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Abstract

The regular waterfilling(WF) policy maximizes the mutual information of parallel

channels, when the inputs are Gaussian. However, Gaussian input is ideal, which

does not exist in reality. Discrete constellations are usually used instead, such

as M -PAM and M -QAM. As a result, the mercury/waterfilling (MWF) policy

is introduced, which is a generalization of the regular WF. The MWF applies to

inputs with arbitrary distributions, while the regular WF only applies to Gaussian

inputs. The MWF-based optimal power allocation (OPA) is presented, for which

an algorithm called the internal/external bisection method is introduced.

The constellation-constrained capacity is discussed in the thesis, where explicit

expressions are presented. The expression contains an integral, which does not

have a closed-form solution. However, it can be evaluated via the Monte Carlo

method. An approximation of the constellation-constrained capacity based on

the sphere packing method is introduced, whose OPA is a convex optimization

problem. The CVX was used initially, but it did not generate satisfactory results.

Therefore, the bisection method is used instead.

Capacities of the MWF and its sphere packing approximation are evaluated for

various cases, and compared with each other. It turns out the sphere packing

approximation has similar performances to the MWF, which validates the approx-

imation. Unlike the MWF, the sphere packing approximation does not suffer from

the loss of precision due to the structure of MMSE functions, which demonstrates

its robustness.
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Chapter 1

Introduction

1.1 Motivation

Over the past few years, the usage of wireless devices have increased worldwide.

The increase in usage of these devices have created a demand for more download-

able applications. A large number of applications now require Internet connection

in order to function. In such case, the speed of the Internet is crucial for user

experience, and so is the stability. With applications becoming more complex, it

has created a need for an increase in quality, as well as a higher rate of Internet

service. Several generations of technologies have already been developed in order

for mobile communication devices to reach the current standards, ranging from 1G

to 4G. The review of their history and development can be found in the Appendix

A.1.

Battery life is also another important factor that affect the quality of mobile

devices. A trade-off exists between power and rate, which is the reason why the

optimization of data rates within a total power budget is imperative. In reality,

the objective is to acquire higher rates with the lowest possible transmit power.

The existing issue of this trade-off is expected to be resolved by the upcoming 5th

generation (5G) of cellular systems. With the development of new technologies, it

will soon be possible to acheive higher rates with a lower transmit power.

The upcoming 5G includes several key enabling technologies, such as massive

MIMO, millimeter waves, and heterogenous networks. A detailed introduction to

1
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these technologies, as well as the review of previous standards and protocols can

be found in the Appendix A.1.

Massive MIMO is an upgraded version of MIMO, of which the number of antennas

at the transmitter and the receiver is increased tremendously. A greater number

of antennas in combination with multipath propagation allows for higher rates.

Millimeter wave technology exploits the ultra high frequency bands from 30 GHz

to 300 GHz, due to the fact that it is already congested at lower frequency bands.

As a result, bandwidths, as well as data rates will increase.

As discussed above, power efficiency is also a contributing factor to quality of

mobile devices. Both battery life and data rates are crucial for users, therefore

the optimization of data rates under a given power budget becomes an important

topic considered in this thesis. In addition, the optimization problem of power

allocation subject to the a capacity constraint is also resolved, due to the fact that

the two optimization problems above are equivalent to each other.

1.2 Digital Transmission System

In the present time, the majority of information is transmitted through a digital

rather than an analog format. The block diagram of a typical digital transmission

system is presented in Figure 1.1,

Figure 1.1: Digital transmission system.
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where each of the blocks represents:

1. Source: the source of information can be analog, such as voice signals. It can

also be digital, such as a binary file of data.

2. Source Coding: includes A/D (Analog/Digital) conversion (convert the input

signals into binary sequences) and compression.

3. Channel Coding: introduces redundancy into the binary sequences using error-

control coding. It overcomes the effects of noise and interference during the trans-

mission, thus the information can be transmitted reliably.

4. Modulation: data is transmitted by modulating a carrier wave. The amplitude,

the phase and the frequency of the carrier wave are three key factors that can be

modulated. The baseband signals are typically modulated to higher frequencies,

so that it can pass through the channel. A number of commonly used mod-

ulation schemes include ASK (Amplitude Shift Keying), FSK (Frequency Shift

Keying), PSK (Phase Shift Keying), PAM (Pulse Amplitude Modulation), and

QAM (Quadrature Amplitude Modulation). The modulation schemes used in the

following thesis are PAM and QAM, which map bits to constellation points. The

relationship between PAM and QAM is discussed in Chapter 3.

5. Channel: the media which is used to transmit signals from the transmitter to the

receiver. It also introduces noise and interference, depending on its surrounding

environment.

6. Demodulation: the reverse of modulation. The RF (Radio Frequency) signals

are converted back into baseband signals. The waveforms are converted back into

bits.

7. Channel Decoding: the redundancy is removed, it is a reverse of the channel

coding. Errors may occur due to channel noise and interference.

8. Source Decoding: the reverse of source coding. D/A (Digital/Analog) conver-

sion and decompression. Binary sequences are converted back into input signals.

9. Sink: the original input signals are retrieved.

The three blocks, modulation, channel and demodulation are considered as a

whole in the thesis, which form an extended channel. Its capacity is called the

constellation-constrained capacity, whose approximation and optimization are the
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major contributions of the thesis. PAM and QAM are the two types of modulation

scheme considered in the thesis, and details of the other modulation schemes can

be found in Chapter 2. Four constellation schemes, 4-QAM, 16-QAM, 64-QAM

and 256-QAM are applied to specific channels in Chapter 6. While the general

results apply, higher order constellations are not considered in detail due to their

complexity.

Parallel channels (such as OFDM channels with distinct carrier frequencies) are

used as a model within this thesis. An approximation of the modulation con-

strained capacity is introduced. The corresponding power allocation is required to

maximize the constellation capacity subject to the power constraint. A convex op-

timization problem arises, which can be solved using KKT (Karush-Kuhn-Tucker)

conditions.

Convex optimization is a useful tool that can be applied to many optimization

problems. It is highly integrated with programming software such as Matlab. A

package called CVX can be used to solve convex optimization problems. However,

the CVX has a rigorous standard for the recognition of convex functions. The

convex functions have to be presented in a modified form in order for recognition

in most cases, therefore the bisection method is used instead to avoid such issues.

The bisection method is a root-finding algorithm for monotonic functions, whose

specifics are discussed in Chapter 2 with an intuitive flow chart. The optimal

power allocation (OPA) of the constellation capacity can be derived using the

bisection method, which provides better results as compared with the CVX.

1.3 The Contributions of the Thesis

The main references of this thesis are [1] and [2], where several new algorithms are

implemented. The majority of the simulation results in both papers are validated

in the present thesis, most of which agree well with our results. However, in the

process of validation, a few errors in [1] are found and corrected.

Reference [1] provides the MMSE-based mercury/waterfilling (MWF) solution for

parallel channels with arbitrary input distributions, while [2] utilizes the sphere

packing method to obtain an approximation of the constellation capacity. It is

then used to obtain the OPA for parallel channels.
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One of the main contributions to this thesis is the utilization of the bisection

method to obtain the OPA. An algorithm based on the bisection method is de-

veloped and implemented, and its performance is compared with the CVX. As

a result, the bisection method is shown to be more robust than the CVX. The

utilization of the CVX resulted in abnormal behaviours, which are discussed in

Chapter 5.

Another major contribution is the comparison between different power alloca-

tion schemes, including MWF, constellation-constrained waterfilling based on the

sphere packing approximation, and regular waterfilling (WF). Their performances

are studied via their respective capacities. At a selected SNR, the higher the ca-

pacity is, the better the performance. The case of two parallel channels is studied

in detail with different constellation cardinalities and channel gains. Afterwards,

a case of three parallel channels is considered in comparison with the case of two

parallel channels.

The performance difference between the MWF and the constellation-constrained

WF (AOPA) is found to be insignificant. The sphere packing approximation is

considerably easier to evaluate, it requires less time and demonstrates robust per-

formance. More importantly, unlike the MMSE-based MWF, it does not drop to

zero abnormally in the high SNR region due to the loss of precision. Therefore, it

is considered to be a valuable tool for system design and optimization.

In the thesis, the same constellation is applied to all the sub-channels for the

optimization problem. As an extension, adaptive modulation can be considered,

applying different modulation schemes to different sub-channels depending on their

respective channel gains. The optimization of PA with adaptive modulation will

be an interesting topic for future research.

1.4 Thesis Outline

The remainder of the thesis is organized as follows:

Chapter 2 gives the literature review. The capacity is introduced, such as the

Gaussian channel capacity and the constellation-constrained capacity. An ap-

proximation of the constellation capacity based on sphere packing is presented.
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Corresponding power allocation policies are given, and convex optimization is

used in the process of obtaining the OPA.

Chapter 3 presents the system model of parallel channels. The general power

constraint is discussed in this chapter, along with the power normalization in

[1]. A new normalized power constraint is introduced, and then the SNR of the

uniform power allocation (PA) is defined. The rest of this chapter deals with

the OPA under modulation constraint. The MWF is introduced in [1] as the

OPA scheme for parallel channels with arbitrary input distributions. There is no

explicit closed form expression, due to the presence of MMSE (Minimum Mean

Square Error) functions that contain integrals. A general expression for the MMSE

functions is introduced, as well as expressions for specific constellations. A number

of basic characteristics of constellations and their corresponding MMSE functions

are discussed. Finally, a low and a high-power expansion of the MMSE functions

are introduced, which will be useful in the upcoming chapters.

Chapter 4 focuses on the evaluation of the OPA. The MMSE function appears in

the expressions. As a result, the OPA cannot be derived directly. The bisection

method is used for the derivation of the OPA. For the bisection method to start,

upper and lower bounds are derived at first, and then the OPA can be calculated

with a given precision. A graphic interpretation of the OPA is given in this chapter.

A high-power approximation is introduced based on the high-power expansion in

Chapter 3. The capacity of the MWF and its high-power approximation are

compared. The high-power approximation fits the exact MWF well in the high

SNR region.

Chapter 5 provides the detailed discussion of the modulation constrained capacity.

Gaussian channel capacity is initially addressed, and then the constellation capac-

ity. The Monte Carlo method is used to evaluate the constellation capacity due

to its complexity. It converts the integral inside the expression into the mean of a

Gaussian random variable. This is essential when performing the numerical eval-

uation using Matlab. Moreover, an approximation of the constellation capacity

based on sphere packing is presented, along with its approximated OPA (AOPA).

A different approach of approximation is proposed at the end of this chapter. It

provides a greater accuracy, but it only applies to 2-PAM after certain manipu-

lations. It is also difficult to extend to higher order constellations, therefore this

direction is no longer persued.
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Chapter 6 compares the performance of the MWF and the sphere packing ap-

proximation. Other power allocation schemes are used as well for comparison,

such as regular WF, the uniform PA, and the OPA derived with the Monte Carlo

method. As special cases, two parallel channels are initially investigated, with dif-

ferent constellation cardinalities and channel gains. Subsequently, three parallel

channels with the same constellation cardinalities and channel gains are considered

for comparison. As shown in all the figures in this chapter, the sphere packing

approximation is a close fit for the MMSE-based MWF OPA. It is also simplier

and more efficient to evaluate. Their curves all saturate eventually as the SNR

increases due to the upper bound on the constellation capacity, which is deter-

mined by the constellation cardinality. Capacity cannot exceed the upper bound

no matter how high the SNR is.



Chapter 2

Literature Review

2.1 The Gaussian Channel Capacity

For a channel with only one transmitter and one receiver, channel capacity stands

for the maximum quantity of information transmitted every second or every symbol

which is measured in bits/s or bits/symbol. In other words, it is the upper bound of

data rate at which information can be transmitted reliably. Reliable transmission

here means that information can be transmitted at an arbitrarily low error rate.

Consider a channel with only one transmitter and one receiver, where the rela-

tionship between input and output is:

y = hx+ w (2.1)

where h is the channel gain and w is a Gaussian random variable with zero mean

and unit variance.

Figure 2.1: Gaussian channel model.

The Gaussian channel model is presented in Figure 2.1. Shannon was the first to

obtain the capacity expression for such channel [3] [4] [5]. The channel capacity is

8



Chapter 2. Literature Review 9

proportional to bandwidth and related to SNR, as presented below:

C = B log2(1 + SNR) [bits/s] (2.2)

where B is bandwidth of the channel which is measured in Hz, and SNR is the

signal to noise ratio of the channel.

Shannon pointed out that if data rate R is less than channel capacity C, then

theoretically there is a way to transmit the information through the channel at an

arbitrarily low error probability. However, if R is greater than C, then under no

circumstances can the information be transmitted reliably [4].

2.2 Capacity of Memoryless Channels

A memoryless channel is a channel for which the output at time t is determined

only by the input at time t and not influenced by any input prior to or after time

t. On the contrary, a channel with memory is a channel for which the output at

time t is affected by some inputs prior to or after time t.

For stationary memoryless channels, the channel capacity can be expressed as the

maximum mutual information:

C = max
X

I(X;Y ) [bits/symbol] (2.3)

where X is the random variable which is transmitted and Y is the random variable

which is received; I(X;Y ) is the mutual information between X and Y . Assuming

X and Y are discrete random variables, the mutual information I(X;Y ) can be

further expanded as:

I(X;Y ) =
∑
x,y

p(x, y) log
p(x, y)

p(x)p(y)
(2.4)

where p(x, y) is the joint probability distribution, p(x) and p(y) are the marginal

probability distributions.

For continuous random variables, the only difference in mutual information ex-

pression is the replacement of the summation in (2.4) with an integral. Moreover,

capacity for channels with memory is discussed in [6].
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2.3 The Constellation Capacity

The Shannon formula (2.2) only applies to Gaussian channels, for which there

are no constraints on modulation or coding. Some of the criteria for choosing

the right modulation scheme include power efficiency, bandwidth efficiency, and

system complexity [7]. There are several different types of modulations [7] [8],

such as PAM (Pulse Amplitude Modulation), PSK (Phase Shift keying), FSK

(Frequency Shift keying), ASK (Amplitude Shift keying) and QAM (Quadrature

Amplitude Modulation) [9]. PAM encodes the information in the amplitude of

the waveform. PSK modifies the phase of the carrier wave, and the information is

embedded in the phase. It has a variation, DPSK, which is similar to PSK, but the

information is encoded in the difference between successive phases. As for FSK,

the information is transmitted through the frequency changes of the carrier wave.

ASK is another scheme whose information lies in the amplitude of the carrier wave.

M -QAM can be seen as a combination of two
√
M -PAM in quadrature. There are

two carrier waves with the same frequency but they have a 90 degrees of phase

difference [10]. PAM and QAM are the two schemes that considered in this thesis,

their relationship discussed above is important for MMSE functions which will be

discussed later.

The constellation cardinality M (i.e. the number of constellation points) has

an influence on the capacity as well as the modulation schemes. The higher M

is, the closer it is to Gaussian channel capacity [11]. Unlike all the modulation

schemes above which are uniformly-spaced, [12] considers non-uniformly spaced

constellations and corresponding capacity is evaluated for comparison.

The expression of the constellation capacity for M -PAM can be found in [13] and

[14]. Some of its properties can be found in [15]. An example of two-user broadcast

channels can be found in [16]. The explicit expression is as follows:

CM = log2M −
∑
j

1

M

∫ ∞
−∞

1√
2πσ2

e−
z2

2σ2 log2

∑
i

e
−d2ij
2σ2 e−

zdij

σ2 dz (2.5)

where M is the constellation order, σ2 = N is the noise power of the channel, and

z is a Gaussian random variable with zero mean and a variance of σ2. The average

power is normalized to be 1, so that SNR = 1
σ2 .
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In the thesis, the expression above is used to calculate the capacity of the mer-

cury/weaterfilling and some other power allocation schemes to evaluate their per-

formances. However, the expression is quite complex due to the integral and it

does not have a closed form solution [17] [18]. The Monte Carlo method is used

instead in order to calculate the integral.

The Monte Carlo method was developed in mid 1940s. It is an algorithm that ex-

ploits randomness to obtain numerical results [19] [20]. In our case, the integral in

the constellation capacity expression can be dealt with properly using the Monte

Carlo method. Clearly 1√
2πσ2

e−
z2

2σ2 is a Gaussian probability density function. The

integral can be treated as the calculation of the mean of a Gaussian random vari-

able z with zero mean and a variance of σ2. More details about the constellation

capacity and the Monte Carlo method can be found in Chapter 6.

2.4 The Optimal Power Allocation (OPA)

Now that the capacity expression is presented in (2.5), it is natural to seek for an

OPA scheme that maximizes channel capacity under a fixed total power budget.

The OPA for parallel channels is an optimization problem which usually emerges in

the transmitter design. For such parallel channels, which are mutually independent

and with Gaussian inputs, the well-known waterfilling (WF) policy is the OPA

scheme that maximizes the mutual information [3] [21].

Algorithms for evaluating the WF can be found in [22], that are applied to compute

the numerical solutions in practice. A family of different WF solutions is discussed

[22] as well, along with their comparisons. Specifically, constant-power WF is

stated in [23]. It can be used on wireless fading channels and wireline channels

with ISI (Inter-Symbol Interference).

The WF algorithm is the classic power allocation scheme for Gaussian channels

[24] as it is an elegant solution with intuitive graphic interpretation. It utilizes the

concavity of the capacity expression, and convex optimizaion is used to obtain the

OPA.
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Consider n parallel channels fed with Gaussian inputs. Expression for the WF

OPA is as follows:

pi = 0, γi ≤ η (2.6)

pi =
1

η
− 1

γi
, γi > η (2.7)

where 1
η

is the water level found from the power constraint, which is discussed

thoroughly in Chapter 4. The term γi is the SNR on the ith channel when the

power allocation is uniform [1].

