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Abstract

The tail dependence coefficient (TDC) is a natural tool to describe extremal dependence. Estimation of the

tail dependence coefficient can be performed via empirical process theory. In case of extremal independence,

the limit degenerates and hence one cannot construct a test for extremal independence. In order to deal with

this issue, we consider an analog of the covariance matrix, namely the extremogram matrix, whose entries

depend only on extremal observations. We show that under the null hypothesis of extremal independence

and for finite dimension d ≥ 2, the largest eigenvalue of the sample extremogram matrix converges to the

maximum of d independent normal random variables. This allows us to conduct an hypothesis testing for

extremal independence by means of the asymptotic distribution of the largest eigenvalue. Simulation studies

are performed to further illustrate this approach.
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Chapter 1

Introduction

The study of the behavior of extreme events becomes one of the priorities in recent years, because the oc-

curence of these events may cause damage in many sectors (e.g. finance, economic, insurance, loss of human

lives, etc.). For univariate random variables a good theoretical toll for the statistical modeling of such events

is embedded in the framework of Extreme Value Theory (EVT) with the famous Fisher-Tippett-Gnedenko

theorem that describes the limiting behavior for the properly normalized maxima. In a multivariate case,

one of the many tools used to study the extreme events is the so-called tail dependence coefficient. If

extremes in a multivariate vector do not occur together, then we have extremal independence. Other-

wise, we have extremal dependence.

The main goal of this thesis is to test a null hypothesis for extremal independence by means of the tail

dependence coefficient. To estimate the tail dependence coefficient, we use a nonparametric approach. It is

more advantageous in a sense that it avoids any misidentification about the underlying distribution.

Related studies on the tail dependence coefficient.

Asymptotic properties of the estimators of the tail dependence coefficient are investigated and reviewed

in [10]. The authors prove limit theorems for the proposed estimators under known and unknown marginal

distributions. In our case we work under the assumption of regular variation and consider the estimator

which is obtained from the definition of the TDC (2.4) by replacing the cdfs with their empirical versions.

As such, we provide limit theorems under a weaker technical assumptions, but restricting a class of bivariate

vectors. More specifically, our Theorem 4.1.1 corresponds to Theorem 5 in [10]. Similarly, our Theorem 4.5.3

corresponds Theorem 6 in [10]. The estimator used in [10] is based on the rank order statistic in contrast to

our estimator used in Theorem 4.5.3 which is based on the intermediate order statistic. Our contribution,
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as compared to [10], is a much simpler proof of the asymptotic normality. However, we do not claim any

novelty here.

Testing for extremal independence.

A test for extremal independence is considered, where the null hypothesis is formulated as follows:

H0: There is an extremal independence vs.

H1: There is an extremal dependence.

However, under the null hypothesis of extremal independence, the limit for the estimator of the tail depen-

dence coefficient is degenerated and as such the estimator cannot be used directly to construct a test for

extremal independence. This is the problem shared with virtually all estimators of the extremal indepen-

dence - they degenerate under extremal independence. To overcome this problem, we introduce an analog

of the covariance matrix, namely the extremogram matrix, whose entries depend only on the extremes.

Random matrices, especially for high dimensional problems, became very popular in the last several years;

see [1]. We use random matrices, for the first time, in a novel context of extremal indepen-

dence. We study the asymptotic properties of the largest eigenvalue of the sample extremogram matrix.

We show that under the null hypothesis of extremal independence, the largest sample eigenvalue converges

(properly normalized) to the maximum of a finite number of normal random variables. As such, for the

first time, we can construct a proper test for extremal independence.

Organisation of the thesis.

The purpose of Chapter 2 is to review some known results on regular variation, vague and weak con-

vergence. This chapter is organized as follows, we start in Section 2.1 with a survey on regular variation.

Important results and bounds, such as Karamata Theorem, Potter’s bound, Breiman Lemma and the uni-

form convergence theorem, are presented. Thereafter, we introduce the concept of vague convergence and

connect it to the notion of regularly varying random vectors. With the help of regular variation, we define

the notion of the tail dependence coefficient.

In Section 2.2 we discuss weak convergence in metric spaces. Some important results like Lindeberg

condition are presented. We also introduce the notion of tightness and uniform equicontinuity using a

sophisticated entropy method.

The results in this chapter are not new and can be found in literature as mentioned in each section.
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In Chapter 3, we discuss weak convergence of tail empirical processes of an i.i.d. regularly random

vectors using the results developed in the previous chapter. The main result is Theorem 3.1.3. We do not

claim originality of this result.

In Chapter 4, the nonparametric estimation of the tail dependence coefficient (TDC) and an hypothesis

testing for extremal independence are developed. The advantage of the nonparametric approach is that it

avoids any misidentification about the underlying distribution in contrast to the semiparametric or para-

metric approach. First, in Section 4.1, we discuss the estimation of the TDC by the standard approach,

i.e. the estimator is obtained from the definition of the TDC where the cdfs are replaced with their em-

pirical versions; see (4.1). We prove limit theorems for the estimator with deterministic levels. We do not

claim the originality of this result. The limiting result can be used to construct confidence intervals for

the tail dependence coefficient. However, under the null hypothesis of extremal independence, the limit is

degenerated (see Corollary 4.1.2 and Section 4.2) and as such the estimator cannot be used to construct a

test for extremal independence. This is the problem shared with virtually all estimators of the extremal

(in)dependence - they degenerate under extremal independence. See also [10], Theorems 5 and 6.

To avoid this drawback, we consider an analog of the covariance matrix, namely the extremogram matrix,

whose entries depend only on the extremes. Its sample counterpart is obtained by plugging-in the estimators

of the tail dependence coefficient. We use random matrices, for the first time, in a novel context of extremal

independence.

We work under the finite dimensional case, say d = 2 in Section 4.3, and an extension to arbitrary but

finite dimension d ≥ 2 in Section 4.4. In both cases, we prove that the largest eigenvalue of the sample

extremogram matrix converges (after a proper normalization) in distribution to the maximum of a finite

number of independent Gaussian random variables with explicit mean and variance. Having that in hand,

we are now ready to conduct an hypothesis testing by means of the distribution of the largest eigenvalue

of the sample extremogram matrix. Section 4.5 deals with the estimation of the tail dependence coefficient

with data based, random levels. We obtain the same limit theorems as in the deterministic levels case. The

transition to random levels follows the path as in [7]. However, the transition to random matrices is based

on the original author’s contribution.

Simulation studies are conducted in Section 4.6, while the real data analysis in Section 4.7.

3



Chapter 2

Preliminaries

A purpose of this chapter is to review some known results on regular variation, vague and weak convergence.

This chapter is organized as follows, we start in Section 2.1 with a survey of regular variation. Important

results and bounds, such as Karamata Theorem, Potter’s bound, Breiman Lemma and the uniform conver-

gence theorem, are presented. Thereafter, we introduce the concept of vague convergence and connect it to

the notion of regularly varying random vectors. With the help of regular variation, we define the notion of

the tail dependence coefficient.

In Section 2.2 we discuss weak convergence in a metric space. Some important results like Lindeberg

condition are presented. We also introduce the notion of tightness and uniform equicontinuity using a

sophisticated entropy method.

All the results in this chapter are not new and can be found in literature as indicated in each section.

2.1 Regular variation

In this section we recall the concept of regular variation of functions and random vectors and connect it to

vague convergence. With help of regular variation, we will define the tail dependence coefficient. Several

examples are given. The results presented in this section are known and can be found in e.g. [11] and [9].

We provide some proofs for completeness.

2.1.1 Regularly varying functions

We begin this section by introducing a basic definition of slowly varying functions followed by regularly

varying functions and finally we end up with regularly varying random variables.

Let ` be a positive measurable function defined on [0,∞). Then ` is called slowly varying at infinity, denoted
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by SV∞, if

lim
x→∞

`(tx)

`(x)
= 1, ∀ t > 0 .

A positive measurable function f defined on [0,∞) is said to be regularly varying at infinity with index

α ∈ R if f(x) 6= 0 for large x and

lim
x→∞

f(tx)

f(x)
= tα, ∀ t > 0 .

We denote by RV∞(α) the set of regularly varying functions at infinity with index α. In fact, every regularly

varying function can be expressed as

f(x) = xα`(x),

where ` is slowly varying.

Lemma 2.1.1 The convergence in (2.1.1) is uniform. More specifically:

(i) if α > 0, the convergence is uniform [0, b], 0 ≤ b <∞;

(ii) if α < 0, the convergence is uniform on [b,∞], 0 < b <∞;

(iii) if α = 0, the convergence is uniform on [a, b], 0 < a ≤ b <∞.

Example 2.1.2 The function f(x) = xδ, for δ ∈ R\{0} is regularly varying at infinity with index δ. Indeed

for all x, t > 0,
f(tx)

f(x)
=

(tx)δ

xδ
= tδ.

Similarly, functions like f(x) = xδ log(x), f1(x) = xδ(log(x))β and f2(x) = xδ log(log(x)), δ 6= 0, β ∈ R are

also regularly varying functions.

The powers of nonnegative regularly varying functions are also regularly varying, the product (resp. the

composition) of two nonnegative regularly varying functions with indices α1 and α2 is regularly varying with

index α1 + α2 (resp. α1α2). Also, the sum two nonnegative regularly varying functions is regularly varying

with index max{α1, α2}. In other words if f , f1 and f2 are positive measurable functions, then

• if f1 ∈ RV∞(α1), f2 ∈ RV∞(α2) ⇒



f1f2 ∈ RV∞(α1 + α2).

f1 ◦ f2 ∈ RV∞(α1α2) (if limx→∞ f2(x) =∞).

f1 + f2 ∈ RV∞(max{α1, α2}).

5



• if f ∈ RV∞(α)⇒ ∀ δ ∈ R, f δ ∈ RV∞(αδ).

• if f ∈ RV∞(α), then for α 6= 0, as x→∞⇒


f(x)→∞ if α > 0,

f(x)→ 0 if α < 0.

2.1.2 Bounds and limits

We briefly provide some useful and well known results such as Potter’s bounds, or Karamata’s theorem.

Lemma 2.1.3 Suppose g ∈ RV∞(α) and ` ∈ SV∞, locally bounded away fron zero and ∞, α ∈ R \ {0}.

Take δ ∈ (0, 1). Then there exists t0 such that for all x > 0 and t ≥ t0,

(1− δ)xα−δ ≤ g(tx)

g(x)
≤ (1 + δ)xα+δ

and

(1− δ)x−δ ≤ `(tx)

`(x)
≤ (1 + δ)xδ.

In what follows we write f(x) ∼ g(x) whenever limx→∞ f(x)/g(x) = 1.

Lemma 2.1.4 (Karamata’s theorem) Let f be locally bounded on [0,+∞), positive and regularly varying

function with index α ∈ R and let γ ∈ R.

(1) α+ γ > −1, then

∫ ∞
1

tγf(t) dt =∞ and

∫ x

1
tγf(t) dt ∼ (γ + α+ 1)−1xγ+1f(x).

(2) If α+ γ < −1, then

∫ ∞
1

tγf(t) dt <∞ and

∫ ∞
x

tγf(t) dt ∼ −(γ + α+ 1)−1xγ+1f(x).

(3) If α+ γ = −1, then `(x) =
∫ x
1 t

γ |f(t)| dt is slowly varying and xγf(x) = o(`(x)).

Proof: Note that the proof is not original, but we provide it in order to present the techniques.

Since f ∈ RV∞(α), then there exists a slowly varying function ` such that f(x) = xα`(x). Assume that

α+ γ > −1. Then
1

xγ+1f(x)

∫ x

1
tγf(t) dt =

∫ 1

1/x
sγ
f(sx)

f(x)
ds =

∫ 1

1/x

g(sx)

g(x)
ds,

6



where g(x) = xγf(x). The function g is regularly varying with index γ + α. If α + γ > 0, then by Lemma

2.1.1(i),
g(sx)

g(x)
→ sγ+α, uniformly on [0, 1].

Hence, by the uniform convergence theorem, the above integral converges to the desired result. If α + γ ∈

(−1, 0], we cannot conclude the result directly, since the convergence g(sx)/g(x) is uniform on [a, 1], for

a > 0. There exists ε > 0 small enough so that α+ γ + 1− ε > 0, we have

∫ 1

1/x
sγ
f(sx)

f(x)
ds =

∫ 1

1/x
sε−1sγ+1−ε f(sx)

f(x)
ds =

∫ 1

1/x
sε−1

g(sx)

g(x)
ds,

where g(x) = xγ+1−εf(x) ∈ RV∞(α+ γ + 1− ε). Now we have

g(sx)/g(x)→ sα+γ+1−ε, uniformly on [0, 1].

Therefore, (1) is proven. The proof of (2) is similar.

