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Abstract

In this paper two-dimensional systems of differential equations are consid-
ered together with their stabilization by a hybrid feedback control. A sta-
bilizing hybrid control for an arbitrary controlled system that belongs to a
certain category within two-dimensional systems is constructed as a result of
this study and some stabilization proprieties of the system with the obtained
hybrid control are presented.
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Chapter 1

Introduction to systems of
linear differential equations
with control

In this chapter we will introduce some elements of control theory. But first,
some notations that are used throughout this paper will be defined.

1. C(Rn) is the set of all continuous functions u : [0,∞)→ Rn;

2. Cs(Rn) is the set of all piecewise continuous functions u : [0,∞)→ Rn;

3. L(Rn,Rm) is the set of all linear operators from Rn to Rm;

4. The set of all matrices with real entries of dimension m×n we denote
by M(m,n,R);

5. The euclidean norm |·| in the space Rn is defined by |x| =
√
x2

1 + x2
2 + . . .+ x2

n;.

6. σ(A) is the set of all eigenvalues of a square matrix A, called the
spectrum of A.

1.1 Solution of the system ẋ = Ax and its expo-
nential estimate

Consider the following linear differential system

ẋ = Ax, t ∈ [0,∞) (1.1)

where A ∈ M(n, n,R).
Let us present some facts that will be useful for the purpose of this paper.
(see [2], [5] )
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Theorem 1.1.1. The solution of the linear system (1.1) with the initial
condition x(0) = x0 exists and is uniquely defined by

x(t) = eAtx0.

Corollary 1.1.1. For any solution of the linear system (1.1)

x(t) = eA(t−s)x(s), t, s ∈ [0,∞),

where the matrix exponential eA is defined by

eA =

∞∑
n=0

An

n!
= I +A+

A2

2!
+
A3

3!
+ . . .

Theorem 1.1.2. If the matrix A has pairwise distinct eigenvalues, then any
of the solutions of the system (1.1) satisfies the exponential estimate

M−e
λ−t|x(0)| ≤ |x(t)| ≤M+e

λ+t|x(0)|, t ≥ 0, (1.2)

where λ− = min{Reλ : λ ∈ σ(A)}, λ+ = max{Reλ : λ ∈ σ(A)} and the
constants M− and M+ do not depend on x(0). Furthermore, the constants
λ+ and λ− cannot be improved in the following sense : the inequality on the
right is not valid for any constant λ < λ+ and the inequality on the left is
not valid for any constant λ > λ−.

The constants λ+ and λ− are called upper Lyapunov exponent and lower
Lyapunov exponent .

Example 1.1.1. Consider the system (1.1) with A =

[
a 1
−1 a

]
where

a is a real parameter. This system is called the system of the generalized
harmonic oscillator. The equation in coordinate form is{

ẋ1 = ax1 + x2

ẋ2 = −x1 + ax2
. (1.3)

It is more effective to present the system’s solution in polar coordinates,
(r, ϕ), giving

x1 = r cos θ, x2 = r sin θ,

because it helps to visualize the system’s trajectory.
Converting the variables into polar coordinates we have{

ṙ cos θ − rθ̇ sin θ = ar cos θ + r sin θ

ṙ sin θ + rθ̇ cos θ = −r cos θ + ar sin θ
.

Multiplying the first and the second equations of the system by cos θ and
sin θ, respectively, and adding we obtain ṙ = ar.
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Now, Multiplying the first and the second equations of the system by sin θ
and cos θ, subtracting the second equation from the first, we have θ̇ = −1.

So,we get a system, that has the function r(t) only in its’ first equation
and the function θ(t) only in the second. Solving this system, we get the
solution in polar coordinates:{

r(t) = r(0)eat

θ(t) = θ(0)− t . (1.4)

We will draw the trajectories of the system that starts at a position x(0) 6= 0
on the phase plane in the figure 1.1. The trajectories will be presented
separately for each case for a different sign of the parameter a .

Figure 1.1: The trajectory of the system (1.3) for the cases: (a) a < 0, (b)
a = 0, (c) a > 0.

Note that from the solution (1.4) in polar coordinates it is easy to convert
to into a solution in cartesian coordinates.{

x1(t) = eat(x1(0) cos t+ x2(0) sin t)
x2(t) = eat(−x1(0) sin t+ x2(0) cos t)

. (1.5)

According to the theorem 1.1.1 the solution can be presented as x(t) =
eAtx(0). This means that (1.5) implies, in particular, a form of a matrix A
exponential of the system:

A =

[
a 1
−1 a

]
, eAt = eat

[
cos t sin t
− sin t cos t

]
.

At the end of this example we illustrate Theorem 1.1.2.
Let us calculate the spectrum of the matrix A:

det(A−λI) =

[
a− λ 1
−1 a− λ

]
= (a−λ)2+1 = 0 ⇒ σ(A) = {a−i, a+i}

Therefore, the Lyapunov exponents in the estimation of the solution (1.5)
are
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λ− = λ+ = a.

This fact agrees with the direct evaluation of the exponents from the first
equation of the solution (1.4):

r(t) = r(0)eat ⇔ |x(t)| = eat|x(0)|.

(in the estimation (1.2) we can takeM− = M+ = 1). From here and from the
picture 1.1 it is possible to observe that the system has different asymptotic
proprieties for different signs of a:

a < 0, |x(t)| → 0 when t→∞
(the norm of the solution decreaces exponentially);

a = 0, |x(t)| ≡ |x(0)| (the norm of the solution is constant);
a > 0, |x(t)| → ∞ when t→∞

(the norm of the solution increaces exponentially).

1.2 Notions of control systems theory

In this section we present some theoretical background of dynamical control
systems. For more details consult [17], for example.

Let us suppose that the trivial solution of the system ẋ = Ax with
A ∈ M(n, n,R) is not asymptotically stable. Then our goal is, by applying
a control to the system, to stabilize it (obtain asymptotic stability of the
system).

How can we control the system? The control of the system depends
on the nature of the process that the given system describes. One possible
choice of control is to sum a vector u to the right part of the matrix equation,
obtaining ẋ = Ax + u. If it were possible to change the vector u in an
arbitrary way or in the way of linear dependence from the vector x ∈ Rn
that characterizes the state of the system, that means in the form Gx, then
we would always get the asymptotic stabilization of the system’s trivial
solution.

However, in practice we usually can only control a part of the state space
Rn or add only a vector from a proper subspace of Rn. Then the equation
would take the form ẋ = Ax+Bu, where B is an n× ` matrix, ` < n, also
called the control matrix.

Moreover, as a rule, the control u cannot depend on the whole trajectory
x(t) but only on a part of it which is the ”observable” part and represents
the projection of values of x(t) onto a subspace of Rn with dimension m < n
that is also called the observable subspace. The observation y ∈ Rm with
m < n is linearly dependent on x so that y = Cx where C is a m × n
matrix named the output matrix. In general the control u only depends on
the observation y = Cx.
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Now we are going to present some definitions.
Consider the dynamic system:{

ẋ = Ax+Bu
y = Cx

, (1.6)

where x ∈ Rn is the state vector, y ∈ Rm is the output vector that charac-
terizes the observation and u ∈ R` is the input vector or control vector, that
characterizes the control of the system.

The trio of matrices (A,B,C) consists of the n × n system matrix A,
the n × ` entry matrix B and of the control m × n matrix C. This trio of
matrices is defined by the nature of the process that the system describes and
together with the control u determines completely the controlled system.

Example 1.2.1. A controlled harmonic oscillator is a two-dimensional
system (1.6) with the trio of matrices

(A,B,C) =

([
0 1
−1 0

]
,

[
0
1

]
, [1 0]

)
(1.7)

that is, the system 
ẋ1 = x2

ẋ2 = −x1 + u
y = x1

. (1.8)

In this model we can only control the second equation of the system
ẋ = Ax (that means, the speed of the second component of the trajectory
x2 affects the angular acceleration θ̈ of the pendulum) and observe only the
first component x1 = θ

Let us clarify how it is possible to control the system (1.6). From the
previous description follows that u is a function defined on the interval
[0,∞) with its values in the input space in R`. This function is piecewise
continuous (can be discontinuous at the points of an increasing sequence
{ti}∞i=1, satisfying inf

t∈N
(ti+1 − ti) > 0.) In this case we have the equation

ẋ(t) = Ax(t) +Bu(t), t ∈ [0,∞). (1.9)

The solution of differential equation (1.6) is a continuous function x : [0,∞)→
Rn that is continuously differentiable in the intervals (0, t1), (ti, ti+1) (i ∈ N)
and that satisfies the equation in any of these intervals (in the points ti the
function x is continuous but can be not differentiable.)

In the model (1.9) the control u does not depend on the solution x. If
u : [0,∞)→ R somehow depends on the solution x : [0,∞)→ R, then that
type of control is called feedback control and the system (1.6) is called a
feedback system or a auto-regulating system. In the previous description it
was defined as a rule that u does not depend on the whole trajectory x, but
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only on its observable part, that is, on the output y, more precisely, on the
output function y(t) = Cx(t). Therefore,in general any feedback control of
the system (1.6) is uniquely defined by the operator Wu : C(Rm)→ Cs(R`)
so that

u(t) = (Wuy)(t), t ∈ [0,∞). (1.10)

Wu is called the control operator. In this case, the system (1.6) is equivalent
to the functional differential equation

ẋ(t) = Ax(t) +B(WuCx)(t), t ∈ [0,∞). (1.11)

For any x ∈ C(Rn) the right hand side of (1.11) is a piecewise continuous
function. The solution of (1.11) can be understood in the same sense as it
was defined for the equation (1.9).

Example 1.2.2. For the harmonic oscillator of the example 1.2.1 the equa-
tion (1.11) in the coordinate form is{

ẋ1(t) = x2(t)
ẋ2(t) = −x1(t) + (Wux1)(t)

.

Let us go back to the general model (1.6). In case of the operator Wu

that has the form of

(Wuy) = g(y(t)), t ∈ [0,∞) (1.12)

with some continuous function g : Rm → R` we have a local dependency of
the control u on the output y, meaning that in any specific moment of time
t∗ the value of the function u : [0,∞)→ R` at the moment t∗ depends only
on the value of the function y : [0,∞)→ Rm at the same instant and it does
not depend on the values of y(t) at t < t∗. In this case, the equation (1.11)
is an ordinary autonomous differential equation

ẋ(t) = f(x(t)), t ∈ [0,∞)

f(x) = Ax+Bg(Cx).
Particularly, when in (1.12) the function g is linear, that means g ∈

L(Rm,R`), the control operator has the matrix form

(Wuy)(t) = Gy(t), t ∈ [0,∞) (1.13)

with some matrix G ∈ M(`,m,R). This type of control is called standard
linear control. The standard linear control is the most simple of the feedback
controls , and in practice it makes sense to test if this control stabilizes the
system (1.6). The system (1.6) is equivalent to the differential linear system
(particular case of the system (1.12))

ẋ = (A+BGC)x, t ∈ [0,∞). (1.14)
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Example 1.2.3. For the controlled harmonic oscillator from the example
1.2.1 we have ` = m = 1, so the matrix G ∈ M(1, 1) is a real number α, so
that the equation (1.14) has the following form:

ẋ = (A+αBC)x where A+αBC =

[
0 1

−1 + α 0

]
, or

{
ẋ1 = x2

ẋ2 = (α− 1)x1

In general the control operator is not representable in the form of (1.12).
In this case the dependency u = Wuy does not have a local character. That
means, the value of the function u : [0,∞)→ R` at a instance t∗ depends not
only on the value of the function y : [0,∞)→ Rm at the same instance, but
also on the values of y(t) at the previous instances t < t∗. In this case, the
equation (1.11) is not an ordinary differential equation anymore. In general
we have a functional differential equation with a delay that depends on the
solution. The study of the asymptotic proprieties of the solutions for these
systems is impossible only with the methods of the ordinary differential
equations theory and also the fact that the delay depends on the solution
makes it more difficult to apply the ideas and the methods of the modern
theory of functional differential equations ([1],[3]).

