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a plant needs watering. Otherwise both will wither and die.”
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The non-trivial structure of the QCD vacuum gives rise to a P and CP
violating term in the QCD Lagrangian. The fact that we do not see an
observable CP violation in the strong interaction despite this CP violating
theta term is called the Strong CP Problem. In this thesis, we analyze an
observable consequence of this theta vacuum term in the decay of the ground
state neutral Sigma hyperon. Due to the SU(3) flavor symmetry, the current
upper bound of the neutron electric dipole moment can be translated to an
angular asymmetry in the decay distribution of the X% particle. The self-
analyzing weak decay of the A hyperon means that any P violation in the
initial ¥ — Ay decay will result in an asymmetry in the angular distribution
of the final decay products. Studying the Sigma and anti-Sigma hyperon
decays, we get an idea of C and CP violation in the decay chain. The effect
of the production process of the ¥.° hyperon on the angular distribution of
the final products is also worked out. A significant angular asymmetry in
the decay will mean not only physics beyond the Standard Model, but also
physics beyond the CP violating term in the QCD Lagrangian.



I8 MAI® Mo(DaNo ARIWIGOD |

MO8 180I0RM  (alalo@UOD @ BRMG-AIQD  of)M@IEMENIND B S)OT
2QR OME. Y  GRMAMIODVIMOQ &IEMo  NEald¥)e Mlainilapgg
M 1ELIEBRUD ANwelec 15l meeyes (tatemlo "W 1m) (s 1Q"
a0 68 ploraflee)m af)mmoen B0) avlenoo.
VM &M (@O e  Mwamsgled  @dQo  AUQRODIOD  ofOMID
e dMB)HOMN Y 80  maalol@wdem.  BIO 1&wdM (@ovleal 8o

ogsda] @rgPOm maalole® wlniewly madlel ofm afglenym;.

" DOIQ" Gregi@ ot d10B-Oladgeumdm), o1dd2E, 00so OlenUF o
o)l @3y MISIAUMATIERAOB:W  (ald )@ 10®  GRMYTVE BOHIMIOEMA
HQOOSIO)M.  Moc@IEI®  210A% @MW  ~nelg]l  ('mlail)
mad 1o l@es  eloraiMo NV (I@OODIM  B0)  al®la0da6m.
af)mloymoape, mexes mlainfleal €eqELIME: oI1geas1@ ("quIMdEdW
e@OW@") Mlail@es elostiMo @D (alale@OB 0Ll  @IQA-GRMQ1DIQD
GRAVAIOD 1) HEMBEYdh) FIM &1y, meeyes mleinilepss
"MOMEWAW  GAIW@"  algeeSim A ROOMEE  BIO HOM®  MEAwd
HEMBE) 10RIS)BOMo  af)MI6N  eN@ MA@,  QUIMDEWAW  EAIWM  Af)IMNO)
(oL s SEMIBBHBo  BRAUMES  0al@)AIQEOm MW leem

1O 1O IURODMEBRE 0 A10E)6:@186m milrLIMmA6M.

momewd eadwellad afles c.ndFm ad@ea Milafl. Mool
BloralenHWIBE].  "®I0MSo  G@I6@dWIMIAIRM” M@  "MIESI685"
CaNO¥Y M e 1@es MIRLINDAIEM. OBIAOEMAIW], MIEGISIEBE  CaldPM),
Mg l@MIMeq ~aIse:emud e lap8s s IWIeN. TGS EandY MM

Mol qaalol@es aloraimo goRIe® denslglal.



af)mloymdage,  ARIMEWAW  G@OWM  AfMOIM) A ROOORSS
BVO HOMOW  BHeMEe 1021s)aemdtd, Mladl mlwao  elocellaanmalem
mlaomoe  GeMAUSleNM). OO MeQ 80 ~ldleml®m w0ed®] menvd
BHOAOW]  @DSOaISHM  (MVGSIEBE  GaDIFM)  MUIBHD  HEMEBBEOS
("aOIGWIEM")  CUIIHUEN DM alMEBBGI® @) EHIMI®  GRMVAM.Io
HONSOMIMISo. e &G 0, memwd "M@ Ml (£) &emldHees
GUDIHOO0) GMIHE) BN . M J2G(SD6Nm el (8165 0OWBA|D0D
CROOMQMOQ  alBlBHN  ORIOD1eR88 «I0lW]  Qale@IUla) MESS)
cddem  Afloeemom 1m0V EHIAMI®  @RMAMIo  BHEMENIEIo.
MJQB(E26mM, M@ Mlvedanladd oerlapgg mlalnilapgs "-0egnid”

Maa o] ©ale@iUile] MBS DO 6.21QPM &Y IW)o.

aldBjo @ERPOM "eAIG(SlE  AOWEL WD  GANAMQ"  AMEIRES
mlawomooleal  Mlafl.  alocaimooideq B0 Mgoldadem. e
maalo] afleseime 0a1@PM "G@RMQT Mlva" (2°) &Hemle@es GuvdHNLo

e @I ©UeEOISE)M;.



Contents

[Acknowledgments|

(1 _Introduction|

2 Discrete Symmetries in the Standard Modell

...............................

[2.2  Charge Conjugation|. . . . . . . ... ... ... ... .....
I2.;i Il‘IIlg: Iig:&g:l:izill ---------------------------

[3 Strong CP Problem|
(3.1 The U(1)4 Problem|. . . . ... ... ... ... ... ...
(3.2  QCD Vacuum & the Strong CP Problem| . . . . . . .. . . ..
[3.3  Effective Vacuum Angle| . . . . . ... .. ...
[3.4  Heavy Baryon Chiral Perturbation Theoryl . . . . . . .. . ..

AT Tion F F l

[ Neutral Sigma Decay|

[5.1 Spin Configurations|. . . . . . . . . .. ... .. ... .....
[5.2 P Violation & Angular Distribution| . . . . . . . .. ... ...

6 Calculations & Results|
[6.1 Decay of the Neutral Sigma Hyperonl . . . . . . .. ... ...

6.1.1 Electromagnetic decay X% — A~|. . . . . . . ... ...

10
12
24
28
32
35

38
38
40
41
43

47

55
95
o7



6.1.2 Weak decay A —pr~|. . . . . ... ... ... ... .. 64

6.1.3 Combined decay X* —pr=|. . . . . . . ... ... 66

6.2 Production Procesd . . . . . ... ... ... 79
[6.3  Decay of the Neutral Anti-Sigma Hyperon| . . . . . . . . . .. 83

[7 Conclusions & Summary| 88
(Bibliography| 95




Acknowledgments

[ would first like to thank Stefan, who is among the most gifted teachers I have
had the good fortune to learn from. To him and his classes [ owe my continued
interest in the subject. No less important were the countless conversations
I had with him, both about our research and otherwise, prompting me to
think deeper about the topic at hand. I am grateful that he took a novice
like me under his tutelage, and for the patience and understanding that he
has since offered. Most of all, I thank him for reminding me that I too “have
something to say”.

I also owe my thanks to Elisabetta and everyone else at the Nuclear
Physics Division at Uppsala University for making me feel welcome. I found
warmth in those corridors even in the coldest of months.

To Andreis and Chenfei, who shared their home with me and where I
wrote most of this thesis, I am very thankful.

It would be amiss if I did not thank Amma, Acha and Chachu, whose
constant love and support have kept me going.

Lastly, to Anju I dedicate this work, however incomprehensible this may

be to her. I am grateful for her support and companionship.



Chapter 1
Introduction

The study of discrete symmetries helps us understand the scope and limita-
tions of our current theories. More specifically, the transformation properties
of a physical law under discrete symmetries reveal a certain preference (or
lack thereof) within the laws of nature. When a discrete symmetry is vi-
olated, it points towards a bias in nature. Omne such bias is the apparent
abundance of matter over antimatter in the observable universe [I]. In fact,
one of the solutions to this longstanding problem was thought to be caused by
a violation of discrete symmetries. In 1967, A. Sakharov proposed three con-
ditions that could help solve the puzzle of matter-antimatter asymmetry [2].
He postulated what are now famously called the Sakharov conditions, which
attribute the baryon-antibaryon imbalance to dynamic processes rather than

to initial conditions beyond the scope of physics. These are [2]:
1. Baryon number violation must occur in reactions.
2. C (Charge) and CP (Charge-Parity) symmetries must be violated.
3. Interactions must proceed outside thermal equilibrium.

Understanding how the known forces of the Standard Model behave under
discrete symmetry transformations will thus get us closer to unraveling the
mystery of baryogenesis. Discrete symmetries also provide clues to physics
beyond the Standard Model. The gauge principle forms an important part
of any relativistic quantum field theory, and is a necessary feature of a non-

trivial and renormalizable field theory. The insertion of discrete symmetry
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requirements in local gauge theories results in ABJ anomalies, a consequence
that points towards Beyond Standard Model effects [3]. The focus of this
work, however, is on the violation of global discrete symmetries due to effects
not explained by the Standard Model. In the strong sector this would mean
studying the non-trivial topological structure of the QCD vacuum and any
discrete symmetry violations that may result from it. A thorough investi-
gation into the nature of these violations will be undertaken later in this
thesis, but for now it merely serves to illustrate the importance of discrete
symmetries as a probe for new physics.

Discrete symmetries have occupied a pivotal position in the development
of quantum field theories. Charge conjugation invariance (C), parity symme-
try (P), and time reversal invariance (T) constitute the discrete symmetries
that nature was largely thought to obey [4]. However, starting from 1956,
when Lee and Yang first proposed a test for parity symmetry in the weak
interaction [5], these prized assumptions held dear by theoreticians were put
under experimental scrutiny. The discovery of P violation in the beta-decay
of Cobalt-60 in 1956 by Wu et al., followed by Christenson’s discovery, in
1964, of the combined effect of charge and parity, namely CP, violation in
the decay of neutral kaons laid the foundation for a new paradigm in par-
ticle physics [3]. The violation of CP symmetry came as a great shock to
physicists at the time. Due to the CPT theorem, which states that all lo-
cal relativistic field theories must be invariant under the combined action of
charge (C), parity (P) and time-reversal (T) transformations, a violation in
CP would invariably imply a violation in time-reversal [4]. The violation of T
symmetry prompted a complete rethink of the fundamental assumptions gov-
erning the Standard Model. It was not until nine years later, in 1973, that
the discovery of CP violation had a theoretical postulation. The minimal
implementation of CP violation in the Standard Model came via complex
phases in Yukawa couplings of the weak interaction in what is known as
the Kobayashi-Masakawa (KM) ansatz, named after Makoto Kobayashi and
Toshihide Maskawa [6]. They postulated the existence of a third family of
quarks, an extension to the earlier Cabibbo matrix, which was required to

corroborate this theory. In 1995 this was validated by the discovery of the



top quark, the final member of the third family of quarks [3][6].

While the study of CP violation in the electroweak sector has yielded
important results, it still does not account for the large matter-antimatter
imbalance we see in the universe [I]. The other candidate for possible CP
violation is the strong interaction. Quantum Chromodynamics (QCD) is the
gauge theory of quarks and gluons, and its behavior under discrete symme-
try transformations is less understood. The experimental consensus so far
indicates no P and CP violation in the strong sector. This is problematic
since a non-trivial QCD vacuum gives rise to P and CP violating terms in
the QCD Lagrangian. The fact that there seems to be no discernable CP vi-
olation in the strong interaction when its Lagrangian includes natural terms
that violate this symmetry is called the Strong CP problem. A more detailed
discussion on this topic will follow, however, it should be stated that the best
experimental estimate we have for CP violation in hadrons is given by the
upper bound of the Neutron Electric Dipole Moment.

In this thesis we will deal primarily with the possibility of P and CP
violation in the decay of the neutral Sigma hyperon, i.e. a radiative decay
¥ — A~y and a subsequent weak decay A — pm~. Hyperons are baryons
with one or more strange quarks. Hyperon physics provides an opportunity
to investigate, among other things, the structure of matter, the spin dynam-
ics in hyperon decays, and the physics underlying hyperon production [7].
The first of these - the structure of matter - has a long history in the study
of form factors. Electromagnetic and transition form factors in nucleon to
baryonic resonances have improved our understanding concerning the charge
distribution and magnetic properties of certain hadrons [§][9]. The upcoming
experiments at FAIR (Facility for Anti-proton and Ion Research) in Germany
will help us probe the corresponding properties for hyperons [7]. FAIR could
thus serve as a bridge between studying the fundamental structure of hyper-
ons and any effect that its discrete symmetry properties has on this structure.

Working within the framework of Heavy Baryon Chiral Perturbation The-
ory, it is possible to relate the three-body decay of this ¥° hyperon to the
current upper bound of the Neutron Electric Dipole Moment [10]. As we will

see later, the dynamics of this decay will help us parameterize any P and CP



violation that may occur in the initial decay as an angular dependence of
its final decay products. An investigation into the corresponding antiparticle
decay will also be carried out. This will give us an idea about the exper-
imental viability of looking for angular dependence as separate tests for P

and CP violation in decays of neutral hyperons.

Outline

The thesis is structured as follows. Chapter 2 deals with an overview of dis-
crete symmetries and their violation in quantum field theory. In this vein,
we will discuss the CKM ansatz which introduces CP violation in the weak
sector. The crucial role played by final state interactions via the introduc-
tion of a complex phase will also find a mention in this chapter. Chapter 3
examines the violation of discrete symmetries, specifically P and CP, in the
strong sector. The QCD Lagrangian has an excess global U(1)4 symmetry
which is not realized in the hadron spectrum. This anomalous global U(1) 4
symmetry is ultimately tied to the topological structure of the QCD vacuum
and leads us to formulate the Effective Vacuum Angle. An illustration of the
non-perturbative topological effects of the QCD vacuum will follow. This
will help us identify the theta vacuum angle as a crucial component of the
Strong CP problem. An observable effect of this effective vacuum angle is
the Neutron Electric Dipole Moment. Since this study is carried out within
the framework of Heavy Baryon Chiral Perturbation Theory, a section of this
chapter will be devoted to this topic. Chapter 4 introduces the most gen-
eral Lorentz invariant transition form factors for baryons and their utility in
studying discrete symmetry properties. Chapter 5 provides the motivation
for the study of the decay of the neutral Sigma hyperon. The kinematics
of the three-body decay and the observable consequences of P and CP vio-
lating effects in this decay are laid out in this chapter. We also discuss the
production process for the X° decay and investigate its effect on the angular
dependence of the final decay products. Chapter 6 consists of the relevant
calculations and results. Lastly, Chapter 7 presents the conclusions drawn

from this study and a brief summary of the thesis.
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Chapter 2

Discrete Symmetries in the
Standard Model

Symmetries play a central role in physics.[] Put simply, a symmetry trans-
formation is a change in the observer’s point of view that does not change
the outcome of the experiment or the ‘observable’ [4]. Symmetries of a phys-
ical theory can be exact or approximate. The study of symmetries has been
formalized and explored using the theory of groups. More concretely, the
properties of a symmetry transformation relate to the representations of the
group to which that transformation belongs [12].

The theories describing strong, weak and electromagnetic interactions be-
tween fundamental particles are classified by the symmetry group respected
by each theory. In fact, the SU(3) x SU(2) x U(1) gauge theory is just
another way to describe what physicists call the Standard Model [13]. Ad-
ditionally, our quantum field theories are invariant under the Lorentz and
translational group of transformations. The fact that quantum field theories
respect these symmetries has important consequences. The relationship be-
tween continuous symmetry transformations and conservation laws, given by
Noether’s theorem, is one such consequence and is a cornerstone of any field

theory [13]. Furthermore, the fact that these symmetries can be broken leads

IFollowing Castellani, we say that symmetries can be attributed to physical systems
or to physical laws. This work focuses on the latter, i.e. symmetries based on invariance
principles of the interaction under study [11].
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to intriguing consequences. A broken symmetry, quite apart from reducing
the beauty of a theory, reveals something deeper about it. In group theoretic
terms, a broken symmetry implies that the original symmetry group has been
broken into one of its subgroups. We can then describe symmetry breaking
as the relation between transformation groups, namely the initial unbroken
symmetry group and its subgroups [11].

