 7 , 4 0 , 9 , 1 5 8 , 8 7 , 8 4 , 7 6 , 1 2 , 1 1 , 1 5 4 , 1 3 9 , 9 3 , 5 5 , 1 3 3 , 1 3 0 , 1 1 4 , 1 0 2 , 9 9 , 8 5  
, 3 9 , 1 5 5  , 6 4 , 4 1  , 27 , 2 3 , 1 2 2 , 1 0 8 , 1 0 7 , 1 0 4 , 6 7  , 7 , 1  13 , 3 4 , 3 2 , 2 4 , 1 3  ,3 , 2 , 1 5 7 , 1 3 1  , 9 4 , 8 1
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,7 0 , 6 2 , 1 5 8 , 8 3 , 8 1 , 7  0 , 6 2 , 5 , 1 3 2 , 1 1 3 , 9 5 , 9 1 , 6 3 , 1 3 , 1 , 1 3 5 , 1 2 9 , 1 2 8 , 1 2 0 , 9 8 , 2 6 , 1 4 0 ,  
1 3 4 , 1 0 3 , 8 7 , 8 0 , 4 5 , 1 4 4 , 1 3 9 , 9 3 , 6 9 , 6 8 , 1 4 6 , 1 0 5 , 6 4 , 2 3 , 1 4 2 ,  1 3 4 , 1  1 6 , 4 6 , 4 5 , 4 0 , 9 , 1 4 9  
, 131 , 109  , 94 , 90 , 5 2 , 1 5 0 , 1 4 3  , 8 7 , 8 4 , 8 3 , 1 2 , 5 , 1 4 2 , 1 3 7 , 1 0 1  , 88 , 47 , 40 , 3 5 ) ,  

x = c ( 1  , 7 , 1 2 , 1 7  , 23 , 28 , 34 , 40 , 47 , 52 , 59 ,65 ,71 , 77 ,81 , 86 , 93 , 9 8 , 1 0 4 , 1  1 0 , 1  1 3 , 1  1 8 , 1 2 4  
, 1 2 6 , 1 2 9 , 1 3 1 , 1 3 6 , 1 3 9 , 1 4 6 , 1 5 1  , 1 5 5 , 1 6 0 , 1 6 4 , 1 6 9 , 1 7 7 , 1 8 3 , 1 8 6 , 1 9 1  , 198 , 203  , 209  , 210 
, 217 , 222  , 227  ,23 3 , 239  , 245 , 249  ,25 4 , 2 5 7  , 261 , 266  ,27 6 , 2 8 1  ,2 86 , 290  , 2 9 4 , 2 9 9 , 3  03 , 313 
, 319  , 323 , 327  ,33 6 ,3 39 , 345 ,35 2 ,35 8 ,3 67 , 3 7 4 , 3 7 7  ,3 81 ,3 8 4 , 3  87 , 393 , 400  , 405 ,41 1 , 417 
, 4 2 4 , 4 3 2 , 4 3  6 , 4 4 2 , 4 4 9 , 4 5 4 , 4 5  9 , 4 6 6 , 4 7 1  , 4 7 6 , 4 8 0 , 4 8 4 , 4 8  9 , 4 9 5  , 5 0 2 , 5 0 6 , 5 1 2 , 5  1 9 , 5 2 5  
, 5 3 2 , 5 3 6 , 5 4 3 , 5 5 0 , 5  5 5 , 5 6 1 , 5  6 5 , 5 6 8 , 5  7 4 , 5  8 1 , 5 8 8 , 5  9 4 , 5 9 9 , 6 0 4 , 6 0 9 , 6 1 3 , 6 1 7 , 6 2 2 , 6 2 8  
, 631 , 6 3 3 , 6 3 9 , 6 4 3 , 6 4 8 , 6 5 2 , 6 5 6 , 6 5 9 , 6 6 7 , 6 7 0 , 6 7 4 , 6 8 2 , 6 8 9 , 6 9 5 , 7 0 3 , 7 1 0 , 7 1 6 , 7 2 2 , 7 2 6  
, 732  , 739  , 743  , 749  , 753 , 759  , 765 , 769  , 776  ,7 81 , 787 , 7 9 4 , 8 0 0 , 8 0 6 , 8 1 3  , 8 1 9 , 8 2 5  , 830  , 834  
, 841 , 847  , 8 5 4 )  , g=c  ( 6 , 1  1 , 16 , 2 2 , 2 7  , 33 , 39 , 46 ,5 1 ,5 8 , 6 4 , 7 0  , 7 6 , 8 0  ,85 , 92 , 9 7 , 1 0 3 , 1 0 9  , 
1 1 2 , 1 1 7 , 1 2 3 , 1 2 5 , 1 2 8 , 1 3 0 , 1 3 5 , 1 3 8 , 1 4 5 , 1 5 0 , 1 5 4 , 1 5 9 , 1 6 3 , 1 6 8 , 1 7 6 , 1 8 2 , 1 8 5 , 1 9 0 , 1 9 7 ,  
202  , 208 , 209  , 2 1 6 , 2 2 1  , 226  , 232  ,23 8 , 2 4 4 , 2 4 8  ,25 3 ,25 6 , 260  , 265 , 275 ,2 80 , 285 ,28 9 , 2 9 3  ,
2 9 8 , 3  0 2 , 3 1 2 , 3 1 8 , 3 2 2 , 3  2 6 , 3 3 5 , 3 3 8 , 3 4 4 , 3 5 1 , 3  5 7 , 3 6 6 , 3 7 3 , 3 7  6 , 3 8 0 , 3  8 3 , 3 8 6 , 3 9 2 , 3 9 9 ,  
4 0 4 , 4 1 0  , 416  , 423  , 431 , 435 , 441 , 448 ,45 3 ,45 8 , 465 , 470  , 475 ,47 9 , 4 8 3  ,48 8 , 4 9 4 , 5  01 ,5 05 , 
5 1 1 , 5  18 , 5  2 4 , 5 3 1 , 5 3 5 , 5  4 2 , 5 4 9 , 5 5 4 , 5 6 0 , 5  6 4 , 5  6 7 , 5 7 3 , 5 8 0 , 5 8 7 , 5  9 3 , 5  9 8 , 6 0 3 , 6 0  8 , 6 1 2 ,  
6 1 6 , 6 2 1  , 6 2 7 , 6 3  0 , 6 3  2 , 6 3  8 , 6 4 2 , 6 4 7 , 6 5  1 , 65  5 , 6 5  8 , 6 6 6 , 6 6 9 , 6 7  3 , 6  81 ,6 8 8 , 6 9 4 , 7 0 2 , 7 0 9 ,  
715 , 721 ,7 25 ,7 31 ,7 3 8 , 742  , 748 ,7 5 2 ,7 5 8 ,7 6 4 , 7  68 , 775 , 7 80 ,7 86 , 793 , 799 , 805 , 812 , 818 
,8 2 4 , 8  2 9 , 8  33 , 8 4 0 , 8 4 6 , 8 5  3 , 8 6 0 ) ,  sumNumNeigh = 860) )

