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Abstract

In the present study, a finite volume method is employed to model
the advection-diffusion phenomenon during a pure substance melting
process. The exercise is limited to a benchmark problem consisting of
the 2D melting from a vertical wall of a PCM driven by natural con-
vection in the melt. Numerical results, mainly the temporal evolution
of average Nusselt number at the hot wall and the average liquid frac-
tion, are validated by available literature data and the effect of thermal
inertia in the heat transfer is considered as well. Finally, motivated
by recent publications and the model presented here, possible new re-
search topics are proposed.

Keywords: Phase change materials, fluid dynamics, heat transfer, nat-
ural convection, melting, enthalpy-porosity technique.
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Chapter 1

Introduction

The melting/solidification of a substance due to natural convection
occurs in a wide range of settings and during the last decades a grow-
ing interest for the fundamentals behind the heat transfer and fluid
dynamics during the melting/solidification process have been moti-
vated particularly by the potential of phase change materials (PCMs)
to store energy. The major advantages of latent heat stores under study
are their high energy storage density (i.e. large thermal capacity per
unit volume) and their almost isothermal behaviour during the phase-
change phenomena. Such potential as energy stores makes PCMs an
important component in the future smart grid energy strategy (e.g.
consider their planned usage in the sustainable residential housing
KTH’s project, KTH Live-In Lab).

A review on the development of latent heat thermal energy stor-
age materials and systems may be found on Agyenim et al. [1], Zalba
et al. [2], Farid et al. [3], and Sharma et al. [4]. Agyenim et al. [1] in-
vestigated the criteria that govern the selection of PCMs, the melting
temperature range for different practical applications, the geometry
and configurations of PCM containers, the heat transfer in PCMs and
enhancing techniques, and a series of studies to assess the effects of
certain parameters in the heat transfer. Here it is concluded that in
terms of problem formulation, the common approach has been the use
of an enthalpy formulation for the phase change study involving con-
vection as a heat transfer mechanism in the melt. Zalba et al. [2] did an
extensive review with respect to materials employed for thermal en-
ergy storage listing more than 150 PCMs, their classification, and some
applications. Farid et al. [3] and Sharma et al. [4] studied the classifi-
cation, properties, and major application of PCMs as well. However
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2 CHAPTER 1. INTRODUCTION

Sharma et al. [4] also considered the heat transfer characteristics of
the melting/solidification process and different techniques for solving
phase change problems. Here the advantages of using the enthalpy
formulation are remarked (e.g. governing equation is similar to the
single phase equation, condition on solid-liquid interface is automat-
ically satisfied, and it allows a mushy zone region between the two
phases).

Concrete examples of applications such as cooling of electronics,
solar collectors, and thermal control in the construction of lightweight
structures may be found on Kandasamy, Wang, and Mujumdar [5],
Mettawee and Assassa [6], and Kuznik, Virgone, and Noel [7].

Most of the available experimental and numerical results have been
obtained for the melting of pure phase change materials. In the context
of numerical studies, a large number of papers dedicated to this topic
may be found in literature. However Bertrand et al. [8] and Gobin
and Le Quéré [9] may be considered a benchmark in the sense that a
systematically comparison of independent algorithms to solve a rel-
atively simpler problem, the melting of a pure substance driven by
natural convection in the melt, is made.

The study of the advection-diffusion phenomenon and its mod-
elling during a pure substance melting process inside a 2D cavity is
the main purpose of this thesis. The exercise is limited to the afore-
mentioned benchmark problem consisting in the melting from a verti-
cal wall. The main goal is to have a working algorithm which could be
modified, possibly with relatively ease, to do new research in the field.

1.1 Thesis Outline

The thesis has been structured in the following way:
-In chapter 1, the study of phase change problems is motivated and it
is stated that the research is limited to the 2D melting from a vertical
wall of a PCM driven by natural convection in the melt. Also, a brief
summary on part of the literature reviewed with respect to PCMs and
the model of phase change problems is presented.
-In chapter 2, the mathematical/physical background is indicated.
The general notation to be used is introduced and described: Cartesian
coordinates, Cartesian tensors, indicial notation, and common opera-
tors/operations appearing in the governing equations.
Also a theory review on transport phenomena is given. Here trans-
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port phenomena is understood as the study of momentum, energy,
and mass transport, kinematics notions are given as basis for dynam-
ical studies, and the integral and differential form of the conserva-
tion equations that govern fluid-flow problems are deduced from basic
principles.
-In chapter 3, a brief review on PCMs and the melting of a pure sub-
stance is shown. Then a mathematical model for the study of phase
change problems based on an enthalpy-porosity approach is proposed.
-In chapter 4, the geometry, boundary conditions, and initial condi-
tions of the problem under consideration are described. Also the test
cases corresponding to the different computational runs are exposed.
-In chapter 5, the numerical modelling of the melting problem under
consideration is outlined considering aspects such as the spatial dis-
cretization, the numerical treatment of the boundary conditions, the
iterative process to obtain the liquid fraction and temperature field,
and the temporal discretization.
-In chapter 6, the obtained results are qualitatively compared with
those of Bertrand et al. [8] and Gobin and Le Quéré [9] and Huber et al.
[10] and then quantitatively through the scaling laws and correlations
presented in Gobin and Bénard [11] and Jany and Bejan [12] and Hu-
ber et al. [10], for the low/high Stefan number range, respectively.
-In chapter 7, the work is concluded with some observations and pos-
sible new research topics are proposed.





Chapter 2

Mathematical Background

2.1 General Notation

2.1.1 Cartesian Coordinate System

In general a Cartesian coordinate system is a three dimensional recti-
linear coordinate system, i.e. basis vectors are chosen so that the axes
are all Euclidean straight lines, which are orthogonal to each other. See
figure 2.1.

2.1.2 Cartesian Tensors

An n-th rank Cartesian tensor is a mathematical object that has n in-
dices and 3n components obeying certain transformation rules. Tensor
are used to represent properties of a physical system.

A zero-order tensor represents a scalar. Scalars are completely de-
fined by their magnitude which may vary in space with independence
of the coordinate directions (e.g. density and pressure field). In the
following chapters scalars are to be denoted using italicized symbols.

A first-order tensor represents a vector. Vectors are completely de-
fined by their magnitude and direction (e.g. velocity field). Hence,
in contrast with scalars, vectors do dependent on the coordinate di-
rections. In the following chapters vectors are denoted using boldface
symbols. As an example consider the position vector x seen in figure
2.1 which may be defined as:

x = x1e1 + x2e2 + x3e3, e1 =

1

0

0

 , e2 =

0

1

0

 , e3 =

0

0

1

 (2.1)
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Figure 2.1: Cartesian coordinate system and position vector x. The point O is
called the origin of coordinates and the lines O1, O2, and O3 the coordinate
axes which are orthogonal to each other. The orthogonality of the coordinate
system can also be represented through the use of unit vectors in the direction
of the axes, i.e. e1, e2, and e3 in the figure.

Where x1, x2, and x3 are the components of the position vector
along each Cartesian axis and e1, e2, and e3 are unit vectors in the di-
rection of the coordinate axis and here are written as column matrixes.

A second-order tensors have 9 separate components and represents
physical quantities such as mechanical stress.

2.1.3 Indicial Notation

Indicial notation is a notation introduced to have a more compact and
simple representation, particularly when one is dealing with vectors,
tensors, and their identities.

Indicial notation is characterized by two important features: the
free index and the notational convention.

A free index is an index that appears only once per term and that
is not summed over. Vectors and tensor may be represented with the
use of free indexes. Consider for example the position vector x which
using indicial notation may be written as x = (x1, x2, x3) = eixi or
simply xi where the index i is the free index and can take the value 1,
2, or 3. A second-order tensor is represented by two free indexes, e.g.
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σim representing the tensor:

σim =

σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

 (2.2)

The notational convention (also called Einstein summation con-
vection) is an implicit convention stating that repeated indexes are
summed over, i.e. aiai ≡

∑3
i=1 aiai. In this case the index i is a sum-

mation or "dummy" index which may be replaced by another symbol
(e.g. j or m) without changing the meaning of the expression.

2.1.4 Kronecker Delta and Permutation Symbol

The Kronecker delta δim is an isotropic (components change by a ro-
tation of the frame of reference) second-order tensor which in a three
dimensional space is the identity matrix, i.e.

δim =

1 0 0

0 1 0

0 0 1

 (2.3)

In matrix multiplication involving the Kronecker delta, it is impor-
tant to emphasis the following identity δimxm = xi.

The alternating tensor or permutation symbol εijk is an isotropic
third-order tensor (i.e. with 33 components) defined as:

εijk =


1, if ijk present cyclic order (e.g. ijk = 312)
0, if any two indices are equal (e.g. ijk = 322)
−1, if ijk present anti-cyclic order (e.g. ijk = 132)

(2.4)

By definition the following identities apply to the alternating ten-
sor, εijk = εjki, εijk = −εjik. Another important identity is the epsilon-
delta relation εijkεklm = δilδjm − δimδjl.

2.1.5 Common Operators and Operations

In the following lines some common operators and operations are in-
troduced.