A symmetry can be broken in two ways, spontaneously or explicitly.
Spontaneous symmetry breaking refers to those symmetries of the action
that do not leave the vacuum state invariant [14]. The spontaneous breaking
of the approximate global SU(2), x SU(2)g symmetry of the strong interac-
tion led to the identification of low mass spinless particles (pseudo-Goldstone
bosons), the pions. This was followed by the discovery of spontaneous break-
ing of the exact local SU(2)x U (1) symmetry of the weak and electromagnetic
interactions. This spontaneous breaking of gauge symmetries is now called
the Higgs mechanism as it gives rise to helicity zero states of vector particles,
which then acquire mass [14].

Similarly, discrete symmetries play a fundamental role in the Standard
Model. Space inversion or parity, charge conjugation and time reversal are
the discrete symmetries that are relevant in any discussion of quantum field
theories [3]. Unlike continuous symmetry transformations (translational or
Lorentz) where we first consider an infinitesimal transformation about the
identity, and then proceed to study finite transformations by compounding
several infinitesimal operations, discrete (from the Latin discretus meaning
“separated”) symmetries are non-continuous and cannot be treated in the
same way [15]. Therefore it is possible for a quantum field theory to be
Lorentz invariant (under the proper orthochronous subgroup) while not re-
specting a discrete symmetry [16].

In this chapter, we will first explore the three discrete symmetries in quan-
tum field theories and discuss their relevance to our decay. In the subsequent
section we will briefly review the violation of these discrete symmetries in the
Standard Model, focusing on the CKM mechanism which minimally imple-
ments CP violation in the SM. In the last section, we will discuss final state

interactions and their importance in any study based on P or CP violation.
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In the process we will analyze the discrete symmetry properties of an inter-

action Lagrangian that characterizes the ¥° — Ay decay.

2.1 Parity

Parity refers to the operation of space inversion. In other words, it refers to a
mirror reflection followed by a rotation of 180° around an axis perpendicular
to the mirror [15]:

ih ¥ =—z (2.1)

The coordinate axis after a parity operation is projected back through itself
and stands inverted. We thereby transform a right-handed coordinate system
into a left-handed one and vice versa. Parity transformations in classical dy-

namics manifest themselves as a change in sign for polar vectors like position

(Eq. (2.1)) and momentum [3]:

L P —
p—p=-p (2.2)

Further, we have scalars like S = p1.p5 that do not change sign under parity

transformations

shs (2.5)
and pseudoscalars like P = p.l that do [3]:
P

P = —P. (2.6)

In non-relativistic quantum mechanics, the parity transformation is de-

13



fined by a unitary operator P which acts on the complex Hilbert space
spanned by state vectors. Since it is a unitary operator it satisfies the con-
dition PTP = 1. If the Hamiltonian operator commutes with the parity
operator, we say that the process is parity invariant, or P"'HP = H. This
can be understood as saying that the total energy of the system, for a parity
symmetric potential, remains unchanged after an inversion of the coordinate
axis. Notice that if H and P commute, the Schrodinger equation:
th = Hy(Z,t) (2.7)
ot
tells us that both ¥(Z, t) and Py (Z,t) = ¥(—Z,t) represent possible solutions,
as does any combination of these two solutions. That is, for a spherical
(parity-even) potential, we can express all solutions as eigenstates of parity

[3]. In order for the above to hold true, we see that the condition
PP =i (2.8)

must be satisfied. This shows us that parity is a linear operator. Further,
based on the correspondence principle we require that parity and the rotation
operator commute (for an explicit derivation of this, refer to [I5] and [17]).
This in turn implies that parity commutes with the infinitesimal rotation

operator, and therefore with the angular momentum operator J:
[J,P] = 0. (2.9)

We refer to Eq. (2.4]), where we discussed the invariance of angular momentum
under parity due its being an axial vector (f = ¥ x p). This is the same as

saying:
[L,P] =0 (2.10)

where L is now the orbital angular momentum operator.
However, unlike rotation, space inversion does not commute with the posi-

tion operator. This can be understood (again, from the correspondence prin-
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ciple) as saying that the expectation value of the position operator changes

sign under parity. That is [3]:
P'XP=-X, or {X,P}=0. (2.11)

The same holds true for the momentum operator 13, which is the generator

of (infinitesimal) translation:
P'PP=—P or {P,P}=0. (2.12)

One of the strongest consistency checks for Eq. (2.9)), Eq. (2.11)), and Eq. (2.12]),

comes from the fundamental quantization conditions of quantum mechanics:

[Ji, Jj] = iJkeiji (2.14)

where we have set A = 1. On using the properties of unitarity and linearity,
we find that the parity operation leaves the above two fundamental conditions
invariant. We now have a strong argument for the unitarity of the parity
operator, PfP =1 or Pt = P71

Parity considerations serve as a powerful tool while studying reactions.
For instance, the angular solutions to the Schrodinger equation for a spheri-

cally symmetric potential well are the spherical harmonics [15]:

Yim (6, ¢) = (—1)"1\/(2[5T D 8 ; }Z:;iﬂm(cose)e@m@. (2.15)

These spherical harmonics transform under parity as follows:
P m m
Vi = (=1)F™(=1)"Y = (= 1) V.. (2.16)

This means that s, d, g (and so on) waves have even parity while p, f, h (and
so on) waves have odd parity. For a reaction where parity is conserved, we
will have [H, P] = 0, where H is the Hamiltonian of the process. We can then
analyze the orbital angular momentum as given in Eq. along with the

15



intrinsic parity of the particles involved in the reaction. A discussion on the
intrinsic parity of the particles in our decay chain will be undertaken below.

The requirement of Lorentz invariance in addition to the postulates of
quantum mechanics leads us to quantum field theories. The introduction of
discrete symmetries like parity and time-reversal takes us out of the proper
orthochronous Lorentz subgroup of transformations (those which are continu-
ously connected to the identity) [16]. In this section we will deal with discrete
symmetry properties as they appear in quantum field theory, focussing on
spin-1 and spin-1/2 fields, these being relevant to the X% decay under study.
A more detailed discussion of discrete symmetry transformations in QCD
will follow in Chapter 3. The present section follows discussions in [3],[4],[13]
and [1§].

The Lagrangian that leads to the Lorentz covariant form of the Maxwell
equation (0,F" = eJ¥) is:

1
L=~ Fu " —el'4, (2.17)

with F,, = 0,A, — 0, A, being the field strength tensor and J* being the
current density. In QED, the current density takes the form of the fermion

bilinear J# = 1y* given by the conserved Dirac vector current. It is found

in the interaction term of the Lagrangian that couples the photon field to

the Dirac field. That is,
LoD = Lpirac + L (2.18)

with Lpirae = ¥(id — m)y [13]. The parity transformation of the Dirac
field will be covered in the next section. Now, for this simplistic theory
to be invariant under parity, we have to find the parity transformation of
Eq. that leaves the action invariant. We must also ensure that the
quantization postulates of the theory are invariant under parity. The invari-
ance of the quantization postulates is covered in any quantum field theory
text book, and will not be shown here (see for example [13], [I5]). In order

to demonstrate the invariance of the Lagrangian under parity, we require the
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following (corresponding to the transformation properties of classical fields)

to hold true under a parity operation [3]:

A t? —Z 9 = 07
PlA,(t,7)P = olt, =) : (2.19)
—Au(t, —=7), =1,

0 hed _
PLJMt, T)P = S —9), =0 (2.20)
_J#(ta _f)a p=1,

and lastly, we should keep in mind that under a parity operation P, the

derivative becomes:

P 88917 IUZO,

o 5 (2.21)
—ore = 1.

i

These conditions when applied to Eq. (2.17)), yield the following conclusion:

Lt %) 5 L(t, ). (2.22)
Since we can change the sign of the integration variable, we see that the

parity transformation of the Lagrangian as shown above leads to the action

being parity invariant:
S— / Azl 7) 5 / dt d3(—F)L(t, —7) = S. (2.23)

In order to see the importance of parity symmetry in our decay, we make
a brief digression to discuss the helicity states of a photon. For a massless
particle (i.e. a particle with no available rest frame), we can measure its
polarization along the direction of motion [4]. In such cases, it makes sense
to define a helicity, h, such that:

h=_Sz (2.24)

—_
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where S is its polarization direction and 2" is its direction of motion. This
helicity h is a pseudoscalar. Now, an on-shell photon has two possible helicity
states, h = £1 (for a detailed derivation as to why massless states have only
two helicity states refer to [4]).

This fact has important consequences for the study of P and CP vio-
lation in our decay of the X° hyperon. As we will see in Chapter 5, the
initial helicity of X° is sufficient to determine the helicity states of A and
the photon. As discussed above, an on-shell photon can have only one
of two possible helicity states, and if the decay X° — A~ is parity con-
serving, then it does not discriminate between either of the two possible
helicity states of the X° hyperon. If the photon were virtual, then this
would not be true as it would have three possible helicity states to choose

from. A more detailed discussion of this will be carried out in Chapter 5.

Now, coming to spin 1/2 particles, the Lagrangian for a free spin 1/2 field
is given by [13]:

EDirac = QE(Z& - m)?/f (225)

where 1) is the four-component spinor field. The equation of motion for this

Lagrangian is the Dirac equation:
(id — m) = 0. (2.26)

The solution to the Dirac equation, Eq. (2.26]), is a superposition of plane
waves. The spinor field can then be expressed by its Fourier components in

momentum-space:
d3p . A
w(t, f) = SZ;E/ W(a(ﬁ, S)U(ﬁ: S)e_lpﬁ + bT(ﬁ; S)U(ﬁ’7 S)€+lp.1’) (227)

where the operators a(f, s) and b'(, s) denote the annihilation operator (de-
fined in Fock space) for particles and creation operator (again, in Fock space)

for antiparticles, respectively [13]. Since (¢, Z) is a solution of the Dirac

18



equation, the four-component spinors v and v must satisfy:

(p —m)u(p,s) =0 (2.28)
and

(p +m)v(p,s) =0. (2.29)

For the Lagrangian in Eq. (2.25)) to be invariant under parity transformations,

we make the ansatz [18]:

Wit ) D yo(t, —1). (2.30)

Then we have

D(t, ) > Y0(t, —F) = B(t, —F)0. (2.31)

This ensures that the Lagrangian transforms under parity as:

Ltz 5 L, —7) (2.32)
which in turn leaves the action invariant. Note that if ¢ (¢, Z) satisfies the
Dirac equation, then so too does the parity transformed spinor g9 (t, —).
Likewise, the quantization conditions are also invariant under parity as is
easily demonstrated using the known transformation properties of the four-

component spinor (see for instance [16], [15]).

The discussion above has implicitly assumed that a parity transformation
does not induce a phase. However, this need not be true. For an elementary

field we could define a more general parity transformation than described in

Eq. (2.30) as follows [4]:
(7)) (t, —T). (2.33)

Since we require P? = 1, we have 1, = +1 [I5]. Parity could very well

19



be redefined using known conserved internal quantum numbers like baryon

number B, electric charge () and lepton number L [15]:
P/ — Pei(aB-l—bQ-i—CL) (234)

with P as defined in Eq. and a, b and ¢ being real numbers. Both
P and P’ can be considered as the parity operator as long as these internal
quantum numbers are conserved in an interaction. Using these ‘superselec-
tion rules’ (baryon number conservation, lepton number conservation etc.),
one can assign an intrinsic parity of +1 to protons, neutrons and electrons
after adjusting the values of a, b and ¢ [I5]. This is largely a matter of con-
vention. For a more detailed discussion on intrinsic parity and superselection
rules, see [15],[17].

Fermions and anti-fermions carry opposite intrinsic parity as can be demon-
strated when performing the parity operation on the solution to the Dirac
equation Eq. . This must satisfy the condition given in Eq. and
so we obtain the transformation properties of the operators a(p, s) and b(p, s)

under parity [3]:

Now, a photon field operator in Fock space is given in terms of its creation
and annihilation operators, d(, s) and d(p, s), as follows:
d3p

AL, Z) = / (27)%2E, > ld(p, s)e" (7, s)e P + (5, s)e™ (7, 5) e
P =+

(2.37)

where e#(p, s) is the polarization vector for a photon with momentum p’ and

‘spin’ s. For an on-shell photon traveling in the z-direction, the polarization
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vector can be written as:

1
(7, +) = —(0,1, %4, 0). 2.38
(7 ) = 55 (0.1,%0.0) (2:33)
Keeping in mind the transformation properties of the photon field (Eq. (2.19)))
and the knowledge that the photon polarization transforms under parity like
spin (an axial vector), we see that the creation operator, d, is odd under

parity [3]:
P (P, £)P = —d(—p, +) (2.39)

This could be interpreted as saying that a one-photon state carries an odd
intrinsic parity with 7, = —1.

Historically, physicists have assigned an intrinsic parity to the electron
and the proton (and their respective antiparticles) as a matter of convention
[15]. As we saw above, the intrinsic parity of the photon, on the other
hand, was calculated to be —1. For particles created or decaying in parity
conserving reactions, we can determine their intrinsic parity by analyzing
orbital angular momentum (see Eq. (2.16)), i.e. the angular distribution of
the particles [I5]. Following this method it was possible to establish that
pions have negative intrinsic parity, i.e. they are pseudoscalars. In addition,
if symmetries imply a multiplet structure, then the intrinsic parities of all
the members comprising this multiplet can be determined. In particular,
one finds that X°, A, the proton and the neutron all have the same intrinsic
parity of +1 due to flavor symmetry.

For example, in the weak decay of A — pm—, the total angular momentum
of the initial state, in the rest frame of A, is 1/2. Since the proton is a spin
1/2 particle, the relative orbital angular momentum for the final state is [ = 1
or [ = 0. As stated above, the relative intrinsic parity of A and p is +1, and
therefore, from Eq. (2.16)), the parity of the final state is given by [15]:

(=)', = +1. (2.40)
Now, because the pions are pseudoscalars (1, = —1), we see that when [ = 1

21



(p wave final state) parity is conserved, and when [ = 0 (s wave final state)
parity is violated in the process. Since the weak interaction does not respect
parity symmetry, we will have both s and p wave contributions to the decay
width.

Similarly for our initial decay, X° — A~, angular momentum conserva-
tion tells us that the decay matrix element can have contributions from even
and odd partial waves. With the photon having a negative intrinsic par-
ity and both the baryons involved in the decay having a positive intrinsic
parity, we see that (following Eq. ) odd partial waves conserve parity
while even partial waves violate it. Now, the only non-trivial (complex)
phase that could arise in our study of the X0 decay is due to final state in-

teractions and will be discussed in detail in the last section of this chapter.

Going back to our discussion on spinor fields, from Eq. (2.30]) and Eq. (2.31))
we see that the combination of the two spinors, ¢/ (¢, ), in addition to being

Lorentz invariant, transforms as a scalar under parity [I§]:
- P — —

In like manner, we can study the properties of composite objects I*)
called fermion (or spinor) bilinears, where I'* is any 4x4 matrix that is
compatible with Lorentz invariance. Fermion bilinears will play a crucial role
in determining the parity transformation properties of our decay. Consider
for example the fermion bilinear 1y*1). Under parity this transforms as a
vector [1§]:

VYOY(t, =), p=0,

DY (t B) 2 PP —F) =4 L . ,
—¢’Yz¢(t7 —ili'), w=1.

Note that ¢ in the above equation runs from 1 to 3. Similarly, anw
transforms as an anti-symmetric tensor under Lorentz transformation, where

O = %['Vw%]- On applying a parity transformation it behaves as follows
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(18] [13]

D0 (t, F) D (~1)H(~1)"Poui(t, —T), (2.43)

with (=1)* =1 for p =0 and (—1)* = —1 for p = 1.
We can also construct bilinears using a matrix conventionally defined as

follows:
vs = 10y, (2.44)
Further, we notice:
{757} =0. (2.45)
We can now form a Lorentz scalar and another Lorentz vector [19]:

E%w and @75’7“1?-

They transform under parity as:

E’%w(ta f) i EVOVL’)VOw(ta _f) = _E/‘V'{)w(tv _f)7 (246)

_E75701/}<t7 _f)a H = 07
sy (t, —T), =i,
(2.47)

Py (t, B) D PPyt (¢, — ) =

a pseudoscalar and an axial vector, respectively [19]. In like manner, the

bilinear 1,751 transforms as [13]:
o ,u50(t E) D —(—1)H(=1)"Po 50t —F). (2.48)

We therefore have 16 possible bilinears transforming under parity and
Lorentz transformations that result from the four-component spinors. These

comprise of 1 scalar, 1 pseudoscalar, 4 vectors, 4 axial vectors and 6 anti-
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symmetric tensors. Any other bilinear that can be constructed must be
expressed in terms of the above bilinears. We will see this more explicitly in
Chapter 4, where we construct Lorentz invariant form factors using combi-
nations of these fermion bilinears. The knowledge of these bilinear transfor-
mations helps us pin down the parity violating terms in the Lagrangian as a
potential source of Electric Dipole Moments.