QQ P l o t  m odel 1
d e v .  res  <—c (0.5 2 0 2 ,  — 0 . 6 4 3 7  , — 0 . 725  9 ,  — 0 . 4 7 0 3  , 0 . 4 5 7 2 ,  — 0. 821  , — 1 .377 , 0 . 0 1 2 3 3  ,
0.5 3 2 9 , 1 . 2 6 6 , 0 . 3  8 0 6 ,  — 0 . 7 8 1 5  , — 0 . 8 4 7 5  , — 0.8 8 4 , 0 . 2 4 5 3 , 0 . 2 1  14,  — 1 . 0 3 3 ,  — 0 . 9 7 0 9 ,
— 0.5 6 2 4 ,  — 1 . 291 ,  — 0 . 7 2 4 8 , 0 . 4 6 5 1 , 0 . 6 1  16,  — 0 . 7 1 4 5 ,  — 0 . 2 8 3 7 ,  — 0 . 8 0 9 4 ,  — 1 . 046 ,  — 2 . 0 0 5 ,
— 0 . 6 3 6 6 ,  — 0 . 4 1 9 1 ,  — 2 . 2 2 8 ,  — 0 . 5 9 8 8 ,  — 0 . 2 5 2 8 , 0 . 9 4 5 7 ,  — 0 . 0 9 7 4 7 ,  — 1 . 7 3 2 , 1 . 7 4 7 ,  — 0 . 6758  
, — 0 . 801  , 0 . 3 7 2 4 ,  — 0 . 8 4 8  8 , — 0 . 8 9 6 ,  — 1 . 0 9 9 ,  — 0 . 1 4 9 , 0 . 4 6 3 4 , 1 . 5 4 1  , 0 . 4 5 3 7 , 0 . 4 3 0 4 ,
— 0 . 7 6 0 9 ,  — 0 . 4 6 4 7 ,  — 0 . 0 9 6 0 1 ,  — 0 . 9 4 1 2 , 0 . 3 7 5  9,  — 0 . 7 5 6 3 , 1 . 1 4 4 ,  — 1 . 682 ,  — 0 . 0 6 1 5 3 ,
— 0 . 8 0 3 4 ,  — 0 . 9 3 6 3 , 0 . 2 2 6 2 , 0 . 3 3 4 4 , 1 . 6 8 2 ,  — 1.5 3 7 ,  — 0 . 1 0 8 3 , 0 . 3 3 6 7 ,  — 0 . 8 4 2 8 ,  — 0 . 3 5 7 4 ,
— 1 . 2 , 0 . 5 9 7 3 ,  — 0 . 6 9 7 7 , 0 . 8 9 5 1 , 0 . 2 8 6 3 ,  — 0 . 9 7 3 1 , 0 . 8 8 3 ,  — 0 . 4 4 4 , 0 . 3 9 5 9 , 1 . 6 5 2 , 0 . 4 8 9 ,
— 0 . 7 7 1 4 , 1 . 9 4 1 , 0 . 5 7 0 2 , 1 . 7 6 ,  — 0 . 7 0 5 6 ,  — 1 . 0 7 3 , 1 . 3 2 5 ,  — 0 . 6 1 9 2 ,  — 0 . 1 6 1 3 , 0 . 1 6 8 8 , 0 . 1 9 0 3  
, 1 . 0 6 , 0 . 8 5  85 ,  — 1 . 7 2 8 ,  — 0 . 9 9 4 6 , 1 . 0 9 ,  — 0 . 7 4 2 ,  — 0. 83 84 ,  — 1 . 0 3 9 ,  — 0 . 6 1 0 9 ,  — 0 . 9 9 3 9 ,
— 0 . 5 5 7 9 ,  — 1 . 0 3 5 , 0 . 3 7 3 8 ,  — 0 . 6 8 6 3 , 0 . 6 4 0 5 ,  — 1 . 2 3 6 ,  — 0 . 0 7 5 6 2 ,  — 1 . 5 7 4 , 0 . 2 8 5 ,  — 0 . 7 8 2 5 ,  
0 . 435  , 0 . 2 9 9 8 , 0 . 3 1 2 9 ,  — 0 . 8 8 8 7 ,  — 0 . 8 5 2 2 , 0 . 0 3 0 0 6 ,  — 0 . 7 1 6 4 , 0 . 5 0 7 3 ,  — 0 . 3 6 6 6 ,  — 0 . 8 2 3 ,
— 0 . 6 1 5 4 , 0 . 5 7 2 3  , — 0 . 3 8 9 3  , — 0 . 473  , — 0 . 8 6 3 9 ,  — 0 . 6 7 1 7  , — 0 . 2571  , 0 . 4 0 3 5 , 1 . 3 4 5  , 0. 71 18,
— 0.5 8 3 9 ,  — 0 . 3 1 7 , 1 . 4 3 2 , 2 . 2 6 6 ,  — 0 . 8 1 0 8 ,  — 0 . 7 4 1 9 , 0 . 4 9 2 ,  — 1 . 2 9 2 , 0 . 2 3 4 7 ,  — 0 . 6 7 4 5 ,
— 0 . 6 1 0 6 , 0 . 6 3 1 7  , — 0 . 7 0 2 4 ,  — 0 . 7 3 2 4 , 0 . 5 4 7 3 , 1 . 2  87 , 0 . 6 0 0 5  , — 0 . 3 6 0 5  , — 1 . 2 0 9 , 1 . 2 1 5  ,
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0 . 4 1 5 9 , 0 . 8 5 9 1 ,  -  0 . 3 5 7 8 ,  -  0.5 9 5 , 0 . 4 2 9 7  , 0 . 7 4 4 9 ,  -  0 . 67  6 ,  -  0 . 7 1 3 2  , 2 . 1 5 7 , 1 . 0 4 5 )  
qqnorm  ( de v  . r e s  ) 
q q l i n e  ( de v  . r e s  )