1.3 Stabilization of controllable systems. Lyapunov
exponents

Let us again consider the controlled system{
ẋ = Ax+Bu
y = Cx

, (1.15)

where x ∈ Rn is the state vector, y ∈ Rm is the output vector and u ∈ R` is
the control vector. According to the expression (1.10), in the system (1.15)
we consider the control operator Wu.

Let us denote by U∗ = U∗(`,m) the set of all the possible controls, that
means the set of all controls defined by all the operators Wu : C(Rm) →
Cs(R`).

Let us denote the subset of U∗, that consists of all linear controls of the
form (1.13) by LH1.

To find a way to achive the desirable proprieties of the system’s (1.15)
trajectory with a fixed control u ∈ U∗ or with one of the controls from a class
U ⊂ U∗ has been one of the main problems in the control theory. Among
the ”desirable” proprieties one of the most important are the asymptotic
and exponential stabilities of the system with a given upper exponent.

Let us present the definitions for the asymptotic and exponential stabil-
ities.
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Definition 1.3.1. The trivial solution of the system (1.15) with the control
u ∈ U∗ is asymptotically stable if the following statements hold:

1) ∀ε > 0 exists δ > 0 so that for every solution x(t) of the system (1.15)
with the control u, satisfying |x(0)| < δ it holds that sup

t≥0
|x(t)| < ε ;

2) for any closed and bounded set K ⊂ Rn and ∀ε > 0 exists tε > 0 so
that for any solution x(t) of the system (1.15) with the control u that at
t = 0 satisfies x(0) ∈ K it holds that sup

t≥tε
|x(t)| < ε.

Definition 1.3.2. Given u ∈ U∗, the system (1.15) is called stabilizable
through the control u, (u-stabilizable) if the trivial solution of the system
(1.15) with the control u ∈ U is asymptotically stable. In that case we also
say that the control u stabilizes the system (1.15).

Given the set of controls U ⊂ U∗, the system (1.15) is called stabilizable
through the family of controls U (U-stabilizable) if there exists u ∈ U so that
the system (1.15) is u-stabilizable.

Definition 1.3.3. Let (1.15) be a system with a control u ∈ U . The infimum
of λ ∈ R with which for every solution of the system it holds:

|x(t)| ≤Meλt|x(0)|, t ∈ [0,∞). (1.16)

with M positive and independent from the solution constant is called upper
Lyapunov exponent of the system (1.15) with the control u and is denoted
by λ((A,B,C), u) (abr. λ(u)).

If there is no such λ,M ∈ R so that all the solutions of the system (1.15)
with the control u so that (1.16) is valid, then the upper exponent is equal
to +∞, which means λ((A,B,C), u) = +∞.

Definition 1.3.4. Let U ⊂ U∗. Upper exponent of the system (1.15) with
the family of controls U is the value λ((A,B,C),U) ( λ(U)) defined by

λ((A,B,C),U) = inf
u∈U

λ((A,B,C), u).

Surely, the upper exponent is important because it characterizes the
asymptotic behaviour of the solutions. For the family of controls we have
the following:

a) if the exponent λ(U) is positive, then it shows how it is possible
to ”limit the speed of growth” of the solution’s |x(t)| norm when t → ∞
through the controls of the family U ;

b) if the exponent λ(U) is negative, it shows how it is possible to achieve
a quicker convergence |x(t)| → 0 when t→∞, by a control from the family
U .

In particular, if (1.16) is valid with some negative exponent λ then the
system (1.15) is stabilizable by u. To be more specific, the following propo-
sition holds:
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Proposition 1.3.1. 1) If λ(u)<0, then the system (1.15) is stabilizable by
the control u.

2) If λ(U) < 0, then the system (1.15) is stabilizable by the family of
controls U .

3) The equality λ(U) = −∞ is equivalent to: ∀R > 0 (arbitrary big)
exist u ∈ U and M > 0 such that the solution of the system (1.15) with the
control u satisfies the estimate

|x(t)| ≤Me−Rt|x(0)|, t ∈ [0,∞).

It is clear, from the point of view of the stabilization of controllable
systems, that it is good to find a class of controls U that is convenient for
the application to a practical problem and that also satisfies the condition
λ(U) = −∞ .

1.4 The insufficiency of a standard linear control
for the stabilization of some linear systems

As in the previous section, let us consider:{
ẋ = Ax+Bu
y = Cx

, (1.17)

where x ∈ Rn is the state vector, y ∈ Rm is the output vector, u ∈ R` is the
control vector.

Let us present now the concepts of controllability and observability which
are important in the control system theory ([17]).

Definition 1.4.1. The system (1.17) (and also the pair of matrices (A,B))
is called controllable if by the means of a sectionally continuous control u(t)
it is possible to take the system from any initial state x0 to a final state x1

at the end of a finite period of time t1 .
More precisely, ∀x0, x1 ∈ Rn and ∀t1 > 0 exists a u ∈ Cs(R`) so that the

solution x(t) of the equation ẋ(t) = Ax(t) +Bu(t) that begins at the point
x(0) = x0 satisfies x(t1) = x1.

Definition 1.4.2. The system (1.17) (and also the pair of matrices (A,C))
is called observable if by observing the values of the output y(t) = Cx(t)
after a finite period of time t the initial state x(0) of the system can be
uniquely determined.

Precisely for any x0, x̃0 ∈ Rn so that x0 6= x̃0 for the solutions x(t) and
x̃(t) of the equation ẋ = Ax that satisfy the initial conditions x(0) = x0 and
x̃(0) = x̃0, holds: Cx(t) 6≡ Cx̃(t) on the interval [0,∞).

Let us present next some duality proprieties of controllability and ob-
servability and the Kalman criterion. The proofs can be found in [17].
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Theorem 1.4.1. The pair (A,B) is controllable if and only if the pair
(A>, B>) is observable. The pair (A,C) is observable if and only if the
pair (A>, C>) is controllable.

Theorem 1.4.2. The following statements are equivalent:

1. The pair (A,B) is controllable ;

2. rank
[
B AB A2B . . . An−1B

]
= n;

3. For any set K consisting of at most n complex numbers satisfying
condition z ∈ K ⇒ z ∈ K there exists a matrix G ∈ M(`, n,R) such
that σ(A+BG) = K.

Theorem 1.4.3. The following statements are equivalent:

1. The pair (A,C) is observable;

2. rank


C
CA
· · ·

CAn−1

 = n;

3. For any set K consisting of at most n complex numbers, satisfying
the condition z ∈ K ⇒ z ∈ K there exists F ∈ M(n,m,R) such that
σ(A+ FC) = K.

The following proposition clarifies the meaning of the concepts of con-
trollability and observability for the stabilization of systems through the
standard linear control.

Theorem 1.4.4. Let one of the following statements be valid:
1) The pair (A,B) is controllable and rankC = n, or
2) The pair (A,C) is observable and rankB = n.
Then, λ((A,B,C),LH1) = −∞.

Remark 1.4.1. The theorem 1.4.4 is basically a generalization of the propo-
sition from [11], p.492 for the planar systems with n = 2.

Remark 1.4.2. The theorem 1.4.4 states that in case the system (1.17) is
controllable then we can observe all of the trajectory components. For ex-
ample, when C = I, that system can be stabilizable through a standard
linear control, so that we can tend the solutions to zero with any nega-
tive and arbitrary large exponent by its modulo. The same propriety holds
for the observable system and when the input matrix B has o rank n, for
example, when B = I.

In practice, the situation when both matrices B and C have their ranks
inferior to the dimension of the system n, for example ` < n and m < n,is
very interesting. In this case the controllability and the observability of the
system does not guarantee the stabilization of the system by a standard
linear control. Let us present the following example.
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Figure 1.2: Trajectory of the system (1.18) with control uα = αy starting
at point A = (−1, 1), for cases: (a) α = 1.8, (b) α = 0.8, (c) α = −3.

Example 1.4.1. Consider the controlled harmonic oscillator
ẋ1 =x2

ẋ2 =−x1 + u
y=x1

⇔ (1.17) with (A,B,C)=

([
0 1
−1 0

]
,

[
0
1

]
, [1 0]

)
(1.18)

(see the example 1.2.1). Note that

rank[B AB] = rank

[
0 1
1 0

]
= 2, rank

[
C
CA

]
= rank

[
1 0
0 1

]
= 2,

so the pair (A,B) is controllable and the pair (A,C) is observable.
As it was analyzed in the example 1.2.3, any u ∈ LH1 has the form of

u = αy, where α ∈ R, such that the system with control uα = αy has the
form

ẋ=Aαx where Aα=A+αBC=

[
0 1

α− 1 0

]
, that is

{
ẋ1 = x2

ẋ2 = (α− 1)x1
.

We have

σ(Aα) =


{
−
√
α− 1,

√
α− 1

}
se α > 1

{0} se α = 1{
−i
√

1− α, i
√

1− α
}

se α < 1
,

therefore λ+(α) = max{Reλ : λ ∈ σ(Aα)} ≥ 0. According to theorem 1.1.2
the system (1.18) is not stabilizable by a standard linear control. As an
illustration, let us present the trajectories of the system (1.18) on the phase
plane with the control uα = αy, for some values of α ∈ R. See figure 1.2.

Remark 1.4.3. The presented example shows that there exist a two-
dimensional controllable and observable systems (1.17) such that cannot
be stabilizable by a standard linear control. So, it is important to chose
a class of controls that generalizes the standard linear controls and allows

15



the stabilization of the systems of the same type as the harmonic oscillator.
In this case, it is pertinent to chose a control that is convenient in prac-
tice. This type of control was found in the second half of the 20th century
by Z.Artshtein [4] and some other mathematicians of that time and it was
given the name of hybrid feedback control. Let us proceed with the definition
of the hybrid control and the description of some basic results of that control
in the next chapter.
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Chapter 2

Some elements of the hybrid
feedback control theory

2.1 Description of a switching control on the ex-
ample of the harmonic oscillator

Again, let us consider a system with control called the controllable harmonic
oscillator{

ẋ = Ax+Bu
y = Cx

with (A,B,C) =

([
0 1
−1 0

]
,

[
0
1

]
, [1 0]

)
(2.1)

that is, the system 
ẋ1 = x2

ẋ2 = −x1 + u
y = x1

As it was shown in the example 1.4.1, the system (2.1) is not stabilizable by
a standard linear control.

The trajectories of the system (2.1) with the controls u−, ud ∈ LH1

defined by u− ≡ 0 and ud = −3y are presented in the following way:

Figure 2.1: The trajectory of the system (2.1): (a) with the control u− ≡ 0;
(b) with the control ud = −3x1.
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That way we have a circular and a ellipsoidal trajectories. It is clear
that each of the controls u− and ud do not stabilize the system.

Let us now suppose that by means of some automaton ∆ it would be
possible to somehow switch the control u− to the control ud and vice versa.
That way we obtain two automaton states: q− and qd. Q = {q−, qd}, where
Q is the set of all the automaton states. When the automaton is at the
state q− we get the system (2.1) with the control u− and when we have the
automaton at the state qd we get the system (2.1) with the control ud:

{
ẋ1 = x2

ẋ2 = (α− 1)x1
⇔ ẋ = (A+αBC)x where α=

{
0 when q = q−
−3 when q = qd

.

(2.2)
The switching system (2.2) is not completely defined because the commu-

tation rule from one state to another of the automaton was not yet defined.
The aim is to define it in a way that stabilizes the system. From the figure
2.1 it is evident that for a given system, the stabilization can be achieved
if at the instances t that correspond to the point x(t) being at the I and
III quadrants of the phase plane the automaton is in the state qd and when
the point x(t) is found at the II and IV quadrants of the phase plane the
automaton is at the state q−. That way we get the following switching
system:

ẋ = (A+ αBC)x where α =

{
0 when x1(t)x2(t) ≥ 0
−3 when x1(t)x2(t) < 0

(2.3)

Let us examine the trajectory of that system in the figure 2.2.

