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Abstract

Autonomous vehicles in the recent era are robust vehicles that have the
capability to drive themselves without human involvement using sen-
sors and Simultaneous Localization and Mapping algorithms, which
helps the vehicle gain an understanding of its environment while driv-
ing with the help of laser scanners (Velodyne), IMU and GPS to collect
data and solidify the foundation for locating itself in an unknown en-
vironment. Various methods were studied and have been tested for in-
creasing the efficiency of registration and optimization over the years
but the implementation of the NDT library for mapping and localiza-
tion have been found to be fast and more accurate as compared to
conventional methods.

The objective of this thesis is to ascertain a robust method of pose es-
timation of the vehicle by combining data from the laser sensor, with
the data from the IMU and GPS receiver on the vehicle. The initial es-
timate prediction of the position is achieved by generating a 3D map
using the Normal Distribution Transform and estimating the position
using the NDT localization algorithm and the GPS data collected by
driving the vehicle in an external environment. The results presented
explain and verify the hypothesis being stated and shows the compar-
ison of the localization algorithm implemented with the GPS receiver
data available on the vehicle while driving.



Sammanfattning

Autonoma fordon har pé senare tid utvecklats till robusta fordon som
kan kora sig sjdlva utan hjdlp av en ménniska, detta har mojliggjorts
genom anviandandet av sensorer och algoritmer som utfor lokalisering
och kartliggning samtidigt (SLAM). Dessa sensorer och algoritmer
hjédlper fordonet att forsta dess omgivning medan det kor och tillsam-
mans med laser skanners (Velodyne), IMU’er och GPS liaggs grunden
for att kunna utfora lokalisering i en okdand miljo. Ett flertal metoder
har studerats och och testats for att forbattra effektiviteten av registre-
ring och optimering under dren men implementationen av NDT bib-
lioteket for kartlaggning och lokalisering har visat sig att vara snabbt
och mer exakt jamfort med konventionella metoder.

Malet med detta examensarbete dr att hitta en robust metod for upp-
skatta pose genom att kombinera data frdn laser sensorn, en uppskatt-
ning av den ursprungliga positionen som fas genom att generera en
3D karta med hjélp av normalférdelningstransformen och GPS data
insamlad fran korningar i en extern miljo. Resultaten som presenteras
beskriver och verifierar den hypotes som liggs fram och visar jamfo-
relsen av den implementerade lokaliseringsalgoritmen med GPS data
tillganglig pd fordonet under korning.
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Chapter 1

Introduction

Autonomous Vehicles just a decade ago was a fiction confined to the
realm of science, but companies have already released systems that
ply on the roads or would, in the coming future. The growing pop-
ularity of the autonomous vehicles is driven by the research interest
in the area and the growing applications commercially for both heavy
and light duty vehicles. The idea behind it is to increase mobility and
safety for elderly, disabled and children with a sizable reduction in in-
frastructure cost and traffic collisions as no human intervention would
be involved. A lot of methods using different sensors have been devel-
oped over the years ranging from Sonars, radars to GPS and camera
based systems.

The most computationally researched topic for autonomous driving
in vehicles has been to be able to safely and intelligently navigate in
unpredictable, known and unknown environments and SLAM [34, 35]
is such a method which applies data collected from various sensors.
Over the past decade universities across the world have been devel-
oping, researching and competing to improve the autonomous driving
experience. One of these competitions is the DARPA urban challenge
where researchers have used sensors mentioned above or looking for
new methods of implementation and to robustly locate and drive with-
out human involvement [19].

The application of autonomy isn’t only limited to cars but other land
and aerial based vehicles and there are companies developing sys-
tems and vehicles to autonomously drive through areas which could
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be dangerous for humans, like mines, burning buildings etc. Though
they might not be as light or agile as aerial vehicles but ground vehi-
cles have the robustness and capability to traverse larger distances.

1.1 Research Question

To implement a localization system and verify whether the system can ro-
bustly localize itself in an unknown large outdoor environment using the data
from laser and inertial sensors, fusing and verifying it with the data from the
GPS sensors on the vehicle

1.2 Objective

The vehicle having a 2D laser sensor and GPS receivers is suitable
to provide robust localization in an unmapped surrounding with no
prior knowledge is the hypothesis being evaluated.

The feasibility of the implementation of this system could be to utilize
the laser 2D sensor to gather the surrounding information for tasks like
mapping of the neighboring region and estimate the pose of the vehi-
cle based on the motion or odometry model and the GPS receivers and
combine the data to provide a robust system for the vehicle to estimate
the pose in case one or the other fails in its task to find a good estimate.

The vehicle was designed by the ITRL department and the mapping
algorithm is already implemented and hence would not be touched
upon, though is modified as per the needs of the entire system. The
aim here is to build a system to verify the estimation of the pose de-
pending on the data collected and the implementation of a robust lo-
calization system.



Chapter 2

Background

Relatively in the past 3 decades a lot of work has been done in the re-
search of autonomous systems and a major part of it has been in the
field of Simultaneous Localization and Mapping (SLAM). Autonomous
road vehicles are becoming popular in a variety of applications be it
autonomous cars or in transportation like buses, heavy duty equip-
ment etc. Most of the applications are autonomous where no human
interaction or indulgence is required. The problem arises when there
is no good map available for the vehicle to locate itself in its surround-
ing environments.

There are quite a few subsystems required for the vehicle to achieve
autonomy, namely Control, Mapping, Navigation, Localization amongst
others. This chapter discusses about the areas that would help build
the foundation for the research and explain prior work done with re-
spect to the applications of various Simultaneous Localization and Map-
ping (SLAM) algorithms and the robustness of pose fusion methods on
autonomous vehicles.

Initially the Mapping was done using SONARS and Radar systems,
but as the sensors have developed, we have evolved to the use of Laser
and Visual Sensors for Mapping. But mapping in a large environment
is still hard. We face problems such as scan matching, loop closing
amongst others. Hence, the following would help build the founda-
tions for the research that follows.