�

2.1.3 Regularly varying random variables

In this section we apply the concept of regular variation to random variables and their distributions.

Definition 2.1.5 A cdf (cumulative distribution function) (resp. right tail distribution) of a random vari-

able X denoted by FX (resp. FX) is defined as

FX(x) = P(X ≤ x), ∀ x ∈ R.

FX(x) = 1− FX(x) = P(X > x), ∀ x ∈ R.

Note that FX is also called the survival function. In what follows, we may use F or FX accordingly.

Definition 2.1.6 A nonnegative random variable X is said to be regularly varying at infinity with index α

if and only if its tail distribution function is regularly varying with index −α (α > 0), that is

lim
x→∞

FX(tx)

FX(x)
=

P(X > tx)

P(X > x)
= t−α.

The parameter α is called the tail index. It measures the heaviness of the tail X. We will write X ∈ RV∞(α)
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or FX ∈ RV∞(−α).

We state important properties of regularly varying random variables. Some of these properties parallel the

results in Section 2.1.2.

Lemma 2.1.7 Let X be a nonnegative random variable with distribution function F . If F ∈ RV∞(−α), α >

0. Then E(Xβ) <∞ if β < α and E(Xβ) =∞ if β > α. Moreover,


limx→∞

∫ x
0 uβ dF (u)

xβF (x)
= α

α−β if β < α

limx→∞

∫ x
0 uβ dF (u)

xβF (x)
= α

β−α if β > α.

Lemma 2.1.8 (Potter’s bound) Let X be a nonnegative random variable with distribution function F

and RV∞(α). Then ∀ ε > 0 ∃ C > 1: ∀ x ≥ 0 , y ≥ 0,

F (y−1x)

F (x)
=

P(yX > x)

P(X > x)
≤ C max(1, y)ε+α .

Lemma 2.1.9 (Breiman’s Lemma) Assume that X and Y are two independent nonnegative random

variables. If X ∈ RV∞(α), α > 0 and E(Y α+ε) <∞ for some ε > 0, then XY ∈ RV∞(α) and

lim
x→∞

P(Y X > x)

P(X > x)
= E(Y α).

In what follows, we define a quantile function. It will play an important role in the thesis. We first provide

its definition, followed by the transfer of regular variation.

Definition 2.1.10 We define the quantile function of a random variable X by

F←(q) = inf{x ∈ R : F (x) ≥ q}, q ∈ (0, 1),

with the convention that the infimum of a empty set is ∞.

Let recall some of properties of the quantile functions:

• F← is non-decreasing on (0,1) and left continuous;

• F←(F (x)) ≤ x for any x ∈ R;

• F (F←(q)) ≥ q for any q ∈ (0, 1).

8



The following function will be of interest:

Q(u) = F←
(

1− 1

u

)
, ∀u ≥ 1.

For this function we have:

F ∈ RV∞(−α)⇒ Q ∈ RV∞(α−1).

We will work with random vectors with regularly varying marginals. Then, several situations can happen

according to different behaviour of the marginals:

1. X
d
= Y , i.e. P(X > x) = P(Y > x) = x−α`(x), for `(x) ∈ SV∞.

2. P(X > x) ∼ P(Y > x), i.e. P(X > x) = x−α`(x) and P(Y > x) = x−α ˜̀(x) with `(x), ˜̀(x) ∈ SV∞ and

limx→∞ `(x)/˜̀(x) = 1.

3. P(X > x) = x−α`(x) and P(Y > x) = x−α ˜̀(x) with `(x), ˜̀(x) ∈ SV∞ and limx→∞ `(x)/˜̀(x) =∞.

4. P(X > x) = x−α`(x) and P(Y > x) = x−β ˜̀(x) with α < β and `(x), ˜̀(x) ∈ SV∞.

We note that in the last two situations X has a heavier tail than Y , that is P(X > x)/P(Y > x) → ∞ as

x → ∞. We will not deal with such situations in the thesis, we will focus on the first two cases. We will

write X
d
≈ Y to indicate that the tails of X and Y are asymptotically the same.

2.1.4 Vague convergence

The notion of vague convergence appears as a useful tool in studying regular variation, while weak conver-

gence is a tool to study the limiting behavior of random variables. We summarize some useful definitions,

results and properties of vague and weak convergence. Let E be a locally compact topological space with

countable base; often it is safe to think of E as a finite dimensional Euclidean space or R. Let ν be a measure

on E. If ν(K) <∞ for all relatively compact sets K ⊆ E, then ν is called a Radon measure.

Definition 2.1.11 (Vague convergence) Let M+(E) be the set of all nonnegative Radon measures on E

and C+
K(E) be the set of all continuous functions f : E → R+ with compact support. Let ν and νn be Radon

measures on E. We say that the sequence νn converges vaguely to ν, written νn
v−→ ν, if

∫
f dνn →

∫
f dν,

for all f ∈ C+
K(E).

9



The following result gives a link between regular variation and vague convergence.

Proposition 2.1.12 Assume that a nonnegative random variable X, with distribution function F , is regu-

larly varying with index α. Then there exists a sequence of constants an such that, as n→∞, nF (anx)→

x−α and

νn(·) := nP(a−1n X ∈ ·) v−→ ν(·),

where ν(x,∞] = x−α and the convergence holds in M+((0,∞]), the set of all nonnegative Radon measures

on (0,∞].

2.1.5 Regularly varying random vectors

We begin this section by introducing the notion of multivariate regularly varying random vectors and some

of their properties.

Definition 2.1.13 An Rd−valued random vector X and its distribution are said to be regularly varying with

index α > 0, written as X ∈ RV∞(α), if there exists a Radon measure ν on the Borel σ-field B(Rd0) of

Rd0 = Rd\{0} such that

P(x−1X ∈ ·)
P(‖X‖> x)

v−→ ν(·), as x→∞,

where ‖·‖ is a vector norm in Rd. The limiting measure is homogeneous, ν(xC) = x−αν(C) for any x > 0

and all Borel sets C ∈ Rd0 bounded away from zero. This definition is equivalent to the sequential definition

of regular variation: there exists a scaling sequence cn →∞ such that

nP(c−1n X ∈ ·) v−→ ν

on Rd\{0}.

Example 2.1.14 If X and Y are i.i.d. nonnegative regularly varying random variables such that X
d
≈ Y ,

then X = (X,Y ) is a regularly varying vector. Indeed, if A is of the form A = ([0, s]× [0, t])c ⊂ R2
+ \{(0, 0)},

then the limiting measure is given (up to a constant) by

ν(A) = s−α + t−α.

10



Indeed,

P((X,Y ) ∈ xA)

P(X > x)
=

P(X > sx or Y > tx)

P(X > x)

=
P(X > sx)

P(X > x)
+

P(Y > tx)

P(X > x)
− P(X > sx)

P(X > x)
P(Y > tx).

Since X and Y are RV∞(α), we have as x→∞,

P(X > sx)

P(X > x)
→ s−α ,

P(Y > tx)

P(X > x)
→ t−α ,

P(X > sx)

P(X > x)
P(Y > tx)→ 0.

Therefore
P((X,Y ) ∈ xA)

P(X > x)
→ ν

(
A) = s−α + t−α, as x→∞. (2.1)

Hence, the result follows. The latter result means that the limiting measure is concentrated on the axis. In

other words, X and Y cannot be big at the same time. Furthermore, for any norm ‖·‖, we have

P(‖X‖> x) ∼ P(X > x)× ℵ, as x→∞,

where ℵ is any constant. Indeed, if e.g. ‖X‖ = ‖X‖∞ = max(X,Y ), then

P(‖X‖ > x) = P(max(X,Y ) > x) = P(X > x or Y > x).

So dividing both sides of the above equation by P(X > x) gives us

P(‖X‖ > x)

P(X > x)
=

P(X > x or Y > x)

P(X > x)
→ 2, as x→∞,

using (2.1) with (s, t) = (1, 1).

2.1.6 Tail dependence coefficient (TDC)

When dealing with joint extreme events, one of the most important tools used for this purpose is the notion

of tail dependence.

Definition 2.1.15 Let (X,Y ) be a bivariate random vector with marginal distributions FX and FY . We

define the tail dependence coefficient (TDC) between X and Y by

λ
(X,Y )
TDC = lim

p→0

P(X > F←X (1− p), Y > F←Y (1− p))
p

∈ [0, 1], (2.2)

11



where F←X and F←Y denote the quantile functions of X and Y , respectively.

If there is no risk for misinterpretation, we will write λTDC instead of λ
(X,Y )
TDC . Note that λTDC plays an

important role since it quantifies the extremal relation between the variables. In other words, the bigger

λTDC is, the stronger is the extremal dependence. We say that:

• if λTDC = 0, then there is no extremal dependence between X and Y . We say that X and Y are

asymptotically (extremally) independent;

• if λTDC ∈ (0, 1], then there is extremal dependence between X and Y . We say that X and Y are

asymptotically (extremally) dependent.

We note that (2.2) is equivalent to

λTDC = lim
p→0

1

P(U > 1− p)
P(U > 1− p, V > 1− p), (2.3)

where U = FX(X) and V = FY (Y ) are standard uniform random variables. If we assume further that X

and Y are s.t. X
d
≈ Y , then (2.3) can be rewritten as follows:

λTDC = lim
x→∞

P(X > x, Y > x)

P(X > x)
. (2.4)

Indeed, if we assume for simplicity that FX and FY are continuous and strictly increasing, then we have

λTDC = lim
p→0

1

P(U > 1− p)
P(U > 1− p, V > (1− p))

= lim
p→0

1

P(F←X (U) > F←X (1− p))
P(F←X (U) > F←X (1− p), F←X (V ) > F←X (1− p))

= lim
p→0

1

P(F←X (U) > F←X (1− p))
P(F←X (U) > F←X (1− p), F←Y (V ) > F←Y (1− p)) (X

d
≈ Y )

= lim
p→0

1

P(F←X (U) > xp)
P(F←X (U) > xp, F

←
Y (V ) > xp) (xp = F←X (1− p))

= lim
x→∞

1

P(X > x)
P(X > x, Y > x).

The formula (2.4) also makes sense when X and Y are asymptotically the same. Therefore, in this thesis,

we will work with (2.4).

Example 2.1.16 Assume that X and Y are i.i.d. nonnegative regularly varying random variables and

X
d
≈ Y . Then λTDC = 0. Indeed,
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λTDC = lim
x→∞

P(X > x, Y > x)

P(X > x)
= lim

x→∞
P(Y > x) = 0.

See the Figure 2.1 for an example where X and Y are independently drawn from Pareto distribution. We

can see that the large observations do not occur jointly.

Figure 2.1: Simulated samples of size 10000 of two i.i.d. Pareto random variables

Example 2.1.17 Assume that Zi, i = 1, 2, 3, are i.i.d. nonnegative regularly varying random variables with

the same index α, i.e.

P(Zi > x) = x−α`(x), i = 1, 2, 3,

where `(x) is a slowly varying function. Define X = Z1 + Z2 and Y = Z2 + Z3. Then λTDC = 1
2 .

Note first that

lim
x→∞

P(X > x)

P(Zi > x)
= 2, i = 1, 2, 3. (2.5)

In fact, observe first that

{Z1 > x} ∪ {Z2 > x} ⊆ {Z1 + Z2 > x}

thus
P(Z1 + Z2 > x)

P(Z1 > x)
≥ P(Z1 > x or Z2 > x)

P(Z1 > x)

(2.1)−−−→ 2, as x→∞.

On the other hand, for ε ∈ (0, 1, 2), we have
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{Z1 + Z2 > x} ⊆ {Z1 > x(1− ε)} ∪ {Z2 > x(1− ε)} ∪ {Z1 > xε, Z2 > xε}

therefore,

P(Z1 + Z2 > x)

P(Z1 > x)
≤ P(Z1 > x or Z2 > x or {Z1 > xε, Z2 > xε})

P(Z1 > x)

(2.1)−−−→ 2, as x→∞.

Leading to the desired result.

Coming back to our example, let δ ∈ (0, 1), we have

P(X > x, Y > x)

P(X > x)
=

P(Z1 + Z2 > x,Z2 + Z3 > x)

P(X > x)

=
P(Z1 + Z2 > x,Z2 + Z3 > x,Z2 > δx)

P(X > x)
+

P(Z1 + Z2 > x,Z2 + Z3 > x,Z2 ≤ δx)

P(X > x)

≤ P(Z2 > δx)

P(X > x)
+

P(Z1 > x(1− δ))
P(X > x)

P(Z3 > x(1− δ))

≤ P(Z2 > δx)

P(X > δx)

P(X > δx)

P(X > x)
+

P(Z1 > x(1− δ))
P(X > x(1− δ))

P(X > x(1− δ))
P(X > x)

P(Z3 > x(1− δ))

→ 1

2
δ−α +

1

2
(1− δ)−α × 0, as x→∞.