It is seen clearly from the expressions above that channels with higher SNR receive

more power. There is no power assigned to the channels whose SNR is not higher

than η.

Figure 2.2: Graphic interpretation of the WF policy [1].

Figure 2.2 is the graphic interpretation of the WF policy, 1
η

serves as the water

level and 1
γi

serves as noise. For n parallel channels, each channel corresponds to a

unit based vessel. The solid part at the bottom of the vessel is set up at a height of
1
γi

, then water is poured into the vessels until water level in all the vessels reaches
1
η
. The amount of water in each vessel corresponds to the power that is allocated

to that channel.

However, the WF policy only applies when the input is Gaussian [25]. Discrete

constellations are usually used in reality instead of the ideal Gaussian inputs, for

which there is a modified version of the WF policy for arbitrary input distributions,

which is known as the mercury/waterfilling (MWF) [24] [25]. It is similar to the

regular WF, except that a mercury part is added. Some of its applications can be

found in [25], [26] and [27]. A practical use of the MWF over parallel Gaussian

channels in the multiuser context can be found in [28].
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The MWF is extensively discussed in [1], [29] and [30]. Its OPA {p∗i } can be

written as [1]:

p∗i = 0, γi 6 η (2.8)

γiMMSEi(p
∗
i γi) = η, γi > η (2.9)

where MMSE(·) is the minimum mean square error [31].

The MMSE expression varies for different inputs. The general expression is stated

in [1], along with more detailed expressions for specific constellations. A rela-

tionship between MMSE and mutual information is discussed in [1], [32] and [33].

Moreover, the derivatives of MMSE and their properties are discussed in [33] and

[34].

Using (2.8) and (2.9), a new function Gi(ξ) can be constructed for the graphic

interpretation of the MWF [1]:

Gi(ξ) = 1/ξ −MMSE−1i (ξ), 0 ≤ ξ ≤ 1 (2.10)

Gi(ξ) = 1, ξ > 1 (2.11)

where MMSE−1i (·) is the inverse of MMSE functions.

For Gaussian inputs, Gi(ξ) = 1 holds for all ξ. For other inputs with discrete

constellations, the inverse of the specific MMSE function is required in order to

acquire Gi(ξ). Some of the MMSE functions for specific constellation are presented

in [1] and the others can be derived from the general expression. Using Gi(ξ), the

MWF can be illustrated better with just a few steps shown below:

1. It is similar to the regular WF. For all the channels, set up a unit based vessel

solid up to a height of 1/γi.

2. Determine η, pour ”mercury” into all the vessels until the level of mercury

(including the solid part) reaches Gi(η/γi)/γi.

3. Pour ”water” into all the vessels until the level of water reaches 1/η.

4. The height of water over the mercury is the OPA p∗i for the ith channel.

The graphic interpretation is in Figure 2.3. Pouring mercury onto a vessel amounts

to raising the noise level in that channel by an amount that depends on the input
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Figure 2.3: Graphic interpretation of the MWF [1].

distribution [1]. It can also be interpreted as the gap to ideal Gaussian input.

More details on the MWF are discussed in Chapter 5.

2.5 Convex Optimization

Convex optimization is a useful tool for min/max problems. It requires the ob-

jective and constraints to be convex [35]. More importantly, it is integrated into

softwares, such as Matlab, and a package called CVX is available [36]. It can be

used to solve convex optimization problems directly, but the convex problem and

constraints need to be properly formed first. However, it cannot recognize convex

functions properly every time, therefore they have to be presented in a modified

form so that they can be recognized as convex.

At first, we used the CVX for simulations, but the results were not satisfying and

there were gaps on the curves which were abnormal. After some efforts, it was

decided to not use the CVX anymore. The bisection method is used instead to

solve the power allocation optimization problems.

2.6 The Bisection Method

The bisection method is an approach of finding the root of a function1. The

method itself is quite simple but powerful. When considering a monotonically

decreasing function f(x), the bisection method can be applied to obtain the root

of the equation f(x) = 0. A graphic interpretaion is shown in Figure 2.4,

1Not necessarily a monotonic function. In our case, the function is monotonic.
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Figure 2.4: A graphic interpretation of the bisection method.

With the graphic interpretation, the bisection method procedure is shown below

[35]:

1. Set lower bound l, upper bound u and precision ε, and make sure that the root

of the equation is between l and u.

2. Select the middle point m = (l + u)/2.

3. Calculate f(m), if f(m) = 0, then m is the root of the equation. If f(m) < 0,

set u = m, else set l = m.

4. If f(m) 6= 0, repeat step 2 and 3 until u− l < ε, then the middle point m is the

root of the equation with precision ε.

As for programming, an intuitive flow chart for the bisection method is shown in

fugure 2.5.

In the thesis, the bisection method is the foundation for the evaluation of the OPA.

Considering n parallel channels, the following equation is obtained with (2.8), (2.9)

and the normalized power constraint:

n∑
i=1,γi>η

1

nγi
MMSE−1i

(
η

γi

)
= 1 (2.12)

Two parallel channels is a specific scenario considered in the thesis. In that case,

there are two terms that contain MMSE−1(·), which makes it impossible to solve

the equation analytically. This is where the bisection method is utilized several

times. It includes an external bisection and two internal bisections. The details

can be found in Chapter 4.
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Figure 2.5: Flow chart of the bisection algorithm.

2.7 Sphere Packing Approximation

Once the OPA is obtained via the bisection method, it is substituted into the

constellation capacity expression in [13] and [14]. In order to evaluate the complex

expression of the constellation capacity, an approximation via the sphere packing

method is derived.

The sphere-packing method is discussed in [2], [13] and [21]. It is an intuitive ap-

proach that connects capacity, constellation order and SNR together. The models

of sphere packing and the method on how the spheres fit can be found in [37]. It

considers the received signal space as a sphere. Noise sphere, codeword region and

codewords are inside of the sphere. The received signal is most likely situated on

the noise sphere’s surface [2], so that the noise spheres cannot overlap with each

other. If not, codewords cannot be distinguished, and the receiver may not be able

to decode it correctly. For an n-symbol codeword, the number of codewords that
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can be transmitted reliably is just the number of non-overlapped noise spheres

inside the received signal sphere [2]:

N =
α(
√
nP + nσ2)n

α(
√
nσ2)n

= (1 + ρ)n/2 (2.13)

where P is the maximum power of each symbol, σ2 is the average noise power per

symbol and ρ is the SNR. α =
πn/2

Γ(n
2

+ 1)
, and Γ(·) is the Gamma function.

Therefore in this case channel capacity can be expressed as:

C =
1

n
logN =

1

2
log(1 + ρ) [bits/s/Hz] (2.14)

After taking M -PAM constellation into cosideration, the number of codewords

becomes Mn. Assuming channel noise is small, the codeword region volume can

be expressed as:

VM =
α(
√
nP )n

Mn
= α

(√
nP

M

)n

(2.15)

If the noise sphere is sufficiently small, then the codeword region can contain a

number of noise spheres. This indicates that there are additional codewords in the

same codeword region, as shown in Figure 2.6:

Figure 2.6: Codeword region with additional codewords [2].
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Then the number of noise spheres that can fit into the codeword region is:(
nP
M2 + nσ2

nσ2

)n/2

=
(

1 +
ρ

M2

)n/2
(2.16)

Therefore the number of codewords for M -PAM constellation becomes:

Nc =
N(

1 + ρ
M2

)n/2 =
(1 + ρ)n/2(
1 + ρ

M2

)n/2 (2.17)

In this case, the constellation capacity for M -PAM can be approximated as [2]:

Cc ≈
1

n
logNc ≈

1

2
log

1 + ρ

1 + ρ
M2

(2.18)

This approximation of the constellation capacity is much easier to evaluate com-

pared with (2.5). The OPA in Chapter 6 is derived based on this approximation

using convex optimization. It also has a decent performance compared with the

original expression, and more of its details can be found in Chapter 6.

2.8 Summary

Channel capacity is discussed in this chapter, more specifically, Gaussian chan-

nel capacity and then the constellation capacity. There is an integral inside the

constellation capacity expression which does not have a closed form solution. The

Monte Carlo integration is used to evaluate it. The sphere packing method is

used to obtain an approximation of the constellation capacity since its original

expression is more complicated to evaluate.

With the sphere packing approximation of the constellation capacity, convex op-

timization can be used to compute the OPA. However, problems arise when using

the CVX to compute the OPA, there are abnormal gaps on the curves which are

discussed in Chapter 5. Therefore, the OPA under a total power constraint is com-

puted using the bisection method, since the OPA function is monotonic. Once the

OPA is obtained, it is substituted into the constellation capacity to compare its

performance with the MWF, which is the OPA for parallel channels with arbitrary

input distributions. The regular WF is also briefly discussed in this chapter.
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Moreover, a table is made with explanations of certain terms that appear in this

chapter.

Table 2.1: Explanation of certain methods and terms.

Terms Page Purpose
Channel capacity 9 Maximum transmission rate

CVX 14 A toolbox in MATLAB to solve convex
optimization problems

Bisection 14 Root-finding algorithm
OPA 32 Optimal power allocation

Constellation capacity 46 Capacity of constellation-constrained channels
Monte Carlo method 48 Using random sampling to evaluate an integral

Sphere packing
approximation

49 An approximation of the constellation capacity
based on a sphere packing argument

AOPA 53 Approximated optimal power allocation



Chapter 3

The OPA for Finite

Constellations: The MWF

3.1 System Model of Parallel Channels

For a system with n parallel channels, the system model is shown in Figure 3.1,

Figure 3.1: Parallel channels model (adopted from [1]).

It can be expressed as,

yi = hixi + wi (3.1)

20
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where wi is i.i.d Gaussian noise, with zero mean and unit variance, hi is the fixed

channel gain which varies for different channels, xi is the channel input and yi is

the channel output.

3.2 Power Normalization

The power constraint can be expressed as

1

n

n∑
i=1

E[|xi|2] ≤ P (3.2)

where E(·) is the statistical expectation, and P is the average power constraint.

It is convenient to introduce normalized unit-power inputs si. Its relationship with

the original input xi is

xi =
√
piPsi (3.3)

where pi is the power allocation of si, so that the new power constraint can be

written as

1

n

n∑
i=1

pi ≤ 1 (3.4)

For parallel channels, the following quantity

γi = P |hi|2 (3.5)

is a measure of the strength of the channel, piγi is the SNR of the i-th channel.

Therefore γi is the SNR for uniform power allocation (pi = 1).

3.3 Problem Formulation

In order to increase the spectral efficiency, modulation-constrained mutual infor-

mation is maximized via the OPA. This optimization problem can be expressed
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as:

[p∗1, ..., p
∗
n] = arg max

1

n

n∑
i=1

Ii(piγi), s.t.
1

n

n∑
i=1

pi = 1 (3.6)

where Ii(piγi) is the mutual information and piγi is the SNR mentioned above.

As seen in Theorem 3.2, an important part of this OPA process is the MMSE

functions. The MMSE estimate of si can be expressed as

ŝi(yi, ρ) = E[si|
√
ρsi + wi = yi] (3.7)

where ρ is the SNR and si is the unit-power input. Therefore the corresponding

mean-square error can be written as

MMSEi(ρ) = E[|si − ŝi(
√
ρsi + wi, ρ)|2] (3.8)

where MMSEi(ρ) ∈ [0, 1] since si has unit power.

The relationship between mutual information and MMSE functions is introduced

in [1], as shown below:

Theorem 3.1. For any distribution of si (not dependent on ρ)

d

dρ
Ii(ρ) = MMSEi(ρ) (3.9)

The OPA is derived based on the Theorem 3.1 above.

Theorem 3.2. [1] The solution to the OPA problem in (3.6) can be expressed as:

p∗i = 0, γi 6 η (3.10)

γiMMSEi(p
∗
i γi) = η, γi > η (3.11)

with η > 0 such that

1

n

∑
i

p∗i = 1 (3.12)

Proof. See Appendix A.2.
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The OPA can be expressed more explicitly as:

p∗i =
1

γi
MMSE−1i

(
min

{
1,
η

γi

})
, i = 1, ..., n (3.13)

where MMSE−1i (·) is the inverse of MMSE functions.

This optimization problem can be solved via KKT conditions, as discussed in the

Appendix A.2. A different approach of the proof can be found in the Appendix of

[1].

The parameter η can be determined by the power normalization (3.12), which can

be further expanded as,

n∑
i=1,γi>η

1

nγi
MMSE−1i

(
η

γi

)
= 1 (3.14)

From the two expressions above, it is concluded that η can be solved from (3.14)

and then substituted into (3.13) to obtain the OPA. MMSE expressions for specific

constellations are introduced in the next section.

3.4 MMSE Functions for Different Constellations

For Gaussian inputs, MMSE function can be written as [1],

MMSEi(ρ) =
1

1 + ρ
(3.15)

so that the inverse of MMSE is

MMSE−1i (ξ) =
1

ξ
− 1 (3.16)

and Theorem 3.2 reduces to the well-known WF [1],

pi = 0, ri 6 η (3.17)

pi =
1

η
− 1

γi
, γi > η (3.18)

where 1
η

is the water level.
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For discrete constellations such as M -PAM (Pulse Amplitude Modulation) and M -

QAM (Quadrature Amplitude Modulation), the constellation points are denoted

by cL, where L = 1, 2, ...,M . Each of them is taken with a probabilty of qL (for

most cases, qL = 1/M), which sums up to 1.

For M -PAM,

cL = (2L− 1−M)

√
3

M2 − 1
(3.19)

For M -QAM, it is made up of two
√
M -PAM constellations in quadrature, each

with half the power.

With Gaussian noise, the MMSE estimate of input si is [1],

ŝ(y, ρ) =

∑M
L=1 qLcLe

−|y−√ρcL|2∑M
L=1 qLe

−|y−√ρcL|2
(3.20)

The general form of MMSE expression is

MMSE(ρ) =

∫ M∑
L=1

qL|cL − ŝ(y, ρ)|2 e
−|y−√ρcL|2

√
π

dy (3.21)

= 1− 1√
π

∫ |∑M
L=1 qLcLe

−|y−√ρcL|2|2∑M
L=1 qLe

−|y−√ρcL|2
dy (3.22)

For (3.21) and (3.22), there is an error discovered in [1]. The denominator is

supposed to be
√
π instead of π, and it was found when the equation (3.22) was

expanded and compared with the expressions of specific constellations.

For BPSK, which is equivalent to 2-PAM, (3.22) can be expanded as

MMSE(ρ) = 1−
∫ +∞

−∞
tanh(2

√
ρξ)

e−(ξ−
√
ρ)2

√
π

dξ (3.23)

QPSK (or equivalently 4-QAM) consists of two BPSK in quadrature, each with

half the power of BPSK. As a result, the MMSE expression of QPSK or 4-QAM

can be calculated from that of BPSK as follows:

MMSEQPSK(ρ) = MMSEBPSK
(ρ

2

)
(3.24)
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For 4-PAM, (3.22) can be expanded as

MMSE(ρ) = 1−
∫ +∞

−∞

(3e−8ρ/5 sinh(6
√

ρ
5
ξ) + sinh(2

√
ρ
5
ξ))2

e−8ρ/5 cosh(6
√

ρ
5
ξ) + cosh(2

√
ρ
5
ξ)

e−ξ
2−ρ/5

10
√
π
dξ (3.25)

There is another error found in (27) of [1]. For its numerator, it is supposed

to be 3 times e−8ρ/5 sinh(6
√

ρ
5
ξ) instead of just e−8ρ/5 sinh(6

√
ρ
5
ξ). The original

expression from [1] was used for Figure 3.2 first, but it turned out that parts of

the 4-PAM and 16-QAM curves are below zero which is impossible for a MMSE

function. The equation (3.22) was expanded carefully and it was discovered that

there is a ’3’ missing right after the left bracket in the numerator.

16-QAM consists of two 4-PAM in quadrature, each with half the power of 4-

PAM. As a result, the MMSE expression of 16-QAM can be calculated from that

of 4-PAM as follows:

MMSE16-QAM(ρ) = MMSE4-PAM
(ρ

2

)
(3.26)

From (3.23), it is straightforward to see that the right half of the integrand,

e−(ξ−
√
ρ)2

√
π

, is a Gaussian probability density function with the mean of
√
ρ and

the variance of 1/
√

2. Therefore, the range of the integral is decided to be trun-

cated due to the bell shape of Gaussian probability density function. It is excessive

to integrate over −∞ to ∞ since Gaussian probability density function decays to

zero quickly, and small arguments do not make much contribution to the integral.

Table 3.1: Truncation of the interval of integration for BPSK.

ρ [ρ− 3σ, ρ+ 3σ] [ρ− 5σ, ρ+ 5σ] [ρ− 10σ, ρ+ 10σ] [−∞,∞]
0.1 0.8310 0.8319 0.8319 0.8319
1 0.2310 0.2310 0.2310 0.2310
10 0.0027 1.2038·10−5 1.2022·10−5 1.2037·10−5

Table 3.1 shows that the interval [ρ−5σ, ρ+5σ] is sufficient for the integration. The

difference with the original result which is integrated over −∞ to ∞ is negligible.

The same applies to (3.25), where e−ξ
2

√
π

is Gaussian probability density function

with the mean of 0 and the variance of 1/
√

2. The same method was used to

truncate the range of the integral in (3.25).

Table 3.2 shows that the interval [ρ−5σ, ρ+5σ] is sufficient for the integration. The

difference with the original result which is integrated over −∞ to ∞ is negligible.
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Table 3.2: Truncation of the interval of integration for QPSK.

ρ [ρ− 3σ, ρ+ 3σ] [ρ− 5σ, ρ+ 5σ] [ρ− 10σ, ρ+ 10σ] [−∞,∞]
0.1 0.9088 0.9087 0.9087 0.9087
1 0.4496 0.4496 0.4496 0.4496
10 0.0035 0.0024 0.0024 0.0024

All the MMSE functions above were used to obtain a graph of MMSE(ρ) for

different constellations, along with Gaussian input. The graph was compared

with its counterpart in [1], no difference was observed.
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Figure 3.2: MMSE versus SNR for different constellations.