4 CHAPTER 2. BACKGROUND

2.1 Scan Matching

Scan Matching or Frame Registration is an important part of SLAM
which helps get the transformations between frames, achieved by match-
ing data from different sensors like LIDAR, RGB-D Camera etc. From
the data collected, the rigid body transformation (translation + rota-
tion) can be found that aligns the current frame to the reference frame.

In 1992, P.Besl and N. McKay introduced one of the most prominent
work for mapping in an exterior environment is by the help of scan
matching. There are various methods, but the most commonly used
is the Iterative Closest Point Algorithm (ICP). ICP is an iterative com-
puter solution for scans which converges monotonically to the near-
est local minimum of the given points based on the mean squared
distance over six degrees of freedom. There are multiple geometric
dataset representations that can be used with the following algorithm
like point sets, like segments sets, implicit curves and surfaces etc. The
point subset from both implicit and explicit datasets are registered.
Following that, least squares registration vector is outlined based on
the quaternion method rather than Singular value decomposition to
generalize to n dimensions. The closest points between the 2 sets are
measured and local minimum based on the least squares are recog-
nized, and the outliers are rejected [2, 11].

Szymon Rusinkiewicz and Marc Levoy of Stanford, worked on find-
ing efficient variants of ICP by considering different methods for the
various stages of the algorithm for selection: selecting only a few set
of points from both frames, matching the points with the samples in
the other frame. weighing the corresponding pairs, rejecting the pairs
based on individual pairing or sets of pairs, assignment of an error
metric based on the point pairs and then minimizing the error metric
[24].

Like ICP, A. Segal, D. Haehnel and S. Thrun introduced the Gener-
alized ICP algorithm which is based on the same principles as ICP but
works on a probabilistic framework in the minimization step which
is used to create a local planar surface model. It uses point to plane
variant of ICP to enhance the algorithms performance by benefiting
from the information of surface normal. The complexity and perfor-
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Figure 2.1: Basic ICP

mance remain to be the same, leaving most of the algorithm remains
unchanged. The robustness of the algorithm can be increased by intro-
ducing outlier terms, noises and other probabilistic techniques [29].

On a later note there were 2 other registration techniques that de-
rived from ICP, the Iterative Dual Correspondence (IDC) [11] and Met-
ric Based ICP (MbICP) [22], where IDC, the former describes the im-
provement of point-matching process by maintaining 2 sets of corre-
spondences and the later that is the MbICP was designed to improve
the convergence by explicitly adding some measure of rotational error
which was a part of the distance metric with large initial orientation
errors that needed to be minimized.

In 2003, Biber and Strafser [3], introduced a new method of match-
ing laser data to the reference scan which was not based on matching
points or planes of 2 scans, but rather by searching for the likelihood
of a surface point at a particular location which was modeled on the
linear normal distribution combination, which provided a smooth rep-
resentation of the reference scan piece-wise , with continuous updates
based on the first and second order derivatives. Standard optimiza-



6 CHAPTER 2. BACKGROUND

tion methods could be applied for registration utilizing the mentioned
normal distribution representation. The best part about the algorithm
is that it did not require any nearest neighbor search algorithm which
would have been computationally expensive

2.2 SLAM

Autonomous vehicles are designed to drive themselves autonomously
in any environment / surrounding without any prior information. For
the vehicle to be able to access the map of the environment and locate
itself on the map it is necessary that it is capable of Simultaneous Lo-
calization and Mapping (SLAM). SLAM is the computational problem
that generates and updates a map of the local environment, by gather-
ing data from sensors mounted on the system and simultaneously lo-
cating itself in the map so that it knows where it is located. It has also
been abbreviated as Concurrent Mapping and Localization (CML).

Laser Scan

[ Odometry Change ] [ Landmark Extraction ]
h h
[ Odometry Update ] [ Data Association ]
A A
[ Re-Observation }4 o
A 4
[ New Measurement }1 -
——

Figure 2.2: Basic SLAM

Sebastian Thrun in his book describes that there are 2 main forms
of SLAM in practice and practically both are equally important. One is
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the online SLAM problem which involves the estimation of the poste-
rior belief over the current pose along with the map. They are known
as online SLAM as they happen over time and are generally incremen-
tal where they upon processing discard the past control and measure-
ment data.

p(%&, m’21:t7 Ul:t)

The second type of SLAM is known as the full SLAM which calculates
the posterior belief taking the entire path into consideration along with
the map, instead of just the current pose [34].

p(xlzty m|Z1;t7 U1:t)

2.2.1 Mapping

Mapping is necessary for autonomous vehicles especially when there
is a large unknown environment and locating the vehicle in such a
large environment is hard. Yet when mapping large environments,
there are a few limitations to the them. First, updating the map as it is
growing O(n2) is computationally demanding, where n is the number
of features in the map. Secondly, as the map grows the linearization
errors increase because of the inconsistencies in the localization equa-
tions [16].

Hence instead of generating one global map, the alternative is to gen-
erate several sets of independent local maps and then connect them to
generate a larger map, which is particularly useful because we might
have a dynamic environment. The process is called local map join-
ing and is computationally less costly, the errors in updating the lo-
cal maps are small and improves consistency [31]. The map obtained
from joining all the local maps is equivalent to the global map that we
would have generated at once.

In 1999, Gutmann and Konnolige came up with the incremental map-
ping of large cycle environments [14] by using Local Registration and
correlating it to global data (LGRC). The method during long cycles
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of exploration needed additional new data that could be added to the
current map and determine the precise topological relations where the
old pose data needs to relate to new pose data. Wrong relations could
lead to misalignment of the data. Scan Matching, consistent estimation
of pose and Map correlation are the 3 procedures that the algorithm
depends on. Incrementally a real time map is generated by integrating
data from the scans taken using laser sensors or range finders.