Code f o r  m odel 2. 
m odel {
f o r ( i i n 1 :N) {
y [ i ]~ d p o i s  (mu[ i ])
mu[ i ] < - e  [ i ]  * t h e t a  [ i ]
smr [ i ] <  - ( y [ i ]  + eps2  ) / ( e [ i ]  + e p s 2 )
t h e t a  [ i ] < - e x p  (B0+v [ i ] + S [ i ])
v [ i ] ~dnor m (0 , p h i )
PP[  i ] < -  s t e p ( t h e t a [ i ]  - 1+e p s )  
y p r e d  [ i ] ~ d p o i s  ( mu [ i  ])
PPL[ i ] < - p o w (  y p r e d  [ i] -  y [ i ]  , 2)
PPL2 [ i ] < -  abs  ( y p r e d  [ i ] - y [ i ]) 
r e s  [ i ] < - (y[  i ] - m u [  i ])
Lexp [ i ] < -  l og  ( e [ i ])
Ds[  i ] <  -  2 * ((y [ i ] * l og ( y [ i ] / mu[  i ] ) )  -  (y [ i] - m u [  i ] ) )  
s i g n  [ i ] <  - 2 *  s t e p  ( y [  i] - mu[ i ]) -  1 
dev . r e s  [ i ] < -  s i g n  [ i ] * s q r t ( D s [ i ] ) }
S [ 1 :N]~ c a r  . n o r ma l  ( adj  [] , w e i g h t s  [] ,num [] , om ega) 
f o r ( k  in 1: sumNumNeigh) { 
w e i g h t s  [ k ] < - 1 }
B 0 ~ d f l a t  ()
eps  < -  1 .0 E -6
e p s 2 ~ d n o r m ( 0 , 1 0 0 0 )
p h i ~dgamma ( 0 . 5 , 0 . 0 0 0 1 )
m ape<-m ean  ( PPL2 [ ])
m spe< -m ean  ( PPL [ ])
omega~dgamma ( 0 . 1  , 0 . 0 0 0 1 )
s d S < -  sd (S [ ] )
sd V < -sd  (v  [ ] )
s d E < -s d  (L exp  [ ] )
sum <- sdS * sd S + sd V * sd V + sd E * sdE
pS<— sdS * sdS /sum
pV<— sdV * sdV / sum
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p E < -sd E  * s d E / s u m }