The Nabla operator ∇ is defined as:

∇ =

(
∂

∂x1

,
∂

∂x2

,
∂

∂x3

)
= ei

∂

∂xi
(2.5)
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The Laplace operator ∇2 is defined as:

∇2 =

(
∂2

∂x1
2

+
∂2

∂x2
2

+
∂2

∂x3
2

)
=

∂2

∂xi2
(2.6)

The dot product (·) of two vectors a and b is defined as:

a · b = b · a = aibi (2.7)

The cross product (×) of two vectors a and b is defined as:

a× b = det

e1 e2 e3
a1 a2 a3

b1 b2 b3

 = εijkaibj (2.8)

The gradient of a scalar is the application of the Nabla operator
over a scalar field f leading to a vector field:

∇f = ei
∂f

∂xi
(2.9)

The divergence of a vector is the dot product between the Nabla
operator and a vector field a leading to a scalar field:

∇ · a =
∂ai
∂xi

(2.10)

In case of a second-order tensor σ = σim, its divergence leads to a
vector field with i-component defined as:

(∇ · σ)i =
∂σim
∂xm

(2.11)

The curl of a vector is the cross product between the Nabla operator
and a vector field a, with i-component defined as:

(∇× a)i = εijk
∂ak
∂xj

(2.12)

It must be noted that a vector a is called divergence free if ∇ · a = 0

and irrotational if (∇× a)i = 0.
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2.2 Transport Phenomena

2.2.1 Overview about Transport Phenomena

Transport phenomena concern the study of momentum, energy, and
mass transport. Historically, these transport phenomena were treated
independently and covered through Fluid Dynamics and Heat and
Mass Transfer studies. However, during the last century or so, in-
terdisciplinary applications (e.g. meteorology, biotechnology, and mi-
cro/nanotechnology) and the inherent analogies between all types of
transports have led to their unified study.

There are three levels at which transport phenomena can be stud-
ied: macroscopic, microscopic and molecular. At the macroscopic level,
the entities (i.e. mass, momentum, and energy) change due to their
introduction and removal via entering and leaving streams and be-
cause of the system interaction with the surroundings. Here "macro-
scopic balances" are formulated and there is no interest in understand-
ing what it is happening inside the system. At the microscopic level,
one analyse what it is happening to the system in a small region and
within such region "equations of change" of all the entities are formu-
lated. The purpose is to acquire information about properties such
as velocity, temperature, and pressure within the system. Meanwhile,
at the molecular level, one seek to understand the transport phenom-
ena in terms of the molecular structure and intermolecular forces. It
must be noted that there are different "length scales" associated with
each level, e.g. centimetres or meters at macroscopic level compared
to nanometres at molecular level [13].

At this point, it is important to point out that all the transport phe-
nomena involve both molecular transport denoted as diffusion (i.e.
transport from high concentration to low concentration of the corre-
sponding entity) and bulk flow motion transport denoted as advection
(i.e. transport of the corresponding entity by the fluid flow).

The term advection is used instead of convection to avoid misun-
derstanding with the heat transfer mechanism.

2.2.2 Fluid Kinematics

Kinematics is the study of motion without considering the forces that
produce it.
Hence the results from kinematics studies apply to all type of fluid and
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are the base on which dynamical results are constructed [14].
Before introducing some notions about fluid kinematics, it is im-

portant to discuss the continuum hypothesis: for a large enough re-
gion, the actual discrete properties (e.g. pressure, temperature, and
density at molecular level) are treated as spatial point properties vary-
ing continuously in space and time. Such properties consist on the
averages of molecular characteristics in a small region surrounding
the point of interest. The continuum approximation is valid when the
Knudsen number, representing the ratio of the mean free path of the
molecules and the length scale of interest, is much less than unity [15].

Descriptions of Fluid Motion

The motion in a fluid treated as a continuum is described using either
material coordinates (also called Lagrange coordinates) or spatial coor-
dinates (also called Euler coordinates). In a material description each
fluid particle (i.e. point of interest where properties consist on the aver-
ages of the molecular characteristics) is marked and followed through
the flow field while in a spatial description a fixed point in space is
considered and the flow field is observed from this point. Hence in the
first case, the flow kinematic is described by the initial position of the
fluid particle and time while in the second case, it is described both by
space coordinates, e.g. Cartesian coordinates: x1, x2, x3 and time.

An understanding of both description is required. For example,
the acceleration following a fluid particle is needed for the application
of Newton’s second law to fluid motion while observations of fluids
flows are usually made at fixed locations with the fluid moving past
that location [15].

Material Time Derivative

The material time derivative is the rate of change in time as observed
when moving with the fluid particle expressed in spatial coordinates.

Consider that a certain fluid particle is at an initial position xi
0 =

(x1
0, x2

0, x3
0) and at a later time t the same particle is at a position

xi = (x1, x2, x3). Thus the particle path is described as xi = xi (xi
0, t).

Where the initial coordinate xi0 is the material coordinate whilst xi is
the spatial coordinate of the fluid particle.

Here, it is also assumed that the motion is continuous, single value
and that one can invert the expression describing the particle path to
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give the initial position of the particle at any position xi at a time t.
Hence xi0 = xi

0 (xi, t), it is also continuous and single value. Assump-
tions must also extent to the derivatives. A necessary and sufficient
condition for the inverse functions to exist is that the Jacobian deter-
minant J should not be equal to zero, i.e. J = |∂xi/∂xi0| 6= 0.

Now, consider a quantity U following the particle, where
U = UL (xi

0, t) = UE (xi (xi
0, t) , t). The sub-index L and E denote

Lagrange and Euler description, respectively.
The material or substantial time derivative D/Dt is then given by:

DU

Dt
=
∂UL

∂t

∣∣∣∣
xi

0

=

(
∂UE

∂t

)(
∂t

∂t

)
+

(
∂UE

∂xi

)(
∂xi
∂t

)
(2.13)

DU

Dt
=
∂UE

∂t
+ ui

∂UE

∂xi
(2.14)

Consequently the material time derivative allows to express the
rate of change for the material fluid element property in terms of the
rate of change at a fixed position in space and the advection rate of
change as the fluid particle moves through the spatial gradients of the
property.

In the expression above the summation convention is used (see sec-
tion 2.1.3., e.g. ukuk ≡ u1u1 + u2u2 + u3u3) and the velocity field com-
ponents are defined as ui = (u1, u2, u3).

Consider as an example U equal to the velocity field:

Duj
Dt

=
∂uj
∂t

+ ui
∂uj
∂xi

(2.15)

Therefore the substantial time derivative of the velocity field repre-
sents the acceleration of the material fluid element.

Deformation of Material Fluid Elements

In a fluid as a material that deforms continuously under the action of
shear stress, a basic constitutive law for the fluid (e.g. Newton phe-
nomenological relationship) relates fluid element deformation rate to
stresses applied to the fluid element [15].

The deformation of a material fluid element is due to the relative
motion between two nearby particles. Such relative motion can be de-
scribe knowing the velocity gradient second order tensor, i.e. ∂ui/∂xj .
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The velocity gradient tensor can be decomposed in the following
tensors:

∂ui
∂xj

= Sij +Rij, Sij = Sij + Smm (2.16)

Where Sij is the symmetric part (i.e. Sij = Sji) known as the strain
rate tensor (i.e. rate of deformation) and Rij is the antisymmetric part
(i.e. Rij = −Rji) known as the rotation tensor. Sij and Smm represent
the traceless and isotropic part of Sij , respectively.

The respective tensors are denoted by:

Sij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
, Rij =

1

2

(
∂ui
∂xj
− ∂uj
∂xi

)
= −εijk

ωk

2
(2.17)

Sij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi
− 2

3

∂um
∂xm

δij

)
, Smm =

1

3

∂um
∂xm

δij (2.18)

Here ωk is the vorticity vector (i.e. rotational of the flow velocity
vector).

In summary, the motion of a fluid particle with velocity ui can
be divided into the following invariant parts: solid body translation
due to ui, solid body rotation due to Rij , deviation change in shape
(i.e. volume constant deformation) due to Sij , and isotropic compres-
sion/expansion due to Smm [16].

Reynolds Transport Theorem

The Reynolds Transport Theorem is an important kinematical theorem
due to Reynolds and concerns the rate of change of any volume inte-
gral [14].

Consider the time derivative of an arbitrary entity volume integral,
where the volume is moving with the fluid (i.e. material volume) as
depicted in figure 2.2:

D

Dt

∫
V (t)

UijdV = lim
∆t→0

 1

∆t

∫
V (t+∆t)

Uij (t+ ∆t) dV


− lim

∆t→0

 1

∆t

∫
V (t)

Uij (t) dV


(2.19)
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D

Dt

∫
V (t)

UijdV = lim
∆t→0

 1

∆t

∫
V (t+∆t)

Uij (t+ ∆t) dV


− lim

∆t→0

 1

∆t

∫
V (t)

Uij (t+ ∆t) dV


+ lim

∆t→0

 1

∆t

∫
V (t)

Uij (t+ ∆t) dV


− lim

∆t→0

 1

∆t

∫
V (t)

Uij (t) dV



(2.20)

Where ∆t represents a time interval.
The first difference may be re-written as a closed surface integral,

considering that dV = umnm∆tdS, where nm is a unit outward vector
to the material surface S. The last difference may be recast exactly as
the partial derivative respect to time of the arbitrary quantity Uij (e.g.
scalar or vector). Hence:

D

Dt

∫
V (t)

UijdV =

∮
S(t)

UijumnmdS +

∫
V (t)

∂Uij

∂t
dV (2.21)

The surface integral can be changed back to a volume integral
through the divergence theorem:

D

Dt

∫
V (t)

UijdV =

∫
V (t)

[
∂Uij

∂t
+
∂ (umUij)

∂xm

]
dV (2.22)

2.2.3 Conservation Laws

In general a conservation law for a quantity Uij may be stated as: the
variation of the total amount of Uij inside a given domain is equal to
the balance between the amount of that quantity entering and leaving
the considered domain (i.e. net flux of quantity), plus the contributions
from eventual sources generating that quantity in the domain. Here,
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n

u

Figure 2.2: Material volume V (t).

one is interested in the rate of change of the quantity Uij [16]. At this
point, it must be noted that not all flow quantities are conserved.

