
INOM EXAMENSARBETE THE BUILT ENVIRONMENT,
AVANCERAD NIVÅ, 30 HP

,  STOCKHOLM SVERIGE 2018

Travel Diary Semantics 
Enrichment of Trajectories 
based on Trajectory Similarity 
Measures

RUI LIU

KTH
SCHOOL OF ARCHITECTURE AND THE BUILT ENVIRONMENT



TRITA nr SoM EX 2017-47

www.kth.se



Travel Diary Semantics Enrichment of Trajectories
based on Trajectory Similarity Measures

Master Degree Thesis

RUI LIU

Division of Geoinformatics
Department of Urban Planning and Environment
School of Architecture and the Built Environment

KTH Royal Institute of Technology
ruiliu@kth.se

Stockholm 2017



i 
 

Abstract 

Trajectory data is playing an increasingly important role in our daily lives, as well as 

in commercial applications and scientific research. With the rapid development and 

popularity of GPS, people can locate themselves in real time. Therefore, the users’ 

behavior information can be collected by analyzing their GPS trajectory data, so as to 

predict their new trajectories’ destinations, ways of travelling and even the 

transportation mode they use, which forms a complete personal travel diary. The task 

in this thesis is to implement travel diary semantics enrichment of user’s trajectories 

based on the historical labeled data of the user and trajectory similarity measures. 

Specially, this dissertation studies the following tasks: Firstly, trip segmentation 

concerns detecting the trips from trajectory which is an unbounded sequence of 

timestamp locations of the user. This means that it is important to detect the stops, 

moves and trips of the user between two consecutive stops. In this thesis, a heuristic 

rule is used to identify the stops. Secondly, tripleg segmentation concerns identifying 

the location / time instances between two triplegs where / when a user changes 

between transport modes in the user's trajectory, also called makes transport mode 

transitions. Finally, mode inference concerns identifying travel mode for each tripleg. 

Specially, steps 2 and 3 are both based on the same trajectory similarity measure and 

project the information from the matched similar trip trajectory onto the unlabeled trip 

trajectory. The empirical evaluation of these three tasks is based on real word data set 

(contains 4240 trips and 5451 triplegs with 14 travel modes for 206 users using one 

week study period) and the experiment performance (including trends, coverage and 

accuracy) are evaluated and accuracy is around 25% for trip segmentation; accuracy 

varies between 50% and 55% for tripleg segmentation; for mode inference, it is 

between 55% and 60%. Moreover, accuracy is higher for longer trips than shorter 

trips, probably because people have more mode choices in short distance trips (like 

moped, bus and car), which makes the measure more confused and the accuracy can 

be increased by nearly 10% with the help of reverse trip identifiable, because it makes 

a trip have more similar historical trips and increases the probability that a new 

unlabeled trip can be matched based on its historical trips. 

 

Keyword: trajectory similarity measures; trip segmentation; tripleg segmentation; 

mode inference. 
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1 Introduction 

1.1 Background 

Trajectory data in the current big data age plays an increasingly important role. Travel 

survey has always been a very important tool of collecting trajectory data to 

investigate the travel needs and behaviors of the people. However, traditional travel 

survey methods, like asking people to fill in a standard travel diaries questionnaire, 1) 

are error prone (inaccurate geocoding, inaccurate time estimates, forgotten trips), 2) 

are costly, 3) have taken too much time and effort which makes them unsuitable to 

perform surveys for extended periods and results in a drastic decrease in response 

rates (Prelipcean 2015). 