QQ P l o t  m odel 2
d e v .  res  < - c  ( 0 . 4 1 9 ,  -  0 . 6 8 4 6 ,  -  0 . 8 0 2 8  , -  0 . 475  , 0 . 3 3 4 3  , -  0 . 7 8 3 4 ,  -  1.381 , 0 . 0 5 4 5 8  , 0 . 3 6 6 4  
, 1 . 3 1 4 , 0 . 2 6 3  , -  0 . 891  1 , -  0 . 8 3 4 1 ,  -  0 . 9591  , 0 . 2201  , 0 . 0 7 1 8 4  , -  1 . 1 9 6 ,  -  0 . 965  , -  0.5 833 ,
-  1 . 257 ,  - 0 . 8 1 1 9 , 0 . 5 0 8 2 , 0 . 4 6 2 5 ,  - 0 . 6 7 9 7 ,  - 0 . 3 4 5 ,  - 0 . 8 8 1 7 ,  -  1 . 076 ,  - 2 . 2 1 6 ,  - 0 . 6 3 4 5 ,
- 0 . 4 3 2 4 ,  - 2 . 3 7 ,  - 0 . 6 0 5 6 ,  - 0 . 3 9 4 4 , 0 . 9 5 0 4 ,  - 0 . 2 7 3 6 ,  -  1 . 9 4 9 , 1 . 9 3 6 ,  - 0 . 8 3 4 6 ,  - 0 . 9 1 6 6 ,  
0 . 2 0 6 7 ,  - 0 . 8 8 1 6 ,  - 0 . 8 8 5 5 ,  -  1 . 1 4 6 ,  - 0 . 0 0 8 8 7 5 , 0 . 3 3 5 9 , 1 . 5 3 2 , 0 . 4 4 3 6 , 0 . 5 1 2 7 ,  - 0 . 7 7 2 ,
- 0 . 4 6 4 5 ,  - 0 . 1 6 2 1 ,  - 0 . 9 3 0 6 , 0 . 2 4 0 3 ,  - 0 . 8 2 8 1 , 1 . 3 3 9 ,  -  1 . 685 ,  - 0 . 0 5 5 6 2 ,  - 0 . 8 4 6 3 ,  - 0 . 8 8 1 6  
, 0 . 6 7 2 3  , 0 . 3 9 7 3 , 1 . 6 2 2 ,  -  1 . 6 0 6 ,  - 0 . 1 2 , 0 . 3 2 0 3 ,  - 0 . 8 6 3 ,  - 0 . 4 5  , -  1 . 2 0 2 , 1 . 1 4 1  , - 0 . 7 6 9 4 ,  
0.8 9 7 3 , 0 . 2 4 7 ,  -  0 . 9 1 2 3 , 0 . 8 7 8 ,  -  0 . 3 3 2 2 , 0 . 2 1 9 6 , 1 . 6 3 2 , 0 . 7  27 6 ,  -  0 . 77  6 7 , 2 . 1 0 2 , 0 . 4 4 7  6 ,  
1 . 791 , - 0 . 8  069 , -  1. 20 8 , 1 . 4 7 7  , - 0 . 6 3 7 6 ,  - 0 . 4 1 4 9  , 0 . 0 0 8  625 , 0 . 0 6 1 3 1  , 1 . 127  , 0 . 8 0 6 4  , 
- 1 . 9 8 5 , - 1 . 0 2 3 , 1 . 1 6 , - 0 . 7 7 7 8 , - 0 . 9 8 5 7 , - 0 . 9 9 8 7 , - 0 . 6 8 3 7 , - 1 . 0 5 8 , - 0 . 5 5 1 4 , - 1 . 1 2 6 ,  
0 . 3 2 7 3  , - 0 . 7  841 , 0 . 77  , -  1 . 331 , - 0 . 2 2 4 9 ,  -  1. 601 , 0 . 4 2 7  , - 0 . 7 6 3 4 , 0 . 5 1 5 3  ,0.1 181 , 0 . 4231  
, - 0 . 9 4 2 ,  - 0 . 8 9 4 9 ,  - 0 . 0 1 6 5 3 ,  - 0 . 8 1 9 6 , 0 . 5 0 6 9 ,  - 0 . 3 9 0 6 ,  - 0 . 7 7 8 3 ,  - 0 . 6 5 5 9 , 0 . 6 3 8 8 ,
- 0 . 2 3 5  9,  - 0 . 5 4 2 9 ,  - 0 . 9 5  35 , - 0 . 6 6 4 1 ,  - 0 . 1 8 5 3  ,0 .5 5 9 9 , 1 . 3 4 2  , 0 . 6 1 7 9  , - 0 . 6 3 1 9 ,  - 0 . 3 2 7 3 ,  
1 . 5 8 2 , 2 . 4 5 8  , - 0 . 9 4 2 8  , - 0 . 8 0 9 5  , 0 . 4 5 6 4  , -  1.53 , 0 . 0 5 5 5 2  , - 0 . 6 5 1 8  , - 0 . 6 8 6 7  , 0 . 6 8 9 2  ,
- 0 . 8 0 8 6 ,  - 0 . 8 2 3 7  , 0 . 61 , 1 . 4 3 4  , 0 . 6 4 7 4  , - 0 . 2 5 2 1  , -  1 . 2 9 9 , 1 . 1 9 1  , 0 . 25  25 , 0 . 95  0 4 ,  - 0 . 3  862 
, - 0 . 6 7 4 3  , 0.5 221 , 0. 8 35 6 , - 0 . 7 7 7 6  , - 0 . 7 4 2 1  , 2 . 3 6 3 , 1 . 0 6 )  