Consider, for example, an interaction Lagrangian for the 3°-A transition:

€CR
(mys + ma)

ecp

—0
B S0 s AP (249
(ms + my) 15%u (2.49)

Lso_p = Ay50,, S +
where cp and ¢g are complex numbers for the neutral Sigma decay and its
charge conjugated process, respectively. The reasons behind the Lagrangian
assuming this form will become clear in Chapter 4 and Chapter 5. For
now we are interested in the parity symmetry properties of this interaction
Lagrangian. If X% and A transform under parity in the same way, then
the above Lagrangian violates parity (see Eq. ) If, however, there is
a relative parity of —1 between X° and A, the above Lagrangian conserves
parity. As we mentioned earlier, X° and A belong to the same multiplet
structure, and therefore both transform under parity in the same way. Thus
the interaction Lagrangian in Eq. describes a P violating process. In
Chapter 5 we will see how this manifests itself experimentally in the decay
chain X0 — pr—.

Parity also inverts the ‘handedness’ or chirality of a spinor. If we use
the projection operator, we can express this property in terms of the four-

component spinor:

Y=gt = (1) (2.50)

where under a parity transformation we observe:

P

Yr(t, Z) = Y(t, —7). (2.51)

That is, a right handed spinor transforms into a left handed one and vice

versa [19]. In a subsequent section of this chapter we will discuss the parity
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violating weak interaction, and how this results in the left and right handed
particles being treated differently by the weak interaction. A theory which
treats Yg and v differently is referred to as a chiral theory whereas one
that treats them on an equal footing is called a vector-like theory [19]. The
electroweak theory is an example of a chiral theory. QCD, on the other hand,
is a vector-like theory since it consists of both right and left handed quarks
coupled in the same way to the gluon field.

QCD possesses an approximate chiral symmetry [14]. This has interesting
consequences when studying P and CP violating effects in the strong sector.
The approximate SU(3),_r symmetry is spontaneously broken to yield an
octet of pseudo-Goldstone bosons [14]. The axial component of the additional
U(1)r—g group, however, is not realized as a symmetry for reasons that will
be discussed in Chapter 3. This axial U(1) problem, as we will discover in
Chapter 3, has deep implications for any P and CP invariant theory of the

strong interaction.

2.2 Charge Conjugation

Classically, charge conjugation is a rather straightforward idea, wherein we
replace the positive charges with negative ones and vice versa. Maxwell’s
equations are invariant under charge conjugation, i.e. when the sign of the
charge density (p) is reversed, p N —p [15]. This results in the current,

electric field and magnetic field being odd under charge conjugation:

s (2.52)
ES —E, (2.53)
BS -B. (2.54)

The concept of charge conjugation is not well defined in quantum me-
chanics, especially because antiparticles are an alien notion in non-relativistic
physics. In one sense we can say that the Dirac theory predicted the exis-

tence of a particle with opposite charge with the same mass and that charge
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conjugation as a symmetry became well defined only in relativistic quantum

physics [15]. Like parity, charge conjugation is a unitary operator:
cCct=1. (2.55)
Its effect on a single particle state is as follows:

Cl(p,s,Q)) =n:1(p, s, —Q)) (2.56)

where () is the charge of the particle with momentum p and spin s, while 7, is
the phase induced by such a transformation. As with parity transformations,
applying C' twice restores the original state, i.e. C? = 1. This implies 1.2 = 1
or 1. = 1. n. is called charge-conjugation parity or C' parity of the particle
[]. As was the case with parity, for any operator C satisfying Eq. we
can define another operator with a different 7). using other internal symmetry
phase transformations such as the one given in Eq. (2.34).

The only particles which have a well defined C parity are the neutral
particles like pions and photons [4]. These carry no other conserved quantum
numbers and are their own antiparticles. Now, in the electromagnetic and
strong sectors, the Hamiltonian for a given interaction commutes with the
charge conjugation operator as we expect a particle and its corresponding

antiparticle to have the same energy:
[H,C] = 0. (2.57)

This means that both the interaction potential and the free Hamiltonian must
have charge conjugation as a symmetry. As a consequence, the S-matrix is

invariant under charge conjugation [15]:
C'SC = 8. (2.58)

For a reaction where both the initial and final states are only neutral particles,
Eq. (2.58) tells us that C' parity for both the initial and final state must be
the same [4]. In the reaction m — 7, if the intrinsic C' parity of the photon
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is —1, then the decay implies 1,0 = 1. This also makes clear that the decay
m — 37 is forbidden by charge conjugation symmetry.

In the Lagrangian for the photon field shown in Eq. , we notice that
the theory remains invariant under charge conjugation transformation when
we consider the transformation properties of the current and the electromag-

netic four-potential [3]:

CA,(t,)C = —A,(t,T), (2.59)

CJH(t,7)0T = —J*(t, ). (2.60)
And so L(t,7) <, L(t,Z). One can see from the above equations that C
conjugation does not affect anything related to the Lorentz group (like ¢, &
and p). The quantization conditions too can be shown to be invariant under
charge conjugation, see for instance [16] and [3]. The photon field operator
discussed in Eq. is composed of the polarization vector e(, £) and the
creation (annihilation) operators. The transformation property of the former
under charge conjugation is the same as that of spin, i.e. it is unaffected.
For Eq. to hold true, the charge conjugation transformation of the

annihilation operator must be
Cd(p,+)C" = —d(p, +). (2.61)

This can be interpreted as saying that a photon state has an odd intrinsic C'
parity with n, = —1.

The operation of charge conjugation on the free Dirac Lagrangian Eq.
transforms a fermion field into an antifermion field and vice versa. Thus, we
consider a transformation of the field which should obey the transformation
property of the vector current, J#, under charge conjugation (again using the

analogy from classical dynamics) [3]:
Co(t, 7)Ct = Co (, ) (2.62)

with C being a 4 x 4 matrix we have to identify. Note that the phase 7.
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has been set to 1. We can now cross-check the transformation of the current

JH = 1)(t, D)y (t, T) given in Eq. (2.60):

CJH(t, 8)CT = 9O (t, &)y pC (t, T)
- wa (tv f) [VOCT/VO’YHC]OﬁJB(t’ f) (263)

with ¢ = C(t,)CT and a, 8 being the spinor indices. In order for the last

line to equal —J*(t, ¥), we require:
AOCTAONHC = 41T (2.64)

That is, if C = 1727 the above condition is satisfied. With the usual choice
of phase C? = 1 and consequently CT = C~!, the fermion field transforms

under charge conjugation as [3]:
¥(t,T) S iy (1, 7). (2.65)

The study of fermion bilinears is just as crucial here as it was for the case
of parity. A detailed derivation of these transformations for bilinears can be
found in [13], [19] and it follows the same line of reasoning as was illustrated
in the case for parity. We reproduce below their transformation properties

under C' symmetry [13]:

o S o, (2.66)

ibyst) S s, (2.67)
DYt S PrRsy, (2.68)
Dot S~ (2.69)
05 > —h0750. (2.70)

The invariance of the S-matrix under charge conjugation, shown in Eq. (2.58)),
implies that a decay process for a particle must have the same rate when
replaced by its anti-particle as long as the interaction observes charge con-

jugation symmetry [4]. The experiments conducted in 1957 showed that C
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was not conserved for the theory of weak interactions as laid out by Lee,
Oehme and Yang [20]. On the other hand, the Lagrangian for the strong and
electromagnetic interactions conserve charge parity.

In addition to analyzing the decay of ¥ — pm~, we will also study the
corresponding antiparticle decay PO prt~y. Using the Lorentz invariant
transition form factors to be discussed in Chapter 4, it will be fruitful to
check whether the two decays produce identical angular distributions. If
there is a disparity, this would point to an apparent non-conservation of
charge conjugation symmetry.

Let us now consider the charge conjugation properties of the P violat-
ing interaction Lagrangian discussed in Eq. . Following Eq. , we
note that the interaction Lagrangian in Eq. under charge conjugation

becomes:

C ecp

Lso_p — MEO%%AFW + $KVSJMVZOFMV (2.71)

(mys + my)
The hermiticity condition when applied to Eq. yields ¢g = —c}. There-
fore, for C symmetry to be preserved in the X% — Ay decay, we must have
cp = € = —cp. In other words, if the decay is invariant under charge conju-
gation, this implies that c¢g must be purely imaginary (cg + ¢j; = 0) and CP
is broken. If, on the other hand, CP is conserved, then cp is purely real (we
will see this explicitly in the next section) and C symmetry is violated. Note
that if cp is neither purely real or imaginary, then both C and CP symmetry
is not respected in this decay.

As we will see in the section dealing with final state interactions, cg can
be written in terms of a modulus and a phase due to the fact that it is a
complex number. This phase, taken together with the phase due to final
state interactions, will give us a more complete picture regarding C and CP

symmetry properties of the X° decay.
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2.3 Time Reversal

Time reversal symmetry is the symmetry of a theory under the transforma-
tion t — t' = —t. The operator that enables such a theory, say T', generates
a reversal of motion. Just like in classical dynamics, we see that in quantum
mechanics T" does not affect the position operator but certainly reverses the

momentum, both linear and angular [3]:

TXT' =X, (2.72)
TPT™' = —P, (2.73)
TJT ' =—J. (2.74)

On inspecting the fundamental commutation relation between the posi-
tion and momentum operators [X;, P;| = id;;, one finds something strange.
In order for this commutation relation to be invariant under time reversal,

we notice that the following condition must be fulfilled:
T-4T = —i. (2.75)

This is what Wigner called the anti-linear property of the T operator [15].

Further, we also demand that the time-dependent Schrédinger equation:

Hy(t,7) = @% (t, )

remains invariant under time reversal. However, we notice that 1(—t, Z) does
not satisfy the above equation. Instead, following Wigner, we state that there
are two ways to preserve the norm (¢[1)) = (T'|T%)). The first when T is a
unitary operator such that [15]:

(oly) = (To|T) (2.76)
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and the second when 7' is an anti-unitary operator:

(0l¢)" = (¥lp) = (To|TY). (2.77)

The first case is forbidden given that we know ¢ (—t,Z) does not satisfy
Schrodinger’s equation. The only conclusion we can draw is that T is an

anti-unitary operator:

The effect of the T operator on the S-matrix is as expected. It inter-

changes the initial and final states to give us the inverse S operator [15]:
TST'=8" =81 (2.79)

The anti-unitary (and anti-linear) property of 7' has interesting conse-
quences. The foremost among them is Kramer’s degeneracy which tells us
that for any energy eigenstate ¢ of an odd number of spin 1/2 particles, there
is an orthogonal eigenstate of the same energy in the absence of an external
magnetic field (so long as 7% = —1) [4]. The details and implications of this
theorem will not be carried out here and can be found in [4].

The Lagrangian for the photon field, given in Eq. , transforms under

time reversal as follows:
TL(t,Z)T ' = L(~t, 7). (2.80)

Since the action is given by the integration of the Lagrangian over all space-
time coordinates, a simple change of variable ensures that the action is in-
variant under time reversal [3]. Eq. (2.80)) is achieved by the following trans-

formation properties of the current and the electromagnetic four-potential:

‘]O(_t>f)a p =0,

TJt, DT = ,
—J'(—t, %), =1,

(2.81)
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Ao(—t, 7), —0,
TA,t,D)T " = (%) g | (2.82)

For the free Dirac theory , the transformation properties are a little
trickier. Time reversal not only reverses the momentum of a particle but also
its spin as can be seen from Eq. for angular momentum. This implies
that a time reversal operator must be one that flips the spinor, i.e. the sign
associated with its spin state [13]. The spinors with their signs flipped and

momentum reversed take the form:

u(p, —s) = ="’ [u(p, s)]", (2.83)
v(p, —s) = ="’ [v(p, 5)]*. (2.84)

This leads us to the following transformation property of fermion annihilation

operators:
Ta(p,s)T™" = a(—p, —s). (2.85)

Considering the above transformation properties and that of the spinors
u(p, s) and v(p,s), the transformation of the fermion field under time re-
versal obtained from Eq. (2.27) is [13]:

TY(t, )T~ = v (—t, 7). (2.86)

We can now derive the transformation properties of fermion bilinears as
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was done for parity and charge conjugation. These are [3]:

(¢, F) > (), (2.87)

iP5 (t, 7) 5 —ipys(—t, ), (2.88)

T R (2.89)
_w7i¢(_t7 l’), H =1,

(e, 7) 5 { V1R, =0 (2.90)
_w%’ﬁ}%w(_ta 1‘), H =1,

Vot ) 5 — (1) (1) Do, (—t, ), (2.91)

G0 s (t, B) = —(=1)"(=1) Do, 750(—t, 7). (2.92)

The CPT theorem respected by quantum field theories tells us that a
violation of T symmetry is also a violation of CP symmetry. A non-vanishing
electric dipole moment of the neutron would point towards a CP symmetry
violation in addition to possible P symmetry breaking [2I]. An upper bound
on the T (and therefore CP) violating neutron electric dipole moment is
currently the best estimate we have for an observable effect of the Strong CP
problem [22]. This will be the topic of discussion in Chapter 3.

Following Eq. , a CP transformation of the interaction Lagrangian

Eq. (2.49) yields:

cP €Cp =0 eCp
Lso_ > — by JANFHY — —— —
=0 (mg + mA) 15 (mz —+ mA)

Avs0, S F* . (2.93)

Taken together with the hermiticity condition, this implies that for the 3°

decay to conserve CP, cp must be purely real or cg = cj;.

2.4 CKM Mechanism

As we stated earlier in this chapter, the theoretical framework needed to
accommodate CP violation in the SM is described by the CKM mechanism

of the weak theory [2I]. We provide here a cursory review of the minimal
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implementation of CP violation in the weak interaction, and analyze whether
the weak part of our radiative X% decay contributes towards a P or CP
violation in the decay chain.

The SM incorporates one doublet (SU(2)) of the Higgs field. The Yukawa
interaction, which describes the coupling of the quark field to the Higgs field,
is given by [23]:

vy [ ¢ s (¢
: UL
where )y, are the left-handed fermion doublets, Q) = D ; Ug and Dpg
L

are right-handed fermion singlets; with U = {u, ¢,t} and D = {d, s,b}. Note
that the chiral fermion fields are as defined in Eq. (2.50). Here GYP are n xn
matrices (with n = 3 in the Standard Model for the three quark families)

which, due to spontaneous symmetry breaking, give us the mass terms [3]:
MY =0GY, MP =GP (2.95)

with v being the vacuum expectation value of the Higgs field, (¢°) = wv.
Because of the arbitrary nature of the Yukawa coupling, these mass matrices
can in principle contain complex terms. It is precisely this complex Yukawa
coupling that brings about an observable CP violating effect [23][3].

Before going further we must state that the appearance of this flavour-
space coupling has an impact on the quark gauge interactions which are given
by the charged current, weak neutral current and the electromagnetic current
[23]:

Jbe =Ury" Dy, (2.96)
1 TT Y .
Ihe = §(UL7MUL — Di4"Dy,) — sin® Ow Tk, (2.97)
L2 1
Jen = 3U1"U — 3 D¥"D. (2.98)

By diagonalizing the mass matrix, we can write the Lagrangian in terms

of the mass eigenstates of the quarks [3]. This can be done by adopting
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unitary matrices Ty, and T}, which act as follows:

U D
MGy =T/ MUTT, Moy =TEMPTTy (2.99)
such that it changes the left and right-handed quark fields into their mass
eigenstates [3]. This has no effect on the neutral currents, up to tree-level,
. - o U,D
which remain diagonal due to the unitarity of 77/, [23].
The charged weak current, on the other hand, transforms non-trivially

[23):
Tbe =Uy" D = U AT ;") Dy! (2.100)

where U7", D' are fields with definite mass states due to the diagonaliza-
tion process. We define a unitary matrix V', called the Cabibbo-Kobayashi-
Masakawa (CKM) matrix, such that:

v =1/TP". (2.101)

It is this CKM matrix that parameterizes quark mixing in the flavour space
so that flavour changing reactions are permissible in reactions governed by
the weak interaction [23].