With the observation above or through the Reynolds Transport The-
orem previously presented, it is possible to derive the conservation
laws or transport equations of the following entities: mass, momen-
tum, and energy.

Conservation of Mass

Taking the arbitrary quantity equal to the pure fluid density ρ, from
equation (2.22):

D

Dt

∫
V (t)

ρdV =

∫
V (t)

[
∂ρ

∂t
+
∂ (umρ)

∂xm

]
dV (2.23)

The right hand side represent the material time derivative of mass
in the material volume, which is conserved, and consequently this
term is equal to zero.

Since the expression above must be valid for any arbitrary volume,
the differential form of the mass transport equation is:

∂ρ

∂t
+

∂

∂xm
(umρ) = 0 (2.24)
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This equation is known as the continuity equation. The first term
of the expression represents the accumulation or rate of increase of
mass per unit volume in the fixed element while the second term is
the net outward mass flow rate per unit volume of the element due to
advection.

It is important to emphasise that in case of mixture, the expression
above is the continuity equation of the mixture with constant mass
density ρ. Hence there is no diffusion of mass due to differences of
species concentrations in the mixture.

Conservation of Momentum

Taking the arbitrary quantity equal to the fluid momentum per unit
volume ρui, from equation (2.22):

D

Dt

∫
V (t)

ρuidV =

∫
V (t)

[
∂(ρui)

∂t
+
∂ (umρui)

∂xm

]
dV (2.25)

Here the right hand side of the expression represents the rate of
change of momentum per unit volume in the material element and
according to Newton’s second law is equal to the sum of all forces, in
this case per unit volume, acting on the element. Such forces include
both body forces (i.e. acting over the element with physical contact),
e.g. gravitational, magnetic, or electrostatic forces, and surface forces
(i.e. acting through direct contact with the fluid element), e.g. forces
due to pressure and viscous effects.

Therefore: ∫
V (t)

ρ
Dui
Dt

dV =

∫
V (t)

FidV +

∫
S(t)

WidS (2.26)

Here Fi represents the body forces per unit volume and Wi repre-
sents the surface forces per unit area on surface dS with outward unit
normal vector nm.

One can divide the surface forces into components along the coor-
dinate directions, i.e. Wi = τimnm, where τim is the stress tensor and
it is the i-component of the surface force on a surface dS with a nor-
mal in the n-direction. Further, it can be shown that the stress tensor is
symmetric, i.e. τim = τmi [15].
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The stress tensor can be decomposed into fluid static (due to pres-
sure p) and fluid dynamic (due to viscous stresses σim) contributions
as τim = −pδim + σim.

Now a constitutive equation is required, i.e. an expression to relate
viscous stresses to deformation in the continuum. In case of Newto-
nian fluids, phenological observations have established a linear con-
stitutive equation between stresses and velocity gradients. Thus, for
an isotropic fluid:

σim = λSkk + 2µSim (2.27)

Where λ is the dilatational viscosity and µ is the dynamic viscosity.
Sim and Skk are the traceless and isotropic part of the strain rate tensor
(see section 2.2.2), respectively.

With the above, equation (2.26) may be recast as:∫
V (t)

ρ
Dui
Dt

dV =

∫
V (t)

FidV +

∫
S(t)

[
−pδim + λSkk + 2µSim

]
nmdS (2.28)

Considering the divergence theorem to transform the surface inte-
gral into a volume integral and the fact that the above shall hold for
an arbitrary volume, one can find the differential form of transport
equation corresponding to linear momentum conservation:

ρ
Dui
Dt

= Fi −
∂p

∂xi

+
∂

∂xm

[
µ

(
∂ui
∂xm

+
∂um
∂xi
− 2

3

∂uk
∂xk

δim

)
+
λ

3

∂uk
∂xk

δim

] (2.29)

Conservation of Energy

Taking the arbitrary quantity equal to the product of the fluid density
and the sum of internal energy per unit mass e (i.e. energy associate
with the kinetic energy of molecules with respect to the flow velocity
and the intermolecular potential energies) and the kinetic energy per
unit mass 0.5uiui associate with the bulk fluid motion,
from equation (2.22):

D

Dt

∫
V (t)

ρ

(
e+

1

2
uiui

)
dV =

∫
V (t)

∂

∂t

[
ρ

(
e+

1

2
uiui

)]
dV

+

∫
V (t)

∂

∂xm

[
umρ

(
e+

1

2
uiui

)]
dV

(2.30)
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The right hand side term represents the rate of change of total en-
ergy in the material fluid element which according to the first law of
thermodynamics is equal to the rate of energy received by transport of
heat plus the execution of work on the fluid (due to body and surface
forces).

D

Dt

∫
V (t)

ρ

(
e+

1

2
uiui

)
dV =

∫
V (t)

FiuidV +

∫
S(t)

[Timum − qi]nidS

=

∫
V (t)

[
Fiui +

∂

∂xi
(Timum − qi)

]
dV

(2.31)

Here qi is heat flux vector per unit area.
Since the expression above must be valid for any arbitrary volume,

the differential form of the energy transport equation is:

ρ
D

Dt

(
e+

1

2
uiui

)
= Fiui +

∂

∂xi
(Timum − qi) (2.32)

The total energy transport equation can be split into an equation for
the transport of mechanical energy and an equation for the transport
of thermal energy. The mechanical energy equation can be found by
taking the dot product between the transport equation for momentum
and the velocity field. The thermal energy equation is then found sub-
tracting the mechanical energy equation to the total energy transport
equation, hence:

ρ
De

Dt
= −p∂ui

∂xi
+ σim

∂ui
∂xm

− ∂qi
∂xi

(2.33)

Where the first and second term at the right hand side represent
the thermal energy generation due to isotropic compression and the
viscous dissipation Φ = σim (∂ui/∂xm), respectively.

The heat flux equally may be rewritten using Fourier phenological
relationship:

qi = −k ∂T
∂xi

(2.34)

Where k is the thermal conductivity and it is a function of the ther-
modynamic state and thus depends on the temperature field T .

The thermal energy equation might be alternatively expresses in
terms of the specific enthalpy h = e + p/ρ, taking into account the
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following:
Dh

Dt
=
De

Dt
+

1

ρ

Dp

Dt
− p

ρ2

Dρ

Dt
(2.35)

Where Dρ/Dt = −ρ (∂ui/∂xi), consequently the thermal energy
transport equation may be recast as:

ρ
Dh

Dt
=
Dp

Dt
+ Φ +

∂

∂xi

(
k
∂T

∂xi

)
(2.36)

It must be noted that radiation as heat transfer mechanism has been
neglected.



Chapter 3

Melting and Phase Change
Materials

3.1 Phase change materials (PCMs)

In a liquid or solid medium the thermal energy may be stored in the
form of sensible heat and in the form of latent heat. A PCM is a latent
heat storage material which typically operates over a small tempera-
ture range and it is charged during its melting and discharged during
its solidification. In other words, energy is transferred to/from the
PCM in the form of latent heat during the phase-change process.

In general, PCMs are classified in organic (e.g. paraffin), inorganic
(e.g. metals) and eutectic (e.g. organic-organic or organic-inorganic
compounds). And depending on the properties/initial conditions of
the PCM, a melting (or solidification) problem may be classified as
one region, two regions, or three regions (see figure 3.1).

3.2 Melting of a Pure Substance

Heat is thermal energy that it is transferred because of a temperature
difference. In the absence of thermal radiation as a heat transfer mech-
anism, the exchange of heat involves both conduction and convection.
Conduction is the thermal energy transferred due to molecular diffu-
sion whilst convection is the transfer of thermal energy due to molecu-
lar diffusion and advection associate with bulk fluid motion. Typically,
convection is regard as forced if the fluid is forced to flow by external
means (e.g. using a pump or fan) and free or natural if the motion is
driven by temperature gradients which create density differences in

19
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(a) (b) (c)
T T T
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Liquid Liquid
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Figure 3.1: Classification of a melting problem in 1D: (a) one region, (b) two
regions, and (c) three regions. Here T , x, and s stands for temperature field,
spatial coordinate, and the melting front position, respectively. The sub-index
l, s, and m stands for liquidus, solidus, and melting point, respectively.

the fluid and induce buoyancy forces (e.g. "cooling" of a boiled egg
or a potato in air). In this sense, heat transfer processes involving a
phase change are also considered to be convection on account of the
fluid motion induced during the process [17].

In general, it is convenient to work with the non-dimensional form
of the governing equations (e.g. for easy comparison with other re-
search results, to gain a better understanding of the physical problem,
and to reduce the number of independent parameters) using the ap-
propriate scaling parameters. And such procedure introduces certain
dimensionless variables in the dimensionless form of the governing
equations.

In case of natural convection, there are certain dimensionless pa-
rameters associate with this physical mechanism: the Prandtl number
Pr which is the ratio of molecular diffusivity of momentum to molec-
ular diffusivity of heat (i.e. ratio of momentum and heat dissipation
rate through the fluid), the Grashof number Gr which is the ratio of
buoyancy forces (driven by temperature gradients) and viscous forces
acting on the fluid, the Rayleigh numberRawhich is the product of the
Grashof and Prandtl numbers and that actually determines the onset
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of natural convection, the Stefan number St which is the ratio between
sensible heat and latent heat and that plays an important role in phase
change problems, the Fourier number Fo which is the time of ther-
mal diffusion across the reference length, and the Nusselt number Nu
which is the ratio between convective and conductive heat transfer.

