
Effect of Photoacoustic Radar Chirp 

Parameters on Profilometric Information 

 

 

 

 

A thesis submitted to 

the Faculty of Engineering 

in partial fulfillment of the requirements for the 

degree of Master of Applied Science in 

Mechanical Engineering 

 

 

 

by 

Zuwen Sun 

 

 

 

 

 

 

Ottawa-Carleton Institute for Mechanical and Aerospace Engineering 

University of Ottawa 

Ottawa, Ontario, Canada, K1N 6N5 

January 2018 

 

 

© Zuwen Sun, Ottawa, Canada, 2018 



ii 

Abstract 

 

Photoacoustic imaging for biomedical application has attracted much research in 

recent years.  To date, most of the work has focused on pulsed photoacoustics. 

Recent developments have seen the implementation of a radar pulse compression 

methodology into continuous wave photoacoustic modality, however very little theory 

has been developed in support of this approach.  In this thesis, the one-dimensional 

theory of radar photoacoustics for pulse compressed linear frequency modulated 

continuous sinusoidal laser photoacoustics is developed.  The effect of the chirp 

parameters on the corresponding photoacoustic signal is investigated, and guidelines 

for choosing the chirp parameters for absorber profilometric detection are given based 

on the developed theory and simulations. Simulated results are also compared to 

available experimental results and show a good agreement.    

 

Key words: Photoacoustic, Pulse compression, Autocorrelation, photoacoustic radar. 
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1 Introduction 

1.1 Background: Introduction to Photoacoustic Imaging 

 

Photoacoustic phenomenon (also called optoacoustic phenomenon) was discovered 

more than a century ago [1]. However, the application of this phenomenon to 

biomedical imaging started only around several decades ago [2], [3]. Presently, the 

intended purpose of using this imaging method in biomedical engineering is mainly 

for early cancer detection. 

 

X-ray radiography (mammography), magnetic resonance imaging (MRI), and 

ultrasound are the three prevailing imaging techniques that are currently available for 

breast cancer detection. All these techniques have their own advantages of detecting 

cancers, but they also have limitations.  

 

The main advantage of photoacoustic imaging (also called photoacoustic tomography, 

PAT) is that it combines the advantages of both optical and acoustical methods: 

sensitive optical absorption contrast and low acoustic scattering in soft tissue. Using 

safe illumination sources, the photoacoustic effect can be applied to biological tissues. 

In addition, optical absorption is highly related to molecular constitution and 

formation. Thus, photoacoustic signals contain functional and molecular information 

[4]. 

 

The governing physical principles behind PAT are straight forward.  

 

Figure 1 Photoacoustic tomography 
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As shown in Figure 1, the absorbing material is irradiated by a modulated 

electromagnetic wave. Some of the energy of the incident wave will be absorbed by 

the absorber which then causes a heating effect. In turn, this heating will cause a 

thermoelastic expansion which leads to the generation of an ultrasonic wave. The 

ultrasonic wave is then detected by a transducer and analyzed by different signal 

processing methods. Since the ultrasonic wave is generated because of the absorption 

of the incident electromagnetic wave, the PAT methodology is actually detecting 

differences between tissue absorption coefficients. The time delayed profile of the 

ultrasonic wave detected by the transducer thus carries tissue absorption coefficient 

profilometric information. As there is a large difference in optical absorption between 

blood and surrounding tissue, the ultrasound wave induced by the electromagnetic 

irradiation carries information about the optical absorption property of the tissue and 

can be used for imaging of the microvascular system or tissue characterization. 

 

There are presently two different approaches of excitation, or in other words, two 

different light sources that can be sent to the target tissue. The most common 

excitation source used in past decades has been a pulsed laser source, which utilizes 

an extremely short duration and high intensity laser pulse as the excitation source. The 

other source that has also recently attracted researchers’ attention is a longer duration 

continuous wave laser beam that has a lower intensity.  

 

1.2 Motivation 

 

Much research has been done to advance the science of photoacoustic imaging. 

However, most of the work to date has focused on pulsed laser excitation. This 

approach uses powerful nanosecond electromagnetic wave pulses to generate the 

acoustic transients, as seen in the work of Kruger [5], [6] and Wang [7]–[9]. This 

modality allows one to find the distribution of heat sources directly from the shape of 

the photoacoustic signal [10]. However, the pulsed laser modality has disadvantages 
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mainly due to the hard-to-control depth localization of the absorber, as well as the fact 

that the incident energy level is limited by safety standards for in-vivo tissue imaging 

[11]. Furthermore, the laser source in this modality is expensive and larger in size 

compared to a continuous wave diode laser source. An alternative excitation source 

must be developed in order to avoid the disadvantages of pulsed laser photoacoustics. 

 

The alternative continuous wave excitation modality which has recently attracted 

researchers’ attention uses a linear frequency modulated sinusoidal laser waveform 

rather than a simple short pulse. The intensity of the incident laser beam is modulated 

into a linearly modulated sinusoidal wave form and pulse compression techniques 

from radar are implemented. This kind of incident waveform is usually referred to as 

a “Chirp” in traditional radar technology. Mandelis and his team originally developed 

this modality [11], [13]–[18], which they refer to as photoacoustic radar. The idea is 

that pulse compression techniques are implemented in the imaging modality in order 

to achieve a better signal to noise ratio (SNR) and better resolution [18]. However, the 

effects of the laser chirp parameters on the corresponding PA signal are still not well 

understood. The received signal does not appear to carry sufficient absorber 

profilometric information. In order to obtain acceptable absorber profilometric 

information, a theory of photoacoustic radar needs to be developed and the effect of 

the parameters of the chirp on the resulting photoacoustic signal needs to be 

investigated.   

 

1.3 Objectives  

 

The goal of this thesis is to develop a one-dimensional theory of linear frequency 

modulated sinusoidal laser chirp photoacoustic imaging, and to investigate the chirp 

parameters’ effects on corresponding photoacoustic signals through simulation. 

Subsequently, the goal is to develop guidelines for choosing the chirp parameters to 

obtain a photoacoustic signal which carries acceptable absorber profilometric 
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information. The effect of the chirp parameters on the photoacoustic signal to noise 

ratio is also investigated. 

 

In this thesis, the photoacoustic radar theory will be developed in one dimension.  

The model representing the absorbing and surrounding tissue will be considered as a 

three layer model as shown in Figure 2.  

 

 

Figure 2 Absorbing system model 

 

Two different absorber profiles will be considered. The first one is where the absorber 

is modelled as a square function in space, which implies that the intensity of the 

incident laser light does not decay as it passes through the absorber. The second case 

considered is where the laser intensity will decay in the absorber and the decay is 

modelled as being exponential. The mathematical expressions of the photoacoustic 

signals will be developed for these two different cases and then simulated with 

symbolic computer algebra software (Maple). Subsequently, the effect of the different 

chirp parameters will be investigated via simulation. 

 

1.4 Contributions of the thesis 

 

The contributions of this thesis are shown as follows: 

 

1. Two different absorber profiles have been proposed and their corresponding 

mathematical models have been developed in closed form. 
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2. Mathematical expressions of the pulse-compressed photoacoustic signal response 

of two different types of absorber under illumination by a linear frequency modulated 

laser chirp have been developed. 

 

3. Mathematical expressions of the Signal-to-Noise Ratio (SNR) for a bandlimited 

absorber and square absorber have been developed. 

  

4. The effect of the chirp parameters on the corresponding photoacoustic signals are 

investigated.  

 

5. Guidelines on how to choose the parameters of the chirp in order to obtain a 

photoacoustic signal with acceptable absorber profilometric information are proposed. 

 

6.  The effect of the different chirp parameters on the photoacoustic SNR is 

determined through development of closed-form expressions and simulations. 

 

7. Simulations are performed using the chirp parameters used in available 

experimental results [19], and compared with the experimental results. The 

comparison shows that the guidelines developed in this thesis for choosing chirp 

parameters predict a similar result to that obtained in the experiments. 

 

1.5 Outline of the thesis 

 

The thesis is organized as follows. Chapter 2 presents the literature review, which 

gives an overview of historical and current research. In Chapter 3, closed-form 

photoacoustic signal responses for a square absorber and exponential decay absorber 

are developed and illustrated. In Chapter 4, the closed form expressions of SNR for 

bandlimited and square absorbers are developed and investigated. Several simulations 
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are performed in Chapter 5 to illustrate the chirp parameters’ effects on the 

photoacoustic signal, and guidelines on how to choose the parameters to receive 

acceptable absorber profilometric information are presented. In Chapter 6, a 

comparison between the simulations with parameters used in experimental results and 

the obtained experimental results carried out. Conclusions are drawn in Chapter 6, in 

which future research directions are also suggested. 
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2 Literature Review 
 

2.1 A Brief History of Photoacoustics 

 

In 1880, Alexander Graham Bell and Sumner Tainter first reported the photoacoustic 

phenomenon [20]. A year later, Bell found that sonorousness, under the influence of 

intermittent light, is a property common to all matter [1]. However, interest in the 

photoacoustic field did not last long. Interest was revived later in 1938 when 

Veingerov followed by Pfund and Luft used the photoacoustic effect for nondispersive 

infrared gas analysis [21]. In 1970, Kreuzer first introduced the laser-excited 

photoacoustic effect when analyzing gas concentrations [22]. The utilization of a laser 

as the light source increased the sensitivity by several orders of magnitude. In 1975, 

the photoacoustic effect was first introduced in the biomedical field by Maugh [23]. 

 

2.2 Breast Cancer Detection Methods 

 

X-ray radiography (mammography), magnetic resonance imaging (MRI), and 

ultrasound are the three commonly used imaging techniques for breast cancer 

detection [2]. All these techniques have their own advantages but also limitations. 

 

The main limitation of X-ray mammography is its incapability to detect lesions in 

radiologically dense breast. The minimal size of tumors detectable by mammography 

is about 5-10 mm if a tumor does not contain calcification [24]. Another disadvantage 

of X-ray mammography is it utilizes harmful ionizing radiation. 

 

MRI is known for its good resolution. However, the sensitivity of MRI in many 

instances is not very good, and this technology is also very expensive [25]. 

 

Ultrasound is another modality that has been used for imaging and for detection of 
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tumors. The main advantage of ultrasound is that it provides a good resolution and 

larger depth penetration. However, ultrasound imaging is incapable of producing high 

contrast image [26]. The detection of tumors in many cases is difficult because of the 

low contrast in acoustic properties between the tumors and normal tissues. 

 

Photoacoustic imaging combines the advantages of the optical and acoustical imaging 

methods. It has the advantage of both sensitive optical absorption contrast [27] and 

low acoustic scattering in soft tissue [26]. Using safe non-ionizing illumination 

sources, the photoacoustic effect can be applied to biological tissues. In addition, 

optical absorption is highly related to molecular constitution and formation. Thus, 

photoacoustic signals contain functional and molecular information [4]. 