Hence

lim
δ→1

lim
x→∞

P(X > x, Y > x)

P(X > x)
≤ 1

2
. (2.6)

On the other hand,

P(X > x, Y > x)

P(X > x)
=

P(Z1 + Z2 > x,Z2 + Z3 > x)

P(X > x)
≥ P(Z2 > x)

P(X > x)

(2.5)−−−→ 1

2
, as x→∞. (2.7)

Combining (2.6) and (2.7), we get λTDC = 1
2 . �

Figure 2.2 shows the graph of X and Y defined in this example, where Zi are drown independently from

Pareto distribution. We can see that some of the large values X and Y coincide.

Example 2.1.18 Let Z1, Z2 and V be independent nonnegative random variables such that Z1, Z2 ∈
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Figure 2.2: Simulated samples of size 10000 of two dependent random variables

RV∞(α), Z1
d
= Z2, E(V α+ε) <∞, for some ε > 0. Define

X = V Z1 and Y = V Z2.

Then the tail dependence coefficient vanishes, λTDC = 0, which just means that X and Y are dependent

but asymptotically independent. In fact, note first that by Breiman’s Lemma (Theorem 2.1.9), X and Y

are RV∞(α):

P(X > x) ∼ E(V α)P(Z1 > x), P(Y > x) ∼ E(V α)P(Z2 > x).
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We have

λTDC = lim
x→∞

P(X > x, Y > x)

P(X > x)
= lim

x→∞

P(V Z1 > x, V Z2 > x)

P(X > x)

= lim
x→∞

P(V Z1 > x, V Z2 > x)

E(V α)P(Z1 > x)

= lim
x→∞

E
(
P(V Z1 > x, V Z2 > x)|V

)
E(V α)P(Z1 > x)

= lim
x→∞

1

E(V α)
E

(
FZ1( xV )

FZ1(x)
FZ1

( x
V

))

=
1

E(V α)
E

(
lim
x→∞

FZ1( xV )

FZ1(x)
lim
x→∞

FZ1

( x
V

))

=
1

E(V α)
E(V α × 0) = 0.

Hence λTDC = 0.

Note that the argument used in order to exchange the limit and the expectation comes from the fact

that Z1, Z2 are regular varying, and by application of Potter’s bound (Theorem 2.1.8) and the dominated

convergence theorem, using the assumption E(V α+ε) <∞. �

Example 2.1.19 Let Z1, Z2 and V be independent nonnegative random variables such that Z1, Z2 ∈

RV∞(α), Z1
d
= Z2, V ∈ RV∞(β) with β < α. This means that V has a heavier tail than Z1 and Z2,

that is
P(V > x)

P(Z1 > x)
→∞

and E(V α+ε) =∞, for all ε > 0. We also note that E(Zβ+ε1 ) <∞ for some ε > 0. Define

X = V Z1 and Y = V Z2.

Then the tail dependence coefficient λTDC 6= 0. By Breiman’s Lemma

P(X > x) ∼ E(Zβ1 )P(V > x), P(Y > x) ∼ E(Zβ2 )P(V > x).
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Thus, we have

λTDC = lim
x→∞

P(X > x, Y > x)

P(X > x)
= lim

x→∞

P(V Z1 > x, V Z2 > x)

P(X > x)

= lim
x→∞

E (P(V Z1 > x, V Z2 > x)|(Z1, Z2))

E(Zα)P(V > x)
= lim

x→∞

E
(
P(V > x

Z1
, V > x

Z2
)|(Z1, Z2)

)
E(Zα)P(V > x)

= lim
x→∞

E
(
P
(
V > x( 1

Z1
∨ 1
Z2

)
)
|(Z1, Z2)

)
E(Zα)P(V > x)

= lim
x→∞

1

E(Zα)
E

(
F V (x

(
1
Z1
∨ 1
Z2

)
)

F V (x)

)
=

1

E(Zα)
E

(
lim
x→∞

F V (x
(

1
Z1
∨ 1
Z2

)
)

F V (x)

)
(C1)

=
1

E(Zα)
E

(( 1

Z1
∨ 1

Z2

)−β)
=

1

E(Zα)
E
((
Z1 ∧ Z2

)β) 6= 0.

Hence λTDC 6= 0, which implies asymptotic dependence between X and Y . Note that (C1) comes from the

fact that
F V (x

(
1
Z1
∨ 1
Z2

)
)

F V (x)
→
( 1

Z1
∨ 1

Z2

)−β
, x→∞,

and by application of Potter’s bound and the dominated convergence theorem we can exchange the expec-

tation with the limit, on account of E(Zβ+ε1 ) <∞.

Remark 2.1.20 From these couple of examples, we have learned that independence or dependence does

not always imply extremal independence or dependence.

2.2 Weak convergence in metric spaces

In this section we discuss weak convergence in a metric space. Some important results like Lindeberg

condition are presented. We also introduce the notion of tightness and uniform equicontinuity using a so-

phisticated entropy method. These results are known from the literature and can be found for example in

[2], [12] and [9, p.57-100].

Let (S, d) be a complete, separable metric space, equipped with the Borel σ-field F, generated by open

sets.

Definition 2.2.1 (Weak convergence) Let Pn, n ≥ 0, be a sequence of probability measures on S. We

17



say that Pn converges weakly to P, written Pn ⇒ P, if Pn(f)→ P(f), for every f ∈ C(S), the set of bounded,

continuous function f mapping from S to R.

ξ is called a random element of S if it is a measurable function from a probability space (Ω,B,P) into a

metric space (S,F, d). Furthermore, if S equals R, C, Rn, n > 0, then ξ is called a random variable, a

random function and a random vector respectively.

Definition 2.2.2 (Convergence in distribution) Let ξn be a sequence of random elements with values in

a metric space (S,F), defined on possibly different probability spaces (Ωn,Bn,Pn). We say that ξn converges

in distribution to ξ on (Ω,B,P), if

E(f(ξn))→ E(f(ξ)),

for every f ∈ C(S). We write ξn
d→ ξ.

We note that the definitions above are virtually the same. The second one describes weak convergence of

random elements ξn with laws Pn.

The following theorem gives a characterization of weak convergence.

Theorem 2.2.3 (Skorokhod representation theorem) Let ζ1, ζ2, ... be a random elements in (S, d) such

that ζn
d−→ ζ. Then there exists a random elements ξ

d
= ζ, ξn

d
= ζn, n ∈ N such that ξn

a.s−−→ ξ, on a suitable

probability space.

Note that this theorem is interesting since it allows one to replace the convergence in distribution with the

convergence almost surely.

2.2.1 Lindeberg’s condition

Assume that for each n, the random elements ξn,1, . . . , ξn,mn , is independent. Suppose that

E(ξn,j) = 0, E(ξ2n,j) = σ2n,j < +∞, and s2n =

mn∑
j=1

σ2n,j .

If for any ε > 0

lim
n→+∞

mn∑
j=1

1

s2n
E(|ξn,j |2I{|ξn,j |>εsn}) = 0, (2.8)

then

Sn/sn =

mn∑
j=1

ξn,j/sn ⇒ N(0, 1).
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There is a stronger condition than Lindeberg’s, called the Lyapunov condition, which says that if the

moments of order 2 + δ, for some δ > 0 exists, then

lim
n→+∞

mn∑
j=1

E(|ξn,j |2+δ) = 0.

Remark 2.2.4 If Lyapunov’s condition is true, then so is Lindeberg’s condition.

In fact for any ε, δ > 0 such that |Y | > ε, we have

Y 2I{|Y |>ε} ≤
|Y |2+δ

εδ
=⇒ E(Y 2I{|Y |>ε}) < ε−δE(|Y |2+δ).

If E(|ξn,j |2+δ) < +∞, then the sum in (2.8) is at most

1

εδs2+δn

mn∑
j=1

E(|ξn,j |2+δ).

2.2.2 Tightness via entropy

Entropy is a useful tool to prove tightness of a sequence of independent random processes. The method is

”dimension free”.

Let G be a class of functions. Let ξn, n ≥ 1 be a sequence of random elements mapping from (Ω,F ,P) to

`∞(G), the set of bounded functions indexed by G, endowed with the norm ||F ||G = supg∈G |F (g)|, where F

is a map defined in `∞(G).

Example 2.2.5 Let Xj, j ≥ 1 be a standard uniform i.i.d. random variables. Define

ξn(t) =
√
n

 1

n

n∑
j=1

I{Xj≤t} − t

 .

Then ξn are random elements in `∞(G), where G is the class of indicators of [0, t], t ∈ [0, 1].

Definition 2.2.6 Let ξn be a sequence of random maps indexed by a class of function G, with values in

`∞(G) endowed with a semi-metric ρ induced with a supremum norm:

• The sequence is asymptotically tight if for each ε > 0, there exists a compact set K ⊂ `∞(G) such that

lim sup
n→∞

P(ξn /∈ Kδ) < ε, for every δ > 0
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where Kδ = {g ∈ `∞(G) : ρ(g,K) < δ} .

• The sequence is asymptotically uniformly ρ-equicontinuous (in probability) if for every ε, η > 0, there

exists δ > 0, such that

lim sup
n→∞

P

(
sup

g,f∈G: ρ(g,f)<δ

∣∣∣ξn(f)− ξn(g)
∣∣∣ > ε

)
< η.

For the purpose of this thesis, these two concepts are in fact equivalent.

Proposition 2.2.7 A sequence ξn is asymptotically tight if and only if ξn(g) is tight in R for every g ∈ G

and there exists a semi-metric ρ on G such that (G, ρ) is totally bounded and ξn is asymptotically uniformly

ρ-equicontinuous (in probability).

Let (ξn,j(f), f ∈ G) be independent stochastic processes indexed by a common semi-metric space (G, ρ)

Define the random semi-metric by

dn(f, g) =
n∑
j=1

(
ξn,j(f)− ξn,j(g)

)2
.

The following theorem is a simplified version of Theorem 2.11.1 in [12].

Theorem 2.2.8 For each n, let ξn,1, . . . , ξn,mn be independent stochastic processes with finite second mo-

ments indexed by a totally bounded semi-metric space (G, ρ). Assume that

(i) The maps

(x1, . . . , xmn)→ sup
ρ(f,g)<δ

∣∣∣ mn∑
j=1

ej
(
ξn,j(f)− ξn,j(g)

)r∣∣∣, r = 1, 2,

are measurable for every δ > 0, every vector (e1, . . . , emn) ∈ {−1, 0, 1}mn and every n ∈ N.

(ii) For every ε > 0,

lim
n→+∞

mn∑
j=1

E
(
‖ξn,j‖2GI{‖ξn,j‖G>ε}

)
= 0. (2.9)

(iii) It holds

lim
ε→0

lim sup
n→+∞

sup
f,g:ρ(f,g)<ε

mn∑
j=1

E
(
ξn,j(f)− ξn,j(g)

)2
= 0. (2.10)

(iv) For every ε > 0,
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lim
δ→0

lim
n→+∞

P
(∫ δ

0

√
logN(ε′,G, dn) dε′ > ε

)
= 0, (2.11)

where N(ε′,G, dn) is the minimal number of balls {g : dn(g, f) < ε′} of radius ε′ needed to cover the

set G.

Then the sequence
mn∑
j=1

(
ξn,j − E(ξn,j)

)
is asymptotically ρ-equicontinuous and hence tight.

The latter condition (condition (iv)) is not easy to check due to the random metric dn. However, the spaces

G we are going to consider are linearly ordered and then this condition is satisfied for free.

2.2.3 Auxiliary results

The following result describes convergence of inverses.

Lemma 2.2.9 (Vervaat lemma - convergence of inverses) (i) Suppose that ξ0(·) is a continuous

function and ξj(·), j ≥ 1 are a decreasing functions on [a, b]. Moreover, let g be defined on [a, b]

with a positive derivative g′. Let γn be a sequence of positive values such that γn → 0 as n goes to

infinity and
ξn(s)− g(s)

γn
→ ξ0(s), n→ +∞,

uniformly on [a, b]. Then

ξ←n (s)− g←(s)

γn
→ −(g←)′(s)ξ0(g

←(s)), n→ +∞,

uniformly on [g(a), g(b)], where g←, ξ←n are inverse functions (right- or left-continuous or defined in

any way consistent with the monotonicity).

(ii) If Hn, n ≥ 0, are nondecreasing functions on R with range on [a, d] such that Hn → H, then H←n →

H←.
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Chapter 3

Weak convergence of the tail empirical

process

In this section we discuss weak convergence of tail empirical processes of an i.i.d. regularly random vectors.