All previously mentioned dimensionless parameters are introduced
in detail during the next sections and chapters but their physical sig-
nificance is explained at this point with the purpose of discussing the
melting of a pure substance.

Jany and Bejan [12] for simple 2D geometries and high Prandtl
numbers predicted a four-regime model (view figure 3.2) during the
melting process of a pure substance. This four-regime model was em-
ployed to propose a group of scaling laws and the corresponding heat
correlations.

Initially conduction dominates, see figure 3.2(a), and Nu ∝
(StFo) −1/2 +Ra(StFo) 3/2, ( StFo) → 0 where the product StFo is the
dimensionless time. This is an important conclusion indicating that,
relative to the dominant effect (i.e. conduction), the convection contri-
bution increases with time.

As seen from figure 3.2(b), the conductive dominant regime is fol-
lowed by a mixed regime where part of the cavity is affected mainly
by convection and part mainly by conduction. The previous expres-
sion for the Nusselt number holds during the mixed regime which end
when the convective zone extents to the height of the cavity at a cor-
responding StFo1 ∝ Ra−1/2 . In the interval [ 0 , ( StFo) 1 ] the Nusselt
scaling law characterize itself by the analytical prediction of a mini-
mum Nusselt number Numin ∝ Ra1/4 which occurs at a dimensionless
time ( StFo) min ∝ ( StFo) 1 .

At a time greater than ( StFo) 1 convections dominates, see figure
3.2(c). Such regime holds up to a time where the melting front reaches
the right wall ( StFo) 2 ∝ (L/H )Ra−1/4 , here L/H represents the in-
verse of the cavity aspect ratio being L the width and H the height. The
convection regime exists only if ( StFo) 2 > ( StFo) 1 , hence if Ra1/4 >

H/L. In this regime the Nusselt number reaches a plateau (i.e. state of
little or no change) at Nu ∝ Ra1/4 . For low Prandtl numbers, Jany and
Bejan [12] proposed to rescale Ra by the product of the Rayleigh and
Prandlt numbers. Based on this observation and assuming the melting
front does not reaches the right wall, Gobin and Bénard [11] proposed
a correlation for the Nusselt number valid for the convection regime.



22 CHAPTER 3. MELTING AND PHASE CHANGE MATERIALS

(a) (b) (c) (d)

Figure 3.2: Four-regime model predicted by Jany and Bejan [12]: (a) conduc-
tion regime, (b) conduction and convection regime, (c) convection regime, (d)
shrinking solid regime (after the melting front reaches the right wall).

For a time greater than ( StFo) 2 , see figure 3.2(d), Jany and Bejan
[12] observed that the liquid circulation is always in the convection
regime, however the heat transfer and melting rates depend on the
size of the remaining solid.

3.3 Governing Equations

The mathematical model for the phase change problem rest on the fol-
lowing assumptions: (1) 2D problem, (2) the flow in the liquid phase
is incompressible and Newtonian, (3) surface tension, viscous dissi-
pation and radiation (as a heat transfer mechanism) are neglected, (4)
thermophysical properties are constant and uniform, (5) Boussinesq
approximation is valid for buoyancy term, and (6) volumetric expan-
sion/contraction due to melting/solidification is neglected.

Consequently equations (2.24), (2.29), and (2.36) with the above as-
sumptions in a Cartesian tensor form are recast as:

∂ui
∂xi

= 0 (3.1)

ρ
Dui
Dt

= − ∂p

∂xi
+ µ

∂2ui
∂xj∂xj

+ Fi (3.2)
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ρ
Dh

Dt
=
Dp

Dt
+ k

∂2T

∂xi∂xi
(3.3)

Where: (1) the Cartesian coordinates are defined as xi = (x1, x2) =

(x, y). Here the positive y axis is pointing upwards and the positive
x axis is pointing to the right, (2) the velocity field components are
defined as ui = (u1, u2) = (u, v), and (3) the source terms are grouped
as Fi = (F1, F2) = (Fx, Fy).

Often an enthalpy method is employed for the treatment of phase
change problems. In this formulation, the total enthalpy is separated
into a sensible heat component and a latent heat component ∆h = flL.

Taking into account the above, the energy equation might be recast
as:

ρc
DT

Dt
=
Dp

Dt
+ k

∂2T

∂xi∂xi
− ρD(flL)

Dt
(3.4)

Where c, fl, and L represent the specific heat, the liquid fraction,
and the latent heat, respectively.

For a pure substance, where isothermal phase change takes place,
the term ∂(ujflL)/∂xj = 0 and the liquid fraction is given by the Heav-
iside step function:

fl =

{
0, T < Tm

1, T ≥ Tm
(3.5)

However from a computational point of view discontinuities are
difficult to track and often it is necessary to smear the phase change
over a small temperature range to attain numerical stability [18]. View
figure 3.3.

Thus defining Ts = Tm − ε, Tl = Tm + ε and consequently hs = cTs,
hl = cTl + L, the liquid fraction may be given by:

fl =


0, h < hs
h− hs
hl − hs

, hs ≤ h ≤ hl

1, h > hl

(3.6)

The previous expression will hold exact in the case of pure con-
duction but otherwise it will be a procedure to linearly interpolate the
liquid fraction in the phase change region. It must be commented that
in this formulation, the liquid fraction is computed at each time step
and the phase change interface is not tracked explicitly.



24 CHAPTER 3. MELTING AND PHASE CHANGE MATERIALS

L L

h h

T TTm Ts Tl

hs

hl

hs

hl

2ε

(a) (b)

Figure 3.3: Schematic of the enthalpy-temperature relationship: (a) pure sub-
stance, (b) non-pure substance and pure substance with numerical treatment
of the discontinuity. Here ε is a phase change interval and for a pure sub-
stance is a numerical artificial constant.

The condition that all velocities in solid regions are zero is
accounted for through the use of the liquid fraction and a parame-
ter defined so that the momentum equations are forced to mimic the
Carman-Koseny relation for a porous medium [19, 20].

The above is known as the enthalpy-porosity approach. The fore-
told condition is introduced via source terms in the momentum equa-
tions as it will be seen next.

The governing equations can be expressed in non-dimensional form
with the definition of the appropriate scales. Considering a length, ve-
locity, time, and a temperature difference scales equal to H , (µ/ρ0)/H ,
H2/α, and T1 − T0, equations (3.1), (3.2), and (3.4) may be recast as:

∂ui
∗

∂xi∗
= 0 (3.7)

Dui
∗

Dt∗
= − ∂p̃∗

∂xi∗
+ Pr

∂2ui
∗

∂xj∗∂xj∗
+ Si

∗ + RaPrT ∗δi2 (3.8)

DT ∗

Dt∗
=

∂2T ∗

∂xi∗∂xi∗
− 1

St

∂fl
∂t∗

(3.9)
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Where Pr =
µ

αρ0

, Ra =
gρ0β(T1 − T0)H3

µα
, and St =

c(T1 − T0)

L
,

respectively. Here: H is the reference length, ρ = ρ0 except for the
buoyant term where ρ = ρ0[1 − β(T − T0)] due to the Boussinesq ap-
proximation, α = k/(cρ0) is the thermal diffusivity of the fluid, T0 is
a reference temperature and typically the phase change temperature,
T1 is a superheat/supercooling temperature if melting/solidification
is being studied, the ∗ super-index signifies a non-dimensional vari-
able, g is the gravity constant acceleration, and β is the coefficient of
thermal expansion. Also the change from p to p̃ represents the pressure
shift (i.e. ∇p̃ = ∇p+ ρ0gδi2).

In the momentum equation the source term Fi
∗ is been split into the

buoyant term RaPrT ∗δi2 and a Darcy type term Si
∗ to force the zero ve-

locity condition in the solid region. Also it must be noted the absence
of the material time derivative of the non-dimensional pressure in the
energy equation due to the incompressible flow hypothesis (the Mach
number is assumed to tend to zero).

With regards to the Darcy type source term, the idea is to gradually
reduce the velocities from a finite value in the liquid region to zero in
the solid. For this purpose the artificial mushy region of the PCM is
treated as a "pseudo" porous medium with porosity equal to the liquid
fraction [19] as follows:

Si
∗ = A

(1− fl)2

f 3
l + ε

ui
∗ (3.10)

Where the phase change interval ε is introduced simply to avoid
zero division and A is a constant that should be adjusted such as the
source term is at least seven orders of magnitude higher than all the
other terms in the momentum equations in the solid region [18]. It
must be commented that A may significantly influence the morphol-
ogy of the phase front, and care must be taken in its selection [20].





Chapter 4

Proposed Test Cases

4.1 Problem Definition

The simulations are performed for a square cavity initially filled with
a PCM as depicted in figure 4.1. This melting problem is driven by
natural convection in the melt and the mathematical model described
in section 3.3 is employed to obtain the time evolution of the average
melting front location and the average Nusselt number at the hot wall.

