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Abstract

Topological insulators and topological crystalline insulators are materials that have a bulk
band structure that is gapped, but that also have toplogically protected non-gapped surface
states. This implies that the bulk is insulating, but that the material can conduct electricity
on some of its surfaces. The robustness of these surface states is a consequence of time-reversal
symmetry, possibly in combination with invariance under other symmetries, like that of the
crystal itself. In this thesis we review some of the basic theory for such materials. In particular
we discuss how topological invariants can be derived for some specific systems. We then move
on to do band structure calculations using the tight-binding method, with the aim to see the
topologically protected surface states in a topological crystalline insulator. These calculations
require the diagonalization of block tridiagonal matrices. We finish the thesis by studying the
properties of such matrices in more detail and derive some results regarding the distribution
and convergence of their eigenvalues.
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1 Introduction

The notion of phases in materials is very common. Traditionally, when talking about phases one
refers to the material being either in a solid, liquid or gaseous state. This, however, is a very
rough division of materials into different classes, since for example, many common materials, such
as steel or ice, can in fact exist is several different forms. A finer division of materials arises
from what in [I] is called the principle of emergence, which states that it is the organization of
the particles in a material that determines the properties of the material. The problem is thus
to describe how particles are ordered in materials, and to use these different orders to describe
different phases. What one needs to do first is to define when two orderings of particles should be
considered equivalent and in [I] they have the following:

Two states that can be connected to each other without any phase transitions are equivalent.

When we say that we connect two states, we mean that we start in one state and deform the
system smoothly in some way, e.g. by changing the temperature, until we end up in the other
state. Quantum mechanically, this means that we begin with a Hamiltonian which depends on a
set of parameters, and then we smoothly change some of the parameters so that the Hamiltonian
changes. By a phase transition, one means that there is at least one local quantity that does not
change smoothly under the deformation of the system. [I]

One theory that describes phases and phase transitions and when states are equivalent, was de-
veloped by Landau [2]. In this theory, the main feature is symmetries, and we say that different
phases have different symmetries and that phases change when symmetries are broken. This means
that a phase transition is a transition that changes the symmetry of the material. [1]

Landau’s theory was successful, and one consequence of it, for example, is that we can classify all
three-dimensional crystal structures. For a long time it was believed that this description of order
in materials was complete. This, however, has in the last 30 years turned out not to be the case.
The two main features that led to this conclusion was the discovery of the fractional quantum Hall
effect by Tsui and Stormer in 1982 [3], and that of high 7. superconductors by Bednorz and Miiller
in 1986 [4]. In the case of the fractional quantum Hall effect, the situation is such that there are
different fractional quantum Hall states that have the same symmetry. Thus something is lacking
in the classification of phases in terms of symmetry, and the need to describe other kinds of order
in materials arose.

These new kinds of orders that can arise in materials are called topological phases, and are thus
orders that are not described by symmetry breaking alone. It turns out that one feature that can be
used to characterize these topological phases in thermodynamical systems is topology-dependent
and topologically robust degeneracies in the ground state when considering the thermodynamic
limit. It turns out that many of these properties can be described in terms of suitable topological
invariants, which can take different quantized values for different phases, which explains why it is
called topological phases.

In this thesis, we will focus on a particular class of such phases, which are called topological
insulators and topological crystalline insulators. These are materials that are characterized by
certain surface or edge states that exist as a consequence of a non-trivial topology of the wave
functions of the bulk material. [5] The difference between a trivial insulator and a topological



insulator lies in the existence of such states. All insulators have a bandgap in their bulk band
structure. This is simply a gap between the conduction band and the valence band. In a trivial
insulator with a surface, we can have surface states that reach into the bandgap, giving the material
conducting properties. These conducting properties, however, can be removed by changing the
Fermi level of the material, so that it once again ends up in a bandgap. This means that in a trivial
insulator, the Fermi level must cross each energy band an even number of times. In a topological
insulator, however, there are energy bands that cross the Fermi level an odd number of times,
meaning that there is no way that the Fermi level can be moved in a way so that it does not
cross any energy bands. These surface states are robust and have the nice property that they are
insensitive to e.g. contamination of the surface. [6, Ch. 2.1]

The most widely studied topological insulators are those for which the topological surface states are
protected by time-reversal symmetry. In those systems the surface states have a Dirac dispersion,
meaning that there are linear crossings between energy states. In topological crystalline insulators
the situation is somewhat different. Here time-reversal symmetry alone is not enough to guarantee
topologically protected states, instead one has to consider time-reversal symmetry in combination
with symmetries of the crystal structure of the material itself.

As already mentioned, the theory of topological phases is relatively new. Actually, the Nobel Prize
in physics was awarded ”for theoretical discoveries of topological phase transitions and topological
phases of matter” [7] in 2016 to Thouless, Haldane and Kosterlitz. The novelty of the materials
means that they are not in use yet, but their properties, like the combination of spin polarization
and large robustness of the surface states [6, Ch. 2.3], make them promising for applications in e.g.
electronics and sensors.

One goal of this thesis is to describe the basics of topological insulators and topological crystalline
insulators from a theoretical point of view. The goal is to give an overview of the theoretical
aspects of the materials. In addition then shift the focus to band structure calculations using the
tight-binding approximation. The structure of the thesis is as follows. In Section [3] we review the
basics of topological insulators. We follow the description given in [5], and fill in the details, of the
topological invariants associated with these kinds of materials and see why and how they arise. We
relate these invariants to the band structure and see how the surface states differ in the different
phases. In Section [4, we move on to review topological crystalline insulators and see how these
differ from the previously described topological insulators. We follow the approach of [§].

In order to be able to show that a material is a topological crystalline insulator, one has to be able
to calculate the band structure of the material. It is impossible to do this exactly, and thus in
Section [b| we review the foundation of the tight-binding approximation and the Slater-Koster rules,
which is described in [9]. In Section [6] we continue to some examples of how to use the Slater-Koster
rules. We show how these rules are used to calculate the band structure in case of the material
and in a general tetragonal crystal structure. In the first case we evaluate the bulk band structure
using s, p and d orbitals, while in the latter case we use only p, and p, orbitals. In the case of the
tetragonal lattice, we also perform tight-binding calculations for a slab in order to find surface states
that cross each other and thus indicate that we are actually dealing with a topological crystalline
insulator. When doing tight-binding calculations for a slab-geometry, one ends up with the problem
of finding eigenvalues of a block-tridagonal matrix. Diagonalization of matrices is a computationally
expensive problem, and thus we spend Section [7] on studying the properties of the eigenvalues of



these matrices. We provide limits on intervals in which these eigenvalues must lie. The results give
a mathematical argument for why these kinds of matrices give rise to band structures in materials.
Also, we do further examinations of these matrices and discuss the convergence of the eigenvalues
(and thus the convergence of the band structure obtained in slab-geometry calculations) as the size
of the matrix increases.

2 Some necessary physical concepts

In this section we will provide a background to some of the physical concepts that will be of
importance in this thesis. We will among other things describe the adiabatic approximation, parity
operators and the time-reversal operator.

2.1 Adiabatic systems

In many cases we will be interested in physical systems that vary slowly with time. These systems
are called adiabatic, and in this section we will give a more accurate description of them that is
based on the information in [10] and [I1].

Suppose that we have a system with a Hamiltonian that depends on a set of parameters. The
energy eigenvalues of the Hamiltonian will naturally depend on those parameters. Now, if these
parameters vary slowly with time, the energy eigenvalues should not change their order. By slowly
varying one usually means that they vary on a time scale that is much larger than 27 /wqp < 1/ Eg
for some difference in energy eigenvalues E;, where wgy is the frequency of the system. Such a
change in parameters is called adiabatic.

An important result is the adiabatic theorem. It states the following [11]:

Suppose we have a time-dependent Hamiltonian. Then the eigenfunctions and eigenvalues of the
system are time-dependent, giving us the equation

H(t)wn(t) = En(t)l/}n(t)v (2.1)
where the eigenfunctions at each instant of time are orthonormal to each other, i.e.
<wn(t)|¢m(t)> = Opm.- (2.2)

Also, they form a complete set of basis functions, so we can express the solution to the general
Schrédinger equation,

0
i U(t) = HOU(0), (2.3)

as a linear combination of the eigenfunctions in the following way

U(t) = S 0a(t) = 3 cnlt)n(H)e™ ), (2.4)

n

where

0n(1) = —% /0 B, (t)dt. (2.5)
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Now, by inserting equation (2.4) into equation ([2.3)), and assuming non-degenerate energies, one
can show that

(m|H )

g g P [—; /O (En(t') — En(t) dt'| . (2.6)

em(t) = —cm <1/)m|¢m> - Z ¢

n#Em

The adiabatic approximation is now to assume that H is very small, in a sense that one can neglect
the sum, thus leaving us with

em(t) = —cm W’me) . (2.7)
This is a differential equation with the solution
() = em(0) exp [im (1)), (2.8)
where . 5
(0 =1 [ W) gmE) . (29)

Now, if we assume that the system starts in the nth eigenstate at t = 0, then we have ¢,(0) = 1
and ¢, (0) = 0 for m # n. This means that

\Ij(t) =V, (t) = exp [ign (t)] exp [i')’n(t)] 1/%(75) (2'10)

So the particle will remain in the nth eigenstate of the time evolving Hamiltonian, the only difference
being some phase factors.

2.2 The Heisenberg equation of motion

The Heisenberg equation of motion is an equation that describes the time-evolution of an operator
in the Heisenberg picture. We will give a brief review of it and follow the description in [10].

Let H be the Hamiltonian of a system and let A° be an observable in the Schrédinger picture.
Using this we define the corresponding observable in the Heisenberg picture by

AT (t) = Ut () ASU(t), (2.11)

where U is the time-evolution operator given by

U(t) = exp <_ft> : (2.12)

By differentiating equation (2.11f), we obtain

Al out ou
— = =4 TASZZ 2.1
i~ o MUTUAG (2.13)
From equation ([2.12)) we have
ou 1
— =—HU 2.14
ot ih (2.14)

8



and
aur 1

= - _—U'H. 2.15
ot ih (2.15)

Inserting this into equation ([2.13)), we get

dA? 1

1 1
dt ik i

- [AH ,L{THL{} . (2.16)

1

1
Ut BUUT ASU + ﬁw ASUUTHU =

Because of equation (2.12f), we see that H and & commute. This gives us

dA® 1

This equation is known as the Heisenberg equation of motion.

2.3 The time-reversal operator
The time-reversal operator is central in the description of topological insulators, and we will here
give a review of the most important properties based on [10] and [5].

Before we define the time-reversal operator, we will make some general notes about symmetry
operators.

Definition 2.1. Let |a) and |8) be two states. A wunitary operator is a linear operator, U, that
satisfies

(Bla) = (Ble) (2.18)
where |&) = U |a) and |8) = U |3).

Now, we will not only be interested in linear operators. In fact, it turns out that also anti-linear
operators are useful. Such an operator 6 satisfies the following:

O(cila) +e2|B)) = cif]a) + 30 15) . (2.19)

Using this, we make the following definition:

Definition 2.2. An operator 0 is anti-unitary if it is anti-linear and satisfies
(Bla) = (Bl (2.20)
where |a@) = 0 |a) and |3) = 8).
It can be shown that an anti-unitary operator 6 always can be written as
0 =UK, (2.21)

where U is a unitary operator and K is a complex conjugate operator. Some care is needed to be
taken when writing 6 in this way, since complex conjugation is not invariant under change-of-basis.



Now, we are specifically interested in the time-reversal operator. This is an anti-unitary operator
that we denote by ©. What follows is a discussion on the behaviour of operators under time-reversal.

Let |a) and |5) be states in some system, let A be a linear operator, and define

&) :==Ola), [B):=0]B). (2.22)
Further, let |y) = AT |3). This gives us

(BlAla) = (|a) = (@) = (aloAT|5)

= (a|eATe710|8) = (a|eATe!3). (2.23)
In particular, if A is Hermitian, we have
(BlAla) = (a]©40715). (2.24)
We also note that if A is the identity operator, we have
(a]B) = (©8]6q). (2.25)
We say that an observable is even or odd under time-reversal depending on the sign in
0407 ! =+A. (2.26)
This means that 3 .
(BlAla) = £ (BlA]a) . (2.27)
Letting a = 3, we get information about the expectation value under time-reversal, namely
(o] Aler) = + (@] Ala) . (2.28)

In particular, it is clear that the expectation value of the momentum operator should change sign
under time reversal, i.e.
(alpla) = —{alpla), (2.29)
which means that
OpO~!' = —p. (2.30)

Similarly, the expectation value of the position operator should be unchanged under time reversal,
giving us
(alx[a) = (alx|a), (2.31)
and
ox0~! = x. (2.32)

Now, it is also important to know how the wave function changes under time-reversal. One can
show that

O1(p) = ¥*(—p). (2.33)

It turns out that © behaves differently in systems with different spin. In systems with half-integer
spin we have ©2 = —1, while in systems with integer spin we have ®% = 1. In particular, we will

10



be interested in the case of spin 1/2 particles. Here O takes the form © = —is, K, where K is the
complex conjugate operator and s; denotes the spin operator given by Pauli matrices. We note
that

0? = (—is, K)? = (s, K)*. (2.34)
Since K commutes with s; and s? = —1I, we see that
0% = —I. (2.35)

2.4 The parity operator

Another useful symmetry operator is the parity operator. A parity operation can either be applied
to the coordinate system or to the states themselves. Applying it to the coordinate system, amounts
to changing the the system from a right-handed to a left-handed coordinate system. We will,
however, be interested in the application of the parity operator to states. This is defined in the
following way:

Definition 2.3. The parity operator, denoted by m, is a unitary operator which acts on any state
|a)) such that the expectation value of x changes in the following way:

(a|rTxm|a) = — (a|x|a) . (2.36)

One immediately sees that this is true if
mixm = —x. (2.37)

That 7 is unitary means
b=l (2.38)

which, together with equation implies that 7 and x anti-commute, i.e.
{m,x} =0. (2.39)
Now, let |x) be an eigenstate of x. Then we have
Tlx) = |-x). (2.40)

From this it follows that
2 |x) = |x), (2.41)

and thus 7 has eigenvalues +1.

The momentum operator behaves similarly under space inversion as the position operator, namely

{m,p} =0, (2.42)

and
mipr = —p. (2.43)

11



2.5 Surface states

When studying topological insulators, one is interested in studying surface states of materials, i.e.
electrons that are close to the surface. These electrons should have different properties compared
to electrons existing in the bulk, since they do not have atoms on all sides, like those in the bulk
do.

A surface state is described by its energy E and a two-dimensional wave vector (kg,k,) which
is parallel to the surface [12, ch. 6.2.1], while bulk states are described by their energy and a
three-dimensional wave-vector. In order to study bulk and surface states simultaneously, one has
to project the bulk states onto the plane E(k;,k,). The surface states in this description are
characterized by not being degenerate with the bulk states, which means that they are found in
the gap of the projected bulk band structure.

3 Topological insulators

In this section we will review the basic properties of topological insulators. In [I3] two insulators
are defined to be equivalent in the following way:

Definition 3.1. Two insulators are topologically equivalent if the Hamiltonians describing their
band structures can be smoothly deformed into each other without closing the energy gap.

In practice this means the following: Suppose we have two systems. Now, start with one of them
and smoothly change one or more of the parameters of the system. If we in this way can go from
the first system to the other, while keeping the energy gap open, we say that the systems are
topologically equivalent.

Our main reference in this section will be [5], and we will follow the presentation there, but fill in
the details along the way.

3.1 The Hall effect

One can say that the first topological insulators that were discovered were the quantum Hall
systems. For historical reasons we will thus start with a short summary of these systems and their
properties.

