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1. Introduction

Counting is one of the �rst things a child gets taught. Similarly the natural numbers N
were the �rst algebraic structure in which mankind calculated � starting from ancient
Egypt and way before. Without doubt the set of natural numbers with ordinary addi-
tion and multiplication is the most famous semiring but nowadays a broad variety of
di�erent semirings are used in computer sciences and other applications that � on the
�rst glimpse � seem not to be connected to algebra and semirings at all. This ranges
from graph theory and combinatorics over game theory and statistics to automata the-
ory or cryptography and as such gives motivation for further study of semirings and
their properties.
To give some structure to the class SR of semirings many authors have done research
on the lattice L(SR) of semiring varieties. E.g. Pastijn et al. determined the complete
lattice L(I) of all subvarieties of the variety I of idempotent semirings in [1] and [2]
which provides a huge step to the aim of determining the complete lattice of semiring
varieties. They proved that the lattice is generated by eleven semirings and consists
of 78 varieties. So it seems reasonable to continue this work and have a look at non-
idempotent semirings. In [3] Sen and Bhuniya introduced so called almost-idempotent
semirings as a generalization of idempotent semirings (cf. De�nition 2.19) which seems
like a good angle of attack.
The aim of this thesis was to inspect the structure of the lattice L(IA) of varieties
of almost-idempotent semirings. In [4], among others, the lattice L(IA2) generated by
almost-idempotent semirings with two elements was determined. It was shown that the
lattice L(IA2) is a boolean algebra with 32 elements. Based on those results I started
looking at almost-idempotent semirings with three elements in chapter 3. Eleven non-
isomorphic proper almost-idempotent semirings were generated by a python program
and characterized. In section 3.2 the full context that generates L(IA3) is given and
every context implication proved. In the end we receive a lattice consisting of 19901
varieties. So the idea was to use Attribute Exploration (cf. section 2.2.3) to deter-
mine the complete lattice L(IA) starting from the context in chapter 3. But it quickly
turned out that the aim was too ambitious since the context grew rapidly. Reducing
the research to only commutative semirings and later on introducing the variety V of
commutative semirings that additionally satisfy xy ≈ xy + x I found two construction
methods for chains of semirings (cf. Example 4.3 and Lemma 4.12). In Lemmas 4.6,
4.15 and 4.16 we �nally see that those chains of semirings generate in�nite chains of
varieties in L(V). Thus in contrary to the expectation that L(IA) would be �nite and
quite small it turns out that even the subvariety V2 (cf. Remark 4.7) of COM has an
in�nite amount of subvarieties.





9

2. Preliminaries

First o�, note that we will denote the set {0, 1, 2, . . .} of natural numbers by N and the
set {1, 2, 3, . . .} of positive natural numbers by N+ throughout this thesis. We will start
with a short recap about varieties. These notations and results are taken from Burris
and Sankappanavar in [5]. Afterwards we introduce semirings and almost-idempotent
semirings as their specialization.

De�nition 2.1 (Cf. [5], De�nition 9.3). A variety V is a class of algebras of the same
type that is closed under taking subalgebras, homomorphic images and direct products.
We denote the lattice of subvarieties of V by L(V).

De�nition 2.2. Let Σ be a set of identities of the same type, and de�ne M(Σ) to be
the class of algebras satisfying Σ. A class K of algebras is and equational class if there
is a set of identities Σ such that K = M(Σ). In this case we say that K is de�ned by
Σ.

Remark 2.3. We use the notation K = [Σ] instead of K = M(Σ) since it frequently
is used in literature.

The following theorem, commonly known as Birkho�'s Theorem, is essential for
research on varieties and lattices of varieties.

Theorem 2.4 ([5], Theorem 11.9). K is an equational class if and only if K is a
variety.

Example 2.5. Clearly, the class A of all algebras of a given type is a variety. Its
equational basis is x = x which obviously is satis�ed by every algebra. So A = [x = x]
holds whereas T = [y = x] is the class of trivial algebras in A that consist of only one
element.

De�nition 2.6. For any algebra A ∈ A we de�ne HSP(A) as the smallest variety
V ∈ L(A) such that V still contains A and call HSP(A) the variety generated by A.
Let A = {A1, A2, . . . , An} for n ∈ N+ be a non-empty set of algebras in A. Then we
call

HSP(A) = HSP(A1) ∨HSP(A2) ∨ . . . ∨HSP(An)

the variety generated by A. For brevity we often write HSP(A1, A2, . . . , An) instead
of HSP({A1, A2, . . . , An}).

Remark 2.7. The notationHSP(·) originates from closure regarding to homomorphic
images, taking subalgebras and direct products.
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2.1. Semirings

The following de�nitions of semirings and their specializations were already given by
Hebisch and Weinert in [6]. As this thesis mainly bases upon the work done by Shao
and Ren, we will illustrate those concepts by the two-element semirings given in [4].

De�nition 2.8 ([6], De�nition 2.1). An algebra (S,+, ·) is called semiring if its ad-
ditive reduct (S,+) is a commutative semigroup, its multiplicative reduct (S, ·) is a
semigroup and the distributive laws

x · (y + z) = x · y + x · z (1)

(x+ y) · z = x · z + y · z. (2)

hold for all x, y, z ∈ S. The variety of semirings will be denoted by SR.

Remark 2.9. From now on we assume that · binds stronger than +. Thus we can
omit · in most terms and write ab instead of a · b.

De�nition 2.10 ([6], De�nition 2.6 c)). Let (S,+, ·) be a semiring. When (S,+) is
an idempotent semigroup, i.e.

x+ x = x (3)

holds for all x ∈ S, it is called additively idempotent. The variety of additively idem-
potent semirings will be denoted by SL+ since their additive reduct is a semilattice.
Such semirings are often called semilattice-ordered semigroups.

Example 2.11. In [4] the two-element semirings L2, R2, M2, D2, T2 and N2 are
introduced (these can be found in Appendix A). Those are � apart from isomor-
phic images � the only two-element semirings in SL+. Thus they generate S2 =
HSP(L2, R2,M2, D2, T2, N2) as a subvariety of SL+. In [4], Corollary 2.3 Shao and
Ren showed that an equational basis of S2 is given by

xyzt = xzyt, (4)

(xy)2 = xy, (5)

x+ yz = x+ yz + xz + yx (6)

and thus

S2 = [xyzt = xzyt, (xy)2 = xy, x+ yz = x+ yz + xz + yx].

Lemma 2.12 (Cf. [7], Chapter 1.6). Let X be a (�nite) set of variables � called al-
phabet. Furthermore

X+ = {x1x2 · · · xk | k ∈ N+, x1, x2, . . . , xk ∈ X}

is the set of all nonempty words over X. Whereas ε is the empty word consisting of
no variables and

X∗ = X+ ∪ {ε}
is the set of all words over X. Then a binary operation · is de�ned on X+ by juxtapo-
sition/concatenation

a · b = ab

for all a, b ∈ X+ and (X+, ·) is the free semigroup an A.
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Example 2.13 ([8], Example 2.2). Let S be a semigroup. We put, for any Q,R ∈
P(S),

Q ·R = {qr | q ∈ Q, r ∈ R}.

Then (P(S), ·,∪) and (F (S), ·,∪) are semilattice-ordered semigroups. Here, as usual,
∪ denotes the set-theoretical union.

F (S) = {A ⊂ S : |A| ∈ N+}

is the set of all �nite subsets of S.

Lemma 2.14 (See [8], Theorem 2.5). The structure (F (X+), ·,∪) together with the
embedding κ : x → {x}, x ∈ X, is a free object on the set X in the variety of all
semilattice-ordered semigroups.

Remark 2.15. We will denote (F (X+), ·,∪) by (Pfin(X+),+, ·), writing ∪ as addition
and following the notation of Shao and Ren in [4]. By former lemma (Pfin(X+),+, ·)
is the free additively idempotent semiring � the free ai-semiring.

De�nition 2.16. Let (Pfin(X+),+, ·) be the free ai-semiring over an alphabet X. We
call the expression u ≈ v an ai-semiring identity if u, v ∈ Pfin(X+). Alternatively we
sometimes write

u1 + u2 + . . .+ um ≈ v1 + v2 + . . .+ vn

instead of

{ui | i = 1, . . . ,m} ≈ {vj | j = 1, . . . , n}.

Let S be a semiring. Then u ≈ v is satis�ed in S � denoted by S |= u ≈ v � if and
only if ϕ(u) = ϕ(v) for every homomorphism ϕ : Pfin(X+)→ S.

De�nition 2.17. Let (S,+, ·) ∈ SL+ be a semiring. We call (S,+, ·) a commutative
semiring if it satis�es

xy ≈ yx. (7)

The subvariety of all commutative semirings in SL+ will be denoted by COM.

Example 2.18. It is easy to see that the semirings M2, D2, T2, N2 are commutative
whereas L2 and R2 are the only two non-commutative semirings of order two. Hence
the variety COM ∩ S2 is a proper subvariety of S2.

De�nition 2.19. Let (S,+, ·) ∈ SL+ be a semiring. Then (S,+, ·) is called idempotent
if and only if it satis�es

x2 ≈ x. (8)

The subvariety of all idempotent semirings in SL+ is accordingly denoted by I.
The semiring (S,+, ·) is called almost-idempotent (cf. [9]) if and only if it satis�es

x2 + x ≈ x2. (9)

We denote the subvariety of all almost-idempotent semirings in SL+ by IA.
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Example 2.20. Looking at semirings of order two again we see that L2, R2, M2, D2

are idempotent whereas T2 and N2 are not. But since

x2 + x ≈ x2 + x2 by (8)

≈ x2 by (3)

holds for every semiring S ∈ I the variety I is a subvariety of IA. Furthermore (9) is
satis�ed in T2 and ϕ(x) = 0 contradicts x2 ≈ x in T2. So we get T2 ∈ IA \ I and thus
I ⊂ IA.

As already mentioned Pastijn at al. determined the complete lattice L(I). We are
going to investigate L(IA).

2.2. Formal Concept Analysis

2.2.1. Concept Lattices

The concepts and notations in Section 2.2 follow Ganter and Obiedkov [10]. Results
given here without proof can also be found there.

De�nition 2.21. Let G and M be two sets and I ⊆ G × M a binary relation on
G × M . We call the triple K = (G,M, I) a formal context. The elements g ∈ G
are called objects, the elements m ∈ M attributes. For any object g ∈ G and any
attribute m ∈ M the relation gIm respectively (g,m) ∈ I expresses that object g has
the attribute m.
A formal context can easily be represented as a table where the rows are objects and
columns are attributes. The cell in row g and column m gets marked with an X if gIm
holds and remains empty otherwise.

Example 2.22. Earlier in Example 2.11 we introduced the semirings L2, R2, M2, D2,
T2 and N2 and will now use them as objects in our context. In Examples 2.18 and 2.20
we already had a glimpse at equations that are or are not satis�ed in those semirings.
Those equations will be our attributes and the relation gIm can be read as "semiring
g satis�es equation m". Thus we receive the following context:

xy ≈ yx x2 ≈ x x2 + x ≈ x2

L2 X X
R2 X X
M2 X X X
D2 X X X
T2 X X
N2 X

De�nition 2.23. Let (G,M, I) be a context. For any subset A ⊆ G of objects we
de�ne

ϕ(A) = {m ∈M | gIm ∀g ∈ A}

and for any subset B ⊆M of attributes analogous

ψ(B) = {g ∈ G | gIm ∀m ∈ B}.
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Lemma 2.24 ([11], Hilfssatz 10). Let (G,M, I) be a context. Moreover let A,A1, A2 ⊆
G be sets of objects and B,B1, B2 ⊆M be sets of attributes. Then

1. A ⊆ ψ(ϕ(A)) and B ⊆ ϕ(ψ(B)),

2. A1 ⊆ A2 ⇒ ϕ(A2) ⊆ ϕ(A1) and B1 ⊆ B2 ⇒ ψ(B2) ⊆ ψ(B1),

3. ϕ(A) = ϕ(ψ(ϕ(A))) and ψ(B) = ψ(ϕ(ψ(B)))

hold.

Proof. 1. : Assume g0 ∈ A then g0Im holds for all m ∈ ϕ(A) and hence g0 ∈ ψ(ϕ(A)) =
{g ∈ G | ∀m ∈ ϕ(A) : gIm}.
2. : Assume m ∈ ϕ(A2) then gIm holds for all g ∈ A2. Since A1 ⊆ A2 holds gIm is
also true for all g ∈ A1. In consequence m ∈ ϕ(A1) is satis�ed.
3. : From 1 and 2 we get ϕ(A) ⊇ ϕ(ψ(ϕ(A))). On the other hand from 1 we also get
B ⊆ ϕ(ψ(B)), consequently with B = ϕ(A) �nally ϕ(A) = ϕ(ψ(ϕ(A))).
Derivation for attributes are analogous.

De�nition 2.25. A formal concept of a context (G,M, I) is a pair (A,B) with A ⊆ G,
B ⊆ M , ϕ(A) = B and ψ(B) = A. Then A is called the extent and B is called the
intent of the formal concept (A,B). With B(G,M, I) we denote the set of all formal
concepts of the context (G,M, I).

Example 2.26. In continuation of Example 2.22 we calculate every formal concept in
the given context. For this we calculate the sets ψ(B) and ϕ(ψ(B)) for every subset
B ⊆ {xy ≈ yx, x2 ≈ x, x2 + x ≈ x2}:

1. ψ(∅) = {L2, R2,M2, D2, T2, N2} and
ϕ(ψ(∅)) = ∅,

2. ψ({xy ≈ yx}) = {M2, D2, T2, N2} and
ϕ(ψ({xy ≈ yx})) = {xy ≈ yx},

3. ψ({x2 ≈ x}) = {L2, R2,M2, D2} and
ϕ(ψ({x2 ≈ x})) = {x2 ≈ x, x2 + x ≈ x2},

4. ψ({x2 + x ≈ x2}) = {L2, R2,M2, D2, T2} and
ϕ(ψ({x2 + x ≈ x2})) = {x2 + x ≈ x2},

5. ψ({xy ≈ yx, x2 ≈ x}) = {M2, D2} and
ϕ(ψ({xy ≈ yx, x2 ≈ x})) = {xy ≈ yx, x2 ≈ x, x2 + x ≈ x2},

6. ψ({xy ≈ yx, x2 + x ≈ x2}) = {M2, D2, T2} and
ϕ(ψ({xy ≈ yx, x2 + x ≈ x2})) = {xy ≈ yx, x2 + x ≈ x2},

7. ψ({x2 ≈ x, x2 + x ≈ x2}) = {L2, R2,M2, D2} and
ϕ(ψ({x2 ≈ x, x2 + x ≈ x2})) = {x2 ≈ x, x2 + x ≈ x2},

8. ψ({xy ≈ yx, x2 ≈ x, x2 + x ≈ x2}) = {M2, D2} and
ϕ(ψ({xy ≈ yx, x2 ≈ x, x2 + x ≈ x2})) = {xy ≈ yx, x2 ≈ x, x2 + x ≈ x2}.
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Thus every tuple (ψ(B), B) with ϕ(ψ(B)) = B is a formal concept in the given context.
Those are

• B0 = ({M2, D2}, {xy ≈ yx,2≈ x, x2 + x ≈ x2}),

• B1 = ({L2, R2,M2, D2}, {x2 ≈ x, x2 + x ≈ x2}),

• B2 = ({M2, D2, T2}, {xy ≈ yx, x2 + x ≈ x2}),

• B3 = ({L2, R2,M2, D2, T2}, {x2 + x ≈ x2}),

• B4 = ({M2, D2, T2, N2}, {xy ≈ yx}),

• B5 = ({L2, R2,M2, D2, T2, N2}, ∅).