 

Photoacoustic imaging has drawn attention during the past several decades. Much 

progress in many different techniques has been made to apply the photoacoustic 

phenomenon to imaging application [2], [3], [14], [15], [17]. One way to categorize 

the different techniques is by their excitation sources. The two most general categories 

of photoacoustics use pulsed laser excitation sources and continuous wave laser 

excitation sources. 

 

2.3 Pulsed Laser Excitation Photoacoustics 

 

The most common excitation source for photoacoustic applications has been a pulsed 

electromagnetic wave. This method uses powerful nanosecond electromagnetic wave 

pulses to generate the acoustic transients. Kruger [5], [6], Wang [4], [7], [9], [29]–[33] 

worked in the pulsed laser excitation modality. The excitation waves most commonly 

used are radio frequency electromagnetic wave pulses, microwave pulses and 

infra-red laser pulses. 

 

The main reason for using pulsed laser light is that it allows one to find the 
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distribution of heat sources directly from the shape of the photoacoustic signal [10]. 

However, the pulsed laser modality has disadvantages mainly due to the 

hard-to-control depth localization of the absorber, as well as the limitations on the 

incident energy level because of safety standards for in-vivo tissue imaging [11]. A 

pulse with extremely high intensity cannot be used as it may cause damage to the 

tissue.  

 

Much progress has been made in trying to find other methods that do not need the 

high intensity laser pulse but also do not lose the high signal amplitude generated by a 

high intensity pulse. Liu et al. [28] found that instead of using one single high 

intensity short pulse, using multiple low-energy picoseconds pulses excitation may 

solve this problem. They also found the signal to noise ratio increased when the 

number of pulses increased.  

 

From one single high intensity pulse to multiple low intensity pulses was an 

improvement in the approach. This suggested another approach, what if many more 

pulses with lower energy in the same time interval were added, until they became a 

continuous wave?  

 

2.4 Continuous Wave Laser Excitation Photoacoustics 

 

The above leads to the alternative excitation modality, continuous wave laser 

excitation. Much research has been done to apply a continuous wave to photoacoustic 

tomography [13], [15], [17]–[19]. This modality commonly uses a continuous laser 

wave instead of short duration pulses as the incident light source. 

 

Continuous wave photoacoustics was first introduced by Mandelis’ research group 

using a frequency sweep (chirp) laser source with heterodyne modulation [11], [17]. 

The results showed this method can be more precisely controlled in depth imaging 
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comparing to pulsed laser modality. However, the photoacoustic signal peak is 

broadened due to the extended exposure time. Therefore, the major merit of pulsed 

laser modality, which allows one to find the distribution of heat sources directly from 

the shape of the photoacoustic signal, is gone. 

 

Another signal processing method is matched-filtering. The received photoacoustic 

signal is cross-correlated with a modulated incident wave form by the matched-filter. 

The merits of using a matched-filter are detailed in many radar or signal processing 

books [33], [34].  

 

2.5 Pulse Compression 

 

The main reason that linear frequency modulated sinusoidal chirps are used with a 

matched-filter is the pulse compression phenomenon, which is commonly used in 

traditional radar techniques [24], [33], [35], [36]. The matched filter was shown to be 

the complex conjugate of the transmitted signal [24], [37]. When a received 

photoacoustic signal is cross-correlated with a transmitted wave form, the energy of 

the output signal will be concentrated in a much narrower time interval (the signal has 

been compressed) [35], [36].  

 

Telenkov, Lashkari and Mandelis performed many investigations on continuous wave 

photoacoustic radar [12]–[16], [19], [38], [39], which they refer to as Frequency 

Domain Photoacoustics (FD-PA). The first attempt at using cross-correlation signal 

processing method in FD-PA was introduced in 2006 [40]. In this study, the algorithm 

of FD-PA was introduced and an experimental device was built. Testing results for 

turbid phantoms and ex-vivo chicken breast specimens showed clear peaks which 

carries the inhomogeneity (absorber) information.  

 

Further study [41] showed that although acoustic pressure waves induced by an 
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intensity modulated continuous wave laser have much lower amplitude than those 

generated by high peak-power nanosecond pulses, the signal to noise ratio (SNR) can 

be increased dramatically via specific modulation coding and coherent signal 

processing. A year later, investigation on SNR, axial resolution and detection depth 

was performed [12], [18]. The experimental results showed FD-PA can provide 

comparable or better depth sensitivity with millimeter-scale axial resolution due to 

superior SNR. These features imply that FD-PA is a competitive imaging method 

comparing to pulsed photoacoustic technique [12], [18]. 

 

Lashkari and Mandelis’ further research on FD-PA gives detailed theoretical and 

experimental comparison between various key parameters of the pulsed photoacoustic 

modality and FD-PA imaging modality. The experimental results showed much 

smaller SNR difference between pulsed and FD photoacoustics [15]. The results also 

showed that increasing the chirp frequency bandwidth drastically reduces the SNR 

[15]. Hence, it was attempted to find the optimal chirp bandwidth which generates the 

best SNR [14]. It was shown that the optimal bandwidth generating the highest SNR 

for a low-frequency transducer is roughly centered at the peak frequency of the 

transducer, and for high-frequency transducer, the optimal bandwidth is centered on 

the lower frequencies [14]. However, the theory behind the SNR optimization is still 

not clear. Further study on the theory of FD-PA showed a more detailed view of chirp 

parameters’ effects on SNR [38]. The results explained that the SNR of the filtered 

photoacoustic signal is proportional to the chirp duration. However, chirp duration is 

not the only parameter that controls SNR. Further study needs to be done in order to 

fully understand the controlling chirp parameters on SNR. 

 

Furthermore, the experimental photoacoustic signal generated by linear frequency 

modulated chirp after cross-correlation signal processing [13], [19], [40], [41] did not 

give as much absorber profilometric information as obtained with the pulsed laser 

photoacoustic technique. This leads to the main motivation of this work, which is to 

reconstruct the approach for continuous wave linear frequency modulated laser 
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photoacoustics and to give guidelines on how to choose the parameters of the chirp to 

obtain sufficient absorber depth profilometric information and optimal SNR.  
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3 Photoacoustic Pressure Response 
 

As discussed earlier, matched-filtering is implemented in continuous wave 

photoacoustic tomography. A linear frequency modulated sinusoidal waveform 

commonly used in radar technique has a property of pulse compression after 

matched-filtering. However, the theory behind this technology in photoacoustics is 

still not clear. In this chapter, the 1-D theory for two specific absorber models and 

their corresponding photoacoustic signal after receiver-filter are developed. The 

incident laser waveform is limited to be a linear frequency modulated cosine chirp. 

The absorber models considered are a square absorber and an exponential decay 

absorber which will be explained in detail later.  

 

3.1 Fourier Transform and Autocorrelation Conventions 

 

Fourier transform and autocorrelation have several different conventions which can be 

found in many sources [33], [42], [43]. In this thesis, the chosen convention for the 

temporal Fourier transform is the angular frequency, non-unitary convention for 

forward and inverse transforms given by  

    
1

( ( )
2

i t i tf f t e dt f t f e d   


 



 

       (3.1) 

where a tilde ( ) over the variable has been used to denote a temporal Fourier 

transform, and assuming suitability of the function f for Fourier transformation. The 

spatial Fourier transform from regular space with spatial variable z  to spatial 

frequency space with spatial frequency variables z  is defined as in (3.1), with z  

replacing t  and z  replacing   in (3.1). The spatial Fourier transform is denoted 

with an over hat over the variable, so that    ˆ
zf z f   denotes a Fourier 

transform pair with respect to the spatial variable. 
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The energy of a signal is defined as [42] 

 
22 1

( ) ( )
2

fE f t dt f d 


 

 

     (3.2) 

where the last equality in equation (3.2) follows from Parseval’s theorem [33]. Since 

the integral on the right-hand side is the energy of the signal, the integrand 
2

( )f   

can be interpreted as an energy density function [44] describing the energy per unit 

frequency contained in the signal at frequency . In light of this, the energy spectral 

density of a signal  f t  is defined as 

  

2
2

( ) ( ) ( ) ( ) i t

ffS f f f f t e dt   






      (3.3) 

where the overbar indicates a complex conjugate. The energy spectral density is most 

suitable for transients—that is, pulse-like signals—having a finite total energy. Now 

consider the inverse Fourier transform of the energy spectral density:  

 

 

 

'

'

'

1 1
( ) ( ') '

2 2

1
( ) ( ') '

2

i t i i i t

ff

i i t i

t

S e d f e d f e d e d

f f e e e d d d

   

  

  

      
 

    


   

 

   

  

 

  

  





   

  
  (3.4) 

Changing the order of integration as shown in (3.4) and using the definition of the 

inverse Fourier transform of the delta function gives  
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  (3.5) 

The last integral in equation (3.5) is exactly the auto-correlation of the function  f t , 

traditionally defined as  

   ( ') ( ') 'ffR t f t f d  




    (3.6) 

Hence, it follows that the autocorrelation of a function and its energy spectral density 

are a Fourier transform pair    ff ffR t S  . 
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The autocorrelation of a periodic function  f t  is defined as an average power over 

one waveform as  

      
0

0

1
t T

ff

t

R t f f t d
T

  



  ,  (3.7) 

where 0t  is any arbitrary value, and T is the period of the function. 

 

3.2 System Layout 

 

For a one-dimensional system, the absorbing material surrounded with the scattering 

medium is considered to have the simple layout shown in Figure 3. 

 

 

Figure 3 Model of absorber and surroundings 

 

In Figure 3, the origin of the z-axis is placed at the center of absorber. The absorber is 

considered as an infinite sheet with a thickness l . The surrounding scattering medium 

on negative side of z axis is considered as an infinite layer from   to 
2

l
 . The 

surrounding scattering medium on positive side of z axis is considered as an infinite 
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layer from 
2

l
 to  .The speeds of sound sc  is considered to be the same in all three 

layers. 
pC  is the specific heat, a  is the optical absorption coefficient of the 

chromophore absorber that has been heated by an optical pulse with fluence F. The 

incident laser waveform  I t  is transmitted from the negative side of z axis, 

outside of the absorber. The absorber absorbs energy from the incident laser and 

generates a sound wave (or in other words, pressure response) denoted by  ,p z t . 

The pressure response is then detected by a transducer and be sent to a receiver-filter. 

The output of the receiver-filter  ,y z t  is the final photoacoustic signal. 

 

3.3 Equation for Pressure 

 

Diebold [45] gives a concise explanation of the governing equation for the pressure 

that results from launching a photoacoustic wave. When light pulses are delivered to 

biological tissue, the tissue absorbs the light and converts it to heat, generating an 

initial pressure rise due to the thermoelastic expansion. The initial pressure gives rise 

to the acoustic wave, which is then detected by a transducer. The governing equation 

is given by: 

  
2

2

2 2

1 ( , )
,

s p

H r t
p r t

c t C t

  
    

  
  (3.8) 

where   is the thermal expansion coefficient, sc  is the speed of sound, pC  is the 

specific heat, ( , )H r t  is the energy per unit volume and time deposited by the optical 

radiation beam, and ( , )p r t  is the pressure of the acoustic wave, a function of space 

and time.  