The geometry of the Hall effect is shown in Figure We have a two-dimensional system with
a strong magnetic field B = (0,0, B) in the z-direction and an electric field E = (E,0,0) in the
z-direction.

3.1.1 The classical case

In the classical case the electric field creates a current j = oE, where o is the conductivity of the
material. The magnetic field will exert a force on the electrons, so there will be a current in the

12



Figure 1: Geometry of the Hall experiment.

y-direction, which creates an electric field £, in the y-direction which cancels the current. The
transverse electric field is given by [14]

E, = cRyE,B., (3.1)

where Ry is the Hall coefficient, given by

Ry = —— (3.2)

’
ne

where n is the electron density and e is the fundamental charge.

3.1.2 The quantum Hall effect

It turns out that when we have extremely low temperatures and strong magnetic fields, we will
get quite a different phenomenon. This is called the quantum Hall effect. There are some differ-
ent variants of this phenomenon, but we will discuss the integer quantum Hall effect, which was
originally observed by von Klitzing, Dorda and Pepper in 1980 [14].

In this case the geometry of the system is the same as in the classical case. The difference however,
is that when the temperature is of the order of a few Kelvin and the magnetic field is of a few Tesla,
the Hall conductance is quantized according to

62

Ozy = Vﬁ?

(3.3)

where h is Planck’s constant.

The explanation for the quantized conductance lies in what happens to the electrons in the material
in high magnetic fields. This is described in [I5]. In a somewhat classical description, we can see
that the electrons in the material will begin to make circular motions when in a strong magnetic
field. If the width of the slab is large enough, this means that the electrons within the system will
be localized. The electrons close to the edge, however, will start to move along the edge, so we
get non-interacting edge channels moving in opposite directions at each edge of the material. This
means that back-scattering in the material is suppressed close to integer filling factors.

13



3.1.3 The Berry phase

In order to understand a more technical description of how the integer quantum Hall system is
a topological insulator, we first discuss the Berry phase. Let R(¢) be a set of time-dependent
parameters considered as a vector in parameter space. Now we consider a Hamiltonian specified
by the parameters R(t), and denote it by H [R(¢)]. We also denote its nth eigenstate by |n, R(t)),
which gives us the following Schrédinger equation for the system:

HR(@)] [n, R(t)) = En [R(D)] [0, R(?)) - (3-4)

Now, assume that R(¢) changes adiabatically, as described in Section from R(t = 0). If the
the system starts in the nth state |n, R(¢)) (this notation corresponds to the wave function ()
in Section we get the following time evolution for the system:

0
H [R(t)] ‘nv t> = lha ’TL, t> ’ (35)
where |n,t) corresponds to ¥, (t) in Section Now we can write, as is shown in [I1],
0 .

5 [ R() =ROVR[n.R(1)). (36)

This gives us, using equations (2.9) and ([2.10]), the following expression for the state at time ¢:

I, ) = exp (; /0 "L, [R(t’)]) n R(1)) | (3.7)

where

Ly [R(t)] = ifR(¢) (n, R(1)[VrIn, R(t)) — By [R(t)] - (3.8)

Or, written differently,

I, 1) = exp (- /0 R (0. ROV i, R(t’)>> In, R()) x exp <;L /0 "aE, [R(t’)]) (3.9

The first exponential term represents the non-trivial effect of the quantum-mechanical phase accu-
mulated during the time evolution, and the last one is a trivial one called the dynamical term.

Now we consider the case when R moves on a closed loop C' and returns from its original value
R(t =0) at time t =T, so R(0) = R(7"). For such a loop, C, the Berry phase, v, [C], is defined as

T
7 [C] ::/ AR() -1 (n, RV gln, (D)) :7{ dR-i(n,R|Viln,R) . (3.10)
0 c
Defining the Berry connection

A,(R):=—-i(n,R|Vg|n,R), (3.11)

and the Berry curvature
B,.(R) :=Vgi x A,(R), (3.12)

14



we can rewrite the Berry phase as

1 [C] = —éde.An(R) _ —/SdSan(R), (3.13)

where the last equality comes from Stokes’ theorem.

We see that the Berry phase describes the accumulated phase factor of a quantum mechanical
system after it completes a closed loop in parameter space.

We note that the Berry connection is a connection in the mathematical sense described in Section
We follow the description in [16, sec 10.6.2]. Namely, let M be a manifold that describes
the parameter space, and let R = (Ry,..., Ry) be the local coordinate. At each point R of M we
consider the normalized nth eigenstate of the Hamiltonian H(R). Each such state is, as we know,
represented by an equivalence class of states

R} ={9R):9€U)}. (3.14)
At each point R of M, we have a U(1)-principal bundle P(M,U(1)) over the parameter space M.
The projection is given by p(g|R)) = R.

We can choose a section of P(M,U(1)) by fixing the phase of |R) at each point R € M. Now, let
o(R) = |R) be a local section over a chart U of M. The canonical local trivialization is given by

o (R)) = (R,e), (3.15)
with e the unit element of U(1). The right action of U(1) gives us

¢ (IR) - 9) = (R.e)g = (R, 9). (3.16)

So now we have defined the bundle structure, and we can move on to show why the Berry connection
is a real connection. In a slightly more general notation, we let the Berry connection be given by

A=A, dR", (3.17)

where d = %dR“ is the exterior derivative in R-space.

Now, let U; and U; be overlapping charts of M and let 0;(R) = |[R), and 0;(R) = |R), be the
respective local sections. They are related by the transition function as |R) ;= IR)
can show that

A; (R)=A;(R) + ti; (R)fldtij (R). (3.18)

The set of one-forms {A;} with this transformation property, can be shown to define a connection
on the principal bundle P(M,U(1)).

3.1.4 The TKNN-invariant

Now, the quantum Hall system is an example of topological insulator, and thus we are interested in
finding ways to describe different phases that exist in this system. To do this, we use a topological
invariant, called the TKNN-invariant (where TKNN stands for Thouless, Kohmoto, Nightingale

15



and den Nijs), to describe this system. We will now derive this invariant by calculating the Hall
conductivity. To do this, we follow the approach in [5].

Consider a two-dimensional system of size L x L and let the system be in perpendicular electric
and magnetic fields, where the electric field F is applied along the y-axis and the magnetic field B
is applied along the z-axis.

Now, denote by Hy the Hamiltonian of the system without the electric field, and let
H = Hy — eFEy, (3.19)

where V' = —eFy naturally is the potential created by the electric field. We treat V' as a perturba-
tion of Hy, and use perturbation theory to approximate the eigenstate |n), as

) + Z 5 fE]g ) oy 4. (3.20)

m#n

Now we want to use this to approximate the current density along the z-axis. We have

() p = D S (Ea)e (0] T )

= (Ja) =0 + % Z f(En) Z (<n’evx|2n<il|é;€Ey)|n> (3.21)

m#n

(nl(=eEy)|m) (m|eve|n)
+ En - Em ) '

where v, is the electron velocity in the z-direction and f(E,,) is the Fermi distribution function.

Now we have the Heisenberg equation of motion, described in equation (2.17)), which states that

dy 1
il s ly, H] . (3.22)

Using this we get

(mlvyin) = (] [y, H] In) = < [(mlyHn) — (m| Hyln)]
) ! ! . (3.23)
= = [Bu (mlyln) — B (mlyln)] = = (Bw — Bp) (mlyln)
This is equivalent to _
(mlyln) = 7 {mloy|n). (3.24)

16



Using this together with equation (3.21]), we get

<]z>E — <j90>E:O

Opy = z

i

—eE (nlevy|m) ———— (mlvy|n)
Z f(En) Y Lot
E 2 E, — En,
m#n
i

B eB g (nlvylm) (mlevs|n) (3.25)

E, - E,,

1 —e%ihE (n|vg|m) (mlvy|n) + e2Fih (nfvylm) (m|vg|n)
1he (n|vg|m) (m]vy|n) — (nlvy|m) (mlvgn
_ sz [vz|m) ( ‘(yJ’En>—E<m’)2y‘ ) (m|vg|n)

n m#n

The systems we are considering are crystals, and thus we have a periodic potential. This means
that we can rewrite everything in terms of Bloch functions, i.e. let

= Z exp(ik e r) |u,) - (3.26)
k

Noting that the exponentials will all cancel out when inserting the Bloch functions into equation

(3.25) we have

lhe unk‘vx|umk> <umk|vy‘unk> - <unk|vy|umk> <umk‘v:p|unk>
_ . (327
22 2 IE (Enk — Emi)? (3.27)

n m#n k

According to [5], we have
1 0
(umk/|vu|unk> = —(Enk — Enx) (Ui | = |unk) - (3.28)
h Ok,
Inserting this into equation (3.27)), we get

0 0
Ozy = L2 Z Z Z f nk ( unk‘ |umk> (umk| |unk>

nom#n (3.29)

0 0
~ Gl <umkrakx\unk>> .

This gives us

0 0 0
Oxy = LQ zk:%f nk <8k (Unk‘akj Unk> a/{?y <unk’a]€zunk>> . (330)
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For Bloch states, the Berry connection is given by

) ) 0
a, (k) = =i (upk|Vi|upk) = —i (unklﬂ\ung . (3.31)

This means we can express the Hall conductivity in the following way:

62

7 =V

(3.32)

where v is given by

d’k (Ban, Oan,
V_Zn:/BZ%<8k:x "~ Ok, ) (3:33)

v= Zyn, (3.34)

We express v as

where v, is the contribution from the nth band. Now one can show that it is related to the Berry

phase, defined in equation ([3.13]), by

d2k aany aanm 1 1
n = —_— A 2 = — k n k)= —— n BZ]. .
’ /BZ 2m (81% Oky ) 2 jz{?Bzd * 2n(k) or ! 0B2] (3.35)

The change in phase of the wave function after encircling the Brillouin zone boundary must be an
integer multiple of 27. This means that

Yo [0BZ] = 2mm, (3.36)

where m is an integer. Thus v, must be an integer, and thus o, is quantized to integer multiples
of €2/h. The integer v is called the TKNN-invariant and is the topological invariant we use to
differ between the different phases in the integer quantum Hall system.

3.2 Time-reversal symmetry in topological insulators

So far, we have been solely focused on the quantum Hall system. We will now study more general
systems that are invariant under time-reversal symmetry.

3.2.1 Time-reversal symmetry and the Bloch Hamiltonian

Let H be the total Hamiltonian of a periodic spin-1/2 system, i.e.

H |7;Z)nk> = Enk |¢nk> . (337)

According to Bloch’s theorem we can rewrite |1),) as

|¢nk> = e—ikor |unk> ) (338)
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where |u,k) is the eigenstate of the Bloch Hamiltonian
H (k) = e~ kergyeiker, (3.39)
The eigenstate |u,xk) satisfies the reduced Schrédinger equation

Since we are dealing with half-integer spin, we have
0% = -1, (3.41)

as is described in Section 2.3l

When H preserves time reversal symmetry we have

[H,0] =0. (3.42)
This means that
OHO ' =H. (3.43)
One can argue that
©exp(iker) = exp(—ik e r)O, (3.44)
which gives us
@H(k)efl _ @efikorrHeikor(afl — eikor@/H@efikor —_ eikorrHefikor — H(—k) (345)

This result implies that at momenta k that satisfy H(k) = H(—k), the system is time-reversal
invariant. Such points are called time-reversal invariant momenta, and exist because of the peri-
odicity of the Brillouin zone.

Now, let 1, (k) be an eigenstate of H, i.e. let
Hipn (k) = By (k), (3.46)
for some E. Now consider the action of H on the time-reversed state ©1. We have
HOY, (k) = OHy, (k) = OFE Y, (k) = EOY, (k). (3.47)

This result means that if ¢, (k) is an eigenstate of #, then this is true also for O, (k).

Now we want to show that these two states are different so that we always have degeneracy in these
systems. Namely, assume that they are the same state, i.e. that

O|n) = €%|n), (3.48)
for some o € R. Applying © twice then gives us

02 |n) = O(e'*|n)) = e %% |n) = |n). (3.49)
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This result implies that

0% =1, (3.50)
which is a contradiction in the case of spin-1/2-systems that we are dealing with. Thus the states
must be different, and thus the energy bands of a time-reversal symmetric system come in pairs.
These pairs are called Kramers pairs. These pairs are degenerate at time-reversal invariant mo-

menta, described in equation ((3.45))

A suitable matrix representation of the time-reversal operator is

Wap(k) = (Ua,—k[Olugk) (3.51)
where o and  are band indices. This matrix relates the Bloch states |u, k) and |ugk) via
O Zw K)O |us i) - (3.52)

In [5], it is claimed that w,g(k) is a unitary matrix. This can be seen in the following way:

Zwm Jwap(k =Z< (=101 (K))* (tta(—K)[Olus00)
—Z Ous (k) [ua(—k)) (ua(—k)|Ofus(k)) (3.53)

= <@U7( )O]up(k)) = (ug(k)|uy (k) = dpy-
Using equation ([2.25]), we also show that the following property stated in [5] is true:

wga(—k) = (up(k)|Oua(-k)) = — (ua(-k)[Olus(k)) = —wap(k). (3.54)

This last equation implies that w is an antisymmetric matrix at time-reversal invariant momenta
k = A;. L.e. we have

wga(Ai) = —wap(Ai). (3.55)

We are not only interested in the w-matrix. Another important matrix is the U(2) Berry connection
matrix (which in reality is a collection of three matrices) defined in the following way:

anp(k) == —1(ua k| Vilugk) - (3.56)
In [5] it is claimed that aj, (k) = anp(k). This can be realized in the following way:

a0 (k) = (=1 (up(k)[Vifua (k)" = 1 (Viua (k) ug(k))

' (3.57)
= —i(ua(k)|Vilug(k)) = asp(k),

We also have
aqp(—k) = =1 (ua(—k)|V_k|ug(=k)) =i (ua(-k)[Vi|ug(-k))

Z wa'y @u’Y ’vk| Z wﬁu @uﬂ k))
=i Zwm )Ou, (k)| > | vk (w},,(K)Ouy (k) + wh, (k) Vie(Ouy, (k))])
I

—IZwM )Vi(w,, (k) (Ou, (k) O, (k +12ww Jw,, (k) (Ouy (k)| Vi[O, (K))

(3.58)
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Figure 2: The one-dimensional system for which the topological invariant is derived.