qqnorm  ( dev . r e s  ) 
q q l i n e  ( de v  . r e s  )

The c ode  f o r  t he  c a l c u l a t i o n  of  M o r a n ’ s I f o r  m odel 2. 
m odel {
f o r ( i i n 1 :N) {
y [ i ]~ d p o i s  (mu[ i ])
mu[ i ] < - e  [ i ]  * t h e t a  [ i ]
t h e t a  [ i ] < - e x p  (B0+v [ i ] + S [ i ])
v [ i ] ~dnor m (0 , p h i )
r e s  [ i ] < - (y [ i ] - m u [  i ] )  / s q r t  (mu[ i ])
e s t a r  [ i ] < - s u m  (We[x [ i ] : g [ i ] ])
de [ i ] < -  r e s  [ i ] - m e a n (  r e s  [ ] )
d . e s t a r  [ i ] < -  e s t a r  [ i] -  mean ( e s t a r  [ ])
d t  [ i ] < - d e  [ i ]  * d .  e s t a r  [ i ]
db [ i ] < - p o w ( d  . e s t a r  [ i ] , 2)}
S [ 1 :N]~ c a r  . n o r ma l  ( a d j  [] , w e i g h t s  [] ,num [] , om ega) 
f o r ( k  in 1: sumNumNeigh) {
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w e i g h t s  [k]<  — 1 
W e[k]< — r e s  [ a d j  [ k ] ] }
Moran<—sum ( dt  [ ] )  / sum ( db [ ])
B 0 ~ d f l a t  ()
p h i ~ d g a mma ( 0 . 5  , 0 . 0 0 0 1 )  
omega~dgamma ( 0 . 1  , 0 . 0 0 0 1 ) }

Code f o r  m odel 3. 
m o d e l{
f o r ( i i n 1 :N) {
y [ i ]~ d p o i s  (mu[ i ])
mu[ i ] < — e [ i ]  * t h e t a  [ i ]
smr [ i ] <  — ( y [ i ]  + eps2  ) / ( e [ i ]  + e p s 2 )
t h e t a  [ i ] < — exp (B0+v [ i ] + S [ i ])
v [ i ] ~dnor m ( 0 , 1 . 0 E —6)
PP[  i ] < — s t e p ( t h e t a [ i ]  — 1+e p s )  
y p r e d  [ i ] ~ d p o i s  ( mu [ i  ])
PPL[ i ] < —pow( y p r e d  [ i] — y [ i ]  , 2)
PPL2 [ i ] < — abs ( y p r e d  [ i] — y [ i ]) 
r e s  [ i ] <  — (y[  i ] —mu[ i ])
Lexp [ i ] < — l og  ( e [ i ])
Ds[  i ] <  — 2 * ((y [ i ] * l og ( y [ i ] / mu[  i ] ) )  — (y [ i] —mu[ i ] ) )  
s i g n  [ i ] <  — 2* s t e p  ( y [  i] —mu[ i ]) — 1 
dev . r e s  [ i ] < — s i g n  [ i ] * s q r t ( D s [ i ] ) }
S [ 1 :N]~ c a r  . n o r ma l  ( a d j  [] , w e i g h t s  [] ,num [] , om ega) 
f o r ( k  in 1: sumNumNeigh) { 
w e i g h t s  [k] < — 1}
B 0 ~ d f l a t  ()
eps  < — 1.0E—6
e p s 2 ~ d n o r m ( 0 , 1 0 0 0 )
mape<—mean ( PPL2 [ ])
mspe<—mean ( PPL [ ])
om ega~dgam m a( 0 .0 0 5  , 0 . 0 0 5 )
sdS<— sd (S [ ] )
sdV<— sd (v  [ ] )
sdE<— sd (L exp  [ ] )
sum<—sdS * sdS +sdV *sdV +sdE * sdE
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pS<— sdS * sdS /sum  
pV<— sdV * sdV / sum 
pE<— sdE * sdE / su m }