 

In this work, it is assumed that the heating function ( , )H r t , results from a 
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chromophore absorber that is optically thin with an optical absorption coefficient a  

that is heated by an optical pulse with a fluence of F . We assume that ( , )H r t  is a 

separable function of space and time so that the preceding assumptions imply that 

   ( , ) aH r t FA r I t .  A r  is a function of space that describes the geometry of 

the absorber and  I t  is a function that describes the time dependence of the 

incident optical wave, as shown schematically in Figure 3. 

 

Taking the temporal Fourier transform of equation (3.8) and assuming one 

dimensional Cartesian coordinates so that absorber geometry is a function of the depth 

variable z  only, r z , then 

        
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2
, , s a
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ik c Fd
p z k p z I A z

dz C

 
       (3.9) 

where / sk c  is the wavenumber. We now take a spatial Fourier transform 

(denoted with an overhat) in the spatial variable z , and then equation (3.9) becomes 
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


  
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





  (3.10) 

where 0p  is the initial pressure, a  is the absorption coefficient of tissue, and F is 

the local light fluence. Here we can introduce the Grüneisen parameter, which is a 

constitutive parameter used in photoacoustics. The Grüneisen parameter Γ of tissue, 

relates the initial pressure 0p  to the light absorption by the following expression 

[29]: 

 0 ap F    (3.11) 

In general, it is necessary to directly measure the Grüneisen parameter of tissue.  

However, it can also be estimated in terms of the isobaric volume expansion 
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coefficient β, the specific heat Cp, and the speed of sound sc  in tissue using 

 
2

s

p

c

C


    (3.12) 

The Grüneisen parameter varies between different types of tissue. For example, the 

Grüneisen parameter of fat tissue is estimated to be between 0.7 and 0.9. A more 

accurate value should be obtained by direct measurement. 

 

3.4 Transfer Function and Impulse Response 

 

When viewing the system shown in Figure 3 as an input/output problem, as shown in 

Figure 4, the transfer function concept is very useful. 

 

 

Figure 4 Block diagram of photoacoustic model 

 

The incident laser waveform  I t  is absorbed by the absorber which has the impulse 

response denoted by  ,G z t . The energy in the incident wave is then converted to 

acoustic energy and generates an acoustic pressure wave  ,p z t . The acoustic 

pressure wave received by a transducer is then transmitted to a  receiver-filter which 

has an impulse response  r t . The signal received at the receiver-filter also contains 

noise  n t . In this thesis, we assume the noise to be a zero-mean additive Gaussian 

white noise [24] which has a double-sided power spectral density of  nnS  . 

Furthermore, the noise is assumed to be statistically independent of both the 
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transmitted input waveform  I t  and the absorber impulse response  ,G z t . The 

output of receiver-filter  ,y z t  contains the photoacoustic signal  ,sy z t  and the 

noise signal  ,ny z t . 

 

Based on this concept, we can write the equation (3.10) as 

          0

2 2

ˆˆ ˆ, ,z z z

s z

p ik
p I A G k I

c k
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
 


  (3.13) 

where 
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 
  (3.14) 

is the transfer function. The notation  ˆ
zG k  , with the overhat and tilde, is used as 

a reminder that this function is operating in both the spatial and temporal Fourier 

domain. Furthermore, it is clear from equation (3.14) that  ˆ
zG k   is only a 

function of z  and k , along with the assumed constant parameters , , ,s p ac C F  . 

 

Taking the inverse spatial Fourier transform of the transfer function  ˆ
zG k  ,  

      0
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    (3.15) 

Theorem 5 from [46] states that the following result holds true:  

 

   

   
2

0
41 (

2
0

4

ikz ikz

si z

ikz ikz

s

i
k e k e z

k
I e d

ik
k e k e z

k



 
 


 

 








      
 

  
      

 

   (3.16) 

or 
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or 
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Here,   is an analytic function defined on the positive real line that remains 

bounded as x goes to infinity (has no poles). The different solutions in (3.16) to (3.18) 

represent inward, outward propagating waves or standing waves, therefore the physics 

of the problem governs the choice between equations (3.16) to (3.18). Given the 

definition of the Fourier transform that is being currently used, the presented result in 

(3.18) satisfies the Sommerfeld radiation condition, ensuring an outwardly 

propagating wave.  

 

Given this result, and assuming  ˆ
zA   has no poles and remains bounded, it follows 

that 

 

   

 

 

 

 

0

2 2

0

0

1 ˆ

1 ˆ 0
2

1 ˆ 0
2

ˆ 0

ˆ2 0

zi z

z z

s z

ikz

ikzs

ikz

ikz
s

p ik
G z k A e d

c k

A k e z
p ik ik

c
A k e z

ik

A k e zp

c A k e z

 










 



 

 
 


  
 





  (3.19) 

where 
s

k
c


  is the wave number. Temporal inverse Fourier transformation of 

equation (3.19) gives the system impulse response in the time and space domain as 
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  (3.20) 

Equation (3.20) shows that the impulse response of the absorber has exactly the same 

spatial shape of the inhomogeneity, although it is a function in time whereas the shape 

of the absorber is a function of space. The speed of sound is the converting factor that 

relates distances in space to durations in time. Now, the field of pulsed photoacoustics 

involves the measurement and analysis of photoacoustic responses to input pulses that 

are sufficiently short so as to be modelled as Dirac-delta functions. Hence, pulsed 

photoacoustics can be considered the branch of photoacoustics where the primary 

goal is the direct measurement of the system impulse response and equation (3.20) 

makes it mathematically clear that in doing so the absorber profile is directly obtained.   

Furthermore, the ‘time for acoustic wave to travel’ can be used to estimate the 

location of the absorber.   

 

3.5 Square Function Absorber in Space 

 

Now consider the specific absorber which is considered a square function in space.  

Light propagation in this absorber is assumed to have no decay. That is,  A z  is 

assumed to be given by 

   0
2 2

l l
A z A u z u z

    
       

    
  (3.21) 

where  u z  is a Heaviside unit step function, and 0A  is an arbitrary constant 

scaling factor. A plot of (3.21) with   00.005 , 1l m A   is shown in Figure 5. The 



22 

thickness l of the absorber is always taken as  0.005 m  in other experimental 

researches [18], [19]. 

 

Figure 5 Square absorber model 

The spatial Fourier transform of  A z  is given by 
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Substituting equation (3.22) into equation (3.13) for the pressure in spatial and 

temporal Fourier domain gives 
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There is a pole at zero here, so Theorem 5 in [46] cannot be used immediately. 

However, partial fractions can be used to separate the pole from the rest of the 

expression. Therefore, using partial fractions, equation (3.23) can be written as 
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Now taking the inverse spatial Fourier transform gives 
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  (3.25) 

Using theorem 5, equation (3.18), on the first term and standard integral tables on the 

second term gives 
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Cleaning up equation (3.26) gives 
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Putting it all together gives 
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Inverse (temporal) Fourier transforming equation (3.28) via 
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Now it is a known property of Fourier transforms that dividing by i  in the 

frequency domain is the same as integrating in time in the time domain so that  
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where we use  Q t  to denote the integral of  I t . Using equation (3.31), equation 

(3.30) can be written as 
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 (3.32) 

Equation (3.32) is derived by inverse temporal Fourier transform  ,p z   shown by 

equation (3.28). However, the problem can easily be solved in the time domain. The 

pressure response  ,p z t  will be the convolution of the input waveform  I t  and 

the absorber impulse response  ,G z t , which will be given by 

      , ,p z t I G z t d  




    (3.33) 

For a square absorber shown by equation (3.21), equation (3.33) becomes 
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  (3.34) 

As verification of our prior result, if the input time function is a delta function, 

   I t t , then its integral is the Heaviside step function    Q t u t , and for 
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/ 2z l , equation (3.32) indicates a step function that turns on at time 
 / 2

s

z l

c


  

and turns off at 
 / 2

s

z l

c


, or in other words a step that lasts for an amount of time 

sl c  seconds. This is in keeping with our prior result that said that in response to a 

very short incident pulse in time, the pressure function has the same shape as the 

spatial shape of the inhomogeneity. The result here is more general as it is valid for 

any temporal function of input  I t  and square wave absorber. Furthermore, the 

solution in (3.32) has three regions of validity. The middle region / 2 / 2l z l     is 

actually inside the inhomogeneity and in practice a transducer would never be placed 

there. 

 

3.6 Finite Length Step Exponential Absorber in Space 

 

We now consider the response to the absorber spatial function  

      az azA z e u z e u z l      (3.35) 

where a is positive constant and  u z  is the Heaviside step function. This absorber 

denotes a light decay when propagating inside the absorber. A plot of (3.35) with 

1, 0.005a l   is shown in Figure 6. 

 

Figure 6 Finite exponential decay absorber model 

 

The spatial Fourier transform of  A z  is given by 
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The pressure response in both spatial and temporal Fourier domains is given by 
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  (3.37) 

This can be written via partial fractions as  
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  (3.38) 

We consider the spatial inverse Fourier transform term by term. The first term in 

equation (3.38) is 
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Second term in equation (3.38) 

  
 

 
   

   
0

2 2 2

0

2 0

ik z lla

ik z lla
s

a ik e e z lIp
p z

c a k a ik e e z l




 



   
    

     

  (3.40) 

Last two terms in equation (3.38) give 
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Putting the terms all together 
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 (3.42) 

We note that the “particular solution”, a term proportional to aze  only appears in the 

area 0 z l   (which is inside the absorber itself). Outside of this area, the response 
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consists of terms proportional to 
  ik z likz lae e e

    plus its time derivative (a 

multiplication by i  in the frequency domain). The term 
  ik z likz lae e e
 is two 

propagating waves, with the second being attenuated by ale compared to the first.  

If we set 0a   in equation (3.42), it yields the same result as equation (3.28), which 

is for square function absorber. 

 

Rearrange equation (3.42) gives 
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Although equation (3.43) looks complicated, we can make some interpretations. First 

consider the inverse temporal Fourier transform of the “leading term” and we define 

this function to be  L t and can be simplified using Theorem 5 from [47], given 

above in (3.18) as 
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 (3.44) 

Equation (3.44) are decaying exponentials in time with amplitude controlled by 

 sI c ai . The general shape of (3.44) will be as shown in Figure 7 or Figure 8. 
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Figure 7  Form of L(t) 

 

Figure 8  Another possible form of L(t) 

The form of the time derivative of  L t  is given by 
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Clearly, from Figure 7, the derivative is not defined at 0, although the function itself is 

continuous at time zero. Having found closed-form expressions for  L t  and its first 

time derivative, equation (3.43) can now be interpreted in the time domain as  
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  (3.46) 

Similar to the square absorber, the pressure response can be solved in time domain 

only using equation (3.33). The only difference is the absorber impulse response 

 ,G z t . As for the exponential decay absorber shown by equation (3.35). The 

expression for pressure response becomes 
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  (3.46) 

 

3.7 The Chirp 

 

In prior sections, the expressions for the pressure response  ,p z t  for two different 

absorbers with any incident wave form  I t have been derived. The expressions of 

the signal passed through receiver-filter  ,sy z t  with an incident liner frequency 

modulated sinusoidal chirp will be demonstrated in the following sections. 

