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Abstract

This paper provides two generalizations of differential and integral
categories: Leibniz and generalized Rota-Baxter categories, which capture
certain algebraic structures, and q-categories, which capture structures of
quantum calculus.

In the search for new examples of differential and integral categories,
it was observed that many structures were not quite examples but satis-
fied certain properties and not others. This leads us to the definition of
Leibniz, Rota-Baxter and proto-FTC categories.

In generalizing Rota-Baxter categories further to an arbitrary weight,
we show that we recapture Ribenboim’s generalized power series as a
monad on vector spaces with a generalized integral transformation. This
also subsumes the renormalization operator on Laurent series, which has
applications in the quantum realm.

Finally, we define quantum differential and quantum integral cate-
gories, show that they recapture the usual notions of quantum calculus
on polynomials, and construct a new example to indicate their potential
usefulness outside of that specific setting.
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1 Introduction

Linear logic began with the work of Girard in [21], and captures the struc-
ture of classical logic while also adding mechanisms to track resources and
make resource-dependent deductions. Its category-theoretic content was later
expanded upon by Seely in [39].

Shortly thereafter, Ehrhard began building categorical models of linear logic
[15, 16], and observed that in his models there were natural notions of differ-
entiation. This led him, along with Regnier, to introduce a differential logical
operator and the differential λ-calculus [17, 18].

To reconstruct Ehrhard and Regnier’s abstract notion of differentiation in a
purely categorical setting, Blute, Cockett and Seely introduced differential cat-
egories in [7]. Their main ingredient was a differential combinator, an operator
that could be applied to maps that were in some abstract sense “smooth” and
that produced a smooth assignment of linear maps, inspired by the Jacobian
of multivariable calculus. This formulation was then transported across the
monoidal-closed adjunction to accommodate not-necessarily-closed categories.

The advent of differential categories launched an effort to categorify the
setting of smooth maps, differentiable manifolds and tangent bundles from dif-
ferential geometry and topology. Via the intermediary of cartesian differential
categories, also introduced by Blute, Cockett and Seely [6], and differential re-
striction categories, introduced by Cockett, Cruttwell and Gallagher in [11], this
culminated in the generalization by Cockett and Cruttwell in [12] of the tangent
categories first introduced in [37]. Tangent categories axiomatize the general
tangent bundle functor, which is a functor T : C → C satisfying certain equa-
tions. Current work expanding and unifying these concepts is being done by
many of the authors above, as well as others, with particular mention for work
in dualizing to the integral category setting due to J.S. Lemay among others
[3, 13, 31].

The work of this paper began with the observation that several well-known
structures satisfy the Leibniz rule of differential categories or the Rota-Baxter
rule (i.e. integration by parts) of integral categories, but not other rules like
the chain rule or U-substitution. These structures seemed important enough
to be worthy of axiomatization as generalizations of differential and integral
categories.

This led to exploring Rota-Baxter algebra in more detail, and remarking that
one of its applications to quantum renormalization, as studied by Ebrahimi-Fard
and Guo in [14], appeared to constitute an algebra modality. It was then natural
to further generalize the definition of Rota-Baxter category to include arbitrary
weights, and show that this does indeed relate to renormalization. In fact, it
turns out to categorically capture generalized power series, with the broad class
of Rota-Baxter operations on them explored by Ribenboim in works like [35].2

We proceed along this path first by following the construction of the free
differential Rota-Baxter algebra. We show that the free Rota-Baxter algebra

2We refer to these generalized power series as Ribenboim power series.
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(of weight 0) monad makes the category of vector spaces into a Rota-Baxter
category. We similarly show that the free differential algebra monad gives a
Leibniz category, before uniting the two structures to show that the free dif-
ferential Rota-Baxter algebra is an example of both. Next, we generalize to an
arbitrary weight, and describe precisely how Ribenboim power series constitute
a monad and induce a Rota-Baxter category structure of weight −1. Particu-
lar attention is given to the example of Laurent series and the renormalization
operator.

The second part of this paper is the definition and description of quantum
differential and integral categories. Studying the Leibniz and Rota-Baxter rules,
along with parallel study of categorical quantum information theory and a cog-
nizance of previous connections between categorical logic and quantum algebra,
led to an examination of quantum calculus. Quantum calculus, as an oversim-
plification, might be described as calculus without limits; that is, rather than
utilizing the continuous notion of an infinitesimal, quantum calculus instead
uses an incompressible discrete quantity in similar contexts. It turns out that
a surprising amount of calculus can be rederived in this setting, and leads to
formulations of the quantum Leibniz rule, quantum Stokes Theorem, and quan-
tum integration, among others. Much of this work is elucidated by Kac and
Cheung in [28].

It seemed natural then to categorify quantum calculus, following the model
of differential categories. In so doing we end up making use of the notions of
categorical scalar and categorical basis, already current in categorical quantum
information theory (see e.g. Abramsky and Coecke [1], Vicary [26]). After
showing that the categorical structure does indeed capture the basic notion of
quantum differentiation of polynomials, we proceed to the more interesting step
of describing a new quantum differential example on the category Rel of sets
and relations, based on the finitary multiset comonad. It is hoped that these
structures can provide further insight into the abstract quantum setting in the
future.

What’s New: The definitions of Leibniz, Rota-Baxter and proto-FTC cat-
egories are new to this paper, as are the proofs that certain known structures
(the free differential, Rota-Baxter, and differential Rota-Baxter, algebras) are
examples of them. The definition of a module modality associated to an alge-
bra modality is a new one, though examples of it have previously been implied
in the literature. The characterization of Ribenboim power series as an alge-
bra modality with Rota-Baxter category structure is new as well, as are the
particular distributive laws of monads used in the proofs. Finally, the defini-
tion of quantum differential and quantum integral categories in analogy with
Blute, Cockett and Seeley’s structures is new, as are the demonstrations of the
examples of them.

Acknowledgements: Many thanks are due to the author’s advisor Richard
Blute for his guidance and astute mathematical intuition, and to the Univer-
sity of Ottawa and the National Sciences and Engineering Research Council of
Canada for their financial and administrative support.
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2 Differential, Integral and FTC Categories

In this section we’ll recall the fundamental definitions of differential and inte-
gral categories, and we’ll define the new Leibniz and (weight-zero) Rota-Baxter
categories, the utility of which will be argued in the following section. We also
demonstrate some propositions relating these categories with the structures of
modules with differentiation and integration in the category K-V ec.

2.1 Differential Categories

Differential categories were first described in [7] extending ideas from linear logic
and differential lambda calculus. In categorical logic, the internal hom models
classical implication in cartesian closed categories, and in certain categories this
can be decomposed into a linear implication and a comonad:

A⇒ B = !A( B

Note that the right-hand side of this equation has the form of a coKleisli map.
Then, with the intuition that maps in a given monoidal category should be
thought of as linear, and maps in the coKleisli category should be thought of as
smooth, the authors of [7] reasoned about the form a categorical “derivative”
should take by analogy with vector calculus as follows.

If f : Rm → Rn is a smooth function, then its Jacobian matrix J takes in
a choice of point x = (x1, . . . , xm) to produce a linear map J(x) : Rm → Rn.
Taking this choice of point is itself a smooth function, and so given a smooth
map f : Rm → Rn we get a smooth map D[f ] : Rm → L(Rm,Rn).

In the notation of categorical logic, this is D[f ] : !A→ A( B. For increased
generality, we would like to work in categories that are not necessarily closed,
so this map is shifted back across the monoidal-closed adjunction to obtain a
transformation of the following type:

f : !A→ B 7→ D(f) : A⊗!A→ B

Keeping this intuition in mind, we now review the formal definition.
Let (C,⊗, I) be a symmetric monoidal category enriched over commuta-

tive monoids, where the tensor distributes over the sum of maps, and let C be
equipped with a comonad (!, δ, ε), where δ is the comonadic comultiplication
and ε is the comonadic counit.

Such a comonad is a coalgebra modality if each object of the form !A is
equipped with a coalgebra structure (!A,∆, e), where ∆: !A→!A⊗!A and e : !A→
I and such that (!A,∆, e) is a comonoid and δ is a morphism of these comonoids.

Definition 2.1.1. A category C with such a coalgebra modality ! is a differential
category if it is also equipped with a collection of maps DA,B : Hom(!A,B) →
Hom(A⊗!A,B), a transformation natural in A and B called a differential com-
binator, satisfying the four properties below. For diagrammatic intuition, we
shall sometimes write f ; g := g ◦ f .
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(Derivative of Constants rule) D(e) = 0

(Leibniz Rule)

D(∆; (f ⊗ g)) = (id⊗∆); (D(f)⊗ g) + (id⊗∆); (σ ⊗ id); (f ⊗D(g))

where σ is the monoidal symmetry, f : !A → B, g : !A → C, and we have
omitted the monoidal associativity isomorphism.

(Derivative of Linear Maps Rule) D(ε; f) = (1 ⊗ e); f where f : A → B
and we have omitted the monoidal unit isomorphism.

(Chain Rule)
D(δ; !f ; g) = (id⊗∆); (D(f)⊗ δ!f);D(g)

where f : !A→ B, g : !B → C and we have again omitted the associativity
isomorphism.

The definition of DA,B being natural in A and B is that it carries commuting
diagrams to commuting diagrams, like so:

!A B A⊗!A B

⇒

!C D C⊗!C D

f

!u v

D(f)

u⊗!u v

g D(g)

In particular, employing two identity maps gives the following relation:

!A !A A⊗!A !A

⇒

!A B A⊗!A B

id

!id f

D(id)

id⊗!id f

f D(f)

If we write D(id!A) = dA, this shows that D(f) = f ◦ dA = dA; f . Thus
dA can in fact be used to express the entire range of the map D. We call this
dA : A⊗!A→!A a deriving transformation.

It is proved in [7] that an additive symmetric monoidal category with a
coalgebra modality is a differential category (i.e. it has a differential combinator)
if and only if it has a deriving transformation. Thus we may work exclusively
with deriving transformations, and their versions of the rules above, to prove
statements about differential categories.
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(d1) Derivative of Constants Rule:

d; e = 0

(d2) Leibniz Rule:

d; δ = (id⊗∆); (d⊗ id) + (id⊗∆); (σ ⊗ id); (id⊗ d)

(d3) Derivative of Linear Maps Rule:

d; ε = (id⊗ e); ρ

(d4) Chain Rule:
d; δ = (id⊗∆); (d⊗ δ); d

The dual of a differential category is a codifferential category, built using a
monad and the analogous notions of algebra modality and coderiving transfor-
mation. We will sometimes be loose with the terminological distinction, some-
times referring to codifferential categories simply as “differential categories”.
Nearly all of our constructions later on will be codifferential categories.

2.1.1 Examples

1. Let Rel be the category of sets and relations, additively enriched via the
union and monoidal via the standard cartesian product. Let ! be the bag
functor on Rel; that is, elements of !A are finitary multisets of elements of
A, or sets of elements of A where each element may be counted repeatedly,
up to finitely many times.

Define natural transformations δA : !A →!!A and εA : !A → A as follows:
δ relates a multiset X to all multisets of multisets whose union is X, and
ε relates each singleton multiset in !A to its element. It is easy to see this
makes (!, δ, ε) into a comonad.

Next, let ∆: !A →!A×!A relate all multisets X to all pairs of multisets
whose union is X, and let e : !A→ I relate only the empty multiset to the
single element of I = {∗}. This defines a coalgebra modality for !.

We can define a natural transformation dA : A×!A→!A by

dA(a0, ((a1, . . . , an))) = ((a0, a1, . . . , an))

which is just adding the extra element to the multiset. This is a deriving
transformation on Rel (see [7] for a sketch of the proof), and thus makes
Rel into a differential category.

2. The category K-V ec of vector spaces over a field K can be equipped with
the free commutative algebra monad S, and we may then look at the op-
posite category, K-V ecop. This opposite category’s coKleisli subcategory
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(that is, the category whose objects and arrows are of the form S(V ) and
S(f) : S(V ) → W for all K-vector spaces V and linear maps f : V → W ,
respectively) is precisely the category of (multivariable) polynomial func-
tions on basis elements, and the opposite of the monad S gives a coalgebra
modality. Define a deriving transformation dV : S(V )→ V ⊗S(V ) on basis
elements xi by

d(f) =
∑
i

xi ⊗
∂f

∂xi
.

This makes K-V ecop into a differential category, and moreover recaptures
the standard notion of polynomial differentiation, further justifying the
definition of differential category. For a more detailed treatment and proof
of this example, see [7].

2.2 Integral Categories

Next we recall the related notion of an integral category.
Let (C,⊗, I) be a symmetric monoidal category enriched over commutative

monoids, where the tensor distributes over the sum of maps, equipped with a
comonad (!, δ, ε) which is also a coalgebra modality (!,∆, e), as in the differential
category case above.

Definition 2.2.1. The category C is an integral category if it is further equipped
with an integral combinator, a natural transformation SA,B : Hom(A⊗!A,B)→
Hom(!A,B), satisfying the properties below [13].

(Additivity) S(f + g) = S(f) + S(g) and S(0) = 0.

(Linear Substitution) If the left square commutes, then the right square does
also:

A⊗!A B !A B

⇒

C⊗!C D !C D

f

h⊗!h k

S(f)

!h k

g S(g)

(Integral of Constants Rule) S((id⊗ e); ρ) = ε where ρA : A⊗ I → A is the
monoidal right unitor transformation.

(Rota-Baxter Rule) ∆; (S(f) ⊗ S(g)) = S((id ⊗ ∆);S(f) ⊗ g)) + S((id ⊗
∆); (σ ⊗ id); (f ⊗ S(g))).

(Interchange Rule) S(id⊗ S(id⊗ f)) = S((id⊗ S(id⊗ f)); (σ ⊗ id)).

4



Similarly to the differential case, a consequence of the naturality of S is that
we can instead work with the map s := S(id), which is known as an integral
transformation. Once again, an integral category described via an integral com-
binator and one described via an integral transformation are equivalent [31].
The properties above are often more easily demonstrated in terms of s.

(s1) Integral of Constants Rule:

s; (id⊗ e); ρ; = ε

(s2) Rota-Baxter Rule:

∆; (s⊗ s) = s; (id⊗∆); (id⊗ id⊗ s) + s; (id⊗∆); (σ ⊗ id); (s⊗ id⊗ id)

(s3) Interchange Rule:

s; (id⊗ s) = s; (id⊗ s); (σ ⊗ id)

2.2.1 Examples

1. Rel is an integral category when equipped with the same finite bag comonad
as in the differential category example above. Define a natural transfor-
mation sA : !A→ A⊗!A by

((a0, . . . , an)) sA(b0, ((b1, . . . , bn))) ⇐⇒ ((a0, . . . , an)) = ((b0, b1, . . . , bn))

which is the converse relation to adding the extra element to the bag.
Then s is an integral transformation.

2. K-V ecop is an integral category when equipped with the same symmetric
tensor algebra monad as in the differential category example above. Define
a natural transformation sV : V ⊗ SV → SV on basis elements by

sV (x0 ⊗ (x1 ⊗ · · · ⊗ xn)) =
1

n+ 1
(x0 ⊗ x1 ⊗ · · · ⊗ xn)

where 1
n+1 ∈ K is notation for the n-fold sum inverse (1 + · · · + 1)−1.

This requires that this sum not be zero; to ensure this without added
complication, we’ll specify that K must have characteristic 0. Then s is
an integral transformation.

2.3 FTC Categories

In calculus, differentiation and integration are famously related by the funda-
mental theorem of calculus, (the first part of) which states d

dx

∫ x
0
f(t)dt = f(x).

After generalizing the two operations into the categorical setting, a natural next
step is to do the same for the fundamental theorem.

5



Definition 2.3.1. Let (C,⊗, I, !, δ, ε,∆, e,D, S) be a category which is a dif-
ferential category with respect to D and an integral category with respect to S.
Then (C, D, S) is an FTC category if for all f : !A→ B we have

S(D(f)) = f

or equivalently if
d; s = id .

2.3.1 Examples

Both the Rel and K-V ecop examples considered in the previous subsections are
FTC categories. It is particularly obvious in the Rel case, where the differential
and integral transformations are defined to be converse to each other. In the
V ec case, the differential mimics polynomial differentiation while the integral
mimics polynomial integration, so it is not difficult to show the fundamental
theorem.

2.4 Modules with Differentiation and Integration

The notion of a module with differentiation has long been important in algebraic
geometry and commutative algebra [3, 25, 34], and was first incorporated into
the differential categorical setting via Kähler differentials as Kähler categories
in [5]. On the other hand, the notion of module with integration seems never
to have been defined before it was reverse-engineered from the study of integral
categories in [3]. We’ll recall both definitions here.

Definition 2.4.1. Let A be a commutative K-algebra, and let M be a right
A-module. Then M is a module with differentiation if it is equipped with a map
∂ : A→M such that ∀a, b,∈ A we have

∂(ab) = ∂(a) · b+ ∂(b) · a

where juxtaposition is the algebra multiplication and · is the module action. Note
that this is just the Leibniz rule, and the map ∂ is thus called a derivation.

Similarly, M is a module with integration if it is equipped with a map
π : M → A such that ∀m,n ∈M we have

π(m)π(n) = π(m · π(n)) + π(n · π(m)) .