The main result is Theorem 3.1.3. Although the result has not been stated in the literature in its form, we do

not claim any originality, since it deals with i.i.d. random vectors. The proof is provided for completeness.

3.1 Tail empirical process

Let (Xj , Yj), j = 1 . . . , n, be an i.i.d. sequence of random vectors sampled from (X,Y ). We assume for

simplicity that X
d
≈ Y . Let F be the marginal distribution of X. Let un be a non decreasing sequence such

that un → +∞ and nF (un)→ +∞. For s0 ∈ (0, 1), define

˜̃
β
(X,Y )

n (s) =
1

nF (un)

n∑
j=1

I{Xj>sun,Yj>sun}, s ≥ s0,

which will be called the tail empirical function. Furthermore, define

β(X,Y )
n (s) = E

(˜̃
β
(X,Y )

n (s)
)

=
P(X > sun, Y > sun)

P(X > un)
(3.1)

and

β(X,Y )(s) = lim
n→+∞

β(X,Y )
n (s). (3.2)

We assume that the limit in (3.2) exists which is certainly true under bivariate regular variation.
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Remark 3.1.1 Note that if we let s = 1 in (3.2), then β(X,Y )(1) = λTDC, is the tail dependence coefficient

between X and Y , defined in Section 2.1.6; cf. (2.4).

Definition 3.1.2 We define the tail empirical processes

G(X,Y )
n (s) =

√
nF (un)

{˜̃
β
(X,Y )

n (s)− β(X,Y )
n (s)

}
(3.3)

HX
n (s) = G(X,X)

n (s) =

√
nF (un)(δ̃Xn (s)− δXn (s)), s ≥ s0, (3.4)

HY
n (s) = G(Y,Y )

n (s) =

√
nF (un)(δ̃Yn (s)− δYn (s)), s ≥ s0,

where

δ̃Xn (s) =
1

nF (un)

n∑
j=1

I{Xj>sun} , δ̃Yn (s) =
1

nF (un)

n∑
j=1

I{Yj>sun}, (3.5)

and

δY (s) = δX(s) = lim
n→+∞

δXn (s) = lim
n→+∞

E[δ̃Xn (s)] = s−α . (3.6)

The main result of this section is the following weak convergence result. The result is not new, but we

provide a proof for completeness.

Theorem 3.1.3 Let (Xj , Yj), j = 1, ..., n be i.i.d. regularly varying random vectors such that Xj
d
≈ Yj.

Let F be a distribution function of X1. Let un be a non decreasing sequence such that un → +∞ and

nF (un)→ +∞. Then

G(X,Y )
n (s)⇒ G(X,Y )(s), n→ +∞, (3.7)

HX
n (s)⇒ HX(s), HY

n (s)⇒ HY (s), n→ +∞, (3.8)

in `∞[s0,+∞) endowed with the sup-norm. The convergences hold jointly and G(X,Y )(·), HY (·) and HX(·)

are Gaussian processes with covariance functions given respectively by

Cov(G(X,Y )(s1), G
(X,Y )(s2)) = β(X,Y )(s1 ∨ s2) (3.9)

And

Cov(HY (s), HY (t)) = Cov(HX(s), HX(t)) = (s ∨ t)−α. (3.10)
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3.1.1 Proof of Theorem 3.1.3

Fix s0 ∈ (0, 1). Let s ∈ [s0,+∞), define

Kn,j(s) =

√
nF (un)

nF (un)

(
I{Xj>sun,Yj>sun} − P(Xj > sun, Yj > sun)

)
, j = 1, . . . , n.

Then we have

G(X,Y )
n (s) =

n∑
j=1

Kn,j(s) =

√
nF (un)

(˜̃
β
(X,Y )

n (s)− β(X,Y )
n (s)

)
.

The proof requires establishing the finite dimensional convergence and the tightness. For the former, we

use the Lindeberg conditions. We first calculate the limiting covariance.

Lemma 3.1.4 Under the conditions of Theorem 3.1.3,

lim
n→+∞

Cov(G(X,Y )
n (s1), G

(X,Y )
n (s2)) = β(X,Y )(s1 ∨ s2), (3.11)

lim
n→+∞

Var(G(X,Y )
n (s)) = β(X,Y )(s). (3.12)

Proof: We have

Cov(G(X,Y )
n (s1), G

(X,Y )
n (s2)) = Cov

 n∑
j=1

Kn,j(s1),
n∑
j=1

Kn,j(s2)


= Cov

 1√
nF (un)

n∑
j=1

(
I{Xj>s1un,Yj>s1un} − P(Xj > s1un, Yj > s1un)

)
,

1√
nF (un)

n∑
j=1

(
I{Xj>s2un,Yj>s2un} − P(Xj > s2un, Yj > s2un)

)
=

1

F (un)
E
(
I{X1>s1un,Y1>s1un}I{Xj>s2un,Yj>s2un}

)
− o(1)

∼ β(X,Y )(s1 ∨ s2), as n→∞,

where o(1) stands for
P(X1 > s1un, Y1 > s1un)

F (un)
P(X1 > s2un, Y1 > s2un).

Hence (3.11) and (3.12) hold for all s, s1, s2 ∈ [s0,+∞). �

The finite dimensional convergence is stated in Proposition 3.1.5.
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Proposition 3.1.5 Under the conditions of Theorem 3.1.3 we have for any finite set {s1, · · · , sk} ∈ R,

(
G(X,Y )
n (s1), . . . , G

(X,Y )
n (sk)

)
d−→ N (0,Σ),

where the limiting covariance matrix is given by Σ(k×k) =
[
β(X,Y )(si ∨ sj)

]k
i,j=1

.

This result also implies the convergence of the margins, in distribution, to a centered normal random variable

with limiting cavariances defined in Lemma 3.1.4.

Proof: Note first that E(Kn,j(s)) = 0. Next, we show that, as n→ +∞,

n∑
j=1

E
(
K2
n,j(s)I{|Kn,j(s)|>ε}

)
→ 0, ∀ε > 0.

By Hölder’s inequality for each j ≥ 1,

E
(
K2
n,j(s)I{|Kn,j(s)|>ε}

)
≤ E1/2(K4

n,j(s))E1/2
(
I{|Kn,j(s)|>ε}

)
≤ E1/2(K4

n,j(s))P1/2(|Kn,j(s)| > ε).

Since

E(K4
n,j(s)) =

1

n2F
2
(un)

E
(
I{Xj>sun,Yj>sun} − P(Xj > sun, Yj > sun)

)4
≤ C

P(Xj > sun, Yj > sun)

n2F
2
(un)

, for some C > 0.

We have

E1/2(K4
n,j(s)) ≤ C1/2P1/2(Xj > sun, Yj > sun)

nF (un)
.

Also, by Markov inequality, we have,

P1/2(|Kn,j(s)| > ε) ≤
E1/2(K4

n,j(s))

ε2
≤ 1

ε2
C1/2P1/2(Xj > sun, Yj > sun)

nF (un)
.

This implies that

n∑
j=1

E
(
K2
n,j(s)I{Xj>sun,Yj>sun}

)
≤ C

ε2nF (un)

P(X1 > sun, Y1 > sun)

F (un)
.
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Therefore,
n∑
j=1

E
(
K2
n,j(s)I{Xj>sun,Yj>sun}

)
→ 0, as n→ +∞.

Consequently, the Lindeberg condition holds. This, together with the Cramer-Wold device, finishes the

proof.

�

Next, we prove tightness.

Proposition 3.1.6 Under the conditions of Theorem 3.1.3, the sequence {G(X,Y )
n (·), n ≥ 1} is tight.

Proof: By Theorem 2.2.8, it is enough to check (2.9) and (2.10). Consider the case of the class of the

indicator functions

G = {fs = I{(s,+∞)}, s ≥ s0}.

Define for every fs ∈ G,

Zn,j(fs) = Zn,j(s) =
1√

nF (un)
I{Xj>sun,Yj>sun}, Kn,j(s) = Zn,j(s)− E(Zn,j(s))

and the semi-metric ρ by

ρ(fs, ft) = ρ(s, t) = 3
∣∣∣β(X,X)(s)− β(X,X)(t)

∣∣∣+ 3
∣∣∣β(Y,Y )(s)− β(Y,Y )(t)

∣∣∣ = 6
∣∣∣β(X,X)(s)− β(X,X)(t)

∣∣∣ ,
where β(X,X)(s) and β(Y,Y )(s) are defined in (3.2). The convergence in (2.9) follows straightforwardly from

the application of Lindeberg’s condition as in the proof of Proposition 3.1.5, since ‖Zn,j‖2G =
I{Xj>s0un,Yj>s0un}

nF (un)
.

For (2.10), note first that for t > s ≥ s0 we have

∣∣∣I{Xj>sun,Yj>sun} − I{Xj>tun,Yj>tun}
∣∣∣ ≤ I{sun<Xj<tun} + I{sun<Yj<tun}.

By the above inequality,

n∑
j=1

E
(

[Zn,j(s)− Zn,j(t)]2
)
≤ 1

F (un)
E
(

[I{sun<Xj<tun} + I{sun<Yj<tun}]
2
)

≤ 3
{
β(X,X)
n (s)− β(X,X)

n (t) + β(Y,Y )
n (s)− β(Y,Y )

n (t)
}
.
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Fix ε > 0, then since as n goes infinity, β
(X,Y )
n (s)→ β(X,Y )(s),

lim
δ→0

lim sup
n→+∞

sup
ρ(s,t)<δ

n∑
j=1

E[Zn,j(s)− Zn,j(t)]2) ≤ ε+ lim
δ→0

sup
ρ(s,t)<δ

ρ(s, t) < ε

which leads to the desired result since ε is arbitrary. �
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Chapter 4

Estimation and testing for extremal

(In)dependence

This chapter deals with the nonparametric estimation of the tail dependence coefficient (TDC) and an

hypothesis testing for extremal independence. The advantage of the nonparametric approach is that it avoids

any misidentification about the underlying distribution in contrast to the semiparametric or parametric

approach.

In Section 4.1, we discuss the estimation of the TDC by the standard approach, i.e. the estimator

is obtained from the definition of the TDC where the cdfs are replaced with their empirical versions; see

(4.1). We prove limit theorems for the estimator with deterministic levels. The limiting result can be used

to construct confidence intervals for the tail dependence coefficient. However, under the null hypothesis

of extremal independence, the limit is degenerated (see Corollary 4.1.2 and Section 4.2) and as such the

estimator cannot be used to construct a test for extremal independence. This is the problem shared with

virtually all estimators of the extremal (in)dependence - they degenerate under extremal independence. See

[10], Theorems 5 and 6.

To avoid this drawback, we consider an analog of the covariance matrix, namely the extremogram matrix,

whose entries depend only on the extremes, i.e. the tail dependence coefficient. Random matrices, especially

for high dimensional problems, became very popular in the last several years; see [1]. We use them, for the

first time, in a novel context of extremal independence.

We work under the finite dimensional case, say d = 2 in Section 4.3, and an extension to arbitrary but

finite dimension d ≥ 2 in Section 4.4. In both cases, we prove that the largest eigenvalue of its sample

counterpart converges in distribution to the maximum of two independent Gaussian random variables with
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explicit mean and variance. Having that in hand, we are now ready to conduct an hypothesis testing by

means of the distribution of the largest eigenvalue of the sample extremogram matrix.

Estimators of the tail dependence coefficient with data based, random levels, are presented in Section

4.5. We obtain the same limit theorems as in the deterministic levels case. Simulation studies are conducted

in Section 4.6. Note that the transition from deterministic levels to random levels follows the path as in [7].

However the extension to random matrices is a new idea and is the original author’s contribution.

4.1 Estimation of Tail Dependence Coefficient (TDC)

Let (Xj , Yj), j = 1 . . . , n, be an i.i.d. sequence of regularly varying nonnegative random vectors sampled

from (X,Y ). Assume that X
d
≈ Y . Recall that (cf. (3.1))

β(X,Y )
n (s) =

P(X > sun, Y > sun)

P(X > un)
and β(X,Y )(s) = lim

n→+∞
β(X,Y )
n (s),

where un →∞ as n→∞. Our goal is to estimate β(X,Y )(s), using the empirical estimate defined as:

β̃(X,Y )
n (s) =

∑n
j=1 I{Xj>sun,Yj>sun}∑n

j=1 I{Xj>un}
. (4.1)

From the theoretical point of view, the estimation result will be stated for s ∈ [s0,+∞), s0 ∈ (0, 1) however,

the main interest is the estimation when s is in the neighbourhood of 1. We first need to find the asymptotic

behavior of √
nF (un)

(
β̃(X,Y )
n (s)− β(X,Y )(s)

)
. (4.2)

To do so, the approach is to use the tail empirical process G
(X,Y )
n (·) defined in (3.3) and express the process

in (4.2) as a function of G
(X,Y )
n . The following theorem is an immediate consequence of Theorem 3.1.3.