 

The chirp is a commonly used waveform in many applications. For convenience in 

calculations, it is common to use the complex form of the chirp, but the actual signal 

is the real part of the complex chirp 

  
2i KtI t e    (3.47) 

where K  is the chirp parameter, a positive constant. It has the dimensions of (Hz)
2
 

so that 
2Kt  is dimensionless. The real version of the signal is given as 

  2( ) cosreI t Kt   (3.48)  

The plot of equation (3.48) is shown in Figure 9. 
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Figure 9 Real part of a complex chirp. 

 

The chirp can be regarded as a signal with an instantaneous frequency defined as 
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It has been shown that the temporal Fourier transform of  I t  is given by [44] 
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Further, it has been shown that ( )reI t  has the Fourier transform given by 
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In practice, the chirp is truncated to be a finite duration pulse with a center frequency, 

0f , which is often non-zero. The truncated complex chirp is given by 
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  (3.52) 

The subscript T indicates the duration of the chirp and may be omitted if the meaning 

is clear. In equation (3.52), f    is the standard conversion from Hz to radians 

per second and K   . The function  rect z  is the rectangular function, 

introduced by Woodward [48], and defined as 
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Figure 10 shows how the truncated chirp looks like in time domain. 

 

 

Figure 10 Truncated chirp waveform 

 

As before, the complex chirp can be regarded as a signal with instantaneous frequency 

defined as 
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Thus, during the T second interval of the pulse, the instantaneous frequency changes 

linearly from  0 / 2f KT  Hz to  0 / 2f KT  Hz. The frequency sweep, 

KT   is then the difference in these two values. The product of duration and 

frequency sweep T  is then given by 2KT  and is called the time-bandwidth 

product of the chirp, 2D T KT   . The time-bandwidth product (dimensionless) is 

also referred to as the Dispersion Factor in older papers, for example [49]. The 

function  TI t  as defined in equation (3.52)  is an even function, therefore its 

Fourier transform is also even. In particular,  
2

TI   will be real and even so that 

the autocorrelation of a complex chirp  TI t  is also real and even. 

 

3.8 Autocorrelation of a Finite-Duration Chirp 

 

The auto-correlation of a finite duration chirp may be computed from 
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which has been shown to be given by [49] 
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The envelope of the auto-correlation of a finite-duration chirp is therefore given by 
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This can be written in an alternate form as  
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For small values of time (especially for large time-bandwidth products), this is 

approximately given by the sinc function 
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Therefore, we can define the approximation of  IIR t  as  approx

IIR t , given by the 

right hand side of equation (3.59). 

 

The  IIR t  and  approx

IIR t  are envelopes of the autocorrelated chirp. A full 

expression of autocorrelated real cosine chirp is given by 
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The approximation of  _ cosIIR t  is then given by 
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The plot of  IIR t  and  approx

IIR t  are shown in Figure 11. The chirp parameters 

used to draw the plots are as follows:  31 10T s  ,  63 10 Hz   , 0 0f  .  

 

 

Figure 11 plots of ( ) ( )approx

II IIR t and R t  

 

For the plots in Figure 11, the first zero crossing of equation (3.59) is at 1/t    and 

the duration of the main lobe of the sinc function is  2 / 2 / KT  , which will be 

referred to as the “effective pulse duration”. The important point is that the energy of 

the autocorrelation of the chirp is concentrated in a much narrower duration of time 

than the original chirp  TI t , which had a duration of T. The pulse compression ratio 

is then defined as the ratio of the duration of the original pulse  TI t  to the duration 

of the autocorrelation of the pulse, which is given by 
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duration of 

duration of 2 / 2

T

II

I t T T
CR

R t


  


  (3.62) 

Thus, we see that the pulse compression ratio is directly proportional to the 

time-bandwidth product, T . 

 

From Figure 11, since the first zero crossing of  approx

IIR t  is at 1/ 0.333t s   , 

66 points have been sampled from 0.005 μs to 0.33 μs for calculation convenience, 

and found the maximum error is 3.38% using the equation 

 
max

( ) ( )
max , 1..66

( )

approx

II i II i

II i

R t R t
Error i

R t


    (3.63) 

As shown in Figure 11 and the corresponding maximum error, the difference between 

 IIR t  and  approx

IIR t  could be ignored. 

 

3.9 Real Laser Chirp Waveform 

 

In previous sections, the chirp as shown in Figure 9 was being used. The magnitude of 

this chirp contains negative values, which does not make physical sense if the quantity 

being represented is an intensity value as in the case of laser intensity. The real laser 

chirp must oscillate above zero intensity. The shifted chirp (shifted up) has the wave 

form 

    2

0 0cos 2I t I Kt f t      (3.64) 

where 0I  is an arbitrary constant shift factor to ensure that the function always 

remains positive. A plot of equation (3.64) with  0 0100 , 1f Hz I   is shown in 

Figure 12. 
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Figure 12 Shifted cosine chirp 

 

The autocorrelation equation for the shifted chirp becomes extremely long and takes 

several pages, Therefore, it is shown in the appendix A. A plot of the autocorrelation 

with parameters    6

0 0, 1 , 2.8 10f T ms Hz      is shown in Figure 13. 

 

 

Figure 13 Autocorrelation of shifted cosine chirp 

 

The plot of the unshifted cosine chirp shown in equation (3.61) with the same 

parameters except 0I  is shown in Figure 14. 

 

 

Figure 14 Autocorrelation of unshifted cosine chirp 
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Comparison between Figure 13 and Figure 14 shows that by shifting the chirp up, the 

autocorrelation of the chirp is also shifted by a factor. The shape does not change 

much, especially for the main lobe. Manipulations on shifted chirp autocorrelation 

have been made to investigate the difference.  

 

 

Figure 15 Comparison between unshifted chirp autocorrelation and manipulated 

shifted chirp autocorrelation 

 

The manipulated autocorrelation of shifted chirp and the unshifted chirp 

autocorrelation are shown in Figure 15. The manipulation is done by multiplying the 

shifted chirp autocorrelation by a factor of 2 and subtracting 2.06. As shown in Figure 

15, the difference is small. In order to quantify the error in the main lobe, 66 points in 

the time interval 0.005 μs to 0.33 μs with constant spacing have been sampled for 

unshifted chirp autocorrelation  unshifted

IIR t  and manipulated shifted chirp 

autocorrelation  shifted

IIR t . The maximum error in this time interval was calculated as  

 
   

 
max max 1..

unshifted shifted

II i II i

unshifted

II i

R t R t
Error i N

R t


    (3.65) 

where N is the number of points, in this case 66.  The maximum error between 

 unshifted

IIR t  and  shifted

IIR t  in Figure 15 is 2.97%. With this result, it is justifiable to 

use the simpler equation,    2

0cos 2I t Kt f t    in simulations and obtain results 

that are similar to those obtained with a shifted chirp, without unnecessary 

mathematical complications. 
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3.10 Pressure response – autocorrelated chirp and square absorber 

 

In order to investigate the chirp parameters’ effects on corresponding photoacoustic 

signal after the receiver-filter  ,sy z t , the mathematical expressions of  ,sy z t  for 

a square absorber are derived in this section. 

 

3.10.1  Antiderivative approach 

 

Previously, in equation (3.28), the temporal Fourier transform of the pressure response 

for a square function absorber was shown to be given by 

    

( /2) ( /2)

( /2) ( /2)0

( /2) ( /2)

/ 2

2 / 2 / 2
2

/ 2
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e e z l
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p z I e e l z l
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e e z l
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   


      
   

  (3.66) 

where k c   is the wavenumber. Equation (3.66) then can be written in 

input/output form as 

      , ,p z G z I     (3.67) 

where  ,G z   is the transfer function of the system at some measurement point z , 

and is given by 

  
2 2

0

2 2

/ 2 (reflection)

2
/ 2 (transmission)

l l
i z l i z l

c c

l l
i z l i z l

c c

e e z lp
G z

i
e e z l

 

 




   
    

   

   
      

   


  

  

  

  (3.68) 

It is noted that  ,G z   possesses slightly different forms for measurements made in 

reflection (transducer on irradiated side of the sample) or transmission (transducer on 

the other side of the sample). Temporal inverse Fourier transforming equation (3.68) 

gives the system impulse response as 
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 (3.69) 

In equation (3.69),  u t  is the Heaviside step function so that the shape of the 

impulse response is a square rectangle function in time at any fixed observation point 

z . 

 

It was further demonstrated that inverse temporal Fourier transformation of (3.66) 

leads to  
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 (3.70) 

where the function  Q t  is the integral of the time function given by 

  
 

 
1

t

i t
I

Q t e d I d
i


  

 



 

 
     (3.71) 

In order to obtain the photoacoustic signal after the receiver-filter where the received 

filter is a matched filter to the input chip – that is the receiver filter is the complex 

conjugate of the input chirp, we need to replace  I   in equation (3.70) with 

 approx

IIR   (the autocorrelation of the input signal) in equation (3.71) so that 

   ( )

t

approx

approx IIQ t R d 


    (3.72) 

Via Maple, equation (3.72) can be found as 
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where ( )Si x  is the Sine Integral given by 
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0
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( )
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Si x dt
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    (3.74) 

For the case of / 2z l   (reflection), using equation (3.70) gives 
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Via Maple, this can be computed as 
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 (3.76) 

A plot of equation (3.76) is shown in Figure 16. 
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Figure 16 Photoacoustic Signal from Envelope of Autocorrelated Chirp 

 

Figure 16 shows a “fake” square shape function with duration of approximately / sl c , 

which is compatible to the previous statement that the process of auto-correlating a 

chirps gives a “fake” Dirac-delta function input wave, which in turn is expected to 

give a response function that resembles the shape of the absorber ( )A z . 

 

3.10.2  Piece by Piece integration 

 

The method of calculating pressure response shown in equation (3.70) is by taking the 

antiderivative of  approx

IIR t , which is denoted by  approxQ t , and then calculating the 

response by using the equation 
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Performing the integral in (3.77) with a piece-by-piece (interval) approach, several 
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possible cases need to be considered. The first case is 
2s

l T

c
  , or that the duration 

of half the input pulse is longer than the transit time of the absorber. In this case, the 

integration becomes 
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  (3.78) 

Since the variable z  in  ,sy z t  is the distance between absorber and the transducer, 

and is fixed when doing the simulation, and it only affects the time delay of the 

propagating signal, it can be considered that the pressure response  ,p z t  and the 

photoacoustic signal  ,sy z t  are functions of t  only.  