Note that this is just the Rota-Baxter rule, and the map π is thus called an
integration. We formally define the Rota-Baxter rule in the next section.

We will be interested in these types of modules because in many cases they
constitute a preliminary step towards codifferential and cointegral categories.
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2.5 Leibniz, Rota-Baxter and Proto-FTC Categories

As mentioned above, there appears to be some utility in describing category-
theoretic structures similar to differential and integral categories, but only sat-
isfying a subset of the standard rules. Specifically, we make the following defi-
nitions.

Definition 2.5.1. A monoidal category (C,⊗, I) equipped with a coalgebra modal-
ity (!, δ, ε,∆, e) is a Leibniz category if it is further equipped with a natural
transformation d : A⊗!A →!A satisfying the constant differentiation rule and
the Leibniz rule; that is, satisfying properties (d1) and (d2) of a deriving trans-
formation as given above. This d is then a Leibniz transformation.

Similarly, such a category is a (weight-0) Rota-Baxter category3 if it is
further equipped with a natural transformation s : !A → A⊗!A satisfying the
constant integration rule and the Rota-Baxter rule; that is, satisfying properties
(s1) and (s2) of an integral transformation as given above. This s is then a
Rota-Baxter transformation.

The structures dual to these will be of importance to us as well, but again we
will sometimes be loose with the terminology and refer to coLeibniz and coRota-
Baxter categories simply as Leibniz and Rota-Baxter categories, respectively.

Note that we define Rota-Baxter categories for weight 0 only here. Rota-
Baxter algebras (and categories) of arbitrary weights are discussed in section 4
below.

Clearly every differential category is a Leibniz category. That the converse
is not true is a demonstration of the utility of the Leibniz category definition,
and is what we will spend much of the first part of this paper showing. The
main Leibniz example for us will be the free differential algebra. Of course, the
same statements hold with respect to integral and Rota-Baxter categories, and
this will be likewise explored below. The main Rota-Baxter example for us will
be the free Rota-Baxter algebra.

Further evidence of this sort of utility would be if some structure existed
satisfying the Leibniz and Rota-Baxter category properties as well as the fun-
damental theorem of calculus, but not the other differential or integral rules.

Definition 2.5.2. A category (C, d, s) is a proto-FTC category if (C, d) is a
Leibniz category, (C, s) is a Rota-Baxter category, and d and s satisfy the dual
of the first part of fundamental theorem of calculus:

d; s = id

The defined categorical structures work in the direction dual to the usual
rules of differentiation and integration, so it is sensible to stipulate that the
fundamental theorem hold in this direction also. Again, most of our examples
below are co-examples, if you will, and in these cases the fundamental theorem
holds in the usual sense.

3There is another, entirely different, notion of Rota-Baxter category defined in [10]. We
proceed with the name here because it is the most natural, and because the original structure
does not seem to have been much made use of.
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3 The Free Differential Rota-Baxter Algebra

In this section we’ll introduce the Rota-Baxter equation, and present the free
Rota-Baxter algebra, largely following [22]. We’ll then show that the latter can
be captured in the categorical structure of a Rota-Baxter category. We’ll pro-
ceed similarly with the free differential algebra, and show that it can be captured
in the structure of a Leibniz category, before finishing with the composition of
the two structures as a proto-FTC category induced by the free differential
RB-algebra.

3.1 Rota-Baxter Algebras (of Weight 0)

The primary new structure we’ll look at in this section is the Rota-Baxter
algebra. Let R be an algebra and P : R → R a linear map. (R,P ) is a Rota-
Baxter or RB-algebra (of weight 0) if P satisfies the Rota-Baxter equation:

P (x)P (y) = P (xP (y)) + P (P (x)y)

We specify weight 0 here because there is a more general formula for RB-
algebras of arbitrary weight, which we will discuss in the next section.

3.1.1 Examples

1. Any algebra is an RB-algebra in a trivial way if P = 0 is the zero map.
This is uninteresting, but does demonstrate that Rota-Baxter algebras are
not a restricted class of algebras, but rather a generalization of them.

2. The most relevant example for us is standard function integration. Let
R be the algebra of continuous functions on R, and let P : R → R be
the map defined by P (f)(x) =

∫ x
0
f(t)dt. We observe that the Rota-

Baxter equation in this case is just a rearrangement of the integration-by-
parts formula; if F (x) := P (f)(x) :=

∫ x
0
f(t)dt and G(x) := P (g)(x) :=∫ x

0
g(t)dt, then we have:∫ x

0

F ′(t)G(t)dt = F (t)G(t) |x0 −
∫ x

0

F (t)G′(t)dt

⇒P (fP (g))(x) = P (f)(x)P (g)(x)− P (P (f)g)(x)

⇒P (f)P (g) = P (fP (g)) + P (P (f)g)

This example demonstrates that just as differential algebras satisfying the
Leibniz rule are a generalization of differential calculus, so are RB-algebras
satisfying the Rota-Baxter equation a generalization of integral calculus.

3.2 Shuffle Product and Free Rota-Baxter Algebra

As a preliminary, we’ll recall the definition of the shuffle product. Since the
formal statement is rather technical, we refer the interested reader to [22], and
proceed instead with the more intuitive version.
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Let T (A) be the tensor algebra on a commutative algebra (A, ·) over a field F
as defined above. If w1 ∈ A⊗m ⊆ T (A) and w2 ∈ A⊗n ⊆ T (A) are homogeneous
(i.e. pure) tensors viewed as words of length m and n respectively, a shuffle of w1

and w2 is a permutation of the concatenated word w1w2 such that the internal
order of each of w1 and w2 is preserved. The set of all shuffles on a pair of words
is denoted Sh(w1, w2). The shuffle product of w1 and w2 is the sum of all their
shuffles:

w1 � w2 =
∑

w∈Sh(w1,w2)

w

Equivalently, the shuffle product can be defined recursively [22], and this
definition is often more useful in proofs. If w = w1 ⊗ w′ and u = u1 ⊗ u′, we
can define:

w� u = w1 ⊗ (w′ � u) + u1 ⊗ (w� u′)

Denote by �A the underlying space of T (A) equipped with the shuffle prod-
uct instead of the concatenation product. Note that by convention, if one of the
shuffle operands is an element of the field F, the shuffle product reverts to the
scalar product. Then �A is a commutative algebra with unit 1F.

It turns out we need to add a bit more to obtain the free commutative
RB-algebra on a commutative algebra. Define

♦(A) = A⊗�A

with the multiplication (a0 ⊗ a′) � (b0 ⊗ b′) := a0 · b0 ⊗ (a′ � b′), i.e. multiply
the A factors together and the �A factors together separately. We call this
the augmented shuffle product on A. Define also P : ♦A→ ♦A to be the linear
extension of:

P (a0 ⊗ a′) = 1A ⊗ (a0 ⊗ a′), a′ ∈ A⊗n, n ≥ 1,

P (a0 ⊗ 1F) = 1A ⊗ a0

This is a Rota-Baxter operator, and indeed (♦A, �, P ) is the free commutative
Rota-Baxter algebra on A [22].

3.3 Two Rota-Baxter Modules with Integration

We’d like to capture the free RB-algebra as a module with integration, and we
encounter two ways to do so. It turns out that each have their own advantages
and disadvantages, which we’ll explore below.

Since A⊗�A already has the form of a module with integration, we might
like to use �S as our monad, where S is the free commutative algebra monad
on a vector space, which gives for a vector space V the same structure as the
tensor algebra T (V ) except with symmetrized tensors [20].

The first issue we encounter is that �S is not a monad, but a weaker struc-
ture called a quasimonad. We’ll give the details of this structure and prove that
�S satisfies it in the next subsection.
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Next we must define a map Π� : V ⊗�SV → �SV capturing the structure
of P . It is easy to see that ImP ⊆ 1SV ⊗�(SV ), and that we have an isomor-
phism α : (�SV,�) ∼= (1F⊗�SV, �); this was proven for a general commutative
algebra A in [22], and so holds for SV . Thus we can define

Π� = α−1 ◦ P ◦ (iV ⊗ id)

where iV is the inclusion of V into SV .

Proposition 3.3.1. (V ⊗�SV,Π�) is a module with integration.

Proof. α−1 ◦ P ◦ (iV ⊗ id) is linear since (iV ⊗ id), P and α−1 are. Then for
a = u0 ⊗ (a′) and b = v0 ⊗ (b′):

Π�(a)�Π�(b) = (u0 ⊗ a′)� (v0 ⊗ b′)
= u0 ⊗ (a′ � (v0 ⊗ b′)) + v0 ⊗ ((u0 ⊗ a′)� b′)

= Π�(a ·Π�(b)) + Π�(b ·Π�(a))

Above, · is the usual module action on the free �SV -module on V . That is,
the action simply applies the multiplication of the �SV factor, leaving the V
factor untouched.

We move on now to the second approach, which also gives a module with
integration over a vector space. Let BV be a specified basis of V .

Now let’s make ♦◦S our functor (more precisely, U ◦♦◦S for U the forgetful
functor down to the category of vector spaces). Since ♦S gives the free Rota-
Baxter algebra on a vector space, we hope to obtain a true monad out of it, but
the situation is more complicated. We will explain in what sense this is true in
the next subsection; for now, we proceed assuming ♦S is a monad.

We want to give a module with integration structure using ♦S; that is, we
want a map Π� : V ⊗♦S(V )→ ♦S(V ) satisfying the Rota-Baxter equation. For
wi ∈ SV and y0 ∈ BV , define

Π� : y0 ⊗ (w0 ⊗ (w1 ⊗ · · · ⊗ wn)) 7→ 1F ⊗ (w0 ⊗ · · · ⊗ wn)

y0 ⊗ 1F 7→ 1F ⊗ y0

and extend linearly.

Proposition 3.3.2. (V ⊗ ♦SV,Π�) is a module with integration.

Proof. Let x = x0 ⊗ (u0 ⊗ (u1 ⊗ · · · ⊗ um)), y = y0 ⊗ (w0 ⊗ (w1 ⊗ · · · ⊗ wn)),
u = u0 ⊗ · · · ⊗ um, u+ = u1 ⊗ · · · ⊗ um, and similarly for w and w+. Then:

Π�(x) �Π�(y) = (1F ⊗ u) � (1F ⊗ w)

= 1F ⊗ (u� w)

= 1F ⊗
[
u0 ⊗ (u+

� w) + w0 ⊗ (w+
� u)

]
= Π�

(
x0 ⊗ (u0 ⊗ (u+

� w))
)

+ Π�

(
y0 ⊗ (w0 ⊗ (w+

� u))
)

= Π�

(
x ·Π�(y)

)
+ Π�

(
y ·Π�(x)

)
where we’ve used the recursive definition of the shuffle product.
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3.4 The Rota-Baxter Quasimonad

As mentioned above, the � functor is not a true monad, but rather a quasi-
monad, as defined in [3]. This structure is the same as what is called an r-unital
monad in [43]. We recall the definition and some basic properties.

Definition 3.4.1. Let C be a category, F : C → C a functor, and µ : FF → F
and η : idC → F natural transformations.

1. (F, µ) is a functor with multiplication if Fµ;µ = µF ;µ.

2. (F, µ, η) is a q-unital monad if (F, µ) is a functor with multiplication.
Note that nothing further is required of η at this stage.

3. A q-unital monad is regular if η = η;Fη;µ.

4. A q-unital monad is compatible if µ = FηF ;µF ;µ, or (equivalently by the
functor with multiplication equation) if µ = FηF ;Fµ;µ.

5. (F, µ, η) is a quasimonad if it is a regular compatible q-unital monad.

A monad is always induced by an adjunction; similarly, a quasimonad is
always induced by a regular pairing, defined as follows.

Definition 3.4.2. Let L : C → D and R : D → C be functors.

1. A pairing between L and R is a pair of natural transformations αA,B : HomD(LA,B)→
HomC(A,RB) and βA,B : HomC(A,RB)→ HomD(LA,B).

2. A pairing (α, β) is regular if α;β;α = α and β;α;β = β.

We then have the following theorem, proven in [43].

Theorem 3.4.3. A functor F : C → C is a quasimonad if and only if ∃L,R, α, β
such that F = L;R and (α, β) is a regular pairing.

We claim that �S is a quasimonad. Before proving this, we must establish
some notation for writing elements of �SV , �S�SV , and �S�S�SV .

If a basis element of �SV has the form

wk`ij = (vijk`11 ⊗s · · · ⊗s vijk`
1mijk`1

)⊗ · · · ⊗ (vijk`nijk`1
⊗s · · · ⊗s vijk`

nijk`m
ijk`
nijk`

)

then we can write a basis element of �S�SV as

ωk` = (wk`11 ⊗s · · · ⊗s wk`1mk`1
)⊗ · · · ⊗ (wk`nk`1 ⊗s · · · ⊗s w

k`
nk`mk`nk`

)

and a basis element of �S�S�SV as

ϑ = (ω11 ⊗s · · · ⊗s ω1m1)⊗ · · · ⊗ (ωn1 ⊗s · · · ⊗s ωnmn) .
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Define µV : �S�SV → �SV by

µ(ωk`) = ωk` := (wk`11 � · · ·� wk`1mk`1
)⊗ · · · ⊗ (wk`nk`1 � · · ·� wk`nk`mk`nk`

)

and ηV : V → �SV by
η(v) = ((v)) ,

which includes v first as (v) ∈ SV and then as ((v)) ∈ �SV .

Proposition 3.4.4. (�S, µ, η) is a quasimonad.

Proof. This proof is similar to a result in [3]. First we show it is a functor with
multiplication. Observe:

µ ◦�Sµ(ϑ) = µ((ω11 ⊗s · · · ⊗s ω1m1
)⊗ · · · ⊗ (ωn1 ⊗s · · · ⊗s ωnmn))

= (ω11 � · · ·� ω1m1
)⊗ · · · ⊗ (ωn1 � · · ·� ωnmn)

Meanwhile, we have:

µ ◦ µ�S(ϑ) = µ((ω11 � · · ·� ω1m1
)⊗ · · · ⊗ (ωn1 � · · ·� ωnmn))

= (ω11 � · · ·� ω1m1
)⊗ · · · ⊗ (ωn1 � · · ·� ωnmn)

The latter equality holds because the “outer” shuffle of ‘ω’s and the “inner”
shuffle of ‘w’s don’t interact by definition of µ. Thus the functor with multipli-
cation equation holds.

Regularity is shown as follows:

v ((v)) ((((v)))) ((v))
η

η

�Sη µ

Similarly straightforward is compatibility, when we use the equivalent for-
mulation:

ωk`

((wk`11))⊗s · · ·⊗s((wk`
1mk`1

)))⊗· · ·⊗(((wk`nk`1))⊗s · · ·⊗s((wk`nk`mk`nk`
)))

ωk`

µ(ωk`)

�Sη�S

µ
�Sµ

µ

Thus (�S, µ, η) is a quasimonad.
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3.5 The Rota-Baxter Monad and Algebra Modalities

We are also interested in building an algebra modality with ♦S. In general, a
composition of two monads may not be a monad; we need an extra property
known as a distributive law [4].

Definition 3.5.1. Let (T, µT , ηT ) and (S, µS , ηS) be monads. Then a distribu-
tive law (of T over S) is a natural transformation ` : ST → TS such that the
following diagrams commute:

STT TST TTS S

ST TS ST TS

SST STS TSS T

ST TS ST TS

`T

SµT

T`

µTS
SηT ηTS

` `

S`

µST

`S

TµS
ηST TηS

` `

The following theorem is well-known; for one proof, see [4].

Theorem 3.5.2. If ` is a distributive law of T over S, then TS is a monad
with µTS = T`S ;TTµS ;µTS and ηTS = ηS ; ηTS .

To show that ♦S is a monad, we will define a distributive law of ♦ over S
below, but first we need to explicitly construct µ♦ and η♦. These are implicit
in works like [22] and [23], but never seem to have been made explicit.

Let A be a commutative algebra and (R,P ) a Rota-Baxter algebra. It is
proven in [22] that the freeness adjunction is given by:

HomCAlg(A,UR) ∼= HomRBAlg(♦A,R)(
a 7→ f(a)

)
7→
(
a0⊗(a1⊗· · ·⊗an) 7→ f(a0) · P (f(a1) · P (· · · ))

)
Tracing id : UR→ UR through this adjunction gives the counit:

ε : a0 ⊗ (a1 ⊗ · · · ⊗ am) 7→ a0 · P
(
a1 · P (· · · )

)
We claim that the unit is

η : a 7→ a⊗ 1F ,

since tracing this map through the adjunction and recalling that P : ♦A→ ♦A
is defined by P (w) = 1F ⊗ w gives the map

a0 ⊗ (a1 ⊗ · · · ⊗ an) 7→ (a0 ⊗ 1) � P ((a1 ⊗ 1) � P (· · · ))
= a0 ⊗ (a1 ⊗ · · · ⊗ an)

which is id : ♦A→ ♦A.
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Our monadic unit is then simply η♦ := η, and our multiplication Uε♦A : ♦♦A→
♦A is then given by:

µ♦ : w0 ⊗ (w1 ⊗ · · · ⊗ wn) 7→ w0 � (1F ⊗ (w1 � (1F ⊗ (· · · )))

We now define a natural transformation ` : S♦→ ♦S by

`V : (v10 ⊗ (v11 ⊗ · · · ⊗ v1m1))⊗s · · · ⊗s (vn0 ⊗ (vn1 ⊗ · · · ⊗ vnmn))

7→ ((v10)⊗ ((v11)⊗ · · · ⊗ (v1m1))) � · · · � ((vn0)⊗ ((vn1)⊗ · · · ⊗ (vnmn)))

where (vij) := ηS(vij) ∈ SV .