Now, in [I7] and [I8] eq. (10.40)] it is implied that

(Ouy (K)|Vi|Oup(k)) = — (u,(K)[Vi|uy (K)) - (3.59)

This means that

R =13 (0T, () () ) =3 (03,0 10 Dol ()

:1ZwoW )Viwg, (k +ZwCw Jwi,,( )aw(k)
Y

(3.60)
= 12 Wory (k) Viws, (k) + Z war (k)as, (k)wg, (k)
=i Z Wary( kavﬁ k) + Z wm(k)afm(k)wlﬁ(k),
T
as is stated in [5]. Rewriting this in terms of matrices, we get
a(—k) = w(k)a* (k)w' (k) + iw(k) Viw' (k). (3.61)
Taking the trace of this equation, we get
tr[a(—k)] = tr[a" (k)] + tr [w(k)vkuﬁ(k) . (3.62)
Now, we have that a,z = aga, SO
tr[a] = tr[a”]. (3.63)
Also, since ww! = I, we have
wVw! = —(Vw)w!, (3.64)
Using this and making the transformation k — —k in equation (3.62)), we get
trfa(k)] = tr [a(—k)] + tr [wT(k)vkwa{)} . (3.65)

3.2.2 Zs time-reversal polarization

In this section we derive the topological invariant for electron systems that preserve time-reversal
symmetry. We do this as in [5] and begin by describing a one-dimensional crystalline system with
length L and lattice constant a = 1, see Figure

To begin with, we only consider two energy bands that form a Kramers pair, and denote these
states by |ui(k)) and |ua(k)). Assume that the band parameters change adiabatically with time
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and that they return to their original value at time t = T'. Assume further that the Hamiltonian
of the system satisfies the following:

H[t+T)=H]I], (3.66)
H[-t]=0©H[t]0o" " (3.67)

The electronic polarization P for a three-dimensional crystalline material with N occupied bands
is given by [19]

P (227;)3 /B ) dki:l e Vacttne) (3.68)
In our case, this reduces o [f]
P, = /_ : %A(zf), (3.69)
where
A(k) = =i (an (B)| Vi lus (k) — i (ua (k)| Viua(k)) = ary () + asa(k) = tr[a(k)].  (3.70)

Note that it makes sense to talk about polarization in this case because the material is an insulator.
[19]

We continue to follow [5] and note that we can divide the charge polarization P, into two parts,
one from each band. We call such a part a partial polarization, and define it by

T dk
o / P k), (3.71)
2T
which gives us
P, =P + Ps. (3.72)
Now, one can also define the time-reversal polarization [17]
P9 = P1 — P2 = 2P1 - Pp. (373)

This can be interpreted as the difference in charge polarization between spin up and spin down
bands, since |u;(k)) and |uz(k)) form a Kramers pair.

The properties of the Hamiltonian given in equations (3.66|) and (3.67)) result in the system being
time-reversal symmetric at times ¢ = 0 and ¢t = T'/2. At these times, the Kramers degeneracy must
be observed at all values of k£, which means that

O |ug(k)) = e XE) |y (—k)), (3.74)

and
O |ui(k)) = —e X0 |uy(—k)). (3.75)

This gives us the following w-matrix:

w(k) = (_eix(k) 0 ) . (3.76)



Now we want to calculate P; at the time-reversal symmetric times. We know that
aii(k) = —1(ui(k)|Vi|ui(k))
This means that
aii(=k) = =i (ui(=F)|V_lui(=F)) = i {ui(=k)|Vi[ui(=k)) .

From equation (3.74]), we then get

an (—k) =1 (eX® Ouy (k >|vk|eix<’“>@uz<k>> x(k) <@uz<k>|vk<e‘>< ®)Ouy(k)))
= ieXK) (Ouy (k)| V(X ’f>>eu2<k>> XE) (Quy (k) |eX BV, (Oua (k)))
= —Vi(x(k)) (Quz(k)|Oua(k)) +i(Ou <>|vk<@u2<k>>>
= —Vi(x(k)) — i (Vi(ua(k))ua(k)) = =Vi(x(k)) — i (uz (k)| Vi |ua(k))
—Vi(x(k)) + as(k),

where we have used the result

(Oua(k)[OV(uz(k))) = (ua(k)|Vi|ua(k)),

stated e.g. in [I7] and [I8] eq. 10.40].
Therefore, since we are in one dimension, we have

0

ar(—k) = ag(k) — %X(k‘),

which using equation (3.71)) gives us

1 ™ 0 1 ™ 0
Pl—% (/0 dka11+/ﬂdka11> _271'/0 dk <a11+a22_(9k:X(k)>

_ /0 " AR~ 5 ()~ x(0)]

Rewriting x (k) in terms of a w-matrix element, we have from equation (3.76) that
x(k) = ilog wiz(k),

which gives us

mi=2p - py= [ GRG0 - A-0] - 1og (225,

23

(3.77)

(3.78)
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From equation (3.65)), we have an expression for tr[a(k)]. Using A(k) = tr|a(k)], and inserting
this into (3.85)), we get

A e )
=1 [ Gy g testaer o) — s (257 ) s

il det [w(7)] i wia()
728 (det [w<o>]> B <wu<0>) |
Now, in this case we have det [w(k)] = wi2(k)?, so

Py = l log ( wi2(0)? . _wia(7) 2) } (3.87)

17T W12 (O) ’LU12(7T)

Since the square root is always positive, it is clear that the argument of the logarithm is either +1
or —1. This means that

P Omod2, if sgn(wiz(7)) = sgn(wi2(0)) (3.88)

o 1mod?2, if sgn(wia(m)) = —sgn(wi2(0)). )
Physically, the two different values of Py correspond to the two different polarization states that
the system can take on at times ¢ =0 and ¢t = 7'/2.

It is interesting to consider the change of Py at intermediate times. (And we note that the system
is not time-reversal invariant between the times.) We let

A = (Py(T/2) — Py(0)) mod 2. (3.89)
Equation (3.87)) gives us the following way to express A:

4
(-1)d = [ 2l (3.90)

SV wia(A)?
where Ay = (0,0), Ag = (7,0), A3 = (0,7/2) and Ay = (7, T/2).

It follows from the construction that A is a topological invariant, which can take the values 0 and
1. The interesting question is now what physically distinguishes the phases for which A = 0 and
A = 1. This is discussed in [17]. The two-dimensional phase space (k,t) forms a torus because of
the periodic boundary conditions, and the topological invariant A characterizes the mapping from
this torus to the space of wave functions. In [17] it is argued that when A = 1, the system behaves
like a spin pump which pumps spin from one end of the system to the other. This connects back
to the fact that Py is interpreted as the difference in charge polarization between spin up and spin
down bands, see the definition of Py in equation (3.73)).

One example of this phenomenon is the quantum spin Hall effect placed on a cylinder. In this
case the system describes a sort of adiabatic pump as a function of the magnetic flux through
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the cylinder. When S, is conserved, increasing the magnetic flux by one flux quantum, causes
a transfer of spin from one end of the cylinder to the other. In all cases, for such a pump to
exist, there must be a conservation of spin. Such a conservation of spin is introduced through time
reversal symmetry, which gives us the result above [17].

Now, all of the above refers to a system with only two energy bands. We want to extend this to a
more general case, and since we know that the bands come in Kramers pairs, we consider a system
with 2NV occupied bands that form N Kramers pairs. For each such pair n, we have the following
relations between the wave functions at time-reversal symmetric times:

O lug (k) = e ® Juf (~k)) , (3.91)

and

O luf (k) = —e~ W jug (k). (3.92)
This means that the w-matrix is a 2N x 2N block diagonal matrix
M,
My
wk) = | , (3.93)
My

where

M; = (_e—ixi(kz) 0 > . (3.94)

For simplicity, we now let 7' = 27. This means that w(¢ = 0) and w(t = 7) become anti-symmetric,
which enables us to calculate the Pfaffian of the matrix (see Section [B.1]),

N
Pt [w(Az)] = wlg(Ai)w34(Ai) e wQN_LQN(Ai) = exp [—i Z XTL(AZ)] . (395)

According to [5], it is straightforward to extend the two-band arguments to this present case, and
here we show how this can be done. We get

T dk
&_/;%MM, (3.96)
where A(k) now is given by
Alk) = =Y [1 Cun (k) [ Viun (k) + 1 (up (k) [Viup ()] - (3.97)
Similarly, we write
P,=) [P+ P, (3.98)

where

; T dk ;
P = —ay, (k). .
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Here we have set A
ay, (k) = =1 (u}, (k)| Vi up, (k) -

By the same argument as for the case with only two bands, we get

A(k) = K) — xak).

This means we have

_ 1 12 O
Pl - 277‘/0 zn: (an +an ak,Xn(@)

W A - 2
0271'

where we have used the expression for the Pfaffian in equation (3.95)) in the last step.

Using this, we also get the following time-reversal polarization:

a1 det [w(0)]  Pf [w(m)]
Fo=gploe ( Pf [w(0)] det [W(W)J |

and analogously as before we see that it is given by

Py = { Omod2, if sgn(Pf|w(m)]) = sgn(Pf[w(0)])
1mod?2, if sgn(Pf[w(m)]) = —sgn(Pf [w(0)]).

We thus get that the Zsy topological invariant is given by

Pf [w(A
H 1 v/ det [w(

(3.100)

(3.101)

(3.102)

(3.103)

(3.104)

(3.105)

and as before we get a classification into two phases, where the one with A = 1 can be interpreted

as a spin pump.

3.2.3 Extension to three-dimensional systems

The previous discussion was limited to two-dimensional systems, and it is of interest to extend the
theory to the three-dimensional case. According to [5] this can be done using a homotopy argument

described in [20], but we will instead use the approach described in [5].

Suppose we have a cubic system with lattice constant @ = 1. In the three-dimensional Brillouin zone
of this system, we let the time-reversal invariant momenta be given by Ag .0, Ao,0,x; Ao,x,0, Ar00,
Aoy Arors Arro and Ay r - At these points, as before the Hamiltonian becomes time-reversal

symmetric and each Kramers pair of bands becomes degenerate.
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The six planes =0, z =, y =0, y = 7, z = 0, 2 = 7 all have the same symmetries as the
two-dimensional Brillouin zone, so we have altogether six Zo invariants, one for each plane, which
we denote by g, T1, yo, Y1, 20 and z1. These are not all independent of each other; we have

ToT1 = YoY1 = 2021 (3.106)

These constraining relations show us that there are only four independent invariants in the system.
For each time-reversal invariant momentum, A;, define

Pf [w(A;)]

O(A;) = ———=——. 3.107
SN TIES) (3.107)
Now the four Z, invariants, we denote by vy, 11, V2 and v3, and they can be expressed as
(_1)VO = H 5(An1,n2,n3)7 (3108)
n;=0,m
and
(_1)Vi = H 6(An1,n2,n3)a (3109)
n;j+;=0,mn;=m
fori=1,2,3.

3.3 Topological insulators with inversion symmetry

So far, we have discussed systems with time-reversal symmetry. We will, however, also be interested
in systems with other symmetries, and we will begin by studying systems with inversion symmetry.
This is done in [5], and we will follow their approach. As described in section the wave-function
in the momentum representation transforms according to

mlk,o) =|-k,0), (3.110)

where o denotes the spin of the system. This means that if we have a Hamiltonian of the form

H= )" |k o0)Hym(k) (ko (3.111)
k,o,0’
it will transform according to
mHr'= ) |-k, 0) Hyor (k) (~k,0'| = Y |k, 0) Hy oo (—K) (k, 0| (3.112)
k,o,0’ k,o,0’
Further assuming that
H(-k) = H(k), (3.113)
we get that
rHr ' =H, (3.114)

which means that the system preserves inversion symmetry. The goal is now to express the Zo
invariant using the eigenvalues of .
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The Berry connection, as defined in equation , is a collection of three matrices, so the trace
of the Berry connection is a vector. We denote this vector by a®(k). Define the Berry curvature
of a®(k) by

F(k) = V; x a“(k). (3.115)

For a system that has time-reversal symmetry, one can show

F(-k) = —F(k). (3.116)

F(-k) = F(k). (3.117)
This means that if the system has both time-reversal and inversion symmetry, then
Fk)=0 (3.118)
for all k, and thus that we can always choose a gauge such that

a“(k) = 0. (3.119)

To obtain such a gauge we begin by considering the matrix
vag(k) = (ua(k)|mOug(k)) . (3.120)
We can show that v is antisymmetric and unitary. Namely, we have
Vas (k) = (710 (1) O] () = {ua(~1)[O]us(k)) (3.121)

This is the same as the matrix w defined in equation (3.51]). Since this matrix is unitary and
antisymmetric at momenta where k = —k, we see that v must have these properties for all k.

Furthermore, according to [21], eq. 3.4], we have

%tr [kav] =a%(k), (3.122)

In [21] it is also argued that
tr [UTVW} = Vtr [log(v)] = Vi log [det(v)] . (3.123)

Inserting this into equation (3.122)), we get

aC (k) = i%’“ log(det (v(k))) = iV log(Pf [v(K)]). (3.124)

This means that in order to obtain a gauge in which a®(k) = 0, we have to adjust the phase of
lua(k)) so that Pf [v(k)] = 1.

To obtain the Zg-invariant, we must calculate the w-matrix. We denote by &,(A;) = =£1, the
eigenvalue of 7 for band a at A;. This gives us

Wap(Ai) = (ua(=A:)|[TTOug(Ai)) = €a(Ai) (ua(Ai)|TOlug(Ai)) = La(Ai)vap(Ai).  (3.125)
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Figure 3: To the left we see an image of what the band structure in a trivial insulator could look like. We
see surface states that reach into the bulk bandgap, but it is clear that the Fermi level could still be positioned
so that it does not cross any energy level. To the right, we have an example of a topological insulator. Here
we see that the Fermi level can never be positioned without crossing the surface states. We also note that
the energy levels are degenerate at time-reversal invariant momenta. The grey areas mark the bulk energy
bands.

We know that both the w-matrix and the v-matrix are antisymmetric. This means that {, = &g
when wq,g # 0. A non-zero w,g is obtained only when the bands a and 3 form a Kramers pair.
Therefore, if a and 3 are the nth Kramers pair in the total of 2N bands, we write §, = g = &on.

From equation ([3.125)) we see that
N
Pf(w(A;)) = PE(v(Ai)) [ ] &on(hi). (3.126)
n=1

Choosing the gauge in which Pf [v(k)] = 1, we get

Vo PH0A)) 7T a
0 = st = Lt o1

This means that the Zo invariant can be calculated simply by using the eigenvalues of 7 at time-
reversal invariant momenta A;.

The physical consequence of a non-zero Zs invariant is that we get topologically protected surface
states. In this case, the surface states are guaranteed to cross the Fermi level, and we get a
non-gapped system. An example of this is shown in Figure
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4 Topological crystalline insulators

The previous section concerned topological insulators. We showed how to find topological invariants
for these. Now, these invariants depend on the existence of Kramers pairs, and as we saw, these
pairs arise as a consequence of ©2 = —1, i.e. in systems with half-integer spin. In systems with
integer spin, which e.g occurs when the total number of fermions in a system is even, we have
©2 = 1, which means that the reasoning in equations ([3.46)) and (3.47) does not guarantee that |n)
and © |n) are different states.

In order to find topological states in integer spin systems, we thus need something more than time-
reversal symmetry alone. It turns out that a combination of time-reversal symmetry and crystal
symmetry can give us what we need. Such a system, where we get topologically protected states
because of this combination, is called a topological crystalline insulator. In fact, when evaluating
the topological invariant used to classify ordinary topological insulators, the topological crystalline
insulators fall into the category of trivial insulators [6, Ch. 3.1]. Thus to understand the behaviour
of topological crystalline insulators, the previous considerations are insufficient.

In this section we will study topological crystalline insulators. In [§], these are described as materials
which cannot be smoothly connected to a trivial atomic insulator when time-reversal symmetry and
certain point group symmetries are respected. It is clear that a surface can break the symmetry
of the bulk, depending on which surface we are considering. This means that there will only be
some surfaces that support gapless surface states, i.e. those surfaces that respect the appropriate
symmetry will support such states. Surfaces with low symmetry do not have robust surface states.

It is clear that there are a lot of different crystal symmetries that can be worth examining, and
it lies beyond the scope of this thesis to describe this in full generality. Instead we will focus on
the case where we have a system with integer spin and Cy-symmetry. This is done in [8], where
it is shown that there exists a topological invariant that characterizes the band structure of a
three-dimensional time-reversal invariant insulator with fourfold rotational symmetry. We denote
this topological invariant by vy and will here follow [§] and argue that it is a Zs invariant, i.e. can
assume the values zero and one.

Consider the Bloch wave functions
|¥n(K)) = € Juy (k)) . (4.1)

We let the unit cell be invariant under Cy rotation around the z-axis. Together with time-reversal
symmetry, this means that the Hamiltonian satisfies the following:

H(ky, ky, k) = RH (ky, —ky, k)R, (4.2)

and
H(k) =0H(-k)o !, (4.3)

iL.m/2

where R = ¢ is the Cy rotation operator around the z-axis.