 

The result given by Maple is 
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  (3.79) 

A plot of equation (3.79) is shown in Figure 17: 

 

Figure 17 Photoacoustic Signal from Envelope of Autocorrelated Chirp 

 

The second possible case is that 
2s

l T

c
 , or that the duration of half-pulse is smaller 

than the transit time of the absorber.  In this case, the integration becomes 
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  (3.80)a 

The result given by Maple is 

  

 

 
 

 

0

0
2

1

2

2 2

2 2 2

1

2

2 2

0
2

s

s

s

s

s

s

s

s

s

T
t

T Si t Si T
T l T

t
c

c t l
T Si t Si

cp l T T
y t t

c

c t l
T Si T Si

c T l T
t

c

T l
t

c

 














 


  

       
   




           
   


                   




 



  (3.81) 
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A plot of equation (3.81) is shown in Figure 18: 

 

 

Figure 18 Photoacoustic Signal from Envelope of Autocorrelated Chirp 

 

Figure 17 and Figure 18 show that the method of integrating directly through the 

designated time interval can also give us the proper pressure response of the 

simulation. 

 

3.10.3  Autocorrelated cosine chirp pressure response 

 

Figure 16, Figure 17 and Figure 18 are the photoacoustic signal derived from the 

envelope of autocorrelated chirp. The photoacoustic signal for autocorrelated real 

cosine chirp for the condition 
2s

l T

c
  is given by 
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  (3.82) 

where now the autocorrelated chirp response is given by 
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Equation (3.82) can be rewritten in the form 
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The components of equation (3.84),  iY t , can be found using Maple  
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A plot of equation (3.84) obtained by Maple is shown in Figure 19: 

 

 

Figure 19 Photoacoustic signal from the autocorrelated cosine chirp 

 

In the second (shorter pulse) condition where 
2s

l T

c
 , the pressure response is  

 

 

_ cos

2

_ cos

2

0
_ cos

2

_ cos

2

_ cos

0
2

( ) 0
2

( ) 0
2

( )
2 2 2

( )
2

( )
2

0
2

s

s

s

t

approx

II

T

t

approx

II

T s

t

approx

s II

l s
t

c

T

approx

II

l s
t

c

T

approx

II

l s s
t

c

s

T
t

T
R d t

l T
R d t

c

p l T T
y t R d t

c

T l
R d t

c

l l T
R d t

c c

T l
t

c

 

 

 

 

 
















 


  

  

   

 

  

 





































  (3.90) 

which can be written as  
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Again, as above the  iY t  can be found via Maple as  
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A plot of equation (3.91) obtained by Maple is shown in Figure 20 

 

 

Figure 20 Photoacoustic Signal from Autocorrelated cos Chirp 

 

Figure 19 and Figure 20 obtained by using the full cosine chip expression showed 

results very similar to those of with Figure 17 and Figure 18, which used the 

simplified envelope expression. However, in order to test the effects of chirp 

parameters, we have to use the full cosine chip expression because it is the only 

expression that contains the chirp center frequency 0f  which is an important 

controlling parameter. 
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3.11  Pressure response – autocorrelated chirp with an exponential 

decay finite absorber 

 

Similar to the previous section, the mathematical expression for the photoacoustic 

signal  ,sy z t  after the receiver-filter is developed for a finite length exponential 

decay absorber. The exponential decay absorber is more realistic than a square 

absorber, since the light decays during the transmission inside the absorber. The 

purpose of using two different absorber models is to avoid potential coincidental 

phenomenon that that is specific to only one absorber. 

 

3.11.1  Antiderivative  

 

In the same approach used for the square absorber, the first approach used to calculate 

the pressure response for the finite exponential absorber was to take the antiderivative 

of     expapprox

IIR ac t    , and then obtain the photoacoustic signal by 

subtracting approx
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. However, this approach proved 

problematic for Maple and the antiderivative could not be obtained. Hence, the second 

approach of integrating in time over each appropriate time interval was used. 

 

3.11.2  Piece by Piece Integration 

 

Similar as to the approach used for the square wave absorber, two conditions on the 

duration of the input signal were defined and the integration was performed piece by 

piece using Maple. The only difference in the exponential decay absorber case is that 

when 0
2

f


 , there is a pole in the expression. So another expression for the 

exponential decay absorber photoacoustic signal needed to be derived in the special 
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case of 0
2

f


 . 

 

The first condition is 
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 , the equation for pressure response is 

given by 
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The second condition is the shorter pulse condition of 
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l T

c
 . When 0
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 , the 

equation for pressure response is 
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  (3.118) 

 

In this section and section 3.10, the closed form expression of signals  sy t  at the 

output of the receiver-filter  r t  with the input chirp waveform  I t  have been 

developed. With these expressions for square and exponential decay absorbers, it is 

now able to test the chirp parameters’ effects on SNR and resolution. 
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3.12 Resolution 

 

In order to quantify the quality of the signal at the output of receiver-filter  sy t , the 

concept of resolution is introduced.  In this work, the resolution of the signal at the 

output of the Receiver-Filter is defined as the error between the signal obtained, 

 sy t , and the absorber ideal pressure response  idealy t  in the time interval where 

 idealy t  is non-zero. The absorber ideal response is modeled as a perfect square 

wave, which would be the response to a perfect Dirac-delta, that is, the impulse 

response. A plot of  idealy t  for a square absorber with 

0.005 (m), 1500(m/ s)sl c   is shown in Figure 21. 

 

 

Figure 21 Ideal pressure response for square absorber 

 

A plot of  idealy t  for an exponential decay absorber with 

0.005 (m), 1500(m/ s), 200sl c a    is shown in Figure 22. 

 

Figure 22  Ideal pressure response for exponential decay absorber 
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In order to calculate the error between  idealy t  and  sy t  after the receiver-filter, 

we sampled 331 points between  0.03 s  and  3.33 s with uniform spacing 

 0.01 s . The equation for calculating the maximum error is given by  

 
   

 max
max 1..

s i ideal i

ideal i

y t y t
Err i N

y t


    (3.119) 

where N is the number of sampling points. In this case, N was 331 points. 

The equation for calculating the average error is given by 

 
   

 1

1 N
s i ideal i

average
i ideal i

y t y t
Err

N y t


    (3.120) 

Equation (3.119) and equation (3.120) are used to calculate the errors in the 

simulations shown in Chapter 5. 
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4 Signal to Noise Ratio 
 

In this section, the expressions for the Signal-to-Noise Ratio (SNR) of the 

photoacoustic response assuming a bandlimited absorber model and a square shape 

absorber model will be derived in closed form. As shown in previous sections, the 

temporal Fourier transform of the pressure response is given by 

      , ,p z G z I     (4.1) 

where  

  
 

 
0

ˆ 0

ˆ2 0

ikz

ikz
s

A k e zp
G z

c A k e z


  
  



  (4.2) 

The exponential s

z
i

cikze e


   and s

z
i

cikze e


  factors merely represent a time delay 

without distortion (in other words, a propagating wave), which do not affect the SNR 

calculation. 

 

The output of receiver-filter is  

      , ,s ny z t y z t y t    (4.3) 

where  
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s
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
  (4.4) 

and 
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*
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n

n nn

y t r t n t

y R S  




  (4.5) 

The maximum signal to noise ratio (SNR) at the output of the receiver-filter occurs at 

a specific time 0t . The SNR at time 0t  is defined as 

 
 

 0

2

0

2

0

,s

t n

y z tS

N E y t

 
 

 
  (4.6) 

where  
2

0,sy z t  is the photoacoustic signal power at time 0t , and  
2

0nE y t  is 
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the expectation of noise power at time 0t . 

 

In this thesis, the simplest case will be considered where the noise is additive white 

Gaussian noise with a two-sided power spectral density   0

2
nn

N
S   . Substituting 

equation (4.4) and (4.5) into (4.6), it follows that 
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  (4.7) 

Suppose the receiver filter is implemented as a matched filter so that the transfer 

function of the matched-filter is given by 

     0* i t
R kI e

  
   (4.8) 

for some constant k.  Then, the expression for SNR becomes 
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  (4.9) 

For equation (4.9), suppose that  I   is the temporal Fourier transform of the chirp  

 
2
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  (4.10) 

Now take the rectangular approximation for the spectrum of the chirp from [50] as 

      
2

* *

0 0for 
4 2 2

T
I I I     
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
  (4.11) 

where 0 02 f   is the center frequency of the chirp.  Then, it follows that 
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where ULf  and LLf  represent the integration upper limit and lower limit, 

respectively. Substituting equation (4.2) without the time delay factor (propagating 

wave), it follows that  
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  (4.13) 

Equation (4.13) clearly shows that the SNR is (i) directly proportional to the chirp 

duration so that a longer duration implies a higher SNR (ii) inversely proportional to 

the chirp sweep so that a longer sweep implies a smaller SNR and (iii) proportional to 

the absorber spectrum that lies within the frequency interval bounded by ULf  and 

LLf . In the next subsections, specific examples of the absorber are considered to 

enable a further analysis of equation (4.13).  

 

4.1 Bandlimited Absorber 

 

Now consider the simple case where the absorber has a finite, flat spatial spectrum. 

This is a simple approximation to a band-limited absorber. In this case,  

   0ˆ 2

0

aA
A

otherwise







 



  (4.14) 

The absorber is considered as a square function in the spatial frequency domain. 
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Although this kind of absorber does not exist in reality, it is helpful in analyzing the 

implications of bandlimitedness in the absorber on the SNR trend. For the condition 

0z  , the SNR becomes 
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  (4.15) 

where 

2 2

0 0

2

016 s

p A
C

N c
  is constant. 

 

In determining the upper limit and lower limit, three different possibilities are 

considered. Case 1: the chirp bandwidth is equal to the absorber bandwidth a   ; 

Case 2: the chirp bandwidth is smaller than the absorber bandwidth a   ; Case 3: 

the chirp bandwidth is bigger than the absorber bandwidth a   .  

 

4.1.1 Case 1 – chirp bandwidth equal to absorber bandwidth 

 

It is assumed that the absorber frequency content is fixed with a bandwidth a  and 

centered at 0fa . The integration in equation (4.15) only has a nonzero value when the 

chirp spectrum overlaps the absorber spectrum. The upper limit ULf  and lower limit 

LLf  will be different according to different overlapping conditions. As shown in 

Figure 23 A) –E), the chirp gradually sweeps through different frequency ranges from 

the left of the absorber spectrum to the right. The red rectangle represents the chirp 

frequency content, and the black rectangle is the absorber frequency content. The 

overlapped range is shaded in the figure. The integration upper limit ULf  and lower 
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limit LLf  will be the right and left edges of the shaded area, respectively. 

 

 

Figure 23 Different chirp sweeping conditions forΔ=Δa 

 

In Figure 23, A) and E) do not have an overlapping area. Hence, the SNR will be 0. 

For Figure 23 B), equation (4.15) becomes  
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When   and a are completely overlapped with each other, as shown in Figure 23 

C), the SNR will be maximized as 
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For Figure 23 D), equation (4.15) becomes 
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4.1.2 Case 2 - chirp bandwidth smaller than absorber bandwidth 

 

When the chirp bandwidth is smaller than the absorber bandwidth, a   , the trend in 

the SNR will be slightly different from the case where a   . As shown in Figure 

24, all the overlapping conditions are similar to the a    case, except graph C).  

