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“Men are mortal. So are ideas. An idea needs propagation as much as

a plant needs watering. Otherwise both will wither and die.”

B.R. Ambedkar
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The non-trivial structure of the QCD vacuum gives rise to a P and CP

violating term in the QCD Lagrangian. The fact that we do not see an

observable CP violation in the strong interaction despite this CP violating

theta term is called the Strong CP Problem. In this thesis, we analyze an

observable consequence of this theta vacuum term in the decay of the ground

state neutral Sigma hyperon. Due to the SU(3) flavor symmetry, the current

upper bound of the neutron electric dipole moment can be translated to an

angular asymmetry in the decay distribution of the Σ0 particle. The self-

analyzing weak decay of the Λ hyperon means that any P violation in the

initial Σ0 → Λγ decay will result in an asymmetry in the angular distribution

of the final decay products. Studying the Sigma and anti-Sigma hyperon

decays, we get an idea of C and CP violation in the decay chain. The effect

of the production process of the Σ0 hyperon on the angular distribution of

the final products is also worked out. A significant angular asymmetry in

the decay will mean not only physics beyond the Standard Model, but also

physics beyond the CP violating term in the QCD Lagrangian.
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ലളിതമായ  സംഗ്രഹം  മലയാളത്തിൽ 

 

നിരീക്ഷിക്കാവുന്ന പ്രരഞ്ചത്തിൽ ആന്റ്റി-മാറർ എന്നതിനനക്കാൾ കൂടുതൽ 

മാറർ ഉണ്ട്. ഈ അസമതവത്തിൻറ്ററ കാരണം ഇനപാഴും നിലവിലുളള 

സിദ്ധാന്തങ്ങൾ വിശദീകരിച്ചിട്ടിലല. നമ്മുറ്റട പ്രരഞ്ചം "ഡിസ്കപ്കീറ്" 

സമമിതികറ്റള ലംഘിക്കുന്നു എന്നതാണ് ഒരു സിദ്ധാന്തം. 

ഭൗതികശാസ്തഗ്തത്തിൻറ്ററ നിയമങ്ങളിൽ മാറ്റം വരുത്താത്ത ഏതതാരു 

രൂപാന്തരീകരണവും ഒരു സമമിതിയാണ്. ഭൗതികശാസ്കപ്തത്തിറ്റല ഒരു 

തുടർച്ച അലലാത്ത സമമിതിറ്റെ ഡിസ്കപ്കീറ് സമമിതി എന്ന് വിളിക്കുന്നു. 

 "പാരിറ്റി" അതലെങ്കിൽ മിറർ-റിഫ്ളക്ഷൻസ്ത, ചാർജ്ജ്, ട ം റിവവഴ്സൽ 

എന്നിവ മൂന്നു സവഭാവസവിവശഷതകൾ ഗ്പകൃതിതയ അനുസരിക്കാനാതണന്ന് 

കരുതതെട്ടിരുന്നു. സംവയാജിത ചാർജ് ആൻഡ് പാരിറ്റി ("സിപി") 

സമമിതിയുത  ലംഘനം ഈ ഗ്പശ്നത്തിന് ഒരു പരിഹാരമാണ്. 

എന്നിരുന്നാലും, നമ്മുത  നിലവിതല ടസദ്ധാന്തിക ചട്ടക്കൂ ിൽ ("സ്റ്റാൻവഡർഡ് 

വമാഡൽ") സിപിയുത  ലംഘനം ഈ ഗ്പപഞ്ചത്തിതല മാറർ-ആന്റ്റിമാറർ 

അസമതവത്തിന് കണക്കുകൂട്ടാൻ കഴിയിലെ. നമ്മുത  നിലവിലുള്ള 

"സ്റ്റാൻവഡർഡ് വമാഡൽ" ചട്ടക്കൂ ിനു പുറത്തുള്ള ഭൗതികതതയ നമ്മൾ 

കണക്കിതല ുക്കണം എന്നാണ് ഇതിനർത്ഥം. സ്റ്റാൻവഡർഡ് വമാഡൽ എന്നത് 

ഗ്പാഥമിക കണികകള ം അവരുത  തപരുമാറ്റതത്ത നിയഗ്ന്തിക്കുന്ന 

പരസ്തപരഗ്പവർത്തനങ്ങള ം വിശദീകരിക്കുന്ന സിദ്ധാന്തമാണ്. 

 സ്റ്റാൻവഡർഡ് വമാഡലിൽ വീക്ക് ന ാഴ്സസ്ക മാഗ്തവമ സി.പി. സമമിതി 

ലംഘിക്കുകയുള്ളൂ. "കവാണ്ടം നപ്കാനമാഡിനാമിൿസ്ക" എന്നത് "സ്കനപ്ടാങ്ങ്" 

ന ാഴ്സസ്ക ശക്തിയുത  സിദ്ധാന്തമാണ്. ഉദാഹരണമായി, സ്കനപ്ടാങ്ങ് ന ാഴ്സസ്ക, 

നയൂക്ലിയസിൻറ്ററ ഘ കങ്ങൾ തമ്മിലുള്ള ശക്തിയാണ്. സ്കനപ്ടാങ്ങ് ന ാഴ്സസിൽ 

സിപി സമമിതിയുത  ലംഘനം ഇതുവതര കണ്ടിട്ടിലെ. 



 എന്നിരുന്നാലും, സ്റ്റാൻവഡർഡ് വമാഡൽ എന്നതിനു പുറത്തുള്ള 

ഭൗതികതതയ കണക്കിതല ുക്കുവപാൾ, സിപി നിയമം ലംഘിക്കുന്നതിതന 

സിദ്ധാന്തം അനുവദിക്കുന്നു.  ഇതിൻറ്ററ ഒരു പരിണിത ഫലമായി നമ്മൾ 

ശക്തമായി ഇ തപ ുന്ന (സ്കനപ്ടാങ്ങ് ന ാഴ്സസ്ക) സൂക്ഷ്മ കണങ്ങള ത  

("ഹാനപ്ഡാൺ") വശാഷണ ഉത്പന്നങ്ങളിൽ ഒരു വകാണീയ അസമതവം 

കതണ്ടത്താനാകും. ഈ കൃതിയിൽ, നമ്മൾ "നയൂഗ് ൽ സിഗ്മ" (Σ⁰) കണികയുത  

വശാഷതത്ത വനാക്കുകയാണ്. നയൂവഗ് ാൺ ഇലക്ടഗ് ിക്ട ടഡവൊൾ 

നമാറ്റമന്റ്റ്ൻറ്ററ പരീക്ഷണ തലത്തിലുള്ള പരിിി ഉപവയാരി്  നമുക്ക് 

വശാഷണ വിതരണത്തിൽ ഈ വകാണീയ അസമതവം കണക്കാക്കാം. 

നയൂവഗ് ാൺ, നയൂഗ് ൽ സിഗ്മകണികകൾ തമ്മിലുള്ള നിലവിലുള്ള "ഫ്നളവർ" 

സമമിതി ഉപവയാരി്് നമുക്ക് ഇത് തചയ്യാൻ കഴിയും. 

 പൂജയം അലൊത്ത "ഇലക്ടഗ് ിക്ട ടഡവൊൾ നമാറ്റമന്റ്റ്" ഞങ്ങള ത  

സിദ്ധാന്തത്തിതല സി.പി. ലംഘനത്തിൻറ്ററ ഒരു സൂചകമാണ്. ചാർജ് 

സമമിതി വിശകലനം തചയ്യാൻ "ആൻറി സിഗ്മ" (Σ⁰̅̅̅) കണികയുത  വശാഷവും 

ഈ തിസിസ്ത ഉൾതക്കാള്ള ന്നു. 
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Chapter 1

Introduction

The study of discrete symmetries helps us understand the scope and limita-

tions of our current theories. More specifically, the transformation properties

of a physical law under discrete symmetries reveal a certain preference (or

lack thereof) within the laws of nature. When a discrete symmetry is vi-

olated, it points towards a bias in nature. One such bias is the apparent

abundance of matter over antimatter in the observable universe [1]. In fact,

one of the solutions to this longstanding problem was thought to be caused by

a violation of discrete symmetries. In 1967, A. Sakharov proposed three con-

ditions that could help solve the puzzle of matter-antimatter asymmetry [2].

He postulated what are now famously called the Sakharov conditions, which

attribute the baryon-antibaryon imbalance to dynamic processes rather than

to initial conditions beyond the scope of physics. These are [2]:

1. Baryon number violation must occur in reactions.

2. C (Charge) and CP (Charge-Parity) symmetries must be violated.

3. Interactions must proceed outside thermal equilibrium.

Understanding how the known forces of the Standard Model behave under

discrete symmetry transformations will thus get us closer to unraveling the

mystery of baryogenesis. Discrete symmetries also provide clues to physics

beyond the Standard Model. The gauge principle forms an important part

of any relativistic quantum field theory, and is a necessary feature of a non-

trivial and renormalizable field theory. The insertion of discrete symmetry
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requirements in local gauge theories results in ABJ anomalies, a consequence

that points towards Beyond Standard Model effects [3]. The focus of this

work, however, is on the violation of global discrete symmetries due to effects

not explained by the Standard Model. In the strong sector this would mean

studying the non-trivial topological structure of the QCD vacuum and any

discrete symmetry violations that may result from it. A thorough investi-

gation into the nature of these violations will be undertaken later in this

thesis, but for now it merely serves to illustrate the importance of discrete

symmetries as a probe for new physics.

Discrete symmetries have occupied a pivotal position in the development

of quantum field theories. Charge conjugation invariance (C), parity symme-

try (P), and time reversal invariance (T) constitute the discrete symmetries

that nature was largely thought to obey [4]. However, starting from 1956,

when Lee and Yang first proposed a test for parity symmetry in the weak

interaction [5], these prized assumptions held dear by theoreticians were put

under experimental scrutiny. The discovery of P violation in the beta-decay

of Cobalt-60 in 1956 by Wu et al., followed by Christenson’s discovery, in

1964, of the combined effect of charge and parity, namely CP, violation in

the decay of neutral kaons laid the foundation for a new paradigm in par-

ticle physics [3]. The violation of CP symmetry came as a great shock to

physicists at the time. Due to the CPT theorem, which states that all lo-

cal relativistic field theories must be invariant under the combined action of

charge (C), parity (P) and time-reversal (T) transformations, a violation in

CP would invariably imply a violation in time-reversal [4]. The violation of T

symmetry prompted a complete rethink of the fundamental assumptions gov-

erning the Standard Model. It was not until nine years later, in 1973, that

the discovery of CP violation had a theoretical postulation. The minimal

implementation of CP violation in the Standard Model came via complex

phases in Yukawa couplings of the weak interaction in what is known as

the Kobayashi-Masakawa (KM) ansatz, named after Makoto Kobayashi and

Toshihide Maskawa [6]. They postulated the existence of a third family of

quarks, an extension to the earlier Cabibbo matrix, which was required to

corroborate this theory. In 1995 this was validated by the discovery of the
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top quark, the final member of the third family of quarks [3][6].

While the study of CP violation in the electroweak sector has yielded

important results, it still does not account for the large matter-antimatter

imbalance we see in the universe [1]. The other candidate for possible CP

violation is the strong interaction. Quantum Chromodynamics (QCD) is the

gauge theory of quarks and gluons, and its behavior under discrete symme-

try transformations is less understood. The experimental consensus so far

indicates no P and CP violation in the strong sector. This is problematic

since a non-trivial QCD vacuum gives rise to P and CP violating terms in

the QCD Lagrangian. The fact that there seems to be no discernable CP vi-

olation in the strong interaction when its Lagrangian includes natural terms

that violate this symmetry is called the Strong CP problem. A more detailed

discussion on this topic will follow, however, it should be stated that the best

experimental estimate we have for CP violation in hadrons is given by the

upper bound of the Neutron Electric Dipole Moment.

In this thesis we will deal primarily with the possibility of P and CP

violation in the decay of the neutral Sigma hyperon, i.e. a radiative decay

Σ0 → Λγ and a subsequent weak decay Λ → pπ−. Hyperons are baryons

with one or more strange quarks. Hyperon physics provides an opportunity

to investigate, among other things, the structure of matter, the spin dynam-

ics in hyperon decays, and the physics underlying hyperon production [7].

The first of these - the structure of matter - has a long history in the study

of form factors. Electromagnetic and transition form factors in nucleon to

baryonic resonances have improved our understanding concerning the charge

distribution and magnetic properties of certain hadrons [8][9]. The upcoming

experiments at FAIR (Facility for Anti-proton and Ion Research) in Germany

will help us probe the corresponding properties for hyperons [7]. FAIR could

thus serve as a bridge between studying the fundamental structure of hyper-

ons and any effect that its discrete symmetry properties has on this structure.

Working within the framework of Heavy Baryon Chiral Perturbation The-

ory, it is possible to relate the three-body decay of this Σ0 hyperon to the

current upper bound of the Neutron Electric Dipole Moment [10]. As we will

see later, the dynamics of this decay will help us parameterize any P and CP
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violation that may occur in the initial decay as an angular dependence of

its final decay products. An investigation into the corresponding antiparticle

decay will also be carried out. This will give us an idea about the exper-

imental viability of looking for angular dependence as separate tests for P

and CP violation in decays of neutral hyperons.

Outline

The thesis is structured as follows. Chapter 2 deals with an overview of dis-

crete symmetries and their violation in quantum field theory. In this vein,

we will discuss the CKM ansatz which introduces CP violation in the weak

sector. The crucial role played by final state interactions via the introduc-

tion of a complex phase will also find a mention in this chapter. Chapter 3

examines the violation of discrete symmetries, specifically P and CP, in the

strong sector. The QCD Lagrangian has an excess global U(1)A symmetry

which is not realized in the hadron spectrum. This anomalous global U(1)A

symmetry is ultimately tied to the topological structure of the QCD vacuum

and leads us to formulate the Effective Vacuum Angle. An illustration of the

non-perturbative topological effects of the QCD vacuum will follow. This

will help us identify the theta vacuum angle as a crucial component of the

Strong CP problem. An observable effect of this effective vacuum angle is

the Neutron Electric Dipole Moment. Since this study is carried out within

the framework of Heavy Baryon Chiral Perturbation Theory, a section of this

chapter will be devoted to this topic. Chapter 4 introduces the most gen-

eral Lorentz invariant transition form factors for baryons and their utility in

studying discrete symmetry properties. Chapter 5 provides the motivation

for the study of the decay of the neutral Sigma hyperon. The kinematics

of the three-body decay and the observable consequences of P and CP vio-

lating effects in this decay are laid out in this chapter. We also discuss the

production process for the Σ0 decay and investigate its effect on the angular

dependence of the final decay products. Chapter 6 consists of the relevant

calculations and results. Lastly, Chapter 7 presents the conclusions drawn

from this study and a brief summary of the thesis.
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Chapter 2

Discrete Symmetries in the

Standard Model

Symmetries play a central role in physics.1 Put simply, a symmetry trans-

formation is a change in the observer’s point of view that does not change

the outcome of the experiment or the ‘observable’ [4]. Symmetries of a phys-

ical theory can be exact or approximate. The study of symmetries has been

formalized and explored using the theory of groups. More concretely, the

properties of a symmetry transformation relate to the representations of the

group to which that transformation belongs [12].

The theories describing strong, weak and electromagnetic interactions be-

tween fundamental particles are classified by the symmetry group respected

by each theory. In fact, the SU(3) × SU(2) × U(1) gauge theory is just

another way to describe what physicists call the Standard Model [13]. Ad-

ditionally, our quantum field theories are invariant under the Lorentz and

translational group of transformations. The fact that quantum field theories

respect these symmetries has important consequences. The relationship be-

tween continuous symmetry transformations and conservation laws, given by

Noether’s theorem, is one such consequence and is a cornerstone of any field

theory [13]. Furthermore, the fact that these symmetries can be broken leads

1Following Castellani, we say that symmetries can be attributed to physical systems
or to physical laws. This work focuses on the latter, i.e. symmetries based on invariance
principles of the interaction under study [11].
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to intriguing consequences. A broken symmetry, quite apart from reducing

the beauty of a theory, reveals something deeper about it. In group theoretic

terms, a broken symmetry implies that the original symmetry group has been

broken into one of its subgroups. We can then describe symmetry breaking

as the relation between transformation groups, namely the initial unbroken

symmetry group and its subgroups [11].

A symmetry can be broken in two ways, spontaneously or explicitly.

Spontaneous symmetry breaking refers to those symmetries of the action

that do not leave the vacuum state invariant [14]. The spontaneous breaking

of the approximate global SU(2)L×SU(2)R symmetry of the strong interac-

tion led to the identification of low mass spinless particles (pseudo-Goldstone

bosons), the pions. This was followed by the discovery of spontaneous break-

ing of the exact local SU(2)×U(1) symmetry of the weak and electromagnetic

interactions. This spontaneous breaking of gauge symmetries is now called

the Higgs mechanism as it gives rise to helicity zero states of vector particles,

which then acquire mass [14].

Similarly, discrete symmetries play a fundamental role in the Standard

Model. Space inversion or parity, charge conjugation and time reversal are

the discrete symmetries that are relevant in any discussion of quantum field

theories [3]. Unlike continuous symmetry transformations (translational or

Lorentz) where we first consider an infinitesimal transformation about the

identity, and then proceed to study finite transformations by compounding

several infinitesimal operations, discrete (from the Latin discretus meaning

“separated”) symmetries are non-continuous and cannot be treated in the

same way [15]. Therefore it is possible for a quantum field theory to be

Lorentz invariant (under the proper orthochronous subgroup) while not re-

specting a discrete symmetry [16].

In this chapter, we will first explore the three discrete symmetries in quan-

tum field theories and discuss their relevance to our decay. In the subsequent

section we will briefly review the violation of these discrete symmetries in the

Standard Model, focusing on the CKM mechanism which minimally imple-

ments CP violation in the SM. In the last section, we will discuss final state

interactions and their importance in any study based on P or CP violation.
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In the process we will analyze the discrete symmetry properties of an inter-

action Lagrangian that characterizes the Σ0 → Λγ decay.