Figure 2.2: Trajectory of the switching system (2.3).
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In the figure, when the state qd is activated, the trajectory x(t) of the
system (2.3) is marked by the red solid line and when the q− state is activated
the trajectory is marked by a dashed blue line. The controls related to
systems with commutation are usually visualized by diagrams. The diagram
of the switching control u that corresponds to the system (2.3) is presented
in the following figure:

Figure 2.3: Switching control u of the system (2.3).

Clearly, the solution of the system with the control u satisfies |x(t)| → 0
when t → +∞ so that the convergency is uniform in relation to the initial
conditions |x(0)| ≤ R for any fixed R > 0 . That way, the system (2.1) is
stabilizable by the control u.

The switching control that was presented is not the only control that
stabilizes the system (2.1). For example, it is possible to decrease the number
of switching instances at any finite interval of time. That way, we can suggest
the switching control ũ in which the system is affected by the control at the
I, III and IV quadrants and is not affected by control (or affected by a null
control) only in the II quadrant.

Figure 2.4: Switching control ũ of the system (2.1).
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It is clear that the switching control ũ as the control u stabilizes the
harmonic oscillator (2.1), see the figure below.

Figure 2.5: Trajectory of the system (2.1) with control ũ.

2.2 From switching control to hybrid control

In the previous section the switching system and switching control were
described and with the example of the harmonic oscillator it was shown that
there are linear differential systems that cannot be stabilized by a standard
linear control but can be stabilized by a switching control.

Even though it is possible to stabilize the system (2.1) by a control
u or ũ (see figures 2.3 and 2.4), in practice, the switching control has its
disadvantages. Let us describe some of them and also suggest some methods
in order to overcome these disadvantages.

a) The continuous observation of the system’s state x(t) is not always
possible, which makes it impossible to instantly switch the automaton’s
state from one to another. For example, for the system (2.3), the instant
switching of the automaton’s states at the moment when the trajectory
x(t) intersects the coordinate axes is only possible if the observation of the
system’s state x(t) is continuous. If we consider the predator-prey models it
becomes clear that in practice it is impossible to continuously monitor some
animal populations, it is only possible at discrete instances of time.

This way, we can assign to each of the automaton’s states q ∈ Q a fixed
positive period Tq. Therefore, a switch of the automaton’s states can be only
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done at the instances ti that correspond to the end of the respective period
of the given state of the automaton, in dependency of the system’s state
x(ti) at that moment. That way we have a sequence of switching instances
{ti} and that sequence depends on the initial condition x(0).

b) As it was said in the section 1.4, in the applications it is common
that the ranks of input matrix B and of control matrix C are less then the
systems dimension n, such that the vector Bu and the output vector y = Cx
take the values of the proper subspaces of Rn,and the control u only depends
on y. This situation can occur, for example, in the case of the controlled
harmonic oscillator (2.1) where we can only control the second component
of the trajectory x(t) and observe only the first component.In this example
we can vary the system by the means of a switching control only by adding
a member αx1 at the right part of the second equation of the system (see
(2.2)). However, at the switching controls u and ũ in figures 2.3 and 2.4 a
dependency on the complete trajectory x(t) was admitted, not only on the
first observable component y(t) = x1(t).

But in practice, it is natural to suppose that at the switching instances
and the control u only depend on the observable part of the trajectory.
The switching controls u and ũ in figures 2.3 and 2.4 do not satisfy this
condition, for that they would have to be altered so that the automaton
states depend only on the signum of x1(t). For the predator-prey model the
idea of incomplete observation can be justified by the following:it can be
easier and cheaper to monitor only the preys or only the predators, but not
both.

Paradigm. To modify the switching control in correspondence to a) and
b) we need to suppose that each state q ∈ Q of the automaton has its own
fixed period of time Tq > 0. The switch from one state to another can occur
exclusively at the moments ti that correspond to the end of the period of a
automaton’s state and is dependant only on the output of the trajectory at
that instance, that means y(ti) = Cx(ti).

The control that satisfies the conditions described above was defined in
the article [4] and was given the name of hybrid feedback control (HFC).
The word hybrid means that the system has a continuous-discrete nature
(a continuous trajectory x(t) with a discrete sequence {ti} of instances for
switching the states of the automaton).

Feedback means that the trajectory x(t), and the state of the automata
q(t) at the instant t depend on the trajectory and on the previous automa-
ton’s states at the instances s ≤ t. The exact definition of HFC is given in
[8]. In [8]-[15] many results concerning the stabilization of systems by HFC
were obtained.

The definition and the presentation of some elements of the theory of
systems with HFC can be found in the next sections of this chapter. Let us
now show some examples of HFC for the harmonic oscillator.
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Consider the system (2.1) with the hybrid control uh (see [4], [10]), pre-
sented in the following diagram:

Figure 2.6: Hybrid control uh of the system (2.3).

The automaton of the control uh has three states: Q = {qd, q+, q−}. In
the circles it is presented how u is dependent on y = x1 and the period
of the correspondent automaton state. The arrows between the circles and
the comments represent the way that the switching occurs at the switching
moments. For example, if at an instant ti the automaton switches to the
state q−, then the next switching moment is ti+1 = ti + δ, such that, in
dependency of the sign(x1(t)) in that moment the switch from the state q− to
the state qd occurs if x1(ti+1) ≥ 0 or remains in the state q− if x1(ti+1) < 0.

Note that regardless of the fact that the formulas for u and T are the
same in the states q− and q+, these states are different because the switching
conditions at the end of the period T = δ are different.

The positive number δ is relatively small, at least δ � π
4 . Let us suppose

that δ = π/20 and that the initial state q0 of the automaton is qd. Let us
depict in the figure 2.7 the trajectories of the system (2.1) with the hybrid
control uh that have different starting positions.

As it can be observed, the system’s trajectories with the control uh and
the switching instances ti only depend on the initial condition x(0). How-
ever, from a certain instant a certain regularity can be noted: the trajectory
ud prevails at the first and the third quadrants and the solution’s norm de-
creases. But in other periods of time, when the states q+ and q− are active,
the solution’s norm does not alter. Therefore, |x(t)| → 0 when t → ∞. In
[13] is proved that for a small δ > 0, λ((A,B,C), uh) < 0. That means, the
upper Lyapunov exponent of the system (2.1) with the control uh is nega-
tive, in particular, the system (2.1) is uh-stabilizable (check the definition
1.3.3 and the proposition 1.3.1).

Comparing the switching control u in figure 2.3 and the hybrid control
uh in figure 2.6 we could see that the later can be constructed on base of
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Figure 2.7: Trajectory of the system (2.1) with control uh and initial condi-
tion : (a) x(0) = (0, 3.5)>; (b) x(0) = (3, 0.94)>.

the control u, and the control u can be also intuitively considered as a limit
control of hybrid controls uh when δ → 0.

In the same way, using the switching control figure 2.4, the hybrid control
ũh can be found, that, in contrast with the control uh has two automaton
states: qd and q− (see [6], [12]).

Figure 2.8: Hybrid control ũh of the system (2.3).

Note that the arrow without any comment and the exit from the state
qd means that at the end of the period of the state qd the switch to the state
q− is automatic and independent from y = x1.

Supposing that δ = π/10 and the initial state q0 of the automaton is qd.
Let us depict the trajectories of the system (2.1) with the hybrid control ũh
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that start at different x(0) 6= 0.

Figure 2.9: Trajectory of the system (2.1) with control ũh and initial condi-
tion: (a) x(0) = (1, 3)>; (b) x(0) = (−0.3, −3)>.

In [12] it was shown that for a sufficiently small δ > 0

λ((A,B,C), ũh) < 0,

which means that the system (2.1) is ũh-stabilizable.
Furthermore, it follows from the results in [6] and [12], that if the hybrid

control u(R, δ) is considered which is the generalization of the control from
the figure 2.8 when the state qd corresponds to the control u = −Rx1 where

R > 0 is a positive parameter and the period of qd is T =
3π

2
√

1 +R
, then

by changing R > 0 and δ > 0 we can achieve the exponential estimate of
the solution

|x(t)| ≤M e−Nt|x(0)|, t ∈ [0,∞)

with the constant N > 0 possible to choose arbitrary large. In other words,
by considering the class of hybrid controls A = {u(R, δ) : R > 0, δ > 0},
for the harmonic oscillator (2.1) we have that λ((A,B,C),A) = −∞. We
will consider the HFC class A with more details in the last section of this
chapter.
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2.3 Definition of the hybrid feedback control

In this section we will present some definitions from the theory of linear
differential systems with hybrid control, including the generalized definition
of the HFC which is necessary for the purpose of this paper. The definitions
follow from [12], [14]. For more details, consult [10].

Let us consider a controlled system{
ẋ = Ax+Bu
y = Cx

, (2.4)

where x ∈ Rn is the state vector, y ∈ Rm is the output vector, u ∈ R` is the
control vector. The system (2.4) is completely defined by the trio of matrices
(A,B,C), where A ∈M(n, n,R), B ∈M(n, `,R) and C ∈M(m,n,R).

Definition 2.3.1. A hybrid automaton is a set of six objects
∆ = (Q, I,M, T , j, q0), where

1) Q is a finite set of all the automaton’s states;
2) I is a finite set called the input alphabet;
3) M : Q × I → Q is an function that determines a new state of the

automaton based on its previous state q and a element from the alphabet
i ∈ I that corresponds to the switching moment of the state;

4) T : Q → (0,∞) is a function that establishes the time period T (q)
between two switching moments, satisfying inf

q∈Q
T (q) > 0;

5) j : Rm → I is a function that corresponds to the output vector y ∈ Rm
and the element j(y) of I

6) q0 = q(0) is the automaton’s initial state.

Each hybrid automaton ∆ = (Q, I,M, T , j, q0) is associated to an
operator F∆ : P (Rm) → P (Q) called the hybrid operator. Such that P (X)
is a set of functions v : [0,∞) → X. Let us present the recursive definition
of F∆.

Definition 2.3.2. For any y(·) : [0,∞)→ Rm, the function q(·) = (F∆y)(·) :
[0,∞)→ Q is defined by:

a) q(0) = q0, t1 = T (q0), q(t) = q0 (∀t ∈ [0, t1));
b) q(t1) = M(q0, j(y(t1))), t2 = t1 +T (q(t1)), q(t) = q(t1), (∀t ∈ [t1, t2));
c) Let k ∈ {2, 3, . . .}. Suppose that t0 = 0, t1, . . . , tk and that the values

of q(t) for t ∈ [0, tk) were already defined. Then, tk+1 and q(t) for t ∈
[tk, tk+1) are defined by:

q(tk) = M(q(tk−1), j(y(tk))), tk+1 = tk + T (q(tk)), q(t) = q(tk)
(∀t ∈ [tk, tk+1)).

Note that the sequence {tn} in the definition of F∆ is a sequence of
switching moments associated to the function y(·).
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Definition 2.3.3. A pair u = (∆,Φ), where ∆ = (Q, I,M, T , j, q0) is a
hybrid automaton and Φ : Rm × Q → R` is a function, is called hybrid
feedback control (HFC).

The hybrid control operator Wu : C(Rm) → Cs(R`) (see (1.10)), associ-
ated to the control u = (∆,Φ), is defined by

(Wuy)(t) = Φ(y(t), (F∆y)(t)), t ∈ [0,∞)

where F∆ is the operator that was recursively defined above.