But the method incurs a generous amount of errors based on the odom-
etry and external errors like drift noise, when a large cycle has been
completed and this leads to the misalignment of the scans. This led to
researchers looking for alternatives and methods to improve mapping
and over the years have come up with different mapping techniques
discussed below.

1. Hybrid Metric and Topological Mapping

The maps can be created in various methods by the data collected from
different types of sensors. The maps could be either topological (con-
nections) or metric (landmarks) or both combined known as hybrid
metric — topological maps (HMT).

The mapping algorithm connects global topological maps to local met-
ric maps which allows to robust and precise maps with without the
need for global metric consistency and gives an environmental model
which is compressed. The 2 types of maps are constructed separately
in 2 levels. The topological maps are represented as graphs and the
nodes contain the location information to reach the corresponding con-
nected topological or metric place. And the location metric maps are
the features or landmarks that represent the environment. Further-
more, the authors Tomatis, Nourbakhsh and Siegwart in [36] say that
the combination provides an efficient and robust mapping system based
on the multi-modal topological method and precision by metric esti-
mators.

In 2004 the authors of [18] used HMT with FastSLAM to map the en-
vironment and instead of using the global reference frame, the envi-
ronment was divided into several local maps and each of these maps
maintained its own local frame. The nodes of the graph were used
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to store the information of these local maps. This helped the authors
of generate an online map which was a bidirectional graph. The fast-
SLAM recursively estimated the locations of the landmark and places
it in the path and the particles consisted the estimated location of the
landmarks that depended on the path estimate. The method above is
quick which performs mapping and loop closing under 1 second as
compared to the previous methods but is not optimal and lags in real
time when closing the loop and also evaluation of Gaussian distribu-
tions can speed up the process which is explained in further sections.

2. Occupancy Grid Mapping

The concept of Occupancy Grid Mapping was first introduced by Al-
berto Elfes [9]. The occupancy grid is a stochastic method of map-
ping by representing a multidimensional tessellation grid cells that
store quantitative probabilistic state estimates of the environment that
shows whether the cell is empty or full which is recorded as a proba-
bilistic certainty factor.

Over the years since the concept first came out authors have come up
with different paradigms of the same problem ranging from Bayesian
framework to neural network based approach and forward modelling
approach [17, 35, 33]

Neural Network Approach: The paradigm maps the occupancy grid
using the neural network where the sensor data is subtly detailed in
the sensory interpretation network which results values in the 0-1 range
and the prioir probability of the occupancy of the cell is inserted to
the map at discrete time steps. But the major drawback of using this
technique is that the environmental characteristics would needed to be
encoded along with the sensory data into the network which would
degrade the generalization and the neural network would have to be
trained in advance for a good convergence.

But the forward method is different from the other techniques men-
tioned above. The method uses the environment features described
by the sensor and the model is created from the occupancy that are
added to the measurements rather than the other methods that are viz
a viz. It works on the expectation maximization where the expecta-
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tion is interpreted by the sensor and these expectations are updated
on the map by maximizing these expectations. Both iterate until they
converge which helps form the map.

The 2 methods amongst others were measured in [6] and was found
that the forward method performed the best.

According to the RBPF algorithm the trajectory is first estimated and
then based on that data the map is generated. The map generated
highly depends on the pose data. The posterior of the potential trajec-
tory is estimated by the implementation of particle filter, where each
particle represents the robot trajectory and with each particle sample
there is an individual map associated.

An effective means of grid mapping has been presented by Grisetti,
Stachniss and Burgard in [12] to improve the technique where the
RBPF uses adaptive resampling to decrease the number of particles
while it ensures that it does not loose good particles. It resamples by
allocating each particle with importance weighing.

(i) _ P($§2|let>ulzt—1)

t w(x%’;l!zl:t, Un:g—1)
Here, the numerator represents the posterior belief of the robot
pose x;, given the sensor measurements z, and the odometry v,, where

as the denominator represents the particle distribution from which the
itp, Set was sampled.

The low weight samples are rejected in the sampling process and hence
reducing the particle count making it effective and optimal. We intro-
duce an effective sample size to avoid the depletion of particles during
the resampling process.

1
S (w®)?
The sampling process is only carried out when the N, s goes below
half of the actual number of particles introduced.

Nepp =
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3. NDT Mapping

Initially NDT came out to be an alternative to scan matching tech-
niques like ICP and other 2D representations but with the possibility
of matching in 3D as well. It now is an extension of NDT used to build
occupancy online maps continuously of the unknown surroundings
by recursively updating of the progressive measurements and account
for the occupancy of the cells. It updates the measurements online
without any loss in computational accuracy

The requirements of the memory for the map depends on the size of
the unknown environment and not on the trajectory traversed or the
3D range data acquired. It is helpful for localization and planning and
other tasks as it provides a multi-resolution map. The topic would
further be discussed in the coming chapters [27].

2.2.2 Localization

Localization is a computational problem of determining the pose of
the robot with respect to the given map or the map generated. The
pose/states estimation or position tracking is particularly important
in autonomous vehicles to determine where exactly the vehicle is and
accordingly can be manipulated to perform other tasks. It can also be
a coordinate transformation where the maps are in the global coordi-
nate and does not contain information about the vehicle pose.

Localization works at establishing communication between the vehi-
cles local coordinate system and the map coordinate system. It helps
the vehicle navigate and represent the locations of the landmarks and
objects it is interested in. And based on this information we can also
update the map, when in a dynamic environment [34]. There are var-
ious algorithms using probabilistic methods of localization that have
been developed, tested and researched over the years to cater to both
linear and non-linear estimation problems and some of the methods
are discussed here along with their applications.

1. Kalman Filter

One of the oldest methods for localization in robotics has been the
Gaussian Filter, known as the Kalman Filter that was introduced by
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Rudolph E. Kalman in the 1950s. It is mostly used for the prediction
in linear systems, and computes the belief for continuous states where
the belief is represented by the Gaussian mean y, and the covariance
¥, also known as moments. It mainly follows 3 properties [15].