 

 

Figure 24 Different chirp sweeping conditions forΔ<Δa 

 

For the overlapping condition shown in Figure 24 C), the integration upper limit and 

lower limit are both the edges of the chirp sweep. This condition gives the maximum 

SNR under the case a   . The SNR will be given by 
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Figure 24 A) and E) do not have an overlapping area, therefore the SNR will be 0. 

Figure 24 B) has the same overlapping condition with Figure 23 B), the SNR is shown 

in equation (4.16). Figure 24 D) has the same overlapping condition with Figure 23 

D), hence the SNR is given by equation (4.18). 

 

4.1.3 Case 3 - chirp bandwidth bigger than absorber bandwidth 

 

When the chirp bandwidth is bigger than the absorber bandwidth, a   , the trend 

in the SNR will still be similar with the case where a   . As shown in Figure 25, 

all the overlapping conditions are similar to the a    case, except for graph C).  

 

 

Figure 25 Different chirp sweeping conditionsΔ>Δa 
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For the overlapping condition shown in Figure 25 C), the integration upper limit and 

lower limit are both the edges of the absorber frequency content. This condition gives 

the maximum SNR under the case a   . The SNR will be given by 
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    (4.20) 

In equation (4.20), since it is assumed in this case that a   , then 
2

2
1a 


 and the 

SNR is smaller than for the cases where the chirp sweep was equal to or smaller than 

the absorber bandwidth. Hence, interestingly the result follows that making the chirp 

bandwidth larger than necessary only serves to reduce the SNR.  

 

Figure 25 A) and E) do not have overlapping area, hence the SNR will be 0. Figure 25 

B) has the same overlapping condition with Figure 23 B), so the SNR is given by 

equation (4.16). Figure 25 D) has the same overlapping condition as with Figure 23 

D), so the SNR is given by equation(4.18). 

 

4.1.4 The Effect of Chirp Bandwidth 

 

Consider the case where the chirp center frequency is fixed at the center frequency of 

the absorber at 0 0f  , and the absorber frequency content 
a  is constant.  The 

following section will discuss the SNR’s relation with the chirp bandwidth  .  
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Figure 26 Absorber frequency content remains constant 

 

Figure 26 shows the relation of the chirp sweeping range and the absorber frequency 

range. From top to bottom of Figure 26, the absorber frequency content remains 

constant, shown as the black square, but the chirp sweeping area becomes larger and 

larger, as represented by the red box. When the chirp sweeping range increases, the 

overlapping area will also increase until a   . After that, the overlapping area 

remains constant as the chirp bandwidth increases. The SNR is 

  
2

2

TC
SNR Overlapping Bandwidth 


  (4.21) 

As long as 
a   , SNR will be constant and has a maximum value given by 

  
2

max 2

TC
SNR TC   


  (4.22) 

After this period, SNR will decrease due to the constant overlapping area and 

increasing   in the denominator. The expression for SNR will then be given by 

  
2

2 a

TC
SNR   


  (4.23) 
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4.2 Square Function Absorber in Space 

 

In this section, the SNR for an absorber that is a square function in space will be 

considered. For a square absorber in space, the absorber is a sinc function in the 

frequency domain. In space, the absorber can be modeled as 

   2
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  (4.24) 

where a is a constant that indicated the height of the ‘step’ and l is the width of the 

absorber. The transfer function for this kind of absorber is given by 
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Similar to the prior simplification, the exponential factor s

z
i

c
e


 only represents a 

propagating wave, which can be neglected. Substituting into equation (4.12), gives 
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where 

2 2

0

016

p a
C

N
  is a constant scaling factor. The upper limit and lower limit of the 

integral are now fixed to 0
2

f


  and 0
2

f


 , which belong to the edges of the chirp 

sweep, because the total frequency content of absorber ranges from   to  . The 
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frequency content of the absorber 
2 2s s

l l
i i

c c
e e

i

 






 inside the integral is a sinc function 

as shown in Figure 27, where the first zero crossing is given by 2 /sc l . Hence, 

/sc l  (the inverse of the transit time through the absorber) controls the width of the 

main lobe of the sinc, which in turn determines which frequency range the majority of 

the energy of the absorber is located. The parameters used for plotting Figure 27 are 

0.005(m), 1500(m/ s)sl c  . 

 

 

Figure 27 Frequency content of square absorber 

 

As can be seen in Figure 27, most of the energy of the sinc is concentrated around the 

zero frequency, with the bulk of the energy contained in the main lobe of the sinc 

function. The overall trend of SNR will still be similar to a bandlimited absorber, in 

the sense that the sinc can be considered “somewhat” bandlimited with the band limit 

defined by the size of the main lobe of the sinc, which is in turn determined by /sc l , 

the inverse of the transit time through the absorber. Therefore, smaller absorber will 

have smaller transit times and hence larger main lobes in their frequency domain sinc. 

Hence, larger chirp sweeps will be required to ‘cover’ the bandwidth of a smaller 

absorber. Detailed simulation results are shown in the following chapter. 
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5 Output of the Receiver-Filter - 

Resolution and SNR 
 

This chapter shows several simulations of the signal at the output of the receiver-filter. 

The square and exponential decay absorbers are modeled with parameter 

0.005 (m)l  . The transducer is assumed at position 0.03(m)z   . The exponential 

decay absorber is assumed with an exponential decay factor 
1200 (m )a  . The 

speed of sound in the scattering material and absorber are assumed to be the same, 

1500 (m/ s)sc  . The values of parameters , , ,sl z c a  for absorbers are taken to be 

close or equal to the experimental parameters used in recent researches [13], [18], 

[19], [41]. The initial pressure 0p , which merely serves as a scaling factor for 

simulations of the response, is arbitrarily chosen in Arbitrary Units (AU) as 

10

0 10 (A.U.)p  . 

 

5.1 Effect of chirp parameters effect on absorber profilometric 

information and SNR 

 

In this section, several important parameters of the incident chirp will be discussed. 

This will provide a guide on how to choose the proper parameters of the chirp for the 

goal of obtaining a pressure response that will resemble the absorber shape (impulse 

response), or in other words, a better resolution (a response that better reproduces 

what would be obtained with an input Dirac delta pulse). Furthermore, the chirp 

parameters’ effects on the SNR at the output of the receiver-filter will also be 

considered. 
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5.1.1 Effect of Chirp duration T 

 

Chirp duration is one of the most important parameters which define a chirp. As 

discussed earlier, the chirp compression ratio is given by 
2

T
. The compressed pulse 

duration is 
2


, which shall be referred to as the effective pulse duration.  

 

First, several chirp parameter sets were tested with only chirp duration T changing. 

The parameters are shown in Table 1. 

 

Table 1 Parameter Table with T changing 

Chirp parameter 

sets No. 

Chirp duration T 

(s) 

Chirp bandwidth 

Δ (Hz) 

Chirp center 

frequency f0 (Hz) 

1 1×10
-2 

3×10
6 

0 

2 1×10
-3

 3×10
6
 0 

3 1×10
-4

 3×10
6
 0 

4 1×10
-5

 3×10
6
 0 

 

Since the bandwidth remains unchanged, the effective pulse duration 
2


 does not 

change, so it would be expected that there should not be any difference in resolution 

between the simulation results using these parameters. However, the signal to noise 

ratio SNR is proportional to chirp duration. So, it would be expected that the SNR 

should decrease from parameter set 1 to 4 as T decreases. The simulation results are 

shown in Table 2. The SNR is obtained with equation (4.26), the maximum error and 

average error is calculated using equation (3.119) and (3.120) respectively. 

 

The same SNR and resolution calculation processes are taken for all the simulations 
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in this chapter.  

 

Table 2 Chirp duration effect 

Data No. & 

Chirp 

duration 

Square absorber pressure 

response signal after 

filtering 

Exponential decay 

absorber pressure 

response signal after 

filtering 

SNR 

Maximum 

Error 

(%) 

Average 

Error 

(%) 

1 

21 10 (s)T  

 
  

1.2×10
10 

48 7 

2 

31 10 (s)T  

 
  

1.2×10
9
 48 7 

3 

41 10 (s)T  

 
  

1.2×10
8
 48 7 

4 

51 10 (s)T  

 

  

1.2×10
7
 48 7 
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As expected, changing only the chirp duration T does not affect the shape of the 

pressure response, and so the maximum errors are the same for all 4 sets of data. As 

can be seen from the graphs, the only difference is the magnitude of the response. The 

larger T will give a higher magnitude, because the impulse chirp contains more energy. 

As a result of the energy difference, the larger chirp duration gives a better SNR, as 

shown in Table 2. 

 

Second, several sets of parameters were tested with constant time-bandwidth product 

T . In this case, as T  gets larger,   becomes smaller, but the time-bandwidth 

product (compression ratio) is held constant. Hence, the effective pulse duration will 

be increased, which is expected to give a pressure response that may blur the shape of 

the absorber, or in other words, a worse resolution. The parameter sets are shown in 

Table 3. 

 

Table 3 Parameter Table with effective pulse duration changing 

Parameter 

sets No. 

Chirp duration 

T (s) 

Bandwidth 

∆ (Hz) 

Effective pulse 

duration (s) 

Chirp center 

frequency f0 

(Hz) 

1 1×10
-5

 3×10
7
 6.67×10

-8
 0 

2 1×10
-4

 3×10
6
 6.67×10

-7
 0 

3 1×10
-3

 3×10
5
 6.67×10

-6
 0 

4 1×10
-2

 3×10
4
 6.67×10

-5
 0 

 

The simulation results are shown in Table 4. 
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Table 4 Chirp effective duration effect 

Data No. 

& 

Effective 

duration 

Square absorber 

pressure response signal 

after filtering 

Exponential decay 

absorber pressure 

response signal after 

filtering 

SNR 

Maximum 

Error 

(%) 

Average 

Error 

(%) 

1 

 86.67 10 s

 
  

8.92×10
-5 

37 5 

2 

 76.67 10 s

 
  

8.92 48 7 

3 

 66.67 10 s

 
  

3.59×10
5
 54 19 

4 

 56.67 10 s

   

2.83×10
11

 93 90 

 

As can be seen from Table 4, the pressure response blurs the shape of the absorber 

when the effective pulse duration became large and can no longer be considered ‘short 

enough’ to represent a short pulse. When the maximum error goes beyond around 50 

percent, the shape of the absorber is completed lost from the response. However, 

losing resolution does not imply losing SNR. In fact, the SNR increases dramatically 

as   becomes smaller and T  becomes larger. 
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5.1.2 Effect of Frequency 

 

5.1.2.1 Effect of chirp sweep 

 

In this subsection, the effects of the chirp frequency parameters on the pressure 

response are examined. The parameter sets that were used for the simulations are 

listed in Table 5. The bandwidth (chirp sweep) ∆ is the only changing parameter, and 

the chirp duration is kept constant. 

 

Table 5 Parameter table with ∆ changing 

Parameter No. 
Chirp duration T 

(s) 
Bandwidth ∆ (Hz) 

Chirp center 

frequency f0 (Hz) 

1 1×10
-3

 3×10
9 

0 

2 1×10
-3

 3×10
7
 0 

3 1×10
-3

 3×10
6
 0 

4 1×10
-3

 3×10
5
 0 

5 1×10
-3

 3×10
4
 0 

 

Simulation results are shown in Table 6. 
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Table 6 Chirp bandwidth effect 

Data No. 