De�nition 2.27. Let (G,M, I) be a context and (A1, B1), (A2, B2) ∈ B(G,M, I) two
formal concepts with A1 ⊆ A2. Then we call (A1, B1) a subconcept of (A2, B2) respec-
tively (A2, B2) a superconcept of (A1, B1) and write (A1, B1) ≤ (A2, B2).

Theorem 2.28 ([10], Theorem 1). The concept lattice of any formal context (G,M, I)
is a complete lattice. For an arbitrary set

{(At, Bt) | t ∈ T} ⊆ B(G,M, I)

of formal concepts, the supremum is given by

∨
t∈T

(At, Bt) =

(
ψ(ϕ(

⋃
t∈T

At)),
⋂
t∈T

Bt

)

and the in�mum is given by

∧
t∈T

(At, Bt) =

(⋂
t∈T

At, ϕ(ψ(
⋃
t∈T

Bt))

)
.

Example 2.29. In continuation of Example 2.26 we now can draw the complete lattice
of concepts in the context:

B0

B1 B2

B3 B4

B5

2.2.2. Implications

De�nition 2.30. Let (G,M, I) be a context and A,B ⊆ M . We call the pair (A,B)
an implication and write A→ B. A subset T ⊆M of attributes respects an implication
A→ B if and only if A 6⊆ T∨B ⊆ T holds. Furthermore T respects a set of implications
I ⊆ P(M)×P(M) if it respects every implication in I.
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De�nition 2.31. Let K = (G,M, I) be a context and T a set of subsets of the
attributes M � so T ⊆ P(M). Furthermore let A → B be an implication with
A,B ⊆M . Then T satis�es A→ B if and only if

∀T ∈ T : A 6⊆ T ∨B ⊆ T.

Hence every element of T respects A→ B.
An implication A → B is satis�ed in K if it is satis�ed in the set T = {ϕ(g) | g ∈ G}
of object intents. We call an implication that is satis�ed in an context K a context
implication and denote the set of all context implications of K by L(K).

Lemma 2.32. Let K = (G,M, I) be a context and B ⊆ M a set of attributes. Then
B → ϕ(ψ(B)) is satis�ed in K.

Proof. Assume there exists g ∈ G with B ⊆ ϕ(g) ∧ ϕ(ψ(B)) 6⊆ ϕ(g). By Lemma 2.24
ψ(ϕ(g)) ⊆ ψ(B) and moreover ϕ(ψ(B)) ⊆ ϕ(ψ(ϕ(g))) = ϕ(g) are consequences of
B ⊆ ϕ(g) in contradiction to ϕ(ψ(B)) 6⊆ ϕ(g).

Example 2.33. With B = {x2 ≈ x} we receive ϕ(ψ(B)) = {x2 ≈ x, x2 + x ≈ x2} in
the context given in Example 2.22. As we already proved this implication is true in
SL+. Note that this is the only non-trivial implication in the context. So by proving
it we showed that e.g. L2 and R2 are not distinguishable due to a lack of attributes.
We will solve this problem in Example 2.42.

De�nition 2.34. Let K = (G,M, I) be a context and A,B ⊆ M sets of attributes.
An implication A→ B is a consequence of a set of implications I ⊆ P(M)×P(M) if
and only if every set of attributes T ⊆M that respects I respects A→ B as well. We
will denote the set of all consequences of I by C(I).

De�nition 2.35. For a context K = (G,M, I) we call a set of implications I ⊆
P(M) × P(M) complete when every context implication in K is a consequence of I
� so C(I) = L(K). We call I irredundant if no implication A → B ∈ I is already a
consequence of I \ {A→ B}.

De�nition 2.36. Let K = (G,M, I) be a context. A set of implication I ⊆ L(K) is
called base of L(K) if and only if C(I) = L(K) holds and no S ⊂ I with C(S) = L(K)
exists.

Remark 2.37. By former de�nition every basis I ⊆ L(K) of L(K) is complete and
irredundant in a given context K = (G,M, I).

De�nition 2.38. Let K = (G,M, I) be a context. A set P ⊆M is called pseudo-closed
if P 6= ϕ(ψ(P )) holds and ϕ(ψ(Q)) ⊆ P is satis�ed for all proper pseudo-closed subsets
Q ⊂ P of P .

Remark 2.39. Note that former de�nition is recursive. Hence we need to assume that
M is �nite from now on.

Theorem 2.40 ([10], Theorem 7). Let K = (G,M, I) be a context. Then the set

S = {P → ϕ(ψ(P )) | P pseudo-closed}

is complete and irredundant.
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The set
S ′ = {P → (ϕ(ψ(P )) \ P ) | P pseudo-closed}

is sometimes called the Duquenne-Guigues-Basis. Duquenne and Guigues called it the
canonical basis.

Example 2.41. We calculate the canonical basis for the context given in Example
2.22. So we are interested in the set of pseudo contents. In Example 2.42 we already
calculated ϕ(ψ(P )) for every P ⊆M . Only

• P1 = {x2 ≈ x} and

• P2 = {xy ≈ yx, x2 ≈ x}

satisfy the inequality Pi 6= ϕ(ψ(Pi)). So P1 is a pseudo content. It remains to check
whether P2 is a pseudo content or not. Obviously P1 ⊂ P2 holds but since ϕ(ψ(P1)) =
{x2 ≈ x, x2 +x ≈ x2} 6⊆ {xy ≈ yx, x2 ≈ x} = P2 is true P2 is no pseudo content. Thus
the canonical basis of the context is

S = {{x2 ≈ x} → {x2 + x ≈ x2}}.

In Example 2.20 we already proved that this implication holds true for any semiring
in SL+.

2.2.3. Attribute Exploration

One often faces the situation that the calculated concept lattice for the given context
ful�lls implications that are not true in reality. Hence the context is too special and
needs to be enlarged. This can be achieved by adding one or more new objects to
the context that contradict those implications. As we are dealing with implications of
equations the search for counterexamples is rather simple; programs like Mace4 1 are
designed exactly for this purpose. In Chapter 3 we are facing a similar but di�erent
problem: we know that our set of objects (almost-idempotent semirings of order 3) is
complete but the set of attributes (equations) is not. To solve this we inspect the dual
context (M,G, I−

1
) with gIm ⇔ mI−1g. We again can compute implications in the

new context. Those look like

{Si | i ∈ J0} → {Sj | j ∈ J1}

with index sets J0 and J1 and Si, Sj ∈ SL+. To prove those we need to show that every
equation that is satis�ed in every Si is also satis�ed in any Sj. If the implication is not
true we have to add an equation as counterexample that is satis�ed in every Si but not
in Sj.

Example 2.42. In the context given in Example 2.22 we know that the set of objects
is complete since the objects are up to isomorphic images all semirings of order 2. As
pointed out in Example 2.33 the semirings L2 and R2 are not distinguishable in this
context. By adding the equation xy ≈ x, which is satis�ed in L2 but not in R2, we
receive an updated context:

1See http://www.cs.unm.edu/∼mccune/prover9/

http://www.cs.unm.edu/~mccune/prover9/
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xy ≈ yx x2 ≈ x x2 + x ≈ x2 xy ≈ x

L2 X X X
R2 X X
M2 X X X
D2 X X X
T2 X X
N2 X

But again the semirings M2 and D2 are not distinguishable in the new context. This
can be solved by adding the equation x+ yx ≈ x. We receive the updated context:

xy ≈ yx x2 ≈ x x2 + x ≈ x2 xy ≈ x x+ yx ≈ x

L2 X X X
R2 X X X
M2 X X X
D2 X X X X
T2 X X
N2 X

By this procedure we can enlarge the set of attributes. We repeat those steps until
we can prove all implications of the contexts canonical basis. In this example the �nal
concept lattice would have no dependencies between objects at all and thus the lattice
L(S2) is a boolean algebra. For a complete set of equations see Table 3 in [4].

The example demonstrates a process called attribute exploration. In this thesis we
use that technique to explore the lattice of varieties of almost-idempotent semirings.
We start with almost-idempotent semirings with up to three elements as objects. Af-
terwards we add equations as attributes to the context until we are able to prove every
implication of its canonical basis. Thus we can ensure that the �nal lattice indeed is
the complete lattice of varieties generated by almost-idempotent semirings with up to
three elements.
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3. The lattice L(IA3)

3.1. Generating semirings

In this chapter we will determine the lattice L(IA3) of all subvarieties of IA generated
by proper almost-idempotent semirings of maximal order 3. Note that this is not
necessarily the complete lattice of subvarieties of IA3, the variety generated by all
almost-idempotent semirings of maximal order 3. We start with some de�nitions we
will use later on. These are mainly used to characterize the semirings that will generate
the lattice. A lot of this de�nitions are well-known. I.e., one �nds de�nitions for size,
content, head and tail of words respectively sets of words already in [1], [2] or [4]. We
recap those here and introduce new ones.

De�nition 3.1. Let X be an alphabet and x ∈ X. For any �nite word w ∈ X+ we
de�ne

I. the count cx(w) of x in w recursively:

1. cx(x) = 1,

2. cx(y) = 0 y ∈ X, y 6= x,

3. cx(w1w2) = cx(w1) + cx(w2) w1, w2 ∈ X+.

So cx(w) is the number of occurrences of the variable x in the word w.

II. the content c(w) of w via

c(w) = {x ∈ X | cx(w) ≥ 1}.

III. the size |w| of w via

|w| =
∑
x∈X

cx(w).

So |w| is the number of variables occurring in w.

IV. the head h(w) respectively tail t(w) of w as the set containing the �rst respectively
last variable occurring in w.

De�nition 3.2. Let X be an alphabet, u = {u1, . . . , um : ui ∈ X+} a set of words
over the alphabet X and k ∈ N+. We de�ne

I. the set c(u) of wordcontents in u via

c(u) = {c(ui) | ui ∈ u}.
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II. the content of all words with size k via

Ck(u) =
⋃
ui∈u
|ui|=k

c(ui),

the content of all words with size greater or equal k via

Ck+(u) =
∞⋃
i=k

Ci(u)

and the content C(u) = C1+(u) of u.

III. the set H(u) of all heads in u via

H(u) =
⋃
ui∈u

h(ui)

and the sets Hk(u) and Hk+(u) analogous to Ck(u) respectively Ck+(u).

IV. the set T (u) of all tails in u via

T (u) =
⋃
ui∈u

t(ui)

and the sets Tk(u) and Tk+(u) analogous to Ck(u) respectively Ck+(u).

V. the body in respect to the head[tail] Bh(u)[Bt(u)] as the set of all variables oc-
curring in u after the �rst[last] variable of every word in u was removed.

VI. the set of variables in u that occur at least twice in at least one word via

Q(u) = {x ∈ X | ∃ui ∈ u : cx(ui) ≥ 2}.

VII. the set

Q(u) = {{x, y} ∈ P(X), x, y 6∈ Q(u) | ∃ui ∈ u : cx(ui) = cy(ui) = 1}.

VIII. the set

F(u) = {P ∈ P(C(u) \Q(u)) | ∀ui ∈ u ∃!x ∈ c(ui) : x ∈ P, cx(ui) = 1}

of possible choices of variables in u such that in every word exactly one variable
was picked.

IX. the set
C⊥(u) = {c(ui) | ui ∈ u, @uj ∈ u : c(uj) ⊂ c(ui)}

of minimal wordcontents in u.

X. the set

C⊥k+(u) = {c(ui) | ui ∈ u, |ui| ≥ k, @uj ∈ u : |uj| ≥ k, c(uj) ⊂ c(ui)}

of minimal wordcontents among words with at least size k in u.
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Remark 3.3. Obviously the head of a word with size 1 is the same as its content. In
consequence

H(u) = C1(u) ∪H2+(u)

and
H(u) = C1(u) \H2+(u) ∪H2+(u)

hold for any set u = {u1, . . . um} of words over a given alphabet. Furthermore

C2+(u) = Bt(u) ∪ T2+(u)

yields since every variable in a word with size at least 2 has to be in its tail or its body
in respect to the tail. Dually

C2+(u) = Bh(u) ∪H2+(u)

and consequently
C2+(u) = Bh(u) ∪Bt(u)

is satis�ed and by former thoughts

C(u) = H(u) ∪Bh(u)

and dually
C(u) = T (u) ∪Bt(u)

hold. Finally
C(u) = C1(u) \ C2+(u) ∪ C2+(u)

is satis�ed trivially.

We will now turn our attention to proper almost-idempotent semirings of order 3.
But �rst o�, let's recapitulate the characterization for additively idempotent semirings
with two elements given by Shao and Ren.

Lemma 3.4 ([4], Lemma 1.1). Let u ≈ v be an ai-semiring-identity with

u = {ui | i = 1, . . . ,m}

and
v = {vj | j = 1, . . . , n}.

Then

1. L2 |= u ≈ v if and only if H(u) = H(v),

2. R2 |= u ≈ v if and only if T (u) = T (v),

3. M2 |= u ≈ v if and only if C(u) = C(v),

4. D2 |= u ≈ v if and only if ∀ui ∈ u ∃vj ∈ v : c(vj) ⊆ c(ui) and ∀vj ∈ v ∃ui ∈ u :
c(ui) ⊆ c(vj),

5. T2 |= u ≈ v if and only if {ui ∈ u | |ui| ≥ 2} 6= ∅ and {vj ∈ v | |vj| ≥ 2} 6= ∅.
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Remark 3.5. A complete list of the semirings inspected by Shao and Ren in [4] can
be found in appendix A. As the semiring T2 will play a crucial role throughout this
thesis we recap its addition and multiplication table here:

+ 0 1
0 0 1
1 1 1

· 0 1
0 1 1
1 1 1

Obviously T2 is a commutative semiring that satis�es xy ≈ xy + x and consequently
x2 ≈ x2 + x but not x2 ≈ x. These properties will become handy later on. Note that
5 in former lemma is not completely accurate since x ≈ x is obviously satis�ed in T2
but does not hold the condition. Hence the correct condition should be

({ui ∈ u | |ui| ≥ 2} 6= ∅ ∧ {vj ∈ v | |vj| ≥ 2} 6= ∅) ∨

({ui ∈ u | |ui| ≥ 2} = ∅ = {vj ∈ v | |vj| ≥ 2} ∧ C(u) = C(v)).

The semirings L2, R2 ,M2 and D2 are multiplicatively idempotent whereas T2 is
the only proper almost-idempotent semiring. As we already have seen they all satisfy
x2 + x ≈ x2 and thus generate the variety IA2 ⊆ S2 of almost-idempotent semirings of
order 2. Furthermore in [4] it was shown that the lattice generated by those semirings
consists of 32 distinct varieties. Moreover an equational base of the variety S2 gener-
ated by all additively idempotent semirings with two elements was given (cf. Example
2.11). Using these results, we can easily determine if a given semiring generates a new
variety or already is an element of S2.
Consequently, it seems reasonable to search for all almost-idempotent non-isomorphic
semirings with three elements and �lter out those which generate new varieties after-
wards. Since for every almost-idempotent semiring (S,+, ·) the additive reduct (S,+)
forms a semilattice � without loss of generality a ∨-semilattice �, we are able to reduce
the search space for almost-idempotent semirings with three elements noticeably. The
only two ∨-semilattices with three elements are the chain and the ∨-semi-lattice with
two not comparable elements:

2

1

0

1

0

2

We used a Python program that found 44 almost-idempotent semirings S0, S1, . . . , S43

(see appendix C) with one of the above additive reducts of which 21 were proper
almost-idempotent. Finally, ten of them satisfy the equational basis of S2 and thus
already belong to HSP(T2). So only S3, S6, S7, S15, S20, S21, S22, S23, S24, S35 and
S38 are neither already in I nor in IA2 and hence generate new varieties in L(IA3).
Similarly to Lemma 3.4 we want to characterize those semirings of order 3 and for this
purpose will use a simple trick that was introduced in [4]:
To show that an ai-semiring identity u ≈ v with u = {u1, . . . , um} and v = {v1, . . . , vn}
is derivable from a given set Σ of ai-semiring identities it is su�cient to show that
u ≈ u + vj and v ≈ v + ui are derivable from Σ for ui ∈ u and vj ∈ v. Using a
symmetry argument it is su�cient to show that u ≈ u + vj is derivable from Σ for
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vj ∈ v. We will use this trick repeatedly in this thesis. The following lemmas will
give characterization for every of the eleven three-element proper almost-idempotent
semirings generating L(IA3).