 

However, with the rapid development of Global Positioning System (GPS) technology, 

the current location information of the user can be easily obtained, such as the latitude 

and longitude, time, speed and direction of the current location of the user. Moreover, 

with the use of smart phones more usual than before, you can easily use smart phones 

to collect GPS data with the embedded GPS technology in them. User’s route in a 

certain period of time can be numerous GPS data points, the collection of these GPS 

data points is the user’s trajectory in a certain period of time, each user's mobile 

trajectories can be saved through the smart phone. This kind of motion process is 

usually recorded as a series of timestamp points (x, y, t), where x and y is the 

coordinate information, which together indicate a two-dimensional point, and the t is 

the real time of the point (Gong 2015), showed in Figure 1.1. A variety of time-series 

trajectory data also spawn a lot of interesting applications, such as finding potential 

friends through the daily life trajectory similarity (Quannan 2008), through the human 

body with the sensor to collect the data for action identification (Allen 2009), and 

climate change prediction (Mohammad 2014), etc. 

 

Figure 1.1: Example of the trajectory data, the location information together with the 

real time ti of the point (Source Kucuk 2016) 

 

Because of the development of Internet technologies and mobile communication, 

positioning, and sensing, information (like locations and accelerometer readings) can 

be collected easier and more accurately at a higher level of (spatial and temporal) 
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detail than before. Then different inference methods can turn the collected 

information into travel diaries which contains information about travel relevant 

entities (trips, destinations, triplegs, travel modes, etc.). These inference methods 

often 1) segment the measurement sequence based on object stationarity criteria or 

measurement gaps (GPS signal loss indoors), 2) segment trips into triplegs based on 

abrupt changes in the measurements time-series, 3) infer mode of either a 

measurement or the measurements of a trip leg using machine learning or heuristic 

methods on features derived from the measurement(s), and 4) infer the destination of 

the trip as a previously visited place or Point Of Interest (POI) that is closest to the 

last measured location of the trip (Prelipcean 2016a).  

 

With the development of the network, many mobile phone users are increasingly 

willing to share their own trajectory with others (Ying 2010). When a user uploads 

his/her trajectory diary, these referral systems can analyze his/her friends’ information 

to recommend similar user activity to him/her. Moreover, these recommendation 

systems not only recommend the behavior of this user's friends, but also other similar 

user’s behavior. It is shown in Figure 1.2 that a user is uploading his trajectory and the 

system can recommend some other users to him with the similar trajectory. It is clear 

that the similarity between user trajectories plays a very important role in these 

recommendation systems. 

 

Figure 1.2: A trajectory uploaded by a user 

1.2 Objectives 

The work in this thesis is based on the basic idea of the proposed inference 



 

3 
 

approach ,which is that a trip that has a (geographically and temporally) very similar 

route to a previously historical mode-segmented/labeled trip will likely have the same 

destination as well as transport mode sequence / segmentation. It is all known that 

human has habits; they often get used to do something and do it in the exactly same 

way. Quite often user’s trips are habitual. For example, when people go to work or 

school from home, if they take public transport, they often follow the same route and 

the same modes even the same time; if they drive their own car, they also often drive 

on the same road even if there are other options. As a result, if the dataset of a user’s 

travel diary is large enough, when the user has a new trip trajectory, the information of 

the trajectory (like destination, tripleg segmentation, mode choice, etc.) can be 

inferred from previous similar trip trajectories of the user. 

 

The aim of this project is to explore how effectively one can use the similarity of 

historical labeled trajectories to enrich trajectories with travel diary semantics (tripleg 

and travel modes). The specific goals are to 1) adopt suitable trajectory similarity 

measures for semantic enrichment; 2) provide a prototype implementation of the 

trajectory similarity based semantic enrichment in a spatial database; 3) evaluate the 

accuracy of the trajectory similarity based semantic enrichment on real word datasets 

under different configurations. 

1.3 Thesis structure 

This thesis is structured as follows. Chapter 1 introduces the thesis and research 

objectives. Chapter 2 provides a detailed review of the literature about the similarity 

measures and the methods of travel diary semantics enrichment of trajectories. 

Chapter 3 illustrates the methodology. Chapter 4 presents the three main 

implementations and analyzes the results. Chapter 5 makes the conclusion of the 

thesis. Finally, Chapter 6 presents future research directions in this field of study. 