4.2 Test Cases

The problem is characterized by the Prandtl, Rayleigh, and Stefan num-
bers, as it can be seen from equations (3.7), (3.8), and (3.9). It does also
depend on the cavity global aspect ratio. Similar to Huber et al. [10]
two groups of numerical test are considered, corresponding to distinct
ranges of the Stefan number: the low range (e.g. St = 10−2) and the
high range (e.g. St = 101). In the low range, a Pr = 0.02 is being
used and the results are compared with those of benchmarks Bertrand
et al. [8] and Gobin and Le Quéré [9]. In the high range, a Pr = 1 is
employed and the results are compared with those of Huber et al. [10].
Table 4.1 summarized all numerical runs.

Table 4.1: Test cases corresponding to the two Stefan number ranges.
St = 0.01 Ra = 2.5× 104 Ra = 2.5× 105

Pr = 0.02 Case 1 Case 2
St = 10 Ra = 5× 104 Ra = 1.7× 105 Ra = 8.4× 105 Ra = 6.8× 106

Pr = 1 Case 3 Case 4 Case 5 Case 6

27
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Figure 4.1: Schematic representation of the problem under consideration.



Chapter 5

Numerical Modelling of Melting
Problem

5.1 Numerical Methods and Computational Fluid
Dynamics

Analytic solutions to transport phenomena problems in literature are
rare and mostly involve simplify models, relatively simple geometries
and boundary conditions. However, most practical problems entail
complex effects, geometries, and boundary conditions and cannot be
solve analytically. In such cases, sufficiently accurate approximate so-
lutions can be obtained by computers using a numerical method [17].

An analytical solution imply solving the governing equations in
integral or differential form together with the boundary conditions to
obtain a continuous solution of the flow variables (e.g. temperature,
pressure, and velocity field). In contrast, numerical methods are based
on replacing the governing equations in integral or differential form by
a set of algebraic, linear or non-linear, equations for the unknown flow
variables in selected points inside the media (i.e. discrete points) and
simultaneously solving such equations [17]. In this sense, Computa-
tional Fluid Dynamics (CFD), is a science that, with the help of digital
computers produces quantitatively prediction of fluid-flow phenom-
ena based on the conservation laws governing the fluid motion [15].

There are different types of numerical methods that have been de-
veloped to perform transport phenomena simulations in fluid flows.
Finite difference method, finite volume method, and finite element
method can be listed between the most popular in such CFD compu-

29
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tations.

5.1.1 Discretization Phase in CFD

Once a mathematical model has been used to describe the actual prob-
lem based on all relevant physical laws, principles, and assumptions,
one can begin the discretization phase in the computational approach.
Such phase involves two components: space discretization and equa-
tion discretization.

The space discretization consists in setting up a mesh or grid by
which the continuum space is replaced by a finite number of points
where the numerical value of the variables will have to be determined.
Here one can distinguish between structured and unstructured grids.
The former is composed of families of intersecting lines, one for each
space dimension, being each mesh point located at the intersection of
one line, and one line only, of each family (e.g. uniform and non-
uniform Cartesian grids). The later, instead, refer to an arbitrary dis-
tribution of mesh points where the points are connected by triangles,
quadrilaterals, or polygons in 2D and various polyhedral in 3D [21]. It
must be emphasis that the accuracy of the obtained numerical results
is highly dependent on the mesh quality and typically structured grids
are more efficient from a CFD point of view, e.g. more accurate results
and less CPU time [21].

The equation discretization refers to the mathematical transforma-
tion of the governing equations into an algebraic, linear or nonlinear,
system of equations for the discrete flow variables according to the de-
fined mesh. Here an important distinction, regarding time dependent
flows, must be made. One can have explicit and implicit methods. In
an explicit formulation, the matrix of unknown variables at the new
time level is diagonal and it is determine based on previously known
values in a trivial manner while in an implicit formulation, the matrix
to be inverted is not diagonal since more than one set of variables are
unknown at the same time level [21].

5.1.2 Validity and Accuracy of a Numerical Scheme

The obtained set of discretised equations define a determined numer-
ical scheme or method. A quantitative assessment of the validity and
accuracy of the numerical scheme is required to validate the obtained
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results. Consistency, stability, and convergence form the basis for such
quantitative assessment [21].

Consistency is a condition on the numerical scheme; that is the dis-
cretized equation must tend to the differential or integral equation as
the spatial grid spacing and time step tend to zero. Hence, consis-
tency is related to how well the numerical scheme approximates the
mathematical model of the problem, i.e. the truncation error (order of
accuracy) of the scheme.

Stability is a condition on the numerical solution; that is all errors
of any source (e.g. round off and truncation errors) remain bounded
(i.e. do not grow) as the computation proceeds. The stability of a nu-
merical scheme (e.g. absolute stable, conditional stable) can be evalu-
ated through a Von Neumann stability analysis. It must be comment
that fully explicit methods are conditionally stable while fully implicit
methods are absolute stable.

Convergence is a condition on the numerical solution; that is the
numerical solution approaches the exact solution as the spatial grid
spacing and time step approach zero. Differently to consistency and
stability, it is very difficult to show convergence without knowing the
exact solution. However, according to the Lax-Richtmyer equivalence
theorem: for a linear, well-posed initial value problem (in the sense
of Hadamard) and a consistent discretization scheme, stability is the
necessary and sufficient condition for convergence.

5.1.3 The Finite Volume Method

The finite volume method (FVM) is a numerical method in which the
continuum is divided into a finite number of small volume elements
and where the space discretization is done directly on the integral for-
mulation of the conservation laws. The FVM has the advantage that
conservative discretization (i.e. the flux of a quantity entering a finite
volume is equal to that leaving the adjacent volume) is satisfied with
the integral formulation.

Due to the above, the finite volume method is quite general and can
be used either in a structured mesh or in an unstructured one and the
unknown variables can be defined either at the centre or at the corner
of the grid cells. The first approach is known as cell-centred while the
second as cell-vertex.

The FVM in general involves the following step [22]: (1) the do-
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main is decomposed into small finite volume elements also known as
control volumes, (2) the integral form of the conservation equations is
formulate for each control volume, (3) integrals are approximated by
numerical integration (e.g. midpoint, trapezoidal, or Simpson rule),
(4) function values and derivatives are approximated by interpolation
with nodal values (e.g. central differencing and upwind approxima-
tions), (5) the resulting set of discrete algebraic equations are rear-
ranged and solved.

An interesting fact is that over a Cartesian, uniform grid the finite
volume formulation leads to finite difference formulas which are sec-
ond order accurate in space (e.g. in 2D, the central finite difference
formula appears in the continuity equation and the five point Laplace
formula appears in the momentum and energy equations).

5.1.4 Implicit-Explicit Methods for Time Integration of Spatially
Discretized Problems

Implicit-Explicit (IMEX) schemes are methods employed to do the tem-
poral integration of spatially discretized time dependent problems. In
such methods, some of the time dependent terms show an explicit for-
mulation whilst others an implicit formulation. Typically in diffusion-
advection type of problems, an implicit formulation is used for the
diffusive term and an explicit one is used for the advective term [23].

There are several popular IMEX schemes that have been used in lit-
erature, e.g. first-order forward/backward Euler scheme and second-
order Crank-Nicolson/Adams-Bashforth scheme.

It is important to emphasise that since an IMEX scheme is not fully
implicit at best it will be conditionally stable.

Second-Order IMEX Schemes

Consider for example a time-dependent partial differential equation
in which the spatial derivatives have been discretized using central
finite differences or another method. This results in a discrete sys-
tem of ordinary differential equation in time of the form d (O) /dt =

f (O) + dg (O). Here O represents the set of unknowns, f (O) is some
possible nonlinear term which it is to be integrated explicitly, d is a
non-negative parameter, and gf (O) is the term that it is to be inte-
grated implicitly to avoid excessively small time steps [23].



CHAPTER 5. NUMERICAL MODELLING OF MELTING PROBLEM 33

A second-order IMEX scheme have two free parameters and its
represented by the following family [23]:

1

∆t

[
a1O

n+1 + a2O
n + a3O

n−1
]

= b1f(On) + b2f
(
On−1

)
+ d

[
c1g
(
On+1

)
+ c2g(On)

]
+ d

[
c3g
(
On−1

)] (5.1)

Where ∆t is the time step, a1 = γ + 1/2, a2 = −2γ, a3 = γ − 1/2,
b1 = γ + 1, b2 = −γ, c1 = γ + β/2, c2 = 1 − γ − β, c3 = β/2 and γ, β

the free parameters. As it can be seen, a second-order IMEX scheme
is a two-step method, i.e. one require two previously known values to
compute the next one, and an initialization step is usually required.

Some selections of the free parameters lead to quite well known
schemes, e.g. selecting (γ, β) = (1/2, 0) leads to a second-order Adams-
Bashforth formulation for the explicit part and a Crank-Nicolson for
the implicit part and selecting (γ, β) = (0, 1) leads to a leap frog for-
mulation for the explicit part and a Crank-Nicolson for the implicit
part.

For more details regarding second-order IMEX schemes and multi-
step IMEX schemes in general see Ascher, Ruuth, and Wetton [23] and
Ruuth [24].

5.1.5 Pressure Correction Method for Incompressible, Time
Depend Flows

For time-dependent, incompressible flows a common way to solve the
discretized equation is the projection or pressure correction method
[16]. In general, it consists of a basic iterative procedure between the
velocity and pressure fields [21]. Here in a prediction step, the veloc-
ity field is determined from the momentum equation. This velocity
field does not satisfy the divergence free condition and needs to be
corrected. The predicted velocity field is then employed in a projection
or correction step, which leads to a Poisson equation for the pressure
subject to a Neumann boundary condition. Finally, once the Poisson
equation has been solved, the obtained pressure is used to correct the
velocity field so it complies with the divergence free condition. It must
be commented that the pressure correction method is a discrete ver-
sion of the projection of a function on a divergence free space, see 1.8

of Henningson and Berggren [16] for details.
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Also it must be noted, that the splitting (into prediction/correction
steps) typically takes place after the time discretization has been done.