Proposition 3.5.3. The natural transformation ` is a distributive law of ♦
over S.

Proof. For the top-right diagram, we have:

` ◦ Sη♦(v1 ⊗s · · · ⊗s vn) = `((v1 ⊗ 1F)⊗s · · · ⊗s (vn ⊗ 1F))

= (v1 ⊗ 1F) � · · · � (vn ⊗ 1F)

= (v1 ⊗s · · · ⊗s vn)⊗ 1F

= η♦S (v1 ⊗s · · · ⊗s vn)

For the bottom-right diagram, we have:

` ◦ ηS♦(v0 ⊗ (v1 ⊗ · · · ⊗ vn)) = `((v0 ⊗ (v1 ⊗ · · · ⊗ vn)))

= (v0)⊗ ((v1)⊗ · · · ⊗ (vn))

= ♦ηS(v0 ⊗ (v1 ⊗ · · · ⊗ vn))

For the bottom-left diagram, we first establish some notation. Write vij :=

vij0 ⊗ (vij1 ⊗ · · · ⊗ vijmj ), wi := vi1 ⊗s · · · ⊗s vini , and then write vij := ♦ηS(vij).
Then the diagram is verified by:

w1⊗s · · ·⊗swk (v1
1�· · ·�v1

n1
)⊗s · · ·⊗s(vk1 �· · ·�vknk) (v1

1�· · ·�v1
n1

)�· · ·�(vk1 �· · ·�vknk)

v1
1 ⊗s · · · ⊗s vknk v1

1 � · · · � vknk

S`

µS♦

`S

♦µS

`

The top-left diagram is the most involved. First, we modify some of the

notation used above. We again write vij = vij0 ⊗ (vij1 ⊗ · · · ⊗ vijmj ) and vij :=

♦ηS(vij), but we redefine wi so that wi := vi0 ⊗ (vi1 ⊗ · · · ⊗ vini).
A general term in S♦♦V has the form w1 ⊗s · · · ⊗s wk. We’ll demonstrate

the k = 1 and k = 2 cases; the general k case is analogous to k = 2, but using
the multi-factor Rota-Baxter rule and the multi-recursive property of � instead
of the usual two-factor versions.

When k = 1, writing w := w1 we have:
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(w) (v0)⊗
(

(v1)⊗ · · · ⊗ (vn)
)

v0 ⊗ (v1 ⊗ · · · ⊗ vn)

(v0 � P (v1 � P (· · · ))) v0 � P (v1 � P (· · · ))

`♦

Sµ♦

♦`

µ♦
S

`

When k = 2, observe that we have

` ◦ Sµ♦(w1 ⊗s w2) = `
(

(v1
0 � P (v1

1 � P (· · · )))⊗s (v2
0 � P (v2

1 � P (· · · )))
)

= (v1
0 � P (v1

1 � P (· · · ))) � (v2
0 � P (v2

1 � P (· · · )))

= (v1
0 � v2

0) � (P (v1
1 � P (· · · )) � P (v2

1 � P (· · · )))

as well as

♦` ◦ `♦(w1 ⊗s w2) = ♦`
((

(v1
0 ⊗

(
(v1

1)⊗ · · · ⊗ (v1
n1

)
))
�
(
(v2

0)⊗
(
(v2

1)⊗ · · · ⊗ (vn2)
)))

= ♦`
((

(v1
0)⊗s(v2

0)
)
⊗
(
((v1

1)⊗ · · · ⊗ (v1
n1

))�
(
(v2

1)⊗ · · · ⊗ (v2
n2

))
))

= (v1
0 � v2

0)⊗
(
(v1

1 ⊗ · · · ⊗ v1
n1

)� (v2
1 ⊗ · · · ⊗ v2

n2
)
)

=: (∗)

We claim that

µ♦
S((∗)) = (v1

0 � v2
0) � (P (v1

1 � P (· · · )) � P (v2
1 � P (· · · )))

which would complete the proof. We prove this by induction on n1 and n2.
Suppose first that n1 = n2 = 1. Then we have

µ♦
S

(
(v1

0�v2
0)⊗

(
(v1

1)�(v2
1)
))

= µ♦
S

(
(v1

0�v2
0)⊗

(
(v1

1)⊗(v2
1) + (v2

1)⊗(v1
1)
))

= (v1
0 � v2

0) �
(
P (v1

1 � P (v2
1)) + P (v2

1 � P (v1
1))
)

= (v1
0 � v2

0) �
(
P (v1

1) � P (v2
1)
)

by definition of � and the Rota-Baxter rule for P .
Now assume the inductive hypothesis for n1 and n2 and all shorter lengths,

and add one tensor factor to one of them; without loss of generality, suppose
we’re adding a factor (v) to the beginning of the first tensor. Then, writing

(∗∗) := (v1
0 � v2

0)⊗
((

(v)⊗ (v1
1)⊗ · · · ⊗ (v1

n1
)
)
�

(
(v2

1)⊗ · · · ⊗ (v2
n2

)
))
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we have

µ♦
S((∗∗)) = µ♦

S

(
(v1

0 � v2
0)⊗

[
(v)⊗

((
(v1

1)⊗ · · · ⊗ (v1
n1

)
)
�

(
(v2

1)⊗ · · · ⊗ (v2
n2

)
))

+ (v2
1)⊗

((
(v ⊗ v1

1)⊗ · · · ⊗ (v1
n1

)
)
�

(
(v2

2)⊗ · · · ⊗ (v2
n2

)
))])

= (v1
0 � v2

0) �
[
P
(
v � P (v1

1 � P (· · · )) � P (v2
1 � P (· · · ))

)
+ P

(
v2

1 � P (v2
2 � P (· · · )) � P (v � P (v1

1 � P (· · · ))
)]

= (v1
0 � v2

0) �
[
P
(
v � P (v1

1 � P (· · · ))
)
� P
(
v2

1 � P (v2
2 � P (· · · ))

)]
by the recursive definition of �, commutativity of �, and the Rota-Baxter rule
for P . This proves the inductive step, completing the proof of the top-left
diagram. Thus ` is a distributive law of monads.

As for the algebra modality, we can in fact define almost the same structure
on both our (quasi)monads. For �, define (m�, e�) = (�, iF), and for ♦S,
define (m�, e�) = (�, iF ⊗ iF), where i is the inclusion.

Proposition 3.5.4. (�S,m�, e�) and (♦S,m�, e�) are algebra modalities (ex-
cept that �S is a quasimonad instead of a monad).

Proof. That each acts with an algebra structure is clear. It remains to show
that each µ is an algebra map for the respective modality. We’ll show this holds
for �; the proof for ♦ is similar.

Using the same notation as above, the multiplicative and unital diagrams
are:

ω1
k` ⊗ ω2

k` ω1
k` ⊗ ω2

k` 1F 1F

ω1
k` � ω2

k` ω1
k` � ω2

k` 1F

µ⊗µ

m m

e

e µ

µ

As in the proof that (�S, µ) is a functor with multiplication, we have used
the fact that the shuffle internal to each ω does not interact with the shuffle of
the two ‘ω’s together.

3.6 Rota-Baxter Category Structures

The calculations above showing that � and ♦ are modules with integration
are also precisely those demonstrating that they each make K-V ec into a Rota-
Baxter category. It remains to examine which other properties of an integral
category they satisfy.

It turns out that neither � nor ♦ in general satisfy any of the other integral
category structural properties, lending support to the utility of the Rota-Baxter
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category definition. First we show that the constant rule is satisfied for each.
For � we have the following diagram:

V �SV v v

V ⊗ F V ⊗�SV v ⊗ 1F v ⊗ 1F

ηV

∼=
id⊗e

Π�

For ♦, we similarly have:

V ♦SV x 1F ⊗ x

V ⊗ F V ⊗ ♦SV x⊗ 1F x⊗ 1F

ηV

∼=

id⊗e

Π�

Now recall that the integration of linear maps rule states:

2 ·Π ◦ (id⊗ η) = m ◦ (η ⊗ η)

In the � case, we have:

2 ·Π� ◦ (id⊗ η)(a1 ⊗ a2) = 2 ·Π�(a1 ⊗ (a2))

= 2 · a1 ⊗ a2

= a1 ⊗ a2 + a1 ⊗ a2

6= a1 ⊗ a2 + a2 ⊗ a1

= (a1)� (a2)

= m ◦ (η ⊗ η)(a1 ⊗ a2)

A similar argument for ♦ shows neither satisfies the linear rule in general.
Next, recall the Fubini rule states, for σ the tensor symmetry:

Π ◦ (id⊗Π) = Π ◦ (id⊗Π) ◦ (σ ⊗ id)

But observe for �:

Π� ◦ (id⊗Π�)(a0 ⊗ a′0 ⊗ (a1 ⊗ · · · ⊗ an)) = Π�(a0 ⊗ (a′0 ⊗ a1 ⊗ · · · ⊗ an))

= a0 ⊗ a′0 ⊗ a1 ⊗ · · · ⊗ an
6= a′0 ⊗ a0 ⊗ a1 ⊗ · · · ⊗ an
= Π� ◦ (id⊗Π�)(a′0 ⊗ a0 ⊗ (a1 ⊗ · · · ⊗ an))

= Π� ◦ (id⊗Π�) ◦ (σ ⊗ id)(a0 ⊗ a′0 ⊗ (a1 ⊗ · · · ⊗ an))

A similar argument for ♦ shows neither satisfies the Fubini rule in general.
Thus both provide examples of Rota-Baxter categories that are not integral
categories.
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3.7 Free Differential Algebra

Before we combine Leibniz and Rota-Baxter structures using the � and ♦
(quasi)monads, we’ll define the free differential algebra on an algebra and prove
that it provides another example of a Leibniz category structure on V ec. We’ll
also make use of the free differential algebra monad later on.

Let S be the free symmetric algebra construction as above. For a set X, let
∆(X) := X × N, and in particular we can apply ∆ to a vector space V over
a field F. It is clear that ∆ is a functor, and so Ξ := U ◦ S ◦ ∆ is a functor
V ec→ V ec.

It is proven in [23] that (S ◦∆(X), dX) is the free (commutative) differential
algebra on X, where dX is defined as the linear and Leibniz extension of:

dX((x, n)) = (x, n+ 1)

dX(1F) = 0

Thus we’d like to show that Ξ, when equipped with an appropriate deriving
transformation capturing dX , induces a Leibniz category. We’ll start by de-
scribing the monad structure on Ξ.

Define:

ηV : V → ΞV

x 7→ (x, 0)

µV : ΞΞV → ΞV

(w1,m1)⊗ · · · ⊗ (w`,m`) 7→ dm1

V (w1)⊗ · · · ⊗ dm`V (w`)

1F ∈ ΞΞV 7→ 1F ∈ ΞV

Proposition 3.7.1. (Ξ, µ, η) is a monad.

Proof. We must show commutativity of the following monad diagrams:

Ξ Ξ2 Ξ3 Ξ2

Ξ2 Ξ Ξ2 Ξ

ηΞ

Ξη µ

Ξµ

µΞ µ

µ µ

For the unital equations, we have:

µ ◦ ΞηV ((v1, n1)⊗ · · · ⊗ (vk, nk)) = µ(((v1, 0), n1)⊗ · · · ⊗ ((vk, 0), nk))

= dn1

V (v1, 0)⊗ · · · ⊗ dnkV (vk, 0)

= (v1, n1)⊗ · · · ⊗ (vk, nk)

= d0
V ((v1, n1)⊗ · · · ⊗ (vk, nk))

= µ((v1, n1)⊗ · · · ⊗ (vk, nk), 0)

= µ ◦ ηΞV ((v1, n1)⊗ · · · ⊗ (vk, nk))
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For the multiplicative equations, we must show that

µ◦ΞµV

((
(w11 ,m11)⊗· · ·⊗(w`1 ,m`1), p1

)
⊗· · ·⊗

(
(w1s ,m1s)⊗· · ·⊗(w`s ,m`s), ps

))
is equal to

µΞV

((
(w11

,m11
)⊗· · ·⊗(w`1 ,m`1), p1

)
⊗· · ·⊗

(
(w1s ,m1s)⊗· · ·⊗(w`s ,m`s), ps

))
.

Call the former (∗) and the latter (∗∗). Then we have:

(∗) =µ
(
(d
m11

V (w11
)⊗· · ·⊗dm`1V (w`1), p1)⊗· · ·⊗(d

m1s

V (w1s)⊗· · ·⊗d
m`s
V (w`s), ps)

)
=

s⊗
j=1

 `j∑
i=1

d
m1j

V (w1j )⊗ · · · ⊗ d
pj
V (d

mij
V (wij ))⊗ · · · ⊗ d

m`j
V (w`j )


= µ

 s⊗
j=1

 `j∑
i=1

(w1j ,m1j )⊗ · · · ⊗ (wij ,mij + pj)⊗ · · · ⊗ (w`j ,m`j )


= µ

 s⊗
j=1

d
pj
V ((w1j ,m1j )⊗ · · · ⊗ (w`j ,m`j ))


= (∗∗)

Note that we have used the Leibniz property of the differential dV .

Next we’ll need the algebra modality. It can be built from the obvious
choices, with the unit being inclusion and the multiplication being the concate-
nation product.

Proposition 3.7.2. (Ξ,m, e) forms an algebra modality.

Proof. It is clear that this structure acts as an algebra, and easy to see that it
is natural. It remains to prove that µ is an algebra homomorphism. The unital
equation is demonstrated by:

1F 1F

1F

e

e µ

If we denote by (*) the expression

m ◦ (µ⊗ µ)
(

((w11 , n11)⊗· · ·⊗(wk1 , nk1))⊗ ((w12 , n12)⊗· · ·⊗(wk2 , nk2))
)
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and by (**) the expression

µ ◦m
(

((w11
, n11

)⊗· · ·⊗(wk1
, nk1

))⊗ ((w12
, n12

)⊗· · ·⊗(wk2
, nk2

))
)

for an arbitrary element of ΞΞA ⊗ ΞΞA, then the multiplicative algebra map
equation is given by:

(∗) = m
(

(d
n11

V (w11
)⊗· · ·⊗dnk1

V (wk1
))⊗ (d

n12

V (w12
)⊗· · ·⊗dnk2

V (wk2
))
)

= d
n11

V (w11)⊗· · ·⊗dnk1

V (wk1)⊗ dn12

V (w12)⊗· · ·⊗dnk2

V (wk2)

= µ
(

(w11
, n11

)⊗· · ·⊗(wk1
, nk1

)⊗ (w12
, n12

)⊗· · ·⊗(wk2
, nk2

)
)

= (∗∗)

Before we define our deriving transformation, it is worth noting that µ sat-
isfies an additional nice property.

Proposition 3.7.3. The map µV : ΞΞV → ΞV is a map of differential algebras.

Proof. That µ is an algebra map was shown in 3.7.2, so it remains to show that
it respects the differential. We observe:

dV ◦µV ((w1,m1)⊗· · ·⊗(w`,m`)) = dV (dm1

V (w1)⊗· · ·⊗dm`V (w`))

=
∑̀
i=1

dm1

V (w1)⊗· · ·⊗dmi+1
V (wi)⊗· · ·⊗dm`V (w`)

= µ

(∑̀
i=1

(w1,m1)⊗· · ·⊗(wi,mi + 1)⊗· · ·⊗(w`,m`)

)
= µ ◦ dΞV ((w1,m1)⊗· · ·⊗(w`,m`))

Finally we must give a deriving transformation δV : ΞV → V ⊗ ΞV to com-
plete the Leibniz category structure. For each V , pick some vector v ∈ V .
Define:

δV : w 7→ v ⊗ dV (w)

1F 7→ 0

Here d is the differential of the free differential algebra structure on ΞV , as
described above.

Remark 3.7.4. The element v in the definition above is merely a placeholder
element; if we worked over algebras, we would have the canonical choice of 1A
for each algebra A, but the differential map δ is, by its nature, not a map of
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algebras. Thus we must work over V ec and content ourselves with this less
natural structure.

On a more fundamental level, this inelegance is forced upon us by the na-
ture of the codomain of the deriving transformation. While sensible in contexts
tightly analogous to function differentiation, the codomain V⊗!V seems to be
too restrictive in more general situations. This indicates that a looser, further
modified definition of deriving transformation might be useful in the future. For
the purposes of this paper, however, we keep the definition previously given.

Theorem 3.7.5. (V ec,Ξ, δ) constitute a Leibniz category, but not a differential
category.