Lemma 3.6. Let u ≈ v be an ai-semiring identity with

u = {ui | i = 1, . . . ,m}, v = {vj | j = 1, . . . , n}.

Then the following are equivalent:

1. S6 |= u ≈ v,

2. u ≈ v satis�es

Bh(u) ∩H(u) 6= ∅ ∧Bh(v) ∩H(v) 6= ∅ ∧ C(u) = C(v) (10)

or

Bh(u) ∩H(u) = Bh(v) ∩H(v) = ∅ ∧H(u) = H(v) ∧Bh(u) = Bh(v), (11)

3. u ≈ v is a consequence of

x+ yz ≈ xz + yz (12)

x2 + u+ v ≈ x2 + uv (13)

and the identities determining IA.

Proof. [(3)⇒ (1)] :
This is trivial since (12) and (13) are satis�ed in S6.
[(1)⇒ (2)] :
Without loss of generality let Bh(u) ∩ H(u) 6= ∅ and Bh(v) ∩ H(v) = ∅. Evaluating
every x ∈ Bh(v) at 1 and every x ∈ H(v) at 2 reduces v to 2 whereas u get reduced to
0 or 1 since there exists a product in u with head 1 or a 2 in it's body. C(u) = C(v)
is trivial since M2 is a subsemiring of S6.
So let Bh(u)∩H(u) = Bh(v)∩H(v) = ∅. Assume x ∈ H(u) with x 6∈ H(v). Evaluating
every y ∈ H(u) at 2 and every other variable at 1 we receive the contradiction 2 = 0.
Finally Bh(u) = Bh(v) is a consequence of H(u) = H(v) since C(u) = C(v) holds.
[(2)⇒ (3)]:
First note that

xy ≈ xy + xy ≈ xy + x (14)

is a consequence of (12). Furthermore

xyz ≈ xyz + x ≈ xyz + xz ≈ xy + xz ≈ xy + xzy ≈ x+ xzy ≈ xzy (15)

is a consequence of (12) and (14). So assume u ≈ v satis�es (10) or (11). Let p =
x1 · · · xk ∈ v, k ≥ 1. We have to show that u ≈ u + p is a consequence of (12), (13),
(14), (15) and the identities determining IA. We have two consider the following two
cases:
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Case 1. Bh(u) ∩H(u) 6= ∅. So with t1, t3, si ∈ X∗ and t2, ri ∈ X+ we can write u as

u ≈ u+ zt1 + t2zt3 +
k∑

i=1

rixisi

≈ u+ z + zt1 + t2t3z +
k∑

i=1

rixisi by (14), (15)

≈ u+ z2 + zt1 + t2t3z +
k∑

i=1

rixisi by (12)

≈ u+ z2 + zt1 + t2t3z +
k∑

i=1

risi +
k∑

i=1

xi by (13)

≈ u+ z2 + zt1 + t2t3z +
k∑

i=1

risi + x1 · · · xk by (13)

≈ u+ p.

Case 2. H(u) = H(v) ∧Bh(u) = Bh(v). So with t, si ∈ X∗ and ri ∈ X+ we can write
u as

u ≈ u+ x1t+
k∑

i=2

rixisi

≈ u+ x1t+ x1 +
k∑

i=2

risixi by (14), (15)

≈ u+ x1t+ x1 +
k∑

i=2

risixi + x1 · · · xk by (12)

≈ u+ p.

So u ≈ u+ p can be derived and the statement is shown.

Lemma 3.7. Let u ≈ v be an ai-semiring identity with

u = {ui | i = 1, . . . ,m}, v = {vj | j = 1, . . . , n}.

Then the following are equivalent:

1. S3 |= u ≈ v,

2. u ≈ v satis�es

Bt(u) ∩ T (u) 6= ∅ ∧Bt(v) ∩ T (v) 6= ∅ ∧ C(u) = C(v) (16)

or

Bt(u) ∩ T (u) = ∅ ∧Bt(v) ∩ T (v) = ∅ ∧ T (u) = T (v) ∧Bt(u) = Bt(v), (17)
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3. u ≈ v is a consequence of

x+ yz ≈ yx+ yz (18)

x2 + u+ v ≈ x2 + uv (13)

and the identities determining IA.

Proof. Dually to proof of Lemma 3.6.

Lemma 3.8. Let u ≈ v be an ai-semiring identity with

u = {ui | i = 1, . . . ,m}, v = {vj | j = 1, . . . , n}.

Then the following are equivalent:

1. S7|= u ≈ v

2. u ≈ v satis�es
F(u) = F(v) (19)

and
C(u) = C(v). (20)

Proof. [(1)⇒ (2)] :
Let u ≈ v be satis�ed in S7. Without loss of generality assume P ∈ F(u) with P 6∈ F(v).
Evaluating every variable in P at 1 and every other variable at 2 reduces every ui to
1 and so reduces u to 1. On the other hand, at least one vj ∈ v gets reduced to 0 or
2 which consequently reduces v to 0 or 2. The statement C(u) = C(v) is trivial since
M2 is a subsemiring of S7.
[(2)⇒ (1)] :
Assume that (19) and (20) are satis�ed in u ≈ v. Let ϕ : Pfin(X+)→ S7 be any freely
chosen but �xed homomorphism from the free ai-semiring to S7. We have to show that
ϕ(u) = ϕ(v) holds. If there exists x ∈ C(u) = C(v) with ϕ(x) = 0 then ϕ(u) = ϕ(v)
is trivially satis�ed since 0 · x = 0 = x · 0 and 0 + x = 0 = x + 0 hold in S7. So
assume there exists no x ∈ C(u) with ϕ(x) = 0. Furthermore if ϕ(x) = 2 holds for
every x ∈ C(u) = C(v), then again ϕ(u) = ϕ(v) is satis�ed trivially since 2 · 2 = 2
and 2 + 2 = 2 hold in S7. So �nally assume there exists a non-empty set M ⊆ C(u)
with ϕ(x) = 1 for every x ∈ M and ϕ(y) = 2 for every y ∈ C(u) \M . We have to
distinguish two cases:

Case 1. M ∈ F(u) = F(v). So for every ui ∈ u there exists exactly one x ∈ ui with
x ∈M and cx(ui) = 1. Thus using commutativity of S7

ϕ(u) = ϕ

(
n∑

i=1

ui

)
=

n∑
i=1

ϕ(ui) =
n∑

i=1

2|ui|−1 · 1 =
n∑

i=1

1 = 1

holds for u. We get ϕ(v) = 1 by symmetry of the arguments.

Case 2. M 6∈ F(u) = F(v). So either there exists ui ∈ u with M ∩ c(ui) = ∅ or
there exist t1, t2, t3 ∈ X∗ and ui = t1xt2yt3 ∈ u with x, y ∈ M . In the �rst case
ϕ(ui) = 2|ui| = 2 holds since there exists at least one uj ∈ u with M ∩ c(uj) 6= ∅. By
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assumption we get ϕ(u) = 0 since 0 + 2 = 0 and 1 + 2 = 0 hold in S7. In the second
case notice that

ϕ(ui) = ϕ(t1) · 1 ·ϕ(t2) · 1 ·ϕ(t3) = 1 · 1 ·ϕ(t1) ·ϕ(t2) ·ϕ(t3) = 0 ·ϕ(t1) ·ϕ(t2) ·ϕ(t3) = 0

holds and hence ϕ(u) = 0 is satis�ed in either case. Since the same arguments hold for
v by symmetry we get ϕ(u) = 0 = ϕ(v).

So in either case ϕ(u) = ϕ(v) is satis�ed and u ≈ v holds in S7.

Lemma 3.9. Let u ≈ v be an ai-semiring identity with

u = {ui | i = 1, . . . ,m}, v = {vj | j = 1, . . . , n}.

Then the following are equivalent:

1. S15|= u ≈ v,

2. u ≈ v satis�es
C3+(u) 6= ∅, C3+(v) 6= ∅ (21)

or

C3+(u) = C3+(v) = ∅, C2(u) = C2(v), C1(u) \ C2(u) = C1(v) \ C2(v), (22)

3. u ≈ v is a consequence of

xy ≈ yx (7)

xy + ab ≈ xy + ab+ ax (23)

abc ≈ abc+ x (24)

and the identities determining IA.

Proof. [(3)⇒ (1)] :
This is trivial since S15 is commutative and satis�es (23) and (24).
[(1)⇒ (2)] :
Let u ≈ v be satis�ed in S15. Assume without loss of generality C3+(u) = ∅, C3+(v) 6=
∅. Evaluating all variables in u and v at 2 we receive ϕ(v) = 0 and ϕ(u) = 1 or
ϕ(u) = 2 which is a contradiction. So let C3+(u) = ∅, C3+(v) = ∅ and without loss
of generality x ∈ C2(u) with x 6∈ C2(v). Evaluating x at 1 and every other variable at
2 we receive ϕ(u) = 0 and ϕ(v) = 1 or ϕ(v) = 2. Finally without loss of generality
choose x ∈ C1(u) \ C2(u) with x 6∈ C1(v) \ C2(v). Evaluating x at 0 and every other
variable at 2 we receive ϕ(u) = 0 and ϕ(v) = 1 or ϕ(v) = 2.
[(2)⇒ (3)]:
Let u ≈ v satisfy (21) then u+ p ≈ u can trivially be derived for any p ∈ v using only
(24). So let p ∈ v and u ≈ v satisfy (22). We will use commutativity without further
notice.

Case 1. p = x. Then there exists either ui ∈ u with ui = x which is trivial or ui = xy
for some y ∈ X. Thus we can write u as

u ≈ u+ xy
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≈ u+ xy + xy

≈ u+ xy + x2 by (23)

≈ u+ xy + x2 + x by (9)

≈ u+ p.

Case 2. p = xy. Thus there exist t1, t2 ∈ X such that u can be written as

u ≈ u+ xt1 + yt2

≈ u+ xt1 + yt2 + xy by (23)

≈ u+ p.

Hence in either case u+ p ≈ u is satis�ed in S15 and the statement is shown.

Lemma 3.10. Let u ≈ v be an ai-semiring identity with

u = {ui | i = 1, . . . ,m}, v = {vj | j = 1, . . . , n}.

Then the following are equivalent:

1. S20|= u ≈ v,

2. u ≈ v satis�es

C2+(u) = C2+(v), C1(u) \ C2+(u) = C1(v) \ C2+(v), (25)

3. u ≈ v is a consequence of

xy ≈ yx (7)

xw + yz ≈ xw + xyz (26)

and the identities determining IA.

Proof. [(3)⇒ (1)] :
This is trivial since S20 is commutative and satis�es (26).
[(1)⇒ (2)] :
Let x ∈ C2+(u) with x 6∈ C2+(v). Evaluating x at 1 and every other variable at 2 we
receive the contradiction 0 = 2. Thus let y ∈ C1(u) \ C2+(u) with y 6∈ C1(v) \ C2+(v).
Evaluating y at 0 and every other variable at 2 we receive the contradiction 0 = 2.
[(2)⇒ (3)] :
Let u ≈ v satisfy (25). We will distinguish two cases to show that u + p ≈ u holds in
S20 for any p ∈ v.

Case 1. p = x. If x 6∈ C2+(v), then there exists ui ∈ u with ui = x which is trivial.
So assume x ∈ C2+(v). Thus there exists ui ∈ u with ui = tx for some t ∈ X+. Using
(26) and x2 + x ≈ x2 we can derive

ui ≈ tx ≈ tx+ tx

≈ txx+ tx ≈ xx+ tx by (26)

≈ xx+ tx+ x by (9)

≈ tx+ x by (26)

≈ ui + x.

Thus u ≈ u+ p can be derived.
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Case 2. p = x1 · · · xk. Since C2+(u) = C2+(v) yields we can without loss of generality
write u as

u ≈ u+ x1t1 + x2t2 + . . .+ xktk

with t1, t2, . . . , tk ∈ X+. Using (26) repeatedly we derive

u ≈ u+ x1t1 + x2t2 + . . .+ xktk

≈ u+ x1x2t1 + x1t1 + x2t2 + . . .+ xktk

≈ u+ x1x2 + x1t1 + x2t2 + . . .+ xktk

≈ u+ x1x2x3 + x1t1 + x2t2 + . . .+ xktk

≈ . . .

≈ u+ x1x2 · · · xk + x1t1 + x2t2 + . . .+ xktk

≈ u+ p.

So in either case u ≈ u+ p can be derived and the statement is shown.

Lemma 3.11. Let u ≈ v be an ai-semiring identity with

u = {ui | i = 1, . . . ,m}, v = {vj | j = 1, . . . , n}.

Then the following are equivalent:

1. S21 |= u ≈ v,

2. u ≈ v satis�es

Bh(u) = Bh(v) (27)

and

C1(u) \ C2+(u) ∪H2+(u) = C1(v) \ C2+(v) ∪H2+(v), (28)

3. u ≈ v is a consequence of

yx = y + x2 (29)

and the identities determining IA.

Proof. [(3)⇒ (1)] :
This is trivial since S21 satis�es (29).
[(1)⇒ (2)] :
Let u ≈ v be satis�ed in S21 and x ∈ Bh(u) with x 6∈ Bh(v). Evaluating x at 1 and
every other variable at 2 we receive the contradiction 0 = 1 if x ∈ C(v) and 0 = 2 else.
So let x ∈ C1(u) \ C2+(u) ∪ H2+(u) with x 6∈ C1(v) \ C2+(v) ∪ H2+(v). Evaluating x
at 1 and every other variable at 2 we receive the contradiction 1 = 2 if x 6∈ C(v) and
1 = 0 else.
[(2)⇒ (3)] :
Assume that u ≈ v satis�es (27) and (28). We need to show that u+p ≈ u is derivable
from (29) and the identities determining IA for any p ∈ v. First notice that xy ≈ xy+x,
xy ≈ xy + y and yxz ≈ yxz + x are all consequences of (29). We have to consider the
following two cases:
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Case 1. p = x.
If x ∈ C1(u) \C2+(u)∪H2+(u), then there exists ui ∈ u with ui = x which is trivial or
ui ∈ u with ui = xy and y ∈ X+. Using (29) we derive

ui ≈ xy ≈ xy + x ≈ ui + p.

Hence u + p ≈ u holds in S21. Conversely assume x 6∈ C1(u) \ C2+(u) ∪ H2+(u). So
there exists ui ∈ u with ui = t1xt2 and t1 ∈ X+, t2 ∈ X∗. Using (29) we derive

ui ≈ t1xt2 ≈ t1xt2 + x ≈ ui + p.

Case 2. p = x1 · · · xk.
Since u + p ≈ u satis�es (28), there exists ui ∈ u with ui = x1t for some t ∈ X∗.
Furthermore, as u + p ≈ u satis�es (27), there exists uij ∈ u with uij = sjxjtj with
sj ∈ X+ and tj ∈ X∗ for every j = 2, . . . k. Hence u can be written as

u ≈ u+ x1t+
k∑

i=2

sixiti

≈ u+ x1t+ x1 +
k∑

i=2

si +
k∑

i=2

x2i +
k∑

i=2

t2i by (29)

≈ u+ x1t+ x1x2 +
k∑

i=2

si +
k∑

i=3

x2i +
k∑

i=2

t2i by (29)

≈ u+ x1t+ x1x2x3 +
k∑

i=2

si +
k∑

i=4

x2i +
k∑

i=2

t2i by (29)

≈ . . .