The c ode  f o r  t he  c a l c u l a t i o n  of  M o r a n ’ s I f o r  m odel 3. 
m odel {
f o r ( i i n 1 :N) {
y [ i ]~ d p o i s  (mu[ i ])
mu[ i ] < — e [ i ]  * t h e t a  [ i ]
t h e t a  [ i ] < — exp (B0+v [ i ] + S [ i ])
v [ i ] ~dnor m ( 0 , 1 . 0 E —6)
r e s  [ i ] <  — (y [ i ] —mu[ i ] )  / s q r t  (mu[ i ])
e s t a r  [ i ] < —sum (We[x [ i ] : g [ i ] ])
de [ i ] < — r e s  [ i] — m ean( r e s  [ ] )
d . e s t a r  [ i ] < — e s t a r  [ i] — mean ( e s t a r  [ ])
dt  [ i ] < — de [ i ]  * d .  e s t a r  [ i ]
db [ i ] < —pow( d  . e s t a r  [ i ] , 2)}
S [ 1 :N]~ c a r  . n o r ma l  ( a d j  [] , w e i g h t s  [] ,num [] , om ega) 
f o r ( k  in 1: sumNumNeigh) { 
w e i g h t s  [k]<  — 1 
W e[k]< — r e s  [ a d j  [ k ] ] }
Moran<—sum ( dt  [ ] )  / sum ( db [ ])
B 0 ~ d f l a t  ()
om ega~dgam m a( 0 .0 0 5  , 0 . 0 0 5 ) }

Code f o r  c a l u c l a t i o n  of  e x p e c t e d  v a l u e s  o f  t he  Sou t h  A f r i c a n  Da t a .  
p o p u l a t i o n  <—c (67 868 8 0 , 2 7  8 6 7 5 7 , 1 2 9 1 4 8 1 7 , 1 0 6 9 4 4 3 4 , 5  6 3 0 4 6 4 , 4 2 2 9 3 2 3 , 3 6 7 6 2 7 4  
, 1 1 6 6 6 8 0 , 6 1 1 6 3 2 4 )
obs<— c ( 3 , 1 , 2 , 1 , 2 , 0 , 3 , 1 , 3 )  # e c , F S  ,G P ,k z n  , L P , mp , n w,  nc ,wc
t o t a l < —54001953
t o t a l o b s  < —16
r a t e < — t o t a l o b s  / t o t a l
e<— r a t e  * p o p u l a t i o n