For Figure 3.2, it is not easy to see the relationship between BPSK and QPSK

from (3.24) or between 4-PAM and 16-QAM from (3.26). However, this is not the

case in Figure 3.3, since ρ is in dB scale. It is straightforward to see that there

is a 3 dB difference horizontally between BPSK and QPSK, and this is the same

between 4-PAM and 16-QAM. Figure 3.4 uses logarithmic scale instead, and it

shows the difference of MMSE in the high SNR region more clearly. For Gaussian

inputs in (3.15), it is easy to see that Gaussian curve drops to 0 in the slowest

way.

At first, linear scale was used on x-axis but the curves dropped to 0 too quickly

so that it was difficult to observe the differences in the high SNR region. The dB

scale was used for SNR instead, the differences are more clearly seen this way. For
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y-axis, linear scale was used initially. However, it did not behave well in the high

SNR region, where the values of MMSE are extremely small and the differences

between the curves cannot be observed. As a result, logarithmic scale is used for

y-axis as a complement so that all the MMSE curves perform well in both the low

and the high SNR regions.

Table 3.3: Values of MMSE of BPSK using (3.23).

ρ[dB] -20 -10 0 10 20

MMSEBPSK(ρ) 0.9804 0.8309 0.2310 1.2037e-05 -8.2021e-17

MMSEQPSK(ρ) 0.9901 0.9087 0.4496 0.0024 -8.2021e-17

In order to observe the behavior of the curves in the high SNR region, SNR was

extended to 100. However, abnormal behaviors arose in the process, as shown

in Table 3.3. The value of MMSE at the point ρ = 20 dB is negative which

is obviously incorrect. The abnormal behaviors result from the loss of precision

during the process of calculation. Eq. (3.23) cannot be evaluated accurately when

the value of the integral is sufficiently close to 1. Therefore, MMSE functions are

presented in a modified form in order to avoid such issue.
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Figure 3.3: MMSE versus SNR[dB] for different constellations with y-axis in
linear scale.
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Figure 3.4: MMSE versus SNR[dB] for different constellations with y-axis in
logarithmic scale.

As shown in Figure 3.3 and 3.4, the curves all behave nicely after the MMSE

expression (3.21) is used. No abnormal behavior is found. Figure 3.4 is a com-

plement of Figure 3.3, it clearly shows the differences of MMSE among various

constellations in the high SNR region.

3.5 Low- and High-Power Expansions

For proper complex constellations (quadrature symmetric) such as QPSK and 16-

QAM, when ρ is small, the MMSE functions behave as: [1]

MMSE(ρ) = 1− ρ+O(ρ2) (3.27)

This is the low-power expansion for MMSE expressions, and Gaussian inputs be-

have the same as this. Big O here stands for infinitesimal asymtotics, which means

that the absolute value of the error |MMSE(ρ)− (1− ρ)| < M · ρ2 when ρ is suffi-

ciently close to zero, and M is a positive constant.
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On the contrary, for large ρ, Gaussian inputs can be expanded as: [1]

MMSE(ρ) =
1

ρ
+O(1/ρ2) (3.28)

which is the high-power expansion for Gaussian inputs.

For other constellations, the high-power expansion is mainly decided by the mini-

mum distance defined below:

d = min
k 6=l
|ck − cl| (3.29)

which can be calculated for M -PAM through (3.19). It is similar to other constel-

lations, and it can be calculated through the power normalization (3.12).

Theorem 3.3. For BPSK and QPSK, the high-power expansion for MMSE(ρ) is:

[1]

MMSE(ρ) =
e−

d2

4
ρ

d
√
ρ

(
√
π +

∞∑
l=1

bl
(d2ρ)l

)
(3.30)

where bl is

bl = (−1)l
Z(2l + 1, 1/4)− Z(2l + 1, 3/4)√

π8l
×

l∏
q=1

(2q − 1) (3.31)

and Z stands for the generalized Rieman Zeta function:

Z(q, ξ) =
∞∑
k=0

(k + ξ)−q (3.32)

Proof. See Appendix B of [1].

For QPSK, the minimum distance d =
√

2. The expansion of (3.30) is truncated

at l = 1. so the high-power expansion above can be written as

MMSE(ρ) =
e−

ρ
2

√
2ρ

(√
π − 2.1

ρ

)
(3.33)

The derivation of (3.30) can be found in the Appendix A.3.
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Figure 3.5: Low-power expansion, high-power expansion and exact values of
MMSE for QPSK.

Low-power expansion, high-power expansion and exact values of MMSE for QPSK

are depicted in the same graph for comparison. As shown in Figure 3.5, the low-

power expansion fits well when ρ is small, while the high-power expansion fits well

when ρ is high.

3.6 Summary

The system model for parallel channels is introduced in this chapter, along with

the power constraint and its normalization.

The general expression for the OPA is presented in this chapter, which is to maxi-

mize the mutual information. For parallel channels, the OPA is related to MMSE

functions. The expression turns into that of the WF policy if the input is Gaussian.

The general expression for MMSE is stated, along with expressions for several spe-

cific constellations. High and low power expansion of MMSE are discussed in this

chapter as well. MMSE for different constellations are plotted against SNR on the

same figure to validate the simulation codes, and the results agree well with those

in [1].
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Several errors are found in [1], and there are restrictions to some of the figures

in [1] as well. They are discussed in this chapter, and errors are corrected. The

reason of the restriction lies in the structure of the MMSE expression. A loss of

precision is found during the simulation process, it becomes a problem during the

derivation of the OPA in Chapter 4. As a result, MMSE functions are presented

in a modified form to avoid such problem.



Chapter 4

Computation of the OPA

4.1 The Mercury/Waterfilling

The regular waterfilling (WF) policy, which is the OPA with Gaussian inputs, is

discussed above in (3.17) and (3.18). However in the present case, the input dis-

tribution is not Gaussian, and inputs with discrete constellations are used instead

so that the mercury/waterfilling (MWF) policy is introduced in [1][29][30].

The MWF is similar to the regular WF, however the difference is that the MWF

pours ”mercury” first and then ”water”. As discussed in Chapter 2, a new function

Gi(ξ) for arbitrary input distribution is defined as:

Gi(ξ) = 1/ξ −MMSE−1i (ξ), ξ ∈ [0, 1] (4.1)

Gi(ξ) = 1, ξ > 1 (4.2)

As it is shown in (3.16), for Gaussian input, Gi(ξ) = 1 holds for all ξ. For other

inputs with discrete constellations, the MMSE−1(·) for specific constellations are

required in order to obtain Gi(ξ). Using Gi(ξ), the MWF can be presented more

effectively with a few steps, whose graphic interpretation is shown in Figure 2.3.

1. Similar to the regular WF, for all the channels, set up a unit-base vessel solid

up to a height of 1/γi.

2. Determine η, pour mercury into all the vessels until the level of mercury (in-

cluding the solid part) reaches Gi(η/γi)/γi.

32
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3. Pour water into all the vessels until the level of water reaches 1/η.

4. The height of water over the mercury is the OPA p∗i for the ith channel.

The MWF is straightforward with all the steps above, and they are only applied to

those channels with η ≤ γi. As for the channels that do not satisfy this inequality,

no mercury is poured into such channels, and the power allocated is zero.

Mercury here serves as an artificial noise to emulate finite constellations. It can

also be interpreted as the gap to the ideal Gaussian input. This approach has an

advantage that it gives an exact OPA for any input constellation instead of just

an approximation. This is why it is called ”exact MWF”.

4.2 Calculating the Water Level 1/η

With everything stated above, the exact MWF OPA for different constellations can

now be calculated if η is known. To compute it, a setting of two parallel channels

is considered first, and then the case of three channels is used for comparison.

For the general case with n parallel channels, (3.14) can be used for the calculation

of the MWF OPA. A special case of two parallel channels is considered in the thesis,

with channel gains γ1 and γ2 respectively (γ1 > γ2). For two parallel channels,

(3.14) can be expressed as:

1

2γ1
MMSE−1

(
η

γ1

)
+

1

2γ2
MMSE−1

(
η

γ2

)
= 1 (4.3)

where γ1 > γ2,
η
γ1

< η
γ2

, and since MMSE−1(·) is a monotonically decreasing

function, the following can be obtained:

1

2γ1
MMSE−1

(
η

γ1

)
+

1

2γ2
MMSE−1

(
η

γ1

)
> 1 (4.4)

1

2γ1
MMSE−1

(
η

γ2

)
+

1

2γ2
MMSE−1

(
η

γ2

)
< 1 (4.5)

With inequalities (4.4) and (4.5), upper and lower bounds can be derived for η:

l = γ2MMSE

(
2γ1γ2
γ1 + γ2

)
< η < γ1MMSE

(
2γ1γ2
γ1 + γ2

)
= u (4.6)
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In order to calculate η, equation (4.3) has to be solved. The left hand side of (4.3)

is monotonically decreasing, therefore the bisection method can be used to solve

it for η.

In order to obtain the upper bound for the besection of MMSE−1(·), Tables 4.1

and 4.2 are made consisting of x and the values of corresponding MMSE(x) so

that the upper bound can be decided more efficiently.

Table 4.1: Specific values of MMSEBPSK(·) and the values of their correspond-
ing input x.

x MMSE(x)
0 1

1.6811 10−1

3.6991 10−2

5.8164 10−3

7.9775 10−4

10.1243 10−5

11.9915 10−6

13.3003 10−7

Table 4.2: Specific values of MMSEQPSK(·) and the values of their correspond-
ing input x.

x MMSE(x)
0 1

3.3622 10−1

7.3983 10−2

11.6338 10−3

15.9659 10−4

20.3554 10−5

23.9831 10−6

26.6005 10−7

4.3 The Internal/External Bisection Method

The bisection method is a way of finding the root by bisecting the interval re-

peatedly until a specific precision is satisfied [54]. However, it works under one

condition: the function it operates on has to be monotonic. For our problem, the

function is MMSE−1(·), and it fits the criteria since it is a monotonically decreasing

function.
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The bisection method is simple and robust. In our case, it takes more time to pro-

cess due to the internal and external bisections required. For the present problem,

the upper and lower bounds derived for η result in a reasonable running time of

codes, since the bounds are quite tight.

A new function is formed based on (4.3):

f(η) =
1

2γ1
MMSE−1

(
η

γ1

)
+

1

2γ2
MMSE−1

(
η

γ2

)
− 1 (4.7)

First, with the upper and lower bounds from (4.6), a middle point was calculated

to be
γ1 + γ2

2
MMSE

(
2γ1γ2
γ1 + γ2

)
. It is substituted into (4.7) to compute the value

of f(η) and compare with 0.

On the other hand, there are two MMSE−1(·) in (4.3) which means two inter-

nal bisections are needed. They have to be calculated by inverting MMSE func-

tions using the bisection method as well, since there is no explicit expression for

MMSE−1(·) for any constellation.

Consider ρi = MMSE−1i

(
η
γi

)
, and a new function is formed:

fi(ρi) = MMSEi(ρi)−
η

γi
, i = 1, ..., n (4.8)

where n = 2 in this case.

In order to calculate MMSE−1(·) through bisection, an upper bound is needed for

ρi. The upper bound for ρi can be determined as long as it satisfies the inequality

MMSEi(ρ
upper
i ) <

ηlower
γ1

.

An algorithm of obtaining the MWF OPA is developed based on the bisection

method. Its specific steps are presented as follows, along with an intuitive flow

chart shown in Figure 4.1.

1. Set an upper bound u and a lower bound l for η for external bisection according

to (4.6).

2. Compute the middle point m =
l + u

2
.
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3. For the internal bisection, set the lower bound of ρi to be li = 0 since

MMSE−1(·) ∈ [0,∞), and set the upper bound of ρi for BPSK and QPSK accord-

ing to Table 4.1 and 4.2. In our case 1, the upper bound is set to be ui = 3000, so

that it satisfies:

MMSEi(ρupper) ≤
ηlower
γ1

=
γ2
γ1

MMSE

(
2γ1γ2
γ1 + γ2

)
(4.9)

4. The middle point for the internal bisection is mi =
ui + li

2
. Compute fi(mi)

and compare with 0. If fi(mi) = 0, then ρi = mi. Else, set the new upper bound

to be ui = mi if fi(mi) < 0, otherwise set the new lower bound to be li = mi.

5. Repeat step 4 until ui− li ≤ ε is fit and ρi = mi, where ε is the precision of the

internal bisection.

6. Substitute ρi that obtained from step 3 into (4.7) for the external bisection. If

f(m) = 0, then η = m. Else, set the new upper bound to be u = m if f(m) < 0,

otherwise set the new lower bound to be l = m.

7. Repeat step 2-6 until |f(m)| ≤ ε is fit and η = m, where ε is the precision of

the external bisection.

However, an issue emerged when using Matlab to program MMSE functions. Ex-

pression (3.22) was used to evaluate MMSE functions initially, but a loss of pre-

cision was found. The curve was not monotonic anymore when ρ was high. It

was realized that the problem lied in the structure of the expression. Numerical

computation is not sufficiently accurate when the value of the integral in (3.22) is

extremely close to 1. There was a loss of precision in the process of calculation.

As a result, expression (3.21) was used instead. This issue occurred several times,

which is discussed thoroughly in the subsequent chapters.

1QPSK, 16-QAM, 64-QAM and 256-QAM inputs with channel gains |h1|2 = 2|h2|2,|h1|2 =
10|h2|2 and |h1|2 = 100|h2|2 are considered in the thesis.
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Figure 4.1: Flow chart of the general internal/external bisection algorithm to
solve (4.3).

4.4 Graphic Interpretation of Theorem 3.2

The internal/external bisection algorithm computes η, as required in Theorem 3.2.

Hence, we are now able to provide its graphic illustration. The term γiMMSEi(piγi)
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is plotted versus pi. A horizontal line y=η is drawn as well, where η is solved

using the bisection method mentioned above. According to Theorem 3.2, it is

straightforward to see that the intersections between curves, and the horizontal

line correspond to the OPA.

Three different scenarios are considered:

Scenario #1: Two channels with γ1 = 6.3 (8 dB) and γ2 = 2 (3 dB), and inputs

of both channels are QPSK.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

1

2

3

4

5

6

7

 

 

X: 0.72
Y: 0.3164

p
i

γ iM
M

S
E

(p
iγ i)

X: 1.28
Y: 0.3253

ch1
ch2
η

η=0.32

Figure 4.2: γ1 = 6.3, γ2 = 2 with QPSK inputs.

The parameter η was calculated to be 0.32. As shown in Figure 4.2, with η = 0.32,

the OPA here is p∗1 = 0.7, p∗2 = 1.3.

Scenario #2: Two channels with γ1 = 1 (0 dB) and γ2 = 0.1 (-10 dB), and inputs

of both channels are QPSK.

The parameter η was calculated to be 0.23. As it is shown in Figure 4.3, with

η = 0.23, the OPA here is p∗1 = 2, p∗2 = 0.
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Figure 4.3: γ1 = 1, γ2 = 0.1 with QPSK inputs.

Scenario #3: Three channels with γ1 = γ2 = γ3 = 2 (3 dB), inputs are BPSK,

QPSK and Gaussian respectively.
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Figure 4.4: γ1 = γ2 = γ3 = 2 with BPSK, QPSK and Gaussian inputs
respectively.
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The parameter η was calculated to be 0.48. As it is shown in Figure 4.4, with

η = 0.48, the OPA here is p∗1 = 0.47, p∗2 = 0.96, p∗3 = 1.57.

With (4.3), three different precisions were utilized for the bisection method, whose

results are listed in Table 4.3.

Table 4.3: Compute η with different precisions εi for different scenarios.

ε1 = 10−3 ε2 = 10−5 ε3 = 10−7

η1 0.3234 0.3230 0.3230
η2 0.2306 0.2310 0.2310
η3 0.4858 0.4857 0.4857

According to Table 4.3, 10−5 is set to be the precision of the bisection method.

Higher precision results in more steps, which are unnecessary as it takes more time

to process, but gives almost the same OPA.

4.5 A High-Power Approximation

A high-power approximation of the MWF is introduced as follows, which is simpler

and validates the exact MWF at high SNR. Consider 2 channels with gains |h2|2 =

2|h1|2 and with QPSK inputs on both channels. Eq. (3.30) can be simplified as

[1]:

MMSE(ρ) ≈ e−
d2

4
ρ

d
√
ρ/π

(4.10)

Now, substituting (4.10) into Theorem 3.2, the OPA can be expressed as:

|hi|
e−p

∗
i |hi|2P/2√
p∗i

= η, i = 1, 2 (4.11)

subject to p∗1 + p∗2 = 2.

There is another error in [1] that was discovered: it should be e−p
∗
i |hi|2P/2 at the

numerator instead of e−p
∗
i |hi|2P . A detailed derivation can be found in the Appendix

A.4.
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Using (4.11), the following equation can be derived:

γ1
e−

1
2
p∗1γ1√

2p∗1γ1/π
= γ2

e−
1
2
p∗2γ2√

2p∗2γ2/π
(4.12)

where γ2 = 2γ1 holds, since |h2|2 = 2|h1|2 and γi = P |hi|2. The equation can be

further simplified as

e−p
∗
1γ1

p∗1
=

2e−2(2−p
∗
1)γ1

2− p∗1
(4.13)

with p∗1 + p∗2 = 2. From (4.13), the following function can be formed:

F (p∗1) =
e−p

∗
1γ1

p∗1
− 2e−2(2−p

∗
1)γ1

2− p∗1
(4.14)

The terms e−p
∗
i γi and (2 − p∗1) decreases with p∗1. On the contrary, 2e−2(2−p

∗
1)γi

increases with p∗1. As a result, the first term of (4.14) decreases with p∗1, and

the second term
2e−2(2−p

∗
1)γ1

2− p∗1
increases with p∗1. Overall, F (p∗1) is a monotonically

decreasing function of p∗1, so that the bisection method can be utilized to solve

F (p∗1) = 0 for p∗i .