2 Related Work 

2.1 Trajectory similarity measures 

In a general sense, similarity is a measure of the degree of similarity between two 

objects, generally expressed by distance. As a result, the distance between trajectories 

can also be regarded as a representation of the similarity between trajectories. There 

are many research results in terms of trajectory similarity calculation. 

 

Sum-of-Pairs Distance. As early as 1993, Agrawal et al. proposed a representation of 

the similarity between trajectories based on the Euclidean distance. The method 

requires that the sampling points of the two trajectories are one-to-one, which means 
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that both the sampling interval and the number of sampling points (i.e., the trajectory 

length) is the same. The distance between the trajectories is obtained by summing up 

the distances between the corresponding pairs of points, showed as Equation 2.1. 

 

               

 𝑆𝑃𝐷 (𝐴, 𝐵) = ∑ 𝑑(𝑎𝑖 , 𝑏𝑖)
𝑛
𝑖=0                  (2.1) 

 

Where A and B are two trajectories with the same number of points; d(,) is the 

Euclidean distance between two corresponding points (Deng 2011). This method is 

very simple and easy to implement, but it is relatively sensitive to outliers, since all 

points including noises are required to match. Moreover, the two trajectories must be 

the same length (which means equal number of points contained in the trajectory) and 

it does not implement the local time shifting. 

 

Dynamic Time Warping Distance. In order to overcome the drawback of the 

requirement of two trajectories to be the same length, Dynamic time warping (DTW) 

distance is proposed. The basic idea of DTW is to allow “repeating” some points as 

many times as needed in order to get the best alignment (Deng 2011) and so it does 

not need the two trajectories to be the same number of points. For example, in the first 

two cases of the third (recursive) case in Formula 2.2, the recursive call leaves on the 

trajectories unchanged, in other words, their heads will be matched or will be repeated 

multiple times. 

 

The DTW distance is defined as Equation 2.2: 

𝐷𝑇𝑊(A, B)=

{
 
 

 
 

0, if n=0 and m=0                                                                           
∞, if n=0  or  m=0                                                                            

d(Head(A),Head(B))   +   min{

DTW(A, Rest(B))            

DTW(Rest(A),B)             
DTW(Rest(A),Rest(B))    

   
 (2.2) 

Where A and B are two trajectories with length of n and m, Head (A) is the first point 

of trajectory A, Rest (A) is the rest point of trajectory A, the same with the trajectory B, 

d() is the distance function between two points. 

 

This method does not require the two trajectories to be the same length. However, it is 

still sensitive to noise (outliers) just like Sum-of-Pairs Distance. 

 

Similarity Algorithms Based on Editing Distance. Editing distance is a concept 

derived from text processing. It refers to the minimum operations required to change a 

text sequence by adding, deleting, and changing into another sequence (Crochemore 

1994). Chen (2004, 2005) have made improvements on the basis of editing distance 

by removing the noise effects by quantizing the distance between a pair of trajectory 

point to two values, 0 and 1, and proposed the ERP (Edit distance with Real Penalty) 

and EDR (Edit Distance on Real Sequence) distance measures. Another kind of 

editing distance is the longest common sub-sequence distance (LCSS), whose basic 

idea is to allow skipping over some points rather than just rearranging them (Deng 
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2011).  

 

Methods based on editing distance does not require the same length of two trajectories 

and can also reduce the effect of outliers, especially for EDR distance, but these 

methods’ results are generally less intuitive and difficult to be interpreted. 

2.2 Trip detection 

According to Parent et al. (2013), trajectory segmentation depends on the application 

of the services for which it is performed. In general, the movement in a trajectory can 

be divided into two periods, one is that the object is stationary, the other one is that 

the object is moving, which is known as stops and moves (Prelipcean 2016b). With 

these stops and moves, the start and end point of a trip can be known and a trip can be 

detected.  

 

A heuristic rule to distinguish the stops and moves is called the stationary rule, i.e., if 

the speed is very low (the thresholds of the “low” can be different) for longer than a 

period of time, then the end of a trip has been identified (Prelipcean 2016a). 