Theorem 4.1.1 Assume that (Xj , Yj), j = 1, . . . , n are i.i.d. regularly varying vectors of nonnegative

random variables such that Xj
d
≈ Yj. Assume moreover that

lim
n→+∞

√
nF (un) sup

s≥s0

∣∣∣β(X,Y )
n (s)− β(X,Y )(s)

∣∣∣ = 0. (4.3)

Then √
nF (un)

(
β̃(X,Y )
n (s)− β(X,Y )(s)

)
⇒ G

(X,Y )
∗ (s) := G(X,Y )(s)− β(X,Y )(s)HX(1) (4.4)

in `∞[s0,∞).
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Note that by Proposition 3.1.5, we have for any fixed s ≥ s0, s0 ∈ (0, 1), the convergence in (4.4) holds in

distribution and the limiting distribution is a centrered normal with variance defined in (4.13). This can be

used to construct asymptotic confidence interval for the corresponding estimator.

Proof: We have,

√
nF (un)(β̃(X,Y )

n (s)− β(X,Y )(s)) =

√
nF (un)

(∑n
j=1 I{Xj>sun,Yj>sun}∑n

j=1 I{Xj>un}
− β(X,Y )(s)

)

=

√
nF (un)

(∑n
j=1

(
I{Xj>sun,Yj>sun} − P(X1 > sun, Y1 > sun)

)∑n
j=1 I{Xj>un}

+
nP(X1 > sun, Y1 > sun)∑n

j=1 I{Xj>un}
− β(X,Y )(s)

)

=
nF (un)∑n
j=1 I{Xj>un}

 1√
nF (un)

n∑
j=1

(
I{Xj>sun,Yj>sun} − P(X1 > sun, Y1 > sun)

)
+

√
nF (un)

(
nP(X1 > sun, Y1 > sun)∑n

j=1 I{Xj>un}
− β(X,Y )(s)

)

=
nF (un)∑n
j=1 I{Xj>un}

G(X,Y )
n (s) +

√
nF (un)

(
nP(X1 > sun, Y1 > sun)∑n

j=1 I{Xj>un}
− β(X,Y )(s)

)
= AnG

(X,Y )
n (s) +Bn,

where

An =
nF (un)∑n
j=1 I{Xj>un}

and Bn =

√
nF (un)

(
nP(X1 > sun, Y1 > sun)∑n

j=1 I{Xj>un}
− β(X,Y )(s)

)
.

Since G
(X,Y )
n (s)⇒ G(X,Y )(s), we have

1

nF (un)

( n∑
j=1

(
I{Xj>sun,Yj>sun} − P(X1 > sun, Y1 > sun)

)) P−→ 0,

uniformly on compact subsets of [s0,+∞), s0 ∈ (0, 1) where
P−→ means convergence in probability. This also

implies ∑n
j=1 I{Xj>sun,Yj>sun}

nF (un)
→ β(X,Y )(s), (4.5)

in probability for each s. If we let s = 1 and replace Y by X, then (4.5) gives∑n
j=1 I{Xj>un}
nF (un)

P−→ 1.
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By the continuous mapping theorem, the reciprocal

An =
nF (un)∑n
j=1 I{Xj>un}

P−→ 1. (4.6)

Also by Slutsky’s theorem, convergence of G
(X,Y )
n and (4.6) give

AnG
(X,Y )
n (s)⇒ G(X,Y )(s). (4.7)

Now let us have a look at Bn. We have

Bn =

√
nF (un)

(
nP(X1 > sun, Y1 > sun)∑n

j=1 I{Xj>un}
− β(X,Y )(s)

)

=

√
nF (un)

(
nF (un)∑n
j=1 I{Xj>un}

− 1

)
P(X1 > sun, Y1 > sun)

F (un)

+

√
nF (un)

(
P(X1 > sun, Y1 > sun)

F (un)
− β(X,Y )(s)

)
.

Since G
(X,Y )
n (s)⇒ G(X,Y )(s), for all s ≥ s0, then in particular, for s = 1,

HX
n (1) := G(X,X)

n (1) =

√
nF (un)

(∑n
j=1 I{Xj>un}
nF (un)

− 1

)
d−→ G(X,X)(1) =: HX(1),

HY
n (1) := G(Y,Y )

n (1) =

√
nF (un)

(∑n
j=1 I{Yj>un}
nF (un)

− 1

)
d−→ G(Y,Y )(1) =: HY (1),

jointly with the convergence of G
(X,Y )
n to G(X,Y ). Application of the delta method gives

√
nF (un)

(
nF (un)∑n
j=1 I{Xj>un}

− 1

)
d−→ −HX(1).

Therefore,

Bn ⇒ −β(X,Y )(s)HX(1). (4.8)

Hence, combining (4.8) and (4.7), bearing in mind the joint convergence, we have

√
nF (un)

(
β̃(X,Y )
n (s)− β(X,Y )(s)

)
⇒ G(X,Y )(s)− β(X,Y )(s)HX(1). (4.9)

�

31



Properties of the limiting process G
(X,Y )
∗ (s)

First, we recall from Lemma 3.1.4 that

Cov
(
G(X,Y )(s1), G

(X,Y )(s2)
)

= β(X,Y )(s1 ∨ s2).

Using the same method as in the proof of Lemma 3.1.4 and letting Θn(x, y) = P(X>xun,Y >yun)
F (un)

and Θ(x, y) =

limn→∞Θn(x, y), then we can further conclude that

Cov
(
G(X,Y )(s1), G

(X,X)(s2)
)

= Cov
(
G(X,Y )(s1), H

X(s2)
)

= Θ(s1 ∨ s2, s1), (4.10)

Cov
(
G(X,Y )(s1), G

(Y,Y )(s2)
)

= Cov
(
G(X,Y )(s1), H

Y (s2)
)

= Θ(s1, s1 ∨ s2). (4.11)

This together with the fact that X
d
≈ Y , implies that for s ∈ [s0,+∞),

Cov
(
G

(X,Y )
∗ (s), G

(X,Y )
∗ (s)

)
= β(X,Y )(s)

(
1− 2Θ(s ∨ 1, s) + β(X,Y )(s)

)
. (4.12)

Cov
(
G

(X,Y )
∗ (1), G

(X,Y )
∗ (1)

)
= β(X,Y )(1)

(
1− β(X,Y )(1)

)
. (4.13)

Thus, we have a very important corollary which shows that we cannot construct a test for extremal inde-

pendence using the proposed estimator of the tail dependence coefficient (see also Section 4.2).

Corollary 4.1.2 Under the extremal independence, G
(X,Y )
∗ (s) is degenerated, that is

Var(G
(X,Y )
∗ (s)) = 0. (4.14)

Moreover,

Cov
(
G

(X,Y )
∗ (s), G

(X,X)
∗ (s)

)
= β(X,Y )(s)

(
1− (s ∨ 1)−α

)
+ s−α

(
β(X,Y )(s)−Θ(s ∨ 1, s)

)
. (4.15)

Cov
(
G

(X,Y )
∗ (s), G

(Y,Y )
∗ (s)

)
= β(X,Y )(s)

(
1−Θ(1, s)

)
+ s−α

(
β(X,Y )(s)β(X,Y )(1)−Θ(s, 1)

)
. (4.16)

Cov
(
G

(Y,Y )
∗ (s), G

(Y,Y )
∗ (s)

)
= Cov

(
G

(X,X)
∗ (s), G

(X,X)
∗ (s)

)
= s−α

(
1− 2(s ∨ 1)−α + s−α

)
. (4.17)

Cov
(
G

(X,X)
∗ (s), G

(Y,Y )
∗ (s)

)
= β(X,Y )(s)

(
1−Θ(1, s)

)
+ s−α

(
β(X,Y )(s)−Θ(s ∨ 1, s)

)
. (4.18)

Therefore regardless whether we have the extremal dependence or independence,

Cov
(
G

(X,Y )
∗ (1), G

(X,X)
∗ (1)

)
= Cov

(
G

(X,Y )
∗ (1), G

(Y,Y )
∗ (1)

)
= 0.
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Confidence intervals

From Theorem 4.1.1, we know that
√
nF (un)

(
β̃
(X,Y )
n (1)−β(X,Y )(1)

)
converges in distribution toG

(X,Y )
∗ (1) ∼

N
{

0, β(X,Y )(1)
(

1− β(X,Y )(1)
)}

, on account of Proposition 3.1.5. Hence, we can construct the 100(1− θ)%

an asymptotic confidence interval for β(X,Y )(1) as

β̃(X,Y )
n (1)− Zθ/2

1√
nF (un)

; β̃(X,Y )
n (1) + Zθ/2

1√
nF (un)

 ,
where Zθ/2 is the quantile of

G
(X,Y )
∗ (1) = G(X,Y )(1)− β(X,Y )(1)HX(1) ,

i.e. P(G
(X,Y )
∗ (1) > Zθ/2) = θ/2. Recalling that G

(X,Y )
∗ (1) is a centered normal random variable with

the variance given in (4.13) and replacing therein β(X,Y )(s) with β̃
(X,Y )
n (s), the confidence interval can be

constructed asβ̃(X,Y )
n (1)− zθ/2

√
β̃
(X,Y )
n (1)(1− β̃(X,Y )

n (1))

nF (un)
; β̃(X,Y )

n (1) + zθ/2

√
β̃
(X,Y )
n (1)(1− β̃(X,Y )

n (1))

nF (un)

 , (4.19)

where zθ/2 is the standard normal percentile.

Example 4.1.3 [Example 2.1.17 continued] We simulate 1000 observations from the model given in Ex-

ample 2.1.17 where Z ′js are independent Pareto with α = 4 and X = Z1 +Z2, Y = Z2 +Z3. In this case, the

tail dependent coefficient is β(X,Y )(1) = 0.5. Figure 4.1 shows the plot of the confidence intervals against

the threshold un = nδ which is such that nF̄ (un) = n1−αδ → +∞, that is δ ∈ (0, 1/α).

Note that the true confidence interval (with β(X,Y )(1) = 0.5) and the estimated confidence interval are

almost not distinguishable.

4.2 Testing for Extremal (In)dependence using TDC

In this section we indicate problems related to testing for extremal (in)dependence between two random

variables using their tail dependence coefficient.
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Figure 4.1: Asymtotic confidence intervals for the tail dependence coefficient for Example 4.1.3. Blue line:

the estimator β̃
(X,Y )
n (1) plotted against different choices of the threshold un; red dashed lines - confidence

interval using (4.19); yellow line - confidence interval using the true value of β(X,Y )(1).

The test for independence would have the form:

H0 : β(X,Y )(·) = 0 vs H1 : β(X,Y )(·) 6= 0,

where

β(X,Y )(s) = lim
n→+∞

P(X > sun, Y > sun)

P(X > un)
.

To conduct the test, we could use β̃
(X,Y )
n (1) defined in (4.1). However, under H0 the limit of the

estimator β̃
(X,Y )
n (1) of β(X,Y )(1) is degenerated, hence we cannot construct a formal test; see

Corollary 4.1.2. On the other hand, we can test for specific values of the tail dependence coefficient:

H0 : β(X,Y )(·) = β0 vs H1 : β(X,Y )(·) 6= β0.

If β0 6= 0, then to conduct the test we can use the confidence interval (4.19). But we have some issues with

this approach since:

• the distribution F is unknown and un is arbitrary;
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• we cannot extend this procedure to higher dimension, the problem we will encounter here is the

multiple testing which involves the ”Type I errors” or ”False positive” which is the probability of

rejecting H0 while it is true. For example, assume that we want to perform 50 tests at the level of

significance θ = 5% that is for each test we have 5% chance of making a ”Type I errors”. If all the

null hypothesis are true, then the expected number of ”Type I error” is 2.5. Moreover, if all tests are

assumed to be independent, then we have a binomial distribution with n = 50 and p = 5%, therefore

P(at least one ”Type I error”) = 1− P( no ”Type I error”) = 1− (1− 0.05)50 = 92.3%.

So, as we can see, with 50 tests, we have 92.3% chance of having at least one ”Type I error.”

The first issue is addressed using radom levels, while the second issue is tackled using random matrices

approach. As we will see, the latter approach will allow us to construct a formal test for extremal indepen-

dence.

4.3 Extremogram matrix: bivariate case

The covariance matrix of a random vector is a standard object summarizing all the dependence between

several its components. Since the tail dependence coefficient describes extremal dependence, we can think of

introducing an extremal counterpart to the covariance matrix, namely the extremogram matrix (we borrow

the extremogram terminology from [3]).

The section is organized as follows. We first define the extremogram matrix and its sample counterpart.