≈ u+ x1t+ x1 · · · xk +
k∑

i=2

si +
k∑

i=2

t2i by (29)

≈ u+ p.

Thus u+ p ≈ u can be derived and the statement is shown.

Lemma 3.12. Let u ≈ v be an ai-semiring identity with

u = {ui | i = 1, . . . ,m}, v = {vj | j = 1, . . . , n}.

Then the following are equivalent:

1. S23 |= u ≈ v,

2. u ≈ v satis�es
Bt(u) = Bt(v) (30)

and
C1(u) \ C2+(u) ∪ T2+(u) = C1(v) \ C2+(v) ∪ T2+(v), (31)
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3. u ≈ v is a consequence of
yx ≈ y2 + x (32)

and the identities determining IA.

Proof. Dually to proof of Lemma 3.11

Lemma 3.13.
k∑

i=2

i−1∑
j=1

xixj ≈
k∏

i=1

xi +
k∑

i=2

i−1∑
j=1

xixj (33)

is a consequence of

x2x1 + x3x1 + x3x2 ≈ x2x1 + x3x1 + x3x2 + x1x2x3 (34)

Proof. We will show the statement by induction. First note that the case k = 3 is
given by (34). So propose that (33) it true for some �xed k. We will show that

k+1∑
i=2

i−1∑
j=1

xixj ≈
k+1∏
i=1

xi +
k+1∑
i=2

i−1∑
j=1

xixj

can be derived from (33) and (34).

k+1∑
i=2

i−1∑
j=1

xixj

≈
k∑

i=1

xk+1xi +
k∑

i=2

i−1∑
j=1

xixj

≈
k∑

i=1

xk+1xi +
k∑

i=2

i−1∑
j=1

xixj +
k∏

i=1

xi by (33)

≈
k∑

i=1

xk+1xi +
k∑

i=2

i−1∑
j=1

xixj + xk

k−1∏
i=1

xi + xk+1

k−1∏
i=1

xi by (33)

≈
k+1∑
i=2

i−1∑
j=1

xixj +
k+1∏
i=1

xi by(33) and (34)

Lemma 3.14. Let u ≈ v be an ai-semiring identity with

u = {ui | i = 1, . . . ,m}, v = {vj | j = 1, . . . , n}.

Then the following are equivalent:

1. S24|= u ≈ v

2. u ≈ v satis�es

Q(u) = Q(v), (35)

Q(u) = Q(v), (36)

C(u) = C(v). (37)
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3. u ≈ v is a consequence of

xy ≈ yx, (7)

xy ≈ xy + x, (14)

xy + xz + yz ≈ xy + xz + yz + xyz, (34)

x2 + y ≈ x2 + xy (38)

and the identities determining IA.

Proof. [(3)⇒ (1)] :
This is trivial since every equation in 3 is satis�ed in S24.
[(1)⇒ (2)] :
Assume that u ≈ v is satis�ed in S24. Without loss of generality choose {x, y} ∈ Q(u)
with {x, y} 6∈ Q(v). Evaluating x and y at 1 and every other variable at 2 we receive
the contradiction 1 = 0. The same point yields when choosing x ∈ Q(u) with x 6∈ Q(v).
The statement C(u) = C(v) is trivial since M2 is a subsemiring of S24.
[(2)⇒ (3)] :
Assume that Q(u) = Q(v)∧Q(u) = Q(v)∧C(u) = C(v) is satis�ed for an ai-semiring
identity u ≈ v. It is su�cient to show that u + p ≈ u can be derived from (7), (14),
(34), (38) and the identities determining IA for any p ∈ v. For p = x1 · · · xk, k ≥ 1 we
have to consider three cases:

Case 1. c(p) ∩ (C(v) \Q(v)) = ∅:
So every variable in p is an element in Q(v). Thus for t1, . . . tk ∈ X∗ we can write u
using the commutativity without further notice as

u ≈ u+
k∑

i=1

tix
2
i

≈ u+
k∑

i=1

tix
2
i +

k∑
i=1

x2i by (14)

≈ u+
k∑

i=1

x2i + x1

≈ u+
k∑

i=1

x2i + x1x2 by (38)

≈ . . .

≈ u+
k∑

i=1

x2i + x1x2 · · · xk by (38)

≈ u+ x1 · · · xk
≈ u+ p

Case 2. |c(p) ∩ (C(v) \Q(v))| = 1:
So there exists exactly one variable in p that is not in Q(v). Let without loss of
generality be x1 that variable. Thus for t1, . . . tk ∈ X∗ we can write u using the
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commutativity without further notice as

u ≈ u+ t1x1 +
k∑

i=2

tix
2
i

≈ u+ t1x1 + x1 +
k∑

i=2

tix
2
i +

k∑
i=2

x2i by (14)

≈ u+ x1 +
k∑

i=2

x2i

≈ u+ x1x2 +
k∑

i=2

x2i by (38)

≈ . . .

≈ u+ x1x2 · · · xk +
k∑

i=2

x2i by (38)

≈ u+ p

Case 3. |c(p) ∩ (C(v) \Q(v))| > 1 :
Let without loss of generality xl+1 . . . xk ∈ Q(v) be the variables in p that are elements
in Q(v). Thus for ti,j, ti ∈ X∗ we can write u using the commutativity without further
notice as

u ≈
l∑

i=2

i−1∑
j=1

ti,jxixj +
k∑

i=l+1

tix
2
i

≈
l∑

i=2

i−1∑
j=1

ti,jxixj +
l∑

i=2

i−1∑
j=1

xixj +
k∑

i=l+1

tix
2
i +

k∑
i=l+1

x2i by (14)

≈
l∑

i=2

i−1∑
j=1

xixj +
k∑

i=l+1

x2i

≈ x1x2 · · · xl +
l∑

i=2

i−1∑
j=1

xixj +
k∑

i=l+1

x2i by (34) and Lemma 3.13

≈ x1x2 · · · xl +
k∑

i=l+1

x2i

≈ x1x2 · · · xlxl+1 +
k∑

i=l+1

x2i by (38)

≈ . . .

≈ x1x2 · · · xlxl+1 · · · xk +
k∑

i=l+1

x2i by (38)

≈ u+ p

Hence in any case u+ p ≈ u can be derived and the statement is shown.
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Lemma 3.15. Let u ≈ v be an ai-semiring identity with

u = {ui | i = 1, . . . ,m}, v = {vj | j = 1, . . . , n}.

Then the following are equivalent:

1. S35 |= u ≈ v

2. u ≈ v satis�es
H2+(u) = H2+(v) (39)

and
C1(u) \H2+(u) = C1(v) \H2+(v) (40)

3. u ≈ v is a consequence of
xy ≈ xz (41)

and the identities determining IA.

Proof. [(3)⇒ (1)] :
This is trivial since (41) is satis�ed in S35.
[(1)⇒ (2)] :
Assume that u ≈ v is satis�ed in S35. Let x ∈ C1(u) \H2+(u) with x 6∈ C1(v) \H2+(v).
Evaluating x at 1 and every other variable at 2 we receive the contradiction 1 = 0 if
x ∈ H2+(v) or 1 = 2 else. So let x ∈ H2+(u) with x 6∈ H2+(v). Evaluating x at 1 and
every other variable at 2 we receive the contradiction 0 = 2 if x 6∈ C1(v) and 0 = 1
else.
[(2)⇒ (3)] :
Assume that u ≈ v satis�es (39) and (40). We need to prove that u + p ≈ u can be
derived from (41) and the identities determining IA for every p ∈ v. We distinguish
two cases:

Case 1. p = x. If x 6∈ H2+(u) then there exists ui ∈ u with ui = x which is trivial. So
assume x ∈ H2+(u). Thus there exists ui ∈ u with ui = xt for some t ∈ X+ and u can
be written as

u ≈ u+ xt ≈ u+ x2 ≈ u+ x2 + x ≈ u+ x ≈ u+ p.

Case 2. p = x1 · · · xk. So there exists ui ∈ u with ui = x1t for some t ∈ X+ and u can
be written as

u ≈ u+ x1t ≈ u+ x1 · · · xk ≈ u+ p.

So u+ p ≈ u is derivable in either case and the statement is shown.

Lemma 3.16. Let u ≈ v be an ai-semiring identity with

u = {ui | i = 1, . . . ,m}, v = {vj | j = 1, . . . , n}.

Then the following are equivalent:

1. S22 |= u ≈ v
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2. u ≈ v satis�es
T2+(u) = T2+(v) (42)

and
C1(u) \ T2+(u) = C1(v) \ T2+(v) (43)

3. u ≈ v is a consequence of
xy ≈ zy (44)

and the identities determining IA.

Proof. Dually to proof of Lemma 3.15.

Lemma 3.17. Let u ≈ v be an ai-semiring identity with

u = {ui | i = 1, . . . ,m}, v = {vj | j = 1, . . . , n}.

Then the following are equivalent:

1. S38 |= u ≈ v,

2. u ≈ v satis�es
C⊥2+(u) = C⊥2+(v) (45)

and

{ui ∈ u : |ui| = 1, c(ui) 6∈ C⊥2+(u)} = {vj ∈ v : |vj| = 1, c(vj) 6∈ C⊥2+(v)}. (46)

3. u ≈ v is a consequence of

xy ≈ yx (7)

xy ≈ xy + xyz, (47)

and the identities determining IA.

Proof. [(3)⇒ (1)] :
This is trivial since S38 is commutative and (47) is satis�ed in S38.
[(1)⇒ (2)] :
Let u ≈ v be satis�ed in S38. Assume without loss of generality that there exists
c(ui) ∈ C⊥2+(u) with c(ui) 6∈ C⊥2+(v). So for every vj ∈ v there exists some x ∈ vj with
x 6∈ ui. Evaluating all variables in c(ui) at 1 and every other variable at 2 reduces ui and
consequently also u to 0, whereas v gets reduced to 1 or 2. Let without loss of generality
x ∈ {ui ∈ u : |ui| = 1, c(ui) 6∈ C⊥2+(u)} but x 6∈ {vj ∈ v : |vj| = 1, c(vj) 6∈ C⊥2+(v)}.
Evaluating x at 1 and every other variable at 2 we receive the contradiction 1 = 2 if
{x} 6∈ C⊥2+(v) and 1 = 0 otherwise.
[(2)⇒ (3)] :
Notice that x2y ≈ xy can be derived from (47) and (9):

x2y ≈ (x2 + x)y ≈ x2y + xy ≈ xy.

Assume that u ≈ v satis�es (45) and (46). We need to prove that u + p ≈ u can be
derived from (47) and the identities determining IA for every p ∈ v. We distinguish
two cases:
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Case 1. p = x. Then there exists ui ∈ u with either ui = x or ui = xl, l ≥ 2. Since
xl + x ≈ xl holds in IA we can derive u+ p ≈ u trivially.

Case 2. p = x1 · · · xk, k ≥ 2. If c(p) ∈ C⊥2+(v) then there exists ui ∈ u with c(p) =
c(ui). Using x

2y ≈ xy we can derive u+ p ≈ u easily. Otherwise if c(p) 6∈ C⊥2+(v) then
there exists ui ∈ u with c(ui) ⊂ c(p) and |ui| ≥ 2. Using xy ≈ xy + xyz we can derive
ui = ui + p and hence u+ p ≈ u.

So in either case u+ p ≈ u is derivable and the statement is shown.

With the last lemma we characterized every semiring that generates new varieties in
L(IA3). As already mentioned, there may be subvarieties of IA3 that are not generated
by semirings of order 3, but those are not part of this research. Using these lemmas
we will now introduce a context and �nally prove that the context generates a lattice
that is isomorph to L(IA3).

3.2. The complete lattice L(IA3)

As we have seen we got eleven three-element proper almost-idempotent semirings that
generated new varieties in L(IA3). Moreover L2, R2,M2, D2 and T2 generated L(IA2) ⊆
L(IA3). Finally, SL0

2, SR
0
2,M

0
2 , B and B∗ (see Appendix B) are the only �ve three-

element idempotent semirings introduced by Pastijn et al. Hence these 21 semirings
generated the complete lattice L(IA3). Using these as attributes and 28 equations as
objects we built a context (see Appendix D). Calculating the canonical basis in this
context we receive the following 30 implications:

1. M0
2 →M2, D2,

2. SL0
2 → L2, D2,

3. SR0
2 → R2, D2,

4. B → L2,M2, D2,

5. B∗ → R2,M2, D2,

6. S3 →M2, T2,

7. S6 →M2, T2,

8. S7 →M2, T2,

9. S15 → T2,

10. S20 →M2, T2,

11. S21 →M2, T2,

12. S22 → R2, T2,

13. S23 →M2, T2,

14. S24 →M2, T2,
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15. S35 → L2, T2,

16. S38 → D2, T2

that are trivially satis�ed since the two-element semirings on the right side are sub-
semirings of the three-element semiring on the left side. Furthermore the implications

17. S21, S23,M2, T2 → S20,

18. S24,M2, D2, T2 → S7,

are self-dual whereas the implications

19. S24,L2,M2, T2 → S6,

20. S21, L2,M2, T2 → S6,

21. S7, L2,M2, T2 → S6,

22. S7, S21,M2, T2 → S6,

23. S6, S21, S35, L2,M2, T2 → S20,

24. S21,M2, D2, T2 → S6

are pairwise dual to

25. S24, R2,M2, T2 → S3,

26. S23, R2,M2, T2 → S3,

27. S7, R2,M2, T2 → S3,

28. S7, S23,M2, T2 → S3,

29. S3, S22, S23, R2,M2, T2 → S20,

30. S23,M2, D2, T2 → S3.

So proving implications (17) - (24) is su�cient to ensure that the concept lattice gen-
erated by the context would not change if additional equations were added. Hence in
fact it is isomorphic to the lattice L(IA3). Note that we are done when proving the
following implications

I. S21, S23 → S20,

II. S24, D2 → S7,

III. S24, L2 → S6,

IV. S21, L2 → S6

V. S7, L2 → S6,

VI. S7, S21 → S6,
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VII. S21, S35 → S20,

VIII. S21, D2 → S6,

since (17) - (24) are direct consequences of (I) - (VIII). From now on let u ≈ v be an
ai-semiring identity with

u = {ui | i = 1, . . . ,m}, v = {vj | j = 1, . . . , n}.

Then the following lemmas prove exactly these implications.

Lemma 3.18. S20 |= u ≈ v if S21 |= u ≈ v and S23 |= u ≈ v.

Proof. Let u ≈ v be satis�ed in S21 and S23 hence

Bh(u) = Bh(v), (27)

C1(u) \ C2+(u) ∪H2+(u) = C1(v) \ C2+(v) ∪H2+(v), (28)

Bt(u) = Bt(v), (30)

C1(u) \ C2+(u) ∪ T2+(u) = C1(v) \ C2+(v) ∪ T2+(v) (31)

are satis�ed. We have to show that

C2+(u) = C2+(v), C1(u) \ C2+(u) = C1(v) \ C2+(v) (25)

holds. First note that C2+(u) = Bh(u) ∪ Bt(u) = Bh(v) ∪ Bt(v) = C2+(v) yields by
(27) and (30). So assume x ∈ C1(u) \ C2+(u). Hence especially x 6∈ C2+(u) and in
consequence x 6∈ H2+(u) and x 6∈ T2+(u) hold. Thus x ∈ C1(v)\C2+(v) is a consequence
of (28) respectively (31).

Lemma 3.19. S7 |= u ≈ v if S24 |= u ≈ v and D2 |= u ≈ v.