Remark 2.3.1. According to the definition 2.3.3 and to expression (1.11),
the linear system (2.4) with the hybrid control u = (∆,Φ) is equivalent to
a functional differential equation

ẋ(t) = Ax(t) +BΦ(Cx(t), (F∆Cx)(t)), t ∈ [0,∞). (2.5)

Example 2.3.1. Let us again consider the controlled harmonic oscillator{
ẋ = Ax+Bu
y = Cx

with (A,B,C) =

([
0 1
−1 0

]
,

[
0
1

]
, [1 0]

)
(2.6)

with hybrid control ũh defined by the diagram in figure 2.8. Let us now
present the definition of ũh in correspondence with the definitions 2.3.1,
2.3.3. The hybrid control ũh is defined by ũh = ((Q, I,M, T , j, q0),Φ), where

1) Q = {qd, q−} is a set of two automaton’s states ;
2) I = {i+, i−} is the input alphabet that consist of two elements;
3) the function M : Q× I → Q is defined by

M(qd, i+) = M(qd, i−) = M(q−, i−) = q−, M(q−, i+) = qd;

4) The function that determines the periods of the automaton T : Q→
(0,∞) is defined by T (qd) = 3π

4 , T (q−) = δ = π/10;

5) The function j : R→ I is defined by j(y) =

{
i+ if y ≥ 0
i− if y < 0

;

6) q0 = qd is the initial state of the automaton;

7) The function Φ : R×Q→ R is defined by Φ(y, q) =

{
−3y if q = qd

0 if q = q−
.

The system (2.6) with the control ũh, is equivalent to the differential
functional equation

ẋ(t) = (A+ α(F∆x1)(t)BC)x(t), t ∈ [0,∞)

where

A+ α(F∆x1)(t)BC =

{
A− 3BC if (F∆x1)(t) = qd

A if (F∆x1)(t) = q−
.
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2.4 Linear hybrid control. Hybrid trajectory

Definition 2.4.1. Let u = (∆,Φ) be a hybrid control of the system (2.4),
where ∆ = (Q, I,M, T , j, q0).

The HFC u is called linear hybrid control (LHFC) if it satisfies the fol-
lowing conditions:

(a) the function j : Rm → I, satisfies the condition j(λy) = j(y) for
any y ∈ Rm and λ > 0;

(b) the function Φ(y, q) is linear in relation to y.

We will denote the LHFC class by LH = LH(`,m).
Of course that LHFC with only one state Q = {q} of the automaton

represents a linear standard control from the section 1.2. Using the one-
to-one correspondence between the set of the linear operators L(Rm,R`)
and the set of matrices M(`,m) we can reformulate the definition 2.3.3 for
LHFC.

Definition 2.4.2. Let ∆ = (Q, I,M, T , j, q0) a hybrid automaton in which
Q and I are finite and j(λy) = j(y) for any y ∈ Rn and λ > 0. A pair
u = (∆, {Gq}q∈Q) where Gq ∈ M(`,m) (q ∈ Q) is called linear hybrid
control (LHFC).

The hybrid control operator Wu : C(Rm) → Cs(R`) associated with
u = (∆, {Gq}q∈Q) is defined by

(Wuy)(t) = G(F∆y)(t)y(t), t ∈ [0,∞).

Remark 2.4.1. According to the definition 2.4.2, the linear system (2.4) with
LHFC u = (∆, {Gq}q∈Q) is equivalent to the functional differential equation

ẋ(t) = (A+BG(F∆Cx)(t)C)x(t), t ∈ [0,∞).

Definition 2.4.3. In case of the two-dimensional systems (2.4), when A ∈
M(2, 2,R), B ∈ M(2, 1,R) and C ∈ M(1, 2,R) the linear hybrid control is
defined as a pair u = (∆, {αq}q∈Q) where ∆ = (Q, I,M, T , j, q0) is a hybrid
automaton in which the set Q is finite, the set I contains at most three
elements, the function j : R → I only depends on the sign of y, such that
j(y) = j(sign (y)) (y ∈ R) and αq ∈ R (q ∈ Q).

The hybrid control operator Wu : C(R)→ Cs(R) associated to the LHFC
u = (∆, {αq}q∈Q) is defined by

(Wuy)(t) = α(F∆y)(t)y(t), t ∈ [0,∞).

The linear system (2.4) with LHFC u is equivalent to the functional differ-
ential equation

ẋ(t) = (A+ α(F∆Cx)(t)BC)x(t), t ∈ [0,∞).
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Remark 2.4.2. {tn} is the sequence of switching moments that is linked to the
observation y(·) = Cx(·) of the system (2.4) with LHFC u = (∆, {Gq}q∈Q).
Therefore, during each time interval between the switching moments Ji =
(ti, ti+1), the automaton does not change its state, so (F∆Cx)(t) is a constant
q[i]. Thus, during Ji, the dynamics of the hybrid system is simple because
the equation (2.4.1) represents a linear differential equation ẋ = Aix with
a constant matrix Ai = A + BGq[i]C, such that, according to the corollary
1.1.1, the solution of which is defined by

x(t) = e(A+BGq[i]C)(t−ti)x(ti), t ∈ [ti, ti+1],

on this time interval. However, the overall dynamics of the linear system
with LHFC on [0,∞) is complicated, because the function q(t) = (F∆Cx)(t)
at the moment t depends on the observable component of the trajectory
y(s) = Cx(s) at all moments s ≤ t. The equation (2.4.1) represents a
functional differential equation in which the delay depends on the solution
x(·). As it was said in the section 1.2, the study of the asymptotic proprieties
of the solutions for these systems is impossible only with the methods of the
ordinary differential equations ([2]) or with modern methods of differential
equations theory ([1], [3]).

Example 2.4.1. The hybrid control ũh from the example 2.3.1 (see also
the figures 2.8 and 2.9) is a linear hybrid control with two automaton states
such that, ũh ∈ LH(1, 1). That control is defined by ũh = (∆, {αq}q∈Q)
where the components of the hybrid automaton ∆ = (Q, I,M, T , j, q0) were
defined in 1)-6) of example 2.3.1 and

αqd = −3, αq− = 0.

Definition 2.4.4. Given the system (2.4) with hybrid control u. The func-
tion h : [0,∞)→ Rn ×Q× [0,∞) defined by

h(t) = (x(t), q(t), τ(t)), t ∈ [0,∞)

is called hybrid trajectory of the u-controllable system (2.4) in which the first
component x is the system’s trajectory, this is, the solution of (2.5), q(t) =
(F∆y)(t) the automaton’s state at the moment t and the third component
τ(t) is the remaining time until the next state switch.

2.5 Group of transformations GT . Classification
of the linear planar systems

Let Σ = M(2, 2,R) × (M(2, 1,R) \ {O}) × (M(1, 2,R) \ {O}), this means,
Σ is the set of all the trios of matrices (A,B,C) where A ∈ M(2, 2,R),
B ∈ M(2, 1,R) and and C ∈ M(1, 2,R), so that B and C are non-zero
matrices. Let us denote by GL(2) the multiplicative group of the square
non-singular real matrices of order 2.
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Definition 2.5.1. We define the applications T1(D), T2(m1,m2,m3) and
T3(α) from Σ to Σ by the formulas:

T1(D)(A,B,C) = (DAD−1, DB,CD−1), D ∈ GL(2);
T2(m1,m2,m3)(A,B,C) = (m1A,m2B,m3C),

m1 > 0, m2,m3 ∈ R \ {0};
T3(α)(A,B,C) = (A+ αBC,B,C), α ∈ R.

Let us consider the set of all the applications defined above:

GT0 = {T1(D) : D ∈ GL(2)}∪
{T2(m1,m2,m3) : m1 > 0; m2,m3 ∈ R \ {0}} ∪ {T3(α) : α ∈ R}.

It is clear that any element in T ∈ GT0 is a bijective function T : Σ→ Σ, this
means, is a transformation of the set Σ. Therefore, GT0 ⊂ B(Σ) where B(Σ)
is the group of all transformations on Σ with the binary operation that is
the composition of transformations. In that way we defined the transforma-
tion’s group GT , generated by the set GT0. Consider the following theorem
([9],[14]).

Theorem 2.5.1. Any transformation T ∈ GT can be represented as

T = T1(D) ◦ T2(m1,m2,m3) ◦ T3(α)

for some matrix D ∈ GL(2) and some constants m1 > 0, m2,m3 ∈ R \ {0}
and α ∈ R. The representation T = Ti(·) ◦ Tj(·) ◦ Tk(·) is also valid for any
of the six permutations {i, j, k} of the set {1, 2, 3}.

The meaning of the group GT in the problem of stabilization of planar
systems {

ẋ = Ax+Bu
y = Cx

, t ∈ [0,∞) (2.7)

with Ω = (A,B,C) ∈ Σ is clarified by the theorem below ([11],[14]).

Theorem 2.5.2. Let Ω ∈ Σ. Each of the predicates Pi : Σ → {0, 1} (i =
1, 2, 3) is an invariant of the group GT such that

P1(Ω) = {λ(Ω,LH1) < 0} = {Ω is stabilizable by a standard linear control},
P2(Ω) = {λ(Ω,LH) < 0} = {Ω is stabilizable by a linear hybrid control},
P3(Ω) = {λ(Ω,LH) = −∞} =

{Ω is stabilizable by any LHFC with any upper Lyapunov exponent}.

Note that the group GT generates the equivalence relation in Σ, so that
Ω1 ∼ Ω2 if and only if Ω2 = T (Ω1) for some T ∈ GT . The theorem 2.5.2
states that in the stabilization problem of the systems through the hybrid
control it is of a great importance to find the characteristic propriety of
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each class in terms of (A,B,C) and to highlight a representant of every
class, named the canonic form.

Let us present the result of this classification in the form of a table that
is analogue to the tables presented in [14] and [15], though by convenience,
presenting only the most important proprieties among those found in the
cited articles. But first, let us define some functions.

Let Σ1 = {Ω = (A,B,C) ∈ Σ: CB 6= 0}. The functions ω, η : Σ1 → R
defined by the formulas:

ω(Ω) = trA− CAB

CB
, η(Ω) =

CAB

CB
· ω(Ω)− detA.

Let Σ2 = {Ω = (A,B,C) ∈ Σ1 : η(A,B,C) 6= 0}. The function ψ : Σ2 → R
is defined by

ψ(Ω) =
ω(Ω)√
|η(Ω)|

.
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Class
notation

Characteristic
propriety

Canonical trio Invariants

S(1, 0, µ),

µ ∈ {−1, 0, 1}

CB=CAB=0,
λ1 = λ2,
µ = signλ1

([
µ 0
0 µ

]
,

[
0
1

]
, [1 0]

) (1, 1, 0) if µ = −1

(0, 0, 0) if µ ∈ {0, 1}

S(1, a,−1),

a ∈ R

CB=CAB=0,
λ1 < λ2,
AB = λ1B,

a = λ2+λ1

λ2−λ1

([
a 1
1 a

]
,

[
1
−1

]
, [1 1]

) (1, 1, 0) if a < −1

(0, 0, 0) if a ≥ −1

S(1, a, 1),

a ∈ R

CB=CAB=0,
λ1 < λ2,
AB = λ2B,

a = λ2+λ1

λ2−λ1

([
a 1
1 a

]
,

[
1
1

]
, [1 − 1]

) (1, 1, 0) if a < −1

(0, 0, 0) if a ≥ −1

S(2, 0, µ),

µ ∈ {−1, 0, 1}

CB = 0,
CAB 6= 0,
µ = sign trA

([
µ 1
−1 µ

]
,

[
0
1

]
, [1 0]

) (1, 1, 1) if µ = −1

(0, 1, 1) if µ ∈ {0, 1}

S(3, 0, µ),

µ ∈ {−1, 0, 1}

CB 6= 0,
η(Ω) = 0,
det[B AB] = 0,

det

[
C
CA

]
= 0,

µ = sign ω(Ω)

([
µ 0
0 µ

]
,

[
1
0

]
, [1 0]