Then we prove, under the null hypothesis of the extremal independence, that the distribution of the largest

eigenvalue of the sample extremogram matrix converges to the maximum of two independent Gaussian

random variables; see Theorem 4.3.4. Then, we apply the limiting result to construct a test for independence.

Theory is illustrated by simulated data.

The material presented in this section is the author original contribution.

Let (X,Y ) be a random vector.

Definition 4.3.1 (Extremogram matrix) We define the extremogram matrix by

∆(s) =

 β(X,X)(s) β(X,Y )(s)

β(Y,X)(s) β(Y,Y )(s)

 . (4.20)
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It is an analog of the covariance matrix but it depends only on extreme values. If s = 1, then we have

∆(1) :=

 1 β(X,Y )(1)

β(Y,X)(1) 1

 .

A sample counterpart to the covariance matrix is the sample covariance matrix. We extend this idea to the

extremal dependence.

Definition 4.3.2 (Sample extremogram matrix) We call the sample extremogram matrix, denoted by

∆̃n(s), the matrix whose entries are estimators of the tail dependence coefficients, i.e.

∆̃n(s) =

 β̃
(X,X)
n (s) β̃

(X,Y )
n (s)

β̃
(Y,X)
n (s) β̃

(Y,Y )
n (s)

 , (4.21)

where

β̃(U,V )
n (s) =

∑n
j=1 I{Uj>sun,Vj>sun}∑n

j=1 I{Uj>un}

with U, V equal X or Y .

We note that the extremogram matrix and the sample extremogram matrix are symmetric.

The next goal is to establish the asymptotic distribution of the eigenvalues of the sample extremogram

matrix.

Why random matrices are important?

Before we continue, let us give a brief motivation. Attention are given to spectral properties of large dimen-

sional random matrices known as Random Matrix Theory (RMT) because of their interesting properties

and statistical applications. The use of the limiting properties of eigenvalues originates from quantum me-

chanics where they are utilized to describe energy levels of particles in a large system and also serve as finite

dimensional approximation of infinite dimensional operator. From statistical point of view, they may be

used to correct traditional tests or estimators which fail in large dimension. Furthermore, in the principal

component analysis (PCA), the first k principal components correspond to the k largest eigenvalues of the

sample covariance matrix (e.g. [6], [1], [4])

Asymptotics for sample extremogram matrices

By (4.4), we have √
nF (un)(vec(∆̃n(s))− vec(∆(s)))⇒ vec(H(s)). (4.22)
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where

H(s) =

 G
(X,X)
∗ (s) G

(X,Y )
∗ (s)

G
(Y,X)
∗ (s) G

(Y,Y )
∗ (s)

 , (4.23)

,

G
(U,V )
∗ (s) = G(U,V )(s)− β(U,V )(s)HU (1).

and vec(A) is a vector obtained by stacking the columns of the matrix A on top of one another. Before we

prove the result on limiting distribution for the sample eigenvalues, we briefly introduce the operator norm

of matrices.

Operator norms. Let Σ = [σij ]
d
i,j=1 ∈ Rd×d and | · | be a norm in Rd. Matrix norms are defined as follows:

‖ Σ ‖2= max{|Σx| : |x| = 1} and ‖ Σ ‖∞= max
1≤i≤d

d∑
j=1

|σij |. (4.24)

It holds that

‖ Σ ‖22= max
1≤i≤d

|δi| and ‖ Σ ‖2≤‖ Σ ‖∞, (4.25)

where δi are eigenvalues of Σ. Recall the Weyl inequality for two matrices Σ,Γ: if δi and γi, i = 1, · · · , d

are ordered eigenvalues of Σ and Λ, respectively. Then

max
1≤i≤d

|δi − γi| ≤‖ Σ− Γ ‖2 .

4.3.1 Asymptotics for eigenvalues under extremal independence

Again, the goal is to test for extremal independence between X and Y . Therefore, we test

H0 : β(X,Y )(·) = 0 vs H1 : β(X,Y )(·) 6= 0.

Limiting distribution of the sample eigenvalues under the null hypothesis. Under the null hy-

pothesis we have

∆̃n(s) =

 β̃
(X,X)
n (s) β̃

(X,Y )
n (s)

β̃
(Y,X)
n (s) β̃

(Y,Y )
n (s)

 , ∆̃n(1) =

 1 β̃
(X,Y )
n (1)

β̃
(Y,X)
n (1) 1

 ,

37



∆(s) =

 s−α 0

0 s−α

 , ∆(1) =

 1 0

0 1

 .

We recall that under H0 the process G
(X,Y )
∗ (·) is degenerated. Therefore under H0 the matrix H defined in

(4.23) becomes

H(s) =

 G
(X,X)
∗ (s) 0

0 G
(Y,Y )
∗ (s)

 .

We also recall that for s = 1 we have G
(X,X)
∗ (1) = G

(Y,Y )
∗ (1) = 0, hence it is important to keep s 6= 1 above.

In summary,

Corollary 4.3.3 Assume that the conditions of Theorem 4.1.1 are satisfied. Then, under H0

√
nF (un)


β̃
(X,X)
n (s)− s−α

β̃
(X,Y )
n (s)

β̃
(Y,X)
n (s)

β̃
(Y,Y )
n (s)− s−α

 =⇒


G

(X,X)
∗ (s)

0

0

G
(Y,Y )
∗ (s)

 .

We recall that s = 1 leads to the tail dependence coefficient. However, if s = 1 then

√
nF (un)


0

β̃
(X,Y )
n (1)

β̃
(Y,X)
n (1)

0

 =⇒


0

0

0

0

 .

Hence, under H0, the limiting distribution does not provide any valuable information for hypothesis testing.

To avoid this drawback, we have to consider s 6= 1 or the supremum over a given set. Let I be a compact

set, I ⊆ R+ such that 1 ∈ I. Then we have the following result.

Theorem 4.3.4 Assume that s 6= 1. Let λ̃n(1)(s) ≥ λ̃n(2)(s) be the ordered eigenvalues of ∆̃n(s) and

λ(1)(s) = λ(2)(s) = s−α be the eigenvalues of ∆(s). Then, under H0 and if the conditions of Theorem 4.1.1

hold, we have

√
nF (un)

(
λ̃n(1)(s)− λ(1)(s)

)
⇒ max

(
G

(X,X)
∗ (s), G

(Y,Y )
∗ (s)

)
.

Proof:

38



Define a diagonal matrix ∆̃∗n(s) whose diagonal elements are those of ∆̃n(s), that is

∆̃∗n(s) =

 β̃
(X,X)
n (s) 0

0 β̃
(Y,Y )
n (s)

 .

Then, it holds by Corollary 4.3.3 that

√
nF (un)vec

(
∆̃n(s)− ∆̃∗n(s)

)
=

√
nF (un)


0

β̃
(X,Y )
n (s)

β̃
(Y,X)
n (s)

0

 =⇒


0

0

0

0

 .

Therefore, we should expect that the ‖ · ‖∞ norm for ∆̃n(s)− ∆̃∗n(s) goes to zero. In fact,

Lemma 4.3.5 Under the conditions of Theorem 4.3.4:

sup
s∈I

√
nF (un) ‖ ∆̃n(s)− ∆̃∗n(s) ‖∞= op(1).

Proof: We have by (4.24) that

sup
s∈I

√
nF (un) ‖ ∆̃n(s)− ∆̃∗n(s) ‖∞= sup

s∈I

√
nF (un) max

(
β̃(X,Y )
n (s), β̃(Y,X)

n (s)

)
≤ sup

s∈I

√
nF (un)β̃(X,Y )

n (s) + sup
s∈I

√
nF (un)β̃(Y,X)

n (s) = op(1),

on account of Corollary 4.3.3. �

By (4.25) and Lemma 4.3.5 we have

√
nF (un) ‖ ∆̃n(s)− ∆̃∗n(s) ‖2= op(1), (4.26)

that is √
nF (un)

(
λ̃n(i)(s)− λ̃∗n(i)(s)

)
= op(1) ,

where λ̃∗n(1)(s) ≥ λ̃
∗
n(2)(s) are the ordered eigenvalues of ∆̃∗n(s). That is

λ̃∗n(1)(s) = max(β̃(X,X)
n (s), β̃(Y,Y )

n (s)) and λ(1)(s) = max(s−α, s−α) = s−α.

λ̃∗n(2)(s) = min(β̃(X,X)
n (s), β̃(Y,Y )

n (s)) and λ(2)(s) = s−α.
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We continue with the proof of Theorem 4.3.4. By application of Corollary 4.3.3 to ∆̃∗n(s) and ∆0(s), we get

√
nF (un)

(
β̃(X,X)
n (s)− s−α

)
⇒ G

(X,X)
∗ (s) (4.27)

and √
nF (un)

(
β̃(Y,Y )
n (s)− s−α

)
⇒ G

(Y,Y )
∗ (s). (4.28)

We now want to obtain the limiting distribution of
√
nF (un)

(
λ̃∗n(1)(s)− λ(1)(s)

)
. From (4.27) and (4.28),

we deduce that

√
nF (un)

(
λ̃∗n(1)(s)− λ(1)(s)

)
=

√
nF (un) max

(
β̃(X,X)
n (s)− s−α, β̃(Y,Y )

n (s)− s−α
)

⇒ max

(
G

(X,X)
∗ (s), G

(Y,Y )
∗ (s)

)
. (4.29)

Hence, combining (4.26) and (4.29), it holds

√
nF (un)

(
λ̃n(1)(s)− λ(1)(s)

)
⇒ max

(
G

(X,X)
∗ (s), G

(Y,Y )
∗ (s)

)
,

which leads to the desired result. �

4.3.2 Testing for Extremal Independence using random matrices

Define the test statistic for s ∈ [s0,+∞), s0 ∈ (0, 1) as

T1(s) =

√
nF (un)

(
λ̃n(1)(s)− λ(1)(s)

)
. (4.30)

Then under H0 and for any fixed s, T1(s) has asymptotically the same distribution as

M(s) = max

(
G

(X,X)
∗ (s), G

(Y,Y )
∗ (s)

)
. We know that G

(X,X)
∗ (s) and G

(Y,Y )
∗ (s) are jointly normal random

variables. By (4.18), under H0, the random variables are uncorrelated (for s ≥ s0). Hence, they are

independent. By [8], The distribution function of M(s) can be written as

FM(s)(x) = Φ2
( x

σ(s)

)
, x ∈ R.

Hence,

fM(s)(x) =
2

σ(s)
φ
( x

σ(s)

)
Φ
( x

σ(s)

)
, x ∈ R,
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where σ2(s) = Var
(

G
(X,X)
∗ (s)

)
(4.17)

= s−α
(

1− 2(s ∨ 1)−α + s−α
)

, φ(·) and Φ(·) are, respectively, the pdf and

the cdf of the standard normal distribution. The mean and the variance of M(s) are

E(M(s)) = σ(s)π−1/2, Var(M(s)) = σ2(s)π−1(π − 1).

Therefore, the .025 and .975 quantiles of M(s) can be calculated as

M.025(s) = σ(s)Φ−1(
√
.025), M.975(s) = σ(s)Φ−1(

√
.975) .

Note that the distribution of M(s) is not symmetric, see Figure 4.2. The hypothesis testing can be performed

as follows: If θ̃n(s) ∈
(
M.025(s),M.975(s)

)
, then we fail to reject H0, othewise, we reject H0.

Figure 4.2: The density function of M(s = 1.2) (blue dashed line) and the density of the normal distribution
with µ = E(M(s)) and σ2 = V ar(M(s)) (red line).

We apply these results to the models defined in Examples 2.1.16, 2.1.17 and the model Y = φX + σ|Z|

where φ ∈ (0, 1), X is Pareto and Z is standard normal independent of X.

We simulate 1000 independent observations from (X,Y ) from each of these models. Random variables
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Model //True TDC
Ind. Pareto Dep. Pareto Third model

λTDC = 0 λTDC = 0.5 λTDC = 0.84

T1(1.2) 0.12 3.65 1.34

CI(1.2) + - -

T1(1.3) 0 2.18 1.10

CI(1.3) + - -

T1(1.5) 0 0.83 0.61

CI(1.5) + - -

Table 4.1: Testing for extremal independence. The 95% asymptotic confidence intervals are

CI(1.2)=
(
M.025(1.2),M.975(1.2)

)
=
(
− 0.25, 0.56

)
, CI(1.3)=

(
M.025(1.3),M.975(1.3)

)
=
(
− 0.23, 0.51

)
and

CI(1.5)=
(
M.025(1.5),M.975(1.5)

)
=
(
− 0.16, 0.35

)
for s = 1.2, 1.3, 1.5, un = nδ and δ = .10. The ”+” sign

indicates that T1 belongs to the CI.