As already mentioned, for systems with integer spin we have

0?2 =1, (4.4)
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so time-reversal symmetry alone does not guarantee a twofold degeneracy of the energy bands. How-
ever, we will now show that together with the fourfold rotational symmetry, we can get protected
degeneracies at four special momenta in the Brillouin zone,

r'=(0,0,0), M = (m,m,0), Z=1(0,0,7), A= (m,m,m). (4.5)

At such a high symmetry point A;, the Hamiltonian H(A;) commutes with R, which means that
the energy eigenstates |u,(A;)) are eigenstates of fourfold rotation with eigenvalues +£1 and =i.
Also, since H(A;) is real, energy bands at A; with +i eigenvalues are guaranteed to be degenerate,
forming a two-dimensional irreducible real representation of Cy. These degenerate energy bands
can now be used in a way that is analogous to how the Kramers pairs are used. Namely, consider
a set of energy bands that are doubly degenerate at I'; M, A and Z. We denote the bands by

lun(k)), m=1,...,2N, (4.6)
and let the corresponding energy eigenvalues be related by

Eon-1(A;) = Ean(A;). (4.7)

The Zs topological invariant is now defined similarly to the one for the toplogical insulators de-
scribed in Section [3] namely
(=1 = (=1 (=1)"7, (4.8)

where vry; and vz are given by

Ao
(—1)"1h2 — exp <i /A 1 dkA(k)> m, (4.9)

where in the case of vpys, we integrate along an arbitrary line between I' and M within the plane
k., = 0, and similarly, in the case of v4z, we integrate along an arbitrary line between A and Z
that lies in the plane k, = w. The matrix A(k) is as before the Berry connection matrix

Alk) = =1 {(un (k)| Viun (k) , (4.10)
and W (A;) is given by
Winn(Ai) = (um (k)| RO[un (k)) . (4.11)

We note that A and W both depend on the choice of basis for the system. It turns out though
that vp, A, is gauge invariant. Namely, consider two different bases, where we denote the basis
functions by |u,(k)) and |ul,(k)) respectively. These bases are related to each other by a gauge
transformation

Jup, (k) = G (k) [ (k) , (4.12)

where G € U(2N). Using this gauge transformation together with the fact that Pf(XTMX) =
det(X)Pf(M), one can show that indeed

UA Ay = VA Ag- (4.13)
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Now we want to argue that va, A, is a Zg invariant, i.e. that it assumes the values 0 and 1, possibly
mod 2. We begin by noting that at the planes k, = 0 and k, = m, we have

H(k) = R?0H (k)(R*0)~L. (4.14)

This follows from Equations and , together with the periodicity of the material, which
implies that H(w) = H(—m). Because of this, we can use the following real gauge for evaluation of
the integral in equation (|4.9)):

R?0 |un(K)) = — |un (k). (4.15)
We know that © is an anti-unitary operator, therefore also R20 must be anti-unitary. In particular,

this means that A is zero everywhere along the integration paths that we use in the two integrals.
This means that

Pi(w(As))
—1)hhe = =22, 4.16
U Bw(an) (410
Now, one can argue that
R? fun (M) = = [un(Ai)) (4.17)
which together with equation (4.14) gives us that
© |un(Ai)) = Jun (A7) - (4.18)
This means that the wave-function is real, and also that we have
Winn(Ai) = (um (k)| Rluy(k)) . (4.19)

One can argue that it is now possible to choose the real basis
[uzm (Ai)) = R |ugm—1(Aq)) - (4.20)

This means that w(A;) will become a direct sum of N two-by-two Levi-Civita tensors. We denote
this special case by w”. In a more general case, w can be written as

w(Ai) = 0T (A)w’O(Ay), (4.21)
where O(A;) is an orthogonal 2N x 2N matrix.

This means that

Pf(w(A;)) = Pf(OT (A)w’O(A;)) = det(O(A;))Pf(w?). (4.22)
The Pfaffian of w? is 1, which leaves us with
Pf(w(A;)) = £1. (4.23)
So
(=)t = m =+1, (4.24)

and therefore vp, A, must be either 0 or 1.

We now note from equation that also vy must be 1 or 0 modulo 2. The interpretation of these
three topological invariants is the following. The invariants vp, s, characterize the band structures
in two dimensions in the planes k, = 0 and k, = m, while the invariant 1y characterizes the band-
structure in three dimensions and tells us that there exist gapless surface states on the (001)-surface
only when vy = 1.
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5 The Slater-Koster tight-binding rules

In previous sections we have seen a theoretical description of topological phases in materials. We
have seen that the topological phases can be recognized by gapless surface states in otherwise
insulating materials. Thus, it is of interest to study the band structures of such materials. This
is commonly done using tight-binding calculations, which is a method that is based on the linear
combination of atomic orbitals (LCAQO) method used for molecules.

Before we get into the details of how this approximation is done, we will first describe the problem
that we actually want to solve. To do this, we follow what is done in [22] and [23].

We want to solve the Schrodinger equation for the electrons in a crystal, i.e.
Hy) =EY). (5.1)

According to Bloch’s theorem the wave-functions obey

|w(k,r)) = exp(ik e r) |uk(r)), (5.2)

where ug(r) is a function that has the periodicity of the lattice. For realistic potentials it is
impossible to find exact solutions of equation (5.1]), so an approximation is needed.

In the tight-binding model one assumes that it is possible to construct Bloch waves from atomic
orbitals, belonging to the individual atoms in the lattice. We denote these atomic orbitals by
on(r — R), where R tells us the position of the atom in the lattice n indicates that it belongs to
the energy eigenvalue E,.

Now Bloch basis functions are defined by
1
|pn(k, 1)) := —= ) exp(ikeR)|o,(r —R)), (5.3)
gD

where R denotes positions in the lattice.

These basis functions are used to approximate the solutions of (|5.1)) by

[W(k,r) =Y cn(k)|dn(k, 1)), (5.4)

n

where ¢, (k) are the constants we want to determine.

The atomic orbitals are not necessarily orthogonal to each other, which means that we need to use
the overlap matrixz of the atomic orbitals defined by

Sjt = (¢m(r — R;)|dn(r — Ry)) . (5.5)

Finding the coefficients c;(k), defined in equation ({5.4), corresponds to solving the generalized
eigenvalue problem
HC = FESC, (5.6)
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where H is the Hamiltonian matrix

Hpp = (Om(k, )| H|pn(k, 1)), (5.7)

and C is a vector containing the coefficients ¢;. Expressing H in terms of the atomic orbitals, one
gets

Hpn =Y _exp(ik o R) /d3r Gm(r — R)Hep,(r) (5.8)
R

There are several difficulties that arise when trying to solve equation numerically. First of
all, one needs to calculate the Hamiltonain matrix and the overlap matrix. This in itself is difficult
since it involves integrals of atomic orbitals. Then there is also the problem of the huge number of
atoms in a system. It is not possible to take all such interactions into account. In what follows we
will see how one can compute a new orthogonal basis from the atomic orbitals, and how one can
approximate the Hamiltonian matrix elements in a suitable way.

5.1 The Slater-Koster rules

In this section, we will study the tight-binding theory developed by Slater and Koster in [9]. As
mentioned, one problem of solving equation is that the overlap matrix is not the identity
matrix, so we do not get an ordinary eigenvalue problem. To remedy this, we use the method
described by Lowdin in [24] to create an orthogonal basis of atomic wave functions, and get the
following new atomic orbitals, which we call Lowdin functions:

wn = Z Qbm mém (5.9)

where S is the overlap matrix defined in equation . The square root of S is in this case chosen
to be the principal square root of S. This is calculated in the following way: First, diagonalize S,
using a unitary matrix U, so we get

S =UDU". (5.10)

This can be done since the Hamiltonian matrix is Hermitian. Now, the overlap matrix is a positive
definite matrix [25], which means that D is a diagonal matrix with positive elements on the diagonal.
Defining D'/2 as the diagonal matrix whose diagonal elements are the positive square roots of the
elements in D, we define the principal square root of S by

s1/2 — yp'2ut, (5.11)

Similarly, we have
S~12 = yp~1/2ut, (5.12)

where D~1/2 is the inverse of D/2.

That the Lowdin functions are orthogonal to each other is easily seen, [26] sec. 9.1.3.1], by noting
that

Caltin) = (3 ouS "1 S en5y ) = > (5”) S’ (nlo)
—25_1 g 1/2 M (5.13)
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where in the last equality we have used that .S is real, which is true in case the wave functions are
real [27]. This now gives us

<wn|¢m> = dpm (5.14)

and thus the Lowdin functions are orthogonal.

From [9] we now have the following important result, which tells us that the same symmetry
arguments can be used both for the original atomic orbitals and the Léwdin functions.

Proposition 5.1. Consider the sets of atomic orbitals {¢,} and Lowdin functions {{n}, and
assume that the functions are real and that invariance of S under a unitary transformation implies
invariance of S~Y2 under the same transformation. Let G be the symmetry group of a crystal and
let g € G. Then there is a labelling of the functions in the respective sets such that

900 =Y _ SmI(@mn < gt =Y YT (g)mn, (5.15)
where I'(g) is a unitary matriz.

Proof. To prove the statement, we need to show that the transformation properties of the Lowdin
functions are the same as those of the ordinary atomic orbitals. Let G be the symmetry group of
the crystal we are considering, and let g be an element in G. There is a unitary representation of
this group. Then, suppose that, for an atomic orbital ¢,,, we have

g'¢n = Z¢mr(g)mna (5.16)

where I'(g) is a unitary matrix representing g. We know from earlier that the Léwdin functions are
related to the atomic orbitals by

Un =3 bmSm>. (5.17)
Letting g act on v, gives us
9% =9 0mSml > =D 0.0mSml* =D 6T (9)im S/ - (5.18)
m m m

Now, consider the overlap matrix. We have
S = [ nmdr = [(9.60)"(g.00)dr. (5.19)
Inserting the expression for the transformation given in equation , we have
S = 32 S @il [ Gidndr =3 3 D@ (ghnSi
kol ko1
= T(@imSul(9)in-
k1

So the overlap matrix is invariant with respect to the unitary transformation. This in turn means
that the inverse of the square root of S is invariant under this transformation, which can be written
as

(5.20)

STV2 = 1(g)S7V21(g) 7L (5.21)
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Now, we get

9-n = Z Z AT (9)1mSpr! %, (5.22)

which in turn gives us

1/2
gn =2, Z 615’ "D (9)mn (5.23)
is invariant under g. But now we note that by definition of ¥, we have

g~wn = Zwmr(g)mm (5.24)

since §—1/2

and thus the Lowdin functions transform in the same way as the atomic orbitals under the symmetry
group of the crystal. O

What the proof says is that given an atomic orbital ¢,, that transforms according to

g'¢n = Z¢mF(g)mna (5.25)

there is a corresponding Lowdin function, 1, that transforms in the same way, i.e.
Un =Y Ul (9)mn- (5.26)
m

This means that the Lowdin functions have the same symmetry properties as the original atomic
orbitals, so we can use the same symmetry arguments in both cases. Also, this means that we can
use the same notation for the Lowdin functions as we do for the atomic orbitals, i.e. s,p,d and
their variants without mathematical complications.

Assuming periodic boundary conditions with N being the number of unit cells in the repeating
region, we create the following Bloch sums of the Lowdin orbitals,

W, (r) = \/1N Z exp(ik @ R;)i, (r — R;), (5.27)

where R; is the position of the atom on which the orbital is located. These sums are orthonormal.

We want to express the Hamiltonian matrix using the Bloch sums, which we do in the following
way:

Hmn(r):/\ll* (r)H, ( Zexp ik e (R; — R;)] /w r — R;)Hip,(r — R;) dv.  (5.28)

The orbitals 1, are located at positions R; in the unit cell, while the orbitals 1, are located at
positions R;. The positions R; and R; are not necessarily the same. Despite this, we note that
one of the sums can be eliminated, since the only effect it has is multiplying the other sum by V.
This gives us

Hyy, = Zexp ike (R; —R;)] /z/Jm — Ri,)Hn(r — R;) du, (5.29)
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for some ig. In addition to this, we can choose our coordinates in such a way that R;, = 0, thus
Hpyy = Zexp ik e (R))] /w:n(r)Hwn(r —R;) dv, (5.30)
J

which gives us back the expression we had in equation (5.8]), but with a different set of orbitals.
We note that each term in this expression is associated with a pair of orbitals on neighbouring (not
only nearest neighbours) atoms.

In order to evaluate the Hamiltonian matrix elements, we need to calculate the integrals that arise.
This is in general very hard, and one needs to make some sort of approximation. In [9], the method
is to approximate the integrals by fitting them to accurate determinations of the energy at certain
suitable k-points.

Clearly, from equation , there is a large number of integrals that needs to be calculated. The
first thing to note is that for symmetry reasons many of the integrals are equal, so one does not
need to calculate all of them. In order to simplify the problem further, it is reasonable to see if it
is possible to neglect some of the terms. Indeed, as is discussed in [9], this is the case.

The first thing to note, is that the integrals in , will get smaller the larger |R;| is. The
decrease will not be as rapid as for the original atomic orbitals, but it is still reasonable to assume
that we can neglect all integrals for which the interatomic distance is larger than some set value. It
is common, and often sufficient, to take only nearest and next-nearest neighbour interactions into
account, but depending on the desired accuracy it is possible to use more.

Another approximation we make is to neglect three-center integrals. This approximation is usually
called the two-center approzimation, and is e.g. described in [28]. Each Hamiltonian matrix element
consists of an integral of three functions, one potential function and two orbital functions, centered
at three atomic sites. If all these three functions are centered at the same site, this is called an on-
site matrix element. If the orbitals are at different sites, but within the distance we are considering,
and the potential is at one of those two sites, the integral is called a two-center integral, or a hopping
integral. The other cases, where the distance between the atomic orbitals is large, or where the
three functions are centered at three different sites (i.e. three-center integrals) are ignored.

Neglecting the three-center integrals, we see that the integrals we have left become similar to those
for diatomic molecules. The vector R; stretching from one atom to another, can be considered as
being the axis in a diatomic molecule. We can thus express each of the Lowdin functions ¢ as a
sum of functions that are space quantized with respect to that axis. Since the Lowdin functions
have the same symmetry properties as the atomic orbitals, we can make the approximation that
we can expand the Lowdin functions in the same way as the atomic orbitals. This means that if,
for example, 1 corresponds to an atomic p orbital, we can express it as a linear combination of
po and pmy functions with respect to the axis R;. In the integral , we now get a non-zero
contribution only if we are dealing with the same type of component (i.e. o or w4 etc.) of both 1,
and 1,,. Thus we get a relatively small number of integrals in .