Proof. Let u ≈ v be an ai-identity which is satis�ed in S24 and D2. Then u ≈ v satis�es

Q(u) = Q(v), (35)

Q(u) = Q(v), (36)

C(u) = C(v), (37)

∀ui ∈ u ∃vj ∈ v : c(vj) ⊆ c(ui) ∧ ∀vj ∈ v ∃ui ∈ u : c(ui) ⊆ c(vj). (48)

We have to show that u ≈ v satis�es

F(u) = F(v) (19)

and
C(u) = C(v) (20)

and thus is satis�ed in S7. Notice that (20) is trivially satis�ed since it is equivalent
to (37). So assume P ∈ F(u) which implies @x, y ∈ P : {x, y} ∈ Q(u) = Q(v) and
P ∩ Q(u) = P ∩ Q(v) = ∅ by de�nition. So for every vj ∈ v there exists at most one
x ∈ P with x ∈ c(vj). Notice that ∀vj ∈ v∃c(t) ∈ c(u) : c(t) ⊆ c(vj) holds since u ≈ v
is satis�ed in D2. But as P ∈ F(u) holds every c(t) ∈ c(u) contains at least one x ∈ P .
Therefore every vj ∈ v contains at least one x ∈ P . By former thoughts every vj ∈ v
contains exactly one x ∈ P and in consequence P ∈ F(u) yields. Using a symmetry
argument the statement F(u) = F(v) is shown. Hence u ≈ v is satis�ed in S7.
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Lemma 3.20. S6 |= u ≈ v if S24 |= u ≈ v and L2 |= u ≈ v.

Proof. Let ≈ v be satis�ed in S24 and L2. Thus u ≈ v satis�es

Q(u) = Q(v), (35)

Q(u) = Q(v), (36)

C(u) = C(v), (37)

H(u) = H(v) (49)

We have to show that

Bh(u) ∩H(u) 6= ∅ ∧Bh(v) ∩H(v) 6= ∅ ∧ C(u) = C(v) (10)

or

Bh(u) ∩H(u) = ∅ ∧Bh(v) ∩H(v) = ∅ ∧H(u) = H(v) ∧Bh(u) = Bh(v) (11)

holds. If Bh(u)∩H(u) 6= ∅∧Bh(v)∩H(v) 6= ∅ holds, then (10) is a direct consequence
of (37). So without loss of generality assume Bh(u) ∩ H(u) = ∅ and there exists
x ∈ Bh(v) ∩ H(v) = Bh(v) ∩ H(u). Thus either there exists vj ∈ v with cx(vj) ≥ 2
which means x ∈ Q(v) holds or x 6∈ Q(v) yields and there exists y ∈ H(v) = H(u)
with {x, y} ∈ Q(v). Any case contradicts either (35) or (36). Hence Bh(v)∩H(v) = ∅
is satis�ed and (11) is a direct consequence.

Lemma 3.21. S6 |= u ≈ v if S21 |= u ≈ v and L2 |= u ≈ v.

Proof. Let u ≈ v be satis�ed in S21 and L2 hence

Bh(u) = Bh(v), (27)

C1(u) \ C2+(u) ∪H2+(u) = C1(v) \ C2+(v) ∪H2+(v), (28)

H(u) = H(v) (50)

are satis�ed. First note that M2 is a subsemiring of S21 hence C(u) = C(v) is satis�ed
additionally. We have to show that u ≈ v satis�es

Bh(u) ∩H(u) 6= ∅ ∧Bh(v) ∩H(v) 6= ∅ ∧ C(u) = C(v) (10)

or

Bh(u) ∩H(u) = Bh(v) ∩H(v) = ∅ ∧H(u) = H(v) ∧Bh(u) = Bh(v). (11)

This is trivial since C(u) = H(u) ∪Bh(u) = H(v) ∪Bh(v) = C(v) yields.

Lemma 3.22. S6 |= u ≈ v if S7 |= u ≈ v and L2 |= u ≈ v.

Proof. Let u ≈ v be satis�ed in S7 and L2 hence

F(u) = F(v), (19)

C(u) = C(v), (20)

H(u) = H(v) (51)
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are satis�ed. We will show that

Bh(u) ∩H(u) 6= ∅ ∧Bh(v) ∩H(v) 6= ∅ ∧ C(u) = C(v) (10)

or
Bh(u) ∩H(u) = Bh(v) ∩H(v) = ∅ ∧H(u) = H(v) ∧Bh(u) = Bh(v) (11)

holds for u ≈ v. Assume H(u) ∩ Bh(u) 6= ∅ ∧H(v) ∩ Bh(v) 6= ∅. Then the statement
follows trivially by (20). So conversely assume H(u)∩Bh(u) = ∅. Since H(u) contains
the �rst variable of every ui ∈ u, we receive H(u) ∈ F(u) = F(v). So H(v) ∈ F(v)
yields and by de�nition of F(v) we get H(v) ∩ Bh(v) = ∅. Finally note that C(u) =
H(u) ∪Bh(u) yields hence Bh(u) = Bh(v) holds.

Lemma 3.23. S6 |= u ≈ v if S7 |= u ≈ v and S21 |= u ≈ v.

Proof. Let u ≈ v be satis�ed in S7 and S21, hence

F(u) = F(v), (19)

C(u) = C(v), (20)

Bh(u) = Bh(v), (27)

C1(u) \ C2+(u) ∪H2+(u) = C1(v) \ C2+(v) ∪H2+(v) (28)

are satis�ed in u ≈ v. We have to show that u ≈ v satis�es

Bh(u) ∩H(u) 6= ∅ ∧Bh(v) ∩H(v) 6= ∅ ∧ C(u) = C(v) (10)

or
Bh(u) ∩H(u) = Bh(v) ∩H(v) = ∅ ∧H(u) = H(v) ∧Bh(u) = Bh(v). (11)

Assume H(u)∩Bh(u) 6= ∅ and H(v)∩Bh(v) 6= ∅. Then the statement follows trivially
from (20).
Conversely, assume H(u) ∩ Bh(u) = ∅. Since H(u) ∪ Bh(u) = C(u) yields for every
semiring and there exists exactly one header in every ui ∈ u, we receive H(u) ∈ F(u) =
F(v). So there exists exactly one xj ∈ H(u) with cxj

(vj) = 1 for every vj ∈ v by
de�nition of F(v). But since xj 6∈ Bh(u) = Bh(v) holds by (27), we receive xj ∈ H(v),
hence H(v) ⊇ H(u). But if H(v) ⊃ H(u) was satis�ed, then there exists vj ∈ v with
H(u) ∩ c(vj) = ∅. This contradicts H(u) ∈ F(v). Hence H(u) = H(v) and �nally
Bh(v) ∩H(v) = ∅ hold.

Lemma 3.24. S20 |= u ≈ v if S21 |= u ≈ v and S35 |= u ≈ v.

Proof. Let u ≈ v be satis�ed in S21 and S35. Thus

Bh(u) = Bh(v), (30)

C1(u) \ C2(u) ∪H2+(u) = C1(v) \ C2(v) ∪H2+(v), (31)

H2+(u) = H2+(v), (42)

C1(u) \H2+(u) = C1(v) \H2+(v) (43)

hold. We have to show that

C2+(u) = C2+(v), C1(u) \ C2+(u) = C1(v) \ C2+(v) (25)
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is satis�ed. Obviously

C2+(u) = Bh(u) ∪H2+(u) = Bh(v) ∪H2+(v) = C2+(v)

holds and with (43) we get

C1(u) \ C2+(u) = C1(v) \ C2+(v).

Hence u ≈ v is satis�ed in S20.

Lemma 3.25. S6 |= u ≈ v if S21 |= u ≈ v and D2 |= u ≈ v.

Proof. Let u ≈ v be satis�ed in S21 and D2 hence

Bh(u) = Bh(v), (27)

C1(u) \ C2+(u) ∪H2+(u) = C1(v) \ C2+(v) ∪H2+(v), (28)

∀ui ∈ u ∃vj ∈ v : c(vj) ⊆ c(ui) ∧ ∀vj ∈ v ∃ui ∈ u : c(ui) ⊆ c(vj) (52)

are satis�ed. First note that M2 is a subsemiring of S21 hence C(u) = C(v) is satis�ed
additionally. We have to show that u ≈ v satis�es

Bh(u) ∩H(u) 6= ∅ ∧Bh(v) ∩H(v) 6= ∅ ∧ C(u) = C(v) (10)

or
Bh(u) ∩H(u) = Bh(v) ∩H(v) = ∅ ∧H(u) = H(v) ∧Bh(u) = Bh(v). (11)

If Bh(u) ∩H(u) 6= ∅ ∧ Bh(v) ∩H(v) 6= ∅ holds, then (10) follows trivially. So assume
Bh(u) ∩ H(u) = ∅. Obviously Bh(u) = Bh(v) is satis�ed and with C(u) = C(v) we
get H(u) ⊆ H(v). So let x ∈ H(v) ∩ Bh(v) with x 6∈ H(u). We have to distinguish
two cases. If x ∈ H2+(v), then x ∈ C1(v) \ C2+(v) ∪ H2+(v) holds which contradicts
(28). So assume x ∈ C1(v). But since u ≈ v is satis�ed in D2, there exists ui ∈ u with
c(ui) ⊆ {x}. Hence x ∈ C1(u) which contradicts Bh(u)∩H(u) = ∅. Thus H(u) = H(v)
and �nally Bh(v) ∩H(v) = ∅ yield.

Using former eight lemmas we ultimately showed that the lattice generated by the
given context in fact is isomorphic to L(IA3). The lattice consequently consists of
19901 varieties2. Due to the size we relinquish including an image of the lattice.

Remark 3.26. Even though the focus of this chapter was to generate the lattice
L(IA3), we found equational bases for some subvarieties of IA3 during this research.
We will list them here without further proof. Let α, β ∈ X ∪ {ε} then

1. HSP(S24, S38) = [x2 + y ≈ x2 + xy, x2y+ ab ≈ x2y+ ab+ abx, xy+αyz + βxz ≈
xy + αyz + βxz + xyz],

2. HSP(S21, S23) = [xy ≈ xy + x + y, xy + yz ≈ xy + yz + xyz, xyz + ab ≈ xyz +
ab+ ayb, xy + ab ≈ xy + ab+ xb],

3. HSP(S21, S38) = [xyz ≈ xzy, xy+ ab ≈ xy+ ab+ ayb, xα+ a2b = xα+ ab+xab],

2The complete lattice and the amount of varieties can be calculated using programs like ConExp (See
http://conexp.sourceforge.net/ or http://www.upriss.org.uk/fca/fcasoftware.html).

http://conexp.sourceforge.net/
http://www.upriss.org.uk/fca/fcasoftware.html
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4. HSP(S23, S38) = [xyz ≈ yxz, xy+ ab ≈ xy+ ab+ axb, αx+ ab2 = αx+ ab+ abx],

5. HSP(S22, S23) = [xy ≈ xy + y, xy + ab ≈ xy + ab+ axb],

6. HSP(S21, S35) = [xy ≈ xy + x, xy + ab ≈ xy + ab+ ayb].

So in total we gave an equational basis for 16 of 19901 varieties. Finding bases for
the remaining varieties is an open task for further research. Especially, the equational
basis for HSP(S7) turned out to be a tough nut. Maybe one even needs an in�nite set
of equations.
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4. Structure of the lattice L(IA)
In the former chapter we determined the lattice of varieties of almost-idempotent semir-
ings with three elements. It is natural to use Formal Context Analysis to extend that
lattice until the complete lattice L(IA) of varieties of almost-idempotent semirings is
reached. The hope was that adding a few more semirings of higher order is su�cient
to generate the complete lattice. But it turns out that the lattice is far bigger than
expected.
Let V be the subvariety of COM characterized through the additional equation

xy ≈ xy + x. (14)

We will prove that the varieties V2 = [x3 ≈ x2],V3 = [x4 ≈ x3],V4 = [x5 ≈ x4], . . . are
all distinct subvarieties of V and thus form an in�nite chain in L(V). Consequently, it
seems reasonable to look at those subvarieties and to try to determine their complete
lattice. But again we construct an in�nite chain of subvarieties of Vn, n ≥ 2.

Example 4.1. The semirings S7 and S38 are commutative but do not satisfy (14)
whereas S15, S20 and S24 are commutative and satisfy (14) and thus generate IA3 ∩V.
So V is a proper subvariety of COM.
The so called max-plus algebra (R ∪ {−∞},⊕,�) with

a⊕ b = max(a, b)

and
a� b = a+ b if a, b ∈ R and −∞ otherwise

is used for �nding critical paths in graphs, in control or automata theory, for analysis of
the behaviour of industrial processes, and in many other applications (cf. [12], Example
1.22). It contains the subsemiring (N,⊕,�) which satis�es (14) and is commutative
thus is a semiring in V. Note that 0 is a multiplicatively and additively neutral element
in that semiring. We relinquish 0 since we do not want a neutral element and receive
the following semiring:

Lemma 4.2. Let + be the ordinary addition. Then the algebra T = (N+,⊕,�) with

a⊕ b = max(a, b)

and
a� b = a+ b

for every a, b ∈ N is a semiring in V.

Proof. Obviously the maximum function is an idempotent, commutative and associa-
tive mapping from N+ ×N+ to N+. On the other hand � : N+ ×N+ → N+ is commu-
tative and associative since the ordinary addition is commutative and associative. It
remains to show that one distributive law and (14) hold. We get

a� (b⊕ c) = a+ max(b, c)
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= max(a+ b, a+ c)

= max(a� b, a� c)
= a� b⊕ a� c

and
a� b = a+ b = max(a+ b, b) = max(a� b, b) = a� b⊕ b

for every a, b, c ∈ N, thus T ∈ V.

Example 4.3. Let n1, n2, n3 ∈ N with n1 < n2 < n3 and ρ ⊆ N+ × N+ a congruence
on T with (n1, n3) ∈ ρ. Then (n1⊕n2, n3⊕n2) = (max(n1, n2),max(n3, n2)) = (n2, n3)
holds. Thus (n2, n3) ∈ ρ and consequently (n1, n2) ∈ ρ by transitivity, especially
(n1, n1+1) ∈ ρ. Now assume (n1, n1+1) ∈ ρ then (1�n1, 1�(n1+1)) = (n1+1, n1+2) ∈
ρ and by transitivity (n1, n1+2) ∈ ρ. Repeating this step we �nally get (n1, n1+k) ∈ ρ
for any k ∈ N.
So for any �xed n ∈ N+ the least congruence relation ρn on T with (n, n+ 1) ∈ ρn is

the trivial relation on {n, n+ 1, n+ 2, . . .} and the identity relation on {1, 2, . . . , n− 1}
by former thoughts. We denote the subsemiring of T generated by ρn as Tn = T /ρn.
Thus Tn is a semiring of order n. T1 is the trivial semiring whereas T2 is the semiring
mentioned in Example 2.11 and T3 is isomorph to S15. Since Tn is the factor algebra
of T regarding to ρn it in particular is a semiring in V.

De�nition 4.4. Let (S,+, ·) be a semiring and ∞ ∈ S. We call ∞ an absorbing
element or absorbing in S if x ·∞ =∞· x =∞ and x+∞ =∞+ x =∞ hold for any
x ∈ S.

Lemma 4.5. Let n ∈ N+ and Tn be the semiring introduced in former Example 4.3
then Tn satis�es

n+1⊕
i=1

n+1⊙
j=1
i6=j

xj ≈
n+1⊕
i=1

n+1⊙
j=1
i6=j

xj ⊕
n+1⊙
j=1

xj (53)

but not
n⊕

i=1

n⊙
j=1
i6=j

xj ≈
n⊕

i=1

n⊙
j=1
i6=j

xj ⊕
n⊙

j=1

xj (54)

Proof. Assume x1, x2, . . . , xk ∈ {1, . . . , n} for some k ∈ N+. In T we calculate

k⊙
j=1

xj =
k−1⊙
j=1

xj + xk =
k−2⊙
j=1

xj + xk + xk−1 = . . . =
k∑

j=1

xj.