5.2 Discretized Form of Governing Equations

5.2.1 Summary of Governing Equations

Recall the governing equations in non-dimensional form:

∂ui
∂xi

= 0 (5.2)

∂ui
∂t

= −∂ (uiuj)

∂xj
− ∂p̃

∂xi
+ Pr

∂2ui
∂xj∂xj

+ Si + RaPrTδi2 (5.3)

∂T

∂t
+

1

St

∂fl
∂t

= −∂ (Tui)

∂xi
+

∂2T

∂xi∂xi
(5.4)

Here all variables have been previously defined and to avoid cum-
bersome notation the ∗ super-index, in this chapter, has been dropped
as a sign of a non-dimensional variable.

5.2.2 Spatial Discretization

A finite volume method is used for the spatial discretization. Due to
the problem geometry (see figure 4.1) and to avoid spurious check-
board modes, a 2D Cartesian uniform staggered grid is to be employed.
The control volume for the continuity and energy equations is centred
around the pressure/temperature point while the control volume for
the streamwise and normal velocities is centred around the streamwise
and normal velocity points, respectively. See figure 5.1.

As previously mentioned, a finite volume formulation in a Carte-
sian uniform grid leads to second-order finite difference formulas.
Hence:

ui+1/2,j − ui−1/2,j

∆x
+
vi,j+1/2 − vi,j−1/2

∆y
= 0 (5.5)
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Figure 5.1: Staggered Cartesian grid employed for the finite volume formu-
lation of the governing equations.

∂ui+1/2,j

∂t
= −

(uu)i+1,j − (uu)i,j
∆x

−
(uv)i+1/2,j+1/2 − (uv)i+1/2,j−1/2

∆y

− p̃i+1.j − p̃i,j
∆x

+ Pr

[
ui+3/2,j − 2ui+1/2,j + ui−1/2,j

∆x2

]
+ Pr

[
ui+1/2,j+1 − 2ui+1/2,j + ui+1/2,j−1

∆y2

]
+ Si+1/2,j

(5.6)

∂vi,j+1/2

∂t
= −

(uv)i+1/2,j+1/2 − (uv)i−1/2,j+1/2

∆x
−

(vv)i,j+1 − (vv)i,j
∆y

− p̃i.j+1 − p̃i,j
∆y

+ Pr

[
vi+1,j+1/2 − 2vi,j+1/2 + vi−1,j+1/2

∆x2

]
+ Pr

[
vi,j+3/2 − 2vi,j+1/2 + vi,j−1/2

∆y2

]
+ Si,j+1/2

+ RaPrTi,j+1/2

(5.7)
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∂Ti,j
∂t

+
1

St

∂fli,j
∂t

= −
(uT )i+1/2,j − (uT )i−1/2,j

∆x

−
(vT )i,j+1/2 − (vT )i,j−1/2

∆y

+
Ti+1,j − 2Ti,j + Ti−1,j

∆x2 +
Ti,j+1 − 2Ti,j + Ti,j−1

∆y2

(5.8)

Where: ui+1,j ≈ 0.5
(
ui+3/2,j + ui+1/2,j

)
, ui,j ≈ 0.5

(
ui+1/2,j + ui−1/2,j

)
,

ui+1/2,j+1/2 ≈ 0.5
(
ui+1/2,j + ui+1/2,j+1

)
, vi+1/2,j+1/2 ≈

0.5
(
vi,j+1/2 + vi+1,j+1/2

)
, ui+1/2,j−1/2 ≈ 0.5

(
ui+1/2,j + ui+1/2,j−1

)
,

vi+1/2,j−1/2 ≈ 0.5
(
vi,j−1/2 + vi+1,j−1/2

)
, ui−1/2,j+1/2 ≈

0.5
(
ui−1/2,j + ui−1/2,j+1

)
, vi−1/2,j+1/2 ≈ 0.5

(
vi,j+1/2 + vi−1,j+1/2

)
, vi,j+1 ≈

0.5
(
vi,j+1/2 + vi,j+3/2

)
, vi,j ≈ 0.5

(
vi,j+1/2 + vi,j−1/2

)
, Ti,j+1/2 ≈

0.5 (Ti,j + Ti,j+1), Ti+1/2,j ≈ 0.5 (Ti+1,j + Ti,j), Ti−1/2,j ≈ 0.5 (Ti−1,j + Ti,j),
Ti,j−1/2 ≈ 0.5 (Ti,j + Ti,j−1), fli+1/2,j ≈ 0.5

(
fli+1,j + fli,j

)
, and fli,j+1/2 ≈

0.5
(
fli,j+1 + fli,j

)
.

In the expressions above, the Darcy type source term is according
to equation (3.10), see chapter 3, with phase change interval and mor-
phology constant set to 1 × 10−3 and to 1.6 × 106, respectively. Such
values are used by Binet and Lacroix in their algorithm according to
Bertrand et al. [8].

The sub-indices represent discrete spatial positions of the domain
with nx × ny cells for i = 0, 1, . . . , nx, nx+1, j = 0, 1, . . . , ny, ny+1 and
spatial steps ∆x = (L/H) /nx, ∆y = (H/H) /ny. Thus, (5.5)-(5.8) is a
system of discrete algebraic equations that is to be solved for the un-
known quantities.

As defined in figure 5.1, on the staggered grid, the pressure and
temperature discrete fields are defined in the cell midpoints whilst the
streamwise and normal velocities are defined on the vertical and hor-
izontal cell interfaces, respectively. Consequently, the interior resolu-
tion (not considering boundary points nor "ghost" points outside the
domain) for the different quantities is: nx × ny for pressure, tempera-
ture, and liquid fraction fields, (nx − 1)× ny for the streamwise veloc-
ity, and nx × (ny − 1) for the normal velocity. Most computations are
performed with an 80× 80 grid size.
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5.2.3 Boundary Conditions

As seen in figure 4.1(a), in the previous chapter, for the velocity field
there are prescribed Dirichlet boundary conditions all around the 2D
cavity whilst for the temperature field there are prescribed Dirichlet
boundary conditions for the left and right wall and Neumann bound-
ary conditions for the upper and lower wall.

To illustrate the numerical treatment of the boundary conditions
consider the upper wall where u (x, y = 1) = v (x, y = 1) = 0 and
∂T (x, y = 1) /∂y = 0. Since the normal velocity component is defined
on the vertical cell interfaces, the corresponding condition can be ex-
pressed directly as vi,ny+1/2

= 0. This is not the case for the other two
conditions.

The nonslip condition and the adiabatic boundary condition in this
case are applied indirectly during the estimation of "ghost" point val-
ues. Such points are outside the domain and appear while express-
ing the discrete form of the governing equations, e.g. consider the
term ui+1/2,ny+1 in the streamwise momentum equation and the term
Ti,ny+1 in the thermal energy equation at j = ny. For the first exam-
ple, through extrapolation one can find the "ghost" point value i.e.
ui+1/2,ny+1 = 2u (x, y = 1) − ui,ny which due to the non-slip boundary
condition implies that ui+1/2,ny+1 = −ui,ny . For the second example,
Ti,ny+1 = Ti,ny due to the Neumann boundary condition.

An analogous numerical treatment is used for the others bound-
aries.

5.2.4 Temporal Discretization

The integration in time is done through a second order IMEX method
treating all advective terms explicitly while all other terms are treated
implicitly. The IMEX method employed is Adams-Bashforth/Modified
Crank-Nicolson scheme were the free parameters (γ, β) are set to 0.5

and 1 respectively. The problem is initialized using a first order IMEX
backward/forward Euler scheme (the advective terms are integrated
using the explicit Euler method while all other terms are integrated
using the implicit Euler method). A simple CFL condition is used to
estimate the necessary time stepping for numerical stability; however
most computations are performed with a non-dimensional time step
of 2 × 10−5. To enforce the divergence free condition, a projection-
correction method is used and the iterative process to obtain the liquid
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fraction is done through fixed point iteration as described in section
5.2.5.

In general, the time integration leads to equations similar to equa-
tion (5.1), see section 5.1.4. To exemplify the time integration proce-
dure, consider the spatial discretized streamwise momentum equation
which may be recast as:

dU

dt
= ADV x (U) + PrDIFF x (U) +DSx (U)−Dx (P ) (5.9)

Where: U is a vector representing the discrete streamwise veloc-
ity component, ADV x (U) represents the discrete, non-linear, advec-
tive term in equation (5.6), DIFF x (U) represents the discrete, lin-
ear, viscous diffusion term in equation (5.6), DSx (U) represents the
Darcy type source term in equation (5.6), P is a vector representing the
discrete pressure field, and Dx (P ) represents the discrete form of the
pressure gradient in equation (5.6).

Equation (5.9) can then be integrated as:

a1U
n+1

∆t
= − 1

∆t

[
a2U

n + a3U
n−1
]

+ b1ADV x(Un) + b2ADV x

(
Un−1

)
+ c1

[
PrDIFF x

(
Un+1

)
+DSx

(
Un+1

)]
+ c2 [PrDIFF x (Un) +DSx (Un)]

+ c3

[
PrDIFF x

(
Un−1

)
+DSx

(
Un−1

)]
−Dx

(
P n+1

)
(5.10)

At this point, the operations are split, i.e. to enforce the divergence
free condition, a projection-correction method is used.