As shown in Figure 4.5, the OPA of the exact MWF and its high-power approxima-

tion are symmetric with respect to pi = 1. They start to overlap from |h1|2P = 2.5,

and they are almost the same when |h1|2P is higher. Figure 4.5 is similar to that

in [1], but one disadvantage is that it stops at |h1|2P = 8. In order to see how

the curves converge, the x-axis is extended to 100 to observe the performances at

higher SNR.

In the process of trying to extend x-axis to 100, some problems were encountered

as discussed below.

1. At first, a precision for the bisection method was set and then the number of

iterations were obtained from the precision. This only works when |h1|2P is not

too high, such as the case in Figure 4.5. However, in the process of extending x-

axis to 100, it is discovered to be unreliable. The interval of η used for bisection is

based on (4.6), where the upper and lower bounds change dynamically with SNR.



Chapter 4. Computation of the OPA 42

0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

h
i
2*P

p i

 

 
Ch2

Ch2

Ch1

Ch1

Exact mercury/waterfilling
High−power Approximation

Figure 4.5: Power allocation for two channels with |h2|2 = 2|h1|2, both with
QPSK inputs, versus |h1|2P .

The number of iterations for bisection, k, is determined by the range as follows:

k =

⌈
log2

(
u− l
ε

)⌉
(4.15)

where u is the upper bound of η, l is the lower bound of η, ε is the precision of

the external bisection method.

The number of iterations k shrinks as the range u− l becomes smaller, and even-

tually turns into 1, which is insufficient for the bisection method to find the root.

Therefore k is set to be 20, and the stopping criteria for the bisection method in

this case is:

|f(η)| =
∣∣∣∣ 1

2γ1
MMSE−1

(
η

γ1

)
+

1

2γ2
MMSE−1

(
η

γ2

)
− 1

∣∣∣∣ < ε = 10−3 (4.16)
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Figure 4.6: The numerically-evaluated OPA of the MWF using (3.23).

2. As shown in Figure 4.6, the curves drop to 0 at high SNR, which is due to

the structure of (3.23). A loss of precision is found during the calculation. As

discussed earlier, numerical computation cannot give an accurate result when the

integral in (3.23) is extremely close to 1. Therefore expression (3.23) is rewritten

as:

MMSE(ρ) =

∫ ∞
−∞

2

1 + e4
√
ρξ
· e

(−ξ−√ρ)2

√
π

dξ (4.17)

where there is no subtraction between two almost identical terms.

The same manipulation is done to (3.25) as well. However, after some effort,

we find that it can not be simplified into a nice form as (4.17). Therefore, the

manipulation only applies to 2-PAM. The general MMSE expression (3.21) has to

be utilized for higher order constellations.

The x-axis can now be extended to 100 using (4.17). The linear scale was used at

first, but the curves’ behaviors cannot be observed clearly in the low SNR region,

therefore the x-axis was changed into dB scale so it would be more explicit at low

SNR.
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It can be seen clearly from Figure 4.7 that the curves nearly fully saturate at

|h1|2P = 100. As P →∞, the power allocation converges to the power-equalizing

solution p∗1 = 4/3 and p∗2 = 2/3, [1]. As P → 0, the curve of the MWF policy

shows that all the power is assigned to the stronger sub-channel, and it aligns well

with the classic WF policy.

In practice, the MWF OPA can be pre-computed and tabulated. It saves the

time of having to compute it every time the channel changes. However, it is only

manageable for a few parallel channels. For a larger number of parallel channels,

the size of the table will increase exponentially, making it impractical to construct

and store such table.
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Figure 4.7: Change x-axis into dB scale.

4.6 Summary

An approach of calculating the OPA of the MWF for channels with arbitrary input

distributions is presented in this chapter, which is based on the internal/external

bisection algorithm. For such algorithm to start, upper and lower bounds needs

to be derived first, which change dynamically with respect to the SNR. The foun-

dation of this approach, the internal/external bisection algorithm, is discussed at

length in this chapter.
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A graphic interpretation of how to obtain the OPA is presented, and several sce-

narios are considered with different channel gains and different constellations. Cal-

culation of the OPA becomes a straightforward numerical task.

A high-power approximation is derived using the high-power expansion of MMSE

functions from the last chapter. Once its OPA is derived, they are substituted

into the expression of constellation capacity in [13]. High-power approximation is

plotted in the same figure for comparison. It fits well with the MWF in the high

SNR region.

The restrictions discussed in the last chapter occur here. The curves all drop to

zero when the SNR is extended to 100. Specific MMSE expressions for different

constellations were used at first, and then it was realized that the problem was

their structure. The general MMSE expression (3.21) was used instead and then

SNR can be extended to 100 without any abnormal behavior.



Chapter 5

Approximations of the

Constellation Capacity

5.1 The Constellation-Constrained Capacity

Consider a communication system with n parallel channels (as shown in Figure

3.1) with Gaussian inputs, the channel capacity is,

C =
1

2
log2(1 + ρ) (5.1)

where ρ is the SNR of the channel.

In practice, discrete alphabets are utilized to transmit information efficiently.

Those discrete alphabets are formed into constellations. The maximum reliable

transmission rate available with a given constellation is the constellation capacity.

It is lower than the channel capacity C and upper-bounded by the modulation

alphabet entropy [14]:

CM ≤ min(C, log2M) (5.2)

where M is the constellation cardinality.

For M -PAM, the constellation points can be found through power constraint in

(3.2). The distance between two constellation points is:

dij = ci − cj (5.3)

46
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where ci and cj are constellation points, and expression of the constellation capac-

ity for M -PAM can be found in [13]:

CM = log2M −
∑
j

1

M

∫ ∞
−∞

1√
2πσ2

e−
z2

2σ2 log2

∑
i

e
−d2ij
2σ2 e−

zdij

σ2 dz (5.4)

where σ2 = N is the noise power, and the average transmit power is normalized

to be 1, so that SNR = 1
σ2 .

Some useful properties can be deduced from (5.4):

1. In order to calculate the constellation capacity CM , the constellation order M

and noise power σ2 must be known. To find the distance between two points (dij),

the power constraint must be known, in addition to the constellation geometry.

2. As shown in (5.2), the first term log2M is the modulation alphabet entropy,

which is the upper bound of the constellation capacity CM . It is achieved in the

high SNR region [14].

3. The second term is the loss of capacity due to characteristics of constellation

and noise.

4. The constellation capacity is close to zero in the low SNR region, which is clear

since the capacity shrinks as the channel degrades.

5. The constellation capacity (5.4) is a monotonically increasing function of the

SNR. However, increasing SNR to infinity will not result in infinite capacity due

to the upper bound log2M .

6. The constellation capacity (5.4) is a concave function of the SNR (when SNR is

in linear scale). The constellation capacity curves in Figure 5.1 and 5.2 do not look

concave due to the fact that SNR is in dB scale for those two figures. Derivation

of the optimal power allocation (OPA) is a convex optimization problem, which is

discussed later in this chapter.

The constellation capacity (5.4) is difficult to evaluate, due to the integral from

−∞ to∞ which does not have a closed-form solution. Therefore the Monte Carlo

method is utilized to evaluate the integral [13].
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5.2 The Monte Carlo Method

The Monte Carlo method is an approach used to compute integrals such as (5.4),

which is difficult to solve using other approaches. It utilizes repeated random

sampling to obtain a mean value, which is used to evaluate the integral in (5.4).

The Monte Carlo method contains several steps:

1. Define a domain of possible inputs.

2. Generate inputs randomly from a probability distribution over the domain.

3. Perform a deterministic computation on the inputs.

4. Aggregate the results.

For (5.4), the sum over j can be moved to the inside of the integral, between

e−
z2

2σ2 and the logarithm. The term
1√

2πσ2
e−

z2

2σ2 is a Gaussian pdf. According

to the steps above, z is defined as a Gaussian random variable with zero mean

and the variance of σ2, where σ2 is the channel noise power. The integral can

be interpreted as the mean of
∑

j log2

∑
i e

−d2ij
2σ2 e−

zdij

σ2 , which can be tackled by the

Monte Carlo method.

The Monte Carlo integration is used for Figure 5.1, which shows the constellation

capacity CM for M -PAM and the channel capacity C. The different constellation

capacities and channel capacity are the same in the low SNR region, where the

curves overlap completely. The constellation capacities become higher with SNR,

and eventually saturate at CM = log2M in the high SNR region, but they never

exceed the channel capacity C. The channel capacity C continues to increase after

the saturation of CM , which validates the inequality (5.2).

The OPA problem is to maximize the capacity. However, in this case, maximizing

(5.4) is too difficult. As an alternative, an approximation of the constellation

capacity is derived based on the sphere packing method. A convex optimization

problem of the sphere packing approximation can be formed, which is much easier

to solve compared with (5.4). Therefore, it is used for the constellation-constrained

OPA problem.
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Figure 5.1: The constellation capacity of M -PAM.

5.3 The Sphere Packing Approximation

In this section, an approximation of the constellation capacity (5.4) based on the

sphere packing method is introduced. Sphere packing is an approach using non-

overlapping spheres to fill a three-dimensional space, which is usually Euclidean.

The spheres are all of the same size and are used to fill up as much volume as

possible.

Capacity can be interpreted as the number of codewords that are correctly de-

coded at the receiver. In the present case, an M -PAM constellation and n-symbol

codewords are considered, then the followings are defined:

1. Received signal sphere: the largest sphere to which the received signals of any

codeword belongs with probability 1 when n→∞.

2. Noise sphere: the uncertainty region around each received codeword due to the

noise of the channel.

3. Codeword region: a set of points in the received signal sphere that are closer

to the given codeword than other codewords. Received signals in a codeword’s

region are decoded as that codeword.
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For n-symbol codewords, the received signal sphere has a radius of
√
nP , where P

is the maximum power of each independent symbol. Any point within this sphere

can be an eligible codeword, which can be decoded correctly at the receiver as long

as there is no channel noise.

However, channel noise is inevitable. The noise sphere of the codeword has a

radius of
√
nσ2, where σ2 is the average noise power per symbol. The codewords

cannot be selected too closely to each other, in which case their noise sphere will

be overlapped and the receiver is unable to decode them correctly. As a result,

the number of distinct codewords is the number of non-overlapping noise spheres

that can fit in the received signal sphere [3] [14].

N =
α(
√
nP + nσ2)n

α(
√
nσ2)n

= (1 + ρ)n/2 (5.5)

where α is

α =
πn/2

Γ
(
n
2

+ 1
) (5.6)

where Γ is the gamma function. If P is a constant, the number of distinct code-

words N decreases as noise power σ2 increases. In this case, the channel capacity

can be calculated as:

C =
1

n
log2N =

1

2
log2(1 + ρ) (5.7)

However, once a specific constellation is applied, the number of codewords turns

into Mn. Constellation geometry has to be taken into account when choosing the

codewords. The minimum distance constraint between the constellation points

has an influence on how the received signal sphere is arranged.

Due to the minimum distance constraint, the receiver can decode all the codewords

correctly if the noise power σ2 is sufficiently small. In this case, the received signal

sphere has a radius of
√
nP + nσ2 ≈

√
nP , therefore its volume is

V = α(
√
nP )n (5.8)
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Due to the fact that there are Mn codewords in total, the codeword region volume

can be calculated as:

VM =
V

Mn
=
α(
√
nP )n

Mn
= α

(√
nP

M

)n

(5.9)

Constellation cardinality can be increased given that the noise sphere is sufficiently

small and P is fixed, so that more codewords can be decoded correctly at the

receiver. The number of noise spheres that can fit in VM is(
nP
M2 + nσ2

nσ2

)n/2

=
(

1 +
ρ

M2

)n/2
(5.10)

which is similar to (5.5). As shown in (5.10), the channel noise can no longer be

neglected.

With the constellation constraint, the number of distinct codewords that can be

transmitted over the channel is

Nc =
(1 + ρ)n/2(
1 + ρ

M2

)n/2 (5.11)

Theorem 5.1. Based on the sphere packing method, the constellation capacity of

M-PAM can be approximated as:

Cc ≈
1

2
log2

1 + ρ

1 + ρ
M2

(5.12)

Proof. See Appendix A.5.

Some important properties of the approximation (5.12) that confirm its validity

are presented below:

1. Approximated Cc increases with M . The loss caused by using finite M order

constellations is negligible when M approaches ∞.

lim
M→∞

Cc = lim
M→∞

1

2
log2

1 + ρ

1 + ρ
M2

=
1

2
log2(1 + ρ) = C (5.13)

2. In the low SNR region, the approximation Cc is close to zero.

lim
ρ→0

Cc =
1

2
log2(1) = 0 (5.14)
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3. In the high SNR region, the approximation Cc approaches the alphabet entropy,

which is similar to (5.2).

lim
ρ→∞

Cc =
1

2
log2

ρ
ρ
M2

= log2M (5.15)

4. The approximation (5.12) is an monotonically increasing function of SNR,

which is shown in its first order derivative.

∂Cc
∂ρ

=
1

2

(
1

1 + ρ
−
M2 · 1

M2

M2 + ρ

)
=

1

2

M2 − 1

(1 + ρ)(M2 + ρ)
> 0 (5.16)

5. The approximation (5.12) is a concave function of SNR, which is shown in its

second order derivative.

∂2Cc
∂ρ2

=
1

2

(
1

(M2 + ρ)2
− 1

(1 + ρ)2

)
=

1

2

(1−M2)(1 + 2ρ)

(1 + ρ2)(M2 + ρ2)
< 0 (5.17)

The channel capacity C, the constellation capacity CM , and the sphere packing

approximation Cc are shown in Figure 5.2, using (5.1), (5.4) and (5.12) respectively.
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Figure 5.2: The channel capacity, the constellation capacity and the sphere
packing approximation of M -PAM.

As shown in Figure 5.2, the sphere packing appoximation Cc fits well with the

constellation capacity CM within a wide range of SNR, which shows how close the

approximation is to the constellation capacity.
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For M -QAM, it can be considered as two
√
M -PAM in quadrature, each with half

the power of M -QAM. Therefore the sphere packing approximation for M -QAM

can be written as

Cc = 2 · 1

2
log2

1 + ρ

1 + ρ

(
√
M)2

= log2

1 + ρ

1 + ρ
M

(5.18)

In conclusion, the sphere packing approximation is a good fit for the constellation-

constrained capacity. It is a closed-form expression which is a better objective

function for convex optimization compared with the constellation capacity (5.4).

The sphere packing approximation also retains the key properties of the constel-

lation capacity. This approximation is utilized to obtain the OPA for parellel

channels under a total power constraint and a constellation constraint in the next

section.

5.4 The Constellation-Constrained Waterfilling

For M -QAM, an expression of the constellation capacity can be derived from (5.4).

For n parallel channels, it can be written as:

CM =
n∑
k=1

(
log2Mk −

∑
j

1√
Mk

∫ ∞
−∞

1√
2πσ2

k

e
− z2

2σ2
k log2

∑
i

e

−d2ij
2σ2
k e
−
zdij

σ2
k dz

)
(5.19)

where Mk is the constellation order on kth channel, and σ2
k is the noise power on

kth channel. The notations in this section are from [2], which are only used in this

chapter for results validation.

In this case, the SNR is defined as:

ρk =
gkpk
σ2

(5.20)

where gk is the power gain of the kth channel, pk is the power allocated to channel

k, and the total power constraint is
∑n

k=1 pk = PT .
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The sphere packing approximation of M -QAM (5.18) can be used to obtain an

approximation for (5.19):

Cc =
n∑
k=1

(
log2(1 + gkpk)− log2

(
1 +

gkpk
Mk

))
(5.21)

Capacity needs to be maximized in order to obtain the OPA, so that the opti-

mization problem can be written as follows:

max
∑
k

log2

1 + gkpk
1 + gkpk

Mk

(5.22)

s.t.
∑
k

pk ≤ PT , pk ≥ 0 for all k (5.23)

Theorem 5.2. The OPA for the optimization problem above is:

pk =
1

2gk

(√
(Mk − 1)2 +

4gk
λ

(Mk − 1)− (Mk + 1)

)
, gk > λ

(
1− 1

Mk

)−1
(5.24)

pk = 0, gk ≤ λ

(
1− 1

Mk

)−1
(5.25)

where λ is the Lagrangian multiplier for total power constraint
∑

k pk = PT , and

λ ≥ 0.

Proof. See Appendix A.6.

This OPA scheme is unique, since the objective function is strictly concave. De-

tailed derivation of Theorem 5.2 is presented in the Appendix A.6.

Theorem 5.2 turns into the regular waterfilling (WF) policy when M →∞:

lim
M→∞

pk = 0, gk ≤ λ (5.26)

lim
M→∞

pk = − 1

gk
+

1

λ
, gk > λ (5.27)

The derivation of the regular WF from Theorem 5.2 when M →∞ can be found

in the Appendix A.7.
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An example of three channels is considered, with gains of g1 = −20 dB, g2 = 0 dB

and g3 = 20 dB respectively. Total power is PT = 100 and noise power is nor-

malized to 1. The same M -symbol constellation is deployed on all three channels.

Eq. (5.24) and (5.25) are utilized to calculate the OPA, which is substituted into

(5.21) later to obtain the capacity approximation. For comparison, the OPA for

the regular WF policy is also calculated via (5.26) and (5.27), and the capacity of

the regular WF is calculated using (5.1).

The CVX is used for some of the following simulations. It is a tool kit in Matlab,

as well as a modeling system for convex optimization. The optimization problem

needs to be established first, with convex objective and constraints. However,

the recognition of convexity is a problem. The objective has to be presented in

a modified form so that it can be recognized as convex by the system, otherwise

errors will occur.