X and Y are Pareto with the parameter α = 4. For the third model, we chose φ = 0.8 and σ = 0.1. We

calculate the test statistics T1(s) with un = nδ, δ = .10 and s = 1.2, 1.3, 1.5. The simulation results are

summarized in Table 4.1. As we can see, the simulated results confirmed the theoretical results obtained in

the previous section. Indeed, for independent Pareto, we fail to reject H0 for any s ∈ {1.2, 1.3, 1.5}, while for

the dependent Pareto (Example 2.1.17) and the third model mentioned above, we reject the null hypothesis.

A comprehensive simulation study will be done using the practical estimators, based on the order statis-

tics, not on the deterministic threshold un.

A good parameter choice For a good asymptotic confidence set, the parameter s has to be chosen

roughly in [0.7; 1) ∪ (1; 1.5]. However, large values of s produce a narrower asymptotic confidence sets and

small values of s generate a wider asymptotic confidence sets.

4.4 Extremogram matrix: d-dimensional case

The following section contains an extension of the two dimensional case to higher but finite dimension, say

d ≥ 2. To this end, we will conveniently introduce the following notation.

Definition 4.4.1 Let X ∈ Rd. Let Xj = (X1j , . . . , Xdj), j = 0 . . . , n, be an i.i.d. sequence of regularly

varying nonnegative random vectors. Assume that X1j
d
= ...

d
= Xdj. Define the tail dependence coefficient
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between the kth and `th component of X0 as

β(k,`)(s) = lim
n→+∞

β(k,`)n (s) = lim
n→+∞

P(Xk0 > sun, X`0 > tun)

P(X10 > un)
, k, ` = 1, . . . , d,

and its empirical estimate by

β̃(k,`)n (s) =

∑n
j=1 I{Xkj>sun,X`j>tun}∑n

j=1 I{Xkj>sun}
.

We also define the extremogram matrix and its sample estimate as follows

∆(s) =

(
β(k,`)(s)

)d
k,`=1

, ∆̃n(s) =

(
β̃(k,`)n (s)

)d
k,`=1

.

4.4.1 Testing for Extremal Independence using random matrices

Again, the goal is to test for extremal independence between the components of the vector X0. Therefore,

we test

H0 : β(k,`)(·) = 0 vs H1 : β(k,`)(·) 6= 0 for all k 6= ` .

Limiting distribution of sample eigenvalues in higher but finite dimension d ≥ 2. Note first that

under the null hypothesis, β(k,`)(s) = 0, for k 6= `. We have the following theorem which is an extension of

the two dimensional case (see Theorem 4.3.4).

Theorem 4.4.2 Let Xj , j ≥ 1 be a random sequence as in Definition 4.4.1. Let λ̃n(1)(s) ≥ . . . ≥ λ̃n(d)(s)

be the ordered eigenvalues of ∆̃n(s) and λ(1)(s) = . . . = λ(d)(s) = s−α be the eigenvalues of ∆(s). Assume

that for all k, ` = 1, . . . , d we have

lim
n→+∞

√
nF (un) sup

s>ε>0
|β(k,`)n (s)− β(k,`)(s)| = 0. (4.31)

Then, under H0 we have

√
nF (un)

(
λ̃n(1)(s)− λ(1)(s)

)
⇒ max

1≤k≤d

(
G

(k,k)
∗ (s)

)
, (4.32)

where G
(k,k)
∗ (s), k = 1, . . . , d, are independent Gaussian processes with the covariance Cov(G

(k,k)
∗ (s),G

(k,k)
∗ (s)) =

s−α (1− 2(s ∨ 1)−α + s−α).

Proof: The same as in the two dimensional case.
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4.5 Tail empirical process with random levels

In this section, we replace the deterministic levels un with random, data based, levels and obtain the same

limit theorems as in the deterministic levels case. The transition from deterministic to random levels follows

the same path as in [7]. Then, we apply again these results to hypothesis testing using random matrices.

This approach is again the original author’s contribution.

The process considered in (3.3) depends on the deterministic levels un which are chosen such that

un → +∞ and nF (un)→ +∞.

In other words the choice of un depends on the index of regular variation α, which is unknown. To tackle

this drawback, empirical processes with random levels are considered. Assume for a moment that F is

known, is continuous and strictly increasing. We consider Xn:1 ≤ . . . ≤ Xn:n, the order statistics from the

sample Xj , j = 1, . . . , n. For the given un, choose a sequence of integers k = nF (un) depending on n (the

dependence in n is omitted for the notation point of view). Consequently, k = kn →∞ and k/n→ 0. Then

F←(1− k
n) = un, where F← is the inverse of F . Furthermore, let

F̂←n (u) = inf{y : F̂n(y) > u}.

The empirical estimator of un = F←(1− k
n) is given by F̂←n (1− k

n) = Xn:n−k. We call Xn:n−k the intermediate

order statistics. In conclusion, un can be approximated by Xn:n−k. This motivates the following data-driven

estimator of the tail dependence coefficient between X and Y :

β̂(X,Y )
n (s) =

1

k

n∑
j=1

I{Xj>sXn:n−k,Yj>sXn:n−k}. (4.33)

We note that β̂
(X,Y )
n (s) is just β̃

(X,Y )
n (s) defined in (4.1), where un is replaced with Xn:n−k.

The goal is to obtain the limiting theory for β̂
(X,Y )
n (s). In order to do so, we need to obtain the joint

convergence of the intermediate order statistics and the tail empirical process G
(X,Y )
n (s).

Recall from (3.5) and (3.6) that

δ̃Xn (s) =
1

nF (un)

n∑
j=1

I{Xj>sun} , δ̃Yn (s) =
1

nF (un)

n∑
j=1

I{Yj>sun},
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and

δ(s) := δY (s) = δX(s) = lim
n→+∞

δXn (s) = lim
n→+∞

E[δ̃Xn (s)] = lim
n→∞

F (sun)/F (un) = s−α .

We make the following assumption:

dδn
ds

(s) −→ dδ

ds
(s) = −αs−α−1, (4.34)

uniformly in a neighborhood of 1.

Proposition 4.5.1 Assume that the conditions of Theorem 4.1.1 hold. If moreover condition (4.34) is

satisfied, then
√
k

({
Xn:n−k
un

− 1

}
, G(X,Y )

n (·)
)
⇒
(
α−1HX(1), G(X,Y )(·)

)
,

in R× `∞[s0,+∞).

Proof: Recall from (3.3) and (3.4)

G(X,Y )
n (s) =

√
nF (un)

{
β̃(X,Y )
n (s)− β(X,Y )

n (s)
}
, s ≥ s0,

HX
n (s) =

√
nF (un)(δ̃n(s)− δn(s)), s ≥ s0.

By Theorem 3.1.3 and Skorokhod representation theorem (Theorem 2.2.3), there exist sequences of processes

ζ
(X,Y )
n

d
= G

(X,Y )
n , ζ(X,Y ) d

= G(X,Y ) and ζn
d
= HX

n , ζ
d
= H on some probability space such that

ζ(X,Y )
n (·) −→ ζ(X,Y )(·), ζn(·) −→ ζ(·), (4.35)

almost surely, uniformly on a compact subsets of [s0,+∞), s0 ∈ (0, 1). Then (4.35) and the composition

mapping theorem yield

ζn(δ←n (s)) =
√
k

(
δ̃n ◦ δ←n (s)− s

)
→ ζ(δ←(s)), a.s, (4.36)

uniformly on compact subsets of [s0,+∞). By application of Vervaat’s Lemma 2.2.9, with 1/γn = k1/2,

ξn(s) = δ̃n ◦ δ←n (s) , g(s) = s and ξ0(s) = ζ ◦ δ←(s), we have

ζn(δ←n (s)) =
√
k

((
δ̃n ◦ δ←n

)←
(s)− s

)
→ −ζ(δ←(s)), a.s,
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uniformly on compact subsets of [s0,+∞). That is

√
k

(
δn ◦ δ̃←n (s)− s

)
→ −ζ(δ←(s)), a.s. (4.37)

Observe now that δ̃←n (1) = Xn:n−k/un and δ←n (1) = 1, then by Taylor’s expansion around 1 of δn ◦ δ̃←n , we

have

δn(δ̃←n (1))− 1 = δn(δ̃←n (1))− δn(δ←n (1))

=
dδn
ds

(δ←n (1))
(
δ̃←n (1)− δ←n (1)

)
(1 + o(1))

=
dδn
ds

(δ←n (1))
(
Xn:n−k/un − 1

)
(1 + o(1)). (4.38)

Hence, by (4.37), (4.38) and (4.34), we have

√
k

(
δn ◦ δ̃←n (1)− 1

)
= −α

√
k
(
Xn:n−k/un − 1

)
(1 + o(1)) i.e.

√
k

{
Xn:n−k/un − 1

}
a.s.−−→ α−1ζ(1). (4.39)

Since (4.39) and (4.35) hold almost surely, then they hold jointly. Therefore, the convergence holds also in

the original probability space. �

Remark 4.5.2 If (4.39) holds, then Xn:n−k/un − 1→ 0, in probability.

Recall from (4.33) that

β̂(X,Y )
n (s) =

1

k

n∑
j=1

I{Xj>sXn:n−k,Yj>sXn:n−k}, δ̂n(s) =
1

k

n∑
j=1

I{Xj>Xn:n−k}. (4.40)

Consider the following empirical processes

Ĝ(X,Y )
n (s) =

√
k
(
β̂(X,Y )
n (s))− β(X,Y )(s)

)
, ĤX

n (s) =
√
k
(
δ̂n(s)− δ(s)

)
, s ≥ s0. (4.41)

(ĤY
n (s) is defined similarly). We have the weak convergence of the tail empirical processes defined in (4.41).

Theorem 4.5.3 Suppose that the conditions of Theorem 4.1.1 hold, where nF (un) is replaced by k. Fur-

thermore, assume that (4.34) holds and (d/ds)β(X,Y )(s) exists and is finite in a neighborhood of 1. Then,

Ĝ(X,Y )
n (s)⇒ G(X,Y )(s)− β(X,Y )(s)HX(1), (4.42)
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as n→ +∞ in `∞[s0,+∞). Moreover,

ĤX
n (s)⇒ HX(s)− s−αHX(1), ĤY

n (s)⇒ HY (s)− s−αHY (1) (4.43)

and the convergences hold jointly.

Proof: Recall that

G(X,Y )
n (s) =

√
nF (un)

(
β̃(X,Y )
n (s)− β(X,Y )(s)

)
, s ≥ s0,

where

β̃(X,Y )
n (s) =

1

nF (un)

n∑
j=1

I{Xj>sun,Yj>sun}.

We deduce that

Ĝ(X,Y )
n = G(X,Y )

n (sXn:n−k/un).

We have

Ĝ(X,Y )
n (s) =

√
k
(
β̂(X,Y )
n (s)− β(X,Y )

n (sXn:n−k/un)
)

+
√
k
(
β(X,Y )
n (sXn:n−k/un)− β(X,Y )(sXn:n−k/un)

)
+
√
k
(
β(X,Y )(sXn:n−k/un)− β(X,Y )(s)

)
= G(X,Y )

n (sXn:n−k/un) + J1(s) + J2(s).

By Theorem 3.1.3, Remark 4.5.2 and bearing in mind the joint convergence, the first term converges weakly

to G(X,Y )(·). The second term J1(s) vanishes by assumption (4.3). For J2(s), we apply the delta method to

(4.39) to have

√
k

{
β(X,Y )(sXn:n−k/un)− β(X,Y )(s)

}
→ −β(X,Y )(s)HX(1).

This leads to the desired result. �

Remark 4.5.4 (Comparison between Theorem 4.1.1 and Theorem 4.5.3) For Theorem 4.1.1:

√
nF (un)

(
β̃(X,Y )
n (s)− β(X,Y )(s)

)
⇒ G

(X,Y )
∗ (s) := G(X,Y )(s)− β(X,Y )(s)HX(1).

For Theorem 4.5.3:

√
k
(
β̂(X,Y )
n (s)− β(X,Y )(s)

)
⇒ G

(X,Y )
∗ (s) := G(X,Y )(s)− β(X,Y )(s)HX(1).
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The limits are the same. As a consequence, the estimator of the tail dependence coefficient with determin-

istic levels and random normalization (β̃
(X,Y )
n ) has the same limit as the estimator with random levels and

deterministic normalization (β̂
(X,Y )
n ).

Now we want to use the above result to derive the asymptotic distribution of the corresponding sample

extremogram matrix.

Recall the matrix ∆̃n(s) from (4.21). Consider the following matrices:

∆̂n(s) =

 β̂
(X,X)
n (s) β̂

(X,Y )
n (s)

β̂
(X,Y )
n (s) β̂

(Y,Y )
n (s)

 , ∆̂n(1) =

 1 β̂
(Y,X)
n (1)

β̂
(X,Y )
n (1) 1

 .