Proof. By the previous propositions, the only remaining datum to be proved is
that δ is a deriving transformation satisfying the Leibniz and constant differ-
entiation rules. The constant rule is satisfied by definition. As for Leibniz, let
w1 = (v1, n1)⊗· · ·⊗(vk, nk) and w2 = (vk+1, nk+1)⊗· · ·⊗(v`, n`) in ΞV . Then
we observe:

δV (w1⊗w2) = v⊗dV (w1⊗w2)

= v⊗

(∑̀
i=1

(v1, n1)⊗· · ·⊗(vi, ni + 1)⊗· · ·⊗(v`, n`)

)

= v⊗

(
k∑
i=1

(v1, n1)⊗· · ·⊗(vi, ni + 1)⊗· · ·⊗(vk, nk)

)
⊗((vk+1, nk+1)⊗· · ·⊗(v`, n`))

+ v⊗

( ∑̀
i=k+1

(vk+1, nk+1)⊗· · ·⊗(vi, ni + 1)⊗· · ·⊗(v`, n`)

)
⊗((v1, n1)⊗· · ·⊗(vk, nk))

= v⊗dV (w1)⊗w2 + v⊗dV (w2)⊗w1

= δV (w1)⊗w2 + δV (w2)⊗w1

Here we used the symmetrized nature of the tensor product of elements of ΞV .
Thus the Leibniz rule is satisfied.

The monad Ξ does not induce a differential category structure, however.
The linear derivative rule would imply:

u⊗1F ∼= u (u, 0)

u⊗1F 6= v⊗(u, 1)

η

id⊗e
δV

Similarly, the chain rule would imply that

v⊗d(dm1(w1)⊗· · ·⊗dmk(wk)) = 0

which is false in general (for instance, when all wi 6= 1).
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3.8 Free Differential RB-Algebra

We first describe the free differential Rota-Baxter algebra on a differential alge-
bra, and then we explain how it is generalized by each of the �S quasimonad
and the ♦S monad. We also discuss the advantages and disadvantages of each.

Recall that a differential Rota-Baxter algebra is an algebra structure (A, d, P )
such that (A, d) is a differential algebra, (A,P ) is a Rota-Baxter algebra, and
the interaction of the two structures satisfies the first fundamental theorem of
calculus, namely d ◦ P = id.

Let (A, ·, d0) be a differential algebra, and ♦A the free Rota-Baxter algebra
on A. Then define a differential on ♦A by

d(a0⊗(a1⊗· · ·⊗an)) = d0(a0)⊗(a1⊗· · ·⊗an)

+ a0 ·a1⊗(a2⊗· · ·⊗an)

where by convention if n = 0 then d(a0) = d0(a0). It is shown in [23] that this
structure is the free differential RB-algebra on the differential algebra A.

Let’s first look at generalizing this via �. To define a quasimonad structure
on �Ξ, we must again establish some notation, this time for writing elements
of �ΞV , �Ξ�ΞV , and �Ξ�Ξ�ΞV .

If a basis element of �ΞV has the form

wk`ij = ((vijk`11 , rijk`11 )⊗s· · ·⊗s(vijk`
1mijk`1

, rijk`
1mijk`1

))⊗· · ·⊗((vijk`nijk`1
, rijk`nijk`1

)⊗s· · ·⊗s(vijk`
nijk`m

ijk`
nijk`

, rijk`
nijk`m

ijk`
nijk`

))

then we can write a basis element of �Ξ�ΞV as

ωk` = ((wk`11, r
k`
11)⊗s· · ·⊗s(wk`1mk`1

, rk`1mk`1
))⊗· · ·⊗((wk`nk`1, r

k`
nk`1

)⊗s· · ·⊗s(wk`nk`mk`nk` , r
k`
nk`mk`nk`

))

and a basis element of �Ξ�Ξ�ΞV as

ϑ = ((ω11, r11)⊗s · · ·⊗s (ω1m1
, r1m1

))⊗· · ·⊗((ωn1, rn1)⊗s · · ·⊗s (ωnmn , rnmn)) .

Define µV : �Ξ�ΞV → �ΞV by

µ(ωk`) = ωk` := (dr
k`
11 (wk`11)�· · ·�d

rk`
1mk`1 (wk`1mk`1

))⊗· · ·⊗(dr
k`
nk`1(wk`nk`1)�· · ·�d

rk`
nk`m

k`
nk` (wk`nk`mk`nk`

))

and ηV : V → �ΞV by
η(v) = ((v, 0)) ,

which includes v first as (v, 0) ∈ ΞV and then as ((v, 0)) ∈ �ΞV . This makes
�Ξ into a quasimonad; the proof is similar to the proof for �S above.

Recall that for the free Rota-Baxter algebra (V ⊗�SV, PSV ) we had Π� =
α−1 ◦ PSV ◦ (i ⊗ i) where α : �SV ∼= 1F ⊗�SV . Thus if (ΞV, d0) is the free
differential algebra, the obvious choice to make V ⊗�ΞV into an FTC module
is to define δ� : �ΞV → V ⊗�ΞV by

δ� = (p⊗ id) ◦ d♦ΞV ◦ α
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where p is the modified projection map p : ΞV → V defined by

p : (u, 0) 7→ u for (u, 0) ∈ ∆V

p : a 7→ 0 for all other elements a ∈ ΞV

Then we have the following proposition.

Proposition 3.8.1. (�ΞV, δ�) is a module with differentiation.

Proof. Let a = a1 ⊗ a′, b = b1 ⊗ b′ ∈ �ΞV . Then the Leibniz rule is shown as
follows:

δ�(a� b) = (p⊗ id) ◦ d♦ΞV ◦ α(a� b)

= (p⊗ id) ◦ d♦ΞV (1F ⊗ a � 1F ⊗ b)

= (p⊗ id)
(
d♦ΞV (1F ⊗ a) � 1F ⊗ b+ d♦ΞA(1F ⊗ b) � 1F ⊗ a

)
= (p⊗ id)

(
a1 ⊗ a′ � 1F ⊗ b+ b1 ⊗ b′ � 1F ⊗ a

)
= (p⊗ id)

(
a1 ⊗ (a′ � b) + b1 ⊗ (b′ � a)

)
= δ�(a) · b+ δ�(b) · a

Corollary 3.8.2. (V ec,�Ξ, δ�) has the structure of a Leibniz category, except
that �Ξ is a quasimonad.

Now, modify the definition of Π� : V ⊗�SV → V ⊗�SV to be V ⊗�ΞV →
�ΞV in the obvious way. Then in addition:

δ�◦Π� = (p⊗id)◦dΞV ◦α◦α−1◦PΞV ◦(i◦id) = (p⊗id)◦dA◦PA◦(i⊗id) = (p⊗id)◦(i⊗id) = id

Thus the FTC property is captured.
A potential disadvantage of this approach is that if we look closely, it might

be argued that we are only superficially “capturing” the differential structure
d♦ΞV of the free differential RB-algebra. As we already exploited above, we
have:

δ�(a1 ⊗ a′) = (p⊗ id) ◦ dV (1F ⊗ (a1 ⊗ a′))
= dΞ(1F)⊗ a1 ⊗ a′ + 1F · a1 ⊗ a′

= 0 + a1 ⊗ a′

= a1 ⊗ a′

So while one term does involve the application of dV as in the free differential
Rota-Baxter algebra, its effect in this construction is always to nullify that term.

Nevertheless, it is an example of the FTC property being satisfied in the
Leibniz and Rota-Baxter category setting. Thus we have another example of
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a Leibniz category and of a Rota-Baxter category, and our first example of a
proto-FTC category.

We now turn to ♦. We must first make ♦Ξ into a monad, and again we start
with notation.

If a basis element of ♦ΞV has the form

wk`ij =
(

(vijk`01 , rijk`01 )⊗s · · · ⊗s (vijk`
0mijk`0

, rijk`
0mijk`0

)
)

⊗
(

((vijk`11 , rijk`11 )⊗s · · · ⊗s (vijk`
1mijk`1

, rijk`
1mijk`1

))⊗ · · ·

· · · ⊗ ((vijk`nijk`1
, rijk`nijk`1

)⊗s · · · ⊗s (vijk`
nijk`m

ijk`
nijk`

, rijk`
nijk`m

ijk`
nijk`

))
)

then we can write a basis element of ♦Ξ♦ΞV as

ωk` =
(

(wk`01, r
k`
01)⊗s · · · ⊗s (wk`0mk`0

, rk`0mk`0
)
)

⊗
(

((wk`11, r
k`
11)⊗s · · · ⊗s (wk`1mk`1

, rk`1mk`1
))⊗ · · · ⊗ ((wk`nk`1, r

k`
nk`1

)⊗s · · · ⊗s (wk`nk`mk`nk`
, rk`nk`mk`nk`

))
)

and a basis element of ♦Ξ♦Ξ♦ΞV as

ϑ = ((ω01, r01)⊗s · · · ⊗s (ω0m0
, r0m0

))

⊗
(

((ω11, r11)⊗s · · · ⊗s (ω1m1 , r1m1))⊗ · · · ⊗ ((ωn1, rn1)⊗s · · · ⊗s (ωnmn , rnmn))
)
.

Define µV : ♦Ξ♦ΞV → ♦ΞV by

µ(ωk`) = ωk`

:=

(
(dr

k`
01 (wk`01) � · · · � d

rk`
0mk`0 (wk`0mk`0

))

)
⊗
(

(dr
k`
11 (wk`11) � · · · � d

rk`
1mk`1 (wk`1mk`1

))⊗ · · · ⊗ (dr
k`
nk`1(wk`nk`1) � · · · � d

rk`
nk`m

k`
nk` (wk`nk`mk`nk`

))
)

and ηV : V → ♦ΞV by
η(v) = ((v, 0))⊗ 1F ,

This makes ♦Ξ into a monad; the proof is similar to the proof for ♦S above.
Define Π: V ⊗ ♦ΞV → ♦ΞV by Π(v ⊗ a) = 1F ⊗ (a). The proofs in the

previous subsections are adapted essentially without modification to show that
this makes V ec into a Rota-Baxter category.

Let a = a0 ⊗ (a1 ⊗ · · · ⊗ an) ∈ ♦ΞV , and write a+ = a1 ⊗ · · · ⊗ an, a++ =
a2⊗· · ·⊗an. For each V , choose some vector v ∈ V . Define δ� : ♦ΞV → V ⊗♦ΞV
by:

δ(a) = v ⊗ (dΞV (a0)⊗ a+ + a0 · a1 ⊗ a++)

We stipulate the sensible convention that if a+ = 1F, then a++ = 0.
We can now prove the following.

Proposition 3.8.3. (V ec,♦Ξ, δ♦) is a Leibniz category that is not a differential
category.
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Proof. This proof uses techniques similar to the proof that ♦A is a differential
algebra for any differential algebra A from [23].

Let V be a vector space with chosen vector v. Recall that the Rota-Baxter
operator P on ♦ΞV (in fact, on ♦A for any algebra A) is defined by P (a) =
1A ⊗ (a). Then we can write a = (a0 ⊗ 1F) � P (a+), and with similar notation
for another element b ∈ ♦ΞV , we have

a � b = (a0b0 ⊗ 1F) � (P (a+) � P (b+))

= (a0b0 ⊗ 1F) � (P (a+ � P (b+)) + P (b+ � P (a+)))

= (a0b0 ⊗ 1F) � P (a+ � P (b+) + b+ � P (a+))

by the Rota-Baxter property and linearity of P . Then writing d := dΞV we thus
have:

δ ◦m(a⊗ b) = δ(a � b)
= δ((a0b0 ⊗ 1F) � P (a+ � P (b+) + b+ � P (a+)))

= v ⊗
(

(d(a0b0)⊗ 1F) � P (a+ � P (b+) + b+ � P (a+))

+ (a0b0 ⊗ 1F) � (a+ � P (b+) + b+ � P (a+))
)

= v ⊗
(

((d0(a0)b0 + a0d0(b0))⊗ 1F) � (P (a+) � P (b+))
)

+ v ⊗
(

(a0b0 ⊗ 1F) � (a+ � P (b+) + b+ � P (a+))
)

= v ⊗
(

(d0(a0)b0 ⊗ 1F) � (P (a+) � P (b+))
)

+ v ⊗
(

(a0d0(b0)⊗ 1F) � (P (a+) � P (b+))
)

+ v ⊗
(

(a0b0 ⊗ 1F) � (a+ � P (b+) + b+ � P (a+))
)

On the other hand, writing

(∗) =
(
(id⊗m) ◦ (δ ⊗ id) + (id⊗m) ◦ (σ ⊗ id) ◦ (id⊗ δ)

)
(a⊗ b) ,
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we have:

(∗) = v ⊗
(

((d0(a0)⊗ 1F) � P (a+) + (a0 ⊗ 1F) � a+) � b
)

+ v ⊗
(

((d0(b0)⊗ 1F) � P (b+) + (b0 ⊗ 1F) � b+) � a
)

= v ⊗
(

((d0(a0)⊗ 1F) � P (a+) + (a0 ⊗ 1F) � a+) � ((b0 ⊗ 1F) � P (b+))
)

+ v ⊗
(

((d0(b0)⊗ 1F) � P (b+) + (b0 ⊗ 1F) � b+) � ((a0 ⊗ 1F) � P (a+))
)

= v ⊗
(

((d0(a0)⊗ 1F) � P (a+)) � ((b0 ⊗ 1F) � P (b+))
)

+ v ⊗
(

((a0 ⊗ 1F) � a+) � ((b0 ⊗ 1F) � P (b+))
)

+ v ⊗
(

((d0(b0)⊗ 1F) � P (b+)) � ((a0 ⊗ 1F) � P (a+))
)

+ v ⊗
(

((b0 ⊗ 1F) � b+) � ((a0 ⊗ 1F) � P (a+))
)

= v ⊗
(

(d0(a0)b0 ⊗ 1F) � (P (a+) � P (b+))
)

+ v ⊗
(

(a0b0 ⊗ 1F) � (a+ � P (b+))
)

+ v ⊗
(

(d0(b0)a0)⊗ 1F) � (P (b+) � P (a+))
)

+ v ⊗
(

(b0a0 ⊗ 1F) � (b+ � P (a+))
)

= v ⊗
(

(d0(a0)b0 ⊗ 1F) � (P (a+) � P (b+))
)

+ v ⊗
(

(d0(b0)a0 ⊗ 1F) � (P (b+) � P (a+))
)

+ v ⊗
(

(a0b0 ⊗ 1F) � (a+ � P (b+) + b+ � P (a+))
)

Since these are equal by commutativity of �, we’ve proven the Leibniz rule.
For the constants rule, observe that e(1F) = 1F ⊗ 1F and so δ ◦ e(1F) =

1F⊗dΞA(1F)⊗1F (remembering our convention that 1+
F = 0). But dΞA(1F) = 0,

so the preceding tensor product is 0.
The linear maps rule is not satisfied: it is easily verified that

δ ◦ η(a) = 1A ⊗ (a⊗ 1F) 6= a⊗ (1A ⊗ 1F) = (id⊗ e) ◦ ρ(a) .

The chain rule is also not satisfied: observe that for any a ∈ A,

(δ; (δ ⊗ µ))(a) = (δ ⊗ µ)((1A ⊗ 1F)⊗ b) = 0

since δ(1A⊗1F) = 0, where b signifies all the factors irrelevant to this calculation.
On the other hand, µ; δ in general will not be zero.

We’ve shown that (V ec, δ,Π) is both a Leibniz category and a Rota-Baxter
category, but neither a differential nor integral one. Unfortunately, a disadvan-
tage to this approach is that it is not quite a proto-FTC category as defined
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above. It does, however, satisfy a slightly weaker version of the fundamental
theorem of calculus. Let us explain in what sense this is true.

Recall that the differential operator d and RB operator P on the free Rota-
Baxter algebra on a differential algebra, as described above, satisfy the funda-
mental theorem of calculus without modifications [23]. We have

d ◦ P (a) = d(1A ⊗ a) = a

since d0(1A) = 0.
The categorification given here does not translate the FTC directly, and any

that does so within the established differential category setting would have to be
truly unusual. The route A⊗A⊗�A→ A⊗�A→ A⊗A⊗�A is too bumpy,
in the sense that we would have to preserve the leftmost A factor throughout
the mappings and pull it back out unscathed at the end.

What does hold true in our case, however, is the following.

Proposition 3.8.4. For each vector space, there is a nontrivial subspace B of
V ⊗ ♦ΞV such that the following diagram commutes:

B V ⊗ ♦SV

♦SV

V ⊗ ♦SV

ι

ι

Π

δ

Proof. Let B = v⊗♦ΞV , the subspace of elements of the form v⊗a for a ∈ ♦ΞV
and v the chosen vector of V used in δ�. Then the diagram becomes:

v ⊗ a v ⊗ a v ⊗ 1F ⊗ a v ⊗ (d(1F)⊗ a+ a)ι Π�

id

δ�

To summarize, we’ve constructed Rota-Baxter categories (which are not in-
tegral categories) using �S, ♦S, �Ξ, and ♦Ξ, and we’ve constructed Leibniz
categories (which are not differential categories) using Ξ, �Ξ, and ♦Ξ. The
constructions using �Ξ and ♦Ξ also capture the fundamental theorem of calcu-
lus, although each has advantages and disadvantages: �Ξ is not a monad but a
quasimonad and its capturing of the underlying differential of Ξ is imperfect, but
its satisfaction of the FTC is elegant and direct; while ♦Ξ involves the choosing
of specific vectors in each vector space V and only a restricted version of the
FTC is satisfied, but it is a true monad directly capturing the free differential
Rota-Baxter algebra adjunction.