There are several solvers in the CVX, each with different capabilities and different

levels of performance. The default solver is currently SDPT3, which was used at

first. Another solver SeDuMi was used later for comparison, which is also included

in the standard CVX distribution. SeDuMi runs significantly faster than SDPT3,

but the result is not promising.

After calculation, a feedback called cvx status is given. There are several possible

values for cvx status, some of which are introduced below.

1. Solved: A complementary (primal and dual) solution has been found. The

precision is sufficient for the given convex optimization problem. The optimal

value of the problem is placed in cvx optval.

2. Inaccurate/Solved: It indicates that the solver was unable to make a determi-

nation to the result within the default numerical tolerance. However, tolerance

can be lowered so that there may be suitable results afterwards.

3. Failed: The solver failed to make sufficient progress towards a solution, even

within the relaxed tolerance setting. The value of cvx optval is NaN, the duality

gap might not be zero. In a word, the problem is ”nasty” in some way.

There are more values for cvx status, the three above are encountered during

simulations. More details about the CVX can be found in [36].
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Figure 5.3: Power allocation versus constellation order M (PT = 100).
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Figure 5.4: Sub-channel capacity versus constellation order M.
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Figure 5.5: Total channel capacity versus constellation order M.
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Figure 5.6: Power allocation versus constellation order M using the CVX with
solver SeDuMi (PT = 100).
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At first, the CVX was used to compute the OPA using (5.22) and (5.23), which

is a convex optimization problem. However, abnormal behaviors are found in the

results, and cvx status is ”failed” for certain points.

As shown in Figure 5.3, 5.4 and 5.5, there are gaps on the curves which correspond

to points where cvx status is ”failed”. The gaps still exist even though the pre-

cision is set to be low. The other solver SeDuMi is used instead for comparison,

and the OPA is calculated which is shown in Figure 5.6.

As shown in Figure 5.6, the total power constraint cannot be satisfied for higher

order constellations after SeDuMi is used. For SeDuMi, cvx status are ”solved”

everywhere and there is no gap on the curves. However, the fluctuation at low con-

stellation cardinality and incorrect saturation at higher constellation cardinality

makes it unacceptable.

Alternatives based on the bisection method was used, instead of the CVX. The

power allocation (5.24) is a monotonic function of λ, where pk decreases with λ,

and the other terms Mk and gk are all known constants. Therefore the bisection

method is utilized to compute λ from the total power constraint. The OPA for the

regular WF based on (5.26) and (5.27) is shown in the same graph for comparison.

As shown in Figure 5.7, 5.8 and 5.9, the gaps in Figure 5.3, 5.4 and 5.5 are filled.

Moreover, the curves do not fluctuate abnormally as Figure 5.6.

As shown in Figure 5.7, the AOPA is identical to the regular WF OPA when

the constellation order M is sufficiently large. However, it is the opposite of the

regular WF when M is less than 25, where the worst channel gets the most power,

and the best channel gets the least power.

As shown in Figure 5.8, the constellation capacity approaches the WF capacity

when the constellation order M is sufficiently large. The sub-channels with higher

gains have higher constellation-constrained capacity.

As shown in Figure 5.9, the constellation capacity increases with the constellation

order M . It converges to the channel capacity when M is sufficiently large. It

also validates (5.2) in that the constellation capacity can never exceed the channel

capacity.
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Figure 5.7: Power allocation versus constellation order M using the bisection
method (PT = 100).
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Figure 5.8: Sub-channel capacity versus constellation order M using the bi-
section method.
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Figure 5.9: Total channel capacity versus constellation order M using the
bisection method.

As a validation of the results based on the bisection method, the OPA is evaluated

numerically. The parameter λ is calculated from the total power constraint using

the command ”solve” in Matlab. The results are identical to Figure 5.7, 5.8 and

5.9, which validates the simulations based on the bisection method.

5.5 Another Analytical Approximation

A different analytical approach is utilized here to approximate (5.4). It is first

used to approximate the constellation capacity of 2-PAM.

For 2-PAM, (5.4) can be expanded as

C2 = 1−
∫ ∞
−∞

1√
2πσ2

e−
z2

2σ2 log2

(
1 + e−

2
σ2

(1+z)
)
dz (5.28)

where the transmit power is normailized to 1, and the channel noise is σ2.

As shown in (5.28), the range of the integration (−∞,∞) is unnecessary due to

the bell shape of the Gaussian pdf 1√
2πσ2

e−
z2

2σ2 . The interval where the Gaussian

pdf has the most weight is z ∈ [−3σ, 3σ]. Therefore, the range of the integral can
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be shortened, so that less time is required for computation.

C2 ≈ 1−
∫ L

−L

1√
2πσ2

e−
z2

2σ2 log2

(
1 + e−

2
σ2

(1+z)
)
dz

≈ 1−
∫ L

−L

1√
2πσ2

e−
z2

2σ2 log2

(
1 + e−

2
σ2

)
dz, when z ≈ 0

≈ 1−
∫ ∞
−∞

1√
2πσ2

e−
z2

2σ2 log2

(
1 + e−

2
σ2

)
dz

≈ 1− log2

(
1 + e−2ρ

)
(5.29)

The expression (5.29) has the same behavior as the constellation-constrained ca-

pacity. However, as shown in Figure 5.10, there are significant differences between

the constellation capacity and the approximation (5.29). In order to reduce the

differences, ρ was adjusted by 3 dB:

C2 ≈ 1− log2

(
1 + e−ρ

)
(5.30)
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Figure 5.10: Analytical approximation and the constellation capacity using
the Monte Carlo method.

The range of the integral was changed from [−∞,∞] to [−L,L] for the original

expression of the constellation capacity of 2-PAM. Different L, σ along with the
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corresponding values of (5.28), (5.29) and (5.30) are tabulated into Table 5.1, which

shows the differences between the original expression and the two approximations.

Table 5.1: The constellation capacity for 2-PAM and its approximations.

σ L (5.28) (5.29) (5.30)
0.1 σ 1 1 1
0.1 2σ 1 1 1
0.1 3σ 1 1 1
0.1 5σ 1 1 1
0.1 10σ 1 1 1
0.1 100σ 1 1 1
0.1 ∞ 1 1 1
1 σ 0.8114 0.8169 0.5481
1 2σ 0.5785 0.8169 0.5481
1 3σ 0.4949 0.8169 0.5481
1 5σ 0.4859 0.8169 0.5481
1 10σ 0.4859 0.8169 0.5481
1 100σ 0.4859 0.8169 0.5481
1 ∞ 0.4859 0.8169 0.5481
5 σ 0.3502 0.0566 0.0286
5 2σ 0.0785 0.0566 0.0286
5 3σ 0.0316 0.0566 0.0286
5 5σ 0.0283 0.0566 0.0286
5 10σ 0.0283 0.0566 0.0286
5 100σ 0.0283 0.0566 0.0286
5 ∞ 0.0283 0.0566 0.0286
10 σ 0.3257 0.0144 0.0072
10 2σ 0.0539 0.0144 0.0072
10 3σ 0.0100 0.0144 0.0072
10 5σ 0.0072 0.0144 0.0072
10 10σ 0.0072 0.0144 0.0072
10 100σ 0.0072 0.0144 0.0072
10 ∞ 0.0072 0.0144 0.0072

As shown in Table 5.1, the range [−5σ, 5σ] is sufficient for the integration for

different values of σ. The approximation (5.30) is a better fit for the original

expression (5.28) than (5.29).

As shown in Figure 5.10, the analytical approximation after 3 dB adjustment

fits well with the constellation capacity. The constellation capacity is computed

using the Monte Carlo method. However, there were some issues with the Monte

Carlo simulations. There were fluctuations on the curves, which was abnormal

for capacity. It turns out that the problem is how z is defined. The Gaussian
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random variable is z ∼ N(0, σ2) where σ2 changes with SNR. At first, a new z

was redefined with a new SNR at the beginning of every iteration, which caused

the abnormal fluctuations. In order to eliminate the fluctuations, a new Gaussian

random variable z1 is defined as z1 ∼ N(0, 1) before interations start. Therefore

the Gaussian random variable z for every SNR is z = σz1, which provides smooth

results.

An approximation for 4-QAM can also be obtained from (5.29), since 4-QAM

is a composition of two 2-PAM in quadrature, each with half the power. The

constellation capacity for 4-QAM can be approximated as:

C4 ≈ 2
(
1− log2(1 + e−ρ)

)
(5.31)

For higher order constellations, (5.4) can be written as:

CM = log2M −
∑
j

1

M

∫ ∞
−∞

1√
2πσ2

e−
z2

2σ2 log2

1 +
∑
i 6=j

e

(
−d2ij
2σ2
−
zdij

σ2

) dz (5.32)

where dii = djj = 0.

In the high SNR region where σ → 0, the constellation capacity (5.32) can be

approximated as:

CM ≈ log2M −
∑
j

1

M
log2

(
1 +

∑
i 6=j

e
−d2ij
2σ2

)
(5.33)

which can be manipulated in a similar way to (5.29). Some of the terms in the

internal summation are negligible due to the high SNR. Therefore (5.33) can be

further simplified as:

CM ≈ log2M −
∑
j

1

M
log2

(
1 +

∑
i 6=j

e
−d2ij

2
ρ

)
(5.34)

≈ log2M −
1

M
·M log2

(
1 + e

−d2min
2

ρ

)
(5.35)

= log2M − log2

(
1 + e−

d2min
2

ρ

)
(5.36)

where ρ� 1.
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The term
∑

i 6=j e
−d2ij

2
ρ can be approximated as e−

d2min
2

ρ when SNR is high, where

e−
d2min

2
ρ is the dominating term in the inner sum and the rest of the terms are

negligible. There are also M terms in the outer sum so that 1
M

is cancelled.

Figure 5.11 shows the constellation capacity, the sphere packing approximation

and the analytical approximation based on (5.4), (5.21) and (5.36) respectively.

The analytical appoximation does not fit the constellation capacity well, and the

difference is significant. For 4-PAM, this approximation starts at 1 bits/s/Hz in

the low SNR region which is clearly incorrect. Therefore this way of appoximation

is no longer pursued.
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Figure 5.11: High-SNR approximation, the sphere packing approximation and
the constellation capacity using the Monte Carlo method.
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5.6 Summary

The constellation capacity is discussed in this chapter, for which an explicit ex-

pression can be found in [13]. It is a complicated expression containing an integral,

which makes it difficult to evaluate numerically. The Monte Carlo method is in-

troduced in this chapter in order to calculate the integral. Using the Monte Carlo

method, the integral turns into the computation of the mean of a Gaussian ran-

dom variable. It is unnecessary to integrate from −∞ to ∞, therefore, the range

of the integration can be shortened while the result remains reasonably accurate.

An approximation of the constellation capacity is derived based on the sphere

packing approach in this chapter. It is compared with the Gaussian channel ca-

pacity and the constellation-constrained capacity in [13]. The approximation is

close to the constellation-constrained capacity, whose key characteristics are also

preserved (i.e. concavity). Convex optimization can be used to obtain the OPA

of the sphere packing approximation, which turns into the regular WF when con-

stellation cardinality approaches ∞.

Many problems occur in the process of calculating the OPA for the sphere packing

approximation. The CVX was used to obtain the OPA at first, but the result was

not promising. A different solver was used instead of the default one. It takes

less time to process but the result fluctuates abnormally. In the end, the bisection

method was used instead, and it gave satisfying results.

Another analytical approximation of the constellation capacity is proposed. How-

ever, it only applies to 2-PAM after some manipulations and needs even more

adjustments for higher order constellations. There is no generalized expression for

arbitrary input distributions, therefore this direction is no longer pursued.



Chapter 6

Performance Analysis of the

MWF and its Approximations

6.1 Two Parallel Channels

Following the previous chapters, the difference in performance between the mer-

cury/waterfilling (MWF) and the constellation-constrained waterfilling (WF) is

now considered in-depth. Figure 4.5 shows the optimal power allocation (OPA)

of the MWF, while Figure 5.7 shows the approximated OPA of the constellation-

constrained WF (AOPA). To explore the difference in performance between the

two power allocation (PA) schemes, the same set of notations is used and several

expressions are modified. After some modification, the constellation-constrained

WF can be expressed as,

pk =
1

2gkP

(√
(Mk − 1)2 +

4gk
λ

(Mk − 1)− (Mk + 1)

)
, gk > λ

(
1− 1

Mk

)−1
(6.1)

pk = 0, gk ≤ λ

(
1− 1

Mk

)−1
(6.2)

where P is the average power constraint in (3.2), pk is the normalized power, and

the actual power on each sub-channel is pkP . The constellation cardinality is set

to the same value for each sub-channel, i.e., Mk = M .

66
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As shown in (6.1), pk is a monotonically decreasing function of λ, as its derivative

is strictly negative. Therefore, the AOPA p∗k can be computed based on (6.1) and

(6.2) using the bisection method.

To use the bisection method, lower and upper bounds of λ first need to be set.

For n parallel channels with channel gains g1 > g2 > ... > gn, the derivation of

g1 > λ
(
1− 1

M

)−1
is presented, in order to establish the upper bound.

Assume p1 = 0, then g1 has to satisfy g1 ≤ λ
(
1− 1

M

)−1
, and other channel gains

g2, ..., gn also satisfy g2, ..., gn ≤ λ
(
1− 1

M

)−1
. According to (6.1) and (6.2), the

total power is 0 in this case, which is clearly incorrect. Therefore, the condition

p1 = 0 does not hold, where p1 should satisfy p1 > 0. The upper bound of λ is:

λ < g1(1−
1

M
) (6.3)

The lower bound of λ is set to 0, as λ is non-negative (λ is the Lagrangian multiplier

of the inequality constraints for KKT conditions). Once the lower and upper

bounds are set, the bisection method can be used to obtain the OPA.

Figure 6.1 shows the difference between the MWF OPA and the AOPA. The same

settings as those used in Figure 4.5, i.e., two parallel channels with |h1|2 = 2|h2|2,
both with QPSK inputs and p1 + p2 = 2, are utilized here. Initially, a linear scale

was used along the x-axis, but the difference in the low SNR region could not

be clearly seen. However, such problem does not exist at the dB scale, which is

implemented instead to show the difference in the low SNR region.

As shown in Figure 6.1, the AOPA closely matches the MWF OPA in the low

SNR region. The difference is not too large in the high SNR region. Performances

of the PA schemes are demonstrated by their capacities (”capacity” refers to the

constellation-constrained capacity throughout this chapter).

The high-power approximation of the MWF in (4.11) is also used to compute the

capacity for comparison. In addition to the three PA schemes mentioned above,

three other schemes are also included:

1. The stronger sub-channel receives all the power, while the weaker sub-channel

receives none (p1 = 2, p2 = 0).

2. The uniform PA, p1 = p2 = 1.
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Figure 6.1: The MWF OPA and the AOPA with QPSK inputs and channel
gains |h1|2 = 2|h2|2, where the SNR is at the dB scale.

3. The Monte Carlo OPA, which uses the Monte Carlo method to obtain the PA

that maximizes the capacity. Each set of p1, p2 is substituted into (5.4) to evaluate

the capacity, after which the maximum capacity is selected, and the corresponding

p1, p2 is the Monte Carlo OPA.

Four different PA schemes with QPSK inputs and channel gains |h1|2 = 2|h2|2 are

shown in Figure 6.2. The MWF OPA, the high-power approximation, the AOPA

and the Monte Carlo OPA are all symmetric about the line p = 1, and they all

saturate in the high SNR region. The AOPA fits well with the MWF OPA in

the low SNR region, while the high-power approximation fits well with the MWF

OPA in the high SNR region. The difference between the MWF and the Monte

Carlo OPA in the high SNR region is not too large.

The capacity comparison between different PA schemes with QPSK inputs and

channel gains |h1|2 = 2|h2|2 is shown in Figure 6.3. The capacity differences among

all six PA schemes are insignificant in the low SNR region, where it is optimal to

assign all the power to the stronger sub-channel. However, the capacity of the

stronger sub-channel only converges to 2 bits/s/Hz in the high SNR region, where

capacities of the other five schemes converge to 4 bits/s/Hz. To see their differences

in the high SNR region more explicitly, different sets of channel gains are used.



Chapter 6. Performance Analysis of the MWF and its Approximations 69

0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

P

P
o

w
e

r 
A

llo
ca

ti
o

n

 

 

Exact mercury/waterfilling

High−Power Approximation

AOPA

Monte Carlo OPA

p
1

p
2

Figure 6.2: The MWF OPA, the high-power approximation, the AOPA, and
the Monte Carlo OPA with QPSK inputs and channel gains |h1|2 = 2|h2|2.
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Figure 6.3: Capacities of the MWF, the high-power approximation, the
AOPA, the stronger sub-channel, the uniform PA and the Monte Carlo OPA

with QPSK inputs and channel gains |h1|2 = 2|h2|2.
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Figure 6.4: The MWF OPA, the high-power approximation, the AOPA, and
the Monte Carlo OPA with QPSK inputs and channel gains |h1|2 = 10|h2|2.
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Figure 6.5: Capacities of the MWF, the high-power approximation, the
AOPA, the stronger sub-channel, the uniform PA and the Monte Carlo OPA

with QPSK inputs and channel gains |h1|2 = 10|h2|2.
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Four different PA schemes with QPSK inputs and channel gains |h1|2 = 10|h2|2 are

shown in Figure 6.4. All the curves are symmetric, and the AOPA closely matches

the MWF OPA in the low SNR region, while the high-power approximation fits

the MWF OPA in the high SNR region. The differences between the Monte Carlo

OPA and the MWF are small when the SNR is high. The weaker sub-channel

receives more power in the high SNR region, compared with the case in Figure

6.2, since the channel gain difference is larger.