1. The probability of the next state p(z;|u;, x;—1) which should be a
linear function with added noise.

2. The measurement probability p(z;|x;)should be linear as well with
added Gaussian noise.

3. The initial belief bel(z,) must be a normal distribution, where the
mean and covariance are denoted by 1y and ¥ respectively.

Kalman filter even though is robust and effective but is only so for
the linear system models and is hard to model non-linear systems and
hence to deal with this, many authors have made modifications to the
existing systems, creating variants like the Extended Kalman Filter [5]
and Unscented Kalman Filter [39].

The extended Kalman filter grew in popularity because it was appli-
cable to be utilized in non-linear cases, where the non-linear system
dynamics were transformed to a linear system. But they use Jacobians
Gy which corresponded to A; and B, of the linear system and .J; corre-
sponded to C}, as compared to the linear system matrices. The further
development of SLAM led to the use of EKF with various mapping
techniques like generating a 3D map of the environment generated by
probabilistic feature extractions from a laser sensor [38, 4]. But there
persisted inconsistency which was due to the errors because of miss-
ing data in the 6-DOF robot pose, linearization errors. Also, when
EKF was implemented with FastSLAM, the results showed that even
though they are computationally efficient, it detailed how fragile the
EKF was due to the non-Gaussian implications and also that it could

no more manage non-Gaussian errors over the course of its trajectory
[28].

The EKF algorithm was analyzed by author in [1] for inconsistencies
and found that the algorithm gave optimistic estimates when the ‘true’
uncertainty in the vehicle would exceed the limit. The failure could be
undetectable but if the algorithm is inconsistent they could result in
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huge jumps in the pose update of the vehicle. Even stabilizing noise
can help make the algorithm consistent over a large period of time, but
still there is a slight uncertainty in the heading.

2. Particle Filter

Particle Filter is another algorithm that has been proven to be quite the
important Bayesian filter for nonparametric implementation, where a
finite number of parameters help in the posterior belief approxima-
tion. The main idea behind it is to draw a set of samples from the
posterior or Normal Distribution. The main intuition behind the filter
is to include the states hypothesis z, in the particle set x; which should
be proportional to the posterior bel(z;).

xy ~ p(xe] 210, Ur:e)

Just like any other Bayes filter, the bel(z;) is recursively calculated
based on the bel(z;_1) one time step earlier.

There have been a lot of variations of the particle filter over the years
and some of the techniques and their uses have been explained here.
The Most common being the Monte — CarloLocalization also known
as the MCL. Previous methods, like the Markov method involved the
representation of the probability density to be spread over the entire
state region, but the MCL represented the function as a set of randomly
draw particles. This improved the efficiency and accuracy just like the
Kalman filter based techniques and combined it with the advantages
of the Markov localization. But with the positives the negatives en-
tailed such as it is computationally demanding as the number of sam-
ples increased. Also losing the diversity and the samples itself over
the execution time during the resampling steps [7]. The basic MCL al-
gorithm has been shown below.

FastSLAM as well moved from EKF to MCL and other particle
filter-based localization methods so as to improve the consistency and
get rid of the inconsistencies that pertained due to the linearization
of the non-linear models. It helped improved accuracy in high veloc-
ity motion models and hence improved the overall efficiency. Also,
other variants of MCL are the Adaptive - MCL, Merge-MCL where the
authors in [20] have implemented particle merge and split technique
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Algorithm 1: Monte Carlo Localization

Algorithm MCL ( xy, u, 2., m ):
E = Xt = @
Form=1toMdo
2™ = sample_motion_model( u; , 2™} )

[m] [m]

w; ' = measurement_model( z; , x; ', m)
Xe=xi+ (2, w™)
end

Form =1toMdo
draw i with probability o e
add z!” to y,

end

return y;

Table 2.1: Monte Carlo Localization Algorithm

based on the weight and spatial distribution. The variants also depend
on the type of resampling method use. They could vary from Low
Variance Resampling (LVR) to Sequential Importance Resampling (SIR).

Rao-Blackwellized Particle Filter is gaining popularity to solve the SLAM
problem in many of the areas of robotics. It is much more accurate
and faster than the particle filter because it marginalizes a state space
subset , that can be done more efficiently by utilizing the Gaussian dis-
tribution. The particles sample the map rather than jointly sampling
both the pose and the map which is impractical. It also helps mapping
as the particle contains compact maps and can help individually carry
in them large parts of the environment we are modelling and is highly
efficient [8, 13, 23]

3. NDT-MCL

The NDT MCL is a novel idea by authors Saarinen, Andreasson in ar-
ticle [27] based on the already recognized probabilistic framework of
Localization i.e. MCL. The idea here is to use the MCL approach along
with the map of the environment and the sensor data represented as a
NDT. The accuracy and efficiency of the grid map models is improved
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using continuous NDT, piecewise representation of the model and re-
laxing the hard discretization imposed by the grid-map model.

The algorithm was further implemented as SLAM known as the Dual
Time NDT-MCL where, the localization happens by using MCL and a
prior known static map and short term map to keep track of the vehi-
cle pose. The novelty of the idea is that it uses the best timescale locally
rather than the entire timescale map and hence has shown better per-
formance results as compared to the basic NDT-MCL [37].

The NDT method of Mapping and Localization is preferred in 3D un-
known environments because the maps generated by the sensors in a
large open environment is scarce and in such an environment using
the conventional or variations of ICP leads to failures as they do not
get enough points to match and generate a map which would lead
to giving us false positives when localizing the position of the vehi-
cle. And NDT in this aspect provides better pose estimation as it is
searches for the probability of the surface point at a specific position,
which provides a smoother representation of the reference scan by up-
dating continuously and hence is not effected by the sparseness of the
sensor data.