27



4 Weight-λ Rota-Baxter Categories

In this section we generalize our Rota-Baxter categories to accommodate an ar-
bitrary weight, and demonstrate the one of the applications of this is to capture
renormalization of Laurent series as used in quantum field theory, and more gen-
erally a certain broad class of operators on what Ribenboim called generalized
power series, which we will call Ribenboim power series.

4.1 An Arbitrary Weight λ

A Rota-Baxter algebra of weight λ is defined to be an algebra A equipped with
a linear map P : A→ A satisfying

P (x)P (y) = P (xP (y)) + P (P (x)y) + λP (xy) .

Of course, taking λ = 0 gives us back the structure we have up to now been
calling a Rota-Baxter algebra. But many applications demand Rota-Baxter
algebras of non-zero weight; one of the most interesting is the Laurent series,
which plays a key role in renormalization in perturbative quantum field theories
[22].

We approach our generalization seeking to replicate the format of Kähler
categories. In brief, Kähler categories were designed to capture modules of
differential forms, and utilize a derivation ∂ : TA → H(A) for some second
algebra modality functor H which is a compatible TA-module. It was once
believed that all codifferential categories were Kähler, but this has recently
been cast into doubt. The case with a minor additional property assumed is
proven in [5].

The H above is a structure that merits its own definition.

Definition 4.1.1. Let (T,mT , eT ) be an algebra modality. Then an algebra
modality (H,mH , eH) is a module algebra modality associated to T if H(A) is a
TA-module for every object A; that is, if there is a map • : H(A)⊗T (A)→ H(A)
such that the following diagrams commute:

H(A)⊗ T (A)⊗ T (A) H(A)⊗ T (A) H(A)

H(A)⊗ T (A)

id⊗mT

•⊗id

•

•

H(A) H(A)⊗ I H(A)⊗ T (A) H(A)
ρ−1

id

id⊗eT •

Proposition 4.1.2. Every algebra modality is a module algebra modality asso-
ciated to itself.

Proof. Straightforward.
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We’ll also need a categorical notion of scalar multiplication, to describe the
effect of λ. We employ the same structure used in quantum category theory, as
described in [1].

Suppose we are in an additive symmetric monoidal closed category. Then
it is straightforward to see that R = Hom(I, I) is a commutative ring, which
we call the ring of scalars. There is an action of R on arbitrary hom-sets: if
f ∈ Hom(M,N) and q ∈ R, we define q · f : M → N by the formula

q · f = M
∼=−→ I ⊗M q⊗f−→ I ⊗M

∼=−→M .

This action satisfies all of the evident properties of a commutative ring on an
abelian group. Furthermore, given f ∈ Hom(M,N), g ∈ Hom(M ′, N ′), we have

q · f ⊗ g = f ⊗ q · g

The action of R also respects composition:

(q · f) ◦ g = f ◦ (q · g) = q · (f ◦ g)

Write λf for the scalar multiple of λ on f : A→ B. We are now ready to define
our new categories.

Definition 4.1.3. Let (C,⊗, I, σ) be a symmetric monoidal closed category
equipped with a monad (T, µ, η) that is also an algebra modality (T,mT , eT ),
and let (H,mH , eH , ·) be a module algebra modality associated to T , where
• : H(A)⊗TA→ H(A) is the module action. A Rota-Baxter transformation of
weight λ for a given scalar λ is a natural transformation Π: H → T such that
the following equation holds:

(Π⊗Π);mT = (id⊗Π); •; Π + (Π⊗ id);σ; •; Π +mH ;λΠ

Equipped with such a Π, C is called a Rota-Baxter category of weight λ.

We begin with a couple of basic examples.

Example 4.1.4. Let C = K-V ec be the category of K-vector spaces, where
for simplicity we specify charK = 0, and let S be the usual symmetric tensor
algebra monad, so that SV can be viewed as polynomials in basis vectors of V .
View this as a module algebra modality over itself. Then for each basis vector
xi ∈ V , define a transformation Πxi

V : SV → SV by:

Πxi(xm1
1 · · ·xmnn ) =

1

mi + 1
xm1

1 · · ·xmi+1
i · · ·xmnn

This acts as polynomial integration with respect to the variable xi, and so makes
K-V ec into a Rota-Baxter category of weight λ = 0.

Example 4.1.5. Let T = H be any algebra modality on any category C with
m = • : TA⊗ TA→ TA. For each scalar λ define:

Πλ
A = −λidTA
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That is, Πλ is just scalar multiplication by −λ. Then, since scalar multiplication
is an action of the commutative ring Hom(I, I) on the monoid Hom(TA, TA)
respecting composition and tensors, we have:

(Π⊗Π);m =
(

(−λid)⊗ (−λid)
)

;m

= λ2(id⊗ id);m

= λ2m

= λ2m+ λ2m− λ2m

= (−λid⊗ id); •; (−λid) + (−λid); •; (id⊗−λid) +mH ;λ(−λid)

= (Π⊗ id);σ; •; Π + (id⊗Π); ·; Π +m;λΠ

Thus (C, T,Π) is a Rota-Baxter category of weight λ.

4.2 Laurent Series and the Monad G(M,-)

A more noteworthy example is that of Laurent series. These admit a Rota-
Baxter operator of degree −1 that is of interest in perturbative quantum field
theory [22, 40]. We show that they, along with a much broader class of examples,
are captured by our weight-λ Rota-Baxter category structure.

Recall that a Laurent series is a series

f(x) =

∞∑
n=k

anx
n

where an ∈ C and k ∈ Z. That is, Laurent series are a generalization of power
series where there may be a finite singular part of negative degree. These can
be equipped with a linear operator

P (f(x)) =

−1∑
n=k

anx
n

which keeps only the singular part of the series. It is shown in [22] that this is
a Rota-Baxter algebra of weight −1.

There is a structure known to capture Laurent series, among other construc-
tions, which we will show is an algebra modality. This is the structure that
Ribenboim called generalized power series, which we will call Ribenboim power
series. The presentation is based on those in [24] and [35].

Let (M,+,≤) be a partially ordered monoid. M is strictly ordered if

s < s′ ⇒ s+ t < s′ + t ∀s, s′, t ∈M .

We will henceforth assume that all the monoids we work with are strictly or-
dered.

An ordered monoid is artinian if all strictly descending chains are finite; that
is, if any list (m1 > m2 > · · · ) must be finite. It is narrow if all discrete subsets
are finite; that is, if all subsets of elements mutually unrelated by ≤ must be
finite.
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Definition 4.2.1. Let V be a vector space, and recall that the support of a
function f : M → V is defined by supp(f) = {m ∈ M |f(m) 6= 0}. Define the
Ribenboim power series from M with coefficients in V G(M,V ) to be the set of
functions f : M → V whose support is artinian and narrow.

If V is also a commutative K-algebra, then G(M,V ) is a commutative K-
algebra with

(f · g)(m) =
∑

(u,v)∈Xm(f,g)

f(u) · g(v)

where

Xm(f, g) := {(u, v) ∈M ×M |u+ v = m and f(u) 6= 0, g(v) 6= 0}

and M×M has the product ordering. To prove that this sum necessarily exists,
we need a couple of well-known results on artinian and narrow sets [36, 27, 35].

Lemma 4.2.2. Recall that an ordered set is noetherian if all strictly ascending
chains are finite, and let (M,≤) be artinian and noetherian. Then M is finite
if and only if M is narrow.

Lemma 4.2.3. If (M,≤M ) and (N,≤N ) are artinian and narrow, then M ×N
is artinian and narrow under the product ordering.

Proposition 4.2.4. The set X := Xm(f, g) is finite for f , g ∈ G(M,V ).

Proof. We follow the proof in [35].
Observe that X ⊆ supp(f)× supp(g), so X is artinian and narrow. Suppose

towards a contradiction that X is infinite. Then by the first lemma above, X
must not be noetherian. Thus there exists in X an infinite strictly increasing
sequence

(u1, v1) < (u2, v2) < · · · .

Note that the strict inequalities under the product ordering in this sequence
imply that at least one of the sets {ui}, {vi} must be infinite; suppose without
loss of generality that it is {ui}. There must then exist a strictly increasing
subsequence

uj1 < uj2 < · · · .

In particular (uj1 , vj1) < (uj2 , vj2), and recall that by definition of X we have
ui + vi = m ∀i. But then by strictness of the ordering, we have

m = uj1 + vj1 < uj2 + vj1 ≤ uj2 + vj2 = m

which is a contradiction. Thus X is finite.

A similar argument shows that for a map h : M → G(M,V ), the setXm(h) =
{(u, v) ∈M ×M |u+ v = m and h(u)(v) 6= 0} is also finite.

Before proceeding with a series of lemmas and propositions to show G(M,V )
is induced as an algebra modality, we note that setting M = Z with the usual
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ordering and V = C gives Laurent series; the image of each integer n ∈ Z gives
the coefficient of xn, and the artinian property of the function’s support ensures
a finite singular part. Similarly, M = N gives the usual power series, and there
are additional examples which will be discussed below.

Lemma 4.2.5. G(M,V ) is a vector space.

Proof. Define (f + g)(m) := f(m) + g(m), (cf)(m) = cf(m), 0G(M,V ) = 0 (the
zero map), and (−f)(m) = −f(m). The result then follows immediately from
V being a vector space.

Proposition 4.2.6. G(M,−) is a functor V ec→ V ec.

Proof. Let f : V →W . Define G(M,f) : G(M,V )→ G(M,W ) by

G(M,f)(g)(m) = f ◦ g(m)

We must prove that f◦g ∈ G(M,W ), i.e. that supp(f◦g) is artinian and narrow.
But supp(f ◦ g) ⊆ supp(g) since f is linear, and supp(g) is artinian and narrow
since g ∈ G(M,V ). Thus supp(f ◦ g) is also. It is clear that G(M, id) = id and
G(M,f ◦ g) = G(M,f) ◦G(M, g). Thus G(M,−) is a functor.

Proposition 4.2.7. G(M,G(N,V )) ∼= G(M×N,V ) for ordered monoids M,N
and vector space V , where M ×N is equipped with the product ordering (a, b) ≤
(c, d) ⇐⇒ a ≤ c and b ≤ d.

Proof. Let f ∈ G(M × N,V ), and define a mapping ˜(−) : G(M × N,V ) →
G(M,G(N,V )) by

f 7→ [f̃ : m 7→ (n 7→ f(m,n))]

We show first that f̃ ∈ G(M,G(N,V )), and then that ˜(−) is an isomorphism of
vector spaces. Observe that we have:

m ∈ supp(f̃) ⇐⇒ f̃(m) 6= 0

⇐⇒ [n 7→ f(m,n)] 6= 0

⇐⇒ f(m,n0) 6= 0 for some n0 ∈ N
⇐⇒ (m,n0) ∈ supp(f)

Let (m1 > m2 > · · · ) for mi ∈ supp(f̃) be a strictly decreasing chain. Then
((m1, n0) > (m2, n0) > · · · ) in M ×N by the product ordering, and this chain
must be finite since (mi, n0) ∈ supp(f) ∀i by the above. Thus the chain (mi)
must be finite, and so supp(f̃) is artinian.

Similarly, suppose M ′ ⊆ supp(f̃) is a discrete subset. Then M ′ × {n} is a
discrete subset of supp(f), and thus is finite. Thus M ′ is finite as well, and so
supp(f̃) is narrow. We’ve now shown f̃ ∈ G(M,G(N,V )).
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Next, we show ˜(−) is linear and bijective. For all m ∈M , n ∈ N we have

˜(af + bg)(m)(n) = (af + bg)(m,n)

af(m,n) + bg(m,n)

af̃(m)(n) + bg̃(m)(n)

which shows linearity. For injectivity, we have:

f̃ = g̃ ⇒ f̃(m) = g̃(m) ∀m ∈M
⇒ f̃(m)(n) = g̃(m)(n) ∀m ∈M, n ∈ N
⇒ f(m,n) = g(m,n) ∀(m,n) ∈M ×N
⇒ f = g

For surjectivity, let h ∈ G(M,G(N,V )), and define a function f : M ×N → V
by f(m,n) = h(m)(n). It is clear that f̃ = h. We claim f ∈ G(M ×N,V ).

Following the same reasoning as above, we have (m,n) ∈ supp(f) ⇐⇒
m ∈ supp(h) and n ∈ supp(h(m)), both of which are artinian and narrow. Let
((m1, n1) > (m2, n2) > · · · ) consist of elements of supp(f). Then for all i either
mi > mi+1 or ni > ni+1; for each i choose mi if the former holds and ni if the
latter holds (if both hold choose either one), and denote the new chain by (pi).
This has subchains (pmj ) and (pnk ) consisting of the elements of (pi) belonging
to M and N respectively. Since both these subchains are strictly descending
and consist of elements of supp(h) and supp(h(mk)) respectively, they are both
finite. Thus (pi) is finite, so in turn (mi, ni) is finite, and supp(f) is artinian.

Similarly, suppose M ′ × N ′ is a discrete subset of supp(f). Then M ′ is
a discrete subset of supp(h), and so is finite. N ′ is then a union of discrete
subsets of supp(h(mi)) for mi ∈ supp(h), of which there are only finitely many,
and since each of these subsets is finite, the union is finite also. Thus M ′ ×N ′
is finite, and supp(f) is narrow. Therefore f ∈ G(M × N,V ), completing the
proof.

Proposition 4.2.8. G(M,−) is a monad, with monadic unit ηV : V → G(M,V )
given by

η : v 7→

[
m 7→

{
v if m = 0M

0V if m 6= 0M

]
and monadic multiplication µV : G(M,G(M,V ))→ G(M,V ) given by

µ : h 7→

m 7→ ∑
(u,v)∈Xm(h)

h(u)(v)

 .

Proof. We’ll show it is a Kleisli monad; that is, for all f : V → G(M,W ) and
g : W → G(M,Z) it satisfies:
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1. µ ◦G(M,η) = idG(M,V )

2. µ ◦G(M,f) ◦ η = f

3. µ ◦G
(
M, (µ ◦G(M, g) ◦ f)

)
= µ ◦G(M, g) ◦ µ ◦G(M,f)

We will write Xm in place of Xm(f) when the function f is clear. Then for the
first property, we have:

f
G(M,η)7→ [G(M,η)(f) : m 7→ η ◦ f(m)]

=

[
m 7→

{
f(m) if m = 0

0 if m 6= 0

]

µ7→

µ ◦G(M,η)(f) : m 7→
∑

(u,v)∈Xm

G(M,η)(f)(u)(v)


But:

(u, v) ∈ Xm(G(M,η)(f)) ⇐⇒ u+ v = m and G(M,η)(f)(u)(v) 6= 0

⇐⇒ u+ v = m and v = 0 (and f(u) 6= 0)

⇐⇒ u = m and v = 0

Thus µ◦G(M,η)(f) : m 7→ G(M,η)(f)(m)(0) = f(m) and so µ◦G(M,η)(f) = f
as required.

For the second property, we have:

v
η7→ η(v)

G(M,f)7−→

[
G(M,f)(η(v)) : m 7→ f ◦ η(v)(m) =

{
f(v) if m = 0

f(0) = 0 if m 6= 0

]

=

[
m 7→

[
n 7→

{
f(v)(n) if m = 0

0 if m 6= 0

]]

µ7→

µ ◦G(M,f)(η(v)) : m 7→
∑

(u1,u2)∈Xm

G(M,f)(η(v))(u1)(u2)


Similarly to in the first property, we have:

(u1, u2) ∈ Xm ⇐⇒ u1 + u2 = m and G(M,f)(η(v))(u1)(u2) 6= 0

⇐⇒ u1 + u2 = m and u1 = 0

⇐⇒ u1 = 0 and u2 = m

Thus µ ◦ G(M,f)(η(v)) : m 7→ G(M,f)(η(v))(0)(m) = f(v)(m), and so µ ◦
G(M,f) ◦ η = f as required.
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The third property is the most involved. We’ll compute the effect of each
side of the equation separately. Before that, define the following notation:

X1
m := Xm(G(M,f)(h))

X2
m := Xm(G(M, g) ◦ µ ◦G(M,f)(h))

X3
m,n := Xn(G(M, g)(f(h(m))))

X4
m := Xm(G(M, (µ ◦G(M, g) ◦ f))(h))

For the right side of the third equation, we have:

h
G(M,f)7−→ [G(M,f)(h) : m 7→ f ◦ h(m)]

µ7→

µ ◦G(M,f)(h) : m 7→
∑

(u,v)∈X1
m

f ◦ h(u)(v)


=

m 7→ ∑
(u,v)∈X1

m

f(h(u))(v)


G(M,g)7−→

m 7→ ∑
(u,v)∈X1

m

g(f(h(u))(v))


=

m 7→
n 7→ ∑

(u,v)∈X1
m

g(f(h(u))(v))(n)


µ7→

m 7→ ∑
(s,t)∈X2

m

∑
(u,v)∈X1

s

g(f(h(u))(v))(t)


For the left side, we have:

h
G(M,(µ◦G(M,g)◦f))7−→

m 7→
n 7→ ∑

(u,v)∈X3
m,n

g(f(h(m))(u))(v)


µ7→

m 7→ ∑
(s,t)∈X4

m

∑
(u,v)∈X3

s,t

g(f(h(s))(u))(v)


To prove that these maps are equal, we’ll show the sums in the images are equal.
To facilitate this, we first give some equivalent conditions to elements being in
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the various “X” sets.