2.1 Parity

Parity refers to the operation of space inversion. In other words, it refers to a

mirror reflection followed by a rotation of 180◦ around an axis perpendicular

to the mirror [15]:

~x
P−→ ~x′ = −~x. (2.1)

The coordinate axis after a parity operation is projected back through itself

and stands inverted. We thereby transform a right-handed coordinate system

into a left-handed one and vice versa. Parity transformations in classical dy-

namics manifest themselves as a change in sign for polar vectors like position

(Eq. (2.1)) and momentum [3]:

~p
P−→ ~p′ = −~p (2.2)

and no change in sign for axial vectors like angular momentum:

~l = ~x× ~p, (2.3)

~l
P−→ ~l′ = ~l. (2.4)

Further, we have scalars like S = ~p1. ~p2 that do not change sign under parity

transformations

S
P−→ S (2.5)

and pseudoscalars like P = ~p.~l that do [3]:

P P−→ −P . (2.6)

In non-relativistic quantum mechanics, the parity transformation is de-
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fined by a unitary operator P which acts on the complex Hilbert space

spanned by state vectors. Since it is a unitary operator it satisfies the con-

dition P †P = 1. If the Hamiltonian operator commutes with the parity

operator, we say that the process is parity invariant, or P−1HP = H. This

can be understood as saying that the total energy of the system, for a parity

symmetric potential, remains unchanged after an inversion of the coordinate

axis. Notice that if H and P commute, the Schrödinger equation:

ih̄
∂ψ(~x, t)

∂t
= Hψ(~x, t) (2.7)

tells us that both ψ(~x, t) and Pψ(~x, t) = ψ(−~x, t) represent possible solutions,

as does any combination of these two solutions. That is, for a spherical

(parity-even) potential, we can express all solutions as eigenstates of parity

[3]. In order for the above to hold true, we see that the condition

P−1iP = i (2.8)

must be satisfied. This shows us that parity is a linear operator. Further,

based on the correspondence principle we require that parity and the rotation

operator commute (for an explicit derivation of this, refer to [15] and [17]).

This in turn implies that parity commutes with the infinitesimal rotation

operator, and therefore with the angular momentum operator ~J :

[ ~J, P ] = 0. (2.9)

We refer to Eq. (2.4), where we discussed the invariance of angular momentum

under parity due its being an axial vector (~l = ~x × ~p). This is the same as

saying:

[~L, P ] = 0 (2.10)

where ~L is now the orbital angular momentum operator.

However, unlike rotation, space inversion does not commute with the posi-

tion operator. This can be understood (again, from the correspondence prin-
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ciple) as saying that the expectation value of the position operator changes

sign under parity. That is [3]:

P−1 ~XP = − ~X, or { ~X, P} = 0. (2.11)

The same holds true for the momentum operator ~P , which is the generator

of (infinitesimal) translation:

P−1 ~PP = −~P or {~P , P} = 0. (2.12)

One of the strongest consistency checks for Eq. (2.9), Eq. (2.11), and Eq. (2.12),

comes from the fundamental quantization conditions of quantum mechanics:

[Xi, Pj] = iδij, (2.13)

[Ji, Jj] = iJkεijk (2.14)

where we have set h̄ = 1. On using the properties of unitarity and linearity,

we find that the parity operation leaves the above two fundamental conditions

invariant. We now have a strong argument for the unitarity of the parity

operator, P †P = 1 or P † = P−1.

Parity considerations serve as a powerful tool while studying reactions.

For instance, the angular solutions to the Schrödinger equation for a spheri-

cally symmetric potential well are the spherical harmonics [15]:

Ylm(θ, φ) = (−1)m

√
(2l + 1)

4π

(l − |m|)!
(l + |m|)!

Pl
|m|(cos θ)e(imφ). (2.15)

These spherical harmonics transform under parity as follows:

Ylm
P−→ (−1)l+m(−1)mYlm = (−1)lYlm. (2.16)

This means that s, d, g (and so on) waves have even parity while p, f, h (and

so on) waves have odd parity. For a reaction where parity is conserved, we

will have [H,P ] = 0, where H is the Hamiltonian of the process. We can then

analyze the orbital angular momentum as given in Eq. (2.16) along with the
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intrinsic parity of the particles involved in the reaction. A discussion on the

intrinsic parity of the particles in our decay chain will be undertaken below.

The requirement of Lorentz invariance in addition to the postulates of

quantum mechanics leads us to quantum field theories. The introduction of

discrete symmetries like parity and time-reversal takes us out of the proper

orthochronous Lorentz subgroup of transformations (those which are continu-

ously connected to the identity) [16]. In this section we will deal with discrete

symmetry properties as they appear in quantum field theory, focussing on

spin-1 and spin-1/2 fields, these being relevant to the Σ0 decay under study.

A more detailed discussion of discrete symmetry transformations in QCD

will follow in Chapter 3. The present section follows discussions in [3],[4],[13]

and [18].

The Lagrangian that leads to the Lorentz covariant form of the Maxwell

equation (∂µF
µν = eJν) is:

L = −1

4
FµνF

µν − eJµAµ (2.17)

with Fµν = ∂µAν − ∂νAµ being the field strength tensor and Jµ being the

current density. In QED, the current density takes the form of the fermion

bilinear Jµ = ψ̄γµψ given by the conserved Dirac vector current. It is found

in the interaction term of the Lagrangian that couples the photon field to

the Dirac field. That is,

LQED = LDirac + L (2.18)

with LDirac = ψ̄(i/∂ − m)ψ [13]. The parity transformation of the Dirac

field will be covered in the next section. Now, for this simplistic theory

to be invariant under parity, we have to find the parity transformation of

Eq. (2.17) that leaves the action invariant. We must also ensure that the

quantization postulates of the theory are invariant under parity. The invari-

ance of the quantization postulates is covered in any quantum field theory

text book, and will not be shown here (see for example [13], [15]). In order

to demonstrate the invariance of the Lagrangian under parity, we require the
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following (corresponding to the transformation properties of classical fields)

to hold true under a parity operation [3]:

P−1Aµ(t, ~x)P =

A0(t,−~x), µ = 0,

−Aµ(t,−~x), µ = i,
(2.19)

P−1Jµ(t, ~x)P =

J0(t,−~x), µ = 0,

−Jµ(t,−~x), µ = i,
(2.20)

and lastly, we should keep in mind that under a parity operation P , the

derivative becomes:

∂xµ
P−→

∂Px0 , µ = 0,

−∂Pxi , µ = i.
(2.21)

These conditions when applied to Eq. (2.17), yield the following conclusion:

L(t, ~x)
P−→ L(t,−~x). (2.22)

Since we can change the sign of the integration variable, we see that the

parity transformation of the Lagrangian as shown above leads to the action

being parity invariant:

S =

∫
d4xL(t, ~x)

P−→
∫
dt d3(−~x)L(t,−~x) = S. (2.23)

In order to see the importance of parity symmetry in our decay, we make

a brief digression to discuss the helicity states of a photon. For a massless

particle (i.e. a particle with no available rest frame), we can measure its

polarization along the direction of motion [4]. In such cases, it makes sense

to define a helicity, h, such that:

h ≡ ~S.~z (2.24)
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where ~S is its polarization direction and ~z is its direction of motion. This

helicity h is a pseudoscalar. Now, an on-shell photon has two possible helicity

states, h = ±1 (for a detailed derivation as to why massless states have only

two helicity states refer to [4]).

This fact has important consequences for the study of P and CP vio-

lation in our decay of the Σ0 hyperon. As we will see in Chapter 5, the

initial helicity of Σ0 is sufficient to determine the helicity states of Λ and

the photon. As discussed above, an on-shell photon can have only one

of two possible helicity states, and if the decay Σ0 → Λγ is parity con-

serving, then it does not discriminate between either of the two possible

helicity states of the Σ0 hyperon. If the photon were virtual, then this

would not be true as it would have three possible helicity states to choose

from. A more detailed discussion of this will be carried out in Chapter 5.

Now, coming to spin 1/2 particles, the Lagrangian for a free spin 1/2 field

is given by [13]:

LDirac = ψ̄(i/∂ −m)ψ (2.25)

where ψ is the four-component spinor field. The equation of motion for this

Lagrangian is the Dirac equation:

(i/∂ −m)ψ = 0. (2.26)

The solution to the Dirac equation, Eq. (2.26), is a superposition of plane

waves. The spinor field can then be expressed by its Fourier components in

momentum-space:

ψ(t, ~x) =
∑
s=±

∫
d3p

(2π)32Ep
(a(~p, s)u(~p, s)e−ip.x + b†(~p, s)v(~p, s)e+ip.x) (2.27)

where the operators a(~p, s) and b†(~p, s) denote the annihilation operator (de-

fined in Fock space) for particles and creation operator (again, in Fock space)

for antiparticles, respectively [13]. Since ψ(t, ~x) is a solution of the Dirac
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equation, the four-component spinors u and v must satisfy:

(/p−m)u(~p, s) = 0 (2.28)

and

(/p+m)v(~p, s) = 0. (2.29)

For the Lagrangian in Eq. (2.25) to be invariant under parity transformations,

we make the ansatz [18]:

ψ(t, ~x)
P−→ γ0ψ(t,−~x). (2.30)

Then we have

ψ(t, ~x)
P−→ γ0ψ(t,−~x) = ψ(t,−~x)γ0. (2.31)

This ensures that the Lagrangian transforms under parity as:

L(t, ~x)
P−→ L(t,−~x) (2.32)

which in turn leaves the action invariant. Note that if ψ(t, ~x) satisfies the

Dirac equation, then so too does the parity transformed spinor γ0ψ(t,−~x).

Likewise, the quantization conditions are also invariant under parity as is

easily demonstrated using the known transformation properties of the four-

component spinor (see for instance [16], [15]).

The discussion above has implicitly assumed that a parity transformation

does not induce a phase. However, this need not be true. For an elementary

field we could define a more general parity transformation than described in

Eq. (2.30) as follows [4]:

ψ(t, ~x)
P ′−→ ηpγ

0ψ(t,−~x). (2.33)

Since we require P ′2 = 1, we have ηp = ±1 [15]. Parity could very well
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be redefined using known conserved internal quantum numbers like baryon

number B, electric charge Q and lepton number L [15]:

P ′ = Pei(aB+bQ+cL) (2.34)

with P as defined in Eq. (2.30) and a, b and c being real numbers. Both

P and P ′ can be considered as the parity operator as long as these internal

quantum numbers are conserved in an interaction. Using these ‘superselec-

tion rules’ (baryon number conservation, lepton number conservation etc.),

one can assign an intrinsic parity of +1 to protons, neutrons and electrons

after adjusting the values of a, b and c [15]. This is largely a matter of con-

vention. For a more detailed discussion on intrinsic parity and superselection

rules, see [15],[17].

Fermions and anti-fermions carry opposite intrinsic parity as can be demon-

strated when performing the parity operation on the solution to the Dirac

equation Eq. (2.27). This must satisfy the condition given in Eq. (2.30) and

so we obtain the transformation properties of the operators a(~p, s) and b(~p, s)

under parity [3]:

P−1a(~p, s)P = a(−~p, s) (2.35)

P−1b(~p, s)P = −b(−~p, s) (2.36)

Now, a photon field operator in Fock space is given in terms of its creation

and annihilation operators, d(~p, s) and d†(~p, s), as follows:

Aµ(t, ~x) =

∫
d3p

(2π)32Ep

∑
s=±

[d(~p, s)εµ(~p, s)e−ip.x + d†(~p, s)εµ∗(~p, s)eip.x]

(2.37)

where εµ(~p, s) is the polarization vector for a photon with momentum ~p and

‘spin’ s. For an on-shell photon traveling in the z-direction, the polarization
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vector can be written as:

εµ(~p,±) =
1√
2

(0, 1,±i, 0). (2.38)

Keeping in mind the transformation properties of the photon field (Eq. (2.19))

and the knowledge that the photon polarization transforms under parity like

spin (an axial vector), we see that the creation operator, d, is odd under

parity [3]:

P−1d(~p,±)P = −d(−~p,±) (2.39)

This could be interpreted as saying that a one-photon state carries an odd

intrinsic parity with ηp = −1.

Historically, physicists have assigned an intrinsic parity to the electron

and the proton (and their respective antiparticles) as a matter of convention

[15]. As we saw above, the intrinsic parity of the photon, on the other

hand, was calculated to be −1. For particles created or decaying in parity

conserving reactions, we can determine their intrinsic parity by analyzing

orbital angular momentum (see Eq. (2.16)), i.e. the angular distribution of

the particles [15]. Following this method it was possible to establish that

pions have negative intrinsic parity, i.e. they are pseudoscalars. In addition,

if symmetries imply a multiplet structure, then the intrinsic parities of all

the members comprising this multiplet can be determined. In particular,

one finds that Σ0, Λ, the proton and the neutron all have the same intrinsic

parity of +1 due to flavor symmetry.

For example, in the weak decay of Λ→ pπ−, the total angular momentum

of the initial state, in the rest frame of Λ, is 1/2. Since the proton is a spin

1/2 particle, the relative orbital angular momentum for the final state is l = 1

or l = 0. As stated above, the relative intrinsic parity of Λ and p is +1, and

therefore, from Eq. (2.16), the parity of the final state is given by [15]:

(−1)lηπ = +1. (2.40)

Now, because the pions are pseudoscalars (ηπ = −1), we see that when l = 1
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(p wave final state) parity is conserved, and when l = 0 (s wave final state)

parity is violated in the process. Since the weak interaction does not respect

parity symmetry, we will have both s and p wave contributions to the decay

width.

Similarly for our initial decay, Σ0 → Λγ, angular momentum conserva-

tion tells us that the decay matrix element can have contributions from even

and odd partial waves. With the photon having a negative intrinsic par-

ity and both the baryons involved in the decay having a positive intrinsic

parity, we see that (following Eq. (2.16)) odd partial waves conserve parity

while even partial waves violate it. Now, the only non-trivial (complex)

phase that could arise in our study of the Σ0 decay is due to final state in-

teractions and will be discussed in detail in the last section of this chapter.

Going back to our discussion on spinor fields, from Eq. (2.30) and Eq. (2.31)

we see that the combination of the two spinors, ψψ(t, ~x), in addition to being

Lorentz invariant, transforms as a scalar under parity [18]:

ψψ(t, ~x)
P−→ ψψ(t,−~x). (2.41)

In like manner, we can study the properties of composite objects ψΓµψ

called fermion (or spinor) bilinears, where Γµ is any 4×4 matrix that is

compatible with Lorentz invariance. Fermion bilinears will play a crucial role

in determining the parity transformation properties of our decay. Consider

for example the fermion bilinear ψγµψ. Under parity this transforms as a

vector [18]:

ψγµψ(t, ~x)
P−→ ψγ0γµγ0ψ(t,−~x) =

ψγ0ψ(t,−~x), µ = 0,

−ψγiψ(t,−~x), µ = i.
(2.42)

Note that i in the above equation runs from 1 to 3. Similarly, ψσµνψ

transforms as an anti-symmetric tensor under Lorentz transformation, where

σµν = i
2
[γµ, γν ]. On applying a parity transformation it behaves as follows
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[18][13]

ψσµνψ(t, ~x)
P−→ (−1)µ(−1)νψσµνψ(t,−~x), (2.43)

with (−1)µ ≡ 1 for µ = 0 and (−1)µ ≡ −1 for µ = i.

We can also construct bilinears using a matrix conventionally defined as

follows:

γ5 ≡ iγ0γ1γ2γ3. (2.44)

Further, we notice:

{γ5, γ
µ} = 0. (2.45)

We can now form a Lorentz scalar and another Lorentz vector [19]:

ψγ5ψ and ψγ5γ
µψ.

They transform under parity as:

ψγ5ψ(t, ~x)
P−→ ψγ0γ5γ

0ψ(t,−~x) = −ψγ5ψ(t,−~x), (2.46)

ψγ5γ
µψ(t, ~x)

P−→ ψγ0γ5γ
µγ0ψ(t,−~x) =

−ψγ5γ
0ψ(t,−~x), µ = 0,

+ψγ5γ
iψ(t,−~x), µ = i,

(2.47)

a pseudoscalar and an axial vector, respectively [19]. In like manner, the

bilinear ψσµνγ5ψ transforms as [13]:

ψσµνγ5ψ(t, ~x)
P−→ −(−1)µ(−1)νψσµνγ5ψ(t,−~x). (2.48)

We therefore have 16 possible bilinears transforming under parity and

Lorentz transformations that result from the four-component spinors. These

comprise of 1 scalar, 1 pseudoscalar, 4 vectors, 4 axial vectors and 6 anti-
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symmetric tensors. Any other bilinear that can be constructed must be

expressed in terms of the above bilinears. We will see this more explicitly in

Chapter 4, where we construct Lorentz invariant form factors using combi-

nations of these fermion bilinears. The knowledge of these bilinear transfor-

mations helps us pin down the parity violating terms in the Lagrangian as a

potential source of Electric Dipole Moments.

Consider, for example, an interaction Lagrangian for the Σ0-Λ transition:

LΣ0−Λ =
e cB

(mΣ +mΛ)
Λγ5σµνΣ

0F µν +
e c̄B

(mΣ +mΛ)
Σ

0
γ5σµνΛF

µν (2.49)

where cB and c̄B are complex numbers for the neutral Sigma decay and its

charge conjugated process, respectively. The reasons behind the Lagrangian

assuming this form will become clear in Chapter 4 and Chapter 5. For

now we are interested in the parity symmetry properties of this interaction

Lagrangian. If Σ0 and Λ transform under parity in the same way, then

the above Lagrangian violates parity (see Eq. (2.48)). If, however, there is

a relative parity of −1 between Σ0 and Λ, the above Lagrangian conserves

parity. As we mentioned earlier, Σ0 and Λ belong to the same multiplet

structure, and therefore both transform under parity in the same way. Thus

the interaction Lagrangian in Eq. (2.49) describes a P violating process. In

Chapter 5 we will see how this manifests itself experimentally in the decay

chain Σ0 → pπ−γ.

Parity also inverts the ‘handedness’ or chirality of a spinor. If we use

the projection operator, we can express this property in terms of the four-

component spinor:

ψR =
1

2
(1 + γ5)ψ, ψL =

1

2
(1− γ5)ψ (2.50)

where under a parity transformation we observe:

ψR(t, ~x)
P−→ ψL(t,−~x). (2.51)

That is, a right handed spinor transforms into a left handed one and vice

versa [19]. In a subsequent section of this chapter we will discuss the parity
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violating weak interaction, and how this results in the left and right handed

particles being treated differently by the weak interaction. A theory which

treats ψR and ψL differently is referred to as a chiral theory whereas one

that treats them on an equal footing is called a vector-like theory [19]. The

electroweak theory is an example of a chiral theory. QCD, on the other hand,

is a vector-like theory since it consists of both right and left handed quarks

coupled in the same way to the gluon field.