2.3 Pose Fusion

Initially, the navigation and pose estimation of the Autonomous vehi-
cle applications were based on the GPS and IMU data gathered and
the accuracy depended solely on the 2 sensors used. But, the system
was flawed and had issues because of either bias in the sensor reading,
the misalignment of the IMU sensor unit or the multi-path errors in the
observations of the GPS. A system was developed, to use the Kalman
filter to filter out the measurements of the GPS to calculate the errors
and utilize them to correct the IMU [30]. But there were issues with
the system, in case of dense areas and the estimation not being robust
for the pose estimation or navigation.

Come the 21st century, researchers realized the need of a robust lo-
calization system, where there can be a combination of sensors used
to map and estimate the pose of the system and one such system was
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developed by Standford for the Darpa competitions. They generated
a map using the laser sensors and employed the measurements from
the sensors to a 2D histogram filter tracing the IMU coordinate frame
offset and converting it to the UTM frame employing the GPS pose[19].

Over the recent years, researcher have been trying to robustly fuse the
sensor data with different localization algorithms, be it the variations
of the kalman filter like EKF, EIF etc or the particle filter like RBPF or
MCL. The proposed methods use the estimates of the states through
the various algorithms and fuse the measurements from the GPS and
IMU to them to view the accuracy of the system on the vehicle, be it
ground based or aerial. The provided methods do tend to decrease the
computational time but the problem arises if the measurement from
the GPS/IMU is used to model the state estimates in the localization
algorithm, it could not be as robust [25, 21].



Chapter 3

System Overview

The chapter details the hardware and software required to perform the
experiment and gather data. The environmental setup for conducting
the experiments is defined as well.

3.1 Hardware Setup

The vehicle design is not in the purview of the project but is explained
to give a general idea.

3.1.1 Design

The system is a Research Concept Vehicle (RCV) which is an electric,
4-wheel differential drive vehicle developed in 2014. Each wheel is
connected to electric motors and has a drive by wire technology based
steering system. The key design data is as follows:

Weight 440 kg
Track Width 1.5m
Wheel Base 2m
Drive Train 17 kW
Top Speed 70 km/h
Battery 52V, 42 Ah, Li Ion
(30 min drive on full charge)

Table 3.1: Design Specifications of the Vehicle
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(a) Front View (b) Right Side View

Figure 3.1: Vehicle Design and Construction

3.1.2 Sensor Setup

Figure 3.2: Sensor Platform

The sensors are mounted on a platform that was developed to hold
all the sensors, networking and machinery to power the sensors. A
12V car cigarette contact powers the sensors which is hooked to a 230V
converter. The platform also hosts 2 laser sensors, a router, 2 Ethernet
cameras, and a GPS receiver.
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The sensor platform shown in fig 3.2 caters to meet all the require-
ments discussed in the coming Chapter 5. Following is the list of sen-
sors, and the hardware being used on the vehicle and for the experi-
ments.

MSI G Series, Core i7 Laptop | External & On-Board Computer
Velodyne VPL - 16 Puck (2) Laser Sensor
Trimble (Accurate) GPS Receiver
dSpace XSense GPS Receiver
MicroAutoBox Controllers, IMU

Table 3.2: List of Sensors on the Vehicle

The Velodyne VPL-16 Puck Lidar is placed in the front and the back
at an elevated height and an angle for a better coverage of the area. It
shoots out laser beams and is helpful in building a point cloud based
local map for the vehicle. The Xsense dSpace sensor is a GPS receiver
connected to the MicroAutoBox, which is cheaper and less accurate as
compared to the Trimble GPS receiver. The GPS coordinates for the
vehicle is gathered using the 2 receivers in terms of longitudes and
latitudes.

3.2 Software Setup

The laptop being used houses an Intel i7 processor, running Ubuntu
16.04. The autonomous part of the vehicle is developed using the
Robotics Operating System (ROS - Kinetic) framework. The frame-
work is a structured layer of communication between the different li-
braries and tools and inclusive of visualization and debugging tools .

The nodes are executable programs that run on the vehicle and are
coded in C++, that can communicate to and from other nodes making
information flow, monitoring achievable. The nodes communicated
through messages and topics that are customizable.

The Odometry data of the vehicle via the IMU and GPS data acquired
through the Trimble receiver and the Xsense GPS receiver through the
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(a) Lidar Puc Laser Sensor

(b) Trimble GPS Receiver

Figure 3.3: Laser and GPS Sensor for the Project

dSpace module on the vehicle that accounts for the control and vehi-
cle dynamics of the system. All this information is published as topics
and can be subscribed to through the nodes where they are needed.
There is an open source library available within ROS which has nodes
that can extract data from the GPS sensors and the Latitude and lon-
gitudinal coordinates can be converted to a UTM Global Coordinate
System.



Chapter 4

Method Implemented

This section explains the implementation of the algorithms to test on
the vehicle based on the studies done from previous work and further
assessment of the final results for a robust localization. In the project,
the available open source package for NDT SLAM in ROS called the
perception_oru has been used which contains the mapping [27] and lo-
calization [26] algorithm and which has been implemented based on
the system and requirements.

As explained in Chapter 2, the use of the NDT method is advanta-
geous over the use of ICP or other scan matching techniques as it
works on the principle of searching for the probability of linear normal
distribution modeled surface points at a certain location and hence the
sparseness doesn’t effect the accuracy or map generation. From pre-
vious work done by authors to compare the conventional methods to
NDT in [10], the false matches were to a minimum or almost negligible
and the pose estimation was much more accurate and reliable in NDT
rather than ICP. Also resulted in a faster and efficient convergence of
the results. The following reasons hence made it the apt choice for the
implementation of the method for Mapping and Localization.

4.1 NDT 3D Mapping

The library makes use of the NDT OM method of generating maps
which have the capability of utilizing a cell size larger than the con-
ventional occupancy grid map and without affecting the accuracy of
the generated map. The main idea behind it is to first gather all the
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sensor measurements into the grid cells and then use these measure-
ments to evaluate the sample mean and covariance for each cell:

o n
Wi = ﬁzkzlmka

1 n
Vi = — i — ), — p)’

It then recursively updates the measurements and hence generates a
model of the cell occupancy where the cell(c;) is depicted by

C; = {Mm i, Niap(mi‘zlzt)}

where, 11; and X; are the mean and covariance of the Gaussian that has
been estimated, V; is the number of points that are used to determine
the normal distribution parameters and p(m;|z;.;) determines the like-
lihood of the cell occupancy.