& Chirp 

bandwidth 

Square absorber pressure 

response signal after 

filtering 

Exponential decay absorber 

pressure response signal 

after filtering 

SNR 

Max 

Error 

(%) 

Average 

Error 

(%) 

1 

93 10 (Hz)  

 

  

1111
 

5 5 

2 

73 10 (Hz)  

 
  

1.1×10
7
 37 5 

3 

63 10 (Hz)  

 

  

1.2×10
9
 48 7 

4 

53 10 (Hz)  

 

  

8.5×10
10

 54 16 

5 

43 10 (Hz)  

 

  

1.1×10
11

 93 90 

 

From Table 6, it can be observed that when ∆ is big enough, such as the 1
st
 parameter 

set, the pressure response resembles the absorber shape well. The resolution is good 

with a maximum error 5%. As the bandwidth ∆ becomes smaller, the pressure 

response starts to lose the shape. This follows because the smaller bandwidth gives us 
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a longer effective pulse, since the effective pulse duration is given by 
2


. This result 

is consistent with the previous theory which states that a “fake” Dirac-Delta function 

input pulse will excite a pressure response which has the same shape with the 

absorber but the fake pulse needs to have a sufficiently short duration to resemble an 

effective Dirac-delta pulse. Hence, larger bandwidths are desirable in order to obtain 

smaller effective pulses and hence better resolutions. However, the larger bandwidth ∆ 

will result in a lower SNR. So the parameters need to be chosen to obtain an 

acceptable resolution and not lose too much SNR. 

 

5.1.2.2 Effect of chirp center frequency  

 

The other important parameter which affects the pressure response is the choice of 

chirp center frequency 0f . Several parameter sets have been tested with all the 

parameters the same, except for 0f . To analyze the effect of center frequency, the 

parameters chosen for the next set of simulations are listed in Table 7. 

 

Table 7 Parameter table with f0 changing 

Parameter No. Chirp duration 

T (s) 

Bandwidth ∆ 

(Hz) 

Chirp center 

frequency f0 (Hz) 

1 1×10
-3

 3×10
7 

-3×10
7 

2 1×10
-3

 3×10
7
 -1×10

7
 

3 1×10
-3

 3×10
7
 0 

4 1×10
-3

 3×10
7
 1×10

7
 

5 1×10
-3

 3×10
7
 3×10

7
 

 

The simulation results are shown in Table 8. 
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Table 8 Chirp center frequency effect 

Data No. & 

Center 

frequency 

Square absorber 

pressure response signal 

after filtering 

Exponential decay 

absorber pressure 

response signal after 

filtering 

SNR 

Maximu

m Error 

(%) 

Average 

Error 

(%) 

1 

7

0 3 10 (Hz)f   

 

  

20.3
 

104 100 

2 

7

0 1 10 (Hz)f   

 
  

1.1×10
7
 37 5 

3 

0 0(Hz)f   

  

1.1×10
7
 37 5 

4 

7

0 1 10 (Hz)f    

  

1.1×10
7
 37 5 

5 

7

0 3 10 (Hz)f    

  

20.3 104 100 

 

In Table 8, bandwidth used for all the plots are the same. The only difference is the 

center frequency. From parameter sets 1 to 5, the chirp is sweeping the same 

bandwidth but in a different frequency range (from the left to the right of the absorber 

frequency content). As can be seen from the plots, in order to obtain a pressure 
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response that resembles the absorber shape, choosing only a wide frequency 

bandwidth is not enough. The entire frequency sweep should be in a certain range. 

Choosing a sweep that gives a sufficiently small effective pulse duration via 
2


does 

not yield good results if the center frequency puts the entire frequency range away 

from the spectrum of the absorber. In other words, the frequency sweep should cover 

as much frequency content of the absorber as it can. Designing the chirp so that the 

entire frequency range that is swept is away from the spectrum of the absorber may 

result in a sufficiently short compressed pulse, however the result will be poor 

resolution and poor SNR.  

 

5.1.3 Conclusion 

 

In this section, the effect of the parameters of the incident laser chirp have been 

analyzed for their effect on the photoacoustic signal at the output of the receiver-filter 

in terms of resolution and SNR. 

 

Chirp duration T is one of the key parameters that need to be controlled. The chirps 

with larger T will generate a higher energy signal which will deliver a better SNR. 

However, a larger T will not give better resolution, and a longer duration chirp means 

more energy in the chirp which may be limited by safety regulations. The duration of 

chirp cannot be increased indefinitely.  

 

The chirp frequency bandwidth ∆ controls the duration of compressed pulse, when ∆ 

becomes larger, the compressed effective pulse duration is shorter, which in turn gives 

a signal with a better resolution and a response that can better resemble the absorber 

shape (impulse response). However, according to equation (4.26) and the simulations 

above, the larger ∆ gives a worse SNR. Hence, there needs to be a balance between 

resolution and SNR and this is highly affected by controlling the chirp sweep. 
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The center frequency 0f  is another important parameter. When the frequency 

bandwidth ∆ is fixed, the chirp sweeping range should cover the most energy of the 

absorber. Under this condition, improved SNR and resolution can be obtained. 

 

5.2 Signal to Noise Ratio Trends 

 

The effect of chirp parameters on resolution and SNR have been investigated in the 

previous sections. However, the overall trend of the SNR is still not clear. In this 

section, another view of how SNR changes with different parameters will be 

examined. 

 

5.2.1 Bandlimited Absorber 

 

Although a true bandlimited absorber does not exist in reality, examining the 

implication of absorber bandlimitedness can help to obtain a rough picture about the 

trend in the SNR. Consider the bandlimited absorber shown in equation (4.14), the 

equation for SNR is given by 
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  (5.1) 

where 

2 2

0 0

2

016 s

p A
C

N c
  is a constant scaling factor which was chosen as an arbitrary 

value of 1510C   in the simulations.  
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5.2.1.1 Effect of Chirp sweep location 

 

Figure 28 shows the three different cases as categorized in section 4.1. Figure 28 A) 

shows case 1, where the chirp bandwidth is equal to the absorber bandwidth, with 

parameters 
5 33 10 (Hz), 10 (s)a T       . As shown in the corresponding case of 

Figure 23 A) to E), the chirp sweeps from left to right with center frequency 0f  

moving from 
56 10 (Hz)   to 

56 10 (Hz)  . The SNR first increases in accordance 

with the increasing overlapping area until the maximum value is obtained where   

exactly matches a . Then, the SNR decreases because of the decreasing overlapping 

area. 

 

Figure 28 SNR of bandlimited absorber with chirp sweeping different frequency 

range A)  53 10a Hz     , chirp center frequency moving from  56 10 Hz   

to  56 10 Hz ; B)    5 53 10 , 1 10aHz Hz      , chirp center frequency 

moving from  56 10 Hz   to  56 10 Hz ; C )    5 53 10 , 5 10aHz Hz      , 

chirp center frequency moving from  56 10 Hz   to  56 10 Hz  
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Figure 28 B) shows case 3, where the chirp bandwidth is bigger than the absorber 

bandwidth, with parameters      5 5 33 10 , 1 10 , 10aHz Hz T s       . As shown 

in Figure 25 A) to E), the chirp is sweeping from left to right with center frequency 

0f  moving from 
56 10 (Hz)   to 

56 10 (Hz)  . The SNR first increases according 

to the increasing overlapping area until the maximum value is reached where a  is 

completely inside   and lasts for a certain period of frequency. Then, the SNR will 

decrease because of the decreasing overlapping area. 

 

Figure 28 C) shows case 2, where the chirp bandwidth is smaller than the absorber 

bandwidth, with parameters
5 5 33 10 (Hz), 5 10 , 10 (s)a T        . As shown in 

Figure 24 A) to E), the chirp is sweeping from left to right with center frequency 0f  

moving from 
56 10 (Hz)   to 

56 10 (Hz)  . The SNR first increases according to 

the increasing overlapping area until the maximum value where   is completely 

inside a  and lasts for a certain period of frequency. Then the SNR will decrease 

because the overlapping area decreases. 

 

From Figure 28 A), B) and C), the conclusion can be drawn that in order to obtain a 

higher SNR, the chirp sweep must fit as much as possible within the absorber 

frequency content. Comparing the maximum SNR in Figure 28 A), B) and C), the 

maximum SNR will be determined by the minimum of a  and  ,  min , a  . 

 

If a   , the maximum SNR occurs when 0 0f   and is given by 

 
2

max 2

aSNR TC





  (5.2) 

If a   , the maximum SNR occurs when 0 0f   and is given by  

 maxSNR TC   (5.3) 
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5.2.1.2 Effect of Chirp bandwidth on SNR 

 

As discussed in Chapter 4, suppose that the absorber bandwidth remains constant and 

the chirp sweep is centered at 0 0f   where the absorber center frequency is also 

located. If the chirp bandwidth is increased, the SNR will be constant and maximized 

at first and then will decrease.  

 

Figure 29 shows a simulation of the relation between SNR and chirp bandwidth. The 

parameters used in the simulation are given by 
15 310 , 10 (s)C T   and 

5

0 0 0, 10 (Hz)af fa    . The chirp bandwidth increases from 0 to 53 10 (Hz). The 

flat top in Figure 29 is when the chirp bandwidth is completely inside the absorber 

bandwidth, a   . The SNR will be given by 1510TC  . When a   , the 

overlapping area will be fixed to a  no matter how   changes, so the SNR starts 

to drop as   increases. 

 

Figure 29 SNR vs. Chirp Bandwidth 

 

5.2.2 Square Absorber 

 

In this section, the SNR trends for a more realistic absorber, the square absorber will 

be examined. 
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5.2.2.1 Absorber Frequency Content 

 

Before analyzing the SNR, the frequency content of the absorber must be examined. A 

square wave absorber in space is a sinc function in the spatial frequency domain. The 

translation from spatial frequency to frequency is done by the speed of sound sc . The 

mathematical expression of a square wave absorber in the frequency domain is given 

by 

 

sin
s

l
f

c

f





 
 
 

  (5.4) 

A plot of equation (5.4) with parameters 0.005(m), 1500(m/ s)sl c   is shown in 

Figure 30. 

 

Figure 30 Square absorber in frequency domain 

The energy spectrum of this absorber is  

 

2
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  (5.5) 

as shown in Figure 31. 

 

Figure 31 Energy spectrum of square absorber 
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We define the idea of energy concentration percentage as the percentage of the total 

energy of the sinc (which has energy at all frequencies) that is contained within the 

bandwidth / 2, / 2a a  . Mathematically, this can be written as 
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  (5.6) 

This approach allows us to determine what the frequency range needs to be to capture 

“most” of the energy of the absorber.  Through equation (5.6), frequency ranges can 

be determined where the energy of the absorber is 95% concentrated or 99% 

concentrated. Specifically, 95% of the absorber energy is concentrated in the range 

given by  61.24 10a Hz    and 99% of the absorber energy is concentrated in the 

range  66.17 10a Hz   . Hence, although the absorber is not strictly speaking 

bandlimited, band limits can be determined where ‘most’ of the energy is concentrated 

within and the idea of ‘most’ can easily be specified to any desired value. 