Now we wish to describe the integrals that remain. To do this, we set up the atomic orbitals
with respect to a set of rectangular axes. We symbolize the p,, p, and p. functions by z,y and z
respectively and similarly we symbolize the various d functions by z? — y2,32% — r2, zy, y2z and zz.
Let the direction cosines for the vector R;, i.e. the axis that we are considering, be (I, m,n).
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Now we denote the integral in which the v, function is of type a and 13 is of type 8 with direction
cosines (I,m,n) by

Eqp(l,m,n) = /¢Z(r)H¢5(r —R;)dv. (5.31)

Since we can expand the Lowdin functions in terms of the space quantized functions mentioned
above, these integrals can be split into linear combinations of other integrals. For example,
E; 2y(l,m,n) can (approximately) be written as a sum of two integrals; that between a po or-
bital on the first atom and a do orbital on the second atom and that between a pm orbital on
the first atom and a dr orbital on the second one. We denote these integrals by (pdo) and (pdm)
respectively. A closer examination reveals that

Eyzy(l,m,n) = V3m(pda) + m(1 — 21%)(pdr). (5.32)

The rest of all such integrals are listed in Table

The integrals (o) are all functions of distance, but since we are considering interactions only at
fixed distances, we will denote the different distances by a lower index, as can be seen in Table

Now, the integrals E, g(k,[,m) are not the Hamiltonian matrix elements, these are given by equa-
tion . In order to calculate these matrix elements, we therefore have to combine several of
these E-integrals. This can easily be calculated, and the result for several different common crystal
structures is described in [9]. For example, the results are tabulated for cubic crystals with one
kind of atom. Since we are interested in rock-salt crystal structures, the simple cubic structure is
of relevance here, and we describe some of the results.
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Table 1: Table over the integrals Eqp(k,l,m)

< 8 8] @

Y4

I

sTY
ES’$2_y2
Es,322—r2
Ez,zy
Ez,yz
Ex,z:zc

Ex’xz_yz

E

y,x2—y?

E

2,22 —y2
Ex,3z2—r2

E

y,322—r2
E‘z,i’)zz—r2
Ewy)xy
Ezy,yz
Eacy,zx
Exy,xz _y2
Eyz,x2 _y2
sz,xz—yz

Ezy,SZQ—TQ

E

yz,322—1r2

E

22,322 —12
Ep2_y2 p2 2

Ep2_y23,2 42

E32277’2,3Z27T2

(sso)

l(spo)

1(ppo) + (1 — 1?)(ppr)
Im(ppo) — Im(ppm)
In(ppo) — In(ppr)
V3lm(sdo)

Y312 — m?)(sdo)

[n? = 2(1* + m?)] (sdo)
V312m(pdo) +m(1 — 21%)(pdr)
V3lmn(pde) — 2lmn(pdr)
V3%2n(pdo) + n(1 — 20%)(pdr)

L3112 — m2)(pdo) + (1 — 12 + m?) (pdr)
B m(12 — m?)(pdo) — m(1 + 12 — m?)(pdr)
(12 — m?)(pdo) — n(1> — m?)(pdr)

V/3In?(pdr)
V3mn?(pdr)

V3n(12 + m?)(pdr)
)(ddr) + (n? + >m
3im?n(ddo) + In(1 — 4m?)(ddr) + In(m? — 1)(ddo)

312mn(ddo) + mn(1 — 412)(ddr) + mn(1> — 1)(ddo)

3im(12 — m?)(ddo) + 2lm(m? — 1?)(ddr) + $Im(1* — m?)(ddd)

Smn(1> — m?)(ddo) — mn [1+2(1* — m?)] (ddr) + mn [L + 3(1* — m?)] (ddd)
3nl(1* = m?)(ddo) + nl [1 — 2(1> — m?)] (ddr) — nl [1 — 3(1* — m?)] (ddo)

V3im [n? — (12 = m?)] (ddo) — 2v/3lmn?(ddr) + %2im(1 + n2)(dds)

V3mn [n2 = 1(1% + m?)] (ddo) — VBmn(i2 + m? — n?)(ddr) — LEmn(i2 + m?)(dds)
V3in [n? — £(12 + m?)] (ddo) — V/3In(1? + m* — n?)(ddr) — §1n(12 +m?)(dd?)

3(12 = m?)*(ddo) + [I2 + m?* — (17 — m?)?] (ddr) + [n? + 1 (I* — m?)?] (ddb)

(12— m?) [n2 = 112 + m?)] (ddo) + V3n2(m? — 12)(ddr) + Y2 (1 + n?) (12 — m?)(dds)
[n% — 1(12 + m2)]? (ddo) + 3n2(12 + m2)(ddr) + 3(12 + m?)2(dd6)

[[n? % 12— m?)] (pdo) —
m [n2 — E(ZQ — m2)] (pdo) —
2= 32 =m?)] (pdo) —
+ (I + m? — 41?m?

’I’L[’I’L

312m?(ddo) + 2)(ddé)

39




5.2 The simple cubic structure

Now we explicitly show how the Slater-Koster rules can be used in a special case, namely the simple
cubic structure. To begin with, we take only nearest neighbour interactions into account. Let a be
the lattice constant, and let the atoms in the crystal be located at points

R = (pa, qa,ra). (5.33)

If we rewrite the E-integrals in terms of p, ¢, instead of the direction cosines, we get that

E.5(p,q,r /1/) r)Hiyg(r — R). (5.34)
We have that p, q,r are related to [, m,n by
l=—2r (5.35)
/p2 +q2 +7"2
m = é, (5.36)
/p2 + q2 + T2
n= S S (5.37)

/p2 +q2 +7”2

The nearest neighbours in the simple cubic structure have positions R = (£1,0,0), (0,4+1,0) and
(0,0,£1). We here give an example of how to calculate a Hamiltonian matrix element:

(z/xy) = ZEx wy(l,m,n) = E(0,0,0) + exp(iak,) Ey 2,(1,0,0)

+ exp(—lakx)Eny(—l, 0,0) + exp(iaky)Ey 2y(0,1,0) (5.38)
+ exp(—iaky)Ey 2y (0, —1,0) + exp(iak;) E; 24 (0,0,1)

) )

+ exp(—iak,)Ey 2y(0,0, —1).

)

From Table [I] we have

Ey.y(l,m,n) = V31*m(pdo) + m(1 — 21%)(pdnr), (5.39)
which means
E;2y(1,0,0) = By 2y(—1,0,0) = E; 4,(0,0,1) = E; 4,,(0,0,—1) =0, (5.40)
and
xxy(O 1,0) = —E; 4,(0,—1,0) = (pdm). (5.41)
Inserting this into equation (5 we get
(xz/zy) = exp(iaky)(pdr) — exp(—iaky)(pdmr) = 2isin(aky)(pdm). (5.42)

The rest of the matrix elements can be calculated in a similar fashion, and the result, which is
described for up to second nearest neighbour interactions in [9], is listed in Table
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Table 2: Hamiltoninan matriz elements. For notational simplicity, we let £ = ax, n = ay and ( = az. The
matrixz elements are given up to next-nearest neighbours.

(s/s)

(s/x)

(s/zy)

(s/2® — y?)
(5/32% —1r?)
(z/z)

(x/y)

(z/zy)

(z/yz)

(z/2* —y?)
(/322 —r?)
(2/32% —r?)
(zy/zy)

(zy/z2)

(zy/z® — y?)
(ry/32% —1?)
(zz/2? — y?)
(w2/32% —1?)

(z* —y?/2* — y?)
(322 —r2/32% —r?)
(2% = y?/322 = 1?)

80 + 2(ss0)1(cos € + cosn + cos ) + 4(sso)a(cos € cosn + cos € cos ¢ + cosn cos ()
2i(spo)1 sin € + 2v/2i(spo)2(sin € cosn + sin € cos ¢)

—2/3(spo)ysinEsiny

V3(sda)1(cos & — cosn) + v/3(sdo)a(cos & cos ¢ + cosncos ()

(sdo)1(—cos& —cosn+2cosC) + (sdo)a(—2cos € cosn + cos € cos ¢ + cosncos ()

po + 2(ppo)1 cos € + 2(ppm)1(cosn + cos ) + 2(ppo)a2(cos & cosn + cos € cos ()
+2(ppm)a(cos & cosn + cos € cos ¢ + 2 cosncos ()

—2[(ppo)2 — (ppm)2] sinsinn

2i(pdm)1 + V/6i(pdo)s cos € sinn + 2v/2i(pdn)2 sin n cos ¢

0

V3(pdo)y sin € — /3 (pdow)isin € cos ¢ + v2(pdr)ai(2sin  cos)
—(pdo)isin€ + v/2(pdo)ai [sin € cos ¢ — L sin & cos ¢] — v/6(pdr)aisin € cos ¢
%i(pdo)y sin ¢ + i {%(pda)g + Vé(pdw)Q] [cos € sin ¢ + cos 7 sin (]

do + 2(ddm)2(cos & + cosn) + 2(dd)1 cos ¢ + 3(ddo)2 cos§ cosn
+2(ddm)a(cos & cos ¢ + cosn¢) + (ddd)a(cos & cosn + 2 cos € cos ¢ + 2 cosncos ()

2 [—(ddm)2 + (ddd)2] sinnsin ¢

o

(ddo)g — (ddd)s] sin € sinn
(ddo‘)g — (ddé)Q] sin{sin(
— 3 [(ddo)s — (ddd)s] sin € sin ¢

do + 3(ddo)1(cos € + cosn) + (ddd)1 (5 cos€ + 3 cosn + 2 cos ()
+4(ddm)s cosE cosn + [2(ddo)s + (ddm)g + §(ddb)2] (cos & cos ¢ + cosn cos ()

do + (ddo)1 (3 cos€ + 5 cosn + 2cos () + 3(ddd)y(cos € + cosn)+
(ddo)a(cos € cosn + i cos&cos( + i cos 1 cos () + 3(ddm)a(cos & cos ¢ + cosn cos ()
+3(ddd)s(cos € cosn + % cos€ cos ¢ + % cosmcos ()

§ [—(ddo)1 + (ddd)1] (cos € — cosn)+

[%(ddU)Q —V/3(ddr)y + %ﬁ(ddd)g} (cos & cos ¢ — cosncos ()

_3
2
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We have not listed all matrix elements in Table |2, because all other elements can be derived using
the following two symmetry-arguments:

1. Interchanging the order of the two orbitals in an integral changes the sign of the integral if the
sum of the parities of the orbitals is odd. If the sum of the parities is even, nothing happens.

2. Cyclically permuting the coordinates and direction cosines does not change the value of the
integral.

In order to be able to use this, we need to know which parities the different orbitals have. This is
very simple, s- and d-orbitals have parity 0, while p-orbitals have parity 1. This means that the
only situation in which we get a change of sign is when we swap a p-orbital with either an s- or a
d-orbital.

For example we have

(x/xy) = (y/yz) = (2/22) = —(xy/x) = —(yz/y) = —(22/2). (5.43)

6 Examples of band structure calculations

In this section we will use the Slater-Koster rules to calculate the band structure of different
materials. We begin by considering Pb;_,Sn;Se, which is a material that has a rock salt crystal
structure and turns out to be a topological crystalline insulator for some values of x, and thus is
of interest in this area. Then we move on to a hypothetical two-component material that has a
tetragonal crystal structure.

6.1 Band structure of a real material

In this section we will give an example of how the Slater-Koster rules are used to calculate the bulk
band structure in a real material. Since, Pb;_,Sn,Se is a topological crystalline insulator (see e.g.
[29]), we choose to do the calculations for this material.

To do this, we need to find the Hamiltonian matrix and diagonalize it at suitable k-values. Before
we do this, however, we give a short description of the material.

The material crystallizes in the rock-salt crystal structure, see Figure |4, where each unit cell consists
of one Te-atom and one other atom which is either Pb or Sn. The fraction of unit cells containing
an Sn-atom is x.

It is always difficult to describe properties of complicated alloys, so we will make use of the virtual
crystal approzimation. This is briefly described in [30} sec. 3.7.3]. In this approximation, the alloy
AB,Ci_,, which is disordered, is replaced by the the alloy AD, where D is a pseudoatom that has
properties that are weighted averages over the properties of the B and C atoms, for example the
mass of D is given by

mp =xmp + (1 —z)mc. (6.1)
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Figure 4: The rocksalt crystal structure

In our case, this would correspond to approximating the properties of Pby_,Sn,Se by weighted
averages of PbTe and SnTe. These two materials are described in [31] and measured tight-binding
parameters are given for them.

6.1.1 Finding the Hamiltonian matrix

The structure of Hamiltonian matrix for the bulk PbTe and SnTe is explicitly given in [31], but we
will use the results from [9] to show how we can find it.

The Hamiltonian for the bulk system is given in [31], and has the following form:

Hoy=Y"lla,i,0,R) E;q(a,i,0,R| +|c,i,0, R+ d)Ejq (c,i,0, R +d]]

R,o,i
+ Z Ua, i,0,R)V; (¢, 4,0, R' +d| + h.c.} (6.2)
R.R/ 0, ’
+ Y led, o R)ALeooc{ci, o, R+ Y [la,j,0,R) \gLq @ 04 (a,i, 0", R|],
R,0,0',i R,0,07,j

where the constants E and V' correspond to the constants («37) described in Section The last
two sums in equation ([6.2)) correspond to the spin orbit interaction.

In contrast to the discussion about the simple cubic crystal structure described in Section we
note that this material contains two types of atoms instead of one. This is not a problem, however.
The rock-salt structure still greatly resembles the simple cubic structure, and the matrix elements
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will therefore be similar to those in Table[2], the difference being that we have to distinguish between
the constants that arise from interaction between two atoms of the same type and constants that
arise from interaction between atoms of different types. In particular, the structure consists of
anions and cations, which we denote by a and ¢ respectively. So instead of one (spo)-integral, we
need to distinguish between the cases ($4pq0), (Sapc0), (Scpao) and (scp.0). We will denote these
different cases by e.g. (afv)%

To approximate the Hamiltonian matrix, in [31] they use the orbitals sp®d® and take spin into
account, which means in total 18 orbitals per atom. Since the unit cell of the material contains two
atoms, this means that the Hamiltonian matrix, which we now denote by H, becomes a 36 x 36-
matrix. As we know from Section [5.1], the spin is not taken into account in the Slater-Koster theory,
but since the spin-orbit interation is only relevant for the self-interaction in certain special cases of
the materials, this does not pose any additional difficulties in our derivation.

Now, to find the Hamiltonian matrix, we use the set of orbitals described above as a basis. We
label each orbital according to |atomic orbital, type of atom, spin), and we get the following set:

‘S,C, T) |S ¢, i/> |vacv T) |py’cv T)

‘p27c7 T> ‘p$7c \J/> ’py:Ca \l/> ‘pzaca \l/>

‘dlacv T> |d27c T) |d3’C’T> |d4vch>

‘d5,C, T> |d1,C \L) |d2,0,\L> |d3,C, \L>

lds, ¢, 1) ds e, L) |s,a, 1) s a,l) (6.3)
‘p$> a, > |pya a, > |p27 a, T> |px7 a, ¢>

‘py7a7 > \pz,a > ’dha?T) |d27a7T>

‘dg,(l, > |d47a > |d5’avT> |dlaaa¢>

‘dg,a, > ‘dg,a > ’d4,CL,J,> |d5,a,¢> .

When constructing the Hamiltonian matrix we use the orbitals in this order read from left to right.
This means that the Hamiltonian matrix H, will be a 36 x 36-matrix of the following form:

H,. H
H=/(.“ .“), 6.4
<Hac Haa) ( )

where ¢ stands for cation and @ stands for anion. These matrices are explicitly given in [31], and
we will now show how the non spin dependent parts can be derived using the Slater-Koster rules.

We note that since we only take nearest neighbour interactions into account, a lot of elements in the
matrices H.. and H,, are zero. This is because these matrices only contain spin-orbit interactions
and interactions between orbitals that belong to the same atom. The methodology for using the
Slater-Koster rules to find the Hamiltonian matrix while taking the spin-orbit interaction into
account is to simply consider them separately and then adding the results.

We have e.g.
(pzya, T |H|pg, ¢, T) = (/)7 = 2(ppo) € cos € + 2(ppm){¢(cosn + cos (), (6.5)
and
(do,a,1 [H|dy, e, 1) = (32° —r?/a® — )1 = (a® — y?/32% —1?){"

(6.6)
_ \f [—(ddo)$® + (dd8)$] (cos € — cosn),
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where we have used Table 2] to get the matrix elements. We have also introduced some additional
notation in order to take the two constituents of the material into account. The upper index tells
us which atom the respective orbitals belong to, and the lower index tells us which neighbours we
take into account.