QCD possesses an approximate chiral symmetry [14]. This has interesting

consequences when studying P and CP violating effects in the strong sector.

The approximate SU(3)L−R symmetry is spontaneously broken to yield an

octet of pseudo-Goldstone bosons [14]. The axial component of the additional

U(1)L−R group, however, is not realized as a symmetry for reasons that will

be discussed in Chapter 3. This axial U(1) problem, as we will discover in

Chapter 3, has deep implications for any P and CP invariant theory of the

strong interaction.

2.2 Charge Conjugation

Classically, charge conjugation is a rather straightforward idea, wherein we

replace the positive charges with negative ones and vice versa. Maxwell’s

equations are invariant under charge conjugation, i.e. when the sign of the

charge density (ρ) is reversed, ρ
C−→ −ρ [15]. This results in the current,

electric field and magnetic field being odd under charge conjugation:

~j
C−→ −~j, (2.52)

~E
C−→ − ~E, (2.53)

~B
C−→ − ~B. (2.54)

The concept of charge conjugation is not well defined in quantum me-

chanics, especially because antiparticles are an alien notion in non-relativistic

physics. In one sense we can say that the Dirac theory predicted the exis-

tence of a particle with opposite charge with the same mass and that charge

25



conjugation as a symmetry became well defined only in relativistic quantum

physics [15]. Like parity, charge conjugation is a unitary operator:

CC† = 1. (2.55)

Its effect on a single particle state is as follows:

C |(~p, s,Q)〉 = ηc |(~p, s,−Q)〉 (2.56)

where Q is the charge of the particle with momentum p and spin s, while ηc is

the phase induced by such a transformation. As with parity transformations,

applying C twice restores the original state, i.e. C2 = 1. This implies ηc
2 = 1

or ηc = ±1. ηc is called charge-conjugation parity or C parity of the particle

[4]. As was the case with parity, for any operator C satisfying Eq. (2.56) we

can define another operator with a different ηc using other internal symmetry

phase transformations such as the one given in Eq. (2.34).

The only particles which have a well defined C parity are the neutral

particles like pions and photons [4]. These carry no other conserved quantum

numbers and are their own antiparticles. Now, in the electromagnetic and

strong sectors, the Hamiltonian for a given interaction commutes with the

charge conjugation operator as we expect a particle and its corresponding

antiparticle to have the same energy:

[H,C] = 0. (2.57)

This means that both the interaction potential and the free Hamiltonian must

have charge conjugation as a symmetry. As a consequence, the S-matrix is

invariant under charge conjugation [15]:

C−1SC = S. (2.58)

For a reaction where both the initial and final states are only neutral particles,

Eq. (2.58) tells us that C parity for both the initial and final state must be

the same [4]. In the reaction π → γγ, if the intrinsic C parity of the photon
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is −1, then the decay implies ηπ0 = 1. This also makes clear that the decay

π → 3γ is forbidden by charge conjugation symmetry.

In the Lagrangian for the photon field shown in Eq. (2.17), we notice that

the theory remains invariant under charge conjugation transformation when

we consider the transformation properties of the current and the electromag-

netic four-potential [3]:

CAµ(t, ~x)C† = −Aµ(t, ~x), (2.59)

CJµ(t, ~x)C† = −Jµ(t, ~x). (2.60)

And so L(t, ~x)
C−→ L(t, ~x). One can see from the above equations that C

conjugation does not affect anything related to the Lorentz group (like t, ~x

and µ). The quantization conditions too can be shown to be invariant under

charge conjugation, see for instance [16] and [3]. The photon field operator

discussed in Eq. (2.37) is composed of the polarization vector ε(~p,±) and the

creation (annihilation) operators. The transformation property of the former

under charge conjugation is the same as that of spin, i.e. it is unaffected.

For Eq. (2.59) to hold true, the charge conjugation transformation of the

annihilation operator must be

Cd(~p,±)C† = −d(~p,±). (2.61)

This can be interpreted as saying that a photon state has an odd intrinsic C

parity with ηc = −1.

The operation of charge conjugation on the free Dirac Lagrangian Eq. (2.25)

transforms a fermion field into an antifermion field and vice versa. Thus, we

consider a transformation of the field which should obey the transformation

property of the vector current, Jµ, under charge conjugation (again using the

analogy from classical dynamics) [3]:

Cψ(t, ~x)C† = CψT (t, ~x) (2.62)

with C being a 4 × 4 matrix we have to identify. Note that the phase ηc
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has been set to 1. We can now cross-check the transformation of the current

Jµ = ψ(t, ~x)γµψ(t, ~x) given in Eq. (2.60):

CJµ(t, ~x)C† = ψC(t, ~x)γµψC(t, ~x)

= ψα(t, ~x)[γ0C†γ0γµC]αβψβ(t, ~x) (2.63)

with ψC = Cψ(t, ~x)C† and α, β being the spinor indices. In order for the last

line to equal −Jµ(t, ~x), we require:

γ0C†γ0γµC = γµT . (2.64)

That is, if C = iγ2γ0 the above condition is satisfied. With the usual choice

of phase C2 = 1 and consequently C† = C−1, the fermion field transforms

under charge conjugation as [3]:

ψ(t, ~x)
C−→ iγ2γ0ψ

T
(t, ~x). (2.65)

The study of fermion bilinears is just as crucial here as it was for the case

of parity. A detailed derivation of these transformations for bilinears can be

found in [13], [19] and it follows the same line of reasoning as was illustrated

in the case for parity. We reproduce below their transformation properties

under C symmetry [13]:

ψψ
C−→ ψψ, (2.66)

iψγ5ψ
C−→ iψγ5ψ, (2.67)

ψγµγ5ψ
C−→ ψγµγ5ψ, (2.68)

ψσµνψ
C−→ −ψσµνψ, (2.69)

ψσµνγ5ψ
C−→ −ψσµνγ5ψ. (2.70)

The invariance of the S-matrix under charge conjugation, shown in Eq. (2.58),

implies that a decay process for a particle must have the same rate when

replaced by its anti-particle as long as the interaction observes charge con-

jugation symmetry [4]. The experiments conducted in 1957 showed that C
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was not conserved for the theory of weak interactions as laid out by Lee,

Oehme and Yang [20]. On the other hand, the Lagrangian for the strong and

electromagnetic interactions conserve charge parity.

In addition to analyzing the decay of Σ0 → pπ−γ, we will also study the

corresponding antiparticle decay Σ
0 → pπ+γ. Using the Lorentz invariant

transition form factors to be discussed in Chapter 4, it will be fruitful to

check whether the two decays produce identical angular distributions. If

there is a disparity, this would point to an apparent non-conservation of

charge conjugation symmetry.

Let us now consider the charge conjugation properties of the P violat-

ing interaction Lagrangian discussed in Eq. (2.49). Following Eq. (2.70), we

note that the interaction Lagrangian in Eq. (2.49) under charge conjugation

becomes:

LΣ0−Λ
C−→ e cB

(mΣ +mΛ)
Σ

0
γ5σµνΛF

µν +
e c̄B

(mΣ +mΛ)
Λγ5σµνΣ

0F µν (2.71)

The hermiticity condition when applied to Eq. (2.49) yields c̄B = −c∗B. There-

fore, for C symmetry to be preserved in the Σ0 → Λγ decay, we must have

cB = c̄B = −c∗B. In other words, if the decay is invariant under charge conju-

gation, this implies that cB must be purely imaginary (cB + c∗B = 0) and CP

is broken. If, on the other hand, CP is conserved, then cB is purely real (we

will see this explicitly in the next section) and C symmetry is violated. Note

that if cB is neither purely real or imaginary, then both C and CP symmetry

is not respected in this decay.

As we will see in the section dealing with final state interactions, cB can

be written in terms of a modulus and a phase due to the fact that it is a

complex number. This phase, taken together with the phase due to final

state interactions, will give us a more complete picture regarding C and CP

symmetry properties of the Σ0 decay.
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2.3 Time Reversal

Time reversal symmetry is the symmetry of a theory under the transforma-

tion t→ t′ = −t. The operator that enables such a theory, say T , generates

a reversal of motion. Just like in classical dynamics, we see that in quantum

mechanics T does not affect the position operator but certainly reverses the

momentum, both linear and angular [3]:

T ~XT−1 = ~X, (2.72)

T ~PT−1 = −~P , (2.73)

T ~JT−1 = − ~J. (2.74)

On inspecting the fundamental commutation relation between the posi-

tion and momentum operators [Xi, Pj] = iδij, one finds something strange.

In order for this commutation relation to be invariant under time reversal,

we notice that the following condition must be fulfilled:

T−1iT = −i. (2.75)

This is what Wigner called the anti-linear property of the T operator [15].

Further, we also demand that the time-dependent Schrödinger equation:

Hψ(t, ~x) = i
∂

∂t
ψ(t, ~x)

remains invariant under time reversal. However, we notice that ψ(−t, ~x) does

not satisfy the above equation. Instead, following Wigner, we state that there

are two ways to preserve the norm 〈ψ|ψ〉 = 〈Tψ|Tψ〉. The first when T is a

unitary operator such that [15]:

〈φ|ψ〉 = 〈Tφ|Tψ〉 (2.76)

30



and the second when T is an anti-unitary operator:

〈φ|ψ〉∗ = 〈ψ|φ〉 = 〈Tφ|Tψ〉 . (2.77)

The first case is forbidden given that we know ψ(−t, ~x) does not satisfy

Schrödinger’s equation. The only conclusion we can draw is that T is an

anti-unitary operator:

Tψ(t, ~x) = ψ∗(−t, ~x). (2.78)

The effect of the T operator on the S-matrix is as expected. It inter-

changes the initial and final states to give us the inverse S operator [15]:

TST−1 = S† = S−1. (2.79)

The anti-unitary (and anti-linear) property of T has interesting conse-

quences. The foremost among them is Kramer’s degeneracy which tells us

that for any energy eigenstate ψ of an odd number of spin 1/2 particles, there

is an orthogonal eigenstate of the same energy in the absence of an external

magnetic field (so long as T 2 = −1) [4]. The details and implications of this

theorem will not be carried out here and can be found in [4].

The Lagrangian for the photon field, given in Eq. (2.17), transforms under

time reversal as follows:

TL(t, ~x)T−1 = L(−t, ~x). (2.80)

Since the action is given by the integration of the Lagrangian over all space-

time coordinates, a simple change of variable ensures that the action is in-

variant under time reversal [3]. Eq. (2.80) is achieved by the following trans-

formation properties of the current and the electromagnetic four-potential:

TJµ(t, ~x)T−1 =

J0(−t, ~x), µ = 0,

−J i(−t, ~x), µ = i,
(2.81)
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TAµ(t, ~x)T−1 =

A0(−t, ~x), µ = 0,

−Ai(−t, ~x), µ = i.
(2.82)

For the free Dirac theory (2.25), the transformation properties are a little

trickier. Time reversal not only reverses the momentum of a particle but also

its spin as can be seen from Eq. (2.74) for angular momentum. This implies

that a time reversal operator must be one that flips the spinor, i.e. the sign

associated with its spin state [13]. The spinors with their signs flipped and

momentum reversed take the form:

u(p̃,−s) = −γ1γ3[u(p, s)]∗, (2.83)

v(p̃,−s) = −γ1γ3[v(p, s)]∗. (2.84)

This leads us to the following transformation property of fermion annihilation

operators:

Ta(~p, s)T−1 = a(−~p,−s). (2.85)

Considering the above transformation properties and that of the spinors

u(~p, s) and v(~p, s), the transformation of the fermion field under time re-

versal obtained from Eq. (2.27) is [13]:

Tψ(t, ~x)T−1 = γ1γ3ψ(−t, ~x). (2.86)

We can now derive the transformation properties of fermion bilinears as
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was done for parity and charge conjugation. These are [3]:

ψψ(t, ~x)
T−→ ψψ(−t, ~x), (2.87)

iψγ5ψ(t, ~x)
T−→ −iψγ5ψ(−t, ~x), (2.88)

ψγµψ(t, ~x)
T−→

ψγ0ψ(−t, ~x), µ = 0,

−ψγiψ(−t, ~x), µ = i,
(2.89)

ψγµγ5ψ(t, ~x)
T−→

ψγ0γ5ψ(−t, ~x), µ = 0,

−ψγiγ5ψ(−t, ~x), µ = i,
(2.90)

ψσµνψ(t, ~x)
T−→ −(−1)µ(−1)νψσµνψ(−t, ~x), (2.91)

ψσµνγ5ψ(t, ~x)
T−→ −(−1)µ(−1)νψσµνγ5ψ(−t, ~x). (2.92)

The CPT theorem respected by quantum field theories tells us that a

violation of T symmetry is also a violation of CP symmetry. A non-vanishing

electric dipole moment of the neutron would point towards a CP symmetry

violation in addition to possible P symmetry breaking [21]. An upper bound

on the T (and therefore CP) violating neutron electric dipole moment is

currently the best estimate we have for an observable effect of the Strong CP

problem [22]. This will be the topic of discussion in Chapter 3.

Following Eq. (2.92), a CP transformation of the interaction Lagrangian

Eq. (2.49) yields:

LΣ0−Λ
CP−−→ − e cB

(mΣ +mΛ)
Σ

0
γ5σµνΛF

µν − e c̄B
(mΣ +mΛ)

Λγ5σµνΣ
0F µν . (2.93)

Taken together with the hermiticity condition, this implies that for the Σ0

decay to conserve CP, cB must be purely real or cB = c∗B.

2.4 CKM Mechanism

As we stated earlier in this chapter, the theoretical framework needed to

accommodate CP violation in the SM is described by the CKM mechanism

of the weak theory [21]. We provide here a cursory review of the minimal
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implementation of CP violation in the weak interaction, and analyze whether

the weak part of our radiative Σ0 decay contributes towards a P or CP

violation in the decay chain.

The SM incorporates one doublet (SU(2)) of the Higgs field. The Yukawa

interaction, which describes the coupling of the quark field to the Higgs field,

is given by [23]:

LY = −GU
ijQLi

(
φ0

−φ−

)
URj −GD

ijQLi

(
φ+

φ0

)
DRj + h.c. (2.94)

where QL are the left-handed fermion doublets, QL =

(
UL

DL

)
; UR and DR

are right-handed fermion singlets; with U ≡ {u, c, t} and D ≡ {d, s, b}. Note

that the chiral fermion fields are as defined in Eq. (2.50). Here GU,D are n×n
matrices (with n = 3 in the Standard Model for the three quark families)

which, due to spontaneous symmetry breaking, give us the mass terms [3]:

MU = vGU , MD = vGD (2.95)

with v being the vacuum expectation value of the Higgs field, 〈φ0〉 ≡ v.

Because of the arbitrary nature of the Yukawa coupling, these mass matrices

can in principle contain complex terms. It is precisely this complex Yukawa

coupling that brings about an observable CP violating effect [23][3].

Before going further we must state that the appearance of this flavour-

space coupling has an impact on the quark gauge interactions which are given

by the charged current, weak neutral current and the electromagnetic current

[23]:

J µ
CC = ULγ

µDL, (2.96)

J µ
NC =

1

2
(ULγ

µUL −DLγ
µDL)− sin2 θWJ µ

EM , (2.97)

J µ
EM =

2

3
UγµU − 1

3
DγµD. (2.98)

By diagonalizing the mass matrix, we can write the Lagrangian in terms

of the mass eigenstates of the quarks [3]. This can be done by adopting
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unitary matrices TUL/R and TDL/R which act as follows:

MU
diag = TULMUT †

U

R, MD
diag = TDLMDT †

D

R (2.99)

such that it changes the left and right-handed quark fields into their mass

eigenstates [3]. This has no effect on the neutral currents, up to tree-level,

which remain diagonal due to the unitarity of TU,DL/R [23].

The charged weak current, on the other hand, transforms non-trivially

[23]:

J µ
CC = ULγ

µDL = U
m

L γ
µ(TUL T

D†
L )Dm

L (2.100)

where Um
L , Dm

L are fields with definite mass states due to the diagonaliza-

tion process. We define a unitary matrix V , called the Cabibbo-Kobayashi-

Masakawa (CKM) matrix, such that:

V ≡ TUL T
D†
L . (2.101)

It is this CKM matrix that parameterizes quark mixing in the flavour space

so that flavour changing reactions are permissible in reactions governed by

the weak interaction [23].

In the seminal paper by Kobayashi and Masakawa [6], they argued that

it is precisely because of the nature of this V matrix that CP violation is

observed in nature. Without going into the details, we can say that merely

because V can contain complex phases it does not mean that CP becomes an

observable consequence as we can always redefine the quark fields and their

respective phases [3]. However, the question arises, when can one not rotate

away a complex phase arising in V ? Kobayashi and Masakawa noted that

for three families of quarks, in addition to the three Euler mixing angles,

one also gets a non-trivial complex phase that cannot be re-defined away [6].

This is the complex phase that lends itself to an observable CP violation

[23][3]. There are several ways to construct V using three mixing angles and
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one non-trivial complex phase. The standard form is given by [23]:

V =

 c12c13 s12s13 s13e
−iδCP

−s12c23 − c12s23s13e
iδCP c12c23 − s12s23s13e

iδCP s23c13

s12s23 − c12c23s13e
iδCP −c12s23 − s12c23s13e

iδCP c23c13


(2.102)

with sij ≡ sin θij, cij ≡ cos θij and δCP as the CP violating complex phase.

Now how does this non-trivial CP violating complex phase δCP arising

in the weak charged current affect P and CP considerations in our radiative

Σ0 decay? Following Donoghue et al. [24], we state that theories which have

CP violation tend to produce nEDMs close to the experimental bounds.

Significantly, no electric dipole moment is produced at first order of the weak

interaction. This is because at tree-level, due to the non-flavour changing

nature of this order of the interaction, the CKM matrix combination V ∗ijVij

is real, and so there exists no CP inducing complex phase [24]. At second

order in the weak interactions, there is a possibility of a dipole moment in the

neutron being observed. This requires an additional gluon loop (see [24]) that

could manifest itself as a distinct contribution to CP violation. However, such

weak interaction contributions to the CP violating electric dipole moment

are several orders of magnitude smaller than the current experimental upper

bound of the nEDM [25].