) (1, 1, 0) if µ = −1

(0, 0, 0) if µ ∈ {0, 1}

S(3,−1, µ),

µ ∈ {−1, 0, 1}

CB 6= 0,
ν(Ω) = 0,
det[B AB] = 0,

det

[
C
CA

]
6= 0,

µ = sign ω(Ω)

([
µ 1
0 µ

]
,

[
1
0

]
, [1 0]

) (1, 1, 0) if µ = −1

(0, 0, 0) if µ ∈ {0, 1}

S(3, 1, µ),

µ ∈ {−1, 0, 1}

CB 6= 0,
η(Ω) = 0,
det[B AB] 6= 0,

det

[
C
CA

]
= 0,

µ = sign ω(Ω)

([
µ 0
1 µ

]
,

[
1
0

]
, [1 0]

) (1, 1, 0) if µ = −1

(0, 0, 0) if µ ∈ {0, 1}

S(4,−1, a),

a ∈ R

CB 6= 0,
η(Ω) < 0
a = ψ(Ω)

([
a 1
−1 a

]
,

[
1
0

]
, [1 0]

) (1, 1, 1) if a < 1

(0, 1, 1) if a ≥ 1

S(4, 1, a),

a ∈ R

CB 6= 0,
η(Ω) > 0
a = ψ(Ω)

([
a 1
1 a

]
,

[
1
0

]
, [1 0]

) (1, 1, 0) if a < 0

(0, 0, 0) if a ≥ 0

Using the table, let us select all the equivalence classes for which the
system (2.7) is LH-stabilizable but not LH1-stabilizable, in other words,
when the system is not stabilizable by any standard linear control but is
stabilizable by a hybrid control. These classes are S(2, 0, 0) (note that
the canonic form of this class is the harmonic oscillator), S(2, 0, 1) and
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S(4,−1, a) for a ≥ 0. A question arises: how, basing ourselves on the
results for the canonical trios, find LHFC that would stabilize any system
belonging to S(2, 0, a) and S(4,−1, a)? Currently this is an open problem.
In this way the purpose of this paper is presented, which is the described
problem for any system of equivalence classes that belong to the category
S(2, 0, µ) (µ ∈ {−1, 0, 1}). This means, it is necessary to find a linear hy-
brid control for any (A,B,C) ∈ Σ that satisfy the conditions CB = 0 and
CAB 6= 0 for any N > 0, so that λ(Ω(a), u) < −N . This problem is solved
in the next chapter of this paper.

But before proceeding to the presentation of these results, a brief sum-
mary of some results for the canonical forms of the classes S(2, 0, µ) pub-
lished in [6] and [12] is made in the next section.

2.6 Stabilization of the generalized harmonic os-
cillator through a linear hybrid control

Consider the linear differential system with control:{
ẋ=Aµx+B0u
y=C0x

with Ω[µ] =(Aµ, B0, C0)=

([
µ 1
−1 µ

]
,

[
0
1

]
, [1 0]

)
(2.8)

this is, the system 
ẋ1 = µx1 + x2

ẋ2 = −x1 + µx2 + u
y = x1

,

called the generalized harmonic oscillator. Again, note that the trio Ω[µ] =
(Aµ, B0, C0) of the system (2.8) is the canonical trio of the equivalence classes
H2(2, 0, µ) where µ ∈ {−1, 0, 1}. As in [12] and [6] we will not limit the study
of the system to these three values of the parameter µ but will consider the
system with an arbitrary parameter µ ∈ R. Let us present some basic results
on the stabilization of the system (2.8) through a linear hybrid control ([6]).

Let us define LHFC A(R, δ,m) ∈ LH, where R > 0, δ > 0 and m ∈
{0, 1} by A(R, δ,m) = (∆, {αq}q∈Q) where the components of the hybrid
automaton ∆ = (Q, I,M, T , j, q0) are given by

Q = {qd, q−}, I = {i+, i−},
M(qd, i+) = M(qd, i−) = M(q−, i−) = q−, M(q−, i+) = qd,

T (qd) = Td(R) =
3π

2
√

1 +R
, T (q−) = δ,

j(y) =

{
i+ if y ≥ 0
i− if y < 0

, q0 =

{
q− if m = 0
qd if m = 1

and {αq}q∈Q = {αq− , αqd} where αq− = 0, αqd = −R. The diagram hybrid
control A(R, δ,m) is presented in the figure 2.10.
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Figure 2.10: Linear hybrid control A(R, δ,m) of the system (2.8).

Note that LHFC ũh defined in the example 2.3.1, corresponding to the
figure 2.8 is a special case of the control A(R, δ,m) when R = 3 and m = 1.
The system’s trajectories (2.8) with µ = 0 and the control A(3, π/10, 1) in
the phase plane that have two different initial states x(0) are presented in
the figure 2.9.

Let us introduce the hybrid control families

A(R)=

{
A(R, δ,m) : 0<δ<

π

4
√

1+R
, m ∈ {0, 1}

}
(R > 0), A= ∪

R>0
A(R).

Of course that A(R) ⊂ A ⊂ LH.
Let us define the function Λ : (0,∞)→ (0,∞) by

Λ(R) =

√
1 +R ln(1 +R)

π
(
3 +
√

1 +R
) .

Let us now study the assymptotic proprieties of the system’s (2.8) tra-
jectories with controls from the class A(R, δ,m) ([6], [12]).

Theorem 2.6.1. For any R > 0 : λ(Ω(µ),A(R)) = µ−Λ(R). If µ < Λ(R),
then the system Ω(µ) is stabilizable through the family of hybrid controls
A(R), if µ > Λ(R) the system Ω(µ) is not stabilizable by the family of
hybrid controls A(R). (see the figure 2.11).

The theorem 2.6.2 implies the main result of this section.

Theorem 2.6.2. For any µ ∈ R it is valid: λ(Ω(µ),A) = −∞.
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Figure 2.11: Function µ = Λ(R).

Remark 2.6.1. The theorem 2.6.2 states that ∀µ ∈ R the generalized har-
monic oscillator (2.8) can be stabilized by a family of controls A, such that
a negative upper Lyapunov exponent −N can be chosen as large by the
modulo as we define it.

Theorem 2.6.3. Let µ ∈ R and N > 0 be arbitrary constants. Therefore,
for any R > Λ−1(µ+N) exists a δ0 = δ0(µ,N,R) > 0 such that ∀δ ∈ (0, δ0)
and ∀m ∈ {0, 1}, any solution x : [0,∞)→ R2 of the system Ω(µ) governed
by LHFC A(R, δ,m) satisfies the exponential estimate

|x(t)| ≤M e−Nt|x(0)|, t ∈ [0,∞)

where the constant M =M(µ,R, δ,m)> 0 does not depend on the solution
x(·).
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Chapter 3

Stabilization of systems for
case CB = 0, CAB 6= 0 with
hybrid control

3.1 Formulation of the problem

According to the classification made in the section 2.5, we have categories
of systems that can be stabilized by hybrid control and a hybrid control was
already constructed for the canonical cases of these categories (sections 2.6
and [12], [6]).

Specifically, the category S(2, 0, µ), which contains all the trios (A,B,C)
that satisfy BC = 0, CAB 6= 0 will be examined. This category consists
of three equivalence classes corresponding to cases when µ ∈ {−1, 0, 1} and
the characteristic propriety of each of these classes is CB = 0, CAB 6= 0
and sign trA = µ. The canonical form of these classes is

Ω[µ] =

([
µ 1
−1 µ

]
,

[
0
1

]
, [1 0]

)
.

The hybrid controls A(R, δ,m) that stabilize the system{
ẋ = Ax+Bu
y = Cx

,

with the canonical trio Ω[µ] and the results about the estimate of Lyapunov
exponents for the system’s solutions are presented in the section 2.6. By
having an arbitrary trio Ω that satisfies BC = 0, CAB 6= 0 the goal is to
construct a hybrid control with the trio Ω for the corresponding system,
using the theorem from the next section. This means, to construct a hybrid
control for an arbitrary system that belongs to the category in question.
For that it is necessary to determine the parameters of the transformation T
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from GT so that T (Ω) = Ω[µ] and with the aid on the inverse transformation
T−1, using the results from the sections 2.6 and 3.2–3.4 find the linear hybrid
control that stabilizes the system Ω with any upper Lyapunov exponent.

In summary, this chapter contains the solution for the problem described
above. This is the main problem of this paper and the results presented are
new.

3.2 Relation between hybrid trajectories of equiv-
alent systems

The denotations from the section 2.5, connected to the GT transformation
group will the followed.

Proposition 3.2.1. Let the transformation T ∈ GT be given and repre-
sented in the following form :

T = T1(D) ◦ T2(m1,m2,m3) ◦ T3(α)

for some matrix D ∈ GL(2) and some constants m1 > 0, m2,m3 ∈ R \ {0}
and α ∈ R.Then, the inverse transformation T−1 of T is defined by

T−1 = T3(−α) ◦ T2

(
m−1

1 ,m−1
2 ,m−1

3

)
◦ T1(D−1).

Theorem 3.2.1. Let the trios Ωi = (Ai, Bi, Ci) ∈ Σ (i = 1, 2) be given,
such that Ω2 = T (Ω1), T ∈ GT can be written as:

T = T3(α) ◦ T2(m1,m2,m3) ◦ T1(D), (3.1)

with some matrix D ∈ GL(2) and some constants m1 > 0, m2,m3 ∈ R \{0}
and α ∈ R.

Let us consider two controllable systems (S1) and (S2):

(S1) :

{
ẋ = A1x+B1u
u = C1y

,

with hybrid control

u1 = (∆1, {α(1)
q }q∈Q) ∈ LH(1, 1),

where ∆1 = (Q, I,M, T1, j1, q0),

(S2) :

{
ẋ = A2x+B2u
u = C2y

,

with hybrid control

u2 = (∆2, {α(2)
q }q∈Q)) ∈ LH(1, 1),

where ∆2 = (Q, I,M, T2, j2, q0),

such that the components Q, I,M, q0 of the hybrid automatons ∆i are the
same and

T2(q) = m−1
1 T1(q) (∀q ∈ Q), j2(y) = j1(y signm3) (∀y ∈ R),

α(2)
q =

m1

m2m3
α(1)
q − α (∀q ∈ Q).

(3.2)
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Consider the hybrid trajectories hi(t) = (x(i)(t), qi(t), τi(t)), (t ∈ [0,∞)) of
the systems (Si) (i = 1, 2), such that the initial conditions of the components
x(i) of these trajectories satisfy the relation x(2)(0) = Dx(1)(0). Then, the
following relations take place: ∀t ∈ [0,∞)

x(2)(t) = Dx(1)(m1t), q2(t) = q1(m1t), τ2(t) = m−1
1 τ1(m1t).

The results of the theorem above follow naturally from the results that
are found in [11], however, some changes were necessary because of some
inaccuracy found in it.

Corollary 3.2.1. Let us consider the same systems with hybrid controls
(S1) and (S2) as in theorem 3.2.1. For any solution x(1) of the system (S1)
the exponential estimate is satisfied:

|x(1)(t)| ≤M1 e
λt|x(1)(0)|, t ∈ [0,∞) (3.3)

such that the constants λ ∈ R and M1 > 0 that do not depend on the
solutions if and only if for any solution x(2) of system (S2) the exponential
estimate is satisfied:

|x(2)(t)| ≤M2 e
m1λt|x(2)(0)|, t ∈ [0,∞) (3.4)

such that M2 > 0 do not depend on the solution and the constant m1 > 0 is
the same as in the transformation (3.1).