In the seminal paper by Kobayashi and Masakawa [6], they argued that
it is precisely because of the nature of this V' matrix that CP violation is
observed in nature. Without going into the details, we can say that merely
because V' can contain complex phases it does not mean that CP becomes an
observable consequence as we can always redefine the quark fields and their
respective phases [3]. However, the question arises, when can one not rotate
away a complex phase arising in V7 Kobayashi and Masakawa noted that
for three families of quarks, in addition to the three Euler mixing angles,
one also gets a non-trivial complex phase that cannot be re-defined away [6].
This is the complex phase that lends itself to an observable CP violation

[23][3]. There are several ways to construct V' using three mixing angles and
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one non-trivial complex phase. The standard form is given by [23]:

C12C13 $12513 spze0cr
V = | —S12023 — C12823513€C7 1093 — S12823513€0C7 523C13
S12823 — C12023513€7°CF  —C12823 — S12C23513€°CP  Ca3013
(2.102)

with s;; = sin6;;, ¢;; = cosb;; and dcp as the CP violating complex phase.

Now how does this non-trivial CP violating complex phase dcp arising
in the weak charged current affect P and CP considerations in our radiative
%0 decay? Following Donoghue et al. [24], we state that theories which have
CP violation tend to produce nEDMs close to the experimental bounds.
Significantly, no electric dipole moment is produced at first order of the weak
interaction. This is because at tree-level, due to the non-flavour changing
nature of this order of the interaction, the CKM matrix combination V3V,
is real, and so there exists no CP inducing complex phase [24]. At second
order in the weak interactions, there is a possibility of a dipole moment in the
neutron being observed. This requires an additional gluon loop (see [24]) that
could manifest itself as a distinct contribution to CP violation. However, such
weak interaction contributions to the CP violating electric dipole moment
are several orders of magnitude smaller than the current experimental upper
bound of the nEDM [25].

2.5 Final State Interactions

The decay products of the radiative 3X° decay are not asymptotic states yet.
Due to the strong/electromagnetic interaction(s) they undergo subsequent
scattering before ceasing to interact [3]. The observable consequence of these
strong/electromagnetic final state interactions (FSI) is the topic of discussion
in this section.

FSI becomes important when considering CP violation in hyperon decays.
In general, for a decay of hyperon M to a final state f, M — f, that proceeds

through two different elementary amplitudes A; and A,, we can write the
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total transition amplitude as [23]:
A(M = f) = [Ay|e 1€ + |Agle'e™. (2.103)

The phase ¢; changes sign for a CP conjugate decay (this is often called the
weak phase) whereas the phase J; does not change sign (termed the strong
phase or the final state interaction phase). The charge conjugate reaction

has the following transition amplitude:
A(M — f) = |Ay|e7 1€ 1 | Ayle™iP2¢72, (2.104)

The asymmetry between the two decays is parameterized using a decay asym-

metry parameter, Acp, defined using partial decay rates as [23][3]:

App = LM = ) = TM = /) (2.105)
I'M — f)+T(M — f)
Utilizing Eq. and Eq. , we have:
ACP 2|A2/A1| Sln(¢1 — ¢2) sm((51 — 62) (2106)

T 1+ [Ao/AL P 1 2[As /A ] cos(91 — ¢n) cos(dr — ¢a)

Therefore, it is not the single phase of an amplitude that matters in dis-
cussions of CP violation (these can be redefined), but the phase difference
between two amplitudes. That is, an interference between the amplitudes is
necessary to have a CP violating effect [23]. Note also that for a CP violation
to be observable in the partial decay width calculation, we require a non-zero
weak phase difference (A¢y = ¢1 — @2 # 0) and a non-trivial phase shift due
to FSI (Adr = §; — 2 # 0) as can be seen from Eq. [3].

This is precisely what we expect happens in the radiative decay ¥ — Ay
where the even (for example, an s wave) and odd (for example, a p wave)
partial wave amplitudes of the final state interfere to produce a possible CP

violation. We can define a new parameter, called the decay asymmetry, that
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shows an s and p wave interference:

o= Bels'p) (2.107)
s> + |p[?
with s = |s|e?:e'® and p = |ple®re'». Here J, and §, are the s and p wave
phase shifts due to strong (or electromagnetic) FSI, while ¢5 and ¢, are the
weak phases of the s and p waves, respectively [26].

Since the X° — A~y decay proceeds largely through an electromagnetic
channel, and because the weak part of this decay is suppressed, we consider
here an FSI phase shift solely due to strong/electromagnetic interactions of
the decay products. What remains to be seen is how a phase induced by FSI
affects C and CP symmetry considerations in our X° decay.

Electromagnetic (and strong) FSI induces a phase shift 0 so that we can

define a new complex constant ¢ as follows:
¢ = cpeF, ¢ = cpe’r. (2.108)

The constants cg, ¢g emerge from the interaction Lagrangian in Eq. (2.49).
Since cp is complex, it can have a modulus and a phase g such that:

0p

cp = |cple?, p = —|eple P =

|cg|et™—8) (2.109)
where in the second equation we have used the hermiticity condition

¢p = —cp. The complex constant ¢ can now be written as:

¢ = |cple’OBFor), ¢ = |cple!"=0s=0m), (2.110)

Going back to our discussion in Section 2.2, a C symmetric decay implies
cp = cp (i.e. cp is purely imaginary) and so ¢ = ¢. Looking at Eq. (2.109)),

this means that 6p = m — dp (i.e. dp = §) and the second possibility, 65 =
3m—0p (i.e. 0 =2T). As before, for a P violating Lagrangian, conservation
of C implies that the decay violates CP. What about the case when CP is
conserved? In Section 2.3 we stated that this is fulfilled when cp = —cp (i.e.

cp is purely real) and so ¢ = —¢. Looking at Eq. (2.109)), we see that dg =0
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and dg = 7 are the solutions. For a P violating decay, conservation of CP
implies C is violated. Note that for the case when P, C and CP are violated

(i.e. ¢p is neither purely real nor purely imaginary), dp is not a multiple of

s
5
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Chapter 3

Strong CP Problem

Having discussed generally the discrete symmetries and their violation in the
Standard Model, we will now study in detail their properties in the strong
sector. In this chapter, we will fist touch upon the U(1) 4 problem, providing
a brief review of this unrealized axial symmetry. This brings us to the QCD
vacuum which is the topic of discussion in the subsequent section. The
non-trivial structure of the QCD vacuum will lead us to the formulation of
the Strong CP Problem. We then discuss the effective vacuum angle and
present a possible solution to the U(1)4 problem. The #-vacuum term in the
QCD Lagrangian gives rise to a CP violating neutron electric dipole moment
which is also discussed in this section. In the last section, we make a slight
digression from the Strong CP problem to discuss the relation between the
neutron electric dipole moment and the electric dipole transition moment for
the ¥0-A transition relevant to the decay under study. This is possible due
to the SU(3) flavour symmetry, and we illustrate this using the framework

of Heavy Baryon Chiral Perturbation Theory.

3.1 The U(1)4 Problem

The QCD Lagrangian in the limit of massless quarks for N flavours has a
global U(N)y x U(N)4 symmetry [14]. Since the up and down quarks have

a significantly lower mass when compared to the masses of other flavoured
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quarks, one can safely say that the strong interaction respects an approxi-
mate U(2)y x U(2)4 symmetry [27]. This can be further generalized if one
accommodates the strange quark, together with the up and down quarks,
in the massless limit. The strong interaction in this case is said to be ap-
proximately invariant under U(3)y x U(3)4 transformations. Indeed, we find
that experimentally the vector group U(3)y = SU(3)y x U(1)p is a symme-
try that is approximately respected in nature. The SU(3)y group manifests
itself in the hadron spectrum as an approximate flavour symmetry among
quarks since the strong interaction does not discriminate between quarks of
differing flavours. Historically, this identification was made by Gell-Mann
and his colleagues in what was termed the Fightfold Way, which represented
this symmetry in the nucleon octet [2I]. In fact, as we will see later in this
chapter, it is this flavour symmetry that helps us relate the neutron electric
dipole moment to the P violating electric dipole transition moment for the
¥0-A transition. The U(1)p group, on the other hand, is an exact global
symmetry which is realized in nature as the conservation of baryon number.

The axial symmetry group U(3)a = SU(3)4 x U(1)4 is less straightfor-
ward. Dynamically, the formation of quark condensates < @u >=< dd ># 0
results in the spontaneous breakdown of this axial symmetry [27]. Following
the Goldstone Theorem, we expect to find eight pseudo-Goldstone bosons due
to the spontaneous breakdown of the SU(3) 4 group. In fact, this was shown
to be the case when the octet of mesons (7, 7=, 7%, K+, K, K°, FO, n) was
identified as the corresponding pseudo-Goldstone bosons. This is also why
one does not see mass degenerate parity doublets in the hadron spectrum.
However, the absence of a ninth pseudo-scalar meson as a pseudo-Goldstone
boson of the U(1) 4 group means that there is an excess U(1) 4 symmetry that
is not realized in nature. The 7’ meson is too heavy to fulfill this role, with
m7, > mj.. This non-realization of the U(1) axial symmetry in the strong
interaction was labeled the U(1)4 Problem by Weinberg [14][27]. As we will
see in the next section, the U(1)4 problem is connected to the topologically

non-trivial structure of the QCD vacuum.
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3.2 QCD Vacuum & the Strong CP Problem

QCD as a theory of strong interactions is a gauge theory. This means that
local changes in the configurations of fields (gauge transformations) do not
affect the energy of the fields. This property, coupled to the fact that gauge
transformations in QCD are non-abelian, means that there are infinitely
many minimas in the energy associated with these fields [28]. For a pure
gauge field, i.e. a set of field configurations obtained by a gauge transfor-
mation on the null field, we can impose the boundary condition A = 0 at
spatial infinity [27]. However, there are gauge transformations for which it
is not possible to deform the field back to the null-field configuration via
smooth transformations. We can define a topological quantity for a static

field called the winding number as follows [28]:

n= 3217T2 / d' w7 S, Fr . (3.1)
It is an integer for a pure gauge field. In slightly more formal terms, the
winding number characterizes the homotopy class for the S3 — SU(2) map-
ping, i.e. a mapping from the three dimensional Euclidean space to the SU(2)
space [27][21]. Because the gauge group U(1) can be easily deformed into
the null-field configuration for an S3 — U(1) mapping, we say that there
is no analogous definition of a winding number for Abelian gauge theories
[21]. For a field which vanishes at spatial infinity, the winding number can
be expressed in terms of a surface integral that is non-zero. This implies a
non-zero vacuum-vacuum transition amplitude. Thus the true vacuum is a
superposition of all these vacua (n in number) and is called the theta vacuum
[27):

0) =3¢ |n) (3.2)

where |n) denotes the pure gauge configurations and 6 is called the vac-
uum angle. A gauge transformation that transforms the field configuration

|n) — |n + 1) has a well defined solution, and such a tunneling event is called
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an instanton in the literature [28]. The effect of these mutually distinct theta
vacua is that the effective action gains an additional term. The path inte-
gral formulation of the vacuum to vacuum transition amplitude involves an
effective action which is dependent on the vacuum angle 6 [29][27]:

2

o eg 4 uy o
Sers[A] = So[A] + 225 / Az FM E,,, (3.3)

with Sp[A] being the usual QCD action and ﬁ#,, = €uapl®”. This means
the QCD Lagrangian now has an addition #-term:

Locp = Lo+ Ly (3.4)

where L is the usual QCD Lagrangian given by:

1 iy
EO = éFéngz/ + Q(le - M)Qv (35)
and
0g* ~
= Fe R .
EG 3942 Wwia (3 6)

is the P and T violating term due to the structure of the QCD vacuum.
Since the Lagrangian Lgcp conserves charge conjugation symmetry, this
additional #-term is a source of CP violation in the strong interaction. For
QCD to remain a CP conserving theory, this term must be zero. However,
as we will see in the next section, there is no reason why this should be the
case. On the other hand, its value is derived from the neutron electric dipole
moment, and is diminishingly small [27][29]. The fact that the § angle has

such a small value (and is not zero) is called the Strong CP Problem.

3.3 Effective Vacuum Angle

The U(1)4 problem finds its resolution in the non-trivial structure of the

QCD vacuum. Before discussing this possible solution however, we must note
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that the U(1)4 problem is really a chiral anomaly, wherein the quantization
procedure leads to a charge that is not conserved [21]. The current associated

with nearly massless up, down and strange quarks is [29]:
JE = uyFysu + dy*ysd + 3y*ss. (3.7)

This current is conserved in the massless quark limit up to tree level. At first

loop order, this current diverges and it is given as [21][27][29]:

g*N

o,Jt =
rs 1672

FM Fyp. (3.8)

This is an exact result and 9,J¢ # 0 in QCD [29]. As we can see, it holds
true even in the massless quark limit. This U(1)4 chiral transformation,

q; — e q; brings about a change in the Lagrangian [29]:

2
9N .=
o Fow (3.9)

6[::(){]6

If we now make the identification, N = —6/2ay, we notice that the effect of
the theta vacua given in Eq. is removed. Unhappily, things are not as
simple. Since quarks are not massless (and if we were to also include weak
interactions), we have a general mass term in the Lagrangian which can be

written as:
LM = qiRMijqu + h.c. (310)

where M;; represents the complex quark mass matrix. The U(1)4 chiral
transformation, ¢; — e~"75¢,, then leads to an additional phase when we

diagonalize the mass matrix [29]:

myp— e 1 my (3.11)
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where f and mj denotes the flavour and mass of individual quarks, respec-

tively. The chiral rotation does not leave the vacuum state invariant either:

0—0=0-) ar=0—argdet[M]. (3.12)
f

This new vacuum term is called the Effective Vacuum Angle, 8, and it is non-
zero. Put another way, it is this Effective Vacuum Angle that determines the
CP violating neutron electric dipole moment and therefore it is more accurate
to use A than f-vacuum when speaking of the Strong CP Problem.

The chiral transformation of the quarks leads to a CP violating pion-

nucleon interaction vertex (for details see [29], [21]):
Liny = gennNT N7 (3.13)

with the coupling constant g,nyn depending on the Effective Vacuum Angle

0 as follows:

~ m,mg 1 ms — My

(3.14)

grNN = — - .
T My +myg Fr 2my, — my, — my

For the case where the nucleon is the neutron, the interaction vertex gives
us a theoretical estimation of the neutron electric dipole moment (nEDM),
|diheo] ~ 1.1 x 10760 ecm. The current experimental upper bound of the
nEDM is |[dé?| < 2.9 x 107 %ecm. This yields a value of § < 2.5 x 10710
[10]]29].

3.4 Heavy Baryon Chiral Perturbation The-
ory

As we briefly discussed in the introduction to this chapter, due to the SU(3)
flavour symmetry between quarks, a non-zero nEDM in an n-n transition
translates to a non-trivial electric dipole transition moment for the 3°-A
transition. This is precisely the transition that is of interest for our decay

Y% — Ay — prn~v. In order to extract the exact nature of this corre-
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spondence between the nEDM and the electric dipole transition moment,
we make use of the framework of Heavy Baryon Chiral Perturbation Theory
(HBChPT), which is the effective field theory used to describe interactions
in the baryonic sector [30][31].

Following Ottnad et al. [I0], we can write down the most general, relativis-
tic effective Lagrangian comprising the baryon octet B, up to (and including)
the second order in the derivative expansion. The effective vacuum angle is
now treated as an external field which transforms under a U(1)4 rotation
as in Eq. . As can be seen from Eq. , the displacement of this
source f compensates for the chiral rotation of the mass matrix arising from
the Yukawa coupling. The Lagrangian in Eq. is now invariant under
an approximate U(3)g x U(3);, symmetry [31]. This 6 source is introduced
in our effective Lagrangian as §# = 6 — ilndet U ((7 being a function of the
matrix valued fields U = eXp(\/g Fiofr]o -+ %¢) [10]) along with the baryon

octet B, and the octet mass m in the chiral limit:

_ _ DJF . _ Ao
Lo = iTe{By*(D,. Bl ~ Tx{BB] - 2L (B, Bl — STr(Br#95 BT,
+bp/rTr[Blx; — iA(U — UY), Bly] + b Te[BB|Tr[x+ — i AU — U")]
\/6 = . n \/6 D, v
+ 4Aw£0?0n0Tr[BB] +1 <w13/140 + w13/1470770)Tr[Bg” V5[ Fy,, B<]

+ w16/17Tr[B‘7W[F,:Za Bl.]