The capacities of the different PA schemes with QPSK inputs and channel gains

|h1|2 = 10|h2|2 are shown in Figure 6.5, where the differences are more explicit.

Capacities of the MWF, the high-power approximation and the Monte Carlo OPA

are almost identical, which validates the optimality of the MWF. The capacity

difference between the AOPA and the MWF is not large. The capacity of the

uniform PA is lower than the other four schemes discussed above, since it is not

optimal to assign power uniformly when the channel gain difference is large. How-

ever, the capacity of the uniform PA reaches that of the MWF at a certain point,

where the MWF OPA crosses at p = 1, as shown in Figure 6.4. The stronger

sub-channel performs well in the low SNR region, where it receives all the power.

However, its capacity cannot exceed 2 bits/s/Hz no matter how high the SNR is,

due to the constellation constraint.

As shown in Figure 6.6, for the case of |h1|2 = 100|h2|2, the weaker sub-channel

receives the majority of the power in the high SNR region, while the stronger sub-

channel receives all the power in the low SNR region. The Monte Carlo OPA closely

matches the MWF in the high SNR region, which demonstrates the optimality of

the MWF. The AOPA is a good fit for the MWF OPA in the low SNR region,

while the high-power approximation is a better fit of the MWF in the high SNR

region. All curves are symmetric about p = 1, similar to the results shown in

Figure 6.4.
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Figure 6.6: The MWF OPA, the high-power approximation, the AOPA, and
the Monte Carlo OPA with QPSK inputs and channel gains |h1|2 = 100|h2|2.
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Figure 6.7: Capacities of the MWF, the high-power approximation, the
AOPA, the stronger sub-channel, the uniform PA and the Monte Carlo OPA

with channel gains |h1|2 = 100|h2|2.
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The capacities of different PA schemes with channel gains |h1|2 = 100|h2|2 are

shown in Figure 6.7. The capacities start at approximately 2 bits/s/Hz due to

the significant channel gain difference. The capacities of the MWF, the high-

power approximation, and the Monte Carlo OPA are nearly the same in this case.

The capacity of the AOPA is lower than that of the MWF, but the difference is

not large. The capacity of the uniform PA is significantly lower than the MWF.

However, capacities of the five schemes discussed above all converge to 4 bits/s/Hz

when the SNR is sufficiently large, since the maximum capacity of two sub-channels

with QPSK inputs is 4 bits/s/Hz. The stronger sub-channel only converges to 2

bits/s/Hz, since only the stronger sub-channel is active, and the maximum capacity

of such channel with QPSK inputs is 2 bits/s/Hz.

To see the differences in the low SNR region more explicitly, the capacity at the

point P = 0.3 is computed and tabulated.

As shown in Tables 6.1, 6.2 and 6.3, the capacity of the AOPA is almost the same

as that of the MWF. The capacities of the MWF and the stronger sub-channel

with full Tx power are the same, except for the case of |h1|2 = 100|h2|2, since

the capacity cannot exceed 2 bits/s/Hz for one sub-channel with QPSK inputs.

The capacity of the high-power approximation is lower than that of the MWF.

However, it is higher than that of the uniform PA, which is the worst among all

six PA schemes at P = 0.3. The difference between the Monte Carlo OPA and

the MWF is negligible, which validates the optimality of the MWF.

Table 6.1: Capacity at P = 0.3 for channel gains |h1|2 = 2|h2|2.

Power Allocation Schemes p1 p2 Capacity
Exact MWF 1.6516 0.3484 0.6898

High-Power Approximation 1.1350 0.8650 0.6268
AOPA 1.5324 0.4676 0.6898

The Monte Carlo Method 1.9643 0.0357 0.6878
The uniform PA 1 1 0.5976

Stronger Sub-channel 2 0 0.6898
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Table 6.2: Capacity at P = 0.3 for channel gains |h1|2 = 10|h2|2.

Power Allocation Schemes p1 p2 Capacity
Exact MWF 1.2386 0.7614 1.6893

High-Power Approximation 1.0749 0.9251 1.5504
AOPA 1.5168 0.4832 1.6893

The Monte Carlo Method 1.9532 0.0468 1.6888
The uniform PA 1 1 1.4409

Stronger Sub-channel 2 0 1.6893

Table 6.3: Capacity at P = 0.3 for channel gains |h1|2 = 100|h2|2.

Power Allocation Schemes p1 p2 Capacity
Exact MWF 1.7265 0.2735 2.2702

High-Power Approximation 1.7621 0.2379 2.2599
AOPA 1.2628 0.7372 2.1511

The Monte Carlo Method 1.4685 0.5315 2.2701
The uniform PA 1 1 2.2008

Stronger Sub-channel 2 0 2.0000

Furthermore, higher order constellations are utilized for both PA and capacity

comparison. The same settings presented above, i.e., two parallel channels with

three sets of channel gains: |h1|2 = 2|h2|2, |h1|2 = 10|h2|2 and |h1|2 = 100|h2|2, are

used.

The regular WF is presented in (5.26) and (5.27), from which the expressions

below can be derived after some manipulation:

lim
M→∞

pk = 0, gk ≤ λ (6.4)

lim
M→∞

pk = − 1

gkP
+

1

λ
, gk > λ (6.5)

where 1
λ

is the water level, and P is the average power constraint in (3.2).

The MWF OPA, the AOPA and the regular WF with 16-QAM inputs and channel

gains |h1|2 = 2|h2|2 are shown in Figure 6.8. the OPA of the regular WF converges

to 1 as the SNR increases. The curves are all symmetric about p = 1.

The capacity comparison with 16-QAM inputs and channel gains |h1|2 = 2|h2|2 is

shown in Figure 6.9. Capacities of the MWF, the AOPA, the uniform PA and the

regular WF are almost identical. The capacity of the stronger sub-channel is the

same as that of the MWF in the low SNR region. However, the capacity of the

stronger sub-channel converges to 4 bits/s/Hz in the high SNR region, where the
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capacities of the other four schemes converge to 8 bits/s/Hz. To see the differences

in the high SNR region more explicitly, different channel gains are used.
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Figure 6.8: The MWF, the AOPA and the regular WF with 16-QAM inputs
and channel gains |h1|2 = 2|h2|2.
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Figure 6.9: Capacities of the MWF, the AOPA and the regular WF with
16-QAM inputs and channel gains |h1|2 = 2|h2|2.
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Figure 6.10: The MWF, the AOPA and the regular WF with 16-QAM inputs
and channel gains |h1|2 = 10|h2|2.
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Figure 6.11: Capacities of the MWF, the AOPA and the regular WF with
16-QAM inputs and channel gains |h1|2 = 10|h2|2.
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The MWF OPA, the AOPA and the regular WF with 16-QAM inputs and channel

gains |h1|2 = 10|h2|2 are shown in Figure 6.10. The regular WF OPA still converges

to 1 in the high SNR region, while the differences between the MWF OPA and

the AOPA in the high SNR region are considerably larger than those in Figure

6.8, since the channel gain difference is larger.

The capacity comparison with 16-QAM inputs and channel gains |h1|2 = 10|h2|2

are shown in Figure 6.11. The capacity differences are not as obvious as their

differences in PA. The capacity of the regular WF is the same as that of the

uniform PA in the high SNR region, where their capacities both converge to 8

bits/s/Hz along with those of the MWF and the AOPA. The capacity of the

stronger sub-channel only converges to 4 bits/s/Hz in the high SNR region, since

the maximum capacity of one sub-channel with 16-QAM inputs is 4 bits/s/Hz.

There is a point where the uniform PA reaches the MWF in capacity, which is due

to that the MWF OPA crosses p = 1 at that point, as shown in Figure 6.10. The

capacity of the uniform PA is lower than that of the MWF in the high SNR region,

where the uniform PA has a power penalty of approximately 1 dB to obtain the

same capacity, in contrast to the MWF.

The MWF OPA, the AOPA and the regular WF OPA with channel gains |h1|2 =

100|h2|2 are shown in Figure 6.12. The regular WF OPA converges to 1 in the

high SNR region, where the differences between the MWF OPA and the AOPA

become larger. All three schemes are symmetric about the horizontal line p = 1,

which is an important property revealing why the uniform PA reaches the MWF

in capacity at a certain point.

The capacity comparison with channel gains |h1|2 = 100|h2|2 is shown in Figure

6.13. The capacities of all five PA schemes converge to 8 bits/s/Hz in the high

SNR region, except for the stronger sub-channel, which converges to 4 bits/s/Hz.

The capacity of the AOPA is sufficiently close to that of the MWF, which shows

that it is a close approximation of the MWF. The capacities of all the schemes

are almost the same in the low SNR region, except for the uniform PA, since it

is optimal to assign all the power to the stronger sub-channel when the SNR is

low. The uniform PA has a power penalty of approximately 3 dB in the low SNR

region, and 2 dB in the high SNR region compared with the MWF. The regular

WF eventually becomes the uniform PA in the high SNR region. The uniform PA

reaches the MWF in capacity at a certain point, due to fact that the MWF OPA

is symmetric about p = 1, as shown in Figure 6.12.
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Figure 6.12: The MWF OPA, the AOPA and the regular WF OPA with
16-QAM inputs and channel gains |h1|2 = 100|h2|2.
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Figure 6.13: Capacities of the MWF, the AOPA and the regular WF with
16-QAM inputs and channel gains |h1|2 = 100|h2|2.



Chapter 6. Performance Analysis of the MWF and its Approximations 79

After this point, inputs with 64-QAM are used, yielding results similar to those

of the 16-QAM case. The MWF OPA, the AOPA and the regular WF OPA with

64-QAM inputs and channel gains |h1|2 = 2|h2|2 are shown in Figure 6.14. The

regular WF OPA converges to 1 in the high SNR region. However, the point

at which the MWF OPA crosses at p = 1 has shifted to the higher SNR region

compared to the case in Figure 6.8.

The capacity comparison with 64-QAM inputs and channel gains |h1|2 = 2|h2|2 is

shown in Figure 6.15. The capacity differences among the the MWF, the AOPA,

the uniform PA and the regular WF are insignificant, since the channel gain dif-

ference is small. The capacity of the stronger sub-channel is identical to that of

the MWF in the low SNR region, it converges to 6 bits/s/Hz in the high SNR

region, while the other four schemes converge to 12 bits/s/Hz. Increasing the gain

of the stronger sub-channel will make the differences in the high SNR region more

pronounced.

The different PA schemes for channel gains |h1|2 = 10|h2|2 with 64-QAM inputs

are shown in Figure 6.16. The difference in the high SNR region is more explicit

than that in Figure 6.14. All the curves are symmetric about p = 1, and the

regular WF OPA converges to 1 in the high SNR region, which is equivalent to

the uniform PA.

The capacity comparison with 64-QAM inputs and channel gains |h1|2 = 10|h2|2 is

shown in Figure 6.17. The capacity difference between the MWF and the AOPA is

negligible in the high SNR region. The capacities of different schemes are identical

in the low SNR region except for the uniform PA. The capacity of the stronger

sub-channel converges to 6 bits/s/Hz in the high SNR region, where capacities of

the other four schemes converge to 12 bits/s/Hz. The capacity of the uniform PA

reaches that of the MWF eventually, despite their previous differences.



Chapter 6. Performance Analysis of the MWF and its Approximations 80

−20 −15 −10 −5 0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

P/dB

P
o

w
e

r 
A

llo
ca

ti
o

n

 

 

Exact mercury/waterfilling

AOPA

WFp
1

p
2

Figure 6.14: The MWF OPA, the AOPA and the regular WF OPA with
64-QAM inputs and channel gains |h1|2 = 2|h2|2.
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Figure 6.15: Capacities of the MWF, the AOPA and the regular WF with
64-QAM inputs and channel gains |h1|2 = 2|h2|2.
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Figure 6.16: The MWF OPA, the AOPA and the regular WF OPA with
64-QAM inputs and channel gains |h1|2 = 10|h2|2.
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Figure 6.17: Capacities of the MWF, the AOPA and the regular WF with
64-QAM inputs and channel gains |h1|2 = 10|h2|2.
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The MWF OPA, the AOPA and the regular WF OPA with 64-QAM inputs and

channel gains |h1|2 = 100|h2|2 are shown in Figure 6.18. The PA difference between

the two sub-channels in the high SNR region increases due to the larger channel

gain difference. The regular WF OPA converges to 1 in the high SNR region. All

three PA curves are symmetric about p = 1, and all the power is assigned to the

stronger sub-channel when the SNR is low.

The capacity comparison with 64-QAM inputs and channel gains |h1|2 = 100|h2|2

is shown in Figure 6.19. The capacities of the MWF, the AOPA, the regular WF

and the stronger sub-channel are identical in the low SNR region, where all the

power is assigned to the stronger sub-channel. The capacity difference between the

AOPA and the MWF is insignificant in the high SNR region, which demonstrates

how close the approximation is to the MWF. The capacity of the uniform PA is

lower than that of the MWF at all SNR, except for a certain point where the MWF

OPA is equivalent to the uniform PA, as shown in Figure 6.18. A power penalty

of approximately 2 dB compared with the MWF is required, for the capacity of

the uniform PA to reach that of the MWF. The capacity of the regular WF is the

same as that of the uniform PA in the high SNR region, where the capacity of the

stronger sub-channel converges to 6 bits/s/Hz, while the capacities of the other

four schemes converge to 12 bits/s/Hz, despite their previous differences, since the

capacity in this case cannot exceed 12 bits/s/Hz under any circumstance.

The MWF OPA, the AOPA and the regular WF OPA with 256-QAM inputs

and channel gains |h1|2 = 2|h2|2 are shown in Figure 6.20. The PA curves are

symmetric about p = 1, and the regular WF OPA converges to 1 when the SNR

is high. The assignment of all power to the stronger sub-channel remains optimal

in the low SNR region.

The capacity comparison with 256-QAM inputs and channel gains |h1|2 = 2|h2|2 is

shown in Figure 6.21. The capacities of the MWF, the AOPA, the regular WF and

the uniform PA are nearly identical at all SNR. The capacity of the stronger sub-

channel is the same as that of the MWF in the low SNR region, and it converges

to 8 bits/s/Hz in the high SNR region, where the capacities of the other four

PA schemes converge to 16 bits/s/Hz. To make the capacity differences larger, a

different set of channel gains is used hereafter.
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Figure 6.18: The MWF OPA, the AOPA and the regular WF OPA with
64-QAM inputs and channel gains |h1|2 = 100|h2|2.
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Figure 6.19: Capacities of the MWF, the AOPA and the regular WF with
64-QAM inputs and channel gains |h1|2 = 100|h2|2.
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Figure 6.20: The MWF OPA, the AOPA and the regular WF OPA with
256-QAM inputs and channel gains |h1|2 = 2|h2|2.
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Figure 6.21: Capacities of the MWF, the AOPA and the regular WF with
256-QAM inputs and channel gains |h1|2 = 2|h2|2.
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The MWF OPA, the AOPA and the regular WF OPA with 256-QAM inputs and

channel gains |h1|2 = 10|h2|2 are shown in Figure 6.22. The weaker sub-channel

receives more power than it does in Figure 6.20 when the SNR is high. The

stronger sub-channel receives all the power in the low SNR region. All the PA

curves are symmetric about p = 1, and the regular WF OPA converges to 1 in the

high SNR region.

The capacity comparison in this case is shown in Figure 6.23. The capacity differ-

ences in the high SNR region are more explicit compared to that in Figure 6.21.

The capacity difference between the AOPA and the MWF is negligible, which

demonstrates that the approximation is a close match to the MWF. The capaci-

ties of the MWF is identical to that of the stronger sub-channel in the low SNR

region, where it is optimal to assign all the power to the stronger sub-channel. The

capacity of the uniform PA is significantly lower than that of the MWF in both

the low and the high SNR region, and it is the same as that of the regular WF in

the high SNR region. A power penalty of approximately 1 dB compared with the

MWF is required in both the low and the high SNR region, for the capacity of the

uniform PA to reach that of the MWF. The capacity of the stronger sub-channel

converge to 8 bits/s/Hz in the high SNR region, where the capacities of the other

four PA schemes converge to 16 bits/s/Hz.

The MWF OPA, the AOPA and the regular WF OPA with 256-QAM inputs and

channel gains |h1|2 = 100|h2|2 are shown in Figure 6.24. The weaker sub-channel

receives the majority of the power when the SNR is high, while the stronger sub-

channel receives all the power in the low SNR region. The PA curves are symmetric

about p = 1, and the regular WF OPA converge to 1 in the high SNR region.

The capacity comparison with 256-QAM inputs and channel gains |h1|2 = 100|h2|2

is shown in Figure 6.25. The capacity of the AOPA remains a close match to that

of the MWF. The capacity of the MWF is identical to that of the stronger sub-

channel in the low SNR region, where it is optimal to allocate all the power to

the stronger sub-channel. The capacity of the uniform PA is lower than that of

the MWF at all SNR, except for a certain point where the MWF is equivalent to

the uniform PA, as shown in Figure 6.24. A power penalty of approximately 2 dB

compared with the MWF in both the low and the high SNR regions is required,

for the capacity of the uniform PA to reach that of the MWF. The capacity of the

stronger sub-channel converges to 8 bits/s/Hz in the high SNR region, where the
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capacities of the other four PA schemes converge to 16 bits/s/Hz, despite their

previous differences.
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Figure 6.22: The MWF OPA, the AOPA and the regular WF OPA with
256-QAM inputs and channel gains |h1|2 = 10|h2|2.
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Figure 6.23: Capacities of the MWF, the AOPA and the regular WF with
256-QAM inputs and channel gains |h1|2 = 10|h2|2.
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Figure 6.24: The MWF OPA, the AOPA and the regular WF OPA with
256-QAM inputs and channel gains |h1|2 = 100|h2|2.
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Figure 6.25: Capacities of the MWF, the AOPA and the regular WF with
256-QAM inputs and channel gains |h1|2 = 100|h2|2.
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For the different constellations and different channel gains used above, several

points in the low SNR region are chosen to explore the differences between the

capacity of the uniform PA (Cu) and the capacity of the stronger sub-channel (Cb).