Though the mapping is not in the scope of the project but is explained
because it is an important part of SLAM and we make use of the map
generated to perform the localization of the vehicle in the unknown
environment.

But the map built for the vehicle, though produced through recursive
measurement updates based on the collected sensor data, is a static
map where the occupancy likelihood would not change after the map
has been built and the map is represented as a set of normal distribu-

4.2 NDT MCL Localization

Now once the map has been generated the map is then used to help
the vehicle localize itself in the environment. The MCL in many ways
applied to the vehicle is similar to the basic MCL algorithm but has
been changed to accommodate to the map and the measurements that
are both characterized by NDT. The estimation in the NDT-MCL like
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any other algorithm follow the 3 main steps: Prediction of the state, Up-
date of the measurements and the state and Re-sampling of the particles.

For the localization, instead of using the motion model with 6D
coordinate system (z,y, z, roll, pitch, yaw), we consider the odometry
model (z,y, §), where 6§ is the yaw rate of the vehicle, that is then used
to compute the differential motion w.r.t. the previous state z;,_; and
is dependent on both the previous state z;_; and the next state z;. A
Gaussian noise o; € IR? is sampled to each particle as there is a noise
in the measurements from the odometry. Hence, the prediction of the
states is calculated by

Ty =z, & (d}_, + oy)

The measurements from the sensors z = {p;}Y*,, where the mea-
surement is a set of points p; and the set contain NV, points, are con-
verted to NDT by gathering all the points measured into the NDT grid
cells with a resolution and the mean and covariance are estimated. The
final NDT measurements are shown as a set of normally distributed
parameters z; = {j;, ¥;}*t where N.; is the number of parameters in
the set and the calculated measurement results explains the probabil-
ity at a physical location of a point being measured.

Now, since we have the developed map m, the predicted pose x;, which
is transformed by translation and rotation to the base frame coordinate
and the measurements represented as NDT, we calculate the likelihood
of the between the given data by the L,— Likelihood method

—d _
La(%|zk, m) = 2%2&1(1163719(72#?(31«21‘3%) ) (4.1)

where d;, d; are the scaling parameters and j;; = Ry p; + t.

The predicted states and the measurements once obtained, depending
on this data collected we set weight to each particle so as to perform
the update step to know where exactly the vehicle is on the map. The
weights of the particle is normalized by the given equation

1
k
N i t—
25wy

LE (4.2)

k
wy

and is updated recursively as the vehicle moves depending on the pre-
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vious particle weight and the current weight. The 3rd step being the
resampling step is done using the Sequential Importance Resampling
(SIR) technique and is triggered only when the weight variance of the
particles is below half the number number of effective weighted parti-
cles.

4.3 GPS Pose Estimation

The pose of the vehicle in an automated vehicle is crucial and needs
to be estimated precisely. The GPS data can be directly used for the
precise localization of the vehicle but the main concern with the GPS
data is, whether it would be accurate enough in a highly dense tree
and building region or inside a tunnel or similar situations. There
arises a problem in such situations that the localization cannot be done
solely on the basis of the GPS data and hence we need to implement
the above mentioned MCL algorithm along with the GPS data for the
precise localization of the system. Also it is advantageous to use both
the pose estimation methods together.

The GPS data is extracted here from 2 GPS receivers that are avail-
able on the vehicle, one being the Trimble GPS receiver which is an
expensive module for but provides accurate Longitudinal and latitu-
dinal data and the other is the xSense GPS receiver which is connected
to the IMU and the MicroAutobox unit, where the coordinates of the
vehicle are received from dSpace. Both the GPS modules simultane-
ously record data and then these latitude and longitudinal coordinates
are converted to the UTM coordinate space which is a 2D coordinate
frame (z,y). Localization using both the above method and the GPS
based method provides a better and accurate localization of the vehi-
cle as compared to just using one of the following methods.The robust-
ness of localization of using both the GPS and the NDT-MCL will be
shown in the sections that follow.



Chapter 5

Experiment

This section describes the details of the experiments performed on the
vehicle and its surrounding regions. The environment around which
the vehicle is driven and the route taken for the experimentation is
taken as well.

LLLLL

(a) Test Area (b) Path Taken

Figure 5.1: Map of the test area and path taken

In fig 5.1, the path taken to test the system is shown. The path orig-
inates and ends at ITRL and the red path depicts the path taken from
the ITRL, then there is a 3 point turn and the path back is represented
in green.

As mentioned in section 4, a static NDT- occupancy map is gener-
ated based on the path the vehicle is driven on, it gathers data while
exploring the path which can be seen in fig 5.2 and the data is collected
from the laser sensor and the generated map can be seen in fig 5.3. The
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(a) Initial Path (b) Three Point Turn

(c) Return Path

Figure 5.2: Exploration of the Test Area

NDT map generation is a computationally challenging and is a slow
process. The occupancy maps generated needed some tweaking to
generate a map that could adhere to the experimentation phase of lo-
calization and as we know that each grid has a likelihood of whether
it is occupied or not. This likelihood needed to be changed for us to
have a better and robust localization of the vehicle. There is an incon-
sistency check done during the update phase, where the likelihood of
the cell being occupied is updated and the values of the likelihood lied
in the range of 0.4 to 1, upon observing the performance, it was real-
ized that the system was more robust by checking if the likelihood of
occupancy was > 0.8.