Note that ∆̂n(s) is just ∆̃n(s), where β̃
(X,Y )
n is replaced with β̂

(X,Y )
n . By Theorem 4.5.3, we have

√
k
{

vec(∆̂n(s))− vec(∆(s))
}
⇒ vec(H(s)),

where

H(s) =

 G
(X,X)
∗ (s) G

(X,Y )
∗ (s)

G
(Y,X)
∗ (s) G

(Y,Y )
∗ (s)


and

G
(U,V )
∗ (s) = G(U,V )(s)− β(U,V )(s)HU (1),

defined in (4.23). Recall that

H0 : β(X,Y )(·) = 0 vs H1 : β(X,Y )(·) 6= 0.

Under the null hypothesis, keeping in mind that under H0, the limiting process is degenerated, we have

∆0(s) =

 s−α 0

0 s−α

 , H0(s) =

 G
(X,X)
∗ (s) 0

0 G
(Y,Y )
∗ (s)

 .

Now, we can extend Theorems 4.3.4 and 4.4.2 to random levels.

Theorem 4.5.5 Assume that the conditions of Theorem 4.5.3 are satisfied. Let λ̂n(1)(s) ≥ λ̂n(2)(s) be the

ordered eigenvalues of ∆̂n(s) and λ(1)(s) = λ(2)(s) = s−α be the eigenvalues of ∆(s). Assume that

lim
n→+∞

√
k sup
s>ε>0

∣∣∣β(X,Y )
n (s)− β(X,Y )(s)

∣∣∣ = 0.
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Then under H0 we have

√
k

(
λ̂n(1)(s)− λ(1)(s)

)
⇒ max

(
G

(X,X)
∗ (s), G

(Y,Y )
∗ (s)

)
,

where G
(X,X)
∗ (s) = HX(s)− s−αHX(1) and G

(Y,Y )
∗ (s) = HY (s)− s−αHY (1).

Theorem 4.5.6 Let Xj , j ≥ 1 be a random sequence as in Definition 4.4.1. Let λ̂n(1)(s) ≥ . . . ≥ λ̂n(d)(s)

be the ordered eigenvalues of ∆̂n(s) and λ(1)(s) = . . . = λ(d)(s) = s−α be the eigenvalues of ∆(s). Assume

that for all m, ` = 1, . . . , d we have

lim
n→+∞

√
k sup
s>ε>0

|β(m,`)n (s)− β(m,`)(s)| = 0.

Then, under H0 we have
√
k

(
λ̂n(1)(s)− λ(1)(s)

)
⇒ max

1≤`≤d

(
G

(`,`)
∗ (s)

)
,

where G
(`,`)
∗ (s), ` = 1, · · · , d, are as in Theorem 4.4.2.

Hypothesis testing with random levels We run the same simulations as in Table 4.1 using the test

statistic obtained wih random levels for the models used therein. Indeed, we calculate the test statistics for

s ∈ [s0,+∞), s0 ∈ (0, 1)

T2(s) =
√
k

(
λ̂n(1)(s)− λ(1)(s)

)
.

The value of k ranges from 0.01n to 0.1n, and s = 1.2 (see Table (4.2)) and s = 1.3 (see Table (4.3)).

As we can see, the simulated results confirm the theoretical results obtained in this section. Indeed, for

independent Pareto, we fail to reject H0, while for the dependent Pareto (Example 2.1.17) and the third

model mentioned above, we reject the null hypothesis.
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Model(True TDC) k 0.01n 0.02n 0.03n 0.04n 0.05n 0.06n 0.07n 0.08n 0.09n 0.1n

Ind. Pareto (0)
T2 0 0 0 0 0 0.13 0.24 0.34 0.32 0.30

CI + + + + + + + + + +

Dep. Pareto (0.5)
T2 0.63 0.89 0.73 0.79 0.85 0.90 1.08 1.45 1.37 1.41

CI - - - - - - - - - -

Third model (0.84)
T2 0.32 0.67 0.91 1.11 1.27 1.29 1.44 1.68 1.79 1.81

CI + - - - - - - - - -

Table 4.2: Testing for extremal independence. The 95% asymptotic confidence interval for s = 1.2 is

CI=
(
M.025,M.975

)
=
(
− 0.25; 0.56

)
. The ”+” sign indicates that T2 belongs to the CI and the numbers in

parentheses correspond to the true TDC.

Model(True TDC) k 0.01n 0.02n 0.03n 0.04n 0.05n 0.06n 0.07n 0.08n 0.09n 0.1n

Ind. Pareto (0)
T2 0 0 0 0 0 0 0 0.11 0.11 0.30

CI + + + + + + + + + +

Dep. Pareto (0.5)
T2 0.63 0.44 0.73 0.63 0.57 0.65 0.60 0.67 0.63 0.70

CI - + - - - - - - - -

Third model (0.84)
T2 0 0.22 0.73 0.79 0.99 1.03 1.08 1.12 1.16 1.30

CI + + - - - - - - - -

Table 4.3: Testing for extremal independence. The 95% asymptotic confidence interval for s = 1.3 is

CI=
(
M.025,M.975

)
=
(
− 0.23, 0.51

)
. The ”+” sign indicates that T2 belongs to the CI and the numbers in

parentheses correspond to the true TDC.

4.6 Implementation: Simulation studies

In this section, we perform some simulations studies to support our theoretical results. We deal with the

estimation of the tail dependence coefficient defined in (2.4) as

λTDC = lim
x→∞

P(X > x, Y > x)

F (x)
,

where X and Y have the same distribution. We make use of the estimator β̂(X,Y )(1) defined in (4.33). The

estimator is computed for different values k, where k is the number of order statistics and plotted against

the order statistics Xn:1, . . . , Xn:n, being arranged in increasing order. The choice of the threshold k is

not addressed here but can be found in the literature (e.g. [10]). The estimator captures the dependence
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structure.

Example 4.6.1 (Independent Pareto) We simulate 1000 independent observations from (X,Y ), where

X and Y are independent Pareto-distributed with α = 4. In this case the tail dependence coefficient is just 0.

Figure 2.2 shows the estimated values of the tail dependence coefficient computed using the estimator (4.33)

for different values of k, where k is the number of order statistics used.

Figure 4.3: The scatter plot (left panel) and the estimator of the TDC (right panel) for X and Y drown
independently from Pareto distribution with α = 4.

Example 4.6.2 (Dependent Pareto) We simulate 1000 independent observations from the model (X,Y ),

where Y = Z2 + Z3, X = Z1 + Z2, and Zi, i = 1, 2, 3 are independent Pareto with α = 4. In this case the

tail dependence coefficient is 0.5. The results are displayed on Figure 4.4. This dependence is captured by

the estimator.

Example 4.6.3 (Bivariate t) Figure 4.5 shows the estimate of the tail dependence coefficient for the bi-

variate t distribution i.e (X,Y ) =
√
Z(|U1|, |U2|), where α/Z is chi-square distributed with α = 4 degrees

of freedom and U1, U2 are standard normal with correlation ρ = 0.9. The tail dependence coefficient in

this case is 0.63, see [5]. The scatter plot indicates strong dependence in the upper and lower tail which is

confirmed by the estimation of the tail dependence coefficient.
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Figure 4.4: The scatter plot (left panel) and the estimator of the TDC (right panel) for the model Y =
Z2 + Z3, X = Z1 + Z2, where Zi, i = 1, 2, 3 are independent Pareto with α = 4.

Figure 4.5: The bivariate t distribution: the scatter plot (left panel) and the estimator of the TDC (right
panel) plotted against the order statistics.

4.7 Real data analysis

In this section we apply our method to two financial data sets.

Example 4.7.1 (Stock prices data set) The first data set contains the absolute log returns of daily stock
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prices for S&P500 and NASDAQ from January 20, 2015 to September 19, 2017. The data set consist of

673 records (Source: Yahoo Finance). The QQ-plots of these data sets, see Figure 4.7, show a tilted S-shape

which stretches out in the extremes indicating the heaviness of the tail of the data. In other words, they

have fatter tails than normal distribution. Hence, we cannot assume normality. Moreover, the scatter plot,

see Figure 4.8 (top left panel), indicates a strong dependence in the upper tail, which is confirmed by the

estimation of the tail dependence coefficient, Figure 4.8 (bottom right panel). Furthermore, on Figure 4.8

we estimate the tail index for S&P500 and NASDAQ using the classical Hill estimator. We can assume

that they have the same tail index and its estimate was chosen as 2.7. The assumption that the two datasets

come approximatively from the same populations (in the tails) are verified in Figure 4.8 (bottom left panel).

Hypothesis testing for extremal independence for this data set is performed and the results are summarized

in Table 4.4.

Figure 4.6: Time series plot of NASDAQ (left panel) and S&P500 (right panel).

Example 4.7.2 (Exchange-rates data set) The second data set contains the daily exchange-rates of the

German and French currencies against the US dollar for the time period 1979-1998. The data set consist of

4774 records (see datamarket.com). Figure 4.10 shows again that we have heavy-tailed data sets. Moreover,

the scatter plot, see Figure 4.11 (top left panel), indicates strong dependence in the upper tail, which is
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Figure 4.7: QQ-plot of NASDAQ (left panel) and S&P500 (right panel).

s value k 0.01n 0.02n 0.03n 0.04n 0.05n 0.06n 0.07n 0.08n 0.09n 0.1n

s=1.2
T2(1.2) 3.16 4.47 5.48 6.32 7.07 7.75 8.31 8.94 9.49 9.95

CI(1.2) - - - - - - - - - -

Table 4.4: Testing for extremal independence for the stock prices data set. The 95% asymptotic confidence

interval is CI(1.2)=
(
M.025(1.2),M.975(1.2)

)
=
(
−0.24; 0.53

)
. The ”-” sign indicates that T2 doesn’t belong

to the CI.

confirmed by the estimation of the TDC, Figure 4.11 (bottom right panel). Furthermore, on Figure 4.11 we

estimate the tail index for the German and French currencies using the classical Hill estimator. We can

assume that they have the same tail index and its estimate was chosen as 3. The assumption that the two

datasets come approximatively from the same populations (in the tails) are verified in Figure 4.8 (bottom

left panel).

Hypothesis testing for extremal independence for this data set is performed and the results are summarized

in Table 4.5.

54



Figure 4.8: The absolute log returns of daily stock prices for S&P500 vs. NASDAQ data set: the scatter
plot (top left panel), Hill plot (top right panel) of NASDAQ (red dashed line) and S&P 500 (blue dashed
line) with CI, the densities (bottom left panel) and the estimator of the TDC (bottom right panel).

s value k 0.01n 0.02n 0.03n 0.04n 0.05n 0.06n 0.07n 0.08n 0.09n 0.1n

s=1.2
T2(1.2) 1.17 3.18 4.93 5.44 6.81 7.04 8.03 8.91 9.95 10.89

CI(1.2) - - - - - - - - - -

Table 4.5: Testing for extremal independence for the exchange-rates data set. The 95% asymptotic

confidence interval is CI(1.2)=
(
M.025(1.2),M.975(1.2)

)
=
(
− 0.25; 0.55

)
. The ”+” sign indicates that T2

belongs to the CI.
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Figure 4.9: Time series plot of German Mark (left panel) and French Franc (right panel).
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Figure 4.10: QQ-plot of German Mark (left panel) and French Franc (right panel).
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Figure 4.11: The absolute log returns of daily exchange-rates for German Mark and French Franc data set:
the scatter plot (top left panel), Hill plot (top right panel) of German Mark (red line) and French Franc
(blue line), the densities (bottom left panel) and the estimator of the TDC (bottom right panel).
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Conclusion and further work

The tail dependence coefficient is a good tool to describe the amount of dependence in the extremes as

it is shown in this paper. We propose a nomparametric estimator of the TDC and prove consistency and

asymptotic normality. Since the limit of the estimator is degenerated then we cannot construct a formal

test for extremal independence. To avoid this drawback, we consider an analog of the sample covariance

matrix, namely the sample extremogram matrix of dimension d, whose entries depend only on the ex-

tremes i.e. the tail dependence coefficient. We work under the finite dimensional case, say d ≥ 2, and

we prove that the largest eigenvalue converges is distribution to the maximum of d independent Gaussian

random variables. Having that in hand, we are now ready to conduct an hypothesis testing by means of the

distribution of the largest eigenvalue of the sample extremogram matrix and the results are quite satifactory.

The extension of the extremogram matrix to higher dimension d that grows with n, that is d = dn → +∞

as n→ +∞, and λn(1)(s) = max
(
β̃
(1,1)
n (s), · · · , β̃(dn,dn)n (s)

)
is under study.
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