The stronger sub-channel with full Tx power is optimal in the low SNR region,

where the uniform PA is clearly not optimal, except for the case of two parallel

channels with the same channel gains.

For Gaussian inputs, the capacity can be computed using the function C = log2(1+

SNR), which can be approximated as C ≈ SNR

ln 2
when the SNR is sufficiently close

to 0. Therefore, Cb
Cu

= γ1
(γ1+γ2)/2

, which equals to 4/3 for |h1|2 = 2|h2|2, 20/11 for

|h1|2 = 10|h2|2 and 200/101 for |h1|2 = 100|h2|2.

As shown in Table 6.4 to Table 6.12, the difference between Cb and Cu is small

when the channel gain difference is not large. The fraction Cb
Cu

becomes smaller

with the SNR, and is close to the value γ1
(γ1+γ2)/2

when the SNR is close to 0.

Table 6.4: 16-QAM, |h1|2 = 2|h2|2, and Cb
Cu

= 4
3 = 1.33 for Gaussian inputs.

P/dB Cb Cu Cb/Cu
-20 0.0287 0.0216 1.3287
-15 0.0887 0.0678 1.3083
-10 0.2636 0.2087 1.2631
-5 0.7052 0.6097 1.1566

Table 6.5: 16-QAM, |h1|2 = 10|h2|2, and Cb
Cu

= 20
11 = 1.82 for Gaussian inputs.

P/dB Cb Cu Cb/Cu
-20 0.1421 0.0802 1.7718
-15 0.4085 0.2422 1.6866
-10 1.0149 0.6734 1.5071
-5 2.0080 1.5893 1.2634

Table 6.6: 16-QAM, |h1|2 = 100|h2|2, and Cb
Cu

= 200
101 = 1.98 for Gaussian

inputs.

P/dB Cb Cu Cb/Cu
-20 0.9964 0.5951 1.6743
-15 1.9831 1.3717 1.4457
-10 3.1764 2.5207 1.2601
-5 3.9382 3.8053 1.0349
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Table 6.7: 64-QAM, |h1|2 = 2|h2|2, and Cb
Cu

= 4
3 = 1.33 for Gaussian inputs.

P/dB Cb Cu Cb/Cu
-20 0.0281 0.0212 1.3255
-15 0.0871 0.0666 1.3078
-10 0.2592 0.2049 1.2650
-5 0.6957 0.5997 1.1601

Table 6.8: 64-QAM, |h1|2 = 10|h2|2, and Cb
Cu

= 20
11 = 1.82 for Gaussian inputs.

P/dB Cb Cu Cb/Cu
-20 0.1353 0.0763 1.7733
-15 0.3902 0.2306 1.6921
-10 0.9799 0.6447 1.5199
-5 1.9754 1.5405 1.2823

Table 6.9: 64-QAM, |h1|2 = 100|h2|2, and Cb
Cu

= 200
101 = 1.98 for Gaussian

inputs.

P/dB Cb Cu Cb/Cu
-20 0.9903 0.5898 1.6790
-15 1.9915 1.3677 1.4561
-10 3.2679 2.5455 1.2838
-5 4.6810 4.0325 1.1608

Table 6.10: 256-QAM, |h1|2 = 2|h2|2, and Cb
Cu

= 4
3 = 1.33 for Gaussian inputs.

P/dB Cb Cu Cb/Cu
-20 0.0286 0.0216 1.3241
-15 0.0885 0.0676 1.3092
-10 0.2629 0.2081 1.2633
-5 0.7044 0.6082 1.1582

Table 6.11: 256-QAM, |h1|2 = 10|h2|2, and Cb
Cu

= 20
11 = 1.82 for Gaussian

inputs.

P/dB Cb Cu Cb/Cu
-20 0.1400 0.0791 1.7699
-15 0.4027 0.2386 1.6878
-10 1.0057 0.6645 1.5135
-5 2.0163 1.5795 1.2765

Table 6.12: 256-QAM, |h1|2 = 100|h2|2, and Cb
Cu

= 200
101 = 1.98 for Gaussian

inputs.

P/dB Cb Cu Cb/Cu

-20 1.0071 0.6011 1.6754

-15 2.0182 1.3887 1.4533

-10 3.3093 2.5786 1.2834

-5 4.7569 4.0875 1.1638
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6.2 Three Parallel Channels

The case of three parallel channels is explored in comparison with that of two

parallel channels. The setting is similar to that of two parallel channels, where two

sets of channel gains, i.e., |h1|2 = 2|h2|2 = 4|h3|2 and |h1|2 = 10|h2|2 = 100|h3|2,
are used. The normalized power constraint is p∗1 + p∗2 + p∗3 = 3, under which the

constellations 4-QAM, 16-QAM and 64-QAM are used.

The MWF OPA and the AOPA with 4-QAM inputs and channel gains |h1|2 =

2|h2|2 = 4|h3|2 are shown in Figure 6.26. Channels 2 and 3 are inactive initially

in the low SNR region due to their low channel gains, but they become active as

the SNR increases. The turning points on the curves are due to the activation

of inactive channels. The difference between the MWF OPA and the AOPA is

significant in the high SNR region, however, the difference does not affect capacity

greatly. Unlike the case of two parellel channels, the curves are not symmetric,

and they do not cross at p = 1.

The capacity comparison between different PA schemes with 4-QAM inputs and

channel gains |h1|2 = 2|h2|2 = 4|h3|2 is shown in Figure 6.27. The capacity of the

uniform PA is lower than that of the MWF in both the low and the high SNR

region, and it has an approximately 1 dB power penalty compared with the MWF.

The capacity of the MWF is identical to that of the strongest sub-channel in the

low SNR region, where it is optimal to allocate all the power to the strongest

sub-channel. However, the capacity of the strongest sub-channel converges to 2

bits/s/Hz in the high SNR region, where the capacities of the other three schemes

converge to 6 bits/s/Hz. The capacity difference between the MWF and the AOPA

is negligible, which shows that the approximation is a close match to the MWF.
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Figure 6.26: The MWF OPA and the AOPA with 4-QAM inputs and channel
gains |h1|2 = 2|h2|2 = 4|h3|2.
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Figure 6.27: Capacities of the MWF and the AOPA with 4-QAM inputs and
channel gains |h1|2 = 2|h2|2 = 4|h3|2.
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Figure 6.28: The MWF OPA and the AOPA with 4-QAM inputs and channel
gains |h1|2 = 10|h2|2 = 100|h3|2.
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Figure 6.29: Capacities of the MWF and the AOPA with 4-QAM inputs and
channel gains |h1|2 = 10|h2|2 = 100|h3|2.
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The MWF OPA and the AOPA with 4-QAM inputs and channel gains |h1|2 =

10|h2|2 = 100|h3|2 are shown in Figure 6.28. Channel 3 is initially inactive, but it

becomes active as the SNR increases. The MWF OPA and the AOPA eventually

saturate in the high SNR region, where channel 3 receives the most power, while

channel 1 receives the least.

The capacity comparison between different PA schemes with 4-QAM inputs and

channel gains |h1|2 = 10|h2|2 = 100|h3|2 is shown in Figure 6.29. The capacity of

the MWF is identical to that of the strongest sub-channel in the low SNR region,

where it is optimal to assign all the power to the strongest sub-channel. The

capacity of the AOPA is a close match to that of the MWF, which shows how

close the approximation is to the MWF. The capacity of the uniform PA is lower

than that of the MWF generally, but it converges to 6 bits/s/Hz along with the

MWF and the AOPA in the high SNR region, where the capacity of the strongest

sub-channel converges to 2 bits/s/Hz.

The MWF OPA and the AOPA with 16-QAM inputs and channel gains |h1|2 =

2|h2|2 = 4|h3|2 are shown in Figure 6.30. Channels 2 and 3 are initially inactive,

but they become active as the SNR increases. The AOPA fits well with the MWF

OPA in the low SNR region, and they both saturate in the high SNR region. The

saturation point shifts to a higher SNR compared with that in Figure 6.26.

The capacity comparison between different PA schemes with 16-QAM inputs and

channel gains |h1|2 = 2|h2|2 = 4|h3|2 is shown in Figure 6.31. The capacity of the

MWF is the same as that of the strongest sub-channel in the low SNR region, where

it is optimal to allocate all the power to the strongest sub-channel. The capacity

difference between the MWF and the AOPA is negligible, which demonstrates that

the approximation is a close match to the MWF. The capacity of the uniform PA

is slightly lower than that of the MWF in both the low and the high SNR region,

but it eventually reaches the capacity of the MWF. The capacities of the MWF,

the AOPA and the uniform PA converges to 12 bits/s/Hz in the high SNR region,

where the capacity of the strongest sub-channel converges to 4 bits/s/Hz. To see

the capacity difference more explicitly, a different set of channel gains is used.



Chapter 6. Performance Analysis of the MWF and its Approximations 94

−20 −15 −10 −5 0 5 10 15 20
0

0.5

1

1.5

2

2.5

3

P/dB

P
o

w
e

r 
A

llo
ca

ti
o

n

 

 

Exact mercury/waterfilling

AOPA

p
1

p
3

p
2

Figure 6.30: The MWF OPA and the AOPA with 16-QAM inputs and channel
gains |h1|2 = 2|h2|2 = 4|h3|2.
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Figure 6.31: Capacities of the MWF and the AOPA with 16-QAM inputs and
channel gains |h1|2 = 2|h2|2 = 4|h3|2.
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Figure 6.32: The MWF OPA and the AOPA with 16-QAM inputs and channel
gains |h1|2 = 10|h2|2 = 100|h3|2.
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Figure 6.33: Capacities of the MWF and the AOPA with 16-QAM inputs and
channel gains |h1|2 = 10|h2|2 = 100|h3|2.
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The MWF OPA and the AOPA with 16-QAM inputs and channel gains |h1|2 =

10|h2|2 = 100|h3|2 are shown in Figure 6.32. Channel 3 is initially inactive due

to its low channel gain, and becomes active as the SNR increases. The AOPA

agrees well with the MWF OPA in the low SNR region. Both the AOPA and

the MWF OPA saturate in the high SNR region, where their difference is more

distinguishable.

The capacity comparison between different PA schemes with 16-QAM inputs and

channel gains |h1|2 = 10|h2|2 = 100|h3|2 is shown in Figure 6.33. The capacity

of the MWF is identical to that of the strongest sub-channel in the low SNR

region, where it is optimal to allocate all the power to the strongest sub-channel.

The capacity difference between the AOPA and the MWF is insignificant, which

demonstrates that the approximation is a close match to the MWF. The capacity

of the uniform PA is lower than that of the MWF generally, but it reaches the

capacity of the MWF eventually. To obtained the same capacity as the MWF,

a power penalty of approximately 2-3 dB is required for the uniform PA. The

capacities of the MWF, the AOPA and the uniform PA converge to 12 bits/s/Hz

in the high SNR region, where the strongest sub-channel converges to 4 bits/s/Hz.

The MWF OPA and the AOPA with 64-QAM inputs and channel gains |h1|2 =

2|h2|2 = 4|h3|2 are shown in Figure 6.34. The AOPA closely matches that of the

MWF in the low SNR region. Channel 3 is the only active channel initially, the

other two channels become active as the SNR increases. The PA curves saturate

in the high SNR region, where the strongest sub-channel receives the least power,

while the weakest sub-channel receives the most.

The capacity comparison between different PA schemes with 64-QAM inputs and

channel gains |h1|2 = 2|h2|2 = 4|h3|2 is shown in Figure 6.35. The capacity of the

MWF is the same as that of the strongest sub-channel in the low SNR region,

where it is optimal to allocate all the power to the strongest sub-channel. The

capacity difference between the MWF, the AOPA is insignificant, which shows that

the approximation is a close match to the MWF. The capacity of the uniform PA

is nearly the same as that of the MWF, due to small channel gain differences. The

capacities of the MWF, the AOPA and the uniform PA converge to 18 bits/s/Hz

in the high SNR region, where the capacity of the strongest sub-channel converge

to 6 bits/s/Hz. To see the capacity differences more explicitly, a different set of

channel gains is used.
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Figure 6.34: The MWF OPA and the AOPA with 64-QAM inputs and channel
gains |h1|2 = 2|h2|2 = 4|h3|2.
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Figure 6.35: Capacities of the MWF and the AOPA with 64-QAM inputs and
channel gains |h1|2 = 2|h2|2 = 4|h3|2.
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Figure 6.36: The MWF and the AOPA with 64-QAM inputs and channel
gains |h1|2 = 10|h2|2 = 100|h3|2.
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Figure 6.37: Capacities of the MWF and the AOPA with 64-QAM inputs and
channel gains |h1|2 = 10|h2|2 = 100|h3|2.
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The MWF OPA and the AOPA with 64-QAM inputs and channel gains |h1|2 =

10|h2|2 = 100|h3|2 are shown in Figure 6.36. Channels 2 and 3 are initially inactive

in the low SNR region, and become active as the SNR increases. The PA curves

saturate in the high SNR region, where channel 3 receives the most power, while

channel 1 receives the least.

The capacity comparison between different PA schemes with 64-QAM inputs and

channel gains |h1|2 = 10|h2|2 = 100|h3|2 is shown in Figure 6.37. The capacity

of the MWF is the same as that of the strongest sub-channel in the low SNR

region, where it is optimal to allocate all the power to the strongest sub-channel.

The capacity difference between the AOPA and the MWF is negligible, which

shows how close the approximation is to the MWF. The capacity of the uniform

PA is lower than that of the MWF generally, but it reaches the capacity of the

MWF eventually. To obtain the same capacity as the MWF, a power penalty of

approximately 2 dB is required for the uniform PA. The capacities of the MWF,

the AOPA and the uniform PA converge to 18 bits/s/Hz in the high SNR region,

where the capacity of the strongest sub-channel converge to 6 bits/s/Hz.

6.3 Summary

In this chapter, the MWF OPA and the AOPA of 2 parallel sub-channels with 16-

QAM, 64-QAM and 256-QAM inputs are computed, and their respective capacities

are compared with each other. The same is done for three parallel sub-channels

for comparison. The key comparison is between the MWF OPA and the AOPA.

The results demonstrate that the AOPA, which is derived from the sphere packing

approach, is a close approximation of the MWF OPA.

Obtaining the MWF OPA requires the use of MMSE functions, which contain

integrals. The calculation of such integrals requires much time, and the curves

may drop to zero abnormally if a proper form of the MMSE function is not used,

as discussed earlier. However, this is not the case for the AOPA, which does not

contain any integral, and is easier to compute. More importantly, the curves are

smooth with no abnormal collapse occurring anywhere. Overall, it is easier to

compute, and the performance is close to that of the MWF OPA. Therefore, the

AOPA is considered to be a close and robust approximation of the MWF OPA.



Chapter 7

Conclusion

7.1 Thesis Summary

The digital transmission system is introduced with a block diagram. The three

blocks, modulation, channel and demodulation are considered as an extended chan-

nel. For such extended channel, our objective is to find the OPA that maximizes

the capacity.

Channel capacity is presented, more specifically, the Gaussian channel capacity

and the constellation capacity. There is an integral inside the constellation ca-

pacity expression, which can not be evaluated analytically. The Moente Carlo

integration is used to evaluate it instead. The sphere packing argument is uti-

lized to obtain an approximation of the constellation capacity, since its original

expression is quite complicated.

Several OPA schemes and respective approximations are discussed. The regular

WF is optimal for Gaussian inputs, and the MWF is a generalized WF which is

optimal for arbitrary input distributions. An approximation of the MWF based

on the sphere packing argument is presented, which is called the constellation-

constrained WF (or AOPA). A parallel channel model is also introduced as the

context.

The MWF is based on MMSE functions. A general expression of the MMSE is pre-

sented, along with expressions for several specific constellations. The MWF turns

into the regular WF if the input is Gaussian. A high and a low power expansion
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of MMSE are discussed as well. A figure of MMSE for different constellations are

shown, which is identical to its counterpart in [1].

Several errors are found in [1]. More importantly, a loss of precision is found

during the simulation, due to the structure of the specific MMSE functions. The

limited precision of the numerical computation cannot give an accurate result in

this case. Therefore, the general expression of the MMSE function (3.21) is used

to obtain the MWF OPA instead.

A new algorithm, the internal/external bisection algorithm is developed in order

to obtain the MWF OPA. For such algorithm to start, upper and lower bounds

needs to be derived first, which change dynamically with respect to the SNR. The

internal bisecion is to obtain the MMSE−1(·), while the external one is to obtain

the value of η.

For the AOPA, the loss of precision is not a problem. The optimization problem

for the AOPA is a convex optimization problem, which can be solved via the

KKT conditions. The CVX was used initially, but problems arose in the process.

There are abnormal gaps on the PA curves, for which the ”cvx status” are failed.

Therefore, the AOPA is obtained via the bisection method in combination with

the total power constraint, since the AOPA is a monotonic function.

Capacities of different PA schemes are computed and compared with each other,

especially between the AOPA and the MWF. The setting of two parallel sub-

channels with 16-QAM, 64-QAM and 256-QAM inputs, and channel gains |h1|2 =

2|h2|2, |h1|2 = 10|h2|2 and |h1|2 = 100|h2|2 are utilized. The same is used for

three parallel sub-channels for comparison, with channel gains |h1|2 = 2|h2|2 =

4|h3|2, |h1|2 = 10|h2|2 = 100|h3|2. Several other PA schemes are used as well for

comparison, such as the regular WF, the uniform PA, the stronger sub-channel

with all the Tx power and the Monte Carlo OPA. The results demonstrate that

the AOPA is a close approximation of the MWF.