(3.15)

where D and F' are axial vector couplings that can be determined from semi-
leptonic hyperon decays, A is the isosinglet axial coupling, A is a complicated
function of @ (see [31]), by and bp,r are low energy constants (LECs) repre-
senting the leading explicitly symmetry breaking terms, while w; are related
to the coupling of the baryon fields to the singlet field [10]. w17 is the
exception here, since these constants are nothing but the magnetic moment

couplings. The baryon octet containing the hadrons relevant to our decay is
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given by the matrix [31]:

1y0, 1
_ - 1y0, 1

== =0 _2

= = \/éA
The covariant derivative of the baryon field is [10],[31]:

[D/u B] = auB + [Fua B] (3-17)
with I'* being the chiral connection, given as follows:

T, = [u' (9, —ir,)u+u(d, —il,)u']/2. (3.18)

Note that 7, and [, are conventional external sources that go into the defi-

nition of the field strength tensor, F}\:

+ _ TR Lt

F,, =uF u+uF u
=0u(r, +1,) — 0, (ry + 1) — i([rp, 7] + [Lu, L]) (3.19)
where in the second step we have set © = uf = 1, and made the substitution
Fl = 0ur, — 0yry — i[ry, ] and Fl = 9,1, — 9,1, —i[l,, 1,]. If we now use

the definition of these external sources, i.e. r, = v, +a, and [, = v, — a,,

and make the identification a, = 0 and

=cA

e}
o O

, (3.20)

=
o O whe
|
W=

o
|
Wl

for electromagnetic interactions, we end up with a field strength tensor that

has the following form:

2.0 0 2.0 0
Ei=2[0 -1 0 |04, -0A,)=2[0 —% 0 | F.. (321)
0 0 —3 0 0 —3
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The term in Eq. containing the constants wj;,, and wiz/14 are of
particular interest to us, since it is this term in the Lagrangian that gives rise
to a CP violation which manifests itself as the nEDM (for an n-n transition)
and the electric dipole transition moment (for the ¥°-A transition) [10][31].
In order to explicitly derive the interaction Lagrangian that is relevant to

our decay, we isolate this Lagrangian term,
. . V6 . v
Ly —i (w;3 1140 + wis /MFnO)Tr[BaW% [+ Bl.] (3.22)
0

and utilize Eq. (3.21]) and Eq. (3.16]), while setting the fields ¥+, 7, 27 =% p —
0. We obtain:
2ie

_ 6 -
L= _?( 130 + \/F—nowli%) [6ﬁ750uunFW - 3\/§A’75UWZOFW
0

— 3V3S Y50, AF™ + 3A50,, AF™ — 35 750, SO |
(3.23)

In the relativistic case, the nEDM is defined by the following interaction
Lagrangian [31]:

Lo.epM = %d%emaw/yg)nF“” (3.24)
Comparing this to Eq. , we can determine the LEC coefficients common
to all the interaction terms. Thus, we get an estimation of the electric dipole
transition moment for the X°-A transition from the current experimental
upper bound of the nEDM. The details of this calculation, including the
determination of a numerical value, is carried out in Chapter 6. However, we
still require the most general matrix element for the current that characterizes
this transition. This is the topic of the following chapter, where we discuss
the most general current for the Y°-A transition using Loretnz invariance as
a guiding constraint. We will derive functions called transition form factors
which will play the crucial role of parameterizing the P violating electric

dipole transition moment that we have just determined.
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Chapter 4
Transition Form Factors

Form factors play an important role in determining the structure of baryons,
their magnetic properties and charge distribution [13]. Of particular con-
cern to our decay is the study of transition form factors, which has provided
valuable information about the charge and magnetic properties of nucleons
(also the Delta hadron) and mesons, as well as their underlying quark and
gluon structure (see for instance [8],[9],[32],[33]). In this present work, we
make use of transition form factors to parameterize the P (and possible CP)
violating decay. The emergence of this possible P and CP violation was dis-
cussed in the previous chapter as part of the theta vacuum term in the QCD
Lagrangian. This chapter is devoted to deriving the most general Lorentz
invariant electromagnetic current, which will in turn help us identify the
Lorentz invariant (electromagnetic) transition form factors. In the process,
we will discuss properties such as current conservation and parity symme-
try of this current. Lastly, we will eliminate terms in the current that are
not relevant to our decay, and present the Lorentz invariant transition form

factors for the 3°-A transition.

Lorentz Invariant Electromagnetic Current

We are interested in deriving the most general Lorentz invariant electromag-

netic current which will enable us to pin down the transition form factors
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important to our radiative decay. The expectation value of a current J* for

a spin 1/2 baryon transition B-B’ is generally given by [34],[35]:

(B'(p)| T"(2) |B(p)) = e (B'(4)| T"(0) | B(p)) - (4.1)

where we have used the fact that under translation in space and time, the

current transforms as:
ju(x) — eipxj;t(())efipx

with P being the momentum operator. We can rewrite the above matrix

element as [34]:

(B'(p")| 7(0) |B(p)) = up (1) T*(L, ¢)un(p) (4.2)

with [# = p'* 4+ p* and ¢* = p* — p/*. Note that T#(l,q) is the vertex func-
tion (a 4x4 matrix acting on spinors), which contains the Lorentz invariant
transition form factors we are after.

If we now consider all possible structures (four-vectors, gamma matrices,
tensors etc.) that can be contracted so that the current is manifestly Lorentz

covariant, we are left with a matrix element that has the following form:

(B T(0) |BO)) =uBf<p'>(Z PIAL) + BB
+Zcz )3C1 (1 q) +Zd )w D (1, q)

+ el )ous q>)uB<p>
(4.3)

Note that the functions a;, b;, ¢;, d; and e; are Lorentz invariant as they
depend only on ¢%. We would now like to list, concretely, all structures that
could accompany these functions, keeping in mind the condition of Lorentz

invariance. For the first term in Eq. (4.3) with only one Lorentz index, we
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can safely conclude:
Al =q", Ab =1+ (4.4)

Now, going back to Eq. (4.3)), the tensor accompanying the second term

has two Lorentz indices and can take on the following Lorentz invariant forms:
B = g, By = e“l’aﬂqalﬁ. (4.5)

The first of these two, 7,¢9"", simply raises the index of the gamma matrix,
which is an independent structure. The latter term, v, B5”, can be further
broken down, as we will show when analyzing a similar structure ~,v5D5"”
below ﬂ Note that we haven’t included terms like B! = [#]¥ (or structures
like I#q”; g"1”; q*q") in Eq. , since they contract with the gamma matrix
in the second term of Eq. to yield structures like [#] and ["'¢. These
structures are redundant as they can be expressed in terms of Eq. using
the equation of motion for Dirac spinors.

Referring to Eq. , we now consider the third term in that expression.

With only one Lorentz index available, we write down the same structures

as we did in Eq. (4.4)):
CY =gt cy =" (4.6)

C1" when inserted back in Eq. (4.3) yields the independent structure g~
which we would like to retain. The form of C% shown above gives us [#~s.
We now analyze the fourth term in Eq. (4.3), which tells us by the same

reasoning that D; and D, can have the same structures as B! did in

Eq. (4.5):
DY = g, DY = e P, 1. (4.7)

Note that structures like D! = [#¢” (or structures like (#1"; ¢*1”; ¢"¢") in the
fourth term of Eq. (4.3) are redundant as they can be expressed in terms of

0123 _

1'We use here the convention e —1 for the Levi-Civita tensor.
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C} and C¥ by using the equation of motion for Dirac spinors. D{" contracts
the gamma matrix to give us the independent term y#v;. D4 is a composite

term, and this can be illustrated as follows:

_ . vo _ 1 "ol B Vo
()i 5€"™ Gl s (p) = T ()% 35 Y Yor v € al s (p)

gu’u gV’u go/u gﬁ’u

- . g,u’u gz/’y ga/u gﬁ/l/
~ upr (p) e Vo oo Ba IYVIVM”VV”Ya”y,B’QOclBUB(p)
g g g g
gu’ﬁ gl/ﬂ ga'ﬁ gﬁ’ﬁ
(4.8)

where we have used the formal definition of ~5 matrix in the first step, v5 =
—41!6“”0‘57“%%75 [36] and used the determinant of the metric tensor in place
of the Levi-Civita tensor product in the second step. We see from the above
expression that this is related to the terms ug/[*up, upq'up and ugy*upg
and is therefore not independent. Using the same reasoning, we can also
show that the term considered previously in Eq. , upy,BY up, can be
shown to be composed of up ¢g'vsup, upl*ysup and upy*vsup by making

use of the following trick and proceeding as before:

g (D)1 e P qulgup(p) = up (015 P qalsysun(p) (4.9)

Finally, we come to the last term of Eq. , which contains E"*. The
structure EY' o — g**1? is not independent and can be further decomposed.
On contracting E"*” = gtel® with the tensor o,g, we obtain a structure
of the form ¢#7lz. We will now show that this structure can be simplified

further. We use the following relation to aid our calculation:
1
i0" = =2 (1" = ") = ¢ =" (4.10)

where we have used {v*, 7%} = 2¢". Equivalently, the above relation can be
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written as:
ioh? = APyl — ghB, (4.11)
Therefore,

ap (p)io" lgup(p) = up (p')ic™” (' + p)gun(p)

()
= ap (P)[(V"7* = 9"°)ls + (9" — 77 )pslus(p)
= up (p )" — p" + 1" —"plus(p)
= ap/(p)[(mp — mp)¥" + ¢"Jup(p) (4.12)

where in the last step we made use of the equation of motion for the Dirac
spinor, (p —m)u(p) and its conjugate. Thus the structure oo’ can be
expressed in terms of v* and ¢*.

Similarly, we can rewrite another possible structure ESO"B = g"¢® in
terms of a gamma matrix and four-momentum. On contracting EA“? with

0ap, We obtain a structure of the form o#%¢gz. As was done above, we derive
the following property using Eq. (4.10) and Eq. (4.11)):

up (p)io"’ qpup(p) = up (p')ic"’ (p — p')sun(p)

PG =+ )ps — (V4" — " )plslun(p)
PP —"p — #y" + M us(p)

= up (p)[I" — (mp +mp )" Jup(p) (4.13)

We will henceforth express [* (recall that this is the structure A%) in terms
of v and 0#gs as shown in Eq. .

Note that because 0,4 in the final term of Eq. is an antisymmetric
tensor, contracting it with g*’I* (or g*?q*) gives us a null result since the
product of a symmetric tensor like g*° with an anti-symmetric one like 0,4
makes this term zero. The same reasoning elimantes structures of the form
EY b — ujegp (or any such combination where both the indices of the o,p

tensor is contracted by the same four-momentum). However, the structures
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of the following form are non-zero and allowed by Lorentz invariance:
BY*Y =1megP, B = gtogP. (4.14)

On expanding the 0,4 in terms of the gamma matrices (see Eq. (4.10])) and

using the equation of motion for Dirac spinors, we note that the structures

in Eq. (4.14) reduces to those in Eq. (4.4)).

Another structure that satisfies the condition of Lorentz invariance is

oo Bl of — 0ape®"q,. This term can be rewritten using the property [36]:

s — _%eaﬁﬂ”aw (4.15)

so that the independent structure we would like to preserve in the last term
of Eq. 1} is oapEY * = oM ~sq,. The same method can be applied to the
term o,5E% o — Tape’’®Pl,. If both the indices of 0,4 are contracted by the
Levi-Civita tensor, we have the structures 0a5E¢a6 = 0,36*77%q,l.q" and
oup Bl of Ua,geaﬁp”lpq,{l“ which satisfy the condition of Lorentz invariance.

These can be similarly shown to be redundant using the above property
(Eq (4.15))) and following exactly what we did with the terms in Eq. (4.14).

If, on the other hand, only one index of 0,4 is contracted with the Levi-

Civita tensor, then we can have the following structures:
B = 00 leq,l” Bi57 = 00" Pluq,q” 4.16
Oaplig Oap€ K/qp ) OapLiyg Oap€ Nqu . ( . )

If we now use Eq. and Eq. , we can reduce the above two struc-
tures to simpler ones that have been covered already.

Lastly, we use the following property to write I#v5 (recall that this is
C%vs) in terms of o#/7y; (see Eq. (£.15)) and the gamma matrices:

io"ys(p — p')un(p)

[(g"" =AY )vspy — (VA = ¢ )vsp, Jus(p)
[0 + " vs5p — Py + 50" Jus(p)

[(mp — mp)y"vs + "ys]up(p). (4.17)
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We will henceforth express (75 in terms of y*75 and i0""75q,. We therefore
have eliminated the four-momentum [ in favour of ¢ in our Lorentz invariant
current.

Based on our discussion above, the most general Lorentz invariant current

containing only independent terms is:

(B'(p)| T"(0) |B(p)) = up(p) (al(q2)¢‘ + b)) + e (@) + di (@) s

+ ax(q)" g, + ea(q*)0" 54, ) us(p).
(4.18)

This is sometimes referred to in the literature as the weak-current form
factor decomposition (see [35]). This is because we still have not imposed
the constraint of current conservation on Eq. . This is analogous to im-
posing the condition of gauge invariance in QED which gives rise to massless
gauge bosons (photons). Since the gauge invariance in the weak sector is
spontaneously broken giving rise to massive gauge bosons, the weak current

is not conserved [35]. Applying current conservation, we have:
a0 (B'(P)| T"(0) |B(p)) =0 (4.19)
which results in the following demand when applied to Eq. (4.18]):

a1(*)¢* + bi(¢*) (mp — mp) + c1(¢*)*ys — di(¢*)(mp 4+ mp)ys = 0.
(4.20)

This implies:
2

2y c1(g®)g
d1<q ) - (mB +mB’).

(mp —mp)

a1(¢?) = bi(q?) 7 :

(4.21)

We are finally left with four independent transition form factors in our gauge

invariant current for the B-B’ transition which is conventionally expressed
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as [10],[35],[31]:

(mp —mp) u) o™,

7 F(q?
q? mpg + mp 2(¢)

(B (6)] T2(0) | B)) = 1 (0 <F1<q2> (2#+

‘ o qy
+i(v*¢* + (mp + mp)q")vsFa(q®) + AL F3(q2)) up(p)
mp + mps

(4.22)

where ¢, = (p — p'),. If B and B’ have the same intrinsic parity then the
functions F(¢*) and Fy(¢®) are the P conserving Dirac and Pauli transition
form factors. Now, F4(q¢?) and F3(¢?) are the P violating Lorentz invari-
ant transition form factors and are termed the anapole form factor and the
electric dipole form factor, respectively. At ¢ = 0, these form factors have

specific normalizations [37]:
F1<O> :QB, FQ(O) = K

where (Jp is the electric charge and « is the anomalous magnetic transition
moment. The P violating terms at ¢*> = 0 have values F4(0) and F3(0) which
are the anapole transition moment and the electric dipole transition moment,
respectively.

For the decay X° — Ay at the real photon point (i.e. ¢*> = 0), we have a
transition between two neutral particles and so F;(0) = 0. The third term in
Eq. also disappears at ¢* = 0, since the contraction ¢*¢, = 0 with ¢,
being the photon polarization. In the end, we are left with a matrix element

of the current for the X°-A transition that takes the form:

iHO-MVQI/ iCUuqu’Y5
my, + Ma my, + ma

(ALT#(0) =) = aa(pa)e Jus(ps)  (4.23)
where we have used F5(0) = x and iF3(0) = ¢. Note that ¢ fulfills four-
momentum conservation for a real photon, i.e. ¢ = (ps — pa). The term in
the matrix element containing the electric dipole transition moment F3(0)
thus parametrizes P violation in our decay. Given such a P violation, we

expect to see an angular distribution between the final decay products. The
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kinematics of such a P violating three-body decay is discussed next.
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Chapter 5
Neutral Sigma Decay

The X° hyperon decay is a two step process. The X° first decays into the
A hyperon and a photon. In the next step, the A hyperon decays via the
weak interaction to give a proton and a pion. The whole decay can then be
characterized as a three-body decay given by X° — pn~v. Following the
idea presented by Dreitlein et al. [38], in this chapter we will show that for
a parity non-conserving first decay, the P violation will manifest itself as an
angular dependence between two of the final decay products in the A rest
frame. We will first illustrate this using all possible spin configurations of the
initial X° hyperon and its decay products, noting how a P violation affects
these different possibilities. We will then analyze this more concretely by
studying the decay rate for a three-body decay chain, i.e. a radiative decay
followed by a weak decay. We will see how a parity conservation in the first
decay implies a flat decay distribution, i.e. a differential decay rate that is
constant with respect to the cosine of the angle between two of the final

decay products.