Proof. By the theorem 3.2.1, a function x(1) : [0,∞) → R2 is a system’s
solution (S1) if and only if the function x(2) : [0,∞)→ R2 defined by

x(2)(t) = Dx(1)(m1t), t ∈ [0,∞),

which is the solution of the system (S2). So, from the estimate (3.3) we
have:

|x(2)(t)| = |Dx(1)(m1t)| ≤ ‖D‖ |x(1)(m1t)| ≤ ‖D‖M1 e
m1λt|x(1)(0)| =

‖D‖M1 e
m1λt|D−1x(2)(0)| ≤M2 e

m1λt|x(2)(0)|, t ∈ [0,∞)

where M2 = M1 ‖D‖ ‖D−1‖. Reciprocally, from the estimate (3.4) we have:

|x(1)(t)|= |D−1x(2)(m−1
1 t)|≤‖D−1‖ |x(2)(m−1

1 t)|≤‖D−1‖M2 e
m1m

−1
1 λt|x(2)(0)|

= ‖D−1‖M2 e
λt|Dx(1)(0)| ≤M1 e

λt|x(1)(0)|, t ∈ [0,∞)

where M1 = M2 ‖D−1‖ ‖D‖.

Corollary 3.2.2. Let us consider the same systems with the hybrid control
(S1) and (S2) as in the theorem 3.2.1, which means, the systems with the
trios Ωi = (Ai, Bi, Ci) such that Ω2 = T (Ω1) where T is defined by (3.1) with
controls ui ∈ LH connected by (3.2).Then the upper Lyapunov exponents of
(Si) satisfy the relation:

λ(Ω2, u2) = m1 λ(Ω1, u1).
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The corollary’s 3.2.2 proof follows from the corollary 3.2.1 and from the
definition 1.3.3.

3.3 Transformation of the trio (A,B,C) in case BC =
0, CAB 6= 0 into canonical form

In this section the transformation T ∈ GT will be determined in the form of
a composition of the transformations Ti(·) (i = 1, 2, 3) defined in the section
2.5 that transform a trio Ω that satisfies BC = 0, CAB 6= 0, in the canonical
trio

Ω[µ] = (A[µ], B0, C0) =

([
µ 1
−1 µ

]
,

[
0
1

]
, [1 0]

)
, µ ∈ {−1, 0, 1} (3.5)

Let the initial trio Ω be given and defined by

Ω = (A,B,C) =

([
a11 a12

a21 a22

]
,

[
b1
b2

]
, [c2 c2]

)
such that CB = b1c1 + b2c2 = 0, CAB 6= 0. Let µ = sign (trA). Accord-
ing to the classification presented in the section 2.5 there exists only one
transformation T ∈ GT such that T (Ω) = Ω[µ]. The goal now is to find the
representation of this transformation T in terms of elements of matrices A,
B and C. The problem is solved in some steps, described bellow.

1) First, the transformation T3(β) is applied, where

β =


2 detA− tr2A

2CAB
if trA 6= 0

detA− 1

CAB
if trA = 0

=
detA− 1

2 tr2A+ |µ| − 1

CAB
. (3.6)

We get a new trio

T3(β)(Ω) = T3(β)(A,B,C) = (A+ βBC,B,C) = (A1, B1, C1) = Ω1.

As it can be noted, the only matrix that suffers some transformations is the
matrix A, such that in the trio Ω1 the matrices B1 and C1 are the same to
the matrices B and C, respectively, from the initial trio Ω. Now the form
of the matrix A1 will be determined:

A1 =

[
a11 a12

a21 a22

]
+ β

[
b1
b2

] [
c1 c2

]
=

[
a11 + βb1c1 a12 + βb1c2

a21 + βb2c1 a22 + βb2c2

]
The goal of applying the transformation T3(β) is to obtain the matrix A1

with two complex eigenvalues which have the same real and imaginary parts
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by modulo. More precisely, we have

σ(A1) =


{

trA

2
− i · trA

2
,

trA

2
+ i · trA

2

}
, if trA 6= 0

{−i, i}, if trA = 0

Note that the idea of using the transformation T3(β) with the described
propriety of the spectrum of A1 can be found in [15], p.33, however, some
changes were necessary due to some inaccuracy in the expressions of β and
σ(A1).

2) Next, the transformation T2(ν, 1, 1) is applied to the trio Ω1 with

ν =


2

| trA|
, if µ ∈ {−1, 1}

1, if µ = 0
. (3.7)

The trio Ω2 = (A2.B2, C2) = T2(ν, 1, 1)(A1, A2, A3) is obtained. Being that
the two of the last parameters of T2 are equal to 1, the matrices B and C
remain the same. Thus, B2 and C2 are the same as B1 and C1, that are the
matrices B and C from the initial trio Ω. The matrix A2 has the following
form:

A2 = νA1 =

[
ν(a11 + βb1c1) ν(a12 + βb1c2)
ν(a21 + βb2c1) ν(a22 + βb2c2)

]
The goal of applying the transformation T2(ν, 1, 1) is to obtain the spectrum
σ(A2) = {µ− i, µ+ i} (∀µ ∈ {−1, 0, 1}).

3) The goal of this third step is to obtain the canonical matrix A[µ],
defined by (3.5) from the matrix A2. This transformation was obtained
from the theorem 9 in [7], p.299.

Let us determine a eigenvector v of the matrix A2 associated to the
eigenvalue λ = µ+ i:

(A2 − (µ+ i)I)v = 0 ⇒{ (
ν(a11 + βb1c1)− (µ+ i)

)
v1 + ν(a12 + βb1c2) v2 = 0

ν(a21 + βb2c1) v1 +
(
ν(a22 + βb2c2)− (µ+ i)

)
v2 = 0

⇒

v =

[
v1

v2

]
=

1

ν(a12 + βb1c2)

[
ν(a12 + βb1c2)

µ− ν(a11 + βb1c1) + i

]
,

and define a real matrix V by

V = [Re v Im v] =

 1 0
µ− ν(a11 + βb1c1)

ν(a12 + βb1c2)

1

ν(a12 + βb1c2)

 .
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Let us now apply the transformation T1(D) for the trio Ω2 where

D = V −1 =

[
1 0

ν(a11 + βb1c1)− µ ν(a12 + βb1c2)

]
. (3.8)

We obtain the trio Ω3 =(A3, B3, C3)=T1(D)(Ω2), such that, (see [7],p.299),

A3 = DA2D
−1 = V −1A2V =

[
µ 1
−1 µ

]
.

Note that the matrices B3 and C3 are:

B3 = DB =

[
b1

ν(a11b1 + a12b2)− µb1

]
,

C3 = CD−1 = CV =

[
c1 +

c2(µ− ν(a11 + βb1c1))

ν(a12 + βb1c2)

c2

ν(a12 + βb1c2)

]
.

So, by the steps 1), 2) and 3) the matrix A3 = A[µ] is obtained from the
canonical trio Ω[µ]. The goal of the next two steps in to find the transfor-

mations from the group GT that transform B3 and C3, to B0 = [0 1]> and
C0 = [1 0],conserving the matrix A3 = A[µ].

4) As it was deducted in [15], p.32, the matrix A3 commutes with any
matrix of form

L(ϕ, ε) =

[
ϕ ε
−ε ϕ

]
such that L(ϕ, ε)A3(L(ϕ, ε))−1 = A3. Let us find the values of ϕ and ε such
that L(ϕ, ε)B3 = B0 = [0 1]>. Solving the linear system L(ϕ, ε)B3 = B0,
this means{

b1 ϕ +
(
ν(a11b1 + a12b2)− µb1

)
ε = 0(

ν(a11b1 + a12b2)− µb1
)
ϕ − b1 ε = 1

,

in respect of ϕ and ε, we obtain

ϕ =
ν(a11b1 + a12b2)− µb1

b21 + (ν(a11b1 + a12b2)− µb1)2
, ε = − b1

b21 + (ν(a11b1 + a12b2)− µb1)2

(3.9)
Let us now apply the transformation T1(L), where L = L(ϕ, ε) with ϕ and
ε defined by (3.9), that means

L=
1

b21 + (ν(a11b1 + a12b2)− µb1)2

[
ν(a11b1 + a12b2)− µb1 −b1

b1 ν(a11b1 + a12b2)− µb1

]
.

The trio Ω4 = (A4, B4, C4) = T1(L)(Ω3) is obtained, where

A4 =LA3L
−1 = A3 =

[
µ 1
−1 µ

]
, B4 =LB3 =B0 =

[
0
1

]
, C4 =C3L

−1 =
[
δ 0
]
,
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where

δ =

(
ν(a11b1+a12b2)−µb1

)
·
(
c1 +

c2(µ− ν(a11 + βb1c1)

ν(a12 + βb1c2)

)
− b1c2

ν(a12 + βb1c2)
.

Simplifying the expression of δ, according to (3.6), (3.7) and CB = b1c1 +
b2c2 = 0, we obtain

δ = ν · det[B AB] · ω(B,C) (3.10)

sendo

ω(B,C) =


−c1

b2
, if b2 6= 0

c2

b1
, if b1 6= 0

Note that −c1/b2 = c2/b1 in case of b1b2 6= 0, because CB = 0. The constant
ω(B,C) has the following geometric interpretation: if consider B and C>

as vectors in R2, then we have ω(B,C) = |C>|/|B| if the angle between the
vectors B and C> are equal to π/2, and ω(B,C) = −|C>|/|B| if the angle
between the vectors B and C> is equal to −π/2.

5) At last, we apply the transformation T2(1, 1, δ−1), obtaining the canon-
ical trio Ω[µ] defined by (3.5).

6) Thus, a resultant transformation is presented:

T = T2(1, 1, δ−1) ◦ T1(L) ◦ T1(D) ◦ T2(ν, 1, 1) ◦ T3(β)

such that T (Ω) = Ω[µ]. By applying the propositions of the lema 2.6 from
the article [9], the transformation T can be presented in a much compact
form:

T = T1(LD) ◦ T2(ν, 1, δ−1) ◦ T3(β).

such that the matrices L, D and the real constants ν, δ and β are defined
in (3.3), (3.8), (3.7), (3.10) and (3.6), respectively. To conclude the formal-
ization of T , we compute the matrix LD and simplify the expressions of its
entries.

Thus, the following theorem has been proved:

Theorem 3.3.1. Let be given a trio of matrices

Ω = (A,B,C) =

([
a11 a12

a21 a22

]
,

[
b1
b2

]
, [c2 c2]

)
where CB = 0 and CAB 6= 0 and the trio

Ω[µ] = (A[µ], B0, C0) =

([
µ 1
−1 µ

]
,

[
0
1

]
, [1 0]

)
,
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where µ = sign (trA). Therefore there exists a unique transformation T ∈
GT such that T (Ω) = Ω[µ] and that transformation can be represented as
following:

T = T1(P ) ◦ T2(ν, 1, δ−1) ◦ T3(β),

where

ν =


2

| trA|
, if µ ∈ {−1, 1}

1, if µ = 0
, β =

detA− 1
2 tr2A+ |µ| − 1

CAB
,

δ = ν · det[B AB] · ω(B,C) such that ω(B,C) =


−c1

b2
, if b2 6= 0

c2

b1
, if b1 6= 0

and the elements of the matrix P =

[
p1 p2

p3 p4

]
are defined by

p1 =
ν(a12b2 − βb21c1)

b21 + (ν(a11b1 + a12b2)− µb1)2
,

p2 =
−b1ν(a12 + βb1c2)

b21 + (ν(a11b1 + a12b2)− µb1)2
,

p3 =
b1 + (ν(a11b1 + a12b2)− µb1)(ν(a11 + βb1c1)− µ)

b21 + (ν(a11b1 + a12b2)− µb1)2
,

p4 =
ν(ν(a11b1 + a12b2)− µb1)(a12 + βb1c2)

b21 + (ν(a11b1 + a12b2)− µb1)2
.

Let us now present three examples of the trios Ω = (A,B,C) ∈ Σ from
the category with the invariant CB = 0, CAB 6= 0 that belong to the three
different equivalence classes H(2, 0, µ) for µ = 1, µ = −1 and µ = 0, and
construct for each of the trios, basing ourselves on the theorem 3.3.1, the
transformation T that maps this trio into the canonical trio Ω[µ].