Regarding the choice of the time threshold for trip detection, researchers have used 

different values, like 300 seconds, 900 seconds and 120 seconds which are mostly 

common used by Wolf (2000), Tsui and Shalaby (2006), Stopher (2008) and 

Rasmussen (2015). In this thesis, this stationary rule is also used to identify the trips. 

2.3 Tripleg detection and mode inference 

For tripleg detection and mode inference, there are two main approaches: segment 

based inference and point based inference. For segment based inference, a trip is split 

into potential triplegs and then chooses the travel mode for these triplegs with some 

further methods. For point based inference, each point of the trajectory is segmented 

into a transportation mode; as a result, the tripleg detection can be obtained at the 

same time, which can be identified by the maximal sequence of consecutive points 

with the same transportation mode (Prelipcean 2016a). 

2.3.1 Segment based inference 

For segment based inference, in general, it has broken down the task into three steps: 

segmenting trajectories into trips (which has been mentioned in the previous section), 

splitting trips into triplegs, and classifying triplegs. There are also a wide variety of 

approaches for each of three tasks. 

 

For tripleg segmentation in segment based inference, the key is to find the mode 

change point. Chung and Shalaby (2005) first define how to find the mode change 
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point (known as transfer point): 1) find the first recorded location with speed faster 

than 10 km/h and time difference with the previous location is larger than 5 seconds, 

or 2) find a blockage (which means no locations recorded during this period, except 

the end and the start point), and then set the first point as a change point if the 

blockage distance is more than 150 meters and the speed is more than 10 km/h. After 

Chung and Shalaby (2005), there are also some scientists proposing some other 

heuristics. However, most of them are similar to Chung’s. Until Zheng et al. (2010), 

these authors proposed that people have to walk when they make the transfer. So 

firstly, they segment triplegs into walk and non-walk triplegs, and then they set upper 

bounds for velocity and acceleration of the walk triplegs (2.5 m/s for speed, and 1.5 

m/s2 for acceleration) to identify the tripleg. 

 

For classifying triplegs (mode detection), there are different methods to implement it, 

like decision trees, fuzzy logic, random forests, rule-based classifiers and membership 

functions. However, the reported precision values vary with the methods and the 

number of modes choices, like 94% using fuzzy logic for four modes (Tsui and 

Shalaby 2006) and 91.6% using membership functions for ten modes (Biljecki et al. 

2013). 

2.3.2 Point based inference 

Point based inference has been widely used in the field of Location Based Services. 

As mentioned before, unlike the segment based inference, point based inference 

segments every point of the trajectory into modes, it does not generate the triplegs. 

However, the triplegs can be identified as the maximal sequence of consecutive points 

with the same transportation mode. 

 

Concerning to the mode detection, the methods used in segment based inference can 

also be used, like random forests (Stenneth and Xu 2011) with 92.8% accuracy and 

92.9% recall for six transportation modes, decision tree (Wang et al., 2010) with 70% 

precision for six transportation modes, AdaBoost together with Decision Tree 

(Hemminki et al., 2013) with 80.1% accuracy and 82.1% recall for seven 

transportation modes. 

 

In this thesis, the idea of the segment based inference will be used, where the task is 

divided into three steps: segmenting trajectories into trips (which has been mentioned 

in the previous section), splitting trips into triplegs, and classifying triplegs. The 

method proposed in this article is based on the trajectory similarity measures and 

historical labeled trips. 
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3 Methodology 

The overview of the methodology is showed in Figure 3.2. Firstly, based on the real 

world dataset (information about location, time and speed of the user), basic data 

processing is implemented to form a trajectory with these collected data. Secondly, 

trip segmentation is done based on a heuristic rule. Thirdly, the trajectory similarity 

measure is defined. Lastly, based on similarity measure, tripleg segmentation and 

mode inference are implemented. The detailed descriptions of each step are discussed 

in the following sections. 