Prediction step:

a1U
∗

∆t
= − 1

∆t

[
a2U

n + a3U
n−1
]

+ b1ADV x(Un) + b2ADV x

(
Un−1

)
+ c2 [PrDIFF x (Un) +DSx (Un)]

+ c3

[
PrDIFF x

(
Un−1

)
+DSx

(
Un−1

)]
(5.11)

a1

∆t
[U∗∗ −U∗] = c1 [PrDIFF x (U∗∗) +DSx (U∗∗)] (5.12)

Correction step:
a1

∆t

[
Un+1 −U∗∗

]
= −Dx

(
Pnum

n+1
)

(5.13)
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As it can be seen equation (5.11) is to be solved explicitly whilst
equation (5.12) is to be solve implicitly. The corrected velocity is then
recovered from equation (5.13) taking into account that Pnum is given
by the solution of the Poisson equation subject to a Neumann bound-
ary condition as described in section 5.1.5 (i.e. the discrete form of Pnum

gradient vanish at the boundaries). The sub-index num is employed
to clarify that the Pnum quantity is not the actual pressure.

5.2.5 Iterative Process to Obtain Temperature and Liquid
Fraction Fields

The iterative process to obtain the temperature and liquid fraction
fields is done in the following manner: (1) the non-dimensional tem-
perature is calculated using the liquid fraction corresponding to previ-
ous iteration, (2) the non-dimensional enthalpy is calculated using the
non-dimensional temperature corresponding to the current iteration,
(3) the liquid fraction is updated using the non-dimensional form of
equation (3.6), (4) the error is calculated according to equation (5.14),
(5) if the error is below the set tolerance the iteration has finished oth-
erwise go back to (1). The tolerance tol used for all calculation was
1 × 10−8. Initially the liquid fraction is set to the value corresponding
to the previous time step.∣∣∣∣∣∣

maxi,j

(
φi,j

n+1 − φi,j

n+1
)

maxi,j

(
φi,j

n+1
)
−mini,j

(
φi,j

n+1
)
∣∣∣∣∣∣ ≤ tol (5.14)

In equation (5.14), φi,j
n+1 is the matrix representing the values of

the newly calculated field (temperature or liquid fraction) and φi,j

n+1

the field from the previous iteration step.

5.2.6 General Solution Procedure

The solution procedure may be summarized as follows: (1) initializa-
tion, (2) beginning of time step, (3) new temperature and liquid frac-
tion fields are obtained through iterative procedure, (4) velocity field
is predicted not fulfilling continuity, (5) Poisson’s equation is solved
to enforce divergence free condition, (6) new velocity field, now cor-
rected, is obtained, (7) go back to (2). It must be commented that the
initialization procedure comprise steps (2) to (6).





Chapter 6

Results and Discussions

Figures 6.1-6.3 present the results corresponding to case 1 and 2 whilst
figure 6.4 the results corresponding to the rest of the cases. The local
melting front position is defined as the location where the local liquid
fraction is equal to 0.99. The average melting front location s∗av and
the average Nusselt number Nuav are computed as in Jany and Bejan
[12]:

s∗av (t∗) =

∫ 1

0

s∗ (y∗, t∗) dy∗ (6.1)

Nuav (t∗) = −
∫ 1

0

∂T ∗

∂x∗
(x∗ = 0, y∗, t∗) dy∗ (6.2)

In the expressions above the ∗ super-index signifies a non-
dimensional variable.

The results obtained from the runs corresponding to test case 1 and
2 appear to be in good agreement with the main trend of results shown
in benchmark Bertrand et al. [8] and Gobin and Le Quéré [9] and with
Huber et al. [10]. Figure 6.2(a) also shows a grid resolution test. It
is worth noted the oscillatory behaviour of the results obtained for
test case 2 in figure 6.2(b). This behaviour is reported by Le Quéré
and Couturier-Sadat in Bertrand et al. [8] and it was first observed by
Dantzig [25], confirmed by a stability study in Le Quéré and Gobin
[26], and reported by Gobin and Le Quéré [9]. According to the con-
clusions in Le Quéré and Gobin [26], it appears that the natural con-
vection flow resulting from melting of a pure substance with a low
Prandtl number, which it is heated from the side, it is prone to the
classical multicellular instability for sufficiently large Rayleigh num-
bers. As it can be seen in figure 6.3, as the melting advances, the small

41
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Figure 6.1: Melting front profile corresponding to test case 1: (a) StFo = 0.004,
(b) StFo = 0.01, (c) StFo = 0.04, (d) StFo = 0.1. Here Fo = (αt)/H2 represents
the Fourier number.

Figure 6.2: Average Nusselt number at the hot wall and average melting front
position for test case 1 and 2: (a) Nuav for test case 1, (b) Nuav for test case 2,
(c) s∗av for test case 1, (d) s∗av for test case 2.
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Figure 6.3: Flow structure corresponding to test case 2: (a) StFo = 0.01, (b)
StFo = 0.02, (c) StFo = 0.04, (d) StFo = 0.1.

Figure 6.4: Average Nusselt number at the hot wall and average melting front
position for test cases 3-6: (a) Nuav , (b) s∗av.
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cells merge causing the high frequency oscillations observed in fig-
ure 6.2(b). This instability strongly affects the Nusselt number and the
melting front position.

Regarding test cases 3-6, the obtained results appear to qualita-
tively agree with those reported in Huber et al. [10] until the liquid-
solid interface reaches the right wall. After this event, the time evo-
lution of the average Nusselt number differ due to the difference in
the boundary condition. It is also interesting to note that the time evo-
lution trend is similar to those of Jany and Bejan [12]. Huber et al.
[10] reported more time variability in the results for a high value of
Ra and attributed the behaviour to the low Prandlt number employed
(Pr = 1). However, such difference might be due to the numerical
scheme and not due to Pr .

For a quantitative comparison the correlations reported in Jany and
Bejan [12] and Gobin and Bénard [11] and Huber et al. [10] are to be
considered. Jany and Bejan [12] identified the basic regimes (view fig-
ure 3.2) and scales during the melting of a pure substance, driven by
natural convection in the melt, inside a rectangular cavity. Jany and
Bejan [12] at the end of the paper, also recognized and outline three
possible extensions to their scaling theory: the effect of thermal inertia
(i.e. the Stefan number), the low Prandtl number limit, and the effect
of transient conduction in the solid phase. The first effect is studied in
Huber et al. [10] while the second is studied in Gobin and Bénard [11].
The last effect must be taken into account when the initial temperature
of the solid does not coincide with the melting temperature.

Table 6.1 summarized the correlations obtained by Jany and Bejan
[12] and Gobin and Bénard [11] and Huber et al. [10] corresponding to
the low and high Stefan number ranges.

Gobin and Bénard [11] noted in their results that the time evolu-
tion of the average Nusselt number in the transition regime depends
on the dimensionless group RaPr instead of Ra, as suggested by Jany
and Bejan [12], and hence there is a different scaling for the low Pr

number range. From the data obtained, for case 1 and 2, the ratio
Nuend/

(
Ra0.27Pr 0.18

)
is equal to 0.37 and to 0.36, respectively. Such

values agree with the scaling proposed by Gobin and Bénard [11].
Here the sub-index end indicate the last average Nusselt number in
the dataset corresponding to the computation. It must be noted that
the scaling law reported by Gobin and Bénard [11], is obtained as-
suming quasi-steady conditions and in case 2 such conditions do not
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Table 6.1: Correlations corresponding to the end of the mixed regime (iden-
tified by the sub-index min) and the end of the convective regime (identified
by the sub-index 2 ). In the case of Pr < O(1) is assumed that there is no
contact with the cold wall and Nu2 represents a quasi-steady average Nus-
selt number in the convective regime. Low and high St denote the low and
high range of the Stefan number, respectively.

Numin FoStmin Nu2 FoSt2
Low St Pr < O(1) ∼ ∼ 0.29Ra0.27Pr0.18 ∼

Pr > O(1) 0.28Ra1/4 9Ra−1/2 0.35Ra1/4 1.8Ra−1/4

High St Pr > O(1) 0.31Ra1/4 56Ra−1/2 0.29Ra1/4 8.7Ra−1/4

happen. Consequently, for case 2, it might be more appropriate to
calculate the simple or quadratic mean of the last dataset group to es-
timate Nu2 . Also, for case 1, it is likely that Nuend does not correspond
to Nu2 and the code needs to be run for a higher value of FoSt (in
Gobin and Bénard [11] the time evolution of the average Nusselt num-
ber is consider up to FoSt = 0.25 and here up to 0.1). In such instance
it might be more appropriate to compare Nuend to the corresponding
average Nusselt number calculated through the canonical expression
recommended by Churchill [27] with the three constants suggested by
Gobin and Bénard [11].

Figure 6.5 presents the scaling corresponding to the data obtained
from the computations of cases 3-6.

As it can been seen from figure 6.5, the obtained results are in good
agreement with the scaling laws and the correlations reported by Hu-
ber et al. [10]. However, in contrast with Huber et al. [10], for all
computation the obtained average Nusselt number corresponding to
the end of the convection regime is slightly higher than the minimum
value corresponding to the end of the mixed regime. This behaviour
is also observed in the results of Jany and Bejan [12].
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Figure 6.5: Scaling from the numerical modelling corresponding to the high
Stefan number range.



Chapter 7

Conclusions and Further Work

A classic finite volume method is used to numerically handle the fu-
sion of a pure substance.