Example 3.3.1. Consider the trio of matrices

Ω = (A,B,C) =

([
1 −2
5 3

]
,

[
4
−1

]
, [1 4]

)
.

Of course that CB = 0, CAB 6= 0 and µ = sign (trA) = sign 4 = 1. So,
Ω ∈ H(2, 0, 1). Also note that σ(A) = {2− 3i, 2 + 3i}. The transformation
T that maps Ω to the canonical form

Ω[1] =

([
1 1
−1 1

]
,

[
0
1

]
, [1 0]

)
,
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(T ∈ GT , such that T (Ω) = (Ω[1])) is defined by the formula:

T = T1

([
1
37

4
37

19
74

1
37

])
◦ T2

(
1

2
, 1,

1

37

)
◦ T3

(
5

74

)
,

Example 3.3.2. Let us consider the trio of matrices

Ω = (A,B,C) =

([
1 2
5 −2

]
,

[
−1

0

]
,

[
0

5

4

])
.

CB = 0, CAB 6= 0 and µ = sign (trA) = sign (−1) = −1. Therefore
Ω ∈ H(2, 0,−1). Also note that σ(A) = {−4, 3}. The transformation T
that maps Ω into a canonical form

Ω[−1] =

([
−1 1
−1 −1

]
,

[
0
1

]
, [1 0]

)
,

is defined by:

T = T1

([
0 − 1

10

−1 3
10

])
◦ T2

(
2, 1,− 2

25

)
◦ T3 (2) ,

Example 3.3.3. Consider the trio

Ω = (A,B,C) =

([
−5 −1

0 5

]
,

[ √
2

3

]
,
[
−6 2

√
2
])

.

CB = 0,CAB 6= 0 and µ = sign (trA) = sign 0 = 0. So, Ω ∈ H(2, 0, 0).
Note, σ(A) = {−5, 5}. T that transforms Ω into the canonical form

Ω[0] =

([
0 1
−1 0

]
,

[
0
1

]
, [1 0]

)
,

this means, T ∈ GT tal que T (Ω) = (Ω[0]),is defined by:

T = T1

− 1
3+10

√
2

√
2

3(3+10
√

2)

5
3+10

√
2

91+15
√

2
573

◦T2

(
1, 1,

1

18 + 60
√

2

)
◦T3

(
− 13

9 + 30
√

2

)
,

3.4 Inverse Transformation

Let Ω = (A,B,C) be an arbitrary trio, such that CB = 0, CAB = 0.
Having the transformation

Td = T1(P ) ◦ T2(ν, 1, δ−1) ◦ T3(β),
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such that T (Ω) = Ω[µ] where µ = sign (trA) (see the theorem 3.3.1), let us
now determine the inverse transformation of Td, this is, the transformation
T = T−1

d such that T (Ω[µ]) = Ω.
According to the proposition 3.2.1 the transformation T can be repre-

sented in the following form :

T = T3(α) ◦ T2(a, b, c) ◦ T1(D)

where

D = P−1, a =
1

ν
, b = 1, c = δ, α = −β.

Using the formulas of the theorem 3.3.1, by rewriting the parameters of T
in function of the matrices of the trio Ω, we get the following theorem:

Theorem 3.4.1. Let the trio of matrices

Ω = (A,B,C) =

([
a11 a12

a21 a22

]
,

[
b1
b2

]
, [c2 c2]

)
be given,where CB = 0, CAB 6= 0 and the trio

Ω[µ] = (A[µ], B0, C0) =

([
µ 1
−1 µ

]
,

[
0
1

]
, [1 0]

)
,

where µ = sign (trA). There exists a unique transformation T ∈ GT such
that T (Ω[µ]) = Ω and that transformation can be represented in the following
form:

T = T3(α) ◦ T2(a, b, c) ◦ T1(D),

where

α =
1
2 tr2A− detA+ 1− |µ|

CAB
, a =

| trA|
2

+ 1− |µ|, b = 1,

c=
1

a
det[B AB] ω(B,C) with ω(B,C)=


−c1

b2
, if b2 6= 0

c2

b1
, if b1 6= 0

,

D =


(a11 − a22)b1 + 2a12b2

2a
b1

2a21b1 − (a11 − a22)b2
2a

b2

 .
(3.11)

For each trio from the examples 3.3.1, 3.3.2 and 3.3.3 let us present a
transformation T that maps a the canonical trio to these trios. The trans-
formation T can be obtained from the theorem 3.4.1 or by inverting the
transformation that was obtained in each of the examples in the section 3.3
with the use of the proposition 3.2.1.
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Example 3.4.1. Consider the trio of matrices

Ω = (A,B,C) =

([
1 −2
5 3

]
,

[
4
−1

]
, [1 4]

)
.

in which CB = 0, CAB 6= 0 and µ = sign (trA) = 1. The transformation
T ∈ GT such that T (Ω[1]) = Ω is defined by the formula

T = T1

([
−1 4

19
2 −1

])
◦ T2 (2, 1, 37) ◦ T3

(
− 5

74

)
,

Example 3.4.2. Consider the trio

Ω = (A,B,C) =

([
1 2
5 −2

]
,

[
−1

0

]
,

[
0

5

4

])
.

such that CB = 0, CAB 6= 0 and µ = sign (trA) = −1. The transformation
T ∈ GT such that T (Ω[−1]) = Ω is defined by the formula

T = T1

([
−3 −1
−10 0

])
◦ T2

(
1

2
, 1,−25

2

)
◦ T3 (−2) ,

Example 3.4.3. Consider the trio

Ω = (A,B,C) =

([
−5 −1

0 5

]
,

[ √
2

3

]
,
[
−6 2

√
2
])

.

such that CB = 0, CAB 6= 0 and µ = sign (trA) = 0. The transformation
T ∈ GT such that T (Ω[0]) = Ω is defined by the formula

T = T1

([
−3− 5

√
2
√

2

15 3

])
◦ T2

(
1, 1, 18 + 60

√
2
)
◦ T3

(
13

9 + 30
√

2

)
,

3.5 Construction of a stabilizing hybrid control for
case CB = 0, CAB 6= 0

Consider the controllable differential linear two-dimensional system:
ẋ1 = a11x1 + a12x2 + b1u
ẋ2 = a21x1 + a22x2 + b2u
y = c1x1 + c2x2

(3.12)

where u(·) : [0,∞)→ R depends only from the output u(·) : [0,∞)→ R by
a linear hybrid control. Suppose that the real parameters a11, a12, a21, a22,
b1, b2, c1, c2 of the system that satisfy the conditions:

b1c1 + b2c2 = 0, a11b1c1 + a12b2c1 + a21b1c2 + a22b2c2 6= 0. (3.13)

45



This section contains the main results of this paper: the control u ∈ LH
that stabilizes the system (3.12), satisfying (3.13),such that the solution’s
norm decreases exponentially with any Lyapunov exponent.

Note that the system (3.12) with the conditions (3.13) in its vectorial
form is: {

ẋ = Ax+Bu
y = Cx

(3.14)

in which the trio of matrices

Ω = (A,B,C) =

([
a11 a12

a21 a22

]
,

[
b1
b2

]
, [c2 c2]

)
satisfies CB = 0 and CAB 6= 0. Thus, we have the trio from the class
H(2, 0, µ) where µ = sign (trA) ∈ {−1, 0, 1}. The canonical form of the
class H(2, 0, µ) is

Ω[µ] = (A[µ], B0, C0) =

([
µ 1
−1 µ

]
,

[
0
1

]
, [1 0]

)
,

According to the theorem 3.4.1 the transformation T ∈ GT exists and is
unique and T (Ω[µ]) = Ω. This transformation can be presented as following:

T = T3(α) ◦ T2(a, b, c) ◦ T1(D) (3.15)

such that the constants α, a, b, c and the matrix D are defined by the for-
mulas (3.11).

Let us generalize the results from the section 2.6, concerning the stabi-
lization of the system Ω[µ] by a control A(R, δ,m) ∈ LH defined in (2.6)
(see also the figure 2.10), for the system with an arbitrary trio Ω such that
CB = 0, CAB 6= 0. The generalization is based on the theorems 3.2.1 and
3.4.1.

Firstly, let us define the LHFC H(Ω, R, δ,m) ∈ LH such that R > 0,
δ > 0 and m ∈ {0, 1} in the following way. If (S1) is the system with the
trio Ω[µ] and control u1 = A(R, δ,m) defined in (2.6) and (S2) is the system
with the trio Ω and control u2 = H(Ω, R, δ,m), then the parameters of the
control u2 can be expressed by the parameters of the control u1 using the
formulas (3.2) from the theorem 3.2.1 with the use of the expressions (3.11)
from the theorem 3.4.1 for the transformation parameters T (T has the form
(3.15) such that T (Ω[µ]) = Ω).

Definition 3.5.1. Given Ω ∈ Σ defined by (3.14) where CB = 0 and
CAB 6= 0 and given R > 0, δ > 0 and m ∈ {0, 1} the LHFC H(Ω, R, δ,m) ∈
LH is defined by H(Ω, R, δ,m) = (∆, {αq}q∈Q) where the components of the
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hybrid automaton ∆ = (Q, I,M, T, j, q0) are given by

Q = {qd, q−}, I = {i+, i−},

M(qd, i+) = M(qd, i−) = M(q−, i−) = q−, M(q−, i+) = qd,

T (qd) = Td(R, a) =
3π

2a
√

1 +R
, T (q−) = δ,

j(y) =

{
i+ if νy ≥ 0
i− if νy < 0

, q0 =

{
q− if m = 0
qd if m = 1

(3.16)

such that

a =
| trA|

2
+ 1− |µ|, where µ = sign (trA),

c=
1

a
det[B AB] ω(B,C) where ω(B,C)=


−c1

b2
, if b2 6= 0

c2

b1
, if b1 6= 0

,

α =
1
2 tr2A− detA+ 1− |µ|

CAB
, ν = sign (c),

(3.17)

and {αq}q∈Q = {αq− , αqd} where αq− = 0 and αqd = −
(a
c
R+ α

)
.

The diagram of the hybrid control H(Ω, R, δ,m) is presented in the figure
3.1.

Figure 3.1: Linear hybrid control H(Ω, R, δ,m) where a, c, α, ν are defined
in (3.17).

47



The families of hybrid controls are introduced.

H(Ω, R) =

{
H(Ω, R, δ,m) : 0 < δ <

π

4a
√

1 +R
, m ∈ {0, 1}

}
(R > 0),

H(Ω) = ∪
R>0
H(Ω, R).

It is clear that H(Ω, R) ⊂ H(Ω) ⊂ LH.
As in the section 2.6 we define the function Λ : (0,∞)→ (0,∞) by

Λ(R) =

√
1 +R ln(1 +R)

π
(
3 +
√

1 +R
) .

We remember that in this section we always consider the system (3.12)
satisfying the conditions (3.13), or, indeed, the system (3.14) with trio Ω =
(A,B,C) satisfying the condition CB = 0, CAB 6= 0. For convenience we
designate this system for (S).

The theorems 2.6.1–2.6.3, 3.4.1 and the corollaries 3.2.1–3.2.2 imply the
theorems below that consist of the main results of this paper.

Theorem 3.5.1. For any R > 0 , λ(Ω,H(Ω, R)) = a(µ − Λ(R)), where µ
and a are defined in (3.17).

Theorem 3.5.2. 1) If trA ≤ 0 (this is, when µ = −1 ou µ = 0), then
∀R > 0 the system (S) is stabilizable by a family of hybrid controls H(Ω, R).

2) If trA > 0 (this is, when µ = 1), then in case R > Λ−1(1), the
system (S) is stabilizable by a family of hybrid controls H(Ω, R) and in case
R < Λ−1(1) the system (S) is not stabilizable by a family of hybrid controls
A(Ω, R) (see the figure 3.2).