Hence for k = n− 1 respectively k = n we receive

n⊙
j=1

xj =
n∑

j=1

xj ≥ n

and
n−1⊙
j=1

xj =
n−1∑
j=1

xj ≥ n− 1.
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Since ρn is the trivial congruence relation on {n, n+ 1, n+ 2, . . .} we get
⊙n

j=1 xj = n
in Tn regardless of the choices of xj. But as n is absorbing in Tn the equation (53)
holds in Tn since a product of at least n factors exists on both sides. On the other
hand choose xj = 1 for j = 1, . . . , n. Then

n⊙
j=1
i6=j

xj =
n−1∑
j=1

xj = n− 1

yields for any i ∈ {1, . . . , n} and we receive the inequality n− 1 6= n in (54).

Lemma 4.6. Let n ∈ N and Tn be the semiring introduced in Example 4.3 then Tn
satis�es xn+1 ≈ xn but not xn ≈ xn−1.

Proof. Substituting x ∈ Tn for every variable xj, j = 1, . . . , n + 1, in Lemma 4.5 we
get this statement trivially.

Remark 4.7. Burnside semigroups are semigroups that additionally satisfy xn ≈ xm

with m < n (cf. [13]). A semiring with a semilattice as additive and a Burnside semi-
group as multiplicative reduct is called semilattice-ordered Burnside semigroup. The
variety of semilattice-ordered Burnside semigroups satisfying xn ≈ xm is accordingly
denoted by Sr(n,m). Equations of the form xn+1 ≈ xn play a crucial role as shown.
Thus introducing the subvarieties Vn = [xn+1 ≈ xn] = Sr(n + 1, n) ∧ V of V we see
that Tn is in Vn but not in Vn−1. Hence the varieties {Vn}n∈N+ are all distinct and
form the chain

I ∩ V = V1 ⊂ V2 ⊂ . . . ⊂ Vn ⊂ V

for any n ∈ N+. The variety Vn is a proper subvariety of V for any n ∈ N since
T is in V but not in Vn. This means that the variety V has countable in�nitely
many subvarieties. So determining the complete lattice L(V) through Formal Concept
Analysis is a pointless undertaking.

The following lemmas helps us to inspect some structural properties of the chain
{Vn}n∈N+ :

Lemma 4.8. Let S be an almost-idempotent semiring. Then xm+xn ≈ xmax(n,m) holds
in S for m,n ∈ N. Hence x2 ≈ x can already be derived from xn ≈ x with n ≥ 2.

Proof. Obviously the equation holds for m = n. So assume without loss of generality
m < n thus n = max(m,n). We will show the statement via induction. For m = 1 and
n = 2 the equation follows by de�nition of an almost-idempotent semiring. So assume
that x+ xn ≈ xn yields for a �xed n ≥ 2. Hence

x+ xn+1 ≈ x+ xxn

≈ x+ x (x+ xn)

≈ x+ x2 + xn+1

≈ x2 + xn+1

≈ x (x+ xn)

≈ x (xn)

≈ xn+1
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HSP(T1)

HSP(T2)

HSP(T3)

HSP(T4)

V1

V2

V3

V4

Fig. 1.: Chain {Vn}n∈N+

and the statement holds for m = 1 and any n ∈ N. For m > 1 therefore

xm + xn ≈ xm−1
(
x+ xn−(m−1)

)
≈ xm−1xn−(m−1)

≈ xn

yields in S. Finally we derive x2 ≈ x from xn ≈ x with n ≥ 2:

x ≈ xn ≈ x2 + xn ≈ x2 + x ≈ x2.

To prove the following statement we adapt a technique that was used in [2] to prove
Theorem 3.3.

Lemma 4.9. Let n ∈ N+. Furthermore let W be a subvariety of IA that does not
contain Tn. Then every semiring in W satis�es xn−1 ≈ xn, hence W ⊆ IA∧[xn−1 ≈ xn].

Proof. Let S be any semiring in W and x ∈ S. By Lemma 4.8

T = {x, x2, x3, . . .}

is a subsemiring of S. Since xk 6= xm for all k 6= m in N+ would imply T ∈ W and
hence Tn = T /ρn ∈ W for all n ∈ N+, there is a smallest k ∈ N+ such that xk = xm

for some m > k. Now, Lemma 4.8 implies xk = xk+1, and thus Tk = T ∈ W. Since
k ≥ n would imply Tn ∈ W, because Tn is a homomorphic image of Tk in that case,
we have xk = xk+1 for some k < n, which immediately implies xn−1 = xn. This shows
that xn−1 ≈ xn is satis�ed in S.

Remark 4.10. In consequence of former lemma the intervals (Vk,Vk+1) in Figure 1
are empty for any k ∈ N+. Note that this can be generalized to the intervals

(IA ∧ [xk ≈ xk+1], IA ∧ [xk+1 ≈ xk+2])

but we used this notation in view of the upcoming results.
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It seems reasonable to inspect the varieties Vn, n ≥ 2. Thus we will introduce a
construction method for an in�nite chain of semirings in any variety Vn, n ≥ 2. We
will use this method to show that in contrast to the �nite lattice L(V1) the lattice
L(Vn) has an in�nite amount of varieties.

Lemma 4.11. Let (S,+, ·) be a semiring in V with S = {ai | i ∈ I} for any set of
indices I 6= ∅. Furthermore let ∞ = ai0 ∈ S be absorbing and S ′ = {a′i | ai ∈ S} be a
copy of S with S ′ ∩S = ∅. We continue the addition + of S on V (S) = S ∪S ′ through

ai ⊕ aj = ai + aj (55)

a′i ⊕ a′j = (ai + aj)
′ (56)

ai ⊕ a′j = a′j ⊕ ai = ai (57)

and the multiplication of S on V (S) through

ai � aj =∞ (58)

a′i � a′j = (ai · aj)′ (59)

ai � a′j = a′j � ai = ai · aj (60)

for every i, j ∈ I. Then (V (S),⊕,�) is a semiring in V with ∞ as absorbing element.
If xn+1 = xn is satis�ed for an n ≥ 2 and every x ∈ S then it is also satis�ed for every
x ∈ V (S).

Proof. Since (S,+) is idempotent, we receive idempotence of (V (S),⊕) by (55) and
(56). Furthermore, commutativity of (V (S),⊕) is a consequence of commutativity of
(S,+) and (55) - (57).
Commutativity holds in (V (S),�) since (S, ·) is commutative and by (58) - (60).

Consequently, we get ai � a′j = ai · aj = a′i � aj by (60). Finally, ∞ is absorbing in
(V (S),�) since it is absorbing in (S,+, ·) and by (57), (58) and (60). Furthermore
(V (S),�) is commutative by (58) - (60).
By former thoughts the only remaining case to show that x � y = x � y ⊕ x holds

for every x, y ∈ V (S) is x = a′i and y = aj. But by

x� y = a′i � aj = ai · aj = ai · aj + ai = ai · aj ⊕ ai = a′i � aj ⊕ ai = x� y ⊕ x

we also proved that case.
By (56) and (59) (S ′,⊕,�) is a subsemiring of (V (S),⊕,�) that is isomorphic to

(S,+, ·). Furthermore (S,⊕) is isomorphic to the semigroup (S,+) by (55). Moreover
(S,⊕,�) is a zerosemiring with absorbing element ∞ by (58) and idempotence of ∞.
Hence to prove that ⊕ is associative the following six cases remain:

x⊕ (y ⊕ z′) = x⊕ y = (x⊕ y)⊕ z′

x⊕ (y′ ⊕ z) = x⊕ z = (x⊕ y′)⊕ z

x′ ⊕ (y ⊕ z) = y ⊕ z = (x′ ⊕ y)⊕ z

x⊕ (y′ ⊕ z′) = x⊕ (y + z)′ = x = x⊕ z′ = (x⊕ y′)⊕ z′

x′ ⊕ (y ⊕ z′) = x′ ⊕ y = y = y ⊕ z′ = (x′ ⊕ y)⊕ z′
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x′ ⊕ (y′ ⊕ z) = x′ ⊕ z = z = (x+ y)′ ⊕ z = (x′ ⊕ y′)⊕ z

Similar the following six cases remain to show associativity of �:

x� (y � z′) = x� (y · z) =∞ =∞� z′ = (x� y)� z′

x� (y′ � z) = x� (y · z) =∞ = (x · y)� z = (x� y′)� z

x′ � (y � z) = x′ �∞ =∞ = (x · y)� z = (x′ � y)� z

x� (y′ � z′) = x� (y · z)′ = x · (y · z) = (x · y) · z = (x · y)� z′ = (x� y′)� z′

x′ � (y � z′) = x′ � (y · z) = x · (y · z) = (x · y) · z = (x · y)� z′ = (x′ � y)� z′

x′ � (y′ � z) = x′ � (y · z) = x · (y · z) = (x · y) · z = (x · y)′ � z = (x′ � y′)� z

Finally, the following four cases prove distributivity and thus show that (V (S),⊕,�)
in fact is a semiring in V:

x� (y ⊕ z′) = x� y =∞ =∞⊕ x� z′ = x� y ⊕ x� z′

x� (y′ ⊕ z′) = x� (y + z)′ = x · (y + z) = x · y + x · z = x · y ⊕ x · z = x� y′ ⊕ x� z′

x′ � (y ⊕ z) = x′ � (y + z) = x · (y + z) = x · y + x · z = x · y ⊕ x · z = x′ � y ⊕ x′ � z

x′ � (y ⊕ z′) = x′ � y = x · y = x · y ⊕ (x · z)′ = x′ � y ⊕ x′ � z′

Assume xn+1 = xn is satis�ed for every x ∈ S and a �xed n ∈ N, n ≥ 2. By (59) we
get

(a′i)
n+1 = (an+1

i )′ = (ani )′ = (a′i)
n

for every a′i ∈ S ′ ⊂ V (S) and by (58) we get

(ai)
n+1 =∞ = ani

for every ai ∈ S ⊂ V (S). Hence xn+1 = xn holds for every x ∈ V (S).

Lemma 4.12. Let S ∈ V be a semiring and the semiring V (S) constructed from S as
described in Lemma 4.11. Furthermore let η 6∈ V (S). We continue both operations of
V (S) on S(η) = V (S) ∪ {η} through

ai ⊕ η = η ⊕ ai = ai (61)

a′i ⊕ η = η ⊕ a′i = η (62)

η ⊕ η = η (63)

and

ai � η = η � ai =∞ (64)

a′i � η = η � a′i = ai (65)

η � η =∞ (66)

for every ai ∈ S and a′i ∈ S ′. Then (S(η),⊕,�) is a semiring in V with∞ as absorbing
element.
If xn+1 = xn is satis�ed for an n ≥ 2 and every x ∈ S then it is also satis�ed for every
x ∈ S(η).
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Proof. Since (V (S),⊕,�) is commutative, we receive commutativity of (S(η),⊕) and
(S(η),�) by (61) - (66). Moreover, (S(η),⊕) is idempotent since (V (S),⊕) is idempo-
tent and by (63).
The element ∞ is absorbing in S(η) since ∞ ∈ S and (61) and (64).
To show that x� y = x� y⊕ x is satis�ed for every x, y ∈ S(η) the following for cases
are su�cient:

η � y =∞ =∞⊕ η = η � y ⊕ η for y ∈ S ∪ {η}
η � a′i = ai = ai ⊕ η = η � a′i ⊕ η
x� η =∞ =∞⊕ x = x� η ⊕ x for x ∈ S ∪ {η}
a′i � η = ai = ai ⊕ a′i = a′i � η ⊕ a′i.

By (61) and (63) we receive (S ∪ {η},⊕) through adjunction of η as neutral element
to the semigroup (S,⊕), hence (S ∪ {η},⊕) again is a semigroup. Similar, by (62)
and (63) we get (S ′ ∪ {η},⊕) through adjunction of an absorbing element η to the
semigroup (S ′,⊕). In consequence (S ′ ∪ {η},⊕) again is a semigroup. By this and
commutativity the following three cases remain to prove associativity of (S(η),⊕):

η ⊕ (ai ⊕ a′j) = η ⊕ ai = ai = ai ⊕ a′j = (η ⊕ ai)⊕ a′j
η ⊕ (a′i ⊕ aj) = η ⊕ aj = (η ⊕ a′i)⊕ aj
ai ⊕ (η ⊕ a′j) = ai ⊕ η = ai = ai ⊕ a′j = (ai ⊕ η)⊕ a′j.

To prove associativity of (S(η),�) we have to distinguish the following cases:

η � (x� y) = η �∞ =∞ =∞� y = (η � x)� y for x, y ∈ S ∪ {η}
η � (η � a′j) = η � aj =∞ =∞� a′j = (η � η)� a′j
η � (a′i � η) = η � ai = ai � η = (η � a′i)� η
η � (ai � a′j) = η � (ai · aj) =∞ =∞� a′j = (η � ai)� a′j
η � (a′i � aj) = η � (ai · aj) =∞ = ai � aj = (η � a′i)� aj
η � (a′i � a′j) = η � (ai · aj)′ = ai · aj = ai � a′j = (η � a′i)� a′j
ai � (η � a′j) = ai � aj =∞ =∞� a′j = (ai � η)� a′j.

Since (S(η),⊕) is idempotent � thus x� (y⊕y) = x�y = x�y⊕x�y holds for every
x, y ∈ S(η) � and by commutativity, the following cases remain to show distributivity:

η � (x⊕ y) =∞ =∞⊕∞ = η � x⊕ η � y for x, y ∈ S ∪ {η}
η � (η ⊕ a′j) = η � η =∞∞⊕ η = η � η ⊕ η � a′j
η � (ai ⊕ a′j) = η � ai =∞ =∞⊕ aj = η � ai ⊕ η � a′j
η � (a′i ⊕ a′j) = η � (ai + aj)

′ = ai + aj = ai ⊕ aj = η � a′i ⊕ η � a′j
ai � (η ⊕ aj) = ai � aj =∞ = ai � η ⊕∞ = ai � η ⊕ ai � aj
ai � (η ⊕ a′j) = ai � η =∞ =∞⊕ ai � a′j = ai � η ⊕ ai � a′j
a′i � (η ⊕ aj) = a′i � aj = ai · aj = ai + ai · aj = a′i � η ⊕ ai · aj = a′i � η ⊕ a′i � aj
a′i � (η ⊕ a′j) = a′i � η = ai = ai ⊕ (ai · aj)′ = a′i � η ⊕ a′i � a′j.

Finally assume xn+1 = xn holds for a n ∈ N, n ≥ 2, and for every x ∈ S. Then the
equation holds for every x ∈ V (S) by Lemma 4.11 and for every x ∈ S(η) by (66).
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Example 4.13. Let T1 = {0} be the trivial semiring with ∞ = a0 = 0. With
∞′ = a′0 = 2 we get the two-element mono-semiring V (T1) = M2 = {0, 2} and with
η = 1 the three-element semiring T1(η) = S20 characterized in Lemma 3.10.
If T2 = {a0 = 0 = ∞, a1 = 1} is the semiring introduced in [4]. With I = {0, 1} and
T2 = S = {a0 = 4, a1 = 5 = ∞} together with S ′ = {a′0 = 1, a′1 = 2} as notation we
get the semiring V (T2) = {1, 2, 4, 5} with following operation tables:

+ 1 2 4 5
1 1 2 4 5
2 2 2 4 5
4 4 4 4 5
5 5 5 5 5

· 1 2 4 5
1 2 2 5 5
2 2 2 5 5
4 5 5 5 5
5 5 5 5 5

With η = 3 we receive the semiring T2(η) = {1, 2, 3, 4, 5} with operation tables

+ 1 2 3 4 5
1 1 2 3 4 5
2 2 2 3 4 5
3 3 3 3 4 5
4 4 4 4 4 5
5 5 5 5 5 5

· 1 2 3 4 5
1 2 2 4 5 5
2 2 2 5 5 5
3 4 5 5 5 5
4 5 5 5 5 5
5 5 5 5 5 5

Remark 4.14. Since (S ′,⊕,�) ∼= (S,+, ·) is a subsemiring of (V (S),⊕,�) by con-
struction and furthermore (V (S),⊕,�) is a subsemiring of (S(η),⊕,�) we get

HSP(S) ⊆ HSP(V (S)) ⊆ HSP(S(η)).