 

5.2.2.2 Effect of Chirp Sweep Location 

 

In section 4.2, it was predicted that the absorber which is a square function in space 

will have an SNR trend that is similar to that of a bandlimited absorber. In this section, 

simulations are presented to demonstrate this claim. 
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Figure 32 is a simulation plot of SNR as it changes with chirp center frequency 0f  

while the other chirp parameters are given by
3 1510 (s), 10 , 0.005 (m)T C l  

61500(m/ s), 3 10 (Hz)sc     . The chirp center frequency moves from 

63 10 (Hz)   to 
63 10 (Hz) . As can be seen from the figure, the SNR first increases 

and remains around a constant value and then decreases with some oscillations. 

Figure 30 shows that most of the energy of the absorber concentrates in a certain 

range (approximately 97% energy concentrates in 
61 10 (Hz)   to 

61 10 (Hz) ) 

centered at 0 (Hz). The increase in SNR in Figure 32 before 
61 10 (Hz)   is because 

the chirp is approaching the absorber concentrated frequency range, the upper limit of 

the chirp sweeping range 0
2

f


  is inside the absorber concentrated frequency range. 

Between 
61 10 (Hz)   and 

61 10 (Hz) , the SNR remains almost constant because 

the absorber’s concentrated frequency range is smaller than the chirp bandwidth, 

similar to case 3 as discussed in Figure 25. Finally, the decrease in SNR is due to the 

decrease of overlapping areas of their spectrums. 

 

Figure 32 SNR changes with chirp center frequency 

 

5.2.2.3 Effect of Chirp Bandwidth 

 

Figure 33 is the simulation plot to show the relationship between the chirp bandwidth 

and SNR. Same as for the case of the bandlimited absorber, the chirp center frequency 
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remains at 0 (Hz), only the chirp bandwidth is the independent variable. The 

parameters used in this plot are 
3 1510 (s), 10 , 0.005(m), 1500(m/ s)T C l c    .  

 

 

Figure 33 SNR vs. Chirp Bandwidth for square absorber 

 

In Figure 33, the blue line represents the SNR, the red line represents the percentage 

of the absorber energy covered by the chirp sweep. As can be seen from Figure 33, the 

trend in SNR is similar to that in Figure 29 for the case of the bandlimited absorber, 

that is SNR decreases with increasing chirp bandwidth. There is no flat constant range 

in Figure 33, because the magnitude of the absorber frequency content is not constant 

in that range. In the SNR expression 

  
2

2

TC
SNR Overlapping Area 


  (5.7) 

the overlapping area squared,  
2

Overlapping Area , increases slower than the 

squared chirp bandwidth 2 . However, the decrease in SNR is relatively small up to a 

certain value of  . As  becomes too large, (beyond about 
61 10 Hz  in these 

simulations), increasingwill not deliver more energy quickly, but rather the 2  in 

equation (5.7) still increases quickly. Hence, the SNR beyond that range becomes 

very small. 
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5.2.3 Conclusion 

 

The key parameters of the chirp have very important effects on the SNR at the output 

of the receiver-filter. The center frequency determines the sweeping location. When 

the chirp bandwidth is fixed, putting the chirp center frequency at 0 frequency (or 

wherever the absorber bandwidth center frequency is located) gives the best SNR and 

a better resolution. When the chirp center frequency is fixed, it is necessary to 

manipulate the chirp bandwidth to cover most of the frequency range where the 

absorber energy is concentrated in order to obtain a better resolution. However, 

increasing the chirp bandwidth when detecting the square absorber will be costly in 

terms of a decrease in SNR. It is necessary to adjust the bandwidth to a certain value 

so that an acceptable resolution (absorber depth profile) can be obtained and at the 

same time not lose too much in SNR. 
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6 Comparison of Theory to 

Experimental Results 
 

Telenkov and Mandelis [19] used the autocorrelated chirp to experimentally obtain 

pressure response signals. In this section, their experimental results will be compared 

to simulations using the theory developed in this thesis. 

 

Telenkov and Mandelis used a sinusoidal chirp with the frequency sweep 

500 ~ 2.5kHz MHz  which implies in simulations chirp parameters of 

6 6

02 10 , 1.5 10Hz f Hz     . They used a PVC absorber which is 5 mm  thick, 

being placed in clear water, which implies that l  is 0.005 m . The absorption 

coefficient 
12a cm   indicates a light absorption attenuation coefficient a  for the 

exponential decay absorber in the simulations given by 200a  . The chirp duration 

is 1T ms . Their transducer was placed at a distance of 3 cm  away from the 

absorber on the reflection side, hence in the simulations, the parameter 0.03z m  . 

The speed of sound in water is around 1500 /m s , and it is assumed that the speed of 

sound in scattering and absorbing material are similar (the variation of speed of sound 

in different tissue is less than 10% [51]). Hence, in the simulations, 1500 /sc m s  

was used. 

 

The experimental pressure response they obtained is shown by line 1 in Figure 34. 

Line 2 and line 3 are responses of a square shaped chirp and a train of pulses, neither 

of which are considered in this thesis. 
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Figure 34 Experimental Pressure Response (Line 1) from [19] 

 

The simulation of the pressure response using their parameters with the theory 

developed in this thesis is shown in Figure 35 

 

 

Figure 35 Simulation result of pressure response 

 

As can be seen from Figure 34, the experimental result mainly contains two peaks. In 

Figure 35, the simulation also shows a pressure response which only has two peaks – 

these actually represent the two edges of the absorber. This follows because the 

frequency sweep only covers the high frequency part of the absorber spectrum. As 

discussed in the previous chapter, the chirp center frequency is too high so that the 

overlapping area between the chirp bandwidth and the absorber bandwidth is too 

small, resulting in a low resolution. In particular, only high frequency absorber 

features (the edges of the absorber) are detected since the frequency sweep is only 

over high frequencies.  
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The primary differences between the simulation and their experimental result are the 

sharper peaks and negative pressure in the simulation. The reason why the 

experimental results have a smooth curve is due to the noise and averaging method 

they employed. They sent 79 signals and received 79 pressure responses which 

contain some noise, and then used an averaging method to reduce the noise. Since the 

simulation does not have noise, their averaging process cannot be replicated directly. 

The negative pressure in the simulation result follows because a true sinusoidal chirp 

as shown in Figure 9 was used (not a DC-offset chirp), which implies a negative 

intensity illumination in the simulations. However, the salient feature of both 

simulations and experimental results match – that is both theory and experiment 

indicate that only the edges of the absorber are detected, rather than the full absorber 

profile, which is in keeping with the frequency sweep area being too high to sweep 

over the full absorber bandwidth. 
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7 Summary and Conclusions 
 

7.1 Thesis overview 

 

In this thesis, photoacoustic imaging for biomedical applications was introduced and 

briefly reviewed. Both pulsed and continuous wave photoacoustics have been used.  

Much theoretical and experimental research has been done to date on the pulsed laser 

photoacoustic modality. Recently, researchers have become more interested in the 

continuous wave laser excitation photoacoustic modality, especially in using a linear 

frequency modulated sinusoidal laser chirp, because of the benefits accorded by pulse 

compression signal processing methods and the cheap and compact laser sources that 

can be used with a continuous wave approach. However, to date the studies on linear 

frequency modulated sinusoidal laser chirp photoacoustics have not provided any 

understanding of how the chirp parameters can affect the corresponding response 

signal and SNR.  

 

In order to achieve the goal of acquiring a photoacoustic signal which carries 

acceptable absorber profilometric information (resolution), using a linear frequency 

modulated sinusoidal laser chirp, mathematical expressions of the pressure response 

signal obtained from square and exponential decay absorbers after filtering with a 

receiver-filter were developed in this thesis. Subsequently, mathematical expressions 

of SNR for a bandlimited absorber and a square absorber were also developed.  

 

The simulations in Chapter 5 gave a clear pattern of how the chirp parameters affect 

the corresponding photoacoustic signal. Three key parameters of the chirp were 

identified as important in obtaining a better resolution. The longer chirp duration will 

give a better SNR but does not affect resolution much. Furthermore, chirp duration 

cannot be increased too much because of safety limitations in application to in-vivo 

imaging. The chirp bandwidth is a critical controlling parameter for both resolution 
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and SNR. A larger chirp bandwidth implies a shorter effective pulse duration after 

pulse compression, so a better resolution can be obtained. However, a larger 

bandwidth will result in a lower SNR. The chirp bandwidth needs to be adjusted to a 

value appropriate for obtaining an acceptable resolution but not losing too much SNR 

in the process. In order to obtain a better resolution, the bandwidth of chirp is not the 

only parameter that needs to be considered. It is important to ensure that the chirp is 

sweeping the right range in frequency where most of the absorber energy is 

concentrated. The chirp center frequency is the parameter that controls the sweeping 

position in the frequency domain.  

 

Finally, the chirp parameters from Mandelis and Telenkov’s paper [19] were used in 

simulations and results similar to their experimental results were obtained. Their 

two-peak experimental pressure response result may be explained by the chirp sweep 

being in the wrong place, or in other words, chirp center frequency was not well 

chosen and did not cover the bandwidth where most of the absorber energy was 

located. 

 

7.2 Contributions of the thesis 

 

In this thesis, the following contributions were made: 

 

1. Two different types of absorber were considered and their corresponding 

mathematical photoacoustic pressure response signals obtained after the 

implementation of a receiver-filter were derived. 

 

2. Mathematical expressions of the SNR for pulse-compressed photoacoustic signals 

obtained from two different types of absorber were developed. 

 

3. Several simulations were performed to test the chirp parameters’ effects on 
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corresponding photoacoustic signals. The simulation results showed very clear trends 

for signal resolution and SNR when the parameters were changed. 

 

4. Guidelines of how to choose the parameters of the chirp in order to obtain a 

photoacoustic signal with acceptable absorber profilometric information and better 

SNR were proposed. 

 

5. A simulation using the chirp parameters from Mandelis and Telenkov [19] was 

performed and compared with their experimental results. The comparison showed that 

the guidelines developed in this thesis for choosing chirp parameters predict a similar 

result as to that obtained from their experimental results. 

 

7.3 Future work 

 

Some examples of future research directions based the work developed in this thesis 

are as follows: 

 

1. In this thesis, only linear frequency modulated sinusoidal chirps were used as an 

illumination source. The guideline on choosing chirp parameters only applies for this 

specific kind of chirp. Future work may need to be done on other types of chirps, such 

as square wave chirp or a train of chirped pulses. 

 

2. In this thesis, only two simple kinds of absorbers were analyzed. The closed form 

expression of the photoacoustic signal for other kinds of absorbers may need to be 

found in future work. 

 

3. In future studies, further experimental testing may better prove the theory proposed 

in this thesis. 
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Appendix - Shifted Chirp Autocorrelation 

 

The autocorrelation of a shifted cosine chirp is 
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