Results obtained in the present study, show good agreement with
the main trend of the compared literature. The Rayleigh number is
shown to be the key parameter in natural convection. For given Prandtl
and Stefan numbers, as Ra increases, the deviation from conduction
dominating regime occurs at earlier times and both melting rate and
heat transfer increase. See the temporal evolution of average liquid
fraction and average Nusselt number in figures 6.2 and 6.4.

However, in contrast with the results of Huber et al. [10], some dif-
ferences are observed. For all computation, the average Nusselt num-
ber corresponding to the contact of the liquid-solid interface with the
right wall (at the end of the convection regime) is slightly higher than
the minimum value. Also, the curves present a similar time variability
to the one reported by Jany and Bejan [12] even for a high value of Ra.

There might be other quantitative differences as well. As noticed in
Bertrand et al. [8] and Gobin and Le Quéré [9] where multiple methods
are compared, this is probably due to differences in the order of accu-
racy of the space or time discretization scheme or grid refinement. Or
even due to the scheme itself, e.g. an upwind scheme treatment of the
advective terms might lead to an underestimation of the average Nus-
selt number for high Ra or to the introduction of artificial diffusion.

Nonetheless it is concluded that Ra is fundamental for the onset
of natural convection and that the thermal inertia and the low Prandtl
number range have an effect over the melting problem and the heat
transfer correlations developed by Jany and Bejan [12].
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It is worth noted that the model employed here could be modified,
possible with relatively ease, to do new research in the field.
As previously commented, due to PCMs capacity as thermal energy
stores, the study of phase change problems has grown during the last
years. In the previous chapters, a relatively simple case where melting
is driven by natural convection in the melt is studied. The idea was
to develop a working algorithm that could be modified with relative
ease in further work.

Motivated by the present study and recent publications, the follow-
ing topics may be proposed:
(1) Study of phase change problems where a PCM inside a rectangular
cavity is subject to different thermal boundary conditions. Typically
the rectangular cavity is subject to constant temperature (in applica-
tions such as melting of pure metals) or constant heat flux boundary
conditions (in applications such as waste heat recovery, solar energy,
or cooling systems). However one could decide to study discrete or
continuum spatial depending thermal boundary condition. Example
of such studies includes Lakhal et al. [28] and Sarris, Lekakis, and Vla-
chos [29]. Equally one could decide to include radiative boundary con-
ditions.
(2) Study of phase change problems where a PCM inside a rectangu-
lar cavity is subject to different effects. In Yao et al. [30] volumetric
radiation is included in the analysis of the melting problem, which it
is of particular interest since all heat transfer mechanism are included
in the study. In Madruga and Mendoza [31] thermocapillary effects
are taken into account through the boundary conditions. In Doost-
anidezfuli, Ghalambaz, and Chamkha [32] and Colaço, Dulikravich,
and Martin [33] the effects of a magnetic field and an electric field are
taken into account, respectively. In Zennouhi et al. [34] the effect of
the cavity inclination angle is considered and in Kozak and Ziskind
[35] solid bulk motion is treated. In Qarnia, Draoui, and Lakhal [36]
protruding heat sources are added to the PCM.
Possible studies could combine some of such effects, for example in
Pirmohammadi and Ghassemi [37] the effect of a magnetic field and
the inclination of the cavity are considered. And more recently in
Joneidi et al. [38] the effect of heat flux and inclination angle variation
in a rectangular PCM containing cavity was experimentally investi-
gated.
Studies concerning the inclination angle could be particular interest-
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ing since it can effectively affect the time evolution and trend of the
heat transfer in the melting problem in an almost cost free manner for
storage system applications based on PCMs.
(3) Another possibility could be to study phase change problems where
a PCM inside a rectangular cavity is subject to different effects and
other boundary conditions. An example is El Khaoudi et al. [39] where
the cavity is linearly heated from the side and the effect of a magnetic
field is taken into account.
(4) Study phase change problems taking into account the possibility of
non-constant thermosphysical properties both in the liquid and in the
solid due to high temperature differences in the initial and/or bound-
ary conditions. As an example consider Rihab et al. [40] where a study
of heat conduction during melting of PCMs with different thermo-
physical properties is performed.
(5) Study of phase change problems where the PCMs is not a pure sub-
stance and the mushy zone region is not a numerical artefact. In this
case, the advection of the liquid fraction needs to be accounted for in
the energy equation.
(6) A numerical study concerning a rectangular PCM containing cav-
ity taking into account volumetric expansion/contraction due to melt-
ing/solidification through an elastic wall. Dallaire and Gosselin [41]
for example, studied the solidification of water, as PCM, inside the
cavity taking into account the density change during the phase change
and resulting in the deformation of the wall cavity due to the expan-
sion. This study was implemented through Fluent, Ansys 17.0 com-
mercial software.
(7) Scaling laws for phase change problems where the effect of tran-
sient conduction in the solid phase is taken into account. This is one
of the possible extensions for the scaling theory published by Jany and
Bejan [12] and it is of interest since even in laboratory experiment is
difficult to maintain the solid uniformly at the melting temperature.
(8) Study of the flow structure in the melting of the PCM inside the
rectangular cavity driven by natural convection in the melt for the low
Prandtl number range and relatively high Rayleigh numbers. As ob-
served by Dantzig [25] and studied by Le Quéré and Gobin [26] for
this case, an apparent instability in the flow takes place at the end of
the conduction regime. This instability later leads to a secondary os-
cillatory instability (view figure 6.2(b)) which strongly affects the heat
transfer and the melting front position, as reported in Bertrand et al.
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[8] and Gobin and Le Quéré [9]. In Le Quéré and Gobin [26] the au-
thors recognized as limitations in their analysis the assumptions of a
quasi-steady base flow and that the instability develops rapidly com-
pared to the slow time scale evolution. It is also worth noted that they
performed a linear stability analysis.
(9) Suitability, from a numerical stability point of view, of certain meth-
ods to solve phase change problems. An example of this type of study
for time dependent diffusion-advection problems is done by Ascher,
Ruuth, and Wetton [23]. Second order IMEX schemes are particularly
convenient since the employed algorithm used such method.
(10) Numerical studies of heat transfer enhancement techniques in
PCMs. Most PCMs have unacceptably low thermal conductivity, lead-
ing to slow charging/discharging rates [1] and required a way to en-
hance the heat transfer. Agyenim et al. [1] reported that due to simplic-
ity, ease in fabrication, and low cost during construction, the majority
of heat enhancement are based on the application of fin embedded
in the PCM followed by the used of metal matrix, where the metal
presents high conductivity, into the PCM. A possible set up could be
the use of fins of determined aspect ratio inside a rectangular cavity
with the purpose of study the flow structure and the heat transfer en-
hancement with respect to a configuration without the fins.



Appendix A

Additional Validation:
Conductive Melting

As additional validation, pure conductive melting inside the 2D cavity
is considered. As with the convective melting, the boundary and initial
conditions are depicted in figure 4.1(a).
The computations are performed with a 100 × 5 grid size and a non-
dimensional time step of 2× 10−4.

Figure A.1, for three different Stefan numbers, shows the dimen-
sionless melting front position as a function of the Fourier number and
the dimensionless temperature profile as a function of the normalized
x-coordinate.
Results are compared with the corresponding analytic solutions in the
liquid half-space i.e. Neumann solution in the liquid region for the
Stefan problem, see equations (A.1)-(A.3). As it can be seen, the nu-
merical and analytical results are in good agreement.

ζexp
(
ζ2
)

erf (ζ) =
St√
π

(A.1)

s∗ (Fo) = 2ζ
√
Fo (A.2)

T ∗ (x∗, Fo) = 1−
erf
[
x∗/

(
2
√
Fo
)]

erf (ζ)
, 0 ≤ x∗ ≤ s∗ (Fo) (A.3)

In the expressions above ζ is a coefficient implicitly dependent of
the Stefan number, exp is the exponential function and erf is the error
function.
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Figure A.1: Comparison of dimensionless melting front position and dimen-
sionless temperature profile for pure conductive melting: (a) s∗ as a function
of Fo for St = 0.1, (b) T ∗ as a function of x/H for FoSt = 0.2, (c) s∗ as a
function of Fo for St = 1, (d) T ∗ as a function of x/H for FoSt = 0.4, (e) s∗ as
a function of Fo for St = 10, (f ) T ∗ as a function of x/H for FoSt = 1.



Appendix B

MATLAB Code and Numerical
Data

The developed code is available through: https://www.dropbox.
com/sh/u9rrb17bwo29x2f/AAB3SYil3S9N4wzdI4iYhFKoa?dl=
0.
Also you could email to: a.a.arosemena@gmail.com to request the
code.

To run it in MATLAB R2016a or in a more recent version, uncom-
press and place all files in a MATLAB local folder, open the Ns_conv.m
script and press run.

For the current setting, the code solves case 1 (see section 4.2) in
an 80 × 80 grid. At the end of the computation, the code creates a
.mat file for post-processing in the local folder and gives the user the
option of visualizing the solution (e.g. divergence, velocity field and
temperature field, time evolution of the average Nusselt number and
liquid fraction, or melting fronts). See figure B.1.

The numerical data for post-processing corresponding to case 1 in
a 120×120 grid can also be access through the Test_case_1.mat file
without executing the code.

53



54 APPENDIX B. MATLAB CODE AND NUMERICAL DATA

Figure B.1: Example of obtained data from code after case 1 computation: (a)
melting front, (b) temperature field, (c) average Nusselt number, (d) average
melting front position.
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