(u, v) ∈ X1
s ⇐⇒ u+ v = s and G(M,f)(h)(u)(v) 6= 0

⇐⇒ u+ v = s and f(h(u))(v) 6= 0

(s, t) ∈ X2
m ⇐⇒ s+ t = m and G(M, g) ◦ µ ◦G(M,f)(h)(s)(t) 6= 0

⇐⇒ s+ t = m and
∑

(p,q)∈X1
s

g(f(h(p))(q))(t) 6= 0

(u, v) ∈ X3
s,t ⇐⇒ u+ v = t and G(M, g)(f(h(s)))(u)(v) 6= 0

⇐⇒ u+ v = t and g(f(h(s))(u))(v) 6= 0

(s, t) ∈ X4
m ⇐⇒ s+ t = m and G(M, (µ ◦G(M, g) ◦ f))(h)(s)(t) 6= 0

⇐⇒ s+ t = m and
∑

(p,q)∈X3
s,t

g(f(h(s))(p))(q) 6= 0

Fix m. Let (s, t) ∈ X2
m and (u, v) ∈ X1

s . We’ll show that the term
g(f(h(u))(v))(t) 6= 0 from the right-hand sum also appears as a term in the
left-hand sum; that is, we’ll show it is of the form g(f(h(s′))(u′))(v′) for some
(s′, t′) ∈ X4

m and (u′, v′) ∈ X3
s′,t′ .

Set s′ := u, u′ := v, v′ := t, and t′ := v + t. Then u′ + v′ = v + t = t′, and
g(f(h(s′))(u′))(v′) = g(f(h(u))(v))(t) 6= 0, so (u′, v′) ∈ X3

s′,t′ . We also have
s′ + t′ = u+ v + t = s+ t = m, and

∑
(p,q)∈X3

s′,t′
g(f(h(s′))(p))(q) 6= 0 since for

(p, q) = (u′, v′), g(f(h(s′))(u′))(v′) 6= 0. Thus (s′, t′) ∈ X4
m, and so this term

does indeed appear in the left-hand sum.
Now let (s, t) ∈ X4

m and (u, v) ∈ X3
s,t. We want to show that the term

g(f(h(s))(u))(v) 6= 0 from the left-hand sum also appears as a term in the right-
hand sum; that is, that it is of the form g(f(h(u′))(v′))(t′) for some (s′, t′) ∈ X2

m

and (u′, v′) ∈ X1
s′ . Setting u′ := s, v′ := u, t′ := v, and s′ := s+u and reasoning

analogously to above shows that it is indeed.
Thus the sums share all the same terms, and so are equal. This completes

the proof of the third Kleisli monad property, and thus G(M,−) is a monad.

Lemma 4.2.9. There is a distributive law of monads of G(M,−) over S, the
symmetric algebra monad.

Proof. For this proof, write

Xm,k := {(u1, . . . , uk)|
k∑
i=1

ui = m} .
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Define `V : SG(M,V )→ G(M,SV ) by

` : f1 ⊗ · · · ⊗ fk 7→

m 7→ ∑
(u1,...,uk)∈Xm,k

f1(u1)⊗ · · · ⊗ fk(uk)


In the top-right diagram, for one side we have:

v1 ⊗ · · · ⊗ vk
η
G(M,−)
SV7−→

[
m 7→

{
v1 ⊗ · · · ⊗ vk if m = 0

0 if m 6= 0

]

For the other side, by definition of η we have:

v1 ⊗ · · · ⊗ vk
Sη

G(M,−)
V7−→ ηG(M,−)(v1)⊗ · · · ⊗ ηG(M,−)(vk)

`7→

m 7→ ∑
(u1,...,uk)∈Xm,k

η(v1)(u1)⊗ · · · ⊗ η(vk)(uk)


Note that if m 6= 0, then no terms survive in this last sum, since at least one
ui must be nonzero, whereas if m = 0, then only the term u1 = · · · = uk = 0
survives the application of the η maps, producing the single term v1 ⊗ · · · ⊗ vk.
Thus the two maps are equal and the diagram is proven.

In the bottom-right diagram, for one side we have:

[f : m 7→ f(m)]
G(M,ηSV )7−→ [m 7→ (f(m))]

For the other side, we have:

[f : m 7→ f(m)]
ηSG(M,V )7−→ ([f : m 7→ f(m)])

`7→

m 7→ ∑
u1∈Xm,1

(f(u1))


= [m 7→ (f(m))]

Thus the diagram commutes.
Now define:

f := (f11 ⊗ · · · ⊗ fnm1)⊗ · · · ⊗ (fn1 ⊗ · · · ⊗ fnmn)

In the bottom-left diagram, for one side we have:

f
µSG(M,V )7−→ f11 ⊗ · · · ⊗ fnmn

`V7→

m 7→ ∑
u11,...,unmn∈Xm,nmn

f11(u11)⊗ · · · ⊗ fnmn(unmn)


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For the other side, we have:

f
S`V7→

m 7→
 ∑

(u11,...,u1m1 )∈Xm,m1

f11(u11)⊗ · · · ⊗ f1m1
(u1m1

)


⊗ · · · ⊗

m 7→
 ∑

(un1,...,unmn )∈Xm,mn

fn1(un1)⊗ · · · ⊗ fnmn(unmn)


`SV7→

[
m 7→

∑
(v1,...,vn)∈Xm,n

 ∑
(u11,...,u1m1

∈Xv1,m1

f11(u11)⊗ · · · ⊗ f1m1
(u1m1

)


⊗ · · · ⊗

 ∑
(un1,...,unmn∈Xvn,mn

fn1(un1)⊗ · · · ⊗ fnmn(unmn)

]

G(M,µSV )7−→

[
m 7→

∑
(v1,...,vn)∈Xm,n

 ∑
(u11,...,u1m1

∈Xv1,m1

f11(u11)⊗ · · · ⊗ f1m1(u1m1)


⊗ · · · ⊗

 ∑
(un1,...,unmn∈Xvn,mn

fn1(un1)⊗ · · · ⊗ fnmn(unmn)

]

Take an arbitrary term in the second image’s sum. Then its arguments sum to
m, and so it also appears in the first image’s sum. Conversely, take an arbitrary
term in the first image’s sum. Setting vi =

∑mi
j=1 uij for each i shows that it

also appears in the second image’s sum. Thus the images are equal, and the
diagram commutes.

Finally, for the top-left diagram, let fi ∈ G(M,G(M,V )) and write

f = f1 ⊗ · · · ⊗ fk .

Then for one side, we have:

f
Sµ

G(M,−)
V7−→

m 7→ ∑
(u1,v1)∈Xm

f1(u1)(v1)

⊗ · · · ⊗
m 7→ ∑

(uk,vk)∈Xm

fk(uk)(vk)


`V7→

m 7→ ∑
(w1,...,wk)∈Xm

 ∑
(u1,v1)∈Xw1

f1(u1)(v1)

⊗ · · · ⊗
 ∑

(uk,vk)∈Xwk

fk(uk)(vk)


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For the other side, we have:

f
`G(M,V )7−→

m 7→ ∑
(w1,...,wk)∈Xm

(n 7→ f1(w1)(n))⊗ · · · ⊗ (n 7→ fk(wk)(n))


G(M,`V )7−→

m 7→ ∑
(w1,...,wk)∈Xm

n 7→ ∑
(z1,...,zk)∈Xn

f1(w1)(z1)⊗ · · · ⊗ fk(wk)(zk)


µ
G(M,`V )

SV7−→

m 7→ ∑
(u,v)∈Xm

∑
(w1,...,wk)∈Xu

∑
(z1,...,zk)∈Xv

f1(w1)(z1)⊗ · · · ⊗ fk(wk)(zk)


Take an arbitrary term in this latter sum, f1(w1)(z1)⊗ · · · ⊗ fk(wk)(zk). We’ll
show that it’s also in the former one; that is, we’ll show it’s of the form
f1(u′1)(v′1)⊗ · · · ⊗ fk(u′k)(v′k) for (ui, vi) ∈ Xw′i

and (w′1, . . . , w
′
k) ∈ Xm.

Set u′i := wi, v
′
i := zi, and w′i := wi+zi for all i. Then u′i+v′i = wi+zi = w′i

so that (u′i, v
′
i) ∈ Xw′i

, and∑
w′i =

∑
(wi + zi) =

∑
wi +

∑
zi = u+ v = m

since (w1, . . . , wk) ∈ Xu, (z1, . . . , zk) ∈ Xv and (u, v) ∈ Xm. Thus this term is
indeed in the former sum.

Now take an arbitrary term in the former sum, f1(u1)(v1)⊗· · ·⊗fk(uk)(vk).
We’ll show that it’s also in the latter one; that is, we’ll show it’s of the form
f1(w′1)(z′1) ⊗ · · · ⊗ fk(w′k)(z′k) for (w′1, . . . , w

′
k) ∈ Xu′ , (z′1, . . . , z

′
k) ∈ Xv′ and

(u′, v′) ∈ Xm.
Set w′i := ui, zi := vi, u

′ :=
∑
ui, and v′ :=

∑
vi. Then

∑
w′i =

∑
ui = u′,∑

z′i =
∑
vi = v′, and

u′ + v′ =
∑

ui +
∑

vi =
∑

(ui + vi) =
∑

wi = m

since (ui, vi) ∈ Xwi and (w1, . . . , wk) ∈ Xm. Thus this term is indeed in the
latter sum.

This shows the sums must be equal, and so the maps are equal. This demon-
strates that the top-left diagram commutes, and thus ` is a distributive law.

A corollary then follows immediately from [4].

Corollary 4.2.10. The composite functor G(M,S−) := G(M,−)◦S is a monad
on K-V ec.

In our next proposition, we’ll need a version of a lemma taken from [8].

Lemma 4.2.11. Let S be the symmetric algebra monad. Then the commutative
algebra modalities on a category are in bijective correspondence with pairs (T, ψ)
where T is a monad and ψ : S → T is morphism of monads.
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Proposition 4.2.12. The monad H := G(M,S−) is an algebra modality with
multiplication and unit defined by

mH(f ⊗ g)(m) =
∑

(u,v)∈Xm(f,g)

f(u)⊗s g(v)

eH(1K)(m) =

{
1K if m = 0

0 if m 6= 0

We write f(u)⊗s g(v) for what is more correctly ms(f(u)⊗g(v)); in particular,
if one of these, say g(v), is equal to 1K, then this product is “f(u)⊗s 1”, which
of course is just f(u).

Proof. We make use of the previous lemma by defining a transformation ψ : S →
H and showing that it is a morphism of monads. We then follow along the
bijection and show that it induces the given algebra modality structure. Define
ψV : SV → G(M,SV ) by:

ψ(v1 ⊗ · · · ⊗ vn) =

[
m 7→

{
v1 ⊗ · · · ⊗ vn if m = 0

0 otherwise

]

This is clearly natural. We must show it satisfies the commutative diagrams of
a monad morphism:

SSV SG(M,SV ) G(M,SG(M,SV ))

SV G(M,SV )

V

SV G(M,SV )

SψV

µSV

ψG(M,SV )

µG(M,SV )

ψV

ηSV ηG(M,SV )

ψV

The unit diagram is straightforward. For the multiplication diagram, write

v := (v11 ⊗ · · · ⊗ v1n1
)⊗ · · · ⊗ (vm1 ⊗ · · · ⊗ vmnm)

and

[i] :=

[
m 7→

{
vi1 ⊗ · · · ⊗ vini if m = 0

0 otherwise

]
.

Then it is easy to see that the path along the bottom of the diagram yields:

ψV ◦ µSV (v) =

[
m 7→

{
µSV (v) if m = 0

0 otherwise

]
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For the path along the top of the diagram, first recall that according to the
distributive law [4],

µ
G(M,S−)
V = µ

G(M,−)
SV ◦G(M,G(M,µSV )) ◦G(M, `SV ) .

Using this, the top diagram path becomes

v
SψV7−→ [1]⊗ · · · ⊗ [n]

ψG(M,SV )7−→

[
m 7→

{
[1]⊗ · · · ⊗ [n] if m = 0

0 otherwise

]
G(M,`SV )7−→

[
m 7→

[
k 7→

{∑
(u1,...,un)∈Xk,n [1](u1)⊗ · · · ⊗ [n](un) if m = 0

0 otherwise

]]
G(M,G(M,µSV ))7−→

[
m 7→

[
k 7→

{∑
(u1,...,un)∈Xk,n µ

S
V ([1](u1)⊗ · · · ⊗ [n](un)) if m = 0

0 otherwise

]]

µ
G(M,−)
SV7−→

m 7→ ∑
(s,t)∈Xm

{∑
(u1,...,un)∈Xt,n µ

S
V ([1](u1)⊗ · · · ⊗ [n](un)) if s = 0

0 otherwise


=

[
m 7→

{
µSV (v) if m = 0

0 otherwise

]

where the final equality is because all other terms in the sums are zero. Thus
the diagram commutes. This being the case, the lemma implies that an algebra
modality on G(M,S−) is given by:

mH
V : G(M,SV )⊗G(M,SV ) G(M,SV )

SG(M,SV )⊗ SG(M,SV ) SG(M,SV ) G(M,SG(M,SV ))

ηSG(M,SV )⊗η
S
G(M,SV )

mSHV ψHV

µHV

eHV : I SV G(M,SV )
eSV ψV
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Using the same formula for µH as before, we compute:

f ⊗ g η
S
HV ⊗η

S
HV7−→ (f)⊗ (g)

mSHV7→ f ⊗s g

ψHV7→

[
m 7→

{
f ⊗s g if m = 0

0 otherwise

]
G(M,ellSV )7−→

[
m 7→

[
k 7→

{∑
(u,v)∈Xk,2(f(u))⊗s (g(v)) if m = 0

0 otherwise

]]
G(M,G(M,µSV ))7−→

[
m 7→

[
k 7→

{∑
(u,v)∈Xk,2 f(u)⊗s g(v) if m = 0

0 otherwise

]]

µ
G(M,−)
SV7−→

m 7→ ∑
(s,t)∈Xm

{∑
(u,v)∈Xt,2 f(u)⊗s g(v) if s = 0

0 otherwise


=

m 7→ ∑
(u,v)∈Xm

f(u)⊗s g(v)


Thus the multiplication is as we supposed. Similarly, for the unit we have:

1K
eSV7→ 1K

ψV7→

[
m 7→

{
1K if m = 0

0 otherwise

]

We can now show that Laurent series are recaptured by our algebra modality,
along with a wealth of other examples.

Theorem 4.2.13. Let M = Z, let C = C-V ec, and let {0} be the zero vector
space. Then G(M,S{0}) and the algebra of Laurent series are isomorphic as
algebras.

Proof. Observe that we have

S{0} = C⊕
∞⊕
i=1

({0}1 ⊗ · · · ⊗ {0}i) ∼= C

since {0} ⊗ {0} ∼= {0} and V ⊕ {0} ∼= V . We therefore have:

G(Z, S{0}) ∼= {f : Z→ C|supp(f) is artinian and narrow}

Since the ordering on Z is total, narrowness imposes no restriction. Artinianness
means that any such function f has a lowest k ∈ Z mapping to something
nonzero. Thus G(Z, S{0}) is in bijective correspondence with Laurent series.
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Adding functions is equivalent to adding coefficients of each power of x, and the
multiplication

(f · g)(k) =
∑

(u,v)∈Xk

f(u)g(v)

is equivalent to multiplication of Laurent series. Thus they are isomorphic as
algebras.

The same structure but with M = N is isomorphic to the usual power series
over K. There are a number of other interesting examples we can capture as
well. The following are taken from [35] and [22].

Example 4.2.14. Let M = N\{0} with the operation of multiplication,
equipped with the usual ordering. Then G(M,SV ) is the ring of arithmetic
functions with values in SV , and mH is Dirichlet’s convolution [35].

Example 4.2.15. Let M = N\{0} with the operation of multiplication as
above, but now equipped with the divisibility ordering; that is, m1 ≤ m2 ⇐⇒
m1|m2. Then G(M,SV ) is the subring of arithmetic functions whose support
is either finite or contains an infinite divisibility chain of natural numbers. For
example, a function whose support is all primes would not be contained in this
example, though it would be in the previous example [35].

Many of these are also Rota-Baxter algebras, and make their categories into
Rota-Baxter categories of some weight. The most general case is the following
one.

Example 4.2.16. Let C = K-V ec, let M be any strictly ordered monoid,
and let M1, M2 be such that the disjoint union M1∪̇M2 = M . Define a map
ΠV : G(M,SV )→ G(M,SV ) by

Π(f)(m) =

{
f(m) if m ∈M1

0 if m ∈M2

It is the major theorem of [24] that, in the context where “SV ” is an arbitrary
commutative ring, the map Π satisfies the Rota-Baxter equation of weight −1
if and only if M1 and M2 are subsemisimple groups of M . The proof of that
theorem carries over into this setting, since SV is in particular a commutative
ring. Thus we have a large class of examples of Rota-Baxter categories of weight
−1.