Hence the map sets the basis for further experimentation of the sys-
tem. Once the environment has been mapped the simulations were
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(a) NDT Map Top View (b) NDT Map 3D View

(c) NDT - Occupancy Map

Figure 5.3: NDT Map and Generated Map

conducted on the map generated and the localization algorithm from
section 5.2 was tested on the vehicle. There were some parameters that
needed to be changed or added based on our system that helped im-
prove the performance in the equations mentioned above. The L,—likelihood
of the system is calculated by setting the scaling parameter values

d; = dy = 1. Because the value of the L, likelihood when calculated is

very very small, we add a logarithmic constant variable before the ex-
ponent is taken to increase the likelihood value which can be discerned

in the equation below

—1
Lo(Z|xr,m) = Ej-vzle;V:zlexp<7 (1 (RSB ) i + log(det (%))
G.1)
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where, det(3;) is the determinant of the covariance of the cells in
the map. The normalization of the particles weights is done as men-
tioned in equation 4.2. Besides that the algorithm was applied as men-
tioned above.

Simultaneously, the GPS data was being collected while the NDT-MCL
algorithm was running so as to compare the pose of the vehicle at the
same instance for both the systems. The GPS data from both the re-
ceivers are in longitude and latitude, and using the library as men-
tioned in section 5.3, the longitude and latitudes are converted to the
UTM coordinate system which is a 2D coordinate system (z, y). Based
on the odometry data and the GPS - UTM coordinates the pose of the
vehicle is estimated

All of the measurements of the system and the estimates of the pose is
then transformed to the map frame to accommodate for the system of
SLAM. The transformation chart can be seen in the figure below.

Odometry Frame

UTM Coordinate

Figure 5.4: Sensor Platform

The results and analysis of the experimentation based on the im-
plemented system is shown in the coming section.



Chapter 6

Resulis

This section deals with the results obtained upon implementing and
experimenting with the system on the vehicle. The data collected from
the simulations were plugged into a program to analyze the results.
The images compare the data between the NDT MCL and the 2 GPS
data i.e the Trimble data and the Dspace data. It also compares the
2 GPS data with each other. In the following figures the NDT-MCL
comparison to the GPS;,,, is shown on the top and the comparison to
G PSpspace ON the bottom.

The results upon plotting the NDT-MCL with respect to the 2 GPS re-
ceiver data were of different sizes and needed to be interpolated to
achieve the same number of readings so as to further process the in-
formation over the same time step. It was also noticed that the NDT-
MCL data was rotated by a certain degree and had a translational dis-
tance with respect to the GPS data and it is because the MCL considers
the orientation of the pose whereas the GPS data does not and hence
though in the same transform frame, there exists a rotation.

The rotation angle and rotation matrix along with the translational
distance was calculated for the data to match and further comparison.
The rotation (f) and translational distance (¢) values for the NDT-MCL
with respect to the GPS receiver can be seen in the table below.

The final results after all the required manipulation can be seen in
fig 6.1 and 6.2, which is a translated and rotated version of the orig-
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GPS  0(deg) t, ty

Trimble 61.71  36.668 -43.8
Dspace 61.63 3591 -44.25

Table 6.1: Rotation and Translational data of NDT-MCL w.r.t GPS

NDT MCL + Trimble
T
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(a) NDT-MCL + GPS,,;, data

NDT MCL + Dspace
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(b) NDT-MCL + GPSppace data

Figure 6.1: Localization and GPS data plots

inal data and presents the final results of the experiments. From the
figures, be it only the pose or the pose data with respect to time, it
can be discerned that the vehicle pose obtained by MCL is quite noisy
which is because of the noise in the odometry reading while the vehi-
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(b) NDT-MCL + GPSppce data

Figure 6.2: Localization and GPS data plots w.r.t time

cle was moving but in all is consistent with the position of the vehicle
as it moves along the path it was driven in. When compared to the
data GPSy impe data in fig 6.1(a), 6.2(a) w.r.t the NDT-MCL data, it can
be clearly seen in the regions of highly dense areas the, the pose of
the GPS jumps discretely but with each time step returns to the orig-
inal value when driving further. The 3 point turn taken to return can
clearly be seen in the figure which shows that the accuracy of the sys-
tem is fairly good.

Similarly, when the pose from the localization algorithm was com-
pared to the pose information from G PSpgp.c. in fig 6.1(b) and 6.2(b),
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even though the plot is smoother as compared to the previous compar-
ison, but the drawback here is that once there is a jump in the pose of
the system, the error persists and slowly converges to the actual pose
and this presents with the problem that every time there is a jump in
the pose information in the system, there would be an error that would
entail until it converges to the original data, providing false positives
which would be corroborated further by the figures below.

The final comparison of the localization and GPS data is done by com-
paring the GPS pose data from both receivers and the MCL when mod-
eled w.r.t the Trimble because of the accuracy of data obtained from the
Trimble, as it is very close to the localization based model and matches
the data most of the time.

The comparison of the data between the localization and GPS data to
check for robustness is done by comparing the distance between each
pose of the MCL model with the pose of both the GPS receivers. There
needed to be a threshold that needed to be measured to compare the
data and to check the number of inliers and outliers where the inliers
are the number of points that correlate and match the MCL model tak-
ing the noise in to consideration and the outliers are the ones telling
us that there is a bias, error or a jump in the GPS value because it is
passing through a dense region and is not getting a good GPS coordi-
nate. The threshold calculated or taken was based on the least mean
distance value of each GPS data to the localization model at the same
time step, and the noise in the system, and was tested on the entire
system at a threshold of 3.5 and 4.5.

The results for the robustness comparison for the localization and GPS
data are depicted in fig 6.3 for threshold = 3.5.

The fig 6.3 represent the comparison of the pose data from both the
GPSyim and G PSpsapee Which is represented by the scatter plot w.r.t
the MCL model which is the blue line. In case of the data from the
G'PSyim it can be inferred that most of the pose data points are close to
the localization model, i.e. the number of inliers that have a distance
less than or equal to the MCL pose model is higher than the outliers
that have a distance of more than 3.5. Simultaneously, when the model
was compared to the pose data from G PSpspace, it can be seen that the
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number of outliers are quite prominent with regard to the inliers. The
number of points that match the localization model and the outliers or
the points far off from the model that show the bias at a threshold of
3.5 are presented in table 6.2.