5.1 Spin Configurations

The first decay, ¥° — A, is dominated by the electromagnetic interaction
and was thus thought to be parity conserving. In 1961, Dreitlein and Pri-

makoff presented their seminal paper which established a method to calculate
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Figure 5.1: Illustrating the selection rules for the ¥° — A~ decay. Dreitlein,
J. et al. [3§]

the lifetime of the X0 particle. In addition, in the same paper, they exam-
ined the effect of parity non-conservation in the A-3° transition. Starting
from a P violating effective Lagrangian, they showed that the variation of
the polarization of the A hyperon with the angle between the polarization of
the X% particle and the line of flight of the A hyperon (in X° rest frame), is a
suitable test for parity conservation in the reaction Ay — X9 [38]. Following
the same logic, we will test the parity symmetry for our three-body decay of
Y9 but with respect to the angle between the proton and the photon in the
A rest frame.

Figure [5.1] illustrates the selection rules operational in the decay of the
neutral Sigma particle in the A rest frame. py and ¢, indicate the three-
momentum of the X° and the photon, respectively. The labels 5%, 5, and
s, denote the possible spin states of the X% A and photon. Note that a
rightward arrow for spin configurations in Figure [5.1] indicates a positive
value while a leftward arrow indicates negative spin values. The two-body
decay reduces to a one-dimensional problem in the A rest frame. This means
we do not have orbital angular momentum in this case. The spins (along the
line of flight) of the ¥° and the photon just add up.

The radiative decay emits a real photon which therefore has two possible
helicities of £1. Cases (c) and (d) are evidently forbidden due to angular

momentum conservation since we are dealing with spin 1/2 hyperons. We are
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then left with cases (a) and (b) as the only two permissible spin configurations
for the X° — A~ decay. Thus, if we know the spin of any of the three particles
involved in this decay, then we know the spins of all particles. When parity
is conserved, the cases (a) and (b) are identical. If we were to take a mirror
image of case (a) and rotate it by 180° (a parity operation), we would end
up with case (b). We will shortly explore what this means kinematically, in
terms of the matrix element calculation of this decay. For now it is sufficient
to note that P conservation results in the angular information of the X°
hyperon carried by A being averaged out by the spin sums. If P is violated
however, we can distinguish between cases (a) and (b), since this will result
in different probabilities when calculating the decay width. If the spins of the
initial (and final) states are not determined, P violation implies two distinct
decay widths for cases (a) and (b). If the spins of the initial (or final) states
are known, as is the case when considering the production process, then too
we expect to find cases (a) and (b) to be distinguishable even if parity is
conserved in the decay. Thus, for a radiative decay emitting a real photon,
the initial helicity of the X° hyperon is sufficient to determine the helicities
of A and the photon. This is the reason why this decay lends itself so nicely
to the test of P violation via the method prescribed in Dreitlein et al. [38].
We will now look at how a P violation would manifest itself in the differential

decay width calculation for the ¥° — pmvy decay.

5.2 P Violation & Angular Distribution

For a two-step decay, i.e. a radiative decay of a X% hyperon followed by a
weak decay of A, the spin averaged differential decay rate is obtained by

using;:

A0~ Y MMy M M, (5.1)

/
S$,177°,9,P

where we have taken into account possible interferences between amplitudes.

M, 4 is the Lorentz invariant Feynman matrix element for the decay ¥ —
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Ay, and M,_,, is the Lorentz invariant Feynman matrix element for the decay
A — pr~. Now s denotes the spin orientation of the ¥° hyperon, while r
and r’ are the spin orientations of the A, ¢ is the helicity of the photon and
lastly, p refers to the spin orientation of the proton. Note that Eq. does
not show certain constant terms and phase space factors since these are not
germane to the discussion at hand. The differential decay rate is therefore
shown to be proportional to the quantities on the right-hand side.

Looking at the decay diagram in Figure|5.2] we see that due to momentum
conservation, the direction of the X hyperon and the photon are aligned in
the A rest frame. Similarly, since the A hyperon is at rest, its decay products,

the proton and the pion, are also aligned.

/
P
2 — 1) Y —
VAN
T
¥

Figure 5.2: XY decay diagram in A rest frame.

As we saw in the previous section, due to angular momentum conserva-
tion, the only permissible spin states for this decay are the values s = +1/2
with 7 = F1/2 and ¢ = £1. Note that if the photon was virtual, then it
could have three possible polarizations and the spin orientation s would not

be sufficient to determine the values of r and ¢g. Thus, for the decay with a
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real photon, Eq. (5.1)) can be written as:

A0~ Mg

S?p

= Z(|M+1/2—>—1/2,+1|2|M—1/2—>p‘2 + |M—1/2—)+1/2,—1’2|M—|—1/2—>p‘2>‘

p

2|M7”—>p|2

(5.2)

If our decay satisfies parity symmetry, then |[M,_,, 4| = |IM_,,_, _4|. There-

fore, for a P conserving decay we see that:
dl ~ [M1jas1o,41]7 X Z(|M—1/2—>p|2 + [M125,%)

p
1
= ) Z |Ms—>r7g|2 Z |Mr’—>p|2- (5.3)

/
S,7,9 T ,p

Note that we end up with a product of two spin averaged quantities. These
spin averaged quantities are constrained by Lorentz invariance, and so they
can only depend on Lorentz invariant combinations of four-momenta. The
matrix element M,_,, , in Eq. can then be seen to be a function of
Y% momentum p% (nothing but the mass m% and thus constant), photon
momentum q?y (0 for a real photon), and the scalar product ps.g,. The
momentum of A is fixed by energy-momentum conservation. Since the A
hyperon is real, we note that the product ps.q, is also constant.

The second quantity in Eq. , M., will depend on Lorentz invariant
combinations of pion and proton four-momentum, i.e. p, and [, with the

momenta of A being fixed yet again by energy-momentum conservation. The
2. 2

Ty p)

constant) and the scalar product p,.l (which for real A is also constant).

possible combinations of four-momenta are p2 (= m?2; constant), I* (= m
Since the quantity M, _,, does not depend on ¢,, the photon momentum,
the scalar product g¢,.l (alternatively, ¢,.p;) never arises. Thus the right-
hand side of Eq. (5.3)) cannot depend on the angle between the photon and
the proton (or pion and the photon). Note that what we have said so far

holds true even if we replace our X% hyperon with a spin 3/2 hyperon.
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What the preceding observations mean is that our differential decay rate
is flat and does not depend on the cosine of the angle between the pion and

photon for a parity conserving radiative decay:

ar

2
dm? .

= const. (5.4)

with m2,. = (¢, + px)* = m2 + 2E, E; — 2|¢,||Px| cos(m — 6) evaluated in the
rest frame of the A hyperon (See Figure . Equivalently, we could restate
Eq. with the decay rate differential in mgyp (angle between photon and
proton). Conversely, if we obtain a decay rate for our decay chain ¥ — pr
that is not flat, this would imply a parity non-conservation in this process.
This is entirely independent of any parity violation that may take place in the
second decay A — pm~. The explicit calculation of the angular dependence
in the decay rate due to parity violation will now be carried out in the next
chapter, Chapter 6.

The same analysis can also be carried out for the charge conjugated re-
action ¥ — prnt~y. For a charge symmetric reaction, this should produce
an identical differential decay width. We carry out this calculation explic-
itly in Chapter 6. Any possible CP violation would then produce differing
decay asymmetries, an indication that the Strong CP effect has observable

consequences.
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Chapter 6

Calculations & Results

The aim of this thesis is to find possible P and CP violation in the de-
cay of the X0 hyperon. To this end we discussed in Chapter 5 how such a
violation would manifest itself as an angular dependence between the pro-
ton and the photon in the decay rate of the 3° hyperon. In Chapter 4 we
discussed the parametrization of this CP violating term via the study of
baryon transition form factors. Following Ottnad et al.[I0], we identified
the nEDM as the realization of this possible violation. Using the framework
of HBChPT we analyzed, in Chapter 5, how we can provide an estimate of
this angular distribution based on the current upper bound of the nEDM.
This section provides the methods and calculations required to establish this
estimate. First, we discuss the largely electromagnetic decay X% — A~y us-
ing the knowledge of ¥.-A electromagnetic transition form factors. Next, we
analyze the strangeness violating weak decay of the A hyperon, A — pn—.
Finally, using our knowledge of these two decays, we study the combined
three-body decay ¥ — pm~+ for the case where the initial Sigma hyperon is
unpolarized. We then determine the effects of the production process on the
angular distribution of the final decay products and investigate whether such
an effect can be disentangled from possible CP violation. Lastly, we perform
the same calculations for the decay of the neutral anti-Sigma hyperon, with
the goal to determine any discrepancy between this decay and that of the

neutral Sigma particle.
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6.1 Decay of the Neutral Sigma Hyperon

6.1.1 Electromagnetic decay X — Ay

In Chapter 4, we analyzed the electromagnetic transition form factors that
play a crucial role in identifying the discrete symmetries respected by an
interaction. The electromagnetic interaction is thought to conserve P and
CP symmetry. Referring to Chapter 4, this would imply setting F3(¢?) = 0
and Fu(¢*) = 0 in Eq. which gives us the Lorentz covariant current for
a purely electromagnetic transition. The matrix element for the current in

terms of form factors is then given by [37]:

()17, 1B0) = enl) (uFE) + T B ) (6)
mp + mp

where J, represents the quark vector current and ¢ is the photon four-
momentum, ¢ = p — p'. FP(¢?) and FP(¢?) are the Dirac and Pauli form
factors which contain information about the baryon structure at a given pho-
ton four-momentum. From our discussion of fermion bilinears in Chapter 2,
we can see that this matrix element conserves both parity and CP symmetry.
Following Kubis et al. [37], we state that in the low momentum limit ¢ — 0

the form factors have the following normalization:
FF(0) = Qs Fy(0) = rp (6.2)

where FZ(0) is the electric charge Qp and FZ(0) is the anomalous magnetic
moment kg of the probed baryon. We can also construct electric and mag-
netic Sachs form factors G'g/ys as linear combinations of the above two form
factors. This is conventionally used by experimentalists while estimating the
square radius of the charge or magnetic distribution, see for instance [37],[13].

For our specific decay X° — A~, the Y°-A transition form factors can be
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generalized as (see Eq. (4.22)) and Eq. (4.23)):

(8| T, 1 0s)) = alo) (G + ™50 R + Tl o)
(6.3)

with ¢ = py, — pa. The presence of the q% term in Eq. enforces the
vanishing of F} at the real photon point [9], i.e. F1(0) = 0. The value of
the anomalous transition magnetic moment, F5(0) = x, is determined by
calculating the decay width for our electromagnetic decay.

In general, the matrix element for a vertex function I',, corresponding to

an electromagnetic decay is [13]:
iM = a(p)(iel ) u(p)et. (6.4)

In this particular case, the vertex function takes the form:

~ v
1KO 1,q

r,=— = ——. 6.5

oma +my (6.5)

Therefore the matrix element for the X% — A~y decay given by the Lorentz
invariant transition form factors shown above is:

o v
€10,,q

MEﬁ—)A’y = Up RUxn g¥, (66)

ma + my
For a two-body decay, the spin-averaged matrix element is constant because
any Lorentz invariant combination of four-momenta is fully specified by the
masses. The decay width is then given as [16]:

L2 - md)MP) (6.7)

Pyosngy = 5
T 16mmd,

where (]M|?) is the spin-averaged squared matrix element for this decay.

Squaring the matrix element given in Eq. and averaging over initial
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spins and summing over final ones, we get:

k2

2(mp + my)?

(M]*) = T[(p, +m2)0m Py, +1m5)000lg""q"q". (6.8)

Taking the trace, we see that the spin averaged matrix element reduces to:

22 k2

(M[?) =

Plugging this back into Eq. (6.7]), we have the decay width:

i (md — m3)?

(6.10)

Isopy =

TR 8rmd (my + miy)?
obtained in [9]. Knowing the lifetime of the XY hyperon from the Parti-
cle Data Group compilation, we can establish the value of the anomalous

magnetic moment, which turns out to be £ ~ 1.98 [9].

6.1.2 Weak decay A — pr—

The strangeness violating weak decay of the A hyperon constitutes the second
decay that occurs in our reaction chain for > — pm~v. Recall that in Chapter
5 we noted that without a possible P violation in the first decay, we will not
see an angular dependence between the final decay products in our three-
body decay width calculation, and that this holds true irrespective of the
symmetries violated by the subsequent weak decay of the A. We follow here
the discussion in [39] to obtain the decay width for this weak decay.

The matrix element for a non-leptonic hyperon weak decay such as this
is given as [20][39):

MA%pw* = ﬂp(l)[A —+ B’}/5]UA(pA) (611)

where A and B are complex numbers and [ is the proton four-momentum.
Before going on to calculate the spin averaged squared matrix element, we

make use of the covariant Dirac spin projection operator for a general spin
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four-vector s* [40]:

(s) = (1 +75¢)

5 (6.12)

For a massive spin 1/2 particle with four-momentum p* = (E, p) and polar-

ization +7 in its rest frame, we have:

u(p, )u(p, i) = L(s)u(p, 7)u(p, i)

1
=51 +7s8)(p +m) (6.13)
such that s.s = —1 and s.p = 0. The spin four-vector takes the form:
st = ﬁ_ﬁ ﬁ+M . (6'14)
m’ m(m + E)

We can now utilize Eq. (6.13)) for the calculation of the squared matrix ele-

ment summed over the proton spins while keeping the A spin explicit:

(IM[?)s = Tr[(A" = B™5)(] +m,) (A + B%)%(l +754) (P, + )l (6.15)

Taking the trace, we obtain [39]:

(IMJ*)s = Ry +mpSal.s (6.16)
where,
Ra = AP ((ma +myp)* —m) + B ((ma —my)* —mz), (6.17)
Sx = 4Re(A*B). (6.18)
When considering the rest frame of A we make the substitution [l.s = —17,

where we have used § = 7 and s° = 0 which follows from Eq. (6.14]) for p = 0.

For the case of an unpolarized A, we see that the spin projection operator

reduces to % when averaged over initial spins. The matrix element squared
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1s:

1

(IMP) = 5 STUIMPE), = THS (A" = Bras)(f +my) (A + Bas)(p, +ma)]
S (6.19)
Taking the trace, we have:
(M) = Ra. (6.20)
Finally, the decay width for the two-body decay A — pr~ is [16]:
| —— l—AQRA (6.21)
8mmy

where [, is the modulus of the three-momentum of the proton in the rest

frame of the A hyperon:

1 1/2
I\ = TN (((mA +m,)? — mi) ((mA —m,)? — mi)) . (6.22)
In terms of the Kallén function this can be written as:
1 120,22 2 2
Iy = %A (m3y, my, mz) (6.23)

with the Killén function defined as \'/?(a, b, ¢) = a?+b*+c*—2(ab+bc+ac).