Thus the matrices are given by

Hsisi Hsipi Hsidi
Hii = | Hpisi Hpipi Hpiai | (6.7)
Haisi Haipi  Haidi
where i denotes the type of atom and thus takes the values a or ¢, and

Hszzsc Hsapc Hsadc
Hge = Hpasc Hpapc Hpadc (68)
Hdasc Hdapc Hdadc .

In H;;, we note that e.g. Hy;pi = HI

pisi? since H;; must be Hermitian. We have

Hsisi = Esilaxo, (6.9)
Haigi = Eail10x10, (6.10)
and R R
e 3
3 b A A e
E A 12
- pe 2 13
Hpipi = Y v (6.11)
2 P
R R —igk =g Epe
2 15 Epe

The matrices Hyp;si, Hyisi and Hg;p; are all zero.

For H,., we have the following:

Hsase = goVisslaxa, (612)
_291‘/817 0
_292‘[91) 0
_ _293‘/311 0
Hpasc - 0 _291‘/:913 5 (613)
0 _292‘/51)
0 _293‘/51)
_ _291%5 _292‘/1)5 _293‘/;38 0 0 0
HS"’”_< 0 0 0 2V —2pVp —20s%) O
Ve
Viz
Vi
Hpapc = w Vvyy 5 (615)
Ve
Ve
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where

and

We also have

and

where

Hs3 =

wa = 294‘/;7]) + 2(95 + 96)‘/}7]771'7
Viyy = 295Vpp + 2(94 + g6) Vi

sz = 296Vpp + 2(94 + 95)Vpp7r-

_ (Hsz O
Hdadc - ( 0 H53> )

H 0
Hdcda = ( (;55 H35> )

—V3a1Voa  V392Vpa 0
91Vpa 92Vpa —293Vpq
=299 Vidr =291 Vpar 0 ;
0 —293Vpdr  —292Vidn
—293Vpdn 0 =291 Vpdr

and Hss is the transpose of Hsg with the order of all p and d exchanged.

Finally, we have that both Hg,s. and Hgyg. are zero and that Hg,q. is given by

where

and

)%}
Vis Vo

Vi =

Vo =

Via

V3
Vi
Vs
Vi Vig
Vis V2
V3
Vi
Vs

+
(94 + 95)Vaa + <296 + 95) Vds,

N W N W

4+
(94 + 95)Vaas + <296 + 7 5 g5) Vd,

V3 = 2(g4 + 95)Vadr + 296 Vaas,
Vi = 2(g95 + 96)Vadr + 294Vaas,
Vs = 2(94 + 96)Vaar + 295Vaas,

V3
Vig = 7(95 — 94) (Vaa — Vaas)-
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In the formulas above, we have used the following abbreviations:

ks k k.
go(k) =2 [cos <2ch> —|—cos< y2aL> —i—cos( ;Lﬂ )

2
k
g3(k) =isin Z§L> , (6.29)
k
g4(k) = cos ( maL> ,
2
k
g5(k) = cos < yaL> ,
2
k
ge6(k) = cos ( ZaL) ,
2
It is clear that for the matrix H to be Hermitian, we must have H., = :{c, and that H,, and H,..

are Hermitian.

The structure of the matrix H is not element-specific, but the parameters are. These can be found
in Table |3] where we also write the constants in Slater-Koster notation. Note that some of the
parameters are set to zero. This is not a result from fitting the values to experimental data, but
rather a choice one makes to ignore the interactions that are very small. [31]

To get the parameters for Pby_,Sn,Te, we use the virtual crystal approximation, so for an arbitrary
parameter P from Table [3| we have

Ppy,_,sn,Te = (1 — %) Pppte + 2 PsnTe- (6.30)

We now implement all this information in MATLAB. The code can be found in Section [A] We
diagonalize the matrix along different lines in the reciprocal space. The result for different values
of x is shown in Figure |5} We see that the material has a bandgap and therefore is an insulator.
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S-K PbTe SnTe
Es. s§¢ —7.612 | —6.578
By | s3@ | —11.002 | —12.067
Epe g’ 3.195 1.659
Fpe | plo | —0.237 | —0.167
Eq. dse 7.73 8.38
Eqq ag® 7.73 7.73
Ac — 1.500 0.592
Aa — 0.428 0.564
Vss | (sso)§* | —0.474 | —0.510
Vsp | (spo)i® | 0.705 0.949
Vos | (spo)ic | 0633 | —0.108
Vsa | (sdo){® 0 0
Vas | (sdo)§c 0 0
Vip | (mpo)ie | 2.066 | 2.218
Vopre | (ppm){® | —0.430 | —0.446
Vog | (pdo)se | —129 | —1.11
Vpdr | (pdm){® | 0.835 0.624
Vip | (pdo)§¢ | —1.59 —1.67
Vapr | (pdm)2¢ | 0531 | 0.766
Vaa | (ddo){* | —1.35 —1.72
Vadr | (ddm){® 0 0
Vags | (ddo)se | 0.668 | 0.618

Table 3: Tight-binding parameters for the alloys PbTe and SnTe.
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Now, we have done calculations for the bulk band structure. Since we are interested in the topo-
logical properties of the material, we are actually more interested in the surface states, which one
cannot see in the bulk band structure. To see the topological states one would actually have to
take the surface into account in the tight-binding calculations. We will show in detail how to do
this in the next section for a simpler system. In the case of Pby_,Sn,Te we merely show the
result obatined in [29], where they have done tight-binding calculations for a slab with 280 atomic
layers. This is shown in Figure [6] where we clearly can see when we get gapless surface states. At
x = 0.381, the gap closes, and for larger « the gap opens again, but gapless surface states remain.
This means that for x > 0.381 we get a topological insulator, while for smaller = we get a trivial
insulator.
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6.2 Band structure for a tetragonal lattice

We have previously, in Section[ddescribed the topological properties of a topological crystaline insu-
lator with Cy symmetry. Here we will calculate the bandstructure of such a material to demonstrate
what such states might look like.

In [8], a tight-binding model of a tetragonal lattice with a unit cell consisting of two inequivalent
atoms is described. We will here confirm the results obtained in this simulation and study the
dependence of the result on slab thickness. This is not discussed in [§], neither is the lattice
constant mentioned or the significance of the numerical values they used.

A unit cell of the tetragonal lattice with two inequivalent basis atoms that is considered is shown
in Figure[7] We label the atoms by A and B respectively, and use a coordinate system according to
the picture. We are interested in studying states on the (001)-surface, since this is a surface that
has the proper symmetry. We model the material as a stack of bilayers consisting of one layer of
A-atoms and one layer of B-atoms. In the bulk case, this stack is infinite.

In this model we consider only the p,- and p,-orbitals and construct the following bulk Hamiltonian

Hyu = > (H + HP + H;'P), (6.31)

n

where H* and HP represents the intralayer hopping and HAB represents the interlayer hopping.
Now, let r; = (x;,y;) label a position in the xy-plane, a = A, B label the type of atomic layer, «
and [ label the type of orbital, and let

I'i—I'j

(6.32)

e =—_.
Y e -y

Then H® and HAB can be expressed in the following way:

:Zt“ r; —r;) anaT (ri,m)ef; Z]cag(rj,n), (6.33)
>

HAB = Zt —rj) [Z cga(ri, n)cpa(rj,n) + H.C.
«

(6.34)
+t, ZZ [cAa(ri,n)cBa(ri,n +1)+ H.C} .

7 a

Here ¢! and ¢ are creation and annihilation operators, respectively. This means that the terms in
the expression are to be interpreted in the following way:

The term

Zt r; —r; cAa(]['l7 n)cBa(rj,n) (6.35)
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Figure 7: Image of the tetragonal unit cell with lattice constants a and ¢ consisting of two different atoms A
and B.

means that we have hopping from site r; in the nth B-layer to site r; in the nth A-layer. The term
£y [Cfaxa(ru n)cpa(ri,n + 1)] ; (6.36)
7 a

means that we have hopping from site r; in the n + 1st B-layer to site r; in the nth A-layer. The
term

>t — 1) (v, n)eSi e cap(ry, m) (6.37)
2%

means we have hopping from site r; in the nth a-layer to site r; in the nth a-layer. The scale-factor

B
e% € e
depends on the relative orientation between the p-orbital and the hopping direction e*.

takes into account that the intralayer hopping is of o-bonding type, which means that it

6.2.1 Hamiltonian matrix for the bulk

In our tight-binding model we take nearest and next-nearest neighbour interactions into account.
We denote the intralayer hopping amplitudes by t{ and ¢§ respectively, while the interlayer hopping
amplitudes are denoted by ¢} and ). This gives us the following Bloch Hamiltonian in matrix form:

A AB
109 = (st ree): (6.38)
where
amy  oa [ cos(ky) 0 o [cos(ky)cos(ky) sin(ky)sin(ky)
A (k) =211 < 0 cos(ky)) + 26 <sin(/€m)sin(ky) cos(ky) cos(ky)> ’ (6.39)
and
HAB(k) = [t'l + th(cos(ky) + cos(ky)) + toel*=| I. (6.40)
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These matrices are determined in [§] by taking the Fourier transform of equations and .
We will here instead show how they can immediately be determined from the Slater-Koster rules
described in Section The matrices H4 and H? describe the intralayer interactions. We can
therefore model this as a two-dimensional square lattice. From Table [2| we can hence directly read
off what the elements in the matrices should be, taking into account that we ignore all terms that
contain a k,-compontent, since we are dealing with a two-dimensional system. We have only p,-
and py-orbitals. We have

(xz/z) = 2(ppo)1 cos(aky) + 2(ppm)1 cos(aky) + 2(ppo )2 [cos(aky) cos(aky)] (6.41)

and
(z/y) = =2 [(ppo)2 — (ppm)2] sin(ak,) sin(aky). (6.42)

Now, according to [8] the intralayer interaction is of o-bonding type. Thus, we can set the (ppm)-
integrals to 0 in the previous expressions. This gives us

(x/z) = 2(ppo)1 cos(aky) + +2(ppo)2(cos(aky) cos(aky)) (6.43)

and
(x/y) = —2(ppo )2 sin(ak, ) sin(ak,). (6.44)
Letting t{ = (ppo); and t§ = (ppo )2, we see that we get back the matrix in equation (6.39)).

Now we come to the matrix HAP which describes the interlayer interactions. Its form is not as
obvious, since the matrix elements cannot be immediately read off the table. Instead, we note the
following: Each A-atom interacts with the B-atoms in the same AB-layer and the B-atoms in the
neighbouring AB-layer. Since we are only taking nearest and next-nearest neighbour interactions
into account, it is clear that we have to limit ourselves to which of these AB-interactions we are
looking at. We choose those in Figure [§land [9] Now, for the intra-bilayer-interctions, we can again
use the results from a square lattice in Table[2] In addition we have to take the interlayer interaction
into account which accounts for the periodicity in the z-direction of the material. We approximate
the A-atom to interact only with B-atoms in the bilayer closest to A. This intercation takes into
account the periodicity of the material in the z-direction, and thus we get an exponential. Thus,
for each type of orbital (i.e. p, and p,), we get terms

t) + th [cos(kz) + cos(ky)] + tel*=, (6.45)

where ¢} is the hopping between A and B atoms in the same bilayer that have the same position in
the zy-plane, t}, is the hopping between A and B atoms in the same bilayer at different positions
in the zy-plane. When we take the Hermitian conjugate of H4” we see that the exponent in the
exponential term changes sign, which is reasonable, since this also accounts for the interaction
between the bilayers in the other direction.

Using the parameters in Table 4, which are taken from [§], and diagonalizing the matrix H (k) for
different values of k, we get the band structure seen in Figure This clearly shows that we have
a bandgap in the material.
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Figure 8: Interactions within each bilayer of the tetragonal lattice.
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Figure 9: Interactions between the bilayers in the tetragonal structure.
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Figure 10: Band structure of a material with tetragonal lattice, calculated using p, and p, orbitals and the
parameters in Table
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6.2.2 Hamiltonian matrix for a slab

In the previous section we found the Hamiltonian matrix for a bulk tetragonal lattice using the p,
and p, orbitals. Now we want to do band calculations in order to study the surface states of the
material. We will do this using the so called slab method.

Basically, we first find a matrix describing the two-dimensional structure of an A B-bilayer. We see
from the previous sections, that the only ingredient of the matrix H which is not part of the bilayer
interactions, is the term containing k.. This means that the bilayer interaction is described by the

matrix
A AB

H(k) = (HI{xB(TlZI){) Zg(i{k))>, (6.46)

where

amy  oa [cos(ky) 0 o [cos(ky)cos(ky) sin(ky)sin(ky)
A" (k) =211 < 0 Cos(k‘y)> + 26 <sin(/~cz)sin(ky) cos(ky) cos(ky)> (6.47)
and

HAB (k) = [t + th(cos(ky) + cos(ky))] I. (6.48)

Now, suppose we have a slab consisting of IV such bilayers on top of each other. We need to connect
those to one another through some interaction. This interaction is the same as in the bulk case,
with the exception that we do not have periodicity, so instead of the term ¢/, exp(ik,), we only get
t’.. The matrix that connects the bilayers is thus of the form

0 O
H; = (Hl 0) , (6.49)
where )
t, 0
H; = <o t’z> . (6.50)

This gives us the following Hamiltonian matrix for a slab:

H H
Hi . -
Hgap = ! . ) (651)
- HI
H H

which we also can write as

HA HAB 0
HABT  HB H; 0

Hya=| 0 H H* HP - |, (6.52)
0 o H¥Y HE H,

The matrix Hgp,p, is a 4N x 4N matrix, where N is the number of layers in the slab.
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Table 4: Parameters used in the tight-binding calculation for a material with tetragonal lattice.

th] 1
t | 0.5
th | -1
th | —0.5
th | 25
té 0.5
]2

In order to find the band structure of the slab, we need to diagonalize the Hg,;,. The result will
depend on how many layers we use in the slab, but the band structure is expected to converge for
large enough N. We will examine the properties of such matrices in more detail in Section |7} For
some different numbers of layers, we get the structures shown in Figure We see that the band
structure appears to converge quickly. Using 20 layers we get the result shown in Figure and
comparing with the plots in Figure it is reasonable to expect that this is a good approximation
of the band structure. At this point we see that we get metallic surface states at the M-point which
have parabolic dispersion.
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Figure 11: Band structure for slabs with different number of layers.
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Figure 12: Band structure for a slab with 20 layers.
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7 Eigenvalues of block-tridiagonal matrices

As we have seen in the previous sections, the matrices that arise in tight-binding calculations are
on block-tridiagonal form, i.e. we have matrices of the form

A B
Bt A B
Bt A

where A is a square Hermitian matrix and B is a square matrix which is not necessarily invertible
or Hermitian. It is thus of interest to study the behaviour of the eigenvalues of such matrices, in
order to be able to predict important features of the result. In particular, we want to describe the
eigenvalues using properties of the matrices A and B and study how the distribution of eigenvalues
is affected when the size of M increases.