2.5 Final State Interactions

The decay products of the radiative Σ0 decay are not asymptotic states yet.

Due to the strong/electromagnetic interaction(s) they undergo subsequent

scattering before ceasing to interact [3]. The observable consequence of these

strong/electromagnetic final state interactions (FSI) is the topic of discussion

in this section.

FSI becomes important when considering CP violation in hyperon decays.

In general, for a decay of hyperon M to a final state f , M → f , that proceeds

through two different elementary amplitudes A1 and A2, we can write the
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total transition amplitude as [23]:

A(M → f) = |A1|eiφ1eiδ1 + |A2|eiφ2eiδ2 . (2.103)

The phase φi changes sign for a CP conjugate decay (this is often called the

weak phase) whereas the phase δi does not change sign (termed the strong

phase or the final state interaction phase). The charge conjugate reaction

has the following transition amplitude:

A(M → f) = |A1|e−iφ1eiδ1 + |A2|e−iφ2eiδ2 . (2.104)

The asymmetry between the two decays is parameterized using a decay asym-

metry parameter, ACP , defined using partial decay rates as [23][3]:

ACP =
Γ(M → f)− Γ(M → f)

Γ(M → f) + Γ(M → f)
. (2.105)

Utilizing Eq. (2.103) and Eq. (2.104), we have:

ACP =
2|A2/A1| sin(φ1 − φ2) sin(δ1 − δ2)

1 + |A2/A1|2 + 2|A2/A1| cos(φ1 − φ2) cos(φ1 − φ2)
. (2.106)

Therefore, it is not the single phase of an amplitude that matters in dis-

cussions of CP violation (these can be redefined), but the phase difference

between two amplitudes. That is, an interference between the amplitudes is

necessary to have a CP violating effect [23]. Note also that for a CP violation

to be observable in the partial decay width calculation, we require a non-zero

weak phase difference (∆φW ≡ φ1−φ2 6= 0) and a non-trivial phase shift due

to FSI (∆δF ≡ δ1 − δ2 6= 0) as can be seen from Eq. (2.106) [3].

This is precisely what we expect happens in the radiative decay Σ0 → Λγ

where the even (for example, an s wave) and odd (for example, a p wave)

partial wave amplitudes of the final state interfere to produce a possible CP

violation. We can define a new parameter, called the decay asymmetry, that
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shows an s and p wave interference:

α =
2Re(s∗p)

|s|2 + |p|2
(2.107)

with s = |s|eiδseiφs and p = |p|eiδpeiφp . Here δs and δp are the s and p wave

phase shifts due to strong (or electromagnetic) FSI, while φs and φp are the

weak phases of the s and p waves, respectively [26].

Since the Σ0 → Λγ decay proceeds largely through an electromagnetic

channel, and because the weak part of this decay is suppressed, we consider

here an FSI phase shift solely due to strong/electromagnetic interactions of

the decay products. What remains to be seen is how a phase induced by FSI

affects C and CP symmetry considerations in our Σ0 decay.

Electromagnetic (and strong) FSI induces a phase shift δF so that we can

define a new complex constant c as follows:

c = cBe
iδF , c̄ = c̄Be

iδF . (2.108)

The constants cB, c̄B emerge from the interaction Lagrangian in Eq. (2.49).

Since cB is complex, it can have a modulus and a phase δB such that:

cB = |cB|eiδB , c̄B = −|cB|e−iδB = |cB|ei(π−δB) (2.109)

where in the second equation we have used the hermiticity condition

c̄B = −c∗B. The complex constant c can now be written as:

c = |cB|ei(δB+δF ), c̄ = |cB|ei(π−(δB−δF )). (2.110)

Going back to our discussion in Section 2.2, a C symmetric decay implies

cB = c̄B (i.e. cB is purely imaginary) and so c = c̄. Looking at Eq. (2.109),

this means that δB = π − δB (i.e. δB = π
2
) and the second possibility, δB =

3π−δB (i.e. δB = 3π
2

). As before, for a P violating Lagrangian, conservation

of C implies that the decay violates CP. What about the case when CP is

conserved? In Section 2.3 we stated that this is fulfilled when cB = −c̄B (i.e.

cB is purely real) and so c = −c̄. Looking at Eq. (2.109), we see that δB = 0
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and δB = π are the solutions. For a P violating decay, conservation of CP

implies C is violated. Note that for the case when P, C and CP are violated

(i.e. cB is neither purely real nor purely imaginary), δB is not a multiple of
π
2
.
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Chapter 3

Strong CP Problem

Having discussed generally the discrete symmetries and their violation in the

Standard Model, we will now study in detail their properties in the strong

sector. In this chapter, we will fist touch upon the U(1)A problem, providing

a brief review of this unrealized axial symmetry. This brings us to the QCD

vacuum which is the topic of discussion in the subsequent section. The

non-trivial structure of the QCD vacuum will lead us to the formulation of

the Strong CP Problem. We then discuss the effective vacuum angle and

present a possible solution to the U(1)A problem. The θ-vacuum term in the

QCD Lagrangian gives rise to a CP violating neutron electric dipole moment

which is also discussed in this section. In the last section, we make a slight

digression from the Strong CP problem to discuss the relation between the

neutron electric dipole moment and the electric dipole transition moment for

the Σ0-Λ transition relevant to the decay under study. This is possible due

to the SU(3) flavour symmetry, and we illustrate this using the framework

of Heavy Baryon Chiral Perturbation Theory.

3.1 The U(1)A Problem

The QCD Lagrangian in the limit of massless quarks for N flavours has a

global U(N)V × U(N)A symmetry [14]. Since the up and down quarks have

a significantly lower mass when compared to the masses of other flavoured
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quarks, one can safely say that the strong interaction respects an approxi-

mate U(2)V × U(2)A symmetry [27]. This can be further generalized if one

accommodates the strange quark, together with the up and down quarks,

in the massless limit. The strong interaction in this case is said to be ap-

proximately invariant under U(3)V ×U(3)A transformations. Indeed, we find

that experimentally the vector group U(3)V = SU(3)V ×U(1)B is a symme-

try that is approximately respected in nature. The SU(3)V group manifests

itself in the hadron spectrum as an approximate flavour symmetry among

quarks since the strong interaction does not discriminate between quarks of

differing flavours. Historically, this identification was made by Gell-Mann

and his colleagues in what was termed the Eightfold Way, which represented

this symmetry in the nucleon octet [21]. In fact, as we will see later in this

chapter, it is this flavour symmetry that helps us relate the neutron electric

dipole moment to the P violating electric dipole transition moment for the

Σ0-Λ transition. The U(1)B group, on the other hand, is an exact global

symmetry which is realized in nature as the conservation of baryon number.

The axial symmetry group U(3)A = SU(3)A × U(1)A is less straightfor-

ward. Dynamically, the formation of quark condensates < ūu >=< d̄d >6= 0

results in the spontaneous breakdown of this axial symmetry [27]. Following

the Goldstone Theorem, we expect to find eight pseudo-Goldstone bosons due

to the spontaneous breakdown of the SU(3)A group. In fact, this was shown

to be the case when the octet of mesons (π+, π−, π0, K+, K−, K0, K
0
, η) was

identified as the corresponding pseudo-Goldstone bosons. This is also why

one does not see mass degenerate parity doublets in the hadron spectrum.

However, the absence of a ninth pseudo-scalar meson as a pseudo-Goldstone

boson of the U(1)A group means that there is an excess U(1)A symmetry that

is not realized in nature. The η′ meson is too heavy to fulfill this role, with

m2
η′ � m2

K . This non-realization of the U(1) axial symmetry in the strong

interaction was labeled the U(1)A Problem by Weinberg [14][27]. As we will

see in the next section, the U(1)A problem is connected to the topologically

non-trivial structure of the QCD vacuum.
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3.2 QCD Vacuum & the Strong CP Problem

QCD as a theory of strong interactions is a gauge theory. This means that

local changes in the configurations of fields (gauge transformations) do not

affect the energy of the fields. This property, coupled to the fact that gauge

transformations in QCD are non-abelian, means that there are infinitely

many minimas in the energy associated with these fields [28]. For a pure

gauge field, i.e. a set of field configurations obtained by a gauge transfor-

mation on the null field, we can impose the boundary condition Aµa = 0 at

spatial infinity [27]. However, there are gauge transformations for which it

is not possible to deform the field back to the null-field configuration via

smooth transformations. We can define a topological quantity for a static

field called the winding number as follows [28]:

n =
1

32π2

∫
d4xεµνρσF a

µνF
a
ρσ. (3.1)

It is an integer for a pure gauge field. In slightly more formal terms, the

winding number characterizes the homotopy class for the S3 → SU(2) map-

ping, i.e. a mapping from the three dimensional Euclidean space to the SU(2)

space [27][21]. Because the gauge group U(1) can be easily deformed into

the null-field configuration for an S3 → U(1) mapping, we say that there

is no analogous definition of a winding number for Abelian gauge theories

[21]. For a field which vanishes at spatial infinity, the winding number can

be expressed in terms of a surface integral that is non-zero. This implies a

non-zero vacuum-vacuum transition amplitude. Thus the true vacuum is a

superposition of all these vacua (n in number) and is called the theta vacuum

[27]:

|θ〉 =
∑
n

e−inθ |n〉 (3.2)

where |n〉 denotes the pure gauge configurations and θ is called the vac-

uum angle. A gauge transformation that transforms the field configuration

|n〉 → |n+ 1〉 has a well defined solution, and such a tunneling event is called
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an instanton in the literature [28]. The effect of these mutually distinct theta

vacua is that the effective action gains an additional term. The path inte-

gral formulation of the vacuum to vacuum transition amplitude involves an

effective action which is dependent on the vacuum angle θ [29][27]:

Seff [A] = S0[A] +
θg2

32π2

∫
d4xF µν

a F̃aµν (3.3)

with S0[A] being the usual QCD action and F̃µν = εµναβF
αβ. This means

the QCD Lagrangian now has an addition θ-term:

LQCD = L0 + Lθ (3.4)

where L0 is the usual QCD Lagrangian given by:

L0 =
1

2
F µν
a F a

µν + q̄(i /D −M)q, (3.5)

and

Lθ =
θg2

32π2
F̃ a
µνF

µν
a (3.6)

is the P and T violating term due to the structure of the QCD vacuum.

Since the Lagrangian LQCD conserves charge conjugation symmetry, this

additional θ-term is a source of CP violation in the strong interaction. For

QCD to remain a CP conserving theory, this term must be zero. However,

as we will see in the next section, there is no reason why this should be the

case. On the other hand, its value is derived from the neutron electric dipole

moment, and is diminishingly small [27][29]. The fact that the θ angle has

such a small value (and is not zero) is called the Strong CP Problem.

3.3 Effective Vacuum Angle

The U(1)A problem finds its resolution in the non-trivial structure of the

QCD vacuum. Before discussing this possible solution however, we must note
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that the U(1)A problem is really a chiral anomaly, wherein the quantization

procedure leads to a charge that is not conserved [21]. The current associated

with nearly massless up, down and strange quarks is [29]:

Jµ5 = ūγµγ5u+ d̄γµγ5d+ s̄γµγ5s. (3.7)

This current is conserved in the massless quark limit up to tree level. At first

loop order, this current diverges and it is given as [21][27][29]:

∂µJ
µ
5 =

g2N

16π2
F µν
a F̃aµν . (3.8)

This is an exact result and ∂µJ
µ
5 6= 0 in QCD [29]. As we can see, it holds

true even in the massless quark limit. This U(1)A chiral transformation,

qi → e−iαfγ5qi, brings about a change in the Lagrangian [29]:

δL = αf
g2N

16π2
F µν
a F̃aµν (3.9)

If we now make the identification, N = −θ/2αf , we notice that the effect of

the theta vacua given in Eq. (3.6) is removed. Unhappily, things are not as

simple. Since quarks are not massless (and if we were to also include weak

interactions), we have a general mass term in the Lagrangian which can be

written as:

LM = qiRMijqjL + h.c. (3.10)

where Mij represents the complex quark mass matrix. The U(1)A chiral

transformation, qi → e−iαfγ5qi, then leads to an additional phase when we

diagonalize the mass matrix [29]:

mf → e−2iαfmf (3.11)

44



where f and mf denotes the flavour and mass of individual quarks, respec-

tively. The chiral rotation does not leave the vacuum state invariant either:

θ → θ̄ = θ −
∑
f

αf = θ − arg det[M ]. (3.12)

This new vacuum term is called the Effective Vacuum Angle, θ̄, and it is non-

zero. Put another way, it is this Effective Vacuum Angle that determines the

CP violating neutron electric dipole moment and therefore it is more accurate

to use θ̄ than θ-vacuum when speaking of the Strong CP Problem.

The chiral transformation of the quarks leads to a CP violating pion-

nucleon interaction vertex (for details see [29], [21]):

LπNN = gπNNNτ
aNπa (3.13)

with the coupling constant gπNN depending on the Effective Vacuum Angle

θ̄ as follows:

gπNN = −θ̄ mumd

mu +md

1

Fπ

mΞ −mN

2ms −mu −md

. (3.14)

For the case where the nucleon is the neutron, the interaction vertex gives

us a theoretical estimation of the neutron electric dipole moment (nEDM),

|dtheon | ∼ 1.1 × 10−16θ̄ e cm. The current experimental upper bound of the

nEDM is |dexpn | ≤ 2.9 × 10−26e cm. This yields a value of θ̄ ≤ 2.5 × 10−10

[10][29].

3.4 Heavy Baryon Chiral Perturbation The-

ory

As we briefly discussed in the introduction to this chapter, due to the SU(3)

flavour symmetry between quarks, a non-zero nEDM in an n-n transition

translates to a non-trivial electric dipole transition moment for the Σ0-Λ

transition. This is precisely the transition that is of interest for our decay

Σ0 → Λγ → pπ−γ. In order to extract the exact nature of this corre-
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spondence between the nEDM and the electric dipole transition moment,

we make use of the framework of Heavy Baryon Chiral Perturbation Theory

(HBChPT), which is the effective field theory used to describe interactions

in the baryonic sector [30][31].

Following Ottnad et al. [10], we can write down the most general, relativis-

tic effective Lagrangian comprising the baryon octet B, up to (and including)

the second order in the derivative expansion. The effective vacuum angle is

now treated as an external field which transforms under a U(1)A rotation

as in Eq. (3.12). As can be seen from Eq. (3.12), the displacement of this

source θ̄ compensates for the chiral rotation of the mass matrix arising from

the Yukawa coupling. The Lagrangian in Eq. (3.4) is now invariant under

an approximate U(3)R × U(3)L symmetry [31]. This θ̄ source is introduced

in our effective Lagrangian as θ̄ = θ − i ln det Ũ (Ũ being a function of the

matrix valued fields U = exp
(√

2
3
i
F0
η0 + 2i

Fφ
φ
)

[10]) along with the baryon

octet B, and the octet mass m̊ in the chiral limit:

LφB = iTr[B̄γµ[Dµ, B]]− m̊Tr[B̄B]− D/F

2
Tr[B̄γµγ5[uµ, B]±]− λ

2
Tr[B̄γµγ5B]Tr[uµ]

+ bD/FTr[B̄[χ+ − iA(U − U †), B]±] + b0Tr[B̄B]Tr[χ+ − iA(U − U †)]

+ 4Aω′10

√
6

F0

η0Tr[B̄B] + i
(
ω′13/14θ̄ + ω13/14

√
6

F0

η0

)
Tr[B̄σµνγ5[F+

µν , B]±]

+ ω16/17Tr[B̄σµν [F+
µν , B]±]

(3.15)

where D and F are axial vector couplings that can be determined from semi-

leptonic hyperon decays, λ is the isosinglet axial coupling, A is a complicated

function of θ̄ (see [31]), b0 and bD/F are low energy constants (LECs) repre-

senting the leading explicitly symmetry breaking terms, while ωi are related

to the coupling of the baryon fields to the singlet field [10]. ω16/17 is the

exception here, since these constants are nothing but the magnetic moment

couplings. The baryon octet containing the hadrons relevant to our decay is
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given by the matrix [31]:

B =


1√
2
Σ0 + 1√

6
Λ Σ+ p

Σ− − 1√
2
Σ0 + 1√

6
Λ n

Ξ− Ξ0 − 2√
6
Λ

 . (3.16)

The covariant derivative of the baryon field is [10],[31]:

[Dµ, B] = ∂µB + [Γµ, B] (3.17)

with Γµ being the chiral connection, given as follows:

Γµ = [u†(∂µ − irµ)u+ u(∂µ − ilµ)u†]/2. (3.18)

Note that rµ and lµ are conventional external sources that go into the defi-

nition of the field strength tensor, F+
µν :

F+
µν = u†FR

µνu+ uFL
µνu

†

= ∂µ(rν + lν)− ∂ν(rµ + lµ)− i([rµ, rν ] + [lµ, lν ]) (3.19)

where in the second step we have set u = u† = 1, and made the substitution

FR
µν = ∂µrν − ∂νrµ − i[rµ, rν ] and FL

µν = ∂µlν − ∂νlµ − i[lµ, lν ]. If we now use

the definition of these external sources, i.e. rµ = vµ + aµ and lµ = vµ − aµ,

and make the identification aµ = 0 and

vµ = eAµ


2
3

0 0

0 −1
3

0

0 0 −1
3

 , (3.20)

for electromagnetic interactions, we end up with a field strength tensor that

has the following form:

F+
µν = 2e


2
3

0 0

0 −1
3

0

0 0 −1
3

 (∂µAν − ∂νAµ) = 2e


2
3

0 0

0 −1
3

0

0 0 −1
3

Fµν . (3.21)
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The term in Eq. (3.15) containing the constants ω′13/14 and ω13/14 are of

particular interest to us, since it is this term in the Lagrangian that gives rise

to a CP violation which manifests itself as the nEDM (for an n-n transition)

and the electric dipole transition moment (for the Σ0-Λ transition) [10][31].