7.2 Future research

The work stated in the thesis could be expanded in several ways:

1. The same constellation is used on all the sub-channels for comparison purposes

in the thesis. However, a higher order constellation can be applied to the stronger
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sub-channel in the case of |h1|2 = 100|h2|2, so that the stronger sub-channel will

get more power at high SNR.

2. For the future 5G system, the enablers are better energy efficiency and higher

data rate. Our objective is to obtain the OPA that maximizes the capacity, which

correspond to the enablers above. We believe this work could be useful in the

upcoming new generation.



Appendix A

A.1 History from 1G to 5G

The basic concepts of wireless communication are addressed in [38], as well as

various technologies for 2G and 3G. 2G is a significant improvement compared to

1G, which is analog only. An important standard for 2G, GSM (Global System

for Mobile Communications), was developed by the European Telecommunications

Standards Institute. For GSM, the signals are digital instead of analog as in 1G.

A typical method for 2G is TDMA (Time Division Multiple Access), which allows

users to utilize the same channel at different time slots [39]. Currently, GSM is

still used to provide voice services due to the fact that it provides high quality

voice services at a reduced cost. More details about GSM systems for mobile

communications can be found in [40]. Unlike 2G, the later generations focus more

on data services, and numerous new technologies have been developed since then.

GPRS (General Packet Radio Service) is in between of 2G and 3G, which is usually

referred to as 2.5G. It provides data services along with the voice services provided

by GSM. It utilizes the unused TDMA channels in the GSM network, providing a

data rate of 56-114 kbps. More details about GPRS and its performance can be

found in [40].

The 3rd generation has a great improvement compared to 2G, with significantly

higher data rate. Its history and development can be found in [39]. The motivation

of 3G research is to seek for a higher data rate compared to 2G. There are a

number of new technologies for 3G, including CDMA (Code Division Multiple

Access), EDGE (Enhanced Data rates for GSM Evolution) and HSCSD (High-

Speed Circuit-Switched Data) [40] [41]. Performances of different standards are

discussed in [41] along with their backgrounds. CDMA is a channel access method,
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which has two variations: TD-CDMA (Time Division CDMA) and TD-SCDMA

(Time Division synchronous CDMA) [39]. TD-CDMA is a multiple access method

that is used on different time slots. TD-SCDMA is a multiple access method using

adaptive synchronous CDMA components, which is developed by China.

EDGE is also known as enhanced GPRS, which is an extension of GSM. It results

in an increased capacity and delivers higher rate compared to GPRS. HSCSD

utilizes a more efficient coding scheme, and uses several time slots at the same

time in order to achieve a higher rate. WAP (Wireless Application Protocol) is

a protocol that enables users to use wireless devices to connect to the internet at

any time, which makes it possible for mobile devices to use applications that are

similar to web browsers on computers [40].

LTE (Long term evolution) [42] is a standard for high-speed wireless communica-

tion, which is developed by 3GPP. It introduces several new technologies such as

OFDM (Orthogonal Frequency Division Multiplexing) [25] [30] and MIMO (Mul-

tiple Input Multiple Output) [43]. OFDM encodes data on multiple carrier fre-

quencies, it is able to deal with severe channel conditions such as fading. MIMO

deploys multiple antennas at both the transmitter and the receiver. The extra

antennas exploit multipath propagation between the transmitter and the receiver,

so that the channel capacity is greatly increased. Those technologies increase

the data rate and spectral efficiency considerably. An optimal power allocation

(OPA) for OFDM with arbitrary input distributions can be found in [30], and

multiuser mercury/waterfilling (MWF) for downlink OFDM can be found in [27].

As for MIMO, a popular detection algorithm to the receiver is V-BLAST (Vertical-

Bell Laboratories Layered Space-Time), which utilizes the spatial multiplexing of

MIMO systems. An OPA for V-BLAST can be found in [44] and an optimal

ordering for coded ZF (Zero Forcing) and MMSE V-BLAST is discussed in [45].

Optimal power and rate allocation for coded V-BLAST are discussed in [46] and

[47].

Channel capacity and coverage are increased significantly due to the fact that LTE

supports the mainstream frequency bands of 2G/3G and some other new ones. The

network of LTE systems is simplified, reducing the complexity of the system. As

a result, system delay and maintenance cost are reduced as well. LTE-Advanced

is an enhancement of LTE, which has higher throughput. Its performance is dis-

cussed in [42].
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The following generation will be 5G, of which extensive research has been initiated.

The goal of 5G is to satisfy the rising traffic volume, and to provide users with a

higher data rate and lower latency [48]. Overall, it creates a better user experience.

Therefore there are some specific properties that 5G should have, for instance,

high carrier frequencies, massive bandwidths, and highly integrative systems [48].

Several new technologies designed for 5G are discussed below.

Limitations of 4G include spectrum scarcity and high energy consumption. New

technologies are developed in order to deal with these issues, several of which are

discussed in [49]. Massive MIMO, millimeter wave and small cell are amongst

those key technologies, which form the basis of 5G. Massive MIMO is an evolution

of its predecessor, MIMO [50]. Within MIMO systems, more antennas are located

at both the transmitter and reciever, which create more signal paths and achieve

higher capacity in return. Massive MIMO is more effective due to the excessive

number of antennas it has. It confines transmit and receive signal energy within

a small area, throughput and energy efficiency receives a huge improvement as

a result. Massive MIMO provides a higher capacity, lower latency and better

coverage for the system, which are crucial to user experience. However, some issues

still exist and need to be addressed, which include the high cost of deploying all

the antennas, maintenance fees and the cost of channel estimation and feedback

[50]. Despite the issues above, massive MIMO is one of the enabling technologies

for 5G with bright future.

Millimeter wave is another key technology of 5G that exploits untapped higher

frequency bands. Lower frequency bands are currently crowded due to the fact

that they are where most of the current communication systems operate. The

bandwidth shortage makes it essential to utilize higher frequencies beyond. A

millimeter wave solution for 5G is introduced in [51], which can be used in the

upcoming 5G system. For higher frequencies, 28 GHz and 38 GHz can be used

when employing steerable directional antennas at base stations and mobile devices.

More details can be found in [51].

Small cell works at a designated frequency band with low power consumption. It

is small compared to Macrocell, and covers a shorter range of 10 to 200 meters.

There are several kinds of small cells, such as Femtocell, Picocell and Microcells.

Small cell makes it possible to reuse the same frequency band multiple times, so

that the capacity and spectral efficiency are increased greatly [52]. As a result,

better user experience is obtained with higher data rate and lower latency. Small
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cell designs can be found in [52]. However, the inter-cell interference is a challenge

which needs to be properly dealt with [53].

Small cell systems can also be connected to cellular networks to create a heteroge-

neous network, which also increases network capacity and spectral efficiency [52].

Heterogeneous network, also known as HetNet, is a type of network architecture

that consists of small cells connecting different types of base stations, such as

Femto-, Pico- and Marcocells [53]. HetNet is a key idea for future network devel-

opment, and it will satisfy the rising traffic volume once the inter-cell interference

problem is solved.

A.2 Proof of Theorem 3.2

Mutual information I(piγi) is known to be a concave function, therefore its maxi-

mization is identical to the minimization of −I(piγi), which is a convex function. It

is a convex optimization problem and the OPA can be solved via KKT conditions.

The standard form of convex optimization problems is as follows [35]:

minimize f0(x) (A.1)

subject to fi(x) ≤ 0, i = 1, ...,m (A.2)

hi(x) = 0, i = 1, ..., p (A.3)

where f0, f1, ..., fm are convex functions, and hi is affine.

KKT conditions represent a method of solving convex optimization problems, the

following four conditions are called KKT conditions (with differentiable fi, hi):

1. Primal Constraints: fi(x) ≤ 0, i = 1, ...,m, hi(x) = 0, i = 1, ..., p.

2. Dual Constraints: λi ≥ 0.

3. Complementary Slackness: λifi(x) = 0, i = 1, ...,m.

4. Gradient of Lagrangian with respect to x vanishes:

∇f0(x) +
m∑
i=1

λi∇fi(x) +

p∑
i=1

ηi∇hi(x) = 0 (A.4)
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According to (3.6), the optimization problem can be written as

min−
∑

I(piγi) (A.5)

subject to pi ≥ 0 (A.6)∑
pi = n (A.7)

The Lagrangian can be written as:

L = −
∑

I(piγi)−
∑

λipi + η
(∑

pi − n
)

(A.8)

Thus the KKT conditions for the OPA problem are:

∂L

∂pi
= −γiMMSE(piγi) + η − λi = 0 (A.9)

λipi = 0 (A.10)

λi ≥ 0 (A.11)

pi ≥ 0 (A.12)

The gradient of the Lagrangian in (A.9) can be further simplified as:

pi =
1

γi
MMSE−1

(
η − λi
γi

)
(A.13)

The complementary slackness (A.10) can be divided into two different scenarios

as follows:

1. pi > 0, λi = 0

Substitute (A.13) into the inequality:

1

γi
MMSE−1

(
η − λi
γi

)
> 0 (A.14)

Due to the fact that MMSE−1(·) is a monotonically decreasing function, and

MMSE−1(1) = 0, (A.14) turns into

η − λi
γi

< 1 (A.15)
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where λi = 0 in this case. The inequality η < γi can be derived from (A.15). From

(A.13), p∗i is retrieved for this scenario:

p∗i =
1

γi
MMSE−1

(
η

γi

)
(A.16)

2. pi = 0, λi ≥ 0

Substitute (A.13) into the equality:

1

γi
MMSE−1

(
η − λi
γi

)
= 0 (A.17)

where MMSE−1(1) = 0, therefore (A.17) turns into

η = λi + γi (A.18)

with λi ≥ 0 for this scenario, it is obvious that η ≥ γi. Therefore the OPA is

p∗i = 0.

With the two scenarios combined, the OPA is

p∗i = 0, γi ≤ η (A.19)

p∗i =
1

γi
MMSE−1

(
η

γi

)
, γi > η (A.20)

Expression (A.20) can be manipulated to obtain (3.11). Combined with (A.19), it

is identical to Theorem 3.2. This completes the proof.

A.3 Derivation of (3.33)

Expression (3.30) is expanded first, and then the series is truncated at l = 1, which

leads to

MMSE(ρ) =
e−

ρ
2

√
2ρ

(√
π +

b1
2ρ

)
(A.21)
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According to (3.31), b1 can be calculated as follows:

b1 = −
Z

(
3,

1

4

)
− Z

(
3,

3

4

)
8
√
π

·
1∏
q=1

(2q − 1) (A.22)

where Z(·, ·) stands for the generalized Riemann Zeta function [1], and then

Z

(
3,

1

4

)
, Z

(
3,

3

4

)
can be derived from (3.32):

Z

(
3,

1

4

)
=
∞∑
k=0

(
k +

1

4

)−3
(A.23)

Z

(
3,

3

4

)
=
∞∑
k=0

(
k +

3

4

)−3
(A.24)

where the right hand sides can be further expanded as

Z

(
3,

1

4

)
=

(
1

4

)−3
+

(
5

4

)−3
+ ...+

(
4k + 1

4

)−3
= 43 +

(
4

5

)3

+ ...+

(
4

4k + 1

)3

(A.25)

Z

(
3,

3

4

)
=

(
3

4

)−3
+

(
7

4

)−3
+ ...+

(
4k + 3

4

)−3
=

(
4

3

)3

+

(
4

7

)3

+ ...+

(
4

4k + 3

)3

(A.26)

The first term on the right hand side of both (A.25) and (A.26) are greater than

1, while all the other terms are less than 1 which makes them negligible compared

with the first term. Expression (A.22) can be simplified as

b1 = −1 ·

(
4

3

)3

− 43

8
√
π

= −
8− 8

27√
π
≈ −4.3 (A.27)

Substitute b1 in (A.21) with −4.3, expression (3.33) can also be derived.
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A.4 Derivation of (4.11)

Substitute (4.10) into Theorem 3.2, the following can be obtained:

η = γiMMSE(p∗i γi) = γi
e−

1
2
p∗i γi√

2p∗i γi/π
(A.28)

where p∗i γi is the SNR on the ith channel, and γi = |h2i |P is a measure of channel

strength. Therefore (A.28) can be expanded as:

η = |hi|2P
e−

1
2p∗i γi√

2P/πp∗i |hi|
= |hi|

e−
1
2
p∗i |hi|2P√
p∗i

· P√
2P/π

(A.29)

where P is the total power which is a known constant. In order to solve p∗i , an

equation can be obtained from (A.29). The constant part is cancelled on both sides

of the equation so that it can be neglected from the expression of η. Therefore

expression (4.11) is derived.

A.5 Proof of Theorem 5.1

Assuming the communication rate is Cc, having n-symbol codewords is identical

to finding 2nCc distinct sequences.

2nCc = Nc (A.30)

≈
(

1 + γ

1 + γ
M2

)n/2
(A.31)

where the following can be derived:

Cc ≈
1

2
log2

1 + γ

1 + γ
M2

(A.32)

Therefore (5.12) is derived.
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A.6 Proof of Theorem 5.2

The optimization problem is presented in (5.22) and (5.23), the objective can be

manipulated so that it turns into a convex optimization problem.

log2

1 + gkpk
1 + gkpk

Mk

= log2

(
1 + (Mk − 1)

(
1− Mk

gkpk +Mk

))
(A.33)

The objective is a function of pk. As shown in the manipulation (A.33), gkpk +Mk

is an affine function. Hence
Mk

gkpk +Mk

is concave, and 1− Mk

gkpk +Mk

is convex.

As a result, the terms inside the logarithm are convex since the constellation order

Mk ≥ 1. Therefore (A.33) is a concave function of pk and the optimization problem

in (5.22) and (5.23) can be rewritten as

min −
∑
k

log2

1 + gkpk
1 + gkpk

Mk

(A.34)

s.t.
∑
k

pk ≤ PT , pk ≥ 0 for all k (A.35)

Since it is a convex optimization problem, KKT conditions can be utilized to solve

it as follows:

1. Primal constraints:

∑
k

pk ≤ PT , pk ≥ 0 (A.36)

2. Dual constraints:

λ ≥ 0, λk ≥ 0 (A.37)

3. Complementary slackness:

λ

(∑
k

pk − PT

)
= 0, λkpk = 0 (A.38)

4. Gradient of Lagrangian with respect to x vanishes:

λ− (Mk − 1)gk
(1 + pkgk)(Mk + pkgk)

− λk = 0 (A.39)

The complementary slackness (A.38) can be divided into two different scenarios.
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1. If λk > 0, then pk = 0 which leads to

λ− (Mk − 1)gk
Mk

− λk = 0

λ = λk +
Mk − 1

Mk

gk (A.40)

where λk ≥ 0, then:

λ >

(
1− 1

Mk

)
gk (A.41)

2. If pk > 0, then λk = 0 which leads to

λ =
(Mk − 1)gk

(1 + pkgk)(Mk + pkgk)
(A.42)

After some manipulations the following can be obtained:

g2kp
2
k + (Mk + 1)gkpk +Mk −

Mk − 1

λ
gk = 0 (A.43)

where both pk and Mk + 1 are non-negative, then

Mk −
Mk − 1

λ
gk ≤ 0

λ ≤
(

1− 1

Mk

)
gk (A.44)

In this case, the OPA can be derived from (A.43).

g2k

(
pk +

Mk + 1

2gk

)2

=
(Mk + 1)2

4
+
Mk − 1

λ
gk −Mk(

pk +
Mk + 1

2gk

)2

=
(Mk − 1)2

4g2k
+
Mk − 1

λgk

pk =
1

2gk

(√
(Mk − 1)2 +

4gk
λ

(Mk − 1)− (Mk + 1)

)
(A.45)

Therefore Theorem 5.2 is validated, and the solution is unique since the objective

is strictly concave.
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A.7 Derivation of The Regular Waterfilling from

Theorem 5.2

lim
Mk→∞

1

2gk

(√
(Mk − 1)2 +

4gk
λ

(Mk − 1)− (Mk + 1)

)

=
1

2gk
lim

Mk→∞

(Mk − 1)2 + 4gk
λ

(Mk − 1)− (Mk + 1)2√
(Mk − 1)2 + 4gk

λ
(Mk − 1) + (Mk + 1)

=
1

2gk
lim

Mk→∞

Mk(
4gk
λ
− 4)− 4gk

λ√
(Mk − 1)2 + 4gk

λ
(Mk − 1) + (Mk + 1)

=
1

2gk
lim

Mk→∞

4gk
λ
− 4− 4gk

Mkλ√
(Mk−1)2
M2
k

+ 4gk
λ

Mk−1
M2
k

+ Mk+1
Mk

=
1

2gk

4gk
λ
− 4

2

=
1

λ
− 1

gk
(A.46)

Therefore the regular waterfilling (WF) policy follows Theorem 5.2.
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[6] S. Verdú, T.S. Han, A General Formula for Channel Capacity, IEEE Trans.

Inf. Theory, vol. 40, no. 4, pp. 1147-1157, Jul. 1994.

[7] F. Xiong, Digital Modulation Techniques, Artech House, 2000.

[8] F. W. Sun, H. C. A. van Tilborg, Approaching Capacity by Equiprobable Sig-

naling on the Gaussian Channel, IEEE Trans. Inf. Theory, vol. 39, no. 5, pp.

1714-1716, Sep. 1993.

[9] J.R. Barry, E.A. Lee, and D.G. Messerschmitt, Digital Communications,

Kluwer Academic Publishers, 2003.

[10] G.D. Forney, G. Ungerboeck, Modulation and Coding for Linear Gaussian

Channels, IEEE Trans. Inf. Theory, vol. 44, no. 6, pp. 2384-2415, Oct. 1998.

114



Bibliography 115
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Mean-Square Error in Gaussian Channels, IEEE Trans. Inf. Theory, vol. 51,

no. 4, pp. 1261-1283, Apr. 2005.

[33] D. Guo, S. Shamai (Shitz), and S. Verdú, The Interplay Between Information
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