We will denote the eigenvalues of an n x n matrix X by \;(X), ordered according to
AM(X) = (X)) = = A\ (X). (7.2)
We let A and B be n x n-matrices and assume that we have N A:s on the diagonal of M, i.e. M

is a Nn x Nn-matrix. In cases where we want to stress the size of M, we write My. Now, we see
that we can write

M= A+ B, (7.3)
where
A
A
A= , (7.4)
A
and
0 B
Bt 0 B
B= Bt (7.5)
.. B
Bt 0

From [32], we have the following result:

Proposition 7.1. Let X1 and X5 be two square matrices of the same size, and denote their re-
spective ith eigenvalues by \i(X1) and \;(X3). Then

[Ai(X1) — Ai(X2)| < [|[ X1 — Xal,, (7.6)

where ||—||y denotes the 2-norm of a matriz.
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The two-norm of a matrix X is given by
”X”Q = Umax(X)a (77)

where opax(X) denotes the largest singular value of X.

We are interested in a bound on the eigenvalues of M. From ([7.6)), we have

M) = a(d)] < a4 = |B| . (7.8)

The eigenvalues of A are the same as those for A but with N times the multiplicity, so these are
known. This gives us

Az(]\4) < )\1(120 + UmaX(B); (79)
and we see that the eigenvalues of M will be centered around the eigenvalues of A at a maximum
distance of the largest singular value of B. So what remains to be done is to calculate the singular
values of B. First we will present some standard theory about the singular value decomposition,
and then we move on to our particular case.

7.1 The singular value decomposition
The singular value decomposition of a matrix is a sort of generalization of diagonalization of
quadratic matrices. It is e.g. described in [33].

Theorem 7.2. Let X be an m X n matriz with rank r. Then there exists an m X n matrix

y = <103 8) , (7.10)

where D is an r X r diagonal matriz with entries o; = 0, and an m X m unitary matriz U and an
n X n unitary matriz V. such that

X =UxvT, (7.11)

The diagonal entries o; in D are uniquely determined by A and called the singular values of A,
and any decomposition of a matrix A as described in equation ((7.11]) is called a singular value
decomposition.

Singular values are closely related to eigenvalues. Namely, the singular values of a matrix X are the
non-negative square roots of the eigenvalues of XTX. We note that for a unitarily diagonalizable
matrix X, we have

x'x = wpuYwpvy=vuputupu-! =UD*U, (7.12)

where D is a diagonal matrix and U is unitary. We see that this means that the eigenvalues of
XX are the eigenvalues of X squared. This in turn means that if X is diagonalizable, the singular
values of X are the absolute values of the eigenvalues of X.
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7.2 Singular values of B

We first present a general result about tridiagonal Toeplitz matrices, i.e. tridiagonal matrices with
constant elements along the diagonals. According to e.g. [34] we have the following:

Proposition 7.3. The n X n matriz

a b
¢ (7.13)
b
c a
has eigenvalues
k
)\:a+2\/%cos< T ) (7.14)
n+1

This result will be useful later. For now, we begin by noting that B in equation is a Hermitian
matrix. This means that it is normal, which in turn means that the absolute values of the eigenvalues
of B are the singular values of B. Thus, we want to determine the eigenvalue of B with the largest
absolute value. Depending on the properties of B , we will get different results. In particular, the
results will differ depending on if B is diagonilizable or not. For the diagonalizable case, we follow
the reasoning in [35] when they find eigenvalues for the discretization of the Poisson equation, and
arrive at the following result:

Proposition 7.4. Let B be a diagonalizable matriz. The eigenvalues ofB are given by

km
Ajk = 2|A;(B)] cos (m - 1) 7 (7.15)

where \j(B) are the eigenvalues of B.

Proof. Let A be an eigenvalue of B and let u be the corresponding eigenvector. We partition this
eigenvector in the following way:

U
u=| [, (7.16)
Um,
where
Ui,
w=| |, (=1...,m (7.17)
Unp,l
This means that the equation 3
Bu = \u, (7.18)
can be rewritten as
BYui_1 — M+ Bujy1 =0, 1=1,...,m, (7.19)
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where we have set ug = um+1 = 0. Now, B is unitarily diagonalizable, and we can write it as
B=UDUT, (7.20)
where U is a unitary matrix, and D is diagonal with diagonal elements A;(B). We can now rewrite
equation in the following way:
UD'Uw_y — \UUw + UDU Ty, = 0. (7.21)
Multiplying this from the left by UT and setting 3, = Utu; gives us

Dly,_1 — Ay; + Dypq = 0. (7.22)

Since the only matrices we have in this equation are diagonal, we can write the equation element-
wise instead:

N (B)yji-1+ Xj(B)Yji+1 = Ay (7.23)

Now we consider a fixed value of j. We see that equation ([7.23) is satisfied if the vector (y;.1, ..., Yjm)
is an eigenvector with eigenvalue A\ of the matrix

0 Ai(B)

Ai(B) (7.24)

- A(B)

\;(B) 0

The eigenvalues of this matrix are, according to Proposition [7.3]

X = 2\ (B)| cos [T (7.25)
- m+1)’ '

which proves the proposition. O

Now we want to use this result to estimate the eigenvalues of M. We have the following result:

Proposition 7.5. Let B be a diagonalizable matrixz. Then the eigenvalues of M are in the interval
Ai(M) < Xi(A) + 2max|\;(B)|. (7.26)

Proof. From equation (7.9) we see that we need to find the largest singular value of B, which in
this case is the eigenvalue of B with the largest absolute value. From Proposition we see this

singular value satisfies 3
Omax(B) < 2max|\;(B)]. (7.27)

Inserting this into equation ([7.9)), we get
N(M) < (A) = 21 (B), (7.25)

which proves the statement. O

63



This means that the eigenvalues of M are gathered in bands of maximum width two times the
maximum eigenvalue of B centered around the eigenvalues of A.

Often, however, the matrix B is of the form

B— (g 8) , (7.29)

which means that it is not diagonalizable (since B? = 0). In this case the proof of Proposition
is not valid, and we have to change the reasoning.

We get the following result:

0 0

Proposition 7.6. Let B = <C 0

>. Then the singular values of B are given by

o(B) = y/A(CCH). (7.30)

Proof. We begin by noting that

B? 0 BBT
0 (B"?+ B2
. f
e — | BB : (7.31)
. ) . ) . ) . ) BBT
(BN?2+B2 0
B'B 0 (BT)?
Since both B? and (B')? are zero, this reduces to
0 0 BB!
0
-~ tB . e
BB = | BB : (7.32)
.. . 0
B'B 0 0

Now, it would be nice if one could reuse the argument in Proposition [7.4] However, even though
BB and BB have the same eigenvalues, they do not have the same eigenvectors, which means
that we cannot diagonalize them in the same way as we did in the proof of Proposition [7.4] and
thus we need some other strategy. We note that if B is of the form , we have

0 0
BB = (0 o CT> : (7.33)
and ;
B'B = (COC 8) : (7.34)
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Inserting this into the expression for BB, we see that we get a matrix that is similar to

cte
oot
cte . (7.35)

cct

Thus BB has the same eigenvalues as cot (but with different multiplicity), which means that the
singular values of B are given by

o(B) = \/A(CCH). (7.36)
O

As a consequence of this we have

0 0
c 0

Ai(M) < Xi(A) + maxy /) (CCH. (7.37)

Proof. From Proposition [7.6| we immediately have

Omax(B) = maxy/\;(CCH), (7.38)
Ai(M) < Xi(A) £ 1/ Amax(CCH). (7.39)

O]

Proposition 7.7. Let B = < ) Then the eigenvalues of M are in the intervals

which means

These results explain why the block tridiagonal matrices give rise to the band structures that we
have seen in Section [f] Namely, because of the form of the matrix, the eigenvalues will naturally be
contained in bands. What this does not explain, however, is where the surface states come from,
since these are distinct from the ordinary band structure of the bulk.

In Figures and [15] the eigenvalues of My are shown for different choices of A and B as a
function of N. The Hermitian matrices A and B are constructed by randomly generating elements
in the interval (0,1), but the elements of A are multiplied by 10 in order for the effect of the
eigenvalue distribution to be clear. We see that the eigenvalues are separated into bands. The
horizontal lines in Figures [13| and [14] show the eigenvalues of A and A(A) + omax(B). We see that
the eigenvalues are contained within the bands described. Now, a relevant question to ask oneself
in this case is whether the other eigenvalues of B will matter, or if it is only the largest one that is
relevant. This case is shown in Figure where the horizontal lines correspond to A(A) + AB, for
all eigenvalues of B, but there is no obvious relation to the other eigenvalues, especially when also
taking the result in Figures [13] and [[4] into account.

Now, in all these three plots, we clearly see that the bands are non-overlapping. This, however is
not always the case, and to demonstrate this, we plot the eigenvalues of Hg,p(m, 7, 0), described in
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AlS) =-9.74595 91825, 371855
AB)=-0.1043, 05533, 3.6350
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Figure 13: Eigenvalues of the matriz My as a function of N. The eigenvalues of A and B are shown in the
image.

Section [6.2} This is shown in Figure In this case the matrix B is not diagonalizable, but of the
form in Proposition [7.6] so the horizontal lines are determined differently from those in the other
figures.
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AlA) =-15.51588, -1.3348, 26.4153
ABY=-033725, 097929, 3155
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Figure 14: Eigenvalues of the matrix My as a function of N. The eigenvalues of A and B are shown in the

image.

67



AfA) =-106168, 11.6702, 33.8812
AB)=-1.0678, 017897, 2427

_ED | 1 | | | | | | 1 |
a

Figure 15: Eigenvalues of the matriz My as a function of N. The eigenvalues of A and B are shown in the
image.
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Figure 16: Eigenvalues of the matric My = Hgqap (7, 7,0) as a function of N.
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We note that if the elements of A and B are similar in size, the overlap between the bands is bigger.
This is related to the fact that if we scale the elements of a matrix by some number, we scale the
eigenvalues of the matrix by the same number. So we can always choose a +, that is large enough
such that

min [A;11(vA) — Ai(vA)] > max|\;(B)|. (7.40)

It seems like v = 10 is enough in most cases that we consider where the elements of A and B all
are in the interval (0, 1).

7.3 Convergence of the eigenvalues

Now, in order to do proper band structure calculations, one needs the distribution of eigenvalues
to converge when one increases the slab-thickness. We have previously shown that the eigenvalues
are limited to appear in bands that are determined by the eigenvalues of the A and B matrices.
Also, Figures [T3][16] makes it seem likely that they do converge. This, however, does not really tell
us if the correct band structure can be expected to be found after a certain number of iterations.
This is what we will examine next.

From [32] we have the following result:

Proposition 7.8. Consider a Hermitian n X n-matriz X and let Y be a principal submatriz of X
of order n — k. Denote the eigenvalues of X by u1 = po = --- = upn and the eigenvalues of Y by
Vi =2 Vg = = Vy_. Then we have

Wi 2 Vi 2 itk (7.41)

fori=1,...,n—k.

Now, let My denote the matrix M with N repetitions of the matrix A on the diagonal. Then we
see that My _1 is a principal submatrix of My and we can make use of the result. An immediate
consequence of Proposition is that A;(Mp), considered as a function of N, is increasing. Since
we also have proven that we have an upper bound on the eigenvalues of My, we see that A\j(My)
forms a convergent sequence. Also, the same must be true for A\, (My) (i.e. the smallest eigenvalue
of My). This is because —Mpy has the same eigenvalues as My, but with reversed signs, which
means that the smallest eigenvalue of My is the largest eigenvalue of —Mpy.

This, however, only says that the largest and smallest eigenvalues converge to some value. In
order to make any statements about the band structure as a whole, we need to examine the other
eigenvalues as well.

7.3.1 Matrices with non-overlapping eigenvalue bands

For simplicity, we begin by assuming that the bands of eigenvalues do not overlap. In particular,
this means that we can rewrite the matrix M in the following way:

My =UDNUT=UDNUT +UDYUT +...UDYUT, (7.42)
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where n is the size of A and the matrix DZN is given by

0

DN = (7.43)

)\in-i—n—l

In particular this decomposition means that the matrix D; has the eigenvalues that are in the ith
band on the diagonal (including a lot of zeros). So UD;U' is a matrix with these eigenvalues.
Experiments in MATLAB suggest that UD;UT has a structure that is similar to that of M, up to
a small perturbation. Namely, it appears to be of the form

SN TN
(™t s TN
Nyt
UDNUT = (") . +E, (7.44)
(™Mt s TN
(TM)t SN

where SV and TV have approximately the same elements as SV and TV respectively and E is an
overall small perturbation.

We note that SV does not have exactly the same elements as S™V~!, which is to be expected since
the elements of D; change slightly as N changes. We do, however, expect some sort of convergence
towards an S matrix. The same goes for the T-matrices. So for large N, the relation between
U DZN Ut and U DZN Ut is approximately that we add another S on the diagonal and another 7>
on the subdiagonal.

This means that an approximate version of Proposition should hold. Each time we increase N,
we add precisely one non-zero eigenvalue to U DZN Ut. This means that for the eigenvalues within a
band, we have approximately

N(UDNUY) = Nyt (UDNTIUTY > A (UDNUT), (7.45)

which shows that we have (approximate) convergence of the largest and smallest eigenvalues in
each band.

7.4 Practicalities of finding the eigenvalues of block-tridiagonal matrices

One aspect that makes these observations beneficial, is that even though one cannot say anything
about the precise size of the eigenvalues, one can immediately determine whether there is any use
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in looking for surface state crossings or not. Namely, those surface state crossings can only occur
if there is an overlap between the bands that contain the eigenvalues. This might be a good thing
if the matrices one deals with are large. Diagonalization is a complex process which scales as N3,
where N is the size of the matrix (although, in the special case of the block-tridiagonal matrices
discussed here, it is possible that the computational complexity is smaller). Thus, one wants to
avoid making unnecessary eigenvalue calculations.

We see that if one were to make slab-calculations for the system described in Section the slab
Hamiltonian matrix would be of size 36 N x 36N, where N is the number of layers used in the slab.
This is done in [29], where they use 280 layers. This means a 10080 x 10080-matrix which has to
be diagonalized at a large number of different points in the reciprocal space. If one does not have
a huge amount of computational power at hand, this is a very time-consuming process — especially
if one does not know where to look for the surface level crossings to begin with. One could then
narrow down the search area by considering where it is possible to get overlap between the bands.

7.4.1 Observations related to MATLAB

To find the eigenvalues one can use one of either eig or eigs in MATLAB. As mentioned previously,
diagonalization of the relevant matrices used in band structure calculations for slabs, is extremely
time-consuming,it is necessary to evaluate which method is the most beneficial to use.

In MATLAB, the function eig calculates all eigenvalues of a matrix, but if the matrix contains
complex valued elements, eig can only be used if the matrix is a full matrix. The function eigs,
on the other hand, calculates a pre-specified number of the eigenvalues of a matrix. It can be used
for both full and sparse matrices.

The Hamiltonian is a Hermitian banded matrix with many zeros, and thus we have two options.
Use eig on the full Hamiltonian matrix, or use eigs on the sparse Hamiltonian matrix. Since we
are interested in the band structure, we need to calculate enough eigenvalues, and in order to find
interesting parts of the spectrum, one has to be able to run simulations multiple times. Thus it is
reasonable to compare the time needed for eigs to find the first n eigenvalues with the time needed
for eig to find all eigenvalues of the matrix. In our simulations, eigs is faster for finding less than
450 eigenvalues.

Additional examinations show that the time eigs uses to find a certain number of eigenvalues is
only weakly dependent on the size of the matrix, so increasing the number of atomic layers does
not necessarily give us an eigenvalue problem that the computer cannot handle.