Code f o r  Sou t h  A f r i c a n  ICAR mo d e l .  
m odel {
f o r ( i i n 1 :N) {
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y [ i ]~ d p o i s  (mu[ i ])
mu[ i ] < — e [ i ]  * t h e t a  [ i ]
smr [ i ] <  — ( y [ i ]  + eps2  ) / ( e [ i ]  + e p s 2 )
t h e t a  [ i ] < — exp (B0+v [ i ] + S [ i ])
v [ i ] ~dnor m (0 , p h i )
PP[  i ] < — s t e p ( t h e t a [ i ]  — 1+e p s )  
y p r e d  [ i ] ~ d p o i s  ( mu [ i  ])
PPL[ i ] < —pow( y p r e d  [ i] — y [ i ]  , 2)
PPL2 [ i ] < — abs ( y p r e d  [ i] — y [ i ]) 
r e s  [ i ] <  — (y [ i ] —mu[ i ] )  / s q r t  (mu[ i ])
Lexp [ i ] < — l og  ( e [ i ])
Ds[  i ] <  — 2 * ((y [ i ] * l og ( y [ i ] / mu[  i ] ) )  — (y [ i] —mu[ i ] ) )  
s i g n  [ i ] <  — 2* s t e p  ( y [  i] —mu[ i ]) — 1 
dev . r e s  [ i ] < — s i g n  [ i ] * s q r t ( D s [ i ] ) } }
S [ 1 :N]~ c a r  . n o r ma l  ( adj  [] , w e i g h t s  [] ,num [] , om ega) 
f o r ( k  in 1: sumNumNeigh) { 
w e i g h t s  [k] < — 1}
B 0 ~ d f l a t  ()
eps  < — 1.0E—6
e p s 2 ~ d n o r m ( 0 , 1 0 0 0 )
mape<—mean ( PPL2 [ ])
mspe<—mean ( PPL [ ])
om ega~dgam m a(0 .5  , 0 . 0 0 0 5 )
sdS<— sd (S [ ] )
sdV<— sd (v  [ ] )
sdE<— sd (L exp  [ ] )
p h i ~dgamma ( 0 . 5 , 0 . 0 0 0 5 )
sum<— sdS * sd S + sd V * sd V + sd E * sdE
pS<— sdS * sdS /sum
pV<— sdV * sdV / sum
pE<— sdE * sdE / sum
QR60<—r a n k e d ( t h e t a [] , 8 ) / r a n k e d ( t h e t a [] , 2 ) }
l i s t  ( N = 9 , y = c ( 3  ,1 , 2 , 1  ,2 ,0 ,3 ,1 ,3)  , e=c ( 2 . 0 1 0 8 5 4 7  , 0 . 8 2 5  675 9 , 3 . 8 2 6 4 7 4 1  , 3 . 1 6 8 6 0 6 6  , 
1 . 66 8 2 2 5 3 , 1 . 2 5 3 0 8 7 4 , 1 . 0 8  9 2 2 7 0 , 0 . 3 4 5  67 0 5 , 1 . 8 1 2 1 7 8 6 )  ,n um = c(4  , 6 , 4 , 3 , 3 , 4 , 4 , 4 , 2 ) ,  
a d j = c ( 9 , 8 , 4 , 2 , 8 , 7 , 6 , 4 , 3 , 1 , 7 , 6 , 5 , 2 , 6 , 2 , 1 , 7 , 6 , 3 , 5 , 4 , 3 , 2 , 8 , 5 , 3 , 2 , 9 , 7 , 2 , 1 , 8 , 1 ) ,  
sumNumNeigh = 3 4 ))
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Code f o r  QQ p l o t  ICAR.
d e v .  res  < - c  ( 0 . 6 4 4 8  , 0 . 2 0 3 9  , -  0 . 9 3 0 9  , -  1 . 324  , 0 . 2 7 2 5  , -  1 . 5 4 3 , 1 . 4 7 3  , 0 . 8 9 5 8  , 0 . 7 7 2 3  , 
-  0 .00 2 0 6 6 )
qqnorm  ( dev . r es  , l wd  = 2) 
q q l i n e  ( de v  . r e s  )

R e s i d u a l  vs f i t t e d  v a l u e  p l o t  code  f o r  th e  ICAR mo d e l .
r es  < - c  ( 0 . 9 2 5 8  , 0 . 1 6 5  , -  1 . 7 1 ,  -  2 . 0 3 7 , 0 . 3 1  13 ,  -  1 . 2 1 5 , 1 . 8 3 8 , 0 . 6 3 7 , 1 . 0 8  2)
f i t t e d  < - c ( 2 . 851 , 1 . 8 0 5  , 3 . 8 0 8  , 3 . 4 4 2  , 2 . 5 6 9  , 2 . 1 7 7  , 2 . 1 2 7  , 1 . 1 8 8  , 2 . 7 2 9 )
p l o t  ( f i t t e d  , r es  , m ain  = " R e s i d u a l s  v e r s u s  F i t t e d  v a l u e s  ” , y l a b  = " R e s i d u a l  " ,
x l a b = ” F i t t e d  V a lu e  " , l w d = 4 , t y p e  = ’p ’ , cex  = .5)

Code f o r  Sou t h  A f r i c a n  PCAR mo d e l .  
m odel {
f o r  ( i  in  1:N){

M[ i ] < -  1/e [ i ]}
csum [1]<  -  0
f o r  ( i i n 2 : (N+ 1)){
csum [ i ] < - s u m ( n u m  [ 1: ( i -  1)])  }
f o r ( k  in 1: sumNumNeigh)
{ f o r ( i i n 1 :N) {
p i c k  [k , i ] < -  s t e p  (k -c s u m  [ i ]  -  e p s i l o n )  * s t e p  (csum  [ i+1] -  k ) }