In order to explicitly derive the interaction Lagrangian that is relevant to

our decay, we isolate this Lagrangian term,

LI = i
(
ω′13/14θ̄ + ω13/14

√
6

F0

η0

)
Tr[B̄σµνγ5[F+µν , B]±] (3.22)

and utilize Eq. (3.21) and Eq. (3.16), while setting the fields Σ+,Σ−,Ξ+,Ξ0, p→
0. We obtain:

LI = −2ie

9
(ω′13θ̄0 +

√
6

F0

η0ω13)
[
6n̄γ5σµνnF

µν − 3
√

3Λγ5σµνΣ
0F µν

− 3
√

3Σ
0
γ5σµνΛF

µν + 3Λγ5σµνΛF
µν − 3Σ

0
γ5σµνΣ

0F µν
]
.

(3.23)

In the relativistic case, the nEDM is defined by the following interaction

Lagrangian [31]:

LnEDM =
1

2
dγnen̄iσµνγ5nF

µν (3.24)

Comparing this to Eq. (3.23), we can determine the LEC coefficients common

to all the interaction terms. Thus, we get an estimation of the electric dipole

transition moment for the Σ0-Λ transition from the current experimental

upper bound of the nEDM. The details of this calculation, including the

determination of a numerical value, is carried out in Chapter 6. However, we

still require the most general matrix element for the current that characterizes

this transition. This is the topic of the following chapter, where we discuss

the most general current for the Σ0-Λ transition using Loretnz invariance as

a guiding constraint. We will derive functions called transition form factors

which will play the crucial role of parameterizing the P violating electric

dipole transition moment that we have just determined.
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Chapter 4

Transition Form Factors

Form factors play an important role in determining the structure of baryons,

their magnetic properties and charge distribution [13]. Of particular con-

cern to our decay is the study of transition form factors, which has provided

valuable information about the charge and magnetic properties of nucleons

(also the Delta hadron) and mesons, as well as their underlying quark and

gluon structure (see for instance [8],[9],[32],[33]). In this present work, we

make use of transition form factors to parameterize the P (and possible CP)

violating decay. The emergence of this possible P and CP violation was dis-

cussed in the previous chapter as part of the theta vacuum term in the QCD

Lagrangian. This chapter is devoted to deriving the most general Lorentz

invariant electromagnetic current, which will in turn help us identify the

Lorentz invariant (electromagnetic) transition form factors. In the process,

we will discuss properties such as current conservation and parity symme-

try of this current. Lastly, we will eliminate terms in the current that are

not relevant to our decay, and present the Lorentz invariant transition form

factors for the Σ0-Λ transition.

Lorentz Invariant Electromagnetic Current

We are interested in deriving the most general Lorentz invariant electromag-

netic current which will enable us to pin down the transition form factors
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important to our radiative decay. The expectation value of a current J µ for

a spin 1/2 baryon transition B-B′ is generally given by [34],[35]:

〈B′(p′)| J µ(x) |B(p)〉 = e−i(p−p
′).x 〈B′(p′)| J µ(0) |B(p)〉 . (4.1)

where we have used the fact that under translation in space and time, the

current transforms as:

J µ(x) = eiP̂ xJ µ(0)e−iP̂ x

with P̂ being the momentum operator. We can rewrite the above matrix

element as [34]:

〈B′(p′)| J µ(0) |B(p)〉 = ūB′(p
′)Γµ(l, q)uB(p) (4.2)

with lµ = p′µ + pµ and qµ = pµ − p′µ. Note that Γµ(l, q) is the vertex func-

tion (a 4×4 matrix acting on spinors), which contains the Lorentz invariant

transition form factors we are after.

If we now consider all possible structures (four-vectors, gamma matrices,

tensors etc.) that can be contracted so that the current is manifestly Lorentz

covariant, we are left with a matrix element that has the following form:

〈B′(p′)| J µ(0) |B(p)〉 = ūB′(p
′)

(∑
i

ai(q
2)IAµi (l, q) +

∑
i

bi(q
2)γνB

µν
i (l, q)

+
∑
i

ci(q
2)γ5C

µ
i (l, q) +

∑
i

di(q
2)γνγ5D

µν
i (l, q)

+
∑
i

ei(q
2)σαβE

µαβ
i (l, q)

)
uB(p).

(4.3)

Note that the functions ai, bi, ci, di and ei are Lorentz invariant as they

depend only on q2. We would now like to list, concretely, all structures that

could accompany these functions, keeping in mind the condition of Lorentz

invariance. For the first term in Eq. (4.3) with only one Lorentz index, we
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can safely conclude:

Aµ1 = qµ, Aµ2 = lµ. (4.4)

Now, going back to Eq. (4.3), the tensor accompanying the second term

has two Lorentz indices and can take on the following Lorentz invariant forms:

Bµν
1 = gµν , Bµν

2 = εµναβqαlβ. (4.5)

The first of these two, γνg
µν , simply raises the index of the gamma matrix,

which is an independent structure. The latter term, γνB
µν
2 , can be further

broken down, as we will show when analyzing a similar structure γνγ5D
µν
2

below 1. Note that we haven’t included terms like Bµν
i = lµlν (or structures

like lµqν ; qµlν ; qµqν) in Eq. (4.5), since they contract with the gamma matrix

in the second term of Eq. (4.3) to yield structures like lµ/l and lµ/q. These

structures are redundant as they can be expressed in terms of Eq. (4.4) using

the equation of motion for Dirac spinors.

Referring to Eq. (4.3), we now consider the third term in that expression.

With only one Lorentz index available, we write down the same structures

as we did in Eq. (4.4):

Cµ
1 = qµ, Cµ

2 = lµ. (4.6)

Cµ
1 when inserted back in Eq. (4.3) yields the independent structure qµγ5

which we would like to retain. The form of Cµ
2 shown above gives us lµγ5.

We now analyze the fourth term in Eq. (4.3), which tells us by the same

reasoning that D1 and D2 can have the same structures as Bµν
i did in

Eq. (4.5):

Dµν
1 = gµν , Dµν

2 = εµναβqαlβ. (4.7)

Note that structures like Dµν
i = lµqν (or structures like lµlν ; qµlν ; qµqν) in the

fourth term of Eq. (4.3) are redundant as they can be expressed in terms of

1We use here the convention ε0123 = −1 for the Levi-Civita tensor.
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Cµ
1 and Cµ

2 by using the equation of motion for Dirac spinors. Dµν
1 contracts

the gamma matrix to give us the independent term γµγ5. Dµν
2 is a composite

term, and this can be illustrated as follows:

ūB′(p
′)iγνγ5ε

µναβqαlβuB(p) = ūB′(p
′)γν

1

4!
εµ
′ν′α′β′γµ′γν′γα′γβ′ε

µναβqαlβuB(p)

∼ ūB′(p
′)

∣∣∣∣∣∣∣∣∣∣
gµ
′µ gν

′µ gα
′µ gβ

′µ

gµ
′ν gν

′ν gα
′ν gβ

′ν

gµ
′α gν

′α gα
′α gβ

′α

gµ
′β gν

′β gα
′β gβ

′β

∣∣∣∣∣∣∣∣∣∣
γνγµ′γν′γα′γβ′qαlβuB(p)

(4.8)

where we have used the formal definition of γ5 matrix in the first step, γ5 =

− i
4!
εµναβγµγνγαγβ [36] and used the determinant of the metric tensor in place

of the Levi-Civita tensor product in the second step. We see from the above

expression that this is related to the terms ūB′l
µuB, ūB′q

µuB and ūB′γ
µuB

and is therefore not independent. Using the same reasoning, we can also

show that the term considered previously in Eq. (4.5), ūB′γνB
µν
2 uB, can be

shown to be composed of ūB′q
µγ5uB, ūB′l

µγ5uB and ūB′γ
µγ5uB by making

use of the following trick and proceeding as before:

ūB′(p
′)γνε

µναβqαlβuB(p) = ūB′(p
′)γνγ5ε

µναβqαlβγ5uB(p) (4.9)

Finally, we come to the last term of Eq. (4.3), which contains Eµαβ
i . The

structure Eµαβ
1 = gµαlβ is not independent and can be further decomposed.

On contracting Eµαβ
1 = gµαlβ with the tensor σαβ, we obtain a structure

of the form σµβlβ. We will now show that this structure can be simplified

further. We use the following relation to aid our calculation:

iσµβ = −1

2
(γµγβ − γβγµ) = gµβ − γµγβ (4.10)

where we have used {γµ, γβ} = 2gµβ. Equivalently, the above relation can be
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written as:

iσµβ = γβγµ − gµβ. (4.11)

Therefore,

ūB′(p
′)iσµβlβuB(p) = ūB′(p

′)iσµβ(p′ + p)βuB(p)

= ūB′(p
′)[(γβγµ − gµβ)p′β + (gµβ − γµγβ)pβ]uB(p)

= ūB′(p
′)[/p′γµ − p′µ + pµ − γµ/p]uB(p)

= ūB′(p
′)[(mB′ −mB)γµ + qµ]uB(p) (4.12)

where in the last step we made use of the equation of motion for the Dirac

spinor, (/p −m)u(p) and its conjugate. Thus the structure σαβE
µαβ
1 can be

expressed in terms of γµ and qµ.

Similarly, we can rewrite another possible structure Eµαβ
2 = gµαqβ in

terms of a gamma matrix and four-momentum. On contracting Eµαβ
2 with

σαβ, we obtain a structure of the form σµβqβ. As was done above, we derive

the following property using Eq. (4.10) and Eq. (4.11):

ūB′(p
′)iσµβqβuB(p) = ūB′(p

′)iσµβ(p− p′)βuB(p)

= ūB′(p
′)[(gµβ − γµγβ)pβ − (γβγµ − gµβ)p′β]uB(p)

= ūB′(p
′)[pµ − γµ/p− /p′γµ + p′µ]uB(p)

= ūB′(p
′)[lµ − (mB +mB′)γ

µ]uB(p) (4.13)

We will henceforth express lµ (recall that this is the structure Aµ2) in terms

of γµ and σµβqβ as shown in Eq. (4.13).

Note that because σαβ in the final term of Eq. (4.3) is an antisymmetric

tensor, contracting it with gαβlµ (or gαβqµ) gives us a null result since the

product of a symmetric tensor like gαβ with an anti-symmetric one like σαβ

makes this term zero. The same reasoning elimantes structures of the form

Eµαβ
i = lµlαlβ (or any such combination where both the indices of the σαβ

tensor is contracted by the same four-momentum). However, the structures
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of the following form are non-zero and allowed by Lorentz invariance:

Eµαβ
3 = lµlαqβ, Eµαβ

4 = qµlαqβ. (4.14)

On expanding the σαβ in terms of the gamma matrices (see Eq. (4.10)) and

using the equation of motion for Dirac spinors, we note that the structures

in Eq. (4.14) reduces to those in Eq. (4.4).

Another structure that satisfies the condition of Lorentz invariance is

σαβE
µαβ
5 = σαβε

αβµνqν . This term can be rewritten using the property [36]:

σµνγ5 = − i
2
εαβµνσαβ (4.15)

so that the independent structure we would like to preserve in the last term

of Eq. (4.3) is σαβE
µαβ
5 ≡ iσµνγ5qν . The same method can be applied to the

term σαβE
µαβ
6 = σαβε

µναβlν . If both the indices of σαβ are contracted by the

Levi-Civita tensor, we have the structures σαβE
µαβ
7 = σαβε

αβρκqρlκq
µ and

σαβE
µαβ
8 = σαβε

αβρκlρqκl
µ which satisfy the condition of Lorentz invariance.

These can be similarly shown to be redundant using the above property

(Eq (4.15)) and following exactly what we did with the terms in Eq. (4.14).

If, on the other hand, only one index of σαβ is contracted with the Levi-

Civita tensor, then we can have the following structures:

σαβE
µαβ
9 = σαβε

αµκρlκqρl
β, σαβE

µαβ
10 = σαβε

αµκρlκqρq
β. (4.16)

If we now use Eq. (4.12) and Eq. (4.13), we can reduce the above two struc-

tures to simpler ones that have been covered already.

Lastly, we use the following property to write lµγ5 (recall that this is

Cµ
2 γ5) in terms of σµνγ5 (see Eq. (4.15)) and the gamma matrices:

ūB′(p
′)iσµνγ5qνuB(p) = ūB′(p

′)iσµνγ5(p− p′)νuB(p)

= ūB′(p
′)[(gµν − γµγν)γ5pν − (γνγµ − gµν)γ5p

′
ν ]uB(p)

= ūB′(p
′)[γ5p

µ + γµγ5/p− /p′γµγ5 + γ5p
′µ]uB(p)

= ūB′(p
′)[(mB −mB′)γ

µγ5 + lµγ5]uB(p). (4.17)
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We will henceforth express lµγ5 in terms of γµγ5 and iσµνγ5qν . We therefore

have eliminated the four-momentum l in favour of q in our Lorentz invariant

current.

Based on our discussion above, the most general Lorentz invariant current

containing only independent terms is:

〈B′(p′)| J µ(0) |B(p)〉 = ūB′(p
′)
(
a1(q2)qµ + b1(q2)γµ + c1(q2)qµγ5 + d1(q2)γµγ5

+ a2(q2)σµνqν + e3(q2)σµνγ5qν

)
uB(p).

(4.18)

This is sometimes referred to in the literature as the weak-current form

factor decomposition (see [35]). This is because we still have not imposed

the constraint of current conservation on Eq. (4.1). This is analogous to im-

posing the condition of gauge invariance in QED which gives rise to massless

gauge bosons (photons). Since the gauge invariance in the weak sector is

spontaneously broken giving rise to massive gauge bosons, the weak current

is not conserved [35]. Applying current conservation, we have:

qµ 〈B′(p′)| J µ(0) |B(p)〉 = 0 (4.19)

which results in the following demand when applied to Eq. (4.18):

a1(q2)q2 + b1(q2)(mB −mB′) + c1(q2)q2γ5 − d1(q2)(mB +mB′)γ5 = 0.

(4.20)

This implies:

a1(q2) = b1(q2)
(mB −mB′)

q2
, and d1(q2) =

c1(q2)q2

(mB +mB′)
. (4.21)

We are finally left with four independent transition form factors in our gauge

invariant current for the B-B′ transition which is conventionally expressed
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as [10],[35],[31]:

〈B′(p′)| J µ
em(0) |B(p)〉 = ūB′(p

′)

(
F1(q2)

(
γµ +

(mB′ −mB)

q2
qµ
)
− iσµνqν
mB +mB′

F2(q2)

+ i
(
γµq2 + (mB′ +mB)qµ

)
γ5FA(q2) +

σµνqνγ5

mB +mB′
F3(q2)

)
uB(p)

(4.22)

where qν = (p − p′)ν . If B and B′ have the same intrinsic parity then the

functions F1(q2) and F2(q2) are the P conserving Dirac and Pauli transition

form factors. Now, FA(q2) and F3(q2) are the P violating Lorentz invari-

ant transition form factors and are termed the anapole form factor and the

electric dipole form factor, respectively. At q2 = 0, these form factors have

specific normalizations [37]:

F1(0) = QB, F2(0) = κ

where QB is the electric charge and κ is the anomalous magnetic transition

moment. The P violating terms at q2 = 0 have values FA(0) and F3(0) which

are the anapole transition moment and the electric dipole transition moment,

respectively.

For the decay Σ0 → Λγ at the real photon point (i.e. q2 = 0), we have a

transition between two neutral particles and so F1(0) = 0. The third term in

Eq. (4.22) also disappears at q2 = 0, since the contraction qµεµ = 0 with εµ

being the photon polarization. In the end, we are left with a matrix element

of the current for the Σ0-Λ transition that takes the form:

〈Λ| J µ(0) |Σ0〉 = ūΛ(pΛ)e
( iκσµνqν
mΣ +mΛ

− icσµνqνγ5

mΣ +mΛ

)
uΣ(pΣ) (4.23)

where we have used F2(0) = κ and iF3(0) = c. Note that q fulfills four-

momentum conservation for a real photon, i.e. q = (pΣ − pΛ). The term in

the matrix element containing the electric dipole transition moment F3(0)

thus parametrizes P violation in our decay. Given such a P violation, we

expect to see an angular distribution between the final decay products. The
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kinematics of such a P violating three-body decay is discussed next.

57



Chapter 5

Neutral Sigma Decay

The Σ0 hyperon decay is a two step process. The Σ0 first decays into the

Λ hyperon and a photon. In the next step, the Λ hyperon decays via the

weak interaction to give a proton and a pion. The whole decay can then be

characterized as a three-body decay given by Σ0 → p π−γ. Following the

idea presented by Dreitlein et al. [38], in this chapter we will show that for

a parity non-conserving first decay, the P violation will manifest itself as an

angular dependence between two of the final decay products in the Λ rest

frame. We will first illustrate this using all possible spin configurations of the

initial Σ0 hyperon and its decay products, noting how a P violation affects

these different possibilities. We will then analyze this more concretely by

studying the decay rate for a three-body decay chain, i.e. a radiative decay

followed by a weak decay. We will see how a parity conservation in the first

decay implies a flat decay distribution, i.e. a differential decay rate that is

constant with respect to the cosine of the angle between two of the final

decay products.

5.1 Spin Configurations

The first decay, Σ0 → Λγ, is dominated by the electromagnetic interaction

and was thus thought to be parity conserving. In 1961, Dreitlein and Pri-

makoff presented their seminal paper which established a method to calculate
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Figure 5.1: Illustrating the selection rules for the Σ0 → Λγ decay. Dreitlein,
J. et al. [38]

the lifetime of the Σ0 particle. In addition, in the same paper, they exam-

ined the effect of parity non-conservation in the Λ-Σ0 transition. Starting

from a P violating effective Lagrangian, they showed that the variation of

the polarization of the Λ hyperon with the angle between the polarization of

the Σ0 particle and the line of flight of the Λ hyperon (in Σ0 rest frame), is a

suitable test for parity conservation in the reaction Λγ → Σ0 [38]. Following

the same logic, we will test the parity symmetry for our three-body decay of

Σ0, but with respect to the angle between the proton and the photon in the

Λ rest frame.

Figure 5.1 illustrates the selection rules operational in the decay of the

neutral Sigma particle in the Λ rest frame. ~pΣ and ~qγ indicate the three-

momentum of the Σ0 and the photon, respectively. The labels ~sΣ, ~sΛ and

~sγ denote the possible spin states of the Σ0, Λ and photon. Note that a

rightward arrow for spin configurations in Figure 5.1 indicates a positive

value while a leftward arrow indicates negative spin values. The two-body

decay reduces to a one-dimensional problem in the Λ rest frame. This means

we do not have orbital angular momentum in this case. The spins (along the

line of flight) of the Σ0 and the photon just add up.