Database
Basic data 

processing

Trip 

segmentation

Trajectory

Similarity

Measure

Tripleg

segmentation

Mode

inference

 
Figure 3.1: Overview of the proposed methodology 

3.1 Basic data processing 

The original information about each point is (latitude, longitude, time), which can be 

represented as (x, y, t). With the function st_makepoint() in PostgreSQL, the point’s 

location can be changed into geometry type. Together with the time, the location point 

can be expressed as timestamp-geometry pairs, called “tg_pair” (g as the geometry, t 

as the time). Given the start point and the end point of a trip or tripleg, the collection 

of tg_pairs between start and end point forms a data type called “Trajectory” (this 

process is done with an “ordered” collection in order to guarantee the order between 

the points of a trajectory) and this new data type stores the time dimension of a 

trajectory as a 3rd dimension of a 3d polyline. The data model of two data types is 

showed in Figure 3.1. The algorithm used to form a trajectory from a collection of 

points can be seen in Appendix Algorithm 1. 

 

Figure 3.2: Data model of two abstract data types - TG_PAIR and Trajectory  

(Kucuk et al. 2016) 
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After obtaining the “Trajectory” data type of each trip and tripleg, the number of the 

locations contained in the trajectory and length of the trajectory are calculated using 

Algorithm 2 and 3 showed in Appendix. 

3.2 Stationarity criteria based trip segmentation 

Trip segmentation is based on the heuristic rule, called stationary rule, if the speed is 

very low (smaller than 3.6km/h, which has been used by Prelipcean (2016a)) for 

longer than a period of time (120s, which has been used by Wolf (2000), Tsui and 

Shalaby (2006), Stopher (2008) and Rasmussen (2015)), then the end of a trip is 

identified.  

 

For example, as mentioned before, trajectory data can been seen as the collection of 

the points (x, y, t) which where x and y is the coordinate information and the t is the 

real time of the point. As a result, a trajectory can be plotted in a 3-D dimension space 

intuitively. Figure 3.2 is a part of a user’s trajectory. 

 
Figure 3.3: Part of a user’s trajectory plotted in Matlab. x and y are coordinates of the 

user's locations at different timestamps t measured in milliseconds 

 

From the Figure 3.2, a trip can be detected intuitively, that is the part of trajectory 

between point 1 and point 2. Because as it can be seen in the figure, there is a very 

long dwelling time of the user before point 1 (definitely larger than 120s), in this 

period of time, the user barely moves. So the point 1 can be set as a start point of the 

trip. Then there is also a long nearly no-moving period of dwelling time between 

point 2 and point 3, so location near point 2 can be identified as an end point. With the 

x y 

t 
1 

2 

3 

Trip 
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start point 1 and end point 2, a trip is now detected. This approach is very intuitive 

and easy to understand, however, it is hard to know the exactly location of point 1 or 

point 2. Moreover, it is also very hard to find some small distance trips. However, a 

database implementation can be fast, simple and elegant and can be executed in the 

same system where the data is collected and stored. 

 

In a database implementation, for trip segmentation, the first step is to classify the 

state of each point into stop or moving. As mentioned before, if a user’s speed is less 

than 3.6 km/h for more than 2 minutes, then that represents a dwell period, which 

indicates the stop statement, otherwise, it is the moving statement. The algorithm used 

to implement this is in Appendix Algorithm 4. After this, it is necessary to classify 

these stop point into start point and end point so that a trip can be detected. For a point, 

if the latter consecutive 5 points (nearly 2 minutes time interval) of it are all moving 

point, then this point should be a start point; if the previous 5 points of it are all 

moving point, then this point should be an end point; if neither of these two conditions 

satisfies, the point is an on-trip-point. The Algorithm 5 and 6 is for this idea showed in 

Appendix. With the identification of the start point and the end point, a trip can be 

detected. Segmentation information is recorded in a simple but less efficient fashion 

by annotating each measurement with stop_point, start_point, and end_point Boolean 

attributes. Admittedly, a suboptimal choice has been made and the adaptation of the 

proposed methods to a more efficient representation of periods in particular is left for 

future work. 