Example 4.2.17. Let C = C-V ec with algebra modality H as above. Then,
as a particular case of the previous example, the transformation Π: HV → HV
defined by

Π(f)(k) =

{
f(k) if k < 0

0 if k ≥ 0
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makes the category into a Rota-Baxter category of weight λ = −1. This is
equivalent to the Rota-Baxter operator

P

( ∞∑
n=k

anx
n

)
=

−1∑
n=k

anx
n

on Laurent series when V = 0. Thus we’ve recaptured renormalization.

Example 4.2.18. We can also reproduce “perhaps the most important com-
binatorial example” [38, 22] of a Rota-Baxter algebra. Define an R-algebra by

R = {f : R→ Q||supp(f)| <∞}

with product as in the Laurent series example; that is,

(fg)(x) :=
∑

(y,z)∈{R×R|y+z=x}

f(y)g(z)

Define an operator P : R→ R by

P (f)(x) :=
∑

max(0,y)=x

f(y)

It is proven in [22] that this is a Rota-Baxter operator of weight −1 on R. Our
monad G(M,S−) induces it as follows. Let M be any trivially ordered monoid;
that is, let m1 ≤ m2 ∀m1,m2 ∈ M . Then the artinian and narrow subsets are
simply the finite ones, and G(M,SV ) is the monoid ring of M with coefficients
in SV [35]. In particular, if we set M = R and work over Q-vector spaces, then
G(R, S{0}) ∼= G(R,Q) recovers R. The transformation

Π(f)(x) =
∑

max(0,y)=x

f(y)

(where the max is taken according to the usual ordering on R, of course) then
makes Q-V ec into a Rota-Baxter category of weight −1.

5 Quantum Differential and Integral Categories

In this section, we wish to provide a variation of the standard differential and
integral categories that captures quantum calculus. We begin by introducing
some background concepts. Then we review the quantum calculus, and intro-
duce our new structure encapsulating it. Finally, we show that the categories
as we introduced them can be equivalently characterized in terms of certain
equalizers.
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5.1 Scalars, Grading and Bases

In the previous section, we described the notion of categorical scalars and scalar
multiplication. We will again need these here. We will also need the notion of a
general graded commutative algebra in an additive symmetric monoidal closed
category.

Definition 5.1.1. A graded commutative algebra in an additive symmetric
monoidal closed category C consists of an object of the form:

A =

∞⊕
i=0

Ai together with multiplications Ai ⊗Aj → Ai+j

satisfying evident unital, associativity and commutativity4 constraints. Note
in particular that A0 = I. The object Ai is called the homogeneous object of
degree i. In categories where the objects have elements, an element of Ai would
be called a homogeneous element.

We note that in both Rel, the category of sets and relations, and Vec, the
category of vector spaces and linear maps, the usual models of the linear logic
modalities are in fact graded commutative algebras.

To work in the q-setting, we will need to couple the notion of graded algebra
with that of algebra modality.

Definition 5.1.2. An additive symmetric monoidal category has a graded alge-
bra modality if it is equipped with a monad (T, µ, η) such that for every object
M in C, the object, T (M), has the structure of a graded commutative algebra

m : T (M)⊗ T (M)→ T (M), e : I → T (M)

and this family of graded commutative algebra structures satisfies evident nat-
urality conditions. The only additional requirement from the usual definition of
algebra modality is that the map µ : T 2(M)→ T (M) be a graded algebra map.

The linear logic modalities in both Rel and Vec are graded algebra modalities.
Finally, let M be an object in a monoidal category C. A basis for M is an

isomorphism B :
⊕

j∈J I →M for some set J . An indeterminate from M is one
of the maps xk := B ◦ ik : I →

⊕
j∈J I →M , where i is the biproduct injection.

5.2 The Differential Setting

Variations of the quantum calculus have arisen in a number of settings. For the
moment, we follow [28] closely. One defines the q-derivative of a function of 1
variable via the following formula:

Dq(f(x)) =
f(qx)− f(x)

(q − 1)x

4We assume ordinary commutativity as opposed to a graded commutative equation.
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Evidently if we are in a setting where one can take limits, then taking the limit
of this expression as q → 1 gives the usual f ′(x).

So for example, one can see:

Dq(x
n) =

qn − 1

q − 1
xn−1

The following is a helpful bit of notation:

[n] =
qn − 1

q − 1

In which case, one can write:

Dq(x
n) = [n]xn−1

In this framework, the Leibniz rule takes on the following form:

Dq(f(x)g(x)) = f(qx)Dq(g(x))+g(x)Dq(f(x)) = f(x)Dq(g(x))+g(qx)Dq(f(x))

As noted in [28], the chain rule of the differential calculus doesn’t work in
any evident way. In trying to q-differentiate f(u(x)), one quickly discovers there
is no way to write Dq(f(x)) as any kind of multiple of Dq(u(x)). However, one
can in the case when u(x) = xn. Note that no restrictions on f are necessary.
In this case, we get the following equation.

Dq(f(xn)) = Dqn(f)(xn)Dq(u(x))

This indicates that to state a more abstract q-chain rule, we will need to
restrict to homogeneous elements.

5.3 q-Partial Derivatives and the q-Differential Rules

In this subsection, our goal is to build the requisite structure to define a q-
codifferential category.

For each indeterminate xk, scalar q, and n ∈ N, define a quantum partial
deriving transformation or q-deriving transformation as a map

∂n = ∂xk,q,n : T (M)n → T (M)n−1 ⊗M

satisfying four conditions. The first two are fairly easy to state, but the latter
two require some elaboration.

(qd1) (The q-Constants Rule) For all xk, q:

I T (M)0 T (M)−1 ⊗M

0

e ∂0
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Note that it follows easily from the graded algebra definition of (m, e) that
e maps into the degree-zero part of T (M).

(qd3) (q-Linear Maps Rule) For all xk, q, and where p is the biproduct projec-
tion map:

I M T (M) T (M)1 T (M)0 ⊗M

M I ⊗M

xk

xk

η p1 ∂1

λ−1

e⊗id

To adequately capture the quantum Leibniz and chain rules, we’ll need some
more structure. Both rules rely on knowing the degree of the factor xk within
the greater xn1

1 · · ·xnmm ; the “subdegree” of xk, if you will. We’ll develop a way
to describe this idea categorically using bases.

Let nk ∈ N and xk be an indeterminate from M via basis B1. Define the
map xnkk : I → T (M)nk as follows:

I
nk⊗
r=1

I
nk⊗
r=1

M
nk⊗
r=1

T (M) T (M) T (M)nk
∼=

⊗
xk

⊗
η

⊗
m p

Additionally let y`xk denote any map of the following form and satisfying the
following condition:

I
⊗̀
r=1

I
⊗̀
r=1

M
⊗̀
r=1

T (M) T (M) T (M)`
∼=

⊗̀
r=1

xr ⊗
η

⊗
m p

such that ∀r, xr 6= xk. The intuition behind these should be that in a monomial
xn1

1 · · ·xnmm , xnkk in our definition corresponds to exactly what it seems, and y`

corresponds to the product of all the other factors, where ` is the remaining
degree. In the intuition, we would thus have ` = (

∑m
r=1 nr)− nk.

To state the rules, we must also make the following definition.

Definition 5.3.1. We call (C, T, ∂) Colbert if for each j ∈ N and each inde-
terminate xk from our chosen basis B1 of M , there exists

1. some nk ∈ N,

2. some basis B2 of T (M)nk which has xnkk as an indeterminate,

3. some basis B3 of T (T (M)nk)j with some indeterminate z : I → T (T (M)nk)j,

4. and some ynk(j−1) : I → T (M)nk(j−1) in the form described above OR

such that ynk(j−1) = e,

such that the following diagram commutes:
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I I ⊗ I T (M)nk ⊗ T (M)nk(j−1)

T (T (M)nk)j T (M)nkj

∼=

z

x
nk
k ⊗y

nk(j−1)

m

µ

The highest nk such that this holds is called the subdegree of xk in z, denoted
subdeg(xk, z). If z;µ = ynkjxk

for some ynkjxk
, then we interpret this as nk = 0

and define subdeg(xk, z) = 0.

We can now describe the q-Leibniz rule. For reference, in the q-calculus, the
single-variable Leibniz rule is:

Dq(f(x)g(x)) = f(qx)Dq(g(x)) + g(x)Dq(f(x))

= f(x)Dq(g(x)) + g(qx)Dq(f(x))

The multivariable version of the rule, using partial derivatives, can be written
as follows, where ~x = xn1

1 , . . . , xnmm :

Dxk,q(f(~x)g(~x)) = f(x1, . . . , qxk, . . . , xn)Dxk,q(g(~x)) +Dxk,q(f(~x))g(~x)

= f(~x)Dxk,q(g(~x)) + g(x1, . . . , qxk, . . . , xn)Dxk,q(f(~x))

We’d like to generalize this categorically.
Let z1 : I → T (M)i)j , z2 : I → T (T (M)`)r be basis maps having the Colbert

property with respect to an indeterminate xk : I →M . Then subdeg(xk, z1) = i
and subdeg(xk, z2) = `. Write z1 = z1;µ, z2 = z2;µ for notational convenience.
The map ∂ satisfies the q-Leibniz rule if for all such i, j, `, r ∈ N and all y1 :=

y
i(j−1)
xk , y2 := y

`(r−1)
xk defined as above, the following holds:

(qd2) (q-Leibniz Rule)

z1 ⊗ z2;m; ∂xk,q,ij+`r = z1 ⊗ z2; ((qi · id)⊗ ∂xk,q,`r;m⊗ id
+ ∂xk,q,ij ⊗ id; id⊗ σ;m⊗ id)

= z1 ⊗ z2; (id⊗ ∂xk,q,`r;m⊗ id
+ ∂xk,q,ij ⊗ (q` · id); id⊗ σ;m⊗ id)

This has diagrammatic representation:

I ⊗ I T (M)ij ⊗ T (M)`r T (M)i+j T (M)ij+`r−1 ⊗M
z1⊗z2

z1⊗z2;(qi·id)⊗∂xk,q,`r;m⊗id+∂xk,q,ij⊗id;id⊗σ;m⊗id

z1⊗z2;id⊗∂xk,q,`r;m⊗id+∂xk,q,ij⊗(q`·id);id⊗σ;m⊗id

m ∂xk,q,ij+`r
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Next we generalize the q-chain rule. For reference, in the q-calculus the
chain rule is:

Dq(f(xn)) = Dqn(f)(xn)Dq(x
n)

The multivarible version with partial derivatives is as follows, where ~x = xn1
1 , . . . , xnmm :

Dxk,q(f(~x)) = Dx
nk
k ,qnk (f)(~x)Dxk,q(~x)

We would like µ to be a graded algebra map. Define a grading on T (T (M)) by:

T (T (M))k =
⊕
ij=k

T (T (M)i)j

Then to be a graded algebra map, our µ must satisfy:

µ(T (T (M)i)j) ⊆ T (M)ij

Let C be Colbert, and let subdeg(xk, z) = i. We then posit the following as the
categorical q-chain rule, for all xk coupled with all of their respective z related
by the Colbert property:

(qd4) (q-Chain Rule)

I T (T (M)i)j

T (T (M)i)j T (M)ij T (M)ij−1 ⊗M

T (T (M)i)j−1 ⊗ T (M)i T (M)i(j−1) ⊗ T (M)i−1 ⊗M

z

z µ

∂
xi
k
,qi,j

∂xk,q,ij

µ⊗∂xk,q,i
m⊗id

5.4 q-Codifferential Categories

Definition 5.4.1. A quantum codifferential or q-codifferential category is a
Colbert category C equipped with a graded algebra modality T and a q-partial
deriving transformation ∂.

The definition of a q-differential category is, of course, just the dual.

5.4.1 Examples

Let C = V ec be the category of vector spaces V with basis X over a field F and
linear maps, and equip it with the symmetric tensor algebra monad S.

Since S(V ) ∼= F[X], we can view S(V ) as a polynomial algebra in chosen basis
vectors of V , and this can be graded via polynomial degree. The monoidal unit
is I = F, so categorical scalars q : F → F correspond to field scalars q = q(1F),
and the notions of scalar multiplication coincide. Similarly, the notions of basis
correspond, and indeterminates xk : F →

⊕
j∈J F → V correspond to basis

vectors. As usual, m and e denote polynomial multiplication and inclusion,
respectively.
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Let xk denote basis vectors and ~x = xn1
1 ⊗ · · · ⊗ xnmm . Define ∂xk =

∂xk,q,i : S(V )i → S(V )i−1 ⊗ V by

∂xk(~x) =
∂q
∂qxk

(~x)⊗ xk

where
∂q
∂qxk

is the quantum partial derivative with respect to xk, and where

∂xk(1F) := 0.

Proposition 5.4.2. (V ec, S, ∂q) is a q-codifferential category, and its structure
coincides with multivariable quantum differentiation of polynomials. The single-
variable polynomial q-derivative is captured as a particular case.

Proof. Write ∂ for ∂xk,q,i where confusion will not result.
The q-constant rule translates to ∂(1F) = 0, and using the q-calculus we

have:

∂(1) :=
∂q
∂qxk

(1)⊗ xk :=
1− 1

(q − 1)xk
⊗ xk = 0

The q-linear maps rule translates to ∂(xk) = 1 ⊗ xk for basis vectors xk. We
have:

∂(xk) :=
∂q
∂qxk

(xk)⊗ xk :=
qxk − xk
(q − 1)xk

⊗ xk = 1⊗ xk

Next, it is clear that V ec is Colbert; if x is a basis vector for V , then z =
xi is a basis vector for T (V )i and z′ = (xi)j is a basis vector for T (T (V )i)j
demonstrating Colbertness for y = e, with subdeg(x, z′) = ij. Thus the notion
of subdegree corresponds with our intuition in this case.

For the q-Leibniz rule, let i = subdeg(xk, z1), j = subdeg(xk, z2). First
assume i, j > 0. Observe that w := (z1⊗z2)(1⊗ 1) = (xik · y1)⊗ (xjk · y2), where
for partial differentiation purposes y1 and y2 act as constants. Then we have:

m; ∂(w) =
∂q
∂qxk

(xi+jk y1y2)⊗ xk

=

(
qi+j − 1

q − 1
xi+j−1
k y1y2

)
⊗ xk

=

((
qi
qj − 1

q − 1
+
qi − 1

q − 1

)
xi+j−1
k y1y2

)
⊗ xk

=

(
qixiky1 ·

∂q
∂qxk

(xjky2) +
∂q
∂qxk

(xiky1) · xjky2

)
⊗ xk

=
(
(qi · id)⊗ ∂;m⊗ id+ ∂ ⊗ id; id⊗ σ;m⊗ id

)
(w)

The other q-Leibniz equation is similar.
Finally, for the q-chain rule, let x = x(1) be a basis vector of V , and let

z = z(1) be any basis vector of T (T (V )i)j satisfying the Colbert property with
respect to x. Then z =

⊗m
`=1 x

n`
` with x` = x for some `, and i = subdeg(x, z).
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Write y for the product of all factors of z other than x. Then we have:

µ; ∂x,q(z) =
∂q
∂qx

(z)

=
qi − 1

q − 1
xi−1y

=

(
qi

2 − 1

qi2 − 1

)
xiy

xi
·
(
qi − 1

q − 1

)
xi−1

=
(qix)iy − xiy
(qix)i − xi

· q
i − 1

q − 1
xi−1

=
∂qi

∂qixi
(xiy) · ∂q

∂qx
(xi)

= ∂xik,qi ;µ⊗ ∂xk,q;m⊗ id(z)

Thus the chain rule is satisfied, and so V ec is a q-codifferential category.
Of course, we recover the single-variable case by taking y = id, leaving only

powers of x in the polynomials.

We can also equip a q-differential structure onto the finite bag (or multiset)
comonad ! on Rel. Note that in this case all arrows will be dual to the previous
example.

For this category, recall a few facts: the additive enrichment is given by the
set-theoretic union, the monoidal structure is given by the cartesian product ×,
and I = {∗} is the one-element set. Scalars are then relations q : I → I, i.e.
either q = ∅ or q = id; denote the former case by q = 0 and the latter by q = 1.

Every set X can be given a cobasis B : X →
⊕

j∈J I, where |J | = |X|,
defined by relating each element of X to a different copy of ∗. This map’s
inverse is its converse, so it is an isomorphism. Coindeterminates are then the
relations x = p ◦B : X →

⊕
j∈J I → I, each relating a single element of X to ∗.

The coalgebras !X can be graded by multiset cardinality; formally, let double
brackets (()) denote a multiset, and define (!X)n = {((x1, . . . , xn))}.

It is easy to see that the comonadic comultiplication δ : !X →!!X is a graded
coalgebra map given the grading on !!X as described in the definition of the
chain rule, above. Recall that this comultiplication relates each bag to all bags
of bags whose (multiset) union is the original bag, and also that the comonadic
counit ε : !X → X is the partial function from each singleton bag to its single
element. Recall also that the coalgebra modality is given by ∆: !X →!X×!X
relating each bag to all pairs of bags whose union is the bag, and e : !X → I
relating only the empty bag to ∗.