The radiative decay emits a real photon which therefore has two possible

helicities of ±1. Cases (c) and (d) are evidently forbidden due to angular

momentum conservation since we are dealing with spin 1/2 hyperons. We are
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then left with cases (a) and (b) as the only two permissible spin configurations

for the Σ0 → Λγ decay. Thus, if we know the spin of any of the three particles

involved in this decay, then we know the spins of all particles. When parity

is conserved, the cases (a) and (b) are identical. If we were to take a mirror

image of case (a) and rotate it by 180◦ (a parity operation), we would end

up with case (b). We will shortly explore what this means kinematically, in

terms of the matrix element calculation of this decay. For now it is sufficient

to note that P conservation results in the angular information of the Σ0

hyperon carried by Λ being averaged out by the spin sums. If P is violated

however, we can distinguish between cases (a) and (b), since this will result

in different probabilities when calculating the decay width. If the spins of the

initial (and final) states are not determined, P violation implies two distinct

decay widths for cases (a) and (b). If the spins of the initial (or final) states

are known, as is the case when considering the production process, then too

we expect to find cases (a) and (b) to be distinguishable even if parity is

conserved in the decay. Thus, for a radiative decay emitting a real photon,

the initial helicity of the Σ0 hyperon is sufficient to determine the helicities

of Λ and the photon. This is the reason why this decay lends itself so nicely

to the test of P violation via the method prescribed in Dreitlein et al. [38].

We will now look at how a P violation would manifest itself in the differential

decay width calculation for the Σ0 → pπγ decay.

5.2 P Violation & Angular Distribution

For a two-step decay, i.e. a radiative decay of a Σ0 hyperon followed by a

weak decay of Λ, the spin averaged differential decay rate is obtained by

using:

dΓ ∼
∑

s,r,r′,g,p

Ms→r,gMr→pM∗
s→r′,gM∗

r′→p (5.1)

where we have taken into account possible interferences between amplitudes.

Ms→r,g is the Lorentz invariant Feynman matrix element for the decay Σ0 →
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Λγ, andMr→p is the Lorentz invariant Feynman matrix element for the decay

Λ → pπ−. Now s denotes the spin orientation of the Σ0 hyperon, while r

and r′ are the spin orientations of the Λ, g is the helicity of the photon and

lastly, p refers to the spin orientation of the proton. Note that Eq. (5.1) does

not show certain constant terms and phase space factors since these are not

germane to the discussion at hand. The differential decay rate is therefore

shown to be proportional to the quantities on the right-hand side.

Looking at the decay diagram in Figure 5.2, we see that due to momentum

conservation, the direction of the Σ0 hyperon and the photon are aligned in

the Λ rest frame. Similarly, since the Λ hyperon is at rest, its decay products,

the proton and the pion, are also aligned.

Figure 5.2: Σ0 decay diagram in Λ rest frame.

As we saw in the previous section, due to angular momentum conserva-

tion, the only permissible spin states for this decay are the values s = ±1/2

with r = ∓1/2 and g = ±1. Note that if the photon was virtual, then it

could have three possible polarizations and the spin orientation s would not

be sufficient to determine the values of r and g. Thus, for the decay with a
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real photon, Eq. (5.1) can be written as:

dΓ ∼
∑
s,p

|Ms→r,g|2|Mr→p|2

=
∑
p

(|M+1/2→−1/2,+1|2|M−1/2→p|2 + |M−1/2→+1/2,−1|2|M+1/2→p|2).

(5.2)

If our decay satisfies parity symmetry, then |Ms→r,g| = |M−s→−r,−g|. There-

fore, for a P conserving decay we see that:

dΓ ∼ |M+1/2→−1/2,+1|2 ×
∑
p

(|M−1/2→p|2 + |M+1/2→p|2)

=
1

2

∑
s,r,g

|Ms→r,g|2
∑
r′ ,p

|Mr′→p|2. (5.3)

Note that we end up with a product of two spin averaged quantities. These

spin averaged quantities are constrained by Lorentz invariance, and so they

can only depend on Lorentz invariant combinations of four-momenta. The

matrix element Ms→r,g in Eq. (5.3) can then be seen to be a function of

Σ0 momentum p2
Σ (nothing but the mass m2

Σ and thus constant), photon

momentum q2
γ (0 for a real photon), and the scalar product pΣ.qγ. The

momentum of Λ is fixed by energy-momentum conservation. Since the Λ

hyperon is real, we note that the product pΣ.qγ is also constant.

The second quantity in Eq. (5.3),Mr′→p, will depend on Lorentz invariant

combinations of pion and proton four-momentum, i.e. pπ and l, with the

momenta of Λ being fixed yet again by energy-momentum conservation. The

possible combinations of four-momenta are p2
π (= m2

π; constant), l2 (= m2
p;

constant) and the scalar product pπ.l (which for real Λ is also constant).

Since the quantity Mr′→p does not depend on qγ, the photon momentum,

the scalar product qγ.l (alternatively, qγ.pπ) never arises. Thus the right-

hand side of Eq. (5.3) cannot depend on the angle between the photon and

the proton (or pion and the photon). Note that what we have said so far

holds true even if we replace our Σ0 hyperon with a spin 3/2 hyperon.
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What the preceding observations mean is that our differential decay rate

is flat and does not depend on the cosine of the angle between the pion and

photon for a parity conserving radiative decay:

dΓ

dm2
γπ

= const. (5.4)

with m2
γπ = (qγ + pπ)2 = m2

π + 2EγEπ − 2|~qγ||~pπ| cos(π − θ) evaluated in the

rest frame of the Λ hyperon (See Figure 5.2). Equivalently, we could restate

Eq. (5.4) with the decay rate differential in m2
γp (angle between photon and

proton). Conversely, if we obtain a decay rate for our decay chain Σ0 → pπ−γ

that is not flat, this would imply a parity non-conservation in this process.

This is entirely independent of any parity violation that may take place in the

second decay Λ → pπ−. The explicit calculation of the angular dependence

in the decay rate due to parity violation will now be carried out in the next

chapter, Chapter 6.

The same analysis can also be carried out for the charge conjugated re-

action Σ
0 → pπ+γ. For a charge symmetric reaction, this should produce

an identical differential decay width. We carry out this calculation explic-

itly in Chapter 6. Any possible CP violation would then produce differing

decay asymmetries, an indication that the Strong CP effect has observable

consequences.
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Chapter 6

Calculations & Results

The aim of this thesis is to find possible P and CP violation in the de-

cay of the Σ0 hyperon. To this end we discussed in Chapter 5 how such a

violation would manifest itself as an angular dependence between the pro-

ton and the photon in the decay rate of the Σ0 hyperon. In Chapter 4 we

discussed the parametrization of this CP violating term via the study of

baryon transition form factors. Following Ottnad et al. [10], we identified

the nEDM as the realization of this possible violation. Using the framework

of HBChPT we analyzed, in Chapter 5, how we can provide an estimate of

this angular distribution based on the current upper bound of the nEDM.

This section provides the methods and calculations required to establish this

estimate. First, we discuss the largely electromagnetic decay Σ0 → Λγ us-

ing the knowledge of Σ0-Λ electromagnetic transition form factors. Next, we

analyze the strangeness violating weak decay of the Λ hyperon, Λ → pπ−.

Finally, using our knowledge of these two decays, we study the combined

three-body decay Σ0 → pπ−γ for the case where the initial Sigma hyperon is

unpolarized. We then determine the effects of the production process on the

angular distribution of the final decay products and investigate whether such

an effect can be disentangled from possible CP violation. Lastly, we perform

the same calculations for the decay of the neutral anti-Sigma hyperon, with

the goal to determine any discrepancy between this decay and that of the

neutral Sigma particle.
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6.1 Decay of the Neutral Sigma Hyperon

6.1.1 Electromagnetic decay Σ0 → Λγ

In Chapter 4, we analyzed the electromagnetic transition form factors that

play a crucial role in identifying the discrete symmetries respected by an

interaction. The electromagnetic interaction is thought to conserve P and

CP symmetry. Referring to Chapter 4, this would imply setting F3(q2) = 0

and FA(q2) = 0 in Eq. (4.22) which gives us the Lorentz covariant current for

a purely electromagnetic transition. The matrix element for the current in

terms of form factors is then given by [37]:

〈B′(p′)| Jµ |B(p)〉 = eū(p′)

(
γµF

B
1 (q2) +

iσµνq
ν

mB +mB′
FB

2 (q2)

)
u(p) (6.1)

where Jµ represents the quark vector current and q is the photon four-

momentum, q = p − p′. FB
1 (q2) and FB

2 (q2) are the Dirac and Pauli form

factors which contain information about the baryon structure at a given pho-

ton four-momentum. From our discussion of fermion bilinears in Chapter 2,

we can see that this matrix element conserves both parity and CP symmetry.

Following Kubis et al. [37], we state that in the low momentum limit q2 → 0

the form factors have the following normalization:

FB
1 (0) = QB, FB

2 (0) = κB (6.2)

where FB
1 (0) is the electric charge QB and FB

2 (0) is the anomalous magnetic

moment κB of the probed baryon. We can also construct electric and mag-

netic Sachs form factors GE/M as linear combinations of the above two form

factors. This is conventionally used by experimentalists while estimating the

square radius of the charge or magnetic distribution, see for instance [37],[13].

For our specific decay Σ0 → Λγ, the Σ0-Λ transition form factors can be

65



generalized as (see Eq. (4.22) and Eq. (4.23)):

〈Λ(pΛ)| Jµ |Σ0(pΣ)〉 = eū(pΛ)

((
γµ +

mΛ −mΣ

q2
qµ
)
F1(q2) +

iσµνq
ν

mΛ +mΣ

F2(q2)

)
u(pΣ)

(6.3)

with q = pΣ − pΛ. The presence of the 1
q2

term in Eq. (6.3) enforces the

vanishing of F1 at the real photon point [9], i.e. F1(0) = 0. The value of

the anomalous transition magnetic moment, F2(0) = κ, is determined by

calculating the decay width for our electromagnetic decay.

In general, the matrix element for a vertex function Γµ corresponding to

an electromagnetic decay is [13]:

iM = ū(p′)(ieΓµ)u(p)εµ. (6.4)

In this particular case, the vertex function takes the form:

Γµ =
iκσµνq

ν

mΛ +mΣ

. (6.5)

Therefore the matrix element for the Σ0 → Λγ decay given by the Lorentz

invariant transition form factors shown above is:

MΣ0→Λγ = ūΛ
eiσµνq

ν

mΛ +mΣ

κuΣ ε
µ. (6.6)

For a two-body decay, the spin-averaged matrix element is constant because

any Lorentz invariant combination of four-momenta is fully specified by the

masses. The decay width is then given as [16]:

ΓΣ0→Λγ =
1

16πm3
Σ

(m2
Σ −m2

Λ)〈|M|2〉 (6.7)

where 〈|M|2〉 is the spin-averaged squared matrix element for this decay.

Squaring the matrix element given in Eq. (6.6) and averaging over initial
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spins and summing over final ones, we get:

〈|M|2〉 =
e2κ2

2(mΛ +mΣ)2
Tr[(/pΛ

+mΛ)σµν(/pΣ
+mΣ)σρα]gµρqνqα. (6.8)

Taking the trace, we see that the spin averaged matrix element reduces to:

〈|M|2〉 =
2e2κ2

(mΛ +mΣ)2
(m2

Σ −m2
Λ)2. (6.9)

Plugging this back into Eq. (6.7), we have the decay width:

ΓΣ0→Λγ =
e2κ2(m2

Σ −m2
Λ)3

8πm3
Σ(mΛ +mΣ)2

(6.10)

obtained in [9]. Knowing the lifetime of the Σ0 hyperon from the Parti-

cle Data Group compilation, we can establish the value of the anomalous

magnetic moment, which turns out to be κ ≈ 1.98 [9].

6.1.2 Weak decay Λ→ pπ−

The strangeness violating weak decay of the Λ hyperon constitutes the second

decay that occurs in our reaction chain for Σ→ pπ−γ. Recall that in Chapter

5 we noted that without a possible P violation in the first decay, we will not

see an angular dependence between the final decay products in our three-

body decay width calculation, and that this holds true irrespective of the

symmetries violated by the subsequent weak decay of the Λ. We follow here

the discussion in [39] to obtain the decay width for this weak decay.

The matrix element for a non-leptonic hyperon weak decay such as this

is given as [26][39]:

MΛ→pπ− = ūp(l)[A+Bγ5]uΛ(pΛ) (6.11)

where A and B are complex numbers and l is the proton four-momentum.

Before going on to calculate the spin averaged squared matrix element, we

make use of the covariant Dirac spin projection operator for a general spin
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four-vector sµ [40]:

Σ(s) =
(1 + γ5/s)

2
. (6.12)

For a massive spin 1/2 particle with four-momentum pµ = (E, ~p) and polar-

ization +~n in its rest frame, we have:

u(p, ~n)ū(p, ~n) = Σ(s)u(p, ~n)ū(p, ~n)

=
1

2
(1 + γ5/s)(/p+m) (6.13)

such that s.s = −1 and s.p = 0. The spin four-vector takes the form:

sµ =

(
~p.~n

m
, ~n+

~p(~p.~n)

m(m+ E)

)
. (6.14)

We can now utilize Eq. (6.13) for the calculation of the squared matrix ele-

ment summed over the proton spins while keeping the Λ spin explicit:

〈|M|2〉s = Tr[(A∗ −B∗γ5)(/l +mp)(A+Bγ5)
1

2
(1 + γ5/s)(/pΛ

+mΛ)]. (6.15)

Taking the trace, we obtain [39]:

〈|M|2〉s = RΛ +mΛSΛl.s (6.16)

where,

RΛ = |A|2((mΛ +mp)
2 −m2

π) + |B|2((mΛ −mp)
2 −m2

π), (6.17)

SΛ = 4Re(A∗B). (6.18)

When considering the rest frame of Λ we make the substitution l.s = −~l.~n,

where we have used ~s = ~n and s0 = 0 which follows from Eq. (6.14) for ~p = 0.

For the case of an unpolarized Λ, we see that the spin projection operator

reduces to 1
2

when averaged over initial spins. The matrix element squared
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is:

〈|M|2〉 =
1

2

∑
s

〈|M|2〉s = Tr[
1

2
(A∗ −B∗γ5)(/l +mp)(A+Bγ5)(/pΛ

+mΛ)].

(6.19)

Taking the trace, we have:

〈|M|2〉 = RΛ. (6.20)

Finally, the decay width for the two-body decay Λ→ pπ− is [16]:

ΓΛ→pπ =
lΛ

8πm2
Λ

RΛ (6.21)

where lΛ is the modulus of the three-momentum of the proton in the rest

frame of the Λ hyperon:

lΛ =
1

2mΛ

((
(mΛ +mp)

2 −m2
π

)(
(mΛ −mp)

2 −m2
π

))1/2

. (6.22)

In terms of the Källén function this can be written as:

lΛ =
1

2mΛ

λ1/2(m2
Λ,m

2
p,m

2
π) (6.23)

with the Källén function defined as λ1/2(a, b, c) ≡ a2 +b2 +c2−2(ab+bc+ac).

6.1.3 Combined decay Σ0 → pπ−γ

We now consider the combined three-body decay of the neutral Σ hyperon.

Before establishing the matrix element for this particular decay, we make

use of a property of resonances to simplify our calculations. Because the

Λ hyperon is relatively long-lived, enabling experimentalists to track the

displaced vertex, we can use the width of the resonance peak (the decay

rate) to simplify the S-matrix.
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6.1.3.1 The Reduced Matrix Element

In non-relativistic quantum physics, an attractive potential leads to resonant

scattering. The scattering amplitude for energies E around the resonance

energy ER is given by [13]:

f(E) ∝ 1

E − ER + iΓ
2

. (6.24)

This is called the Breit-Wigner formula. In relativistic quantum mechanics,

this formula can be generalized to calculate the transition amplitude for

particles that combine to form unstable particles, which in turn decay. For

an unstable particle of mass m and four-momentum p, the Lorentz invariant

generalization of Eq. (6.24) leads to a propagator of the form [13]:

1

p2 −m2 + imΓ
≈ 1

2Ep(p0 − Ep + i m
Ep

Γ
2
)

(6.25)

with Ep =
√
|~p|2 +m2. The left hand side is manifestly Lorentz invariant and

this is what we will use for our calculations. Note that a detailed derivation

of this resonance condition involves using the optical theorem to pin down

the imaginary part of the self energy, Π(p2). This self energy is nothing but

the sum of one-particle irreducible contributions to the Feynman propagator.

The imaginary part of the relevant loop diagrams then gives us the decay

rate i.e. ImΠ(p2) ≈ mΓ (see [4],[16]).