 

After trip segmentation, it is important to evaluate the performance and the approach 

of distance check will be applied between the labeled trip’s start / end point and the 

trip’s start / end point identified by the heuristic rule. Features used are shown in 

Table 3.1. 

 

Table 3.1: List of features used by trip segmentation performance evaluation 

Trip_id 

user_id 

id_start_point1 

Id of the identified trip 

id of the user 

id of the labeled start point of the trip 

id_start_point2 id of the identified start point of the trip 

id_end_point1 id of the labeled end point of the trip 

id_end_point2 id of the identified end point of the trip 

disCheck_start a Boolean indicator 𝑑𝑖𝑠𝑡(𝑖𝑑_𝑠𝑡𝑎𝑟𝑡_𝑝𝑜𝑖𝑛𝑡 1 𝑎𝑛𝑑 2) < ∆𝑑  

disCheck_end a Boolean indicator 𝑑𝑖𝑠𝑡(𝑖𝑑_𝑒𝑛𝑑_𝑝𝑜𝑖𝑛𝑡 1 𝑎𝑛𝑑 2) < ∆𝑑 

trip_seg_eva a Boolean indicator: trip segmentation successfully or not 

 

Specially, disCheck is a Boolean indicator (1 if the distance function between two 

points satisfies, 0 if not) . Trip_seg_eva is a Boolean indicator (1 if disCheck_start 

and disCheck_end both equal to 1, 0 if else). Then it can be obtained that how many 

trips can be detected successfully. About this distance function, there are many 

methods to check whether the predicted segments are matched to the truth segment 



 

10 
 

for computing the error (∆𝑑). The most commonly method is to use a spatial or 

temporal buffer around the edges of the ground truth intervals and considers any 

inferred interval whose both edges fall within the buffer area as a match (Prelipcean 

2016a). Figure 3.3 illustrates this idea. 

 

Figure 3.4: The standard of the predicted segments are matched to the truth segment 

for computing the error (the figure is selected from (Prelipcean 2016a)) 

 

Concerns to the accuracy of the trip segmentation, if the distance between the detected 

start point and the labeled start point is smaller than a threshold, at the same time, the 

distance between the detected end point and the labeled end point is also smaller than 

the threshold, then the trip has been detected successfully and set the value of 

trip_seg_eva in Table 3.2 as 1, otherwise as 0. The threshold here is defined as (length 

of the trip) / 5. Then the accuracy of the trip segmentation is obtained by the 

percentage of the trips whose trip_seg_eva is 1. The Algorithm 7 in Appendix shows 

the processing. 

3.3 Trajectory similarity measure 

As mentioned, there are many research results in terms of trajectory similarity 

calculation, like Euclidean distance, Dynamic Time Warping Distance and different 

kinds of edit distance. On the one hand, it is impossible that people have the all same 

length trajectory and the local time shifting is needed; on the other hand, the dataset of 

the thesis is extremely large and it is more probable that a larger dataset contains an 

outlier than a smaller dataset, but this is merely due to chance. As a result, EDR (Edit 

Distance on Real Sequence) is chosen. EDR is relatively insensitive to outliers 

because the matching threshold reduces the increments to values of 0 and 1 only. 

Therefore, even if outliers still be processed, each outlier can potentially only increase 

the EDR value by 1 and not some arbitrarily large values as in Euclidean distance 

(Toohey and Duckham 2015). It is defined as Equation 3.1: 

  EDR(A,B)=

{
 
 

 
 

n, if m=0                                                                         
m, if n=0                                                                          

min{

EDR(Rest(A),Rest(B))+subcost,

EDR(Rest(A),B)+1,                       
EDR(B,Rest(A))+1                          

   otherwise

        (3.1) 

where  
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 subcost= {
0,  if d(Head(A),Head(B)) ≤ ε                  
1,  otherwise                                               

 

A and B are two trajectories with length n and m (number of the points contained in 

the trajectory), 𝜀 is the matching threshold, Head(A / B) is first point of the trajectory 

A / B, Rest(A / B) represents trajectory A / B with its first point removed (the trajectory 

now starts from the second point if one exists, otherwise it now has length 0). The 

EDR(A, B) is the number of insert, delete, or replace operations that are needed to 

change A into B (Deng 2011). The d() is calculated between two 3-dimensional points. 