W [ k ] < -  s q r t ( e [ a d j  [ k ] ] / i n p r o d ( e [ ]  , p i c k  [k , ] ) )  } 
e p s i l o n  < - 0 .0 0 0 1  
f o r  ( i  in  1:N){ 
y [ i ]~ d p o i s  (mu[ i ])  
mu[ i ] < - e  [ i ]  * t h e t a  [ i ]  
t h e t a  [ i ] < - e x p  (S [ i ]+B0+v [ i ]) 
v [ i ] ~dnor m (0 , p h i ) 
mu1 [ i ] < -  a l p h a  
Lexp [ i ] < -  l og  ( e [ i ]) 
smr [ i ] <  - ( y [ i ]  + eps2  ) / ( e [ i ]  + e p s 2 )
PP[  i ] < -  s t e p ( t h e t a [ i ]  - 1+e p s )  
y p r e d  [ i ] ~ d p o i s  ( mu [ i  ])
PPL[ i ] < - p o w (  y p r e d  [ i] -  y [ i ]  , 2)
PPL2 [ i ] < -  abs  ( y p r e d  [ i ] - y [ i ]) 
r e s  [ i ] < - (y[  i ] - m u [  i ])
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D s[ i ] <  -  2 * ((y [ i ] * l og ( y [ i ] / mu[  i ] ) )  -  (y [ i] - m u [  i ] ) )  
s i g n  [ i ] <  - 2 *  s t e p  ( y [  i] - mu[ i ]) -  1 
dev . r e s  [ i ] < -  s i g n  [ i ] * s q r t ( D s [ i ] ) }
S [ 1 :N]~ c a r  . p r o p e r  (mu1 [] ,W[] , ad j [] ,num [] ,M[] , omega , rho  )
p h i ~dgamma ( 0 . 5 , 0 . 0 0 0 5 )
a l p h a ~ d n o r m  (0 , 0 . 0 0 0 1 )
om ega~dgam m a(0 .5  , 0 . 0 0 0 5 )
dev . s at  < - sum ( Ds [ ])
eps < -  1 .0 E -6
e p s2 ~ d n o rm  ( 0 , 1 0 0 0 )
m ape<-m ean  ( PPL2 [ ])
m spe< -m ean  ( PPL [ ])
B 0 ~ d f l a t  ()
rho . m in < -m in  . bound (W[] , ad j [] ,num [] , M [ ] )
rho . m ax<-m ax. bound (W[] , adj  [] , num[ ]  , M [ ] )
r h o ~ d u n i f  ( rho . min , r h o . m a x )
s d S < -  sd (S [ ] )
sd V < -sd  (v  [ ] )
s d E < -s d  (L exp  [ ] )
sum <- sdS * sd S + sd V * sd V + sd E * sdE
pS<— sdS * sdS /sum
pV<— sdV * sdV / sum
p E < - sdE * sdE / sum
Q R 6 0 < - r a n k e d ( t h e t a [] , 8 ) / r a n k e d ( t h e t a [] , 2 ) }
l i s t  ( N = 9 , y = c ( 3  ,1 , 2 , 1  ,2 ,0 ,3 ,1 ,3)  , e=c ( 2 . 0 1 0 8 5 4 7  , 0 . 8 2 5  675 9 , 3 . 8 2 6 4 7 4 1  , 3 . 1 6 8 6 0 6 6  , 
1 . 66 8 2 2 5 3 , 1 . 2 5 3 0 8 7 4 , 1 . 0 8  9 2 2 7 0 , 0 . 3 4 5  67 0 5 , 1 . 8 1 2 1 7 8 6 )  ,n um = c(4  , 6 , 4 , 3 , 3 , 4 , 4 , 4 , 2 ) ,  
a d j = c ( 9 , 8 , 4 , 2 , 8 , 7 , 6 , 4 ,  3 , 1  ,7 ,6 ,5 ,2 ,6 , 2 , 1  ,7 ,6 ,3 ,5 ,4 ,3 ,2 ,8 ,5 ,3 ,2 ,9 ,7 , 2 , 1  ,8 , 1)  , 
sumNumNeigh = 3 4 ))

Code f o r  Q Q plo t PCAR
d e v .  res  < - c  ( 0 . 6 5 4 , 0 . 2 0 2 9  , -  0 . 9 3 6 3  , -  1 . 336  , 0 . 2 7 3 7  , -  1 . 5 4 7 , 1 . 4 6 3  , 0 . 8 9 5 7  , 0 . 8 0 5 5 )  
qqnorm  ( dev . r es  , l wd  = 2) 
q q l i n e  ( de v  . r e s  )

R e s i d u a l  v e r s u s  f i t t e d  v a l u e  p l o t  code  f o r  th e  PCAR mo d e l .
r e s < - c  ( 0 . 9 2  8 5 , 0 . 1 5 7  5 , -  1.7 07 , -  2 . 0 4 9  , 0 . 3 1 0 8  , -  1 . 2 2 4 , 1 . 8 1 9  , 0 . 6 2 6 9 , 1 . 1 2 8 )
f i t t e d  < - c ( 2 . 8 4 6 , 1 . 8 1 4  , 3 . 8 1 9  , 3 . 4 5 9  , 2 . 5 7 2  , 2 . 1 8 8  , 2 . 1 3 4 , 1 . 1 9 5  , 2 . 7 0 4 )
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p l o t  ( f i t t e d  , r es  , m ain  = " R e s i d u a l s  v e r s u s  F i t t e d  v a l u e s  ” , y l a b  = ” R e s i d u a l  ” , 
x l a b = ” F i t t e d  V a lu e  ” , lw d = 4  , t y p e  = ’p ’ , cex  = . 5)