6.1.3 Combined decay X' — pr vy

We now consider the combined three-body decay of the neutral > hyperon.
Before establishing the matrix element for this particular decay, we make
use of a property of resonances to simplify our calculations. Because the
A hyperon is relatively long-lived, enabling experimentalists to track the
displaced vertex, we can use the width of the resonance peak (the decay

rate) to simplify the S-matrix.
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6.1.3.1 The Reduced Matrix Element

In non-relativistic quantum physics, an attractive potential leads to resonant
scattering. The scattering amplitude for energies E around the resonance

energy Fp is given by [13]:

1

- 6.24
“E-Ep+ L (6.24)

f(E)
This is called the Breit-Wigner formula. In relativistic quantum mechanics,
this formula can be generalized to calculate the transition amplitude for
particles that combine to form unstable particles, which in turn decay. For

an unstable particle of mass m and four-momentum p, the Lorentz invariant
generalization of Eq. (6.24]) leads to a propagator of the form [I3]:

1 1
— — (6.25)
p?—m2+iml  2E,(p° —Ep—i—zE—pg)

with E, = /[p|2 + m2. The left hand side is manifestly Lorentz invariant and
this is what we will use for our calculations. Note that a detailed derivation
of this resonance condition involves using the optical theorem to pin down
the imaginary part of the self energy, II(p?). This self energy is nothing but
the sum of one-particle irreducible contributions to the Feynman propagator.
The imaginary part of the relevant loop diagrams then gives us the decay
rate i.e. ImII(p?) =~ mI (see [4],[16]).

For our present case, we consider the matrix element given by:

pAvLmA

Mzoapﬂ—y = l_Lp(l)‘/z p?\ — m?\ T imAFA Vluu;)(pg)é““
=M ! (6.26)
N Rpi—m?\—l—z'mAFA’ ’
with
Mg = u,(1)Va(p, +ma)Vipus(ps)e”. (6.27)
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Here we have labeled the contributions of the vertices for the processes A —
pr~ and X% — Ay as V5 and V), respectively. For a three-body decay, we
make use of the variables m?, = (q + [)? and m2; = (I + pr)?. The double
differential decay rate is [16]:

dr 1
dm2,dm,  (27)3 32m 7 (M)
11 , 1
= @ sy M) G e
1 1 <|MR’2> mAFA

(6.28)

©(27)332md, maTa (m3; — m3)2 + miT3

where we have used the relation p3 = (I + p;)? = m3;. Using the identity
[41]:
1 €
lim ———— = d(z) (6.29)

=0 7 22 + €2

we see that as mpaI'y — 0, Eq. (6.28) reads:

dr 1 1 (IMgl?

= 6 A)- 6.30
dm2,dm3,  (27)3 32m3, mal's mo(mas = 1) (6.30)

The delta function enforces the on-shell condition p3 = m3; = m3. On

integrating once, we get:

ar / dm2 dar
dmi, 23 dm%2dm§3
(IMR[?)

27T 3 32m 35 mals

(IMr]?). (6.31)

———70 (m23 - mi)

(2#)3 32mE mAF

Thus we see that the general form of the differential decay rate is greatly
simplified, and the reduced matrix element is sufficient to understand the

dynamics of this decay.
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6.1.3.2 Calculation of the Differential Decay Rate

As was the case for the electromagnetic decay, the baryon transition form

factors are given by:

(B'(0)| T"*|B(p)) = etip (p)T*(¢*)up(p) (6.32)

where J" is the current. Following our discussion in Chapter 4, we are
interested in all possible Lorentz invariant form factors irrespective of their

discrete symmetry properties. We were able to derive a general expression

for the vertex function I'V (see Eq. (4.22))) which takes the form [10]:

() = (1 + AR () — — o, (g
() = (v Z q")F1(q°) o 5(q7)
+i(*¢* + (ms + mp)g") s Fa(q?) (6.33)
- g 5 F 2
s + A qvs s(q )

for ¢ = p — p'. As before, I} and F; are the P conserving Dirac and Pauli
form factors. Fy and F3 constitute the P violating anapole form factor
and electric dipole form factor, respectively. We are interested in the low
momentum (¢* — 0) properties of these form factors and use the following

normalization:

In our subsequent calculations we do not need the anapole form factor Fs
since it drops out for ¢*> = 0 (i.e. ¢,e" = 0). Instead, we focus on the form
factor Iy which yields us the transition electric dipole moment at ¢> = 0. The
normalization of F3 is obtained as a result of the definition of the neutron
dipole moment, which is given by [10]:

e Iy, (0)

v 22 3n\)
d) o, (6.35)
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Following Eq. (6.4]), the reduced matrix element corresponding to Eq. (6.33)

1S:

; v ; v
ieko g’ 1ecowq” s

ma + my ma + my

Mg = u,(1)(A+ Bys)(p, +ma) < )Uz(pz)gﬂ

(6.36)

where we have assigned a complex number ¢ = i F3(0) for our particular decay.
Since we are only sensitive to the relative phase between the P conserving
and P violating terms in the matrix element, we can define x to be a positive
real number, xeIR". Now, taking the average of initial spins and summing

over final spins, we obtain the squared reduced matrix element:

2
—e
(IMg[*) Zm Te[(/ + mp) (A + Bs)(p, + ma)(KOu, — cOuY5)
Py, + mx)(KOpa + ¢ 0pas) (P +ma)(A" = B*y5)]q"g" ¢
(6.37)
Taking the trace:
—2¢? )

(M) = (3, — m3) [4m%<c+ #Y(AB* + A'B)lg

(ma + mx)?

— (m¥% —m3) <AA*(cc* + &%) ((ma +my)* —m2) + AB*k(m} + m) — m?)

+ BB*(cc* + 1) ((ma —my)? —m2) + A*Br(c+ ) (mF +m? — mi))} .

(6.38)

Finally, using the variables defined in the weak decay, Ry (Eq. (6.17)) and
Sa (Eq. (6.18))), we can re-write the above equation as:

2 =) — ) (e

(IMg|*) =
(6.39)

K

"3

(c+c)(mi +m) — mi)SA> — 2km3 (¢ + c*)SAl.ql :
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Setting ¢ = ¢* = 0, we notice that the angular dependence between the
proton and the photon vanishes:

2,2
2e°K 9 9

(IMg]7) = m(mz —my) Ry (6.40)

This is to be expected. When the P and CP violating form factors are set
to zero, the resulting decay does not carry any information regarding the
angular distribution. The dot product [.q can also be written in terms of
the angle between the proton and the photon. In the rest frame of the A

hyperon, we have:

l.q=E,E, —1.q
= EpEy — [l]|q] cos O,
N
=E,E. (1- B 08 Oy (6.41)
p
where in the last step we have used the fact that |¢] = E, for an on-shell
photon, and the equality m = [y in the A rest frame, with [, given in
Eq. (6.23). Note that in the A rest frame, the photon energy E. and the
proton energy E, are not free variables. Instead, £, can be expressed in
terms of the rest masses of the particles involved in the first decay:

= . 6.42
ol ma 2 ma ( )

while E,, takes the form:

mj +m2 —m2
E, =

(6.43)

2mA

Thus, Eq. (6.41)) tells us that the Sy featuring in the last term of Eq. (6.39)
is not accompanied by a constant but the cosine of the angle between the

photon and the proton. Likewise, we see that the factor accompanying Rx

in Eq. (6.39) is indeed a constant.
Now, since the right-hand side of Eq. (6.31]) is a function of cos#f,,, we
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would like to obtain the differential decay rate, i.e. the left-hand side of

Eq. (6.31), in terms of the differential angle dcosf,,. To this end, we rewrite

2 .

miy = (q+1)% = m2 + 2E,E, — 2|ql|l] cos 0, (6.44)
Taking the differential of the above equation, we obtain:

dm?, = _2|ﬂ|ﬂd0059p7

(6.45)
= —2E,l dcost,.
Inserting this in Eq. (6.31)) gives us:
dl’ 1 1 s
= —2E,l (IMg|?). (6.46)

dcos@,, 27)3 32m3, mals
pY >

The right-hand side of the above equation is a function of cos f,,. For peda-
gogical reasons, let us call this function F(cos#,,) for the moment. Further

let us consider that this function takes the form:
F(cosf,,) =&+ € cos b, (6.47)

where ¢ and ¢ are constants. Eq. 1} can now be written as:

dl’ ¢
——— = F(cosb,,) = &(1 + = cosb,,). 6.48
dCOS ep'y ( p’Y) f( 5 P’Y) ( )

It is this ratio of £ over £ that is of importance to us. Barring a normaliza-

tion factor, this ratio gives us the slope when plotting the number of events

against the angular dependence, say cos 0,,. Experimentalists can obtain this

ratio by considering the average and the weighted average of this function
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F(cosf,,) over the entire range of cos,,:

1
7, = / d(cos 0,y ) F(cos b,,) = 2¢, (6.49)
-1
! 2
I, = / d(cos 0,,) cos 0, F(cos 0,,) = §£ : (6.50)
1

And this gives us the ratio in terms of the quantities Z; and Z,:

/

¢ 3T,

c=3 (6.51)

Performing the integration and substituting it in the above equation, we

obtain:

¢ 4km3 B, (c + ¢*) I Sa

- = . 6.52
& 2(m% —m3)Ra(k? + cc¥) (6:52)
Using Eq. (6.42)) for E, in the A rest frame, the slope is:
’ “Ymaly S
f_ _ I@'(C—FC )mA A OA (653)

13 (K% + cc*) Ry

In the above expression, we note that x is the only constant that we have
determined so far. In order to get an estimate of the slope, we also need to

figure out the value of the constants Ry, Sy and c.

6.1.3.3 Determination of R, and S,

In order to determine the value of Ry we make use of the result obtained in

Eq. (721)

8Tm3
Ry = TA TApr (6.54)

Since the decay A — pm~ takes place with a probability of about 63.9% of

the total observed decays, we can determine the value of the decay width
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from the lifetime of the A hyperon [42]:

0.639
Pacspm- = 0.639 Pigra = ——— (6.55)

This gives us Ry = 4.97(073) x 1077 (MeV)?2. Having established the value of
R), we now proceed to find the value of S) as defined in Eq. . For this
purpose we make use of the baryonic decay parameters for a non-leptonic
decay. The amplitude of any spin 1/2 hyperon decaying weakly into a spin

1/2 baryon and a spin 0 meson can be written as [26]:
M = Gem2 By () (A — Bas) Bi(p) (6.56)
where A and B are constants. One of the decay parameters, -, is defined as:

|s]? — |p|?
VS PP (6.57)

with s = A and p = nBB where 7 is given by:

Iy

= —_— 6.58
Ef+mf ( )

Ips| and E being the magnitude of three-momentum and energy of the final
baryon in the rest frame of the decaying hyperon. In the A rest frame, we

make the identification:

psl = L, (6.59)
my = m,, (6.60)
E;=E, (6.61)

Using Eq. (6.23]), Eq. (6.43) and the above three relations in Eq. (6.58]), we

obtain:

NV, )

(ma +my)? —m2

(6.62)
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For our weak decay (given in Eq. (6.11])), we have:

A nB
= — =—— 6.63
N Gpmfr’ b Gpm%’ ( )
We can now re-write Eq. (6.57)) to get the ratio:
AP o (L+7)
=1 . (6.64)
| BJ? (1—7)

Using this relation and that of R, given in Eq. (6.17)), we can establish the
constants |A| and |B|. Another decay parameter is required to determine Sy

and it is given by [26]:

~ 2Re(sp)

= . 6.65
SN (069
Re-writing this for our case, we get:
—2Re(A*nB)
= — 6.66
N AP+ ol BP (0.0
Since Sy = 4Re(A*B), we finally have:
2a
Sa = == (AP 7| BP) (6.67)

which gives us Sy = —2.84(382) x 107'2. We also note that our expression
for Sy can be simplified further on using the relation Eq. ([6.62)):

-2
Sy an

= Ry. 6.68
N g ) (009

Inserting this in Eq. (6.53)), the calculated slope becomes:

¢ k(c+ )
T =i (6.69)

where we have used the fact that the modulus of the proton three-momentum
[x in the A rest frame is as given in Eq. (6.23)).
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In sequential weak decays, one finds expressions for angular distributions
of the type (see for instance [43],[44]):
dN N

Teosd 5(1 + ayas cos 0)

where N is the number of events while oy and «ay are decay asymmetry
parameters of the first and second decay, respectively. We can now define a
decay asymmetry for the first decay similar to the oy parameter in Eq.
for the weak decay. By analogy, we define [20]:

_ 2Re(c*r)

= 6.70
W2 + [c? (6.70)

Q'x0
Inserting this in Eq. (6.39)) gives us the reduced matrix element squared as:
(IMg[?) =2e*(mg — mp)*(cc* + K*)Rp |1 — asoay cos Gm]. (6.71)

Consequently, the slope is then seen to be:

% = —Qx0 p. (6.72)

6.1.3.4 Determination of the Complex Number c

Referring to our discussion in Chapter 3, we make use of the upper bound
of the nEDM in the framework of HBChPT in order to make an estimate of
the complex number ¢. We will first determine a ‘bare’ quantity cg based
on HBChPT. As a second step, we will introduce a phase due to final state

interactions. The interaction Lagrangian for our decay in question which fits
to Eq. (6.36) is given as:

ecCp

— = A JEUVFH 4R e. :
P Y50 + h.c (6.73)

Loy =
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In Chapter 3, we also saw that the interaction Lagrangian which emerges from
the effective Lagrangian of HBChPT has the general form (see Eq. (3.23))):

21 ~ 6 _
Ling = — g(wigﬂo + %770&)13) [67‘1%@1,7117“” — 3\/§A75UWEOF“”
0 (6.74)

— 335 50, AFM + 3Ay50,, AFM — 35%5%2017“”] .

From this we can extract the interaction terms of the Lagrangian that is

relevant to our decay:
2v3 - 6 —
Lsop = sz'e(w’weo + %nowlg)/\%ng“w”. (6.75)
0

Comparing Eq. (6.73) and Eq. (6.75]), we are led to the conclusion:

43 . V6
cg = Tl(mg + mA) (w’1300 + ?Tlowlg). (676)
0

Now, consider the interaction term for the neutron that emerges from Eq. (6.74)):

die, , - 6 _ v
L, = —?(wi?ﬁo + ?OUQW13)H’}/5O'MV7’LFM : (6.77)
Recall Eq. (6.35)), where we provided a normalization for the form factor at
q* = 0, F3(0), based on the value of the nEDM. Comparing that to Eq. (6.77)),

we obtain (up to tree-level of the nEDM):

e F3,7l (O> ree 8e ) \/6
Re-writing this, we have:
; V6 —3diree
(wisfo + ?07706013) = Tk (6.79)
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Lastly, we plug this into Eq. (6.76) to get a value of the cp in terms of the

tree level contribution to the nEDM:

3
cp = —\g_—ez(mg +my) diree. (6.80)

6.1.3.5 Final State Interactions

In Chapter 2 we discussed how final state interactions are indispensable in
making CP violation effects observable in terms of the decay width. In
our Y° particle decay calculations, we note that our complex constant c

can be expressed in terms of the bare (complex) constant in the interaction

Lagrangian (Eq. (6.73)) as:
¢ = cpe’F (6.81)

where 0 is the phase induced by the electromagnetic final state interactions
between A and the photon in the first decay. Further, we noted in Chapter
2 that the condition:

implies a C conservation in our decay. For a P violating decay this implies
CP is violated. This is the breaking pattern caused by the theta vacuum
angle.

We saw in Eq. that the slope of the particle decay was proportional

to the real part of ¢:

/

% ~ Re(c) = Re(cpe™) (6.83)

Since we are interested in the case where CP is violated, we have a purely
imaginary cg as shown in Eq. (6.80):

Re(c) = £cp|sinop (6.84)
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where |cp| is the absolute value of the complex number c¢g. We can now

calculate the slope by plugging in Eq. (6.80]) and Eq. (6.84)) into the slope that
was calculated in Eq. (6.69), with the reasonable assumption that |x| > |c|:

! * 2R
R (6.85)

Following Eq. (6.84)), we have:

£=5

laa| \/§(m2 + mp)
& K e

doe||sindp|.  (6.86)

p 2|eg||sindp| =
Since we are making an order of magnitude estimate, we utilize the current
experimental upper bound of the nEDM [10], |d*¢| < 2.9 x 107?¢ cm with
|sindp| < 1. The value of the decay asymmetry for A — pr~ has been
determined and it is ay = 0.642 [42]. This gives us a slope ]%| < 1.902 x
10712,

We can also provide an upper bound for the decay asymmetry aso. Uti-
lizing Eq. , this yields an upper bound of |ase| < 2.962 x 107!2 in the
limit x| > |¢|.

We now turn our attention to the production process of the neutral Sigma

hyperon.