As a result, similar trajectories will have lower value of EDR. For example, in Figure 

3.5, the two trajectories have different number of contained points, but they also can 

be measured by EDR and edit distance highlights that the four middle points have no 

match (insertions or deletions) and therefore the two trajectories are not similar based 

on EDR measure. The key part of the similarity measure algorithm is showed in 

Appendix Algorithm 8.  

 

Figure 3.5: One pair of example trajectories. 

 

However, there are several problems that need to be addressed: 

 

Reverse trip. For example, a user’s “home-to-work” trajectory and “work-to-home” 

trajectory are reverse trip to each other. They have the different destinations but they 

most likely have similar trajectories in 2D Euclidean space (discarding direction). 

However, due to the 3-dimensional treatment of the distance, the direction and speed 

of movement is accounted for. In particular, objects that move in opposite direction or 

at different speeds between two locations will have radically different 3-dimensional 

trajectories. This means that in the edit distance similarity measures, it can also 

compare the pair of points with reverse order after time shifting in 3D space. For 

example, set the first point of trajectory A and the last point of trajectory B as the first 

pair of point to be compared by EDR measure) then if these two trajectories are 

reverse trip, they can also have low value of EDR. 

 

Partial trip trajectories connect. For a trajectory A, if there is no candidate similar 

trip lower than a matching threshold, do not regard it as failing at once, it may find the 

best candidate trajectory B that provide a good match for first part of trajectory A and 

find a best candidate C that provides a good match for the rest of trajectory A in 
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reversed matching order; if the value of EDR measure to B and C are both lower than 

a threshold and distance between the last matched point of B and the last matched 

point of C is smaller than a threshold D, then regard the trajectory formed by A 

connecting with B as the candidate similar trip. 

 

Different meaning of stop segments. The temporal length of “stop segments” might 

be different meaning. Especially for bus, low movement dynamics might represent 

either stops at stations or stops in traffic. So the regular stops at similar station 

locations between two trajectories should increase the similarity of bus mode, the 

irregular stops in traffic (traffic light, traffic jam) should not decrease the similarity by 

too much, which means that the matching threshold 𝜀 should be larger for mode of 

bus in EDR similarity measure. 

3.4 Trajectory similarity based tripleg segmentation 

After defining the similarity measures method and trip segmentation, the tripleg 

segmentation and mode inference can be carried out. For tripleg segmentation and 

mode inference, based on the time sequence of each trip, each trip / tripleg of a given 

user is matched against all the historical trips / triplegs of the user in order and the all 

results of each trip / tripleg matching (means each trip or tripleg can or cannot be 

matched by a historical trip or tripleg) are regarded as a population. The performance 

evaluation is based on this population. 

 

For tripleg segmentation, assume each trip in the data set as a new unlabeled user’s 

trip, then compare it with all his / her historical trips based on similarity measure and 

return the most similar trip’s id and the value of edit distance between them. Then just 

apply the way of the tripleg segmentation of the most similar historical to the new 

user’s trip. The Algorithm 9 in Appendix shows this procedure. Evaluating the tripleg 

segmentation performance also uses the idea of distance check introduced in Section 

3.1. Features used are shown in Table 3.2. 

 

Table 3.2: List of features used by tripleg segmentation performance evaluation  

Trip_id1 

trip_id2 

num_tripleg1 

num_tripleg2 

user_id 

ed 

length 

 

id_seg_point1[] 