To define a q-partial deriving transformation, we must define

∂x,q,n : !Xn ×X →!Xn+1

for every coindeterminate x, scalar q, and natural number n. But we have only
the two scalar cases q = 0 or q = 1, and q = 1 reduces to equations very similar
to the standard differential category rules.
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The case q = 0 first needs some consideration. Observe the following case
of the lower branch of the q-linear map rule diagram, for cobasis vector (i.e.
element of X) x:

(∅, x) (∗, x) x ∗e×id λ−1 x

Thus to satisfy the rule, we must have ∂x((∅, x)) = ((x)), even when q = 0.
However, q = 0 ends up killing one of the terms on the sum side of the q-
Leibniz rule (since the product of any relation with the empty relation is the
empty relation). These properties seem only reconcilable if we set

(∅, x)∂x,0,0 ((x))

to be the only relation of ∂0. Then, formally setting

(((x1, . . . , xn)) , x0)∂x,1,n ((y1, . . . , yn+1)) ⇐⇒ ((y1, . . . , yn+1)) = ((x0, x1, . . . , xn))

and x0 = x

leads to the following proposition.

Proposition 5.4.3. (Rel, !, ∂q), where ! is the finite bag comonad and ∂q is as
defined above, is a q-differential category.

Proof. Rel is a Colbert category; the maps xn × y simply divide a multiset M
containing n copies of x into an x bag and non-x bag, and we can choose z to
be the relation “picking out M”, i.e. mapping ((M)) 7→ ∗. The subdegree of x
in !X is then the number of copies of x.

Now let q = 0. The q-constants rule is trivial, since e only relates the empty
set, and ∂ never produces it. The q-linear maps rule was demonstrated above.

For the q-Leibniz rule, refer back to the diagram in the rule’s section above,
noting however that now the arrows are reversed. The only elements that reach
!Xi×!Xj unkilled are (((x)) , ∅) along the upper path, (∅, ((x))) along the lower
path, and both of these along the middle path. In all cases one element is the
empty set, which no cobasis element z relates to ∗; thus the full composite is the
empty relation in all cases, demonstrating that the rule is (trivially) satisfied.

For the q-chain rule, again note that the only element with non-empty re-
lations stemming from it is (∅, x). Then for cobasis map z such that ((((x)))) z∗
(i.e. ((((x)))) is related to ∗ by z), we have:

∂x;µ; z((∅, x)) = ∗

Now observe that n := subdeg(x, z) = 1. Thus the element (∅, ((x))) of !(!X)×!X
is related to only ((((x)))) by ∂xn = ∂x. It is easy to see that (∅, x) is related
to (∅, ((x))) (among other elements) by (∆ × id); (µ × ∂x); thus the diagram
commutes, and the q-chain rule is satisfied, completing the q = 0 case.

The q = 1 case essentially reduces to the standard differential category proof,
and the proof is analogous.
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Intuitively, we see that the quantum structure on Rel adds a kind of “on-off
switch” to the standard deriving transformation, turning it on when q = 1 and
off when q = 0. When ”off”, only trivial differential maps remain.

5.5 The Integral Setting

Below, we will not include the quantum version of the U-substitution rule in
our definition, due in part to its difficulty to state categorically, but we do
mention that the integration of the quantum calculus satisfies it. In describing
the integral quantum calculus, we again follow [28].

The q-antiderivative of a function f is defined much as in standard calculus,
to be the family

∫
f(x)dqx of functions whose q-derivative is f . An added

subtlety in the quantum case is that the antiderivative is no longer unique
simply up to the addition of a constant, but up to addition of any function g
such that g(x) = g(qx).

If we restrict our attention to formal power series, we regain uniqueness up
to a constant in the antiderivative. The condition above becomes g(x) = g(qx),
which implies that, if g(x) =

∑∞
n=0 cnx

n, then cn = qncn for all n, meaning
that cn = 0 ∀n ≥ 1 and so g is constant.

In this context, if f(x) =
∑∞
n=0 anx

n we also get the following attractively
familiar formula for the q-antiderivative:∫

f(x)dqx =

∞∑
n=0

anx
n+1

[n+ 1]
+ C

The uniqueness for general functions can be similarly enhanced under some
additional assumptions; for details see [28].

Our major focus here will be the related notion of the Jackson integral.
Suppose F (x) is an antiderivative of f(x), and define the operator Mq by
Mq(F (x)) = F (qx). Then by definition:

f(x) = DqF (x)

=
F (qx)− F (x)

(q − 1)x

=
(Mq − 1)F (x)

(q − 1)x

Rearranging and formally employing the geometric series expansion gives:

F (x) = (1− q) xf(x)

1−Mq

= (1− q)
∞∑
j=0

M j
q (xf(x))

= (1− q)x
∞∑
j=0

qjf(qjx)
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This formal series is the Jackson integral, for which we’ll simply write
∫
f(x)dqx.

The conditions under which this converges to a true q-antiderivative are explored
in [28].

5.6 The Integral Rules

We’ll now examine the Jackson integral in the context of the usual integral
category rules, namely integration of constants, integration of linear maps, the
Rota-Baxter rule, the U-substitution rule, and the Fubini rule. For our purposes,
we will assume all the integrals converge.

If f(x) = a is a constant function, we have:∫
a dqx = (1− q)x

∞∑
j=0

aqj

= (1− q)x a

1− q
= ax

Thus the integration of constants rule works exactly as usual.
If f(x) = x, we have:∫

x dqx = (1− q)x
∞∑
j=0

qj(qjx)

= (1− q)x2
∞∑
j=0

(q2)j

= (1− q)x2 1

1− q2

=
x2

1 + q

This may be rewritten as:

(1 + q)

∫
x dqx = x2

This is similiar, but not identical, to the usual integration of linear maps rule.
In fact it becomes the usual rule if we can take the limit as q → 1.

The q-integration by parts formula for the q-calculus is derived in [28] from
the q-Leibniz rule, giving the following q-Rota-Baxter rule:

f(x)g(x) =

∫
f(x)dqg(x) +

∫
g(qx)dqf(x)

=

∫
f(qx)dqg(x) +

∫
g(x)dqf(x)
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It should now be easy to see how this is generalized to multivariable func-
tions.

The q-calculus version of the substitution rule is derived in [28], in the limited
case where u(x) = αxβ . For the same reasons as the q-differential chain rule,
this is the best we can do in general. The rule is as follows:∫

f(u) dqu =

∫
f(u(x)) dq1/βu(x)

If f(x, y) is a function of two variables, then we have:∫ ∫
f(x, y)dqxdqy =

∫
(1− q)x

∞∑
j=0

qjf(qjx, y)dqy

= (1− q)y
∞∑
k=0

qk

(1− q)x
∞∑
j=0

qjf(qjx, qky)


= (1− q)x

∞∑
k=0

qk

(1− q)y
∞∑
j=0

qjf(qjx, qky)


=

∫
(1− q)y

∞∑
k=0

qkf(x, qky)dqx

=

∫ ∫
f(x, y)dqydqx

Thus the usual Fubini rule applies in the quantum calculus.

5.7 q-Cointegral Categories

We’ll make the definition similar to the q-codifferential category definition above.

Definition 5.7.1. A q-cointegral category consists of an additive symmetric
monoidal Colbert category equipped with a graded algebra modality and a q-
integral transformation, i.e. a family of natural transformations indexed by
indeterminates xk : I → M , q : I → I and i ∈ N of the form sxk,q,i : T (M)i ⊗
M → T (M)i+1 satisfying:

(qs1) (q-Integration of Constants)

λ−1; (e⊗ id); s = η

(qs2) (q-Integration of Linear Maps)

(xk ⊗ xk);
(

(η ⊗ id); sxk,q,i + (η ⊗ id); q · sxk,q,i
)

= (xk ⊗ xk); (η ⊗ η);m
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(qs3) (The q-Rota-Baxter Rule) For all w, z : I → TT (M) satisfying the Col-
bert property with respect to xk, where nw := subdeg(x,w) and nz :=
subdeg(x, z), and writing ϕ = w ⊗ xk ⊗ z ⊗ xk, the following holds:

ϕ; (sxk,q ⊗ sxk,q);m = ϕ
(

(sxk,q ⊗ qnz · id⊗ id); (m⊗ id); sxk,q

+ (id⊗ id⊗ sxk,q); (id⊗ σ); (m⊗ id); sxk,q

)
= ϕ

(
(sxk,q ⊗ id⊗ id); (m⊗ id); sxk,q

+ (qnw · id⊗ id⊗ sxk,q); (id⊗ σ); (m⊗ id); sxk,q

)
(qs4) (The q-Fubini Rule) For xk, x` in M :

(sx`,q,i ⊗ id); sxk,q,i+1 = (id⊗ σ); (sxk,q,i ⊗ id); sx`,q,i+1

5.7.1 Examples

Let C = V ec, S be the symmetric tensor algebra modality, and ~x = xn1
1 ⊗·⊗xnmm

for basis vectors xk in V , as in the q-codifferential category V ec example above.
Define

sxk,q,i : S(V )⊗ V → S(V )

~x⊗ xk 7→
∫
~xdqxk

where
∫
dqxk is the Jackson integral with respect to xk.

Proposition 5.7.2. (V ec, S, s) is a q-cointegral category, and its structure co-
incides with multivariable quantum Jackson integration of polynomials. The
single-variable polynomial q-integral is captured as a particular case.

Proof. For the q-constant rule, observe that s ◦ (e ⊗ id) ◦ λ−1(xk) =
∫

1dqxk,
which was shown to be equal to x above.

The q-linear maps rule simply translates to x2
k =

∫
xkdqxk + q ·

∫
xkdqxk,

and this was demonstrated above.
We demonstrated above that this category is Colbert. Any basis vectors

w, z satisfying the Colbert property with respect to x := xk are of the form
w = xmy, z = xny′, where m = subdeg(x,w) and similarly for n and z. Thus
the first of the required Rota-Baxter equations becomes:∫
xmydqx

∫
xny′dqx =

∫ (∫
xmydqx

)
qnxny′dqx+

∫
xmy

(∫
xny′dqx

)
dqx

This follows easily from the Rota-Baxter property of the Jackson integral of a
general function, stated above.

Finally, the Fubini rule is straightforward and follows from the proof above.
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The finite bag comonad once again provides another example. The comonad
induces an integral category whose integral transformation is just the converse
of the deriving transformation described above.

Proposition 5.7.3. (Rel, !, ∂q), where ! is the finite bag comonad and sq is the
converse relation to the deriving transformation dq defined above, is a q-integral
category.

Proof. The calculations here are straightforward and similar enough to the dif-
ferential case for both q = 0 and q = 1; most of the work is done for us by the
fact that the additive enrichment in Rel is the set-theoretic union.

5.8 q-Calculus Categories

A brief mention of the fundamental theorem of calculus is in order here. In
elementary calculus, the theorem describes an inverse relationship between the
derivative and the integral. The first part of this theorem has been generalized
into the notion of an FTC category, for ”Fundamental Theorem of Calculus”,
or more simply a calculus category, as described above. This naturally leads to
an equivalent notion in our quantum setting, whose most obvious name is quite
fortuitous.

Definition 5.8.1. A category C equipped with q-deriving transformation dq and
q-integral transformation sq is a quantum calculus category if it is both a q-
(co)differential and q-(co)integral category and satisfies

d ◦ s = id.

Proposition 5.8.2. Both our V ec and our Rel quantum structures are quantum
calculus categories.

Proof. Let cxn be a polynomial in V ec, with c a constant. Then observe:

dq
dqx

∫
cxndqx = c

dq
dqx

xn+1

[n+ 1]

= c
[n+ 1]

[n+ 1]
xn

= cxn

The general assertion for multiple variables follows immediately.
The Rel example is trivial, since dq and sq are defined to be converses.

In summary, we’ve formulated definitions of quantum differential and quan-
tum integral categories in a manner akin to their standard counterparts. How-
ever, the machinery required to define q-differential and q-integral categories is
more complex than anticipated. In particular, the intricacy of the definition of
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the Colbert property means the final product lacks somewhat in elegance. It
seems necessary, however, given how reliant the quantum calculus operations
are on the idea of “subdegree”; the correct exponent of the scalar q must be
the subdegree of the variable with respect to which we are taking the derivative
or integral, otherwise the rules simply do not hold. A possible direction for
future work to mitigate this unseemliness is to refine the notion of grading in
the graded algebra modality.

5.9 Characterization in Terms of Limits and Colimits

The definitions of q-differential and q-integral categories above, while phrased
in the language of category theory, lack a certain categorical feel. The intro-
duction of the categorical basis maps seems unavoidable, and in any case is
not uncommon in quantum applications, but the indeterminate maps employed
in the various rules are more reminiscent of elements than of abstract maps.
Fortunately, these rules can equivalently be characterized in terms of equalizers
with a universal property, a more categorical notion. The resulting diagrams
more closely resemble the rules of the non-quantum structures.

Theorem 5.9.1. A Colbert category C equipped with maps

∂xk,q,n : T (M)n → T (M)n−1 ⊗M

for each indeterminate xk, scalar q, and n ∈ N is a q-codifferential category if
and only if these maps satisfy the following conditions:

(qd1) (q-Constants Rule) For all xk, q:

I T (M)0 T (M)−1 ⊗M

0

e ∂0

(qd2’) (q-Leibniz Rule) Let z1 : I → T (M)i)j , z2 : I → T (T (M)`)r be basis
maps having the Colbert property with respect to an indeterminate xk : I →
M . Then subdeg(xk, z1) = i and subdeg(xk, z2) = `. Write z1 = z1;µ,
z2 = z2;µ for notational convenience. Then for all such i, j, `, r ∈ N and

all y1 := y
i(j−1)
xk , y2 := y

`(r−1)
xk defined as above, the indeterminate tensor

map z1 ⊗ z2 is an equalizer of the following diagram:

T (M)ij ⊗ T (M)`r T (M)i+j T (M)ij+`r−1 ⊗Mm

(qi·id)⊗∂xk,q,`r;m⊗id+∂xk,q,ij⊗id;id⊗σ;m⊗id

id⊗∂xk,q,`r;m⊗id+∂xk,q,ij⊗(q`·id);id⊗σ;m⊗id

∂xk,q,ij+`r
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(qd3’) (q-Linear Maps Rule) For all xk, q, and where p is the biproduct projec-
tion map, the indeterminate xk is an equalizer of the following diagram:

M T (M) T (M)1 T (M)0 ⊗M

I ⊗M

η

λ−1

p1 ∂1

e⊗id

(qd4’) (q-Chain Rule) Let subdeg(xk, z) = i. Then for all xk coupled with all
of their respective z related by the Colbert property, the indeterminate z is
an equalizer of the following diagram:

T (T (M)i)j T (M)ij T (M)ij−1 ⊗M

T (T (M)i)j−1 ⊗ T (M)i T (M)i(j−1) ⊗ T (M)i−1 ⊗M

µ

∂
xi
k
,qi,j

∂xk,q,ij

µ⊗∂xk,q,i
m⊗id

Proof. The q-constants rule (qd1) is unchanged. It is clear that if the equalizer
versions (qd2′), (qd3′) and (qd4′) of the other rules hold, then the original ver-
sions (qd2), (qd3) and (qd4) hold as well. For the converse, we must show that
the original versions imply the universal property of the equalizer.

Recall that the basis for M is an isomorphism B :
⊕

j∈J I → M , and xk =
B ◦ ik : I →

⊕
j∈J I →M , where i is the biproduct injection. We’ll use these to

prove the universal property, starting with the q-linear maps rule.
Suppose we have some object A in C and map f : A → T (M) ⊗ T (M)

equalizing the q-linear maps rule diagram. We need to construct a unique map
ξ : A→ I such that xk ◦ ξ = f . Define ξ = pk ◦ B−1 ◦ f . Then we have

xk ◦ ξ = B ◦ ik ◦ pk ◦ B−1 ◦ f
= f

as required, and if g : A→ I is any map such that xk ◦ g = f , then

xk ◦ g = f ⇒ B ◦ ik ◦ g = f

⇒ ik ◦ g = B−1 ◦ f
⇒ g = pk ◦ B−1 ◦ f

since pk ◦ ik = id by definition of a biproduct, proving uniqueness.
The same reasoning with ξ := (p1 ⊗ p2) ◦ (B−1

T (M)ij
⊗ B−1

T (M)`r
) ◦ f in the

q-Leibniz rule and ξ := p ◦ B−1
T (M)ij

◦ f in the q-chain rule completes the proof.
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6 Concluding Remarks

The goal of this paper was twofold: first, to define Leibniz and Rota-Baxter
categories and demonstrate their usefulness in analyzing structures relating al-
gebra, combinatorics and quantum theory; and second, to create a new kind
of differential and integral category capturing quantum calculus parallel to the
standard notions and hopefully indicate their potential usefulness beyond that
setting.

Beyond the scope of this paper is examining the deeper relationships be-
tween these two ideas. Quantum calculus itself is known to have applications
to perturbation theory [9], so it would be interesting to connect this to the
renormalization example of our Rota-Baxter categories, and examine what re-
lationship exists between this context and our quantum differential and integral
categories, if any.

Quantum calculus also has applications to non-commutative geometry [41].
Another interesting path then might be to explore what we can say categorically
in this context, perhaps via structures “q-analogous” to the tangent categories
of [12]. Hopefully future work can shed some light in these regards.
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