Roblégtpess Check between the NDT MCL and GPS Data and Comparison between the Trimble and Dspace Data
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Figure 6.3: Robust Localization with both GPS at thresh = 3.5

Similarly, when the system was tested at threshold = 4.5, repre-
sented in fig 6.4 shows that the number of inliers have increased and
the outliers have decreased for the data from both the receiver, but yet
the number of outliers in the pose data from G PSpgpace still outweighs

the number of inliers. The results for the number of matches and er-
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GPS  Inliers(Pose Match) Outliers (Error/Bias)

Trimble 216 114
Dspace 110 220

Table 6.2: Robustness check for pose of MCL and GPS, thresh = 3.5

rors at a threshold of 4.5 can be seen in table 6.3.
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Figure 6.4: Robust Localization with both GPS at thresh = 4.5
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GPS  Inliers(Pose Match) Outliers (Error/Bias)

Trimble 250 80
Dspace 147 183

Table 6.3: Robustness check for pose of MCL and GPS, thresh = 4.5

Looking at the trend as the threshold increases the number of out-
liers would decrease and the number of inliers would increase. Though
taking a threshold of anything over 3.5 will include more of the false
positives and the values that are far away from the actual pose and we
want the system to be robust, hence a threshold < 3.5 is preferred for
a tight and robust localization considering the noise in the localization
model.

From the above results, it can be verified that the GPS,,;,, along with
the NDT localization algorithm provides a much more robust solution
of pose estimation in contrast to the data from G'PSpspace. The results
clearly depict the comparison of the accuracy of the pose estimation
in an unknown surrounding based on the system model and accuracy
of the GPS receivers . The drawback here is that comparing the 2 GPS
receivers and the data, though the Trimble is the better choice, it is an
expensive option as compared to the Dsapce system. And hence it is
easy for us to decide that the system robustness is important and hence
the GPS,,;,, would be the better options for a robust localization.



Chapter 7

Conclusion

The main objective of the thesis project is to test the robustness of lo-
calization on the vehicle in a large outdoor unmapped environment
using SLAM algorithms with the combination of sensors like laser, in-
ertial and Global positioning sensors. The system was implemented
on the RCV at ITRL to equip the vehicle with the tools necessary to
solve the above computational problem. The system consisted of an
NDT mapping algorithm which produced a NDT - Occupancy grid
map. The localization algorithm implemented was the NDT-MCL and
along with the estimates of the pose from 2 GPS receivers while the
vehicle was driving.

The system explored a test area with varying topographical features
near the lab to generate a static grid map with a normal distribution
occupancy. This map formed the basis for the system to be tested and
various simulations with varying parameters was observed. Simulta-
neously the data from both the GPS receivers were tested and com-
pared to the localization data from the sensor and comparing them it
can be concluded that the Trimble receiver with the NDT-MCL pro-
vided a much more robust system as compared to the Dspace system.

The results of the tests through the length of the project show that the
vehicle can localize itself in the an unknown environment by the use of
the mentioned sensors, but the performance of the system currently is
confined to simulations as there are a lot of systems that need to be im-
plemented and running them altogether on-line could be the next step.
Hence, the initial research question in section 1.1 has been answered.
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Future Work

The implemented method currently is tested by simulating the envi-
ronment where the vehicle is driven rather than in a real time driving
situation and hence in the future there can be a possibility of using it
to drive the vehicle autonomously and be tested in real time. It can
be seen in the simulations that it provides quite a robust system. For
testing it on-line on the vehicle, it needs to incorporate path planning,
obstacle detection and avoidance in all environments and maps which
would be a step leading closer to a fully autonomous system where it
would require no prior knowledge or human interaction.



Appendix A

Social Impacts and Ethics

Since the inception of the concept of autonomous cars, it has become
one of the widely researched areas and major automotive companies
and universities around the world are trying to make a fully autonomous
vehicle a reality. But, with positive aspects of the research, there are
challenges that arise that compete the traditional notions raising ques-
tions related to ownership, social, legal, ethical and security issues.
The area of mobile robotics and autonomous systems has been pro-
gressing at a rate where the lawmakers are not able to keep up with
updating/changing laws and coping up with the high demand and
the issues that arise with them. Some of the major questions that need
to be answered are regarding the safety and ownership, in case the
system fails or malfunctions and causes harm/damage to human life
or property, who takes the ownership of the damages, whether it is the
driver/ owner of the vehicle or the manufacturer because of the mal-
functioning system. Some of the companies themselves have come
forward to address this problem and have chosen to take responsibil-
ity but in the longer run with more and more companies developing
such systems, it would be harder.

This project specifically has only been used to gather data and simulate
in the area governed by the university and under proper supervision
and laws in the campus. And because the system is only being used
to gather data by a human driven vehicle, there has been no such ethi-
cal or social issues. The project method implementation currently was
only tested through simulations, but in the future when the vehicle is
tested in real time, that is when such concerns would arise. The au-
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tonomous vehicle systems are also being used in heavy vehicles with
goods in it and travel long distances. If a failure occurs it could be
catastrophic if the vehicle is carrying flammable material. Also if the
vehicle is put in a situation where both the outcomes could lead to a
damage, who is to say what decision would the vehicle make based on
the situation, in either of the 2 cases, it would be hard for the vehicle
or computer on the vehicle to take such a complex decision.

Also, recently a lot of vehicle manufacturers who have their autonomous
vehicles plying on the roads, have asked users to let them access their
driving information and the path/route taken which could lead to
breach of privacy in cased the system is faulty or hacked. Though
the company’s claim it is to help improve the driving experience, but
who is to blame if the information is divulged or leaked. Such issues
with autonomous vehicles need some serious policy and law changes
or development which need to confront the concerns of privacy and
safety of an individual [32].
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