For any subsemiring T of S obviously V (T ) is a subsemiring of V (S) and T (η) a
subsemiring of S(η).
If we start with S ∈ Vk and iterate the former construction through

1. S(η1) = S(η) with η1 = η 6∈ V (S) and

2. S(η1, . . . , ηn−1, ηn) = S(η1, . . . , ηn−1)(ηn) with ηn 6∈ V (S(η1, . . . , ηn−1))

we receive

HSP(S(η1)) ⊆ . . . ⊆ HSP(S(η1, . . . , ηn−1)) ⊆ HSP(S(η1, . . . , ηn)).

Note that this is a chain of not necessarily distinct varieties in Vk for some �xed k ∈ N+.

We will now have a deeper look at the chain of semirings building up over Tn and the
varieties generated by those. The following two lemmas will give us some information
about validity of (67) in that chain.

Lemma 4.15. Let k ∈ N, k ≥ 2 and n ∈ N. Furthermore let (Tk,+, ·) be the
semiring introduced in Example 4.3 with absorbing element ∞. Then the subsemir-
ing (Tk(η1, . . . , ηn−1),⊕,�) of (Tk(η1, . . . , ηn),⊕,�) is a zero-semiring with absorbing
element ∞ and the equation

k+n+1⊕
i=1

k+n+1⊙
j=1
i6=j

xj ≈
k+n+1⊕
i=1

k+n+1⊙
j=1
i6=j

xj ⊕
k+n+1⊙
j=1

xj (67)

is satis�ed for any xj ∈ Tk(η1, . . . , ηn).
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Proof. We write S = Tk(η1, . . . , ηn−1) and introduce a new notation to distinguish the
operations of (Tk(η1, . . . , ηn−1),⊕,�) and (Tk(η1, . . . , ηn),⊕,�) :

(S,�,�) = (S,⊕,�).

We will show this statement via induction. The case n = 0 is given by Lemma 4.5.
So assume that for some �xed n− 1 instead of n equation (67) is satis�ed in (S,�,�).
We have to show that (67) is satis�ed in (Tk(η1, . . . , ηn),⊕,�).
Note that the subsemiring (S ′,⊕,�) of (Tk(η1, . . . , ηn),⊕,�) is isomorph to (S,�,�).
Hence by assumption (67) is satis�ed for every evaluation ϕ with ϕ(xj) ∈ S ′ for every
j. So assume there exist at least two variables xj1 , xj2 with ϕ(xj1) ∈ S ∪ {ηn} and
ϕ(xj2) ∈ S ∪{ηn}. In this case there exists a product in (67) containing both variables
thus by commutativity, (58), (64), (66) and the absorbing property of ∞ we receive
that (67) is satis�ed. So �nally assume there exists exactly one variable that gets
evaluated in S. Without loss of generality, we evaluate x1 at a1 ∈ S and xj at a

′
j ∈ S ′

for j = 2, . . . k + n+ 1. Using the induction hypothesis we derive

ϕ

k+n+1⊕
i=1

k+n+1⊙
j=1
i6=j

xj

 = a′2 � · · · � a′k+n+1 ⊕
k+n+1⊕
i=2

a1

k+n+1⊙
j=2
i6=j

a′j

= a′2 � · · · � a′k+n+1 ⊕ a1

k+n+1⊕
i=2

k+n+1⊙
j=2
i6=j

a′j




= a′2 � · · · � a′k+n+1 ⊕ a1

k+n+1⊕
i=2

k+n+1

�
j=2
i6=j

aj


′

= a′2 � · · · � a′k+n+1 ⊕ a1

k+n+1

�
i=2

k+n+1

�
j=2
i6=j

aj


′

= a′2 � · · · � a′k+n+1 ⊕ a1

k+n+1

�
i=2

k+n+1

�
j=2
i6=j

aj �
k+n+1

�
j=2

aj


′

= a′2 � · · · � a′k+n+1 ⊕ a1

k+n+1⊕
i=2

k+n+1

�
j=2
i6=j

aj


′

⊕

(
k+n+1

�
j=2

aj

)′

= a′2 � · · · � a′k+n+1 ⊕ a1

k+n+1⊕
i=2

k+n+1⊙
j=2
i6=j

a′j

⊕
(

k+n+1⊙
j=2

a′j

)
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= a′2 � · · · � a′k+n+1 ⊕
k+n+1⊕
i=2

a1

k+n+1⊙
j=2
i6=j

a′j + a1 �

(
k+n+1⊙
j=2

a′j

)

= ϕ

k+n+1⊕
i=1

k+n+1⊙
j=1
i6=j

xj ⊕
k+n+1⊙
j=1

xj

 .

Note that the last case yields analogous for ϕ(x1) = ηn.

Lemma 4.16. Let k ∈ N, k ≥ 2 and n ∈ N. Furthermore let (Tk,+, ·) be the semiring
introduced in Example 4.3 with absorbing element k =∞. Then the equation

k+n⊕
i=1

k+n⊙
j=1
i6=j

xj ≈
k+n⊕
i=1

k+n⊙
j=1
i6=j

xj ⊕
k+n⊙
j=1

xj (68)

is not satis�ed in Tk(η1, . . . , ηn).

Proof. We will show this statement via induction. The case n = 0 is given by Lemma
4.5.
So by induction hypothesis there exits an evaluation ϕ that contradicts (68) in the sub-
semiring (Tk(η1, . . . , ηn−1)

′,�,�) = (Tk(η1, . . . , ηn−1)
′,⊕,�) of (Tk(η1, . . . , ηn),⊕,�)

for a �xed n− 1 instead of n. We will show that

ϕ(xi) =

{
ϕ(xi) = a′i ∈ T (η1, . . . , ηn−1)

′, i = 1, . . . , k + n− 1

ηn, i = k + n

contradicts (68) in (Tk(η1, . . . , ηn),⊕,�). First note that

ψ : a′i → ηn � a′i = ai

is a bijective mapping between (Tk(η1, . . . , ηn−1)
′,⊕,�) and (Tk(η1, . . . , ηn−1),⊕,�).

Thus
ai = ψ(a′i) = ηn � a′i 6= ηn � a′i = ψ(a′j) = aj ⇔ a′i 6= a′j

holds for any ai, aj ∈ Tk(η1, . . . , ηn−1). So we derive

ϕ

k+n⊕
i=1

k+n⊙
j=1
i6=j

xj

 =
k+n−1⊕
i=1

ϕ(xk+n)
k+n−1⊙
j=1
i6=j

ϕ(xj)

⊕ k+n−1⊙
i=1

ϕ(xi)

=
k+n−1⊕
i=1

ηn k+n−1⊙
j=1
i6=j

a′j

⊕ k+n−1⊙
i=1

a′i

= ηn

k+n−1⊕
i=1

k+n−1⊙
j=1
i6=j

a′j

⊕
(

k+n−1

�
i=1

ai

)′
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= ηn

k+n−1

�
i=1

k+n−1

�
j=1
i6=j

aj


′

by (57)

6= ηn

k+n−1

�
i=1

k+n−1

�
j=1
i6=j

aj �
k+n−1

�
i=1

xi


′

by (68)

= ηn

k+n−1

�
i=1

k+n−1

�
j=1
i6=j

aj �
k+n−1

�
i=1

ai


′

⊕

(
k+n−1

�
i=1

ai

)′
by (57)

= ηn

k+n−1⊕
i=1

k+n−1⊙
j=1
i6=j

a′j ⊕
k+n−1⊙
i=1

a′i

⊕ k+n−1⊙
i=1

a′i

= ϕ(xk+n)

k+n−1⊕
i=1

k+n−1⊙
j=1
i6=j

ϕ(xj)⊕
k+n−1⊙
i=1

ϕ(xi)

⊕ k+n−1⊙
i=1

ϕ(xi)

=
k+n−1⊕
i=1

k+n⊙
j=1
i6=j

ϕ(xj)⊕
k+n⊙
i=1

ϕ(xi)⊕
k+n−1⊙
i=1

ϕ(xi)

=
k+n⊕
i=1

k+n⊙
j=1
i6=j

ϕ(xj)⊕
k+n⊙
i=1

ϕ(xi)

= ϕ

k+n⊕
i=1

k+n⊙
j=1
i6=j

xj ⊕
k+n⊙
i=1

xi

 .

Thus (68) is not satis�ed in Tk(η1, . . . , ηn).

Remark 4.17. Using the notation T
(n)
k = Tk(η1, η2, . . . , ηn) we get T

(n)
k ∈ Vk for every

k, n ∈ N+, k > n. Moreover, those semirings generate a countable in�nite chain

HSP(Tk) ⊂ HSP(T
(1)
k ) ⊂ . . . ⊂ HSP(T

(n−1)
k ) ⊂ HSP(T

(n)
k ) ⊂ Vk

of proper subvarieties in L(Vk) for any k. This arises the question if

HSP(T
(n)
k ) = HSP(T

(n)
2 ) ∨HSP(Tk)

yields for any k, n ∈ N+ which is still open for further research.
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5. Conclusion

In this thesis almost-idempotent semirings and their varieties were studied. After some
Preliminaries about semirings and Formal Concept Analysis in chapter 2 we discussed
almost-idempotent semirings with three elements. Those were generated by a python
program and checked against each other for possible isomorphic images. Each of the
remaining eleven non-isomorphic semirings was characterized in Lemma 3.6 to 3.17. In
section 3.2 we built up the context of almost-idempotent semirings with three elements
using 28 equations as attributes and proved its canonical basis. Thus the concept
lattice � consisting of 19901 concepts � indeed is the complete lattice L(IA3) of varieties
generated by almost-idempotent semirings of order three, but not necessarily the lattice
of subvarieties of IA3.
Calculating all non-isomorphic almost-idempotent semirings with four elements failed

due to the sheer amount of such semirings. So we turned our attention to commuta-
tive almost-idempotent semirings that additionally satisfy xy ≈ xy + x in chapter 4.
In Example 4.3 we introduced a construction method for a chain of such and saw in
Lemma 4.6 that the subvarieties Vk = [xk ≈ xk+1] form an in�nite chain in L(V).
Consequently, we inspected the subvarieties Vk and introduced a second construction
method for semirings. In Lemmas 4.15 and 4.16 we proved that the subvarieties of Vk

generated by those semirings are all distinct, hence form an in�nite chain of subvari-
eties in L(V2). In contrast, the variety V1 clearly is a subvariety of I and only has the
variety of bisemilattices M and the trivial variety T as subvarieties (cf. [2]). In the end
it turns out that the lattice L(IA) is far bigger than expected and leaves a lot of open
questions for further research.
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A. Additively idempotent semirings

of order 2

L2

+ 0 1
0 0 1
1 1 1

· 0 1
0 0 0
1 1 1

R2

+ 0 1
0 0 1
1 1 1

· 0 1
0 0 1
1 0 1

M2

+ 0 1
0 0 1
1 1 1

· 0 1
0 0 1
1 1 1

D2

+ 0 1
0 0 1
1 1 1

· 0 1
0 0 0
1 0 1

N2

+ 0 1
0 0 1
1 1 1

· 0 1
0 0 0
1 0 0

T2

+ 0 1
0 0 1
1 1 1

· 0 1
0 1 1
1 1 1
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B. Idempotent semirings of order 3

These are the �ve three-element idempotent semirings introduced by Pastijn et al.
Obviously each of them is isomorphic to one semiring in Appendix C.

M0
2

+ 0 1 2
0 0 1 2
1 1 1 2
2 2 2 2

· 0 1 2
0 0 0 0
1 0 1 2
2 0 2 2

is isomorphic to S40. Note that M
0
2 is denoted by Bi3 from time to time.

SL0
2

+ 0 1 2
0 0 1 2
1 1 1 2
2 2 2 2

· 0 1 2
0 0 0 0
1 0 1 1
2 0 2 2

is isomorphic to S42.

SR0
2

+ 0 1 2
0 0 1 2
1 1 1 2
2 2 2 2

· 0 1 2
0 0 0 0
1 0 1 2
2 0 1 2

is isomorphic to S41.

B

+ 0 1 2
0 0 1 2
1 1 1 1
2 2 1 2

· 0 1 2
0 0 0 0
1 1 1 1
2 0 1 2

is isomorphic to S39.

B∗

+ 0 1 2
0 0 1 2
1 1 1 1
2 2 1 2

· 0 1 2
0 0 1 0
1 0 1 1
2 0 1 2

is isomorphic to S34.
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C. Almost-idempotent semirings of

order 3

S0

+ 0 1 2
0 0 0 0
1 0 1 0
2 0 0 2

· 0 1 2
0 0 0 0
1 0 0 0
2 0 0 0

is commutative and satis�es (4), (5) and (6), hence S0 ∈ IA2.

S1

+ 0 1 2
0 0 0 0
1 0 1 0
2 0 0 2

· 0 1 2
0 0 0 0
1 0 1 0
2 0 0 0

is commutative and satis�es (4), (5) and (6), hence S1 ∈ IA2.

S2

+ 0 1 2
0 0 0 0
1 0 1 0
2 0 0 2

· 0 1 2
0 0 0 0
1 1 1 1
2 0 0 0

is dual to semiring S4 and satis�es (4), (5) and (6), hence S2 ∈ IA2.

S3

+ 0 1 2
0 0 0 0
1 0 1 0
2 0 0 2

· 0 1 2
0 0 0 0
1 0 1 2
2 0 0 0

is dual to S6 and generates a new variety since it does not satisfy the equational basis
of IA2.

S4

+ 0 1 2
0 0 0 0
1 0 1 0
2 0 0 2

· 0 1 2
0 0 1 0
1 0 1 0
2 0 1 0

is dual to semiring S2 and satis�es (4), (5) and (6), hence S4 ∈ IA2.
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S5

+ 0 1 2
0 0 0 0
1 0 1 0
2 0 0 2

· 0 1 2
0 0 1 0
1 1 1 1
2 0 1 0

is commutative and satis�es (4), (5) and (6), hence S5 ∈ IA2.

S6

+ 0 1 2
0 0 0 0
1 0 1 0
2 0 0 2

· 0 1 2
0 0 0 0
1 0 1 0
2 0 2 0

is dual to semiring S3 and generates a new variety since it does not satisfy the equational
basis of IA2.

S7

+ 0 1 2
0 0 0 0
1 0 1 0
2 0 0 2

· 0 1 2
0 0 0 0
1 0 0 1
2 0 1 2

is commutative and generates a new variety since it does not satisfy the equational
basis of IA2.

S8

+ 0 1 2
0 0 0 0
1 0 1 0
2 0 0 2

· 0 1 2
0 0 0 0
1 0 1 0
2 0 0 2

is idempotent and commutative, hence S8 ∈ I.

S9

+ 0 1 2
0 0 0 0
1 0 1 0
2 0 0 2

· 0 1 2
0 0 0 0
1 1 1 1
2 0 0 2

is dual to semiring S10 and idempotent, hence S9 ∈ I.