Figure 3.2: Function s = Λ(R).
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Remark 3.5.1. Note that Λ−1(1) ≈ 69.89 .

Theorem 3.5.3. For any Ω ∈ Σ, such that CB = 0, CAB 6= 0, λ(Ω,H(Ω)) =
−∞.

Remark 3.5.2. According to the theorem 3.5.3, the system (S) is stabilizable
by the hybrid controls from the family H(Ω), such that the negative upper
Lyapunov exponent in the solution estimate can be as large by modulo as
we define it.

Let us complement the theorems 3.5.1–3.5.3 with a result which word-
ing is more convenient for the applications. Also note that exists Λ−1 :
(0,∞) → (0,∞) such that lim

s→0+
Λ−1(s) = 0 and lim

s→+∞
Λ−1(s) = +∞. For

convenience, let us extend the function Λ−1 to any set R by assigning,by
definition Λ−1(s) = 0 when s ≤ 0.

Figure 3.3: Function R = Λ−1(s).

Theorem 3.5.4. Let N > 0 be an arbitrary constant.Then, for any positive
number R that satisfies

R > Λ−1

(
sign (trA) +N

(
| trA|

2
+ 1− |µ|

)−1
)

(3.18)

where

Λ(R) =

√
1 +R ln(1 +R)

π
(
3 +
√

1 +R
)

exists δ0 = δ0(trA,N,R) > 0 such that ∀δ ∈ (0, δ0) and ∀m ∈ {0, 1} any
solution of the equation x : [0,∞) → R2 of the system (S) with LHFC
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H(Ω, R, δ,m) satisfies the exponential estimate

|x(t)| ≤M e−Nt|x(0)|, t ∈ [0,∞)

where the constant M =M(Ω, R, δ,m)> 0 does not depend on the solution
x(·).

Remark 3.5.3. The inequality (3.18) is common for the cases µ ∈ {−1, 0, 1}.
Of course that in each of these three cases this inequality admits a more
simple form:

if trA < 0, then the condition (3.18) is equivalent to the condition

R > Λ−1

(
−1− 2N

trA

)
;

if trA = 0, then the condition (3.18) is equivalent to the condition

R > Λ−1 (N) ;

if trA > 0, then the condition (3.18) is equivalent to the condition

R > Λ−1

(
1 +

2N

trA

)
.

3.6 Examples of the systems that satisfy CB = 0,
CAB 6= 0 and stabilizing hybrid controls

In this section we will consider three specific systems of type (3.12) that
correspond to the trios (A,B,C) considered in the examples from the sec-
tions 3.3 and 3.4. For these systems, based on the results of the section 3.5,
linear hybrid controls that stabilize it will be presented. Even more, the
chosen control parameters are the ones that decrease the solution’s norm as
in (3.5.4) with a given upper Lyapunov exponent−N . Let us first define the
function Λ : (0,∞)→ (0,∞) by

Λ(R) =

√
1 +R ln(1 +R)

π
(
3 +
√

1 +R
) (3.19)

(see Figure 3.2). For convenience, consider that the function Λ−1 is pro-
longed to R where by definition, Λ−1(s) = 0 when s ≤ 0 (see Figure 3.3).
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Example 3.6.1. Consider the system:
ẋ1 = x1 − 2x2 + 4u
ẋ2 = 5x1 + 3x2 − u
y = x1 + 4x2

(3.20)

or, in the vectorial form:{
ẋ = Ax+Bu
y = Cx

with Ω = (A,B,C) =

([
1 −2
5 3

]
,

[
4
−1

]
, [1 4]

)
.

(3.21)
We have CB = 0 and CAB 6= 0. Let us compute the constants µ, a, c, ν, α
by the formulas (3.17):

µ = sign (trA) = 1, a =
| trA|

2
+ 1− |µ| = 2, c =

c2

ab1
det[B AB] = 37,

ν = sign (c) = 1, α =
1
2 tr2A− detA+ 1− |µ|

CAB
= − 5

74
.

(3.22)
Consider the hybrid control H(Ω, R, δ,m) = ((Q, I,M, T, j, q0), {α−, αd}) ∈
LH defined in the section 3.5. According to the definition 3.5.1 and the
expressions (3.22), the control components are given by:

Q = {qd, q−}, I = {i+, i−},

M(qd, i+) = M(qd, i−) = M(q−, i−) = q−, M(q−, i+) = qd,

T (qd) = Td(R, a) =
3π

4
√

1 +R
, T (q−) = δ,

j(y) =

{
i+ if y ≥ 0
i− if y < 0

, q0 =

{
q− if m = 0
qd if m = 1

,

αq− = 0, αqd =
1

74
(5− 4R),

check the diagram in the figure 3.4.
The theorems 3.5.2 and 3.5.4 imply the following conclusions about the

system (3.20) with linear hybrid control H(Ω, R, δ,m).

Conclusion 1. For any m ∈ {0, 1}, R > Λ−1(1) ≈ 69.89 where Λ is
defined in (3.19) and for all sufficiently small δ > 0 the system (3.20) is
stabilizable by the hybrid control H(Ω, R, δ,m).

Conclusion 2. Let N > 0. For any m ∈ {0, 1}, R > Λ−1(1 +N/2) and
for all sufficiently small δ > 0, any solution x : [0,∞) → R2 of the system
(3.20) with control H(Ω, R, δ,m) satisfies the exponential estimate

|x(t)| ≤M e−Nt|x(0)|, t ∈ [0,∞)
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Figure 3.4: Hybrid control H(Ω, R, δ,m) for Ω defined in (3.21).

where the constant M =M(Ω, R, δ,m)>0 does not depend on the solution
x(·).

For example, if a decrease of the solution with N = 2 is needed, then
we can conclude that if R > Λ−1(2) ≈ 977.35 and δ > 0 is sufficiently
small, then any solution x of the system (3.20) with control H(Ω, R, δ, 0) or
H(Ω, R, δ, 1) satisfies the condition

|x(t)| ≤M e−2t|x(0)|, t ∈ [0,∞)

where M > 0 does not depend on the solution.

Example 3.6.2. Consider the system:
ẋ1 = x1 + 2x2 − u
ẋ2 = 5x1 − 2x2

y = 5
4x2

(3.23)

or, in its vectorial form:{
ẋ = Ax+Bu
y = Cx

with Ω = (A,B,C) =

([
1 2
5 −2

]
,

[
−1

0

]
,

[
0

5

4

])
.

(3.24)
We have CB = 0 and CAB 6= 0. Let us compute the constants µ, a, c, ν, α
by the formulas (3.17):

µ=sign (trA)=−1, a=
| trA|

2
+1−|µ|= 1

2
, c=

c2

ab1
det[B AB]=−25

2
,

ν = sign (c) = −1, α =
1
2(trA)2 − detA+ 1− |µ|

CAB
= −2.

(3.25)
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Consider the hybrid control H(Ω, R, δ,m) = ((Q, I,M, T, j, q0), {α−, αd}) ∈
LH2 defined in the section 3.5. According to the definition 3.5.1 and the
expressions (3.25), the components of this control are given by:

Q = {qd, q−}, I = {i+, i−},

M(qd, i+) = M(qd, i−) = M(q−, i−) = q−, M(q−, i+) = qd,

T (qd) = Td(R, a) =
3π√
1 +R

, T (q−) = δ,

j(y) =

{
i+ if y ≤ 0
i− if y > 0

, q0 =

{
q− if m = 0
qd if m = 1

,

αq− = 0, αqd =
R

25
+ 2,

see the diagram in the figure 3.5.

Figure 3.5: O hybrid control H(Ω, R, δ,m) for Ω defined in (3.24).

Theorems 3.5.2 and 3.5.4 imply the following about the system (3.23)
with LHFC H(Ω, R, δ,m).

Conclusion 1. For any m ∈ {0, 1}, R > Λ−1(1) ≈ 69.89 where Λ is
defined in (3.19) and for all sufficiently small δ > 0 the system (3.23) is
stabilizable by the hybrid control H(Ω, R, δ,m).

Conclusion 2. Let N > 0. For any m ∈ {0, 1}, R > Λ−1(2N − 1) and
for all small δ > 0, any solution x : [0,∞) → R2 of the system (3.23) with
control H(Ω, R, δ,m) satisfies the exponential estimate

|x(t)| ≤M e−Nt|x(0)|, t ∈ [0,∞)
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where the constant M =M(Ω, R, δ,m)>0 does not depend on the solution
x(·).

For example, if a decrease of the solution with N = 2 is needed, then we
can conclude that if R > Λ−1(3) ≈ 15545 and δ > 0 is sufficiently small, then
any solution x of the system (3.23) with control H(Ω, R, δ, 0) or H(Ω, R, δ, 1)
satisfies the condition

|x(t)| ≤M e−2t|x(0)|, t ∈ [0,∞)

where M > 0 does not depend on the solution.

Example 3.6.3. Consider the system
ẋ1 = −5x1 − x2 +

√
2u

ẋ2 = 5x2 − 2x2 + 3u

y = −6x1 + 2
√

2x2

(3.26)

and in its vectorial form{
ẋ = Ax+Bu
y = Cx

with Ω = (A,B,C)=

([
−5 −1

0 5

]
,

[ √
2

3

]
,
[
−6 2

√
2
])

.

(3.27)
CB = 0 and CAB 6= 0. Let us compute the constants µ, a, c, ν, α by the
formulas (3.17):

µ! =sign (trA) = 0, a=
| trA|

2
+1−|µ|=1, c=

c2

ab1
det[B AB]=18 + 60

√
2,

ν = sign (c) = 1, α =
1
2 tr2A− detA+ 1− |µ|

CAB
=

13

9 + 30
√

2
.

(3.28)
Consider the hybrid control H(Ω, R, δ,m) = ((Q, I,M, T, j, q0), {α−, αd}) ∈
LH2 defined in the section 3.5. According to the definition 3.5.1 and the
expressions (3.28), the components of this control are given by:

Q = {qd, q−}, I = {i+, i−},

M(qd, i+) = M(qd, i−) = M(q−, i−) = q−, M(q−, i+) = qd,

T (qd) = Td(R, a) =
3π

2
√

1 +R
, T (q−) = δ,

j(y) =

{
i+ if y ≥ 0
i− if y < 0

, q0 =

{
q− if m = 0
qd if m = 1

,

αq− = 0, αqd = − R+ 26

6(3 + 10
√

2)
,
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Figure 3.6: O hybrid control H(Ω, R, δ,m) para Ω definido em (3.27).

see the diagram from the figure 3.6.
Theorems 3.5.2 and 3.5.4 imply the following about the system (3.26)

with LHFC H(Ω, R, δ,m).

Conclusion 1. For any m ∈ {0, 1}, R > Λ−1(1) ≈ 69.89 where Λ is
defined in (3.19) and for all sufficiently small δ > 0 the system (3.26) is
stabilizable by the hybrid control H(Ω, R, δ,m).

Conclusion 2. Let N > 0. For any m ∈ {0, 1}, R > Λ−1(N) for all
small δ > 0 any solution x : [0,∞) → R2 of the system (3.26) with control
H(Ω, R, δ,m) satisfies the exponential estimate

|x(t)| ≤M e−Nt|x(0)|, t ∈ [0,∞)

where the constant M =M(Ω, R, δ,m)>0 does not depend on the solution
x(·).

For example, if a decrease of the solution with N = 2 is needed, then
we can conclude that if R > Λ−1(2) ≈ 977.35 and δ > 0 is sufficiently
small, then any solution x of the system (3.26) with control H(Ω, R, δ, 0) or
H(Ω, R, δ, 1) satisfies the condition

|x(t)| ≤M e−2t|x(0)|, t ∈ [0,∞)

where M > 0 does not depend on the solution.
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