8 Conclusions

In this thesis, we have reviewed some basic theory about topological insulators and topological
crystalline insulators. We have seen the role that time-reversal symmetry alone or in combination
with other symmetries plays in these materials, and how one can derive topological invariants for
these materials. We have also reviewed how the tight-binding method can be used in order to study
the band structure of a material. In particular we make such calculations in order to study the
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surface states of a topological crystalline insulator. We find that in this case the calculations give
us the expected surface level crossing. We conclude the thesis by discussing the properties of the
eigenvalues of block tridiagonal matrices, that arise when doing certain tight-binding calculations.
We provide a bound on the eigenvalues, and argue that the distribution of eigenvalues should
converge as the size of the matrix increases.
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A MATLAB-code

A.1 The Pb;_,Sn,Te system

The main program PbSnTe:

clear;
close all;
clc;

q = 1; % A counter which determines which plot is to be used.
for x = [0.2 0.381 0.6 1] % Determines for which values of x the band
% structure is to be calculated.

al. = 0.63e-9%x + 0.646e-9%(1-x); % Calculates the VCA-lattice constant.

% Lists interesting reciprocal lattice points.
Gamma = [0 0 0];

X = [0 1/2 1/2];

L= [1/2 1/2 1/2];
W= [1/4 3/4 1/2];
U = [1/4 5/8 5/81;
K = [3/8 3/4 3/8];

% Creates a matrix which tells us between which points in the reciprocal
% space the band structure is to be calculated.
path_matrix = [Gamma; X; W; K; Gamma; L; U; W; L; KI;

% Defines reciprocal lattice vectors.

bl = 2*pi/al*x[1 -1 1];
b2 = 2*pi/alx[1 1 -1];
b3 = 2*pi/al*x[-1 1 1];

% Creates a matrix which is used to get a plot with the correct scaling
% between the reciprocal lattice points.
distance_matrix = [];
for m = 1:size(path_matrix,1)-1
distance_matrix = [distance_matrix norm(path_matrix(m,:)-...
path_matrix(m+1,:))];
end
distance_matrix = distance_matrix/norm(distance_matrix,inf);

% This loop calculates and plots the band structure. In each loop the band

% structure between two of the chosen reciprocal lattice points is
% calculated.
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s = 0;
xplace = [s];
for m = 1:size(path_matrix,1)-1
% Evaluates at which points the Hamiltonian matrix should be
% diagonalized.
step_size = 0.001;
P1 = path_matrix(m,:);
P2 = path_matrix(m+1,:);
[points,t] = line_between_points(P1’,P2’,[bl’ b2’ b3’],step_size);

% Finds the eigenvalues of the Hamiltonian matrix at the desired

% k-points. This matrix is defined in the function hamiltonian_matrix.
energies_Delta = [];

for j = 1:size(points,1)

k = points(j,:);
H = hamiltonian_matrix(k(1),k(2),k(3),x);
E = eig(H);

energies_Delta = [energies_Delta E];
end

% Plots the calculated band-structure.
for j = 1:36
figure(1)
subplot(2,2,q)
hold on
plot(t/t(end)*distance_matrix(m)+s,energies_Delta(j,:),’-’)
end

s = s+distance_matrix(m);

xplace = [xplace, s];

line([s,s],ylim,’Color’, ’black’)
end

% Makes the plot look nice.

x1im([0 s])

ylim([-15 15])

title([’x = ’, num2str(x)])

set(gca, ’xTick’, xplace)

set(gca, ’xTickLabel’, {’\Gamma’,’X’,’W’,’K’,’\Gamma’,’L’,’U’,’W’,’L’,’K’})
ylabel (’Energy (eV)’)

q = q*tl;
end

The functions used in the main program are the following:
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function [points,t] = line_between_points(P1,P2,basis_vectors,step_size)
% Calculates equidistant points on a line between P1 and P2 (given in a
% Cartesian coordinate system) and gives the answer using prespecified
% basis vectors.

t = linspace(0,norm(P2-P1),1/step_size);
direction = (P2-P1)/norm(P2-P1);
points = [];
for j =t
points = [points; (basis_vectors*(P1 + j*direction))’];
end

end

function parameters = PbTe
% Contains tight-binding parameters for PbTe
parameters = [-7.612

-11.002

3.195

-0.237

T7.73

T7.73

1.500

0.428

-0.474

0.705

0.633

2.066

-.0430

-1.29

0.835

-1.59

0.531

-1.35

0.668

0.646e-9];
end

function parameters = SnTe
% Contains tight-binding parameters for SnTe.
parameters = [-6.578

-12.067

1.659

-0.167

8.38

7.73
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0.592
0.564
-0.510
0.949
-0.198
2.218
-0.446
-1.11
0.624
-1.67
0.766
-1.72
0.618
0.63e-9];
end

Finally we have the function hamiltonian matrix(kx,ky,kz,x), which generates the Hamiltonian
matrix at reciprocal lattice point (k,, ky, k.) for the material Pb;_,Sn,Te.

A.2 The tetragonal system
A.2.1 The bulk case

The main program is the following:

% Defines the tight-binding paramters that we use.
parameters = tetragonal_parameters;

t1A = parameters(1);
t1B = parameters(2);
t2A = parameters(3);
t2B = parameters(4);

tlprim = parameters(5);
t2prim = parameters(6) ;
tzprim = parameters(7);

% Sets the lattice constants to one.
a=1;
c =1;

% Defines the reciprocal lattice points that are of interest.
Gamma = [0,0,0];

M (1/2,1/2,01;

A =1[1/2,1/2,1/2];

Z [0,0,1/2];

% Defined the reciprocal lattice vectors.
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bl = 2xpi/a*x[1 0 0];
b2 = 2xpi/a*x[0 1 0];
b3 = 2xpi/c*[0 0 1];

% Creates a matrix which tells us between which reciprocal latice points
% the band structure is to be calculated.
path_matrix = [Gamma; M; A; Z; Gamma];

% Creates a matrix which is used to get a plot with the correct scaling
% between the reciprocal lattice points.
distance_matrix = [];
for m = 1:size(path_matrix,1)-1
distance_matrix = [distance_matrix norm(path_matrix(m,:)-...
path_matrix(m+1,:))]1;
end
distance_matrix = distance_matrix/norm(distance_matrix,inf);

% This loop calculates and plots the band structure. In each loop the band
% structure between two of the chosen reciprocal lattice points is
% calculated.
s = 0;
xplace = [s];
for m = 1:size(path_matrix,1)-1
% Evaluates at which points the Hamiltonian matrix should be
% diagonalized.
step_size = 0.001;
P1 = path_matrix(m,:);
P2 = path_matrix(m+1,:);
[points,t] = line_between_points(P1’,P2’,[bl’ b2’ b3’],step_size);
energies_Delta = [];

% Calculates and diagonalizes the Hamiltonian matrix at appropriate
% points in reciprocal space.
for j = 1:size(points,1)

k = points(j,:);

kx = k(1);
ky = k(2);
kz = k(3);

HA = 2*xt1A*[cos(kx) O0; O cos(ky)] + 2%t2Ax*[cos(kx)*cos(ky)...
sin(kx)*sin(ky); sin(kx)*sin(ky) cos(kx)*cos(ky)];

HB = 2*t1B*[cos(kx) O0; O cos(ky)] + 2%t2Bx*[cos(kx)*cos(ky)...
sin(kx)*sin(ky); sin(kx)*sin(ky) cos(kx)*cos(ky)];

HAB = eye(2)*(tlprim+2xt2prim* (cos(kx)+cos(ky))+...
tzprimxexp(1lixkz));

H = [HA HAB; HAB’ HB];
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E = eig(H);
energies_Delta = [energies_Delta E];
end

% Plots the calculated band-structure.
for j = 1:4
figure(q)
hold on
plot(t/t(end)*distance_matrix(m)+s,energies_Delta(j,:),’-’)
end

s = s+distance_matrix(m);

xplace = [xplace, s];

line([s,s],ylim,’Color’, ’black’)
end

% Makes the plot look nice.

x1im ([0 s])

set(gca, ’xTick’, xplace)

set(gca, ’xTickLabel’, {’\Gamma’,’M’,’A’,’Z’,’\Gamma’})

The tight-binding parameters are defined in the following function:

function parameters = tetragonal_parameters
% Defines the tight-binding paratmeters for the tetragonal system.
parameters = [1
-1
1/2
-1/2
2.5
0.5
2];
end

A.2.2 The slab case

The main program is the following:
close all
% Defines the tight-binding parameters for the tetragonal system.

parameters = tetragonal_parameters;
t1A = parameters(1);

t1B = parameters(2);
t2A = parameters(3);
t2B = parameters(4);
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tlprim = parameters(5);
t2prim = parameters(6) ;
parameters(7) ;

ct
N
o]
H

'_l.
8
1]

% Defines the appropriate reciprocal lattice points.
Gamma_bar = [0 0 0];

M_bar = [1/2 1/2 0];

X_bar = [1/2 0 0];

% Creates a matrix which tells us between which points in the reciprocal
% space the band structure is to be calculated.
path_matrix = [Gamma_bar; M_bar; X_bar; Gamma_bar];

% Defines reciprocal lattice vectors.
bl = 2*pi/ax[1 0 0];

b2 = 2xpi/ax[0 1 0];
b3 = 2#pi/c*[0 0 01;
q=1;

for layers=[2,5,10,15,20] % Defines the slab thickness in terms of the
Jnumber of AB-layers.

% Creates a matrix which is used to get a plot with the correct scaling
% between the reciprocal lattice points.
distance_matrix = [];
for m = 1:size(path_matrix,1)-1
distance_matrix = [distance_matrix norm(path_matrix(m,:)-path_matrix(m+1,
end
distance_matrix = distance_matrix/norm(distance_matrix);

% This loop calculates and plots the band structure. In each loop the band
% structure between two of the chosen reciprocal lattice points is
% calculated.
s = 0;
xplace = [s];
for m = 1:size(path_matrix,1)-1
% Evaluates at which points the Hamiltonian matrix should be
% diagonalized.
step_size = 0.01;
P1 = path_matrix(m,:);
P2 = path_matrix(m+1,:);
[points,t] = line_between_points(P1’,P2’,[bl’ b2’ b3’],step_size);
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% Finds the eigenvalues of the Hamiltonian matrix at the desired
% k-points. This matrix is defined in the function.

% tetragonal_hamiltonian.

energies_Delta = [];

for j = 1l:size(points,1)

k = points(j,:);
H = tetragonal_hamiltonian(layers,k(1),k(2),k(3),a,c);
E = eig(H);
energies_Delta = [energies_Delta E];
end

% Plots the calculated bandstructure.
for j = 1:size(energies_Delta,1)
if layers™=20
subplot(2,2,q)
else
figure(20)
end
hold on
plot(t/t(end)*distance_matrix(m)+s,energies_Delta(j,:))
end

s = s+distance_matrix(m);

xplace = [xplace, s];

line([s,s],ylim, ’Color’,’black’)
end

% Makes the plots look nice.
x1im([0,s])
ylim([-8,8])
set(gca, ’xTick’, xplace)
set(gca, ’xTickLabel’, {’\Gamma’,’M’,’X’,’\Gamma’})
title([num2str(layers),’ layers’])
ylabel(’Energy’)
q=q+1
end

The Hamiltonian matrix is generated in the following function:

function Hslab = tetragonal_hamiltonian(layers,kx,ky,kz,a,c)
% Calulcates the Hamiltonian matrix for a slab of thickness layers at
% reciprocal lattice point (kx,ky,kz).

% Defines the tight-binding parameters.
parameters = tetragonal_parameters;
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t1A = parameters(1);
t1B = parameters(2);
t2A = parameters(3);
t2B = parameters(4);

tilprim = parameters(5);
t2prim = parameters(6);
tzprim = parameters(7);

% Calculates the blocks that the slab matrix is built up from.

HA = 2xtlA*[cos(axkx) 0; O cos(axky)] + 2*t2Ax*[cos(a*kx)*cos(a*xky)...
sin(a*kx)*sin(axky); sin(axkx)*sin(axky) cos(a*kx)*cos(a*xky)];

HB = 2xt1B*[cos(a*kx) 0; O cos(axky)] + 2*t2Bx*[cos(a*kx)*cos(a*xky)...
sin(axkx)*sin(a*xky); sin(axkx)*sin(a*ky) cos(axkx)*cos(a*ky)];

HAB = eye(2)*(tlprim+2*t2prim# (cos (a*kx)+cos(a*ky)));

HI = eye(2)*(tzprim*exp(li*cxkz));

HO = [HA HAB; HAB’ HB];

Hinterlayer = [zeros(2) zeros(2); HI’ zeros(2)];

% Puts HO on the diagonal of the matrix Hslab.

A0 = repmat(HO,1,layers);

BO = mat2cell(A0,size(HO,1) ,ones(1,layers)*size(H0,2));
Hslab = blkdiag(BO{:1});

% Creates a new matrix Hpart12big that contains Hinterlayer on the

% subdiagonal.

A12 = repmat(Hinterlayer,1,layers-1);

B12 = mat2cell(A12,size(Hinterlayer,1),ones(l,layers-1)*...
size(Hinterlayer,2));

Hpart12 = blkdiag(B12{:1});

Hpart12big = [zeros(size(Hpartl2,1),size(H0,2)) Hpartl2;...
zeros(size(HO,1),size(Hslab,2))];

% Hinterlayer is added to the subdiagonals of Hslab.
Hslab = Hslab + Hpartl2big + Hpartl2big’;

end

B Some mathematical concepts

B.1 Anti-symmetric matrices

We will in many cases of this thesis be interested in anti-symmetric matrices, and thus we will
discuss some important properties of those. Let A be a matrix which satisfies

AT = 4, (B.1)
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where T' denotes the transpose, is called an anti-symmetric matrix. Written in component form, if
A = (a;), then a;; = —aj; if A is anti-symmetric.

Now we make the following definition:

Definition B.1. [36] Let A = (a;;) be an anti-symmetric 2n x 2n-matrix. The Pfaffian of A is
given by

Pf(A) = sgn(00)aiyjpisgs - - - Giyjs (B.2)
«
where the sum runs over all possible partitions « of the set {1,2,...,2n} into non-intersecting pairs
{ik, jr}, where ix, < ji and k =1,...,n, and 0, is the permutation
(.1 2 ool 2.”). (B.3)
(3l jl e In jn

One can show that the Pfaffian has the following properies

Proposition B.1. [36] For an anti-symmetric 2n X 2n-matriz A and an arbitrary 2n X 2n-matric

B, we have
(Pf(A))? = det(A), (B.4)

and

Pf(BTAB) = det(C)Pf(A). (B.5)

B.2 Principal bundles

A fiber bundle [37] is a collection (E, B, p, F'), where E, B and F are topological spaces and p is a
map p : E — B called the projection map. The space B is called the base space, E the total space
and F the fiber.

We require that for every point e € E there is an open neighbourhood U C B of p(e) such that
there exists a homeomorphism

¢:p Y (U) = UxF, (B.6)

which satisfies
prOjU o (ZS = DPp—1(U)> (B7)

where proj;; : U X I is the natural projection onto U. The homomorphisms ¢ are called local
trivializations of the fiber bundle.

Sometimes fiber bundles admit a map called the global section. Such a map s : B — E is continuous
and has the property that p o s is the identity. When it is not possible to define a global section,
one can instead define local sections. This is simply a continuous map s : U — FE, where U is an
open set in B and p o s is the identity.

A principal bundle [38] is a special case of a fiber bundle with a continuous right action of a
topological group G on the total space, E x G — E, such that the fibers of the fiber bundle are
preserved and such that G acts freely and transitively on them. This means that each fiber of the
fiber bundle is homeomorphic to the group G.
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One concept, is the concept of a connection. This is something that gives us the notion of parallel
transport on a bundle. More precisely, this is a way to connect fibers over nearby points. In the
case of a principal bundle, the connection should be compatible with the action of the group G. We
will however not go into the more technical bits of this description. An example of a connection is

seen in equation (3.18)).
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