S10

+ 0 1 2
0 0 0 0
1 0 1 0
2 0 0 2

· 0 1 2
0 0 0 2
1 0 1 2
2 0 0 2

is dual to semiring S9 and idempotent, hence S10 ∈ I.
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S11

+ 0 1 2
0 0 0 0
1 0 1 0
2 0 0 2

· 0 1 2
0 0 1 0
1 1 1 1
2 0 1 2

is commutative and idempotent, hence S11 ∈ I.

S12

+ 0 1 2
0 0 0 0
1 0 1 0
2 0 0 2

· 0 1 2
0 0 1 2
1 0 1 2
2 0 1 2

is dual to semiring S13 and idempotent, hence S12 ∈ I.

S13

+ 0 1 2
0 0 0 0
1 0 1 0
2 0 0 2

· 0 1 2
0 0 0 0
1 1 1 1
2 2 2 2

is dual to semiring S12 and idempotent, hence S13 ∈ I.

S14

+ 0 1 2
0 0 0 0
1 0 1 1
2 0 1 2

· 0 1 2
0 0 0 0
1 0 0 0
2 0 0 0

is commutative and satis�es (4), (5) and (6), hence S14 ∈ IA2.

S15

+ 0 1 2
0 0 0 0
1 0 1 1
2 0 1 2

· 0 1 2
0 0 0 0
1 0 0 0
2 0 0 1

is commutative and generates a new variety since it does not satisfy the equational
basis of IA2.

S16

+ 0 1 2
0 0 0 0
1 0 1 1
2 0 1 2

· 0 1 2
0 0 0 0
1 0 1 1
2 0 1 1

is commutative and satis�es (4), (5) and (6), hence S16 ∈ IA2.
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S17

+ 0 1 2
0 0 0 0
1 0 1 1
2 0 1 2

· 0 1 2
0 0 1 1
1 0 1 1
2 0 1 1

is dual to semiring S18 and satis�es (4), (5) and (6), hence S17 ∈ IA2.

S18

+ 0 1 2
0 0 0 0
1 0 1 1
2 0 1 2

· 0 1 2
0 0 0 0
1 1 1 1
2 1 1 1

is dual to semiring S17 and satis�es (4), (5) and (6), hence S18 ∈ IA2.

S19

+ 0 1 2
0 0 0 0
1 0 1 1
2 0 1 2

· 0 1 2
0 0 1 1
1 1 1 1
2 1 1 1

is commutative and satis�es (4), (5) and (6), hence S19 ∈ IA2.

S20

+ 0 1 2
0 0 0 0
1 0 1 1
2 0 1 2

· 0 1 2
0 0 0 0
1 0 0 0
2 0 0 2

is commutative and generates a new variety since it does not satisfy the equational
basis of IA2.

S21

+ 0 1 2
0 0 0 0
1 0 1 1
2 0 1 2

· 0 1 2
0 0 0 0
1 0 0 1
2 0 0 2

is dual to semiring S23 and generates a new variety since it does not satisfy the equa-
tional basis of IA2.

S22

+ 0 1 2
0 0 0 0
1 0 1 1
2 0 1 2

· 0 1 2
0 0 0 2
1 0 0 2
2 0 0 2

is dual to semiring S35 and generates a new variety since it does not satisfy the equa-
tional basis of IA2.
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S23

+ 0 1 2
0 0 0 0
1 0 1 1
2 0 1 2

· 0 1 2
0 0 0 0
1 0 0 0
2 0 1 2

is dual to semiring S21 and generates a new variety since it does not satisfy the equa-
tional basis of IA2.

S24

+ 0 1 2
0 0 0 0
1 0 1 1
2 0 1 2

· 0 1 2
0 0 0 0
1 0 0 1
2 0 1 2

is commutative and generates a new variety since it does not satisfy the equational
basis of IA2.

S25

+ 0 1 2
0 0 0 0
1 0 1 1
2 0 1 2

· 0 1 2
0 0 0 0
1 0 1 1
2 0 1 2

is commutative and idempotent, hence S25 ∈ I.

S26

+ 0 1 2
0 0 0 0
1 0 1 1
2 0 1 2

· 0 1 2
0 0 1 1
1 0 1 1
2 0 1 2

is dual to semiring S29 and idempotent, hence S26 ∈ I.

S27

+ 0 1 2
0 0 0 0
1 0 1 1
2 0 1 2

· 0 1 2
0 0 0 0
1 0 1 2
2 0 1 2

is dual to semiring S32 and idempotent, hence S27 ∈ I.

S28

+ 0 1 2
0 0 0 0
1 0 1 1
2 0 1 2

· 0 1 2
0 0 1 2
1 0 1 2
2 0 1 2

is dual to semiring S36 and idempotent, hence S28 ∈ I.
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S29

+ 0 1 2
0 0 0 0
1 0 1 1
2 0 1 2

· 0 1 2
0 0 0 0
1 1 1 1
2 1 1 2

is dual to semiring S26 and idempotent, hence S29 ∈ I.

S30

+ 0 1 2
0 0 0 0
1 0 1 1
2 0 1 2

· 0 1 2
0 0 1 1
1 1 1 1
2 1 1 2

is commutative and idempotent, hence S30 ∈ I.

S31

+ 0 1 2
0 0 0 0
1 0 1 1
2 0 1 2

· 0 1 2
0 0 1 2
1 1 1 2
2 1 1 2

is dual to semiring S37 and idempotent, hence S31 ∈ I.

S32

+ 0 1 2
0 0 0 0
1 0 1 1
2 0 1 2

· 0 1 2
0 0 0 0
1 0 1 1
2 0 2 2

is dual to semiring S27 and idempotent, hence S32 ∈ I.

S33

+ 0 1 2
0 0 0 0
1 0 1 1
2 0 1 2

· 0 1 2
0 0 0 0
1 0 1 2
2 0 2 2

is commutative and idempotent, hence S33 ∈ I.

S34

+ 0 1 2
0 0 0 0
1 0 1 1
2 0 1 2

· 0 1 2
0 0 0 2
1 0 1 2
2 0 2 2

is dual to semiring S39 and idempotent, hence S34 ∈ I.
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S35

+ 0 1 2
0 0 0 0
1 0 1 1
2 0 1 2

· 0 1 2
0 0 0 0
1 0 0 0
2 2 2 2

is dual to semiring S22 and generates a new variety since it does not satisfy the equa-
tional basis of IA2.

S36

+ 0 1 2
0 0 0 0
1 0 1 1
2 0 1 2

· 0 1 2
0 0 0 0
1 1 1 1
2 2 2 2

is dual to semiring S28 and idempotent, hence S36 ∈ I.

S37

+ 0 1 2
0 0 0 0
1 0 1 1
2 0 1 2

· 0 1 2
0 0 1 1
1 1 1 1
2 2 2 2

is dual to semiring S31 and idempotent, hence S37 ∈ I.

S38

+ 0 1 2
0 0 0 0
1 0 1 1
2 0 1 2

· 0 1 2
0 0 0 2
1 0 0 2
2 2 2 2

is commutative and generates a new variety since it does not satisfy the equational
basis of IA2.

S39

+ 0 1 2
0 0 0 0
1 0 1 1
2 0 1 2

· 0 1 2
0 0 0 0
1 0 1 2
2 2 2 2

is dual to semiring S34 and idempotent, hence S39 ∈ I.

S40

+ 0 1 2
0 0 0 0
1 0 1 1
2 0 1 2

· 0 1 2
0 0 0 2
1 0 1 2
2 2 2 2

is commutative and idempotent, hence S40 ∈ I.
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S41

+ 0 1 2
0 0 0 0
1 0 1 1
2 0 1 2

· 0 1 2
0 0 1 2
1 0 1 2
2 2 2 2

is dual to semiring S42 and idempotent, hence S41 ∈ I.

S42

+ 0 1 2
0 0 0 0
1 0 1 1
2 0 1 2

· 0 1 2
0 0 0 2
1 1 1 2
2 2 2 2

is dual to semiring S41 and idempotent, hence S42 ∈ I.

S43

+ 0 1 2
0 0 0 0
1 0 1 1
2 0 1 2

· 0 1 2
0 0 1 2
1 1 1 2
2 2 2 2

is commutative and idempotent, hence S43 ∈ I.
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D. Context generating L(IA3)

With equations

xy2z ≈ xyz (69)

xy ≈ xy + y (70)

xy ≈ xy + x (71)

xyz + ab ≈ xyz + a2b (72)

xyz + ab ≈ xyz + ab2 (73)

xy + yx ≈ xy + yx+ x (74)

x3 + y ≈ x3 + y + xy (75)

x3 + y ≈ x3 + y + yx (76)

y + x3 ≈ y + x2 + xyx (77)

a2 + xyx+ xzx ≈ a2 + xyx+ xzx+ xyzx (78)

xy + xz + yz ≈ xy + xz + yz + xyz (79)

xy + xyzxy + yxzyx ≈ yxy + xyzxy + yxzyx (80)

yx+ yxzyx+ yxzxy ≈ yxy + yxzyx+ yxzxy (81)

x+ xyzx+ xyzyx ≈ x+ xyzyx (82)

x+ xzyx+ xyzyx ≈ x+ xyzyx (83)

xyx+ y ≈ xyx+ yx+ y (84)

xyx+ y ≈ xyx+ xy + y (85)

xa+ yx2z + x ≈ xa+ yx2z + xyxz + x (86)

ax+ zx2y + x ≈ ax+ zx2y + zxyx+ x (87)

xyxzxyx+ x2 ≈ xyxzxyx+ xyx+ x2 (88)

xyxzxyx+ x ≈ xyxzxyx+ xyzyx+ x2 + x (89)

x2y ≈ xyx (90)

yx2 ≈ xyx (91)

x+ x2 ≈ x (92)

xy2x ≈ y2x+ xyx (93)

xy2x ≈ xy2 + xyx (94)

xy2x ≈ xy2x+ x (95)

x3 ≈ x3 + xyx (96)

as objects and the semirings generating L(IA3) as attributes we receive the following
context:
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3 )
S3 S6 S7 S15 S20 S21 S22 S23 S24 S35 S38 M0

2 SL0
2 SR0

2 B B∗ L2 R2 M2 D2 T2

(69) X X X X X X X X X X X X X X X X X X X
(70) X X X X X X X X X X
(71) X X X X X X X X X X
(72) X X X X X X X X X X X X X X X X X
(73) X X X X X X X X X X X X X X X X X
(74) X X X X X X X X X X X X X
(75) X X X X X X X X X X X X X X X X X X
(76) X X X X X X X X X X X X X X X X X X
(77) X X X X X X X X X X X X X X X X X X
(78) X X X X X X X X X X X X X X X X X X X X
(79) X X X X X X X X X X X X X X X X X X X X
(80) X X X X X X X X X X X X X X X X X X X X
(81) X X X X X X X X X X X X X X X X X X X X
(82) X X X X X X X X X X X X X X X X X X X X
(83) X X X X X X X X X X X X X X X X X X X X
(84) X X X X X X X X X X X X X X X X X X X X
(85) X X X X X X X X X X X X X X X X X X X X
(86) X X X X X X X X X X X X X X X X X X X X
(87) X X X X X X X X X X X X X X X X X X X X
(88) X X X X X X X X X X X X X X X X X X X X
(89) X X X X X X X X X X X X X X X X X X X X
(90) X X X X X X X X X X X X X X X
(91) X X X X X X X X X X X X X X X
(92) X X X X X X X X X
(93) X X X X X X X X X X X X X X X X X
(94) X X X X X X X X X X X X X X X X X
(95) X X X X X X X X X X X X X X
(96) X X X X X X X X X X
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Glossary

Symbol Description Page

Bh set of all variables occurring among the given set of words after the
�rst variable of every word was removed

20

Bt set of all variables occurring among the given set of words after the
last variable of every word was removed

20

C⊥ set of all minimal contents over the words in the given term 20
COM variety of all commutative semirings in SL+ 11
Ck+ set of all variables that occur in any word with length at least k in

the given term
20

Ck set of all variables that occur in any word with length k in the given
term

20

C set of all variables that occur in the given term 20
c set of all variables that occur in the given word 19
cx number of occurrences of x in a given word 19
F set of all possible sets of variables such that exactly one variable in

each word of the given term is chosen
20

H set of all variables occurring �rst from the left in any word of the
given term

20

h set containing the �rst variable from the left occurring in the given
word

19

HSP smallest variety that still contains the given algebras 9
IA variety of all almost-idempotent semirings in SL+ 11
IA2 variety generated by almost-idempotent semirings with two ele-

ments
22

IA3 variety generated by almost-idempotent semirings with three ele-
ments

19

I variety of all idempotent semirings in SL+ 11
L complete lattice of subvarieties of the given variety 9
L(K) set of all context implications in the context K 15
N set of natural numbers � 0, 1, 2, 3, . . . 9
N+ set of all positive natural numbers � 1, 2, 3, . . . 9
Q set of pairs of variables that are not in Q but together in any word

of the given term
20

Q set of all variables occurring at least two times in a word of the
given term

20

S2 variety generated by additively idempotent semirings with two ele-
ments

10

SL+ variety of all additively commutative and idempotent semirings 10
SR variety of all semirings 10



74 Glossary

Symbol Description Page

T set of all variables occurring last from the left in any word of the
given term

20

t set containing the last variable from the left occurring in the given
word

19

Vn variety of all commutative semirings in IA that additionally satisfy
xy ≈ xy + x and xn ≈ xn+1

45

V variety of all commutative semirings in IA that additionally satisfy
xy ≈ xy + x

43



75

Bibliography

1. Ghosh, S., Pastijn, F. & Zhao, X. Varieties generated by ordered bands I. Order
22, 109�128 (2005).

2. Pastijn, F. Varieties generated by ordered bands II. Order 22, 129�143 (2005).

3. Sen, M. K. & Bhunyia, A. K. Recent Developments of Semirings in Proceedings
of the International Conference on Algebra, Yogjakarta, Indonesia, October 7-
10,2010 (World Scienti�c, 2010), 604�620.

4. Shao, Y. & Ren, M. On the varieties generated by ai-semirings of order two.
Semigroup Forum 91, 171�184. issn: 1432-2137 (2015).

5. Burris, S. & Sankappanavar, H. A Course in Universal Algebra (Springer-Verlag,
1981).

6. Hebisch, U. & Weinert, H. Semirings � Algebraic Theory and Applications in
Computer Science (World Scienti�c, 1998).

7. Howie, J. Fundamentals of semigroup theory (Oxford University Press, 1995).

8. Kuril, M. & Polak, L. On Varieties of Semilattice-Ordered Semigroups. Semigroup
Forum 71, 27�48. issn: 1432-2137 (2005).

9. Sen, M. K. & Bhuniya, A. K. The Structure of Almost Idempotent Semirings.
Algebra Colloq. 17, 851�864 (2010).

10. Ganter, B. & Obiedkov, S. Conceptual Exploration (Springer-Verlag Berlin Hei-
delberg, 2016).

11. Ganter, B. &Wille, R. Formale Begri�sanalyse. Mathematische Grundlagen (Spring-
er-Verlag, 1996).

12. Gôl	an, J. Semirings and their applications (Kluwer, 1999).

13. Dershowitz, N. Semigroups satisfying xm+n = xn in Conditional Term Rewriting
Systems: Third International Workshop, CTRS-92 Point-à-Mousson, France, July
8�10 1992 Proceedings (eds Rusinowitch, M. & Rémy, J.-L.) (Springer Berlin
Heidelberg, 1993), 307�314.


	Introduction
	Preliminaries
	Semirings
	Formal Concept Analysis
	Concept Lattices
	Implications
	Attribute Exploration


	The lattice L(IA3)
	Generating semirings
	The complete lattice L(IA3)

	Structure of the lattice L(IA)
	Conclusion
	Additively idempotent semirings of order 2
	Idempotent semirings of order 3
	Almost-idempotent semirings of order 3
	Context generating L(IA3)
	Bibliography