For our present case, we consider the matrix element given by:

MΣ0→pπ−γ = ūp(l)V2
/pΛ

+mΛ

p2
Λ −m2

Λ + imΛΓΛ

V1µuΣ(pΣ)εµ

=MR
1

p2
Λ −m2

Λ + imΛΓΛ

, (6.26)

with

MR = ūp(l)V2(/pΛ
+mΛ)V1µuΣ(pΣ)εµ. (6.27)
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Here we have labeled the contributions of the vertices for the processes Λ→
pπ− and Σ0 → Λγ as V2 and V1µ, respectively. For a three-body decay, we

make use of the variables m2
12 = (q + l)2 and m2

23 = (l + pπ)2. The double

differential decay rate is [16]:

dΓ

dm2
12dm

2
23

=
1

(2π)3

1

32m3
Σ

〈|M|2〉

=
1

(2π)3

1

32m3
Σ

〈|MR|2〉
1

(p2
Λ −m2

Λ)2 +m2
ΛΓ2

Λ

=
1

(2π)3

1

32m3
Σ

〈|MR|2〉
mΛΓΛ

mΛΓΛ

(m2
23 −m2

Λ)2 +m2
ΛΓ2

Λ

(6.28)

where we have used the relation p2
Λ = (l + pπ)2 = m2

23. Using the identity

[41]:

lim
ε→0

1

π

ε

x2 + ε2
= δ(x) (6.29)

we see that as mΛΓΛ → 0, Eq. (6.28) reads:

dΓ

dm2
12dm

2
23

=
1

(2π)3

1

32m3
Σ

〈|MR|2〉
mΛΓΛ

πδ(m2
23 −m2

Λ). (6.30)

The delta function enforces the on-shell condition p2
Λ = m2

23 = m2
Λ. On

integrating once, we get:

dΓ

dm2
12

=

∫
dm2

23

dΓ

dm2
12dm

2
23

=
1

(2π)3

1

32m3
Σ

∫
dm2

23

〈|MR|2〉
mΛΓΛ

πδ(m2
23 −m2

Λ)

=
1

(2π)3

1

32m3
Σ

π

mΛΓΛ

〈|MR|2〉. (6.31)

Thus we see that the general form of the differential decay rate is greatly

simplified, and the reduced matrix element is sufficient to understand the

dynamics of this decay.
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6.1.3.2 Calculation of the Differential Decay Rate

As was the case for the electromagnetic decay, the baryon transition form

factors are given by:

〈B′(p′)| J µ |B(p)〉 = eūB′(p
′)Γµ(q2)uB(p) (6.32)

where J µ is the current. Following our discussion in Chapter 4, we are

interested in all possible Lorentz invariant form factors irrespective of their

discrete symmetry properties. We were able to derive a general expression

for the vertex function Γν (see Eq. (4.22)) which takes the form [10]:

Γµ(q2) = (γµ +
mΛ −mΣ

q2
qµ)F1(q2)− i

mΣ +mΛ

σµνqνF2(q2)

+ i(γµq2 + (mΣ +mΛ)qµ)γ5FA(q2)

+
1

mΣ +mΛ

σµνqνγ5F3(q2)

(6.33)

for q = p − p′. As before, F1 and F2 are the P conserving Dirac and Pauli

form factors. FA and F3 constitute the P violating anapole form factor

and electric dipole form factor, respectively. We are interested in the low

momentum (q2 → 0) properties of these form factors and use the following

normalization:

F1(0) = 0, F2(0) = κ. (6.34)

In our subsequent calculations we do not need the anapole form factor FA

since it drops out for q2 = 0 (i.e. qµε
µ = 0). Instead, we focus on the form

factor F3 which yields us the transition electric dipole moment at q2 = 0. The

normalization of F3 is obtained as a result of the definition of the neutron

dipole moment, which is given by [10]:

dγn =
e F3,n(0)

2mn

. (6.35)
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Following Eq. (6.4), the reduced matrix element corresponding to Eq. (6.33)

is:

MR = ūp(l)(A+Bγ5)(/pΛ
+mΛ)

(
ieκσµνq

ν

mΛ +mΣ

− iecσµνq
νγ5

mΛ +mΣ

)
uΣ(pΣ)εµ

(6.36)

where we have assigned a complex number c = iF3(0) for our particular decay.

Since we are only sensitive to the relative phase between the P conserving

and P violating terms in the matrix element, we can define κ to be a positive

real number, κ ε IR+. Now, taking the average of initial spins and summing

over final spins, we obtain the squared reduced matrix element:

〈|MR|2〉 =
−e2

2(mΛ +mΣ)2
Tr[(/l +mp)(A+Bγ5)(/pΛ

+mΛ)(κσµν − cσµνγ5)

(/pΣ
+mΣ)(κσρα + c∗σραγ5)(/pΛ

+mΛ)(A∗ −B∗γ5)]qνgµρqα.

(6.37)

Taking the trace:

〈|MR|2〉 =
−2e2

(mΛ +mΣ)2
(m2

Σ −m2
Λ)

[
4κm2

Λ(c+ c∗)(AB∗ + A∗B)l.q

− (m2
Σ −m2

Λ)
(
AA∗(cc∗ + κ2)((mΛ +mp)

2 −m2
π) + AB∗κ(m2

Λ +m2
p −m2

π)

+BB∗(cc∗ + κ2)((mΛ −mp)
2 −m2

π) + A∗Bκ(c+ c∗)(m2
Λ +m2

p −m2
π)
)]
.

(6.38)

Finally, using the variables defined in the weak decay, RΛ (Eq. (6.17)) and

SΛ (Eq. (6.18)), we can re-write the above equation as:

〈|MR|2〉 =
2e2

(mΛ +mΣ)2
(m2

Σ −m2
Λ)

[
(m2

Σ −m2
Λ)
(

(cc∗ + κ2)RΛ

+
κ

2
(c+ c∗)(m2

Λ +m2
p −m2

π)SΛ

)
− 2κm2

Λ(c+ c∗)SΛl.q

]
.

(6.39)
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Setting c = c∗ = 0, we notice that the angular dependence between the

proton and the photon vanishes:

〈|MR|2〉 =
2e2κ2

(mΛ +mΣ)2
(m2

Σ −m2
Λ)2RΛ. (6.40)

This is to be expected. When the P and CP violating form factors are set

to zero, the resulting decay does not carry any information regarding the

angular distribution. The dot product l.q can also be written in terms of

the angle between the proton and the photon. In the rest frame of the Λ

hyperon, we have:

l.q = EpEγ −~l.~q

= EpEγ − |~l||~q| cos θpγ

= EpEγ

(
1− lΛ

Ep
cos θpγ

)
(6.41)

where in the last step we have used the fact that |~q| = Eγ for an on-shell

photon, and the equality |~l| = lΛ in the Λ rest frame, with lΛ given in

Eq. (6.23). Note that in the Λ rest frame, the photon energy Eγ and the

proton energy Ep are not free variables. Instead, Eγ can be expressed in

terms of the rest masses of the particles involved in the first decay:

Eγ =
q.pΛ

mΛ

=
1

2

m2
Σ −m2

Λ

mΛ

. (6.42)

while Ep takes the form:

Ep =
m2

Λ +m2
p −m2

π

2mΛ

. (6.43)

Thus, Eq. (6.41) tells us that the SΛ featuring in the last term of Eq. (6.39)

is not accompanied by a constant but the cosine of the angle between the

photon and the proton. Likewise, we see that the factor accompanying RΛ

in Eq. (6.39) is indeed a constant.

Now, since the right-hand side of Eq. (6.31) is a function of cos θpγ, we
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would like to obtain the differential decay rate, i.e. the left-hand side of

Eq. (6.31), in terms of the differential angle dcosθpγ. To this end, we rewrite

m2
12:

m2
12 = (q + l)2 = m2

p + 2EpEγ − 2|~q||~l| cos θpγ. (6.44)

Taking the differential of the above equation, we obtain:

dm2
12 = −2|~q||~l| dcosθpγ

= −2EγlΛ dcosθpγ.
(6.45)

Inserting this in Eq. (6.31) gives us:

dΓ

d cos θpγ
= −2EγlΛ

1

(2π)3

1

32m3
Σ

π

mΛΓΛ

〈|MR|2〉. (6.46)

The right-hand side of the above equation is a function of cos θpγ. For peda-

gogical reasons, let us call this function F (cos θpγ) for the moment. Further

let us consider that this function takes the form:

F (cos θpγ) = ξ + ξ
′
cos θpγ (6.47)

where ξ and ξ
′

are constants. Eq. (6.46) can now be written as:

dΓ

d cos θpγ
= F (cos θpγ) = ξ(1 +

ξ
′

ξ
cos θpγ). (6.48)

It is this ratio of ξ′ over ξ that is of importance to us. Barring a normaliza-

tion factor, this ratio gives us the slope when plotting the number of events

against the angular dependence, say cos θpγ. Experimentalists can obtain this

ratio by considering the average and the weighted average of this function
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F (cos θpγ) over the entire range of cos θpγ:

I1 =

∫ 1

−1

d(cos θpγ)F (cos θpγ) = 2ξ, (6.49)

I2 =

∫ 1

−1

d(cos θpγ) cos θpγF (cos θpγ) =
2

3
ξ
′
. (6.50)

And this gives us the ratio in terms of the quantities I1 and I2:

ξ
′

ξ
=

3I2

I1

. (6.51)

Performing the integration and substituting it in the above equation, we

obtain:

ξ
′

ξ
=

4κm2
ΛEγ(c+ c∗) lΛ SΛ

2(m2
Σ −m2

Λ)RΛ(κ2 + cc∗)
. (6.52)

Using Eq. (6.42) for Eγ in the Λ rest frame, the slope is:

ξ
′

ξ
=
κ(c+ c∗)mΛ lΛ SΛ

(κ2 + cc∗)RΛ

(6.53)

In the above expression, we note that κ is the only constant that we have

determined so far. In order to get an estimate of the slope, we also need to

figure out the value of the constants RΛ, SΛ and c.

6.1.3.3 Determination of RΛ and SΛ

In order to determine the value of RΛ we make use of the result obtained in

Eq. (6.21):

RΛ =
8πm2

Λ

lΛ
ΓΛ→pπ− . (6.54)

Since the decay Λ → pπ− takes place with a probability of about 63.9% of

the total observed decays, we can determine the value of the decay width

76



from the lifetime of the Λ hyperon [42]:

ΓΛ→pπ− = 0.639 Γtotal =
0.639

τ
. (6.55)

This gives us RΛ = 4.97(073)× 10−7(MeV)2. Having established the value of

RΛ, we now proceed to find the value of SΛ as defined in Eq. (6.18). For this

purpose we make use of the baryonic decay parameters for a non-leptonic

decay. The amplitude of any spin 1/2 hyperon decaying weakly into a spin

1/2 baryon and a spin 0 meson can be written as [26]:

M = GFm
2
πBf (p

′)(A− Bγ5)Bi(p) (6.56)

where A and B are constants. One of the decay parameters, γ, is defined as:

γ =
|s|2 − |p|2

|s|2 + |p|2
(6.57)

with s = A and p = ηB where η is given by:

η =
|pf |

Ef +mf

, (6.58)

|pf | and Ef being the magnitude of three-momentum and energy of the final

baryon in the rest frame of the decaying hyperon. In the Λ rest frame, we

make the identification:

|pf | = lΛ, (6.59)

mf = mp, (6.60)

Ef = Ep. (6.61)

Using Eq. (6.23), Eq. (6.43) and the above three relations in Eq. (6.58), we

obtain:

η =
λ1/2(m2

Λ,m
2
p,m

2
π)

(mΛ +mp)2 −m2
π

. (6.62)
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For our weak decay (given in Eq. (6.11)), we have:

s =
A

GFm2
π

, p = − ηB

GFm2
π

, (6.63)

We can now re-write Eq. (6.57) to get the ratio:

|A|2

|B|2
= η2 (1 + γ)

(1− γ)
. (6.64)

Using this relation and that of RΛ given in Eq. (6.17), we can establish the

constants |A| and |B|. Another decay parameter is required to determine SΛ

and it is given by [26]:

αΛ =
2Re(s∗p)

|s|2 + |p|2
. (6.65)

Re-writing this for our case, we get:

αΛ =
−2Re(A∗ηB)

|A|2 + η2|B|2
. (6.66)

Since SΛ = 4Re(A∗B), we finally have:

SΛ = −2αΛ

η
(|A|2 + η2|B|2) (6.67)

which gives us SΛ = −2.84(382) × 10−12. We also note that our expression

for SΛ can be simplified further on using the relation Eq. (6.62):

SΛ =
−2αΛ

λ1/2(m2
Λ,m

2
p,m

2
π)
RΛ. (6.68)

Inserting this in Eq. (6.53), the calculated slope becomes:

ξ′

ξ
= −αΛ

κ(c+ c∗)

κ2 + cc∗
(6.69)

where we have used the fact that the modulus of the proton three-momentum

lΛ in the Λ rest frame is as given in Eq. (6.23).
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In sequential weak decays, one finds expressions for angular distributions

of the type (see for instance [43],[44]):

dN

d cos θ
=
N

2
(1 + α1α2 cos θ)

where N is the number of events while α1 and α2 are decay asymmetry

parameters of the first and second decay, respectively. We can now define a

decay asymmetry for the first decay similar to the αΛ parameter in Eq. (6.66)

for the weak decay. By analogy, we define [26]:

αΣ0 ≡ 2Re(c∗κ)

|κ|2 + |c|2
(6.70)

Inserting this in Eq. (6.39) gives us the reduced matrix element squared as:

〈|MR|2〉 = 2e2(mΣ −mΛ)2(cc∗ + κ2)RΛ

[
1− αΣ0αΛ cos θpγ

]
. (6.71)

Consequently, the slope is then seen to be:

ξ′

ξ
= −αΣ0 αΛ. (6.72)

6.1.3.4 Determination of the Complex Number c

Referring to our discussion in Chapter 3, we make use of the upper bound

of the nEDM in the framework of HBChPT in order to make an estimate of

the complex number c. We will first determine a ‘bare’ quantity cB based

on HBChPT. As a second step, we will introduce a phase due to final state

interactions. The interaction Lagrangian for our decay in question which fits

to Eq. (6.36) is given as:

LΣ0Λ =
e cB

2(mΣ +mΛ)
Λγ5σµνΣ

0F µν + h.c. (6.73)
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In Chapter 3, we also saw that the interaction Lagrangian which emerges from

the effective Lagrangian of HBChPT has the general form (see Eq. (3.23)):

Lint =− 2ie

9
(ω′13θ̄0 +

√
6

F0

η0ω13)
[
6n̄γ5σµνnF

µν − 3
√

3Λγ5σµνΣ
0F µν

− 3
√

3Σ
0
γ5σµνΛF

µν + 3Λγ5σµνΛF
µν − 3Σ

0
γ5σµνΣ

0F µν
]
.

(6.74)

From this we can extract the interaction terms of the Lagrangian that is

relevant to our decay:

LΣ0Λ =
2
√

3

3
ie
(
ω′13θ̄0 +

√
6

F0

η0ω13

)
Λγ5σµνΣ

0F µν . (6.75)

Comparing Eq. (6.73) and Eq. (6.75), we are led to the conclusion:

cB =
4
√

3

3
i(mΣ +mΛ)

(
ω′13θ̄0 +

√
6

F0

η0ω13

)
. (6.76)

Now, consider the interaction term for the neutron that emerges from Eq. (6.74):

Ln = −4ie

3

(
ω′13θ̄0 +

√
6

F0

η0ω13

)
n̄γ5σµνnF

µν . (6.77)

Recall Eq. (6.35), where we provided a normalization for the form factor at

q2 = 0, F3(0), based on the value of the nEDM. Comparing that to Eq. (6.77),

we obtain (up to tree-level of the nEDM):

e F3,n(0)

2mn

= dtree
n = −8e

3

(
ω′13θ̄0 +

√
6

F0

η0ω13

)
. (6.78)

Re-writing this, we have:

(
ω′13θ̄0 +

√
6

F0

η0ω13

)
=
−3 dtree

n

8e
. (6.79)
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Lastly, we plug this into Eq. (6.76) to get a value of the cB in terms of the

tree level contribution to the nEDM:

cB = −
√

3 i

2e
(mΣ +mΛ) dtree

n . (6.80)

6.1.3.5 Final State Interactions

In Chapter 2 we discussed how final state interactions are indispensable in

making CP violation effects observable in terms of the decay width. In

our Σ0 particle decay calculations, we note that our complex constant c

can be expressed in terms of the bare (complex) constant in the interaction

Lagrangian (Eq. (6.73)) as:

c = cBe
iδF (6.81)

where δF is the phase induced by the electromagnetic final state interactions

between Λ and the photon in the first decay. Further, we noted in Chapter

2 that the condition:

cB = c̄B = −c∗B (6.82)

implies a C conservation in our decay. For a P violating decay this implies

CP is violated. This is the breaking pattern caused by the theta vacuum

angle.

We saw in Eq. (6.69) that the slope of the particle decay was proportional

to the real part of c:

ξ′

ξ
∼ Re(c) = Re(cBe

iδF ) (6.83)

Since we are interested in the case where CP is violated, we have a purely

imaginary cB as shown in Eq. (6.80):

Re(c) = ±|cB| sin δF (6.84)
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where |cB| is the absolute value of the complex number cB. We can now

calculate the slope by plugging in Eq. (6.80) and Eq. (6.84) into the slope that

was calculated in Eq. (6.69), with the reasonable assumption that |κ| � |c|:

ξ′

ξ
= −αΛ

(c+ c∗)

κ
= −αΛ

2Re(c)

κ
. (6.85)

Following Eq. (6.84), we have:

∣∣∣ξ′
ξ

∣∣∣ =
|αΛ|
κ

2|cB|| sin δF | =
|αΛ|
κ

√
3(mΣ +mΛ)

e
|dtree
n || sin δF |. (6.86)

Since we are making an order of magnitude estimate, we utilize the current

experimental upper bound of the nEDM [10], |dtree
n | ≤ 2.9 × 10−26e cm with

| sin δF | ≤ 1. The value of the decay asymmetry for Λ → pπ− has been

determined and it is αΛ = 0.642 [42]. This gives us a slope | ξ′
ξ
| ≤ 1.902 ×

10−12.

We can also provide an upper bound for the decay asymmetry αΣ0 . Uti-

lizing Eq. (6.80), this yields an upper bound of |αΣ0| ≤ 2.962× 10−12 in the

limit |κ| � |c|.
We now turn our attention to the production process of the neutral Sigma

hyperon.

6.2 Production Process

Often hyperons (denoted here as Y ) are produced by parity conserving strong

or electromagnetic processes, for instance e+e− → Y Y [45] or pp̄→ Y Y [46].

The production process for hyperons gives important insights concerning the

strangeness and charm production in QCD [45][46]. It serves as a probe in

the region between the perturbative and non-perturbative regime, i.e. in the

confinement region, of QCD. In our case, the production of hyperons can

also serve as a test for CP violation through the study of spin observables.

In quantum mechanical systems, the spin density matrix ρ contains the

information we need to analyze that system [45]. The spin density matrix
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for a particle with spin j can be decomposed as:

ρ =
1

2j + 1
I +

2j∑
L=1

2j

2j + 1

L∑
M=−L

QL
Mr

L
M (6.87)

where QL
M are hermitian matrices [45]. The first term of the above equation

is related to the unpolarized differential cross section of the particle. The

second term contains the polarized part, with rLM denoting the polarization

vectors for a given angular momentum L and its projection, M [45]. For a

spin 1/2 particle, the QL
M matrices take the form of Pauli matrices τa. For

vector polarizations Pl, Pm and Pn, the spin density matrix for a spin 1/2

particle takes the form [47]:

ρ(1/2) =
1

2
(I + ~P .~τ)T =

1

2

[
1 + Pl Pm + iPn

Pm − iPn 1− Pl

]
. (6.88)

We now have to define the directions l̂, m̂ and n̂. For a production process

such as A+ B → Σ0 +X viewed in the center-of-mass system, we have two

directions given by ~pA and ~pΣ. We define n̂ to be the direction normal to the

plane formed by ~pA and ~pΣ. The unit vectors l̂ and m̂ then lie in the ~pA–~pΣ

plane, with l̂ aligned with ~pΣ and m̂ being orthogonal to it.