6.2 Production Process

Often hyperons (denoted here as Y') are produced by parity conserving strong
or electromagnetic processes, for instance ee™ — Y'Y [45] or pp — Y'Y [46].
The production process for hyperons gives important insights concerning the
strangeness and charm production in QCD [45][46]. It serves as a probe in
the region between the perturbative and non-perturbative regime, i.e. in the
confinement region, of QCD. In our case, the production of hyperons can
also serve as a test for CP violation through the study of spin observables.
In quantum mechanical systems, the spin density matrix p contains the

information we need to analyze that system [45]. The spin density matrix
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for a particle with spin j can be decomposed as:

27

1
= 7+ 6.87

where Q% are hermitian matrices [45]. The first term of the above equation
is related to the unpolarized differential cross section of the particle. The
second term contains the polarized part, with r%, denoting the polarization
vectors for a given angular momentum L and its projection, M [45]. For a
spin 1/2 particle, the Q%, matrices take the form of Pauli matrices 7@. For
vector polarizations Fj, P,, and P,, the spin density matrix for a spin 1/2

particle takes the form [47]:

1+PF P, +:1Ph,

1 .
1/2) = =(Z+ P.DAT =
p(1/2) 2( ) P _iP. 1-P

1
5 (6.88)

We now have to define the directions [ , m and n. For a production process
such as A+ B — X% + X viewed in the center-of-mass system, we have two
directions given by pa and py,. We define n to be the direction normal to the
plane formed by p4 and px. The unit vectors [ and 7 then lie in the DaA—Ps
plane, with [ aligned with py and m being orthogonal to it.

If the production process is parity conserving, then the only polarization
vector that remains due to the symmetry of the spin density matrix is P,

the component normal to the production plane [47]:

1 1P,

p1/=5|

(6.89)

1
2

The spin-averaged total matrix element for the production and decay process

is then given by [48]:

Z ‘-/\/ltota,ll2 = Tl"(pPPD) = pf/\/pg)\ (690)

where A and )\ are the helicity labels of the particle with eigenvalues i%.

We must now establish a frame of reference to perform our calculations.
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For a massive fermion with four-momentum p and energy E, we define three

orthonormal four-vectors s#, with a = 1,2, 3, such that:

st = (0, cos 8 cos ¢, cos 0 sin ¢, — sin 6), (6.91)
sh = (0, —sin ¢, cos ¢, 0), (6.92)
po (1P E, 6.93
o= (2 5) (6.99)

in a coordinate system where p = (sin f cos ¢, sin 0 sin ¢, cos #). As a matter
of convenience we choose the frame where 8 = ¢ = 0. This leads us to a

frame where p = (0,0, 1) and the three four-vectors reduce to:

st =(0,1,0,0), (6.94)
s = (0,0,1,0), (6.95)
P FE

The helicity spinor satisfies [48]:

Ysfu(p, \') = 18 u(p, \) (6.97)

where 7® are the Pauli matrices. From the above relation we obtain the

Bouchiat-Michel formula for massive spin 1/2 fermions:

u(p, N')u(p, A) = %[(m + Y5, T (P + m). (6.98)

For a complete derivation of this see, for instance, [48].
The decay spin density matrix takes on the familiar form of the spin-

averaged reduced matrix element encountered previously:
pa = (IMg[*)an = ZM,\/M; (6.99)

Following Eq. (6.37) and using the Bouchiat-Michel formula, Eq. (6.98)), we

84



have:

S0 MM = = (0 m) A+ )y + ) (50— €10)

mpa + mz)
1 u N
5[5/\/\’ + 75%7',\)\'](1?2 + mE)("fUpa +c apa%)
(P, +ma)(A” = B"%)) q'q"g"".

(6.100)

Eq. now takes the form:

3 Mol = pf)\,Tr< 3 MA//\/&). (6.101)

Since for each eigenvalue A and X', the spin density matrix for the production

process Eq. (6.89) picks out a number, we can re-write the above equation
as:

S Whal? = Ty MM ]y MM,

(6.102)
P * P *
ol P MM ZM—;M—;)

with
1
P _ P _ 1
Pl =Py T
and the off-diagonal elements
p P . iR
PLa= 5 P =T
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Taking the trace, we have:

2e%(m% — m3)? . 2msy
Z |Mtotal‘2 = (mAi_ mE)A2 RA(CC + /€2) (1 + mpn .52 Ox0
ng
— apQuxo €08 B, — (rp €OS prm})n q.SQ)
(6.103)

where we have substituted the decay asymmetry a, axo according to Eq.
and Eq. . We have also expanded [.q to include terms containing the
angle between the photon and proton line of flight in the A rest frame, as
in Eq. (see Figure . Thus, we see that the effects of a possible P
violation can be distinguished from the effects of the production process.

We note that on setting P, = 0 in Eq. the total squared matrix

element is (barring a normalization constant):
Z | Miotall]® ~ 1 — apaso cos6,,. (6.104)

Calculating the slope for the above expression, we obtain the slope derived
for the unpolarized case (Eq. (6.72)), as expected. Further, the spin density
matrix for the production process, given in Eq. , holds true both in the
center of mass frame for the production and when boosted to the X9 rest
frame (since the normal vector P, is unaffected by this boost). Therefore,

the product ¢.s, can be expressed in the XY rest frame as follows:

(M5 = %) ok (6.105)

q.52 Qy 'yCOS¢2 2mg

where ¢ is the angle between n and the photon line of flight. Substituting

this in Eq. (6.103)), we have:

2 2
Z | Miotal|” = (;z(m% —m3)?Ry(cc* + K?) (1 — a0 P, cos ¢

ma +my)
— apaxo €os 0., + ap P, cos 0., cos @) .

(6.106)
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When axo = 0, i.e. the case where ¢ = ¢* = 0, we obtain (up to a normaliza-

tion factor):
Z | Miotal|> ~ 1+ ap P, cos 0., cos ¢s. (6.107)

That is, even when there is no P violation in the X% — A~ decay, we get an
angular dependence between the final decay products due to the production
process and the P violation of A — pr~. The slope calculated for this

particular case is:

!/

% = ap P, cos ¢s. (6.108)

This vanishes when averaged over the angle ¢5, while the P violating term

in Eq. (6.103)) (~ aaaso cosb,,) remains.

6.3 Decay of the Neutral Anti-Sigma Hyperon

We will now analyze the decay of an unpolarized neutral anti-Sigma hyperon,
analogous to the treatment of the particle decay in Section 6.1. We will focus
here only on those aspects of the decay that differ from the particle case, with
an aim to determine the impact of charge conjugation symmetry on our final
slope estimation.

We will first make some general remarks about the conditions necessary
for a strong CP violation, as was done in Chapter 2. Following our discussion
in Chapter 2, we can introduce a modulus and a phase for our complex

number cpg:
cg = |cp|e® (6.109)

for the particle decay, with |cp| being the magnitude of the bare constant in

the interaction Lagrangian, and:

g = |cple®® (6.110)
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for the antiparticle decay. Eq. (2.109) shows us that hermiticity constrains
this new phase 05 such that:

SB:TF—(SB. (6111)

Since we are concerned here with the impact of electromagnetic final state
interactions on our slope, we bring in an additional phase 0 (see Eq. (2.108))
in our estimation of the decay asymmetry aso. Following Eq. (6.70)) for the

particle decay, we observe:
aso ~ Re(c) = Re(cpe®) = Re(|ep|e2eF) = |cp| cos(dp + dp).  (6.112)
Similarly, for the antiparticle case we can state:

oo ~ Re(E) = Re(épe®F) = Re(|ep|e!™08)eF) = —|cg| cos(0p — 0F)

” (6.113)

where we have used the relation Eq. (6.111)).
For a decay which conserves charge conjugation symmetry but violates

parity, CP is also violated. Charge conjugation symmetry enforces the con-

us

ditions 0p = 3

or 0g = 37” so that:
cp = Cp, (6114)

and therefore ¢ = ¢ when we include final state interactions. Note that
Eq. (6.112)) above is the more general formulation of which the strong CP
violation condition given in Eq. (6.84)) is a particular case. That is, for 6p = 5

or 37”, Eq. is identical to Eq. .

For the antiparticle slope, if C symmetry is conserved, we have:

aso = —|cp|sindp = aso. (6.115)
with 6p =  or 37” as a consequence. If CP is conserved in this decay, then
we have aso = —asoe and 0p = 0 or 7. Now if both CP and C symmetries

are violated then dp is not a multiple of 7. In our subsequent calculations
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we deal with the case where CP is violated, i.e. 65 = dp = 5 or 37”
We would now like to calculate a concrete expression for the slope of the
DX hyperon decay. To this end, we note that the matrix element for the weak

decay of the A hyperon takes the form [39]:
M = 0a(pa)[A + By (1), (6.116)
Just as in the A decay, this gives us a spin-averaged squared matrix element:
(IM[*) = Ra (6.117)
with R, defined as:
Ry = [AT((ma +mp)* —m2) + [ B ((ma —my)* —m3) (6.118)

If CP invariance holds for this particular decay, then A’ = A and B’ = —B
(note that Ry = Ry and Sy = —S,). This in turn implies that the decay
asymmetry defined in Eq. for the A particle, now satisfies ay = —aj.
Experimentally, no deviation from this relation has been observed [42]. In
the subsequent calculations we implicitly assume this condition to be true.
The combined three-body decay IR prty will now have a reduced
matrix element (analogous to the particle decay matrix element derived using

transition form factors):

. .
ek’ o, q”  1eco,,Ysq”

) (P — ma)(A — Brys)vp(l)e”.
(6.119)

Mioﬂﬁﬂ"l’fy = 2(1’2)(

my, + Mma my, + Mma

Averaging over initial spins and summing over final spins gives us the squared

reduced matrix element:
—e2 , i )
sy T~ me) (W0 = 80,u76)(py —ma)(A - Bys)

(/= mp)(A* + B*VS)(?A — M) (K'0pa + C0pa75)l0" 9" 4"

(| Mgl*) =

(6.120)
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Taking the trace, we obtain:

2\ _ 2¢ 2 2 ) lQ_ﬂ/— Y\ (2 2 2
(M) = s (98 = 1) [ Ra(@ ) = Sh (e )k 4+ — o)

+ 2K'm3 (¢ + E*)l.qSA) .

(6.121)
That is,
(IMz]?) = 2¢%(my, — ma)2(@ + ) Ra [1 + agpay cos 6’m] (6.122)
where we have used
=% ./ (= —%k
e — Re(c*K') K (c+c ) (6.123)

D |/{/|2—|—|E|2 (l{/2+62)

Following the steps in Section 7.1, we can determine the slope for this decay.

In the A rest frame this turns out to be:
/ N K (€ + &)
= — A ——=
£ N CEEN)
= fapasgp, (6.124)

For a C conserving process, we noted that ago = aso. Therefore, the slope
for the decay of the anti-Sigma hyperon becomes:

/

% — taxam. (6.125)

This bears the opposite sign to that of the particle-decay slope calculated in
Eq. (6.72), which is what we expect from a decay that violates CP.
It is useful to define a decay asymmetry parameter (see Eq. (2.106))) in

terms of the decay asymmetries, which serves as an indicator of CP violation
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in a decay [3]. This parameter, Qcp, is defined as [43]:

Qcp =

. (6.126)
Q500 + Os00g

As we stated earlier, if we consider CP to be conserved in the weak decay

A — pr~, we have ay = —a. This reduces the decay asymmetry parameter
Qcp to:
520 + Q=0
Qop= —— = (6.127)
ayo — O{EO
If CP is conserved in our decay X° — pr~, we have axo = —ago. Therefore,

from Eq. , we see that the decay asymmetry parameter vanishes, i.e.
Ocp = 0. On the other hand, if C is conserved in our decay, we have ayxo =
aso. From Eq. , we see that for this case the quantity Qa}g = 0. Note
that we have implicitly assumed that the weak interaction, which violates
C, does not appreciably contribute to our % — A~y decay. This need not
be true, and a study of C violation due to the weak interaction in the X°
decay could reveal the extent of such a contribution. The general formalism
laid out here can also be applied to such a study. However, since this thesis
deals primarily with the possibility of CP violation in the decay due to the
non-trivial nature of the QCD vacuum, for the sake of simplicity we have

ignored the effects of C violation due to the weak interaction.
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Chapter 7
Conclusions & Summary

Through this study on CP violation in X° decay, we have made an order
of magnitude estimate of the angular dependence which serves as a test for
P and CP violation in this decay. The estimate, a slope of about 107'2,
implies that any possible P and CP violation that may arise due to Strong
CP effects is negligibly small. That is, despite considering beyond Standard
Model effects in the form of a non-trivial QCD vacuum, there seems to be no
observable CP (or P) violation in the decay of the X° hyperon. Conversely,
restricting ourselves to the strong sector, if a slope is observed orders of mag-
nitude larger than our estimate, this would imply not only physics beyond
the Standard Model but also physics beyond Strong CP.

The decay asymmetry, aso, has yet to be measured experimentally. It is
interesting to compare our study to other radiative hyperon decays, in par-
ticular, the CERN NA48/1 experiment which analyzed the radiative decay
=% — A~ for an unpolarized Z° hyperon [44]. Of course, unlike our case where
the first decay channel is dominated by the electromagnetic interaction, this
decay proceeds largely through the weak interaction. Thus one can expect a
decay asymmetry on the order 1 from the two interfering partial waves, since
they both come from the weak interaction. This is clearly different from our
Y0 decay. What is the same is the weak hadronic decay A — pr~ which
serves as an analyzer with the angular distribution measured in the A rest

frame [44]. The form of the matrix element obtained for our unpolarized %°
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decay is familiar to that found by NA48/1. The experiment yielded a decay
asymmetry a=o = —0.704 4+ 0.019 4+ 0.064. As expected, this is many orders
of magnitude larger than our estimate of ayo. However, no evidence of CP
violation was found with azo = —0.798 + 0.064 [44]. Our analysis of the X°
however, predicts a negligibly small decay asymmetry, aso. The measure-
ment of ayo for this decay is thus a crucial experiment. Such an experiment
can be performed if a large number of X0 is available. The upcoming PANDA
experiment will serve as a hyperon factory, and is therefore equipped for such
a study (see also [9]).

Additionally, in this study we analyzed the production process of the 3°
hyperon. We obtained a general form of the matrix element including the
production process which gives us the liberty to choose the angular distri-
bution we would like to examine. That is, we can either integrate out the
angular dependence between two of the final decay products leaving us with
a slope independent of this factor, or alternatively, we can choose to integrate
over the angle between the photon line of flight and the polarization of the
0, thereby giving us a slope dependent on the angle between two of the
decay products. This study extends the works done by Dreitlein et al. [3§]
wherein the matrix element was simply a function of the X° polarization
angle with respect to the photon direction. Note that we can, if required,
further generalize our results if we do not assume parity conservation in the
production process. This give us two additional polarization directions for
our X° particle which would in turn add more angular distributions that can
be analyzed experimentally.

We have so far established that the weak part of our radiative decay
has a negligible contribution towards CP violation in the decay chain. As a
possible extension to this study, one can analyze the extent of C violation
that could, in principle, take place due to the weak interaction. This is of
course beyond the considerations of CP violation due to Strong CP effects
which was undertaken here, but it would nonetheless be interesting to probe
the exact nature of C violation in the X° decay.

To summarize, in this thesis we examined the possibility of P and CP

violation in the neutral Sigma hyperon decay. In the process, we first gave
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a general overview of discrete symmetries in quantum field theory, aligning
our discussion with the specifics of the decay at hand. We briefly described
the minimal implementation of CP violation in the Standard Model via the
CKM mechanism. We noted that the contribution of the weak interaction
towards CP violation in our decay is negligible. We then touched on final
state interactions and the crucial role played by them in making CP viola-
tion effects observable. We examined the Strong CP problem in some detail
before moving on to the framework of Heayy Baryon Chiral Perturbation
Theory which made an estimation of the P violation via the neutron electric
dipole moment possible. We then derived the most general Lorentz invariant
electromagnetic current which led us to the Lorentz invariant transition form
factors and their role in determining a possible P and CP violation in our
decay. The kinematics of the decay was then examined, and the connection
between the angular distribution of the final decay products and P violation
was made. We then performed the necessary calculations in order to estab-
lish the value of angular dependence arising due to P violation in the initial
decay. This yielded a small slope of about 1072 in our estimation. The
production process for the X° hyperon was also analyzed and general form
of the matrix element was found. The slope for the charge conjugated decay

was also calculated.
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