If the production process is parity conserving, then the only polarization

vector that remains due to the symmetry of the spin density matrix is Pn,

the component normal to the production plane [47]:

ρ(1/2) =
1

2

[
1 iPn

−iPn 1

]
. (6.89)

The spin-averaged total matrix element for the production and decay process

is then given by [48]:∑
|Mtotal|2 = Tr(ρPρD) = ρPλλ′ρ

D
λ′λ (6.90)

where λ and λ′ are the helicity labels of the particle with eigenvalues ±1
2
.

We must now establish a frame of reference to perform our calculations.
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For a massive fermion with four-momentum p and energy E, we define three

orthonormal four-vectors sµa , with a = 1, 2, 3, such that:

sµ1 = (0, cos θ cosφ, cos θ sinφ,− sin θ), (6.91)

sµ2 = (0,− sinφ, cosφ, 0), (6.92)

sµ3 =

(
|~p|
m
,
E

m
p̂

)
(6.93)

in a coordinate system where p̂ = (sin θ cosφ, sin θ sinφ, cos θ). As a matter

of convenience we choose the frame where θ = φ = 0. This leads us to a

frame where p̂ = (0, 0, 1) and the three four-vectors reduce to:

sµ1 = (0, 1, 0, 0), (6.94)

sµ2 = (0, 0, 1, 0), (6.95)

sµ3 = (
|~p|
m
, 0, 0,

E

m
). (6.96)

The helicity spinor satisfies [48]:

γ5/s
au(p, λ′) = τaλλ′u(p, λ) (6.97)

where τa are the Pauli matrices. From the above relation we obtain the

Bouchiat-Michel formula for massive spin 1/2 fermions:

u(p, λ′)ū(p, λ) =
1

2
[δλλ′ + γ5/saτ

a
λλ′ ](/p+m). (6.98)

For a complete derivation of this see, for instance, [48].

The decay spin density matrix takes on the familiar form of the spin-

averaged reduced matrix element encountered previously:

ρDλ′λ = 〈|MR|2〉λ′λ =
∑
Mλ′M∗

λ. (6.99)

Following Eq. (6.37) and using the Bouchiat-Michel formula, Eq. (6.98), we
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have:∑
Mλ′M∗

λ =
−e2

(mΛ +mΣ)2

(
(/l +mp)(A+Bγ5)(/pΛ

+mΛ)(κσµν − cσµνγ5)

1

2
[δλλ′ + γ5/saτ

a
λλ′ ](/pΣ

+mΣ)(κσρα + c∗σραγ5)

(/pΛ
+mΛ)(A∗ −B∗γ5)

)
qνqαgµρ.

(6.100)

Eq. (6.90) now takes the form:∑
|Mtotal|2 = ρPλλ′Tr

(∑
Mλ′M∗

λ

)
. (6.101)

Since for each eigenvalue λ and λ′, the spin density matrix for the production

process Eq. (6.89) picks out a number, we can re-write the above equation

as:∑
|Mtotal|2 = Tr

(
ρP1

2
1
2

∑
M 1

2
M∗

1
2

+ ρP1
2
− 1

2

∑
M− 1

2
M∗

1
2

+ ρP− 1
2

1
2

∑
M 1

2
M∗
− 1

2
+ ρP− 1

2
− 1

2

∑
M− 1

2
M∗
− 1

2

) (6.102)

with

ρP1
2

1
2

= ρP− 1
2
− 1

2
=

1

2
,

and the off-diagonal elements

ρP1
2
− 1

2
=
iPn
2
, ρP− 1

2
1
2

= −iPn
2
.
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Taking the trace, we have:

∑
|Mtotal|2 =

2e2(m2
Σ −m2

Λ)2

(mΛ +mΣ)2
RΛ(cc∗ + κ2)

(
1 +

2mΣ

(m2
Σ −m2

Λ)
Pn q.s2 αΣ0

− αΛαΣ0 cos θpγ − αΛ cos θpγ
2mΣ

(m2
Σ −m2

Λ)
Pn q.s2

)
(6.103)

where we have substituted the decay asymmetry αΛ, αΣ0 according to Eq. (6.66)

and Eq. (6.70). We have also expanded l.q to include terms containing the

angle between the photon and proton line of flight in the Λ rest frame, as

in Eq. (6.41) (see Figure 5.2). Thus, we see that the effects of a possible P

violation can be distinguished from the effects of the production process.

We note that on setting Pn = 0 in Eq. (6.103) the total squared matrix

element is (barring a normalization constant):∑
|Mtotal|2 ∼ 1− αΛαΣ0 cos θpγ. (6.104)

Calculating the slope for the above expression, we obtain the slope derived

for the unpolarized case (Eq. (6.72)), as expected. Further, the spin density

matrix for the production process, given in Eq. (6.89), holds true both in the

center of mass frame for the production and when boosted to the Σ0 rest

frame (since the normal vector Pn is unaffected by this boost). Therefore,

the product q.s2 can be expressed in the Σ0 rest frame as follows:

q.s2 = −qy = −Eγ cosφ2 = −(m2
Σ −m2

Λ)

2mΣ

cosφ2 (6.105)

where φ2 is the angle between n̂ and the photon line of flight. Substituting

this in Eq. (6.103), we have:

∑
|Mtotal|2 =

2e2

(mΛ +mΣ)2
(m2

Σ −m2
Λ)2RΛ(cc∗ + κ2)

(
1− αΣ0Pn cosφ2

− αΛαΣ0 cos θγp + αΛPn cos θγp cosφ2

)
.

(6.106)
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When αΣ0 = 0, i.e. the case where c = c∗ = 0, we obtain (up to a normaliza-

tion factor): ∑
|Mtotal|2 ∼ 1 + αΛPn cos θγp cosφ2. (6.107)

That is, even when there is no P violation in the Σ0 → Λγ decay, we get an

angular dependence between the final decay products due to the production

process and the P violation of Λ → pπ−. The slope calculated for this

particular case is:

ξ′

ξ
= αΛ Pn cosφ2. (6.108)

This vanishes when averaged over the angle φ2, while the P violating term

in Eq. (6.103) (∼ αΛαΣ0 cos θγp) remains.

6.3 Decay of the Neutral Anti-Sigma Hyperon

We will now analyze the decay of an unpolarized neutral anti-Sigma hyperon,

analogous to the treatment of the particle decay in Section 6.1. We will focus

here only on those aspects of the decay that differ from the particle case, with

an aim to determine the impact of charge conjugation symmetry on our final

slope estimation.

We will first make some general remarks about the conditions necessary

for a strong CP violation, as was done in Chapter 2. Following our discussion

in Chapter 2, we can introduce a modulus and a phase for our complex

number cB:

cB = |cB|eiδB (6.109)

for the particle decay, with |cB| being the magnitude of the bare constant in

the interaction Lagrangian, and:

c̄B = |cB|eiδ̄B (6.110)
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for the antiparticle decay. Eq. (2.109) shows us that hermiticity constrains

this new phase δ̄B such that:

δ̄B = π − δB. (6.111)

Since we are concerned here with the impact of electromagnetic final state

interactions on our slope, we bring in an additional phase δF (see Eq. (2.108))

in our estimation of the decay asymmetry αΣ0 . Following Eq. (6.70) for the

particle decay, we observe:

αΣ0 ∼ Re(c) = Re(cBe
iδF ) = Re(|cB|eiδBeiδF ) = |cB| cos(δB + δF ). (6.112)

Similarly, for the antiparticle case we can state:

α
Σ

0 ∼ Re(c̄) = Re(c̄Be
iδF ) = Re(|cB|ei(π−δB)eiδF ) = −|cB| cos(δB − δF )

(6.113)

where we have used the relation Eq. (6.111).

For a decay which conserves charge conjugation symmetry but violates

parity, CP is also violated. Charge conjugation symmetry enforces the con-

ditions δB = π
2

or δB = 3π
2

so that:

c̄B = cB, (6.114)

and therefore c̄ = c when we include final state interactions. Note that

Eq. (6.112) above is the more general formulation of which the strong CP

violation condition given in Eq. (6.84) is a particular case. That is, for δB = π
2

or 3π
2

, Eq. (6.112) is identical to Eq. (6.84).

For the antiparticle slope, if C symmetry is conserved, we have:

αΣ0 = −|cB| sin δF = α
Σ

0 . (6.115)

with δB = π
2

or 3π
2

as a consequence. If CP is conserved in this decay, then

we have αΣ0 = −α
Σ

0 and δB = 0 or π. Now if both CP and C symmetries

are violated then δB is not a multiple of π
2
. In our subsequent calculations

88



we deal with the case where CP is violated, i.e. δB = δ̄B = π
2

or 3π
2

.

We would now like to calculate a concrete expression for the slope of the

Σ
0

hyperon decay. To this end, we note that the matrix element for the weak

decay of the Λ hyperon takes the form [39]:

MΛ→p̄π+ = v̄Λ(pΛ)[A′ +B′γ5]vp(l). (6.116)

Just as in the Λ decay, this gives us a spin-averaged squared matrix element:

〈|M|2〉 = RΛ (6.117)

with RΛ defined as:

RΛ = |A′|2((mΛ +mp)
2 −m2

π) + |B′|2((mΛ −mp)
2 −m2

π) (6.118)

If CP invariance holds for this particular decay, then A′ = A and B′ = −B
(note that RΛ = RΛ and SΛ = −SΛ). This in turn implies that the decay

asymmetry defined in Eq. (6.66) for the Λ particle, now satisfies αΛ = −αΛ.

Experimentally, no deviation from this relation has been observed [42]. In

the subsequent calculations we implicitly assume this condition to be true.

The combined three-body decay Σ
0 → p̄π+γ will now have a reduced

matrix element (analogous to the particle decay matrix element derived using

transition form factors):

M
Σ

0→p̄π+γ
= v̄Σ(pΣ)

(
ieκ′σµνq

ν

mΣ +mΛ

− iec̄σµνγ5q
ν

mΣ +mΛ

)
(/pΛ
−mΛ)(A−Bγ5)vp̄(l)ε

µ.

(6.119)

Averaging over initial spins and summing over final spins gives us the squared

reduced matrix element:

〈|MR|2〉 =
−e2

2(mΛ +mΣ)2
Tr [(/pΣ

−mΣ)(κ′σµν − c̄σµνγ5)(/pΛ
−mΛ)(A−Bγ5)

(/l −mp)(A
∗ +B∗γ5)(/pΛ

−mΛ)(κ′σρα + c̄∗σραγ5)]qνgµρqα.

(6.120)
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Taking the trace, we obtain:

〈|MR|2〉 =
2e2

(mΣ +mΛ)2

(
(m2

Σ −m2
Λ)
[
RΛ(c̄2 + κ′2)− SΛ

2
κ′(c̄+ c̄∗)(m2

Λ +m2
p −m2

π)
]

+ 2κ′m2
Λ(c̄+ c̄∗)l.qSΛ

)
.

(6.121)

That is,

〈|MR|2〉 = 2e2(mΣ −mΛ)2(c̄2 + κ′2)RΛ

[
1 + α

Σ
0αΛ cos θpγ

]
(6.122)

where we have used

α
Σ

0 =
Re(c̄∗κ′)

|κ′|2 + |c̄|2
=
κ′(c̄+ c̄∗)

(κ′2 + c̄2)
. (6.123)

Following the steps in Section 7.1, we can determine the slope for this decay.

In the Λ rest frame this turns out to be:

ξ
′

ξ
= +αΛ

κ′(c̄+ c̄∗)

(κ′2 + c̄2)

= +αΛαΣ
0 , (6.124)

For a C conserving process, we noted that α
Σ

0 = αΣ0 . Therefore, the slope

for the decay of the anti-Sigma hyperon becomes:

ξ
′

ξ
= +αΛαΣ0 . (6.125)

This bears the opposite sign to that of the particle-decay slope calculated in

Eq. (6.72), which is what we expect from a decay that violates CP.

It is useful to define a decay asymmetry parameter (see Eq. (2.106)) in

terms of the decay asymmetries, which serves as an indicator of CP violation
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in a decay [3]. This parameter, QCP , is defined as [43]:

QCP =
αΣ0αΛ − αΣ

0αΛ

αΣ0αΛ + α
Σ

0αΛ

. (6.126)

As we stated earlier, if we consider CP to be conserved in the weak decay

Λ→ pπ−, we have αΛ = −αΛ. This reduces the decay asymmetry parameter

QCP to:

QCP =
αΣ0 + α

Σ
0

αΣ0 − α
Σ

0

(6.127)

If CP is conserved in our decay Σ0 → pπ−γ, we have αΣ0 = −α
Σ

0 . Therefore,

from Eq. (6.127), we see that the decay asymmetry parameter vanishes, i.e.

QCP = 0. On the other hand, if C is conserved in our decay, we have αΣ0 =

α
Σ

0 . From Eq. (6.127), we see that for this case the quantity Q−1
CP = 0. Note

that we have implicitly assumed that the weak interaction, which violates

C, does not appreciably contribute to our Σ0 → Λγ decay. This need not

be true, and a study of C violation due to the weak interaction in the Σ0

decay could reveal the extent of such a contribution. The general formalism

laid out here can also be applied to such a study. However, since this thesis

deals primarily with the possibility of CP violation in the decay due to the

non-trivial nature of the QCD vacuum, for the sake of simplicity we have

ignored the effects of C violation due to the weak interaction.
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Chapter 7

Conclusions & Summary

Through this study on CP violation in Σ0 decay, we have made an order

of magnitude estimate of the angular dependence which serves as a test for

P and CP violation in this decay. The estimate, a slope of about 10−12,

implies that any possible P and CP violation that may arise due to Strong

CP effects is negligibly small. That is, despite considering beyond Standard

Model effects in the form of a non-trivial QCD vacuum, there seems to be no

observable CP (or P) violation in the decay of the Σ0 hyperon. Conversely,

restricting ourselves to the strong sector, if a slope is observed orders of mag-

nitude larger than our estimate, this would imply not only physics beyond

the Standard Model but also physics beyond Strong CP.

The decay asymmetry, αΣ0 , has yet to be measured experimentally. It is

interesting to compare our study to other radiative hyperon decays, in par-

ticular, the CERN NA48/1 experiment which analyzed the radiative decay

Ξ0 → Λγ for an unpolarized Ξ0 hyperon [44]. Of course, unlike our case where

the first decay channel is dominated by the electromagnetic interaction, this

decay proceeds largely through the weak interaction. Thus one can expect a

decay asymmetry on the order 1 from the two interfering partial waves, since

they both come from the weak interaction. This is clearly different from our

Σ0 decay. What is the same is the weak hadronic decay Λ → pπ− which

serves as an analyzer with the angular distribution measured in the Λ rest

frame [44]. The form of the matrix element obtained for our unpolarized Σ0
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decay is familiar to that found by NA48/1. The experiment yielded a decay

asymmetry αΞ0 = −0.704± 0.019± 0.064. As expected, this is many orders

of magnitude larger than our estimate of αΣ0 . However, no evidence of CP

violation was found with ᾱ
Ξ
0 = −0.798± 0.064 [44]. Our analysis of the Σ0

however, predicts a negligibly small decay asymmetry, αΣ0 . The measure-

ment of αΣ0 for this decay is thus a crucial experiment. Such an experiment

can be performed if a large number of Σ0 is available. The upcoming PANDA

experiment will serve as a hyperon factory, and is therefore equipped for such

a study (see also [9]).

Additionally, in this study we analyzed the production process of the Σ0

hyperon. We obtained a general form of the matrix element including the

production process which gives us the liberty to choose the angular distri-

bution we would like to examine. That is, we can either integrate out the

angular dependence between two of the final decay products leaving us with

a slope independent of this factor, or alternatively, we can choose to integrate

over the angle between the photon line of flight and the polarization of the

Σ0, thereby giving us a slope dependent on the angle between two of the

decay products. This study extends the works done by Dreitlein et al. [38]

wherein the matrix element was simply a function of the Σ0 polarization

angle with respect to the photon direction. Note that we can, if required,

further generalize our results if we do not assume parity conservation in the

production process. This give us two additional polarization directions for

our Σ0 particle which would in turn add more angular distributions that can

be analyzed experimentally.

We have so far established that the weak part of our radiative decay

has a negligible contribution towards CP violation in the decay chain. As a

possible extension to this study, one can analyze the extent of C violation

that could, in principle, take place due to the weak interaction. This is of

course beyond the considerations of CP violation due to Strong CP effects

which was undertaken here, but it would nonetheless be interesting to probe

the exact nature of C violation in the Σ0 decay.

To summarize, in this thesis we examined the possibility of P and CP

violation in the neutral Sigma hyperon decay. In the process, we first gave
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a general overview of discrete symmetries in quantum field theory, aligning

our discussion with the specifics of the decay at hand. We briefly described

the minimal implementation of CP violation in the Standard Model via the

CKM mechanism. We noted that the contribution of the weak interaction

towards CP violation in our decay is negligible. We then touched on final

state interactions and the crucial role played by them in making CP viola-

tion effects observable. We examined the Strong CP problem in some detail

before moving on to the framework of Heayy Baryon Chiral Perturbation

Theory which made an estimation of the P violation via the neutron electric

dipole moment possible. We then derived the most general Lorentz invariant

electromagnetic current which led us to the Lorentz invariant transition form

factors and their role in determining a possible P and CP violation in our

decay. The kinematics of the decay was then examined, and the connection

between the angular distribution of the final decay products and P violation

was made. We then performed the necessary calculations in order to estab-

lish the value of angular dependence arising due to P violation in the initial

decay. This yielded a small slope of about 10−12 in our estimation. The

production process for the Σ0 hyperon was also analyzed and general form

of the matrix element was found. The slope for the charge conjugated decay

was also calculated.
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