Id of the identified trip 

id of the most similar trip 

real number of the triplegs of the identified trip 

number of the triplegs of the most similar trip 

id of the user 

the edit distance of two trips 

length of the trip expressed in number of locations 

contained in the trip 

real collect of the segmenting point of the identified trip 

id_seg_point2[] collect of the segmenting point of the similar trip 

disCheck  ∑𝑑𝑖𝑠𝑡(𝑒𝑎𝑐ℎ 𝑝𝑎𝑖𝑟 𝑜𝑓 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 𝑝𝑜𝑖𝑛𝑡) < ∆𝑑  
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Specially, disCheck is the check of the sum of the distance of each pair of 

corresponding segmenting point, for example in Figure 3.6, two dots are the real 

segmenting points and two triangles are the segmenting points based on the similarity 

measures, 𝑑_1 is the distance between point p_1 and p_1’, 𝑑_2 is the distance 

between point p_2 and p_2’. So the disCheck is equals to 1 if ∑(𝑑_1, 𝑑_2) is smaller 

than a threshold, which means tripleg segmentation successfully, 0 if not and ed is the 

edit distance calculated by similarity measures. 

 

 

Figure 3.6: Example of the disCheck, two dots are the real segmenting points and two 

triangles are the segmenting points based on the similarity measures, 𝑑_1 is the 

distance between point p_1 and p_1’, 𝑑_2 is the distance between point p_2 and p_2’ 

 

Considering about the evaluation of the tripleg segmentation, for coverage evaluation, 

firstly, the value of the edit distance (ed) needs to be length-normalized (here the 

number of locations contained in the trip is used as the length of the trip, because for 

edit distance calculation, the number of the location is regarded as the length of the 

trajectory). Then count the number of the trips whose length-normalized ed is smaller 

than a threshold ε as num_cov_tripleg. The ε is set as different values (0.1, 0.2 and 

0.3). The total number of trips is n. Then the coverage of tripleg segmentation 

cov_tripleg can be defined as Equation 3.2: 

 

               cov_tripleg = num_cov_tripleg / n                   (3.2) 

 

For accuracy, it is the percentage of the trips which implement tripleg segmentation 

correctly. If num_acc_tripleg is the number of trips whose disCheck equals to 1 and 

num_tripleg1 equals to num_tripleg2 in Table 3.2. Then the accuracy of the tripleg 

segmentation acc_tripleg can be defined as Equation 3.3. The Algorithm 10 in 

Appendix implements the idea of it. 

 

          acc_tripleg = num_acc_tripleg / num_cov_tripleg             (3.3) 

3.5 Trajectory similarity based travel mode inference 

With the accomplishment of the tripleg segmentation, the next step is to find the 

transportation mode used on each tripleg. Mode inference is also based on similarity 

p_1 p_1’

p_2’
p_2
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measures with the historical labeled trip. After tripleg segmentation, a tripleg l of a 

user u is selected and is compared against every tripleg l_i in H_L, where H_L is a 

historical set of labeled trip legs of u. Here the travel mode information of the triplegs 

is not just projected based on the first match that is used to identify the boundaries of 

triplegs, because some triplegs’ length are relatively short compared with the whole 

trip’s length and even if two trips have a low value of edit distance (which means they 

are similar trips), they may have different travel modes at that short distance tripleg. 

For example, in Figure 3.7, this user has three historical trips. Trip_1 (green line) 

contains tripleg_1 (bicycle, 0.6km) and tripleg_3 (bus, 15km); trip_2 (blue line) 

contains tripleg_2 (0.4km, walk) and tripleg_4 (bus, 15km); trip_3 (black line) 

contains tripleg_5 (0.3km, walk). Now, the trip_2 is regarded as unlabeled trip. Based 

on the similarity measure based tripleg segmentation, the trip_1 and trip_2 are the 

most similar trips and trip_2 will have the same tripleg segmentation with trip_1. 

However, if the method just projects the mode distribution of the trip_1 to trip_2, the 

tripleg_2 of trip_2 will be inferred falsely. Therefore, the tripleg_2 of the trip_2 

should be selected out and be compared with all the other historical triplegs so that the 

tripleg_5 can be found to be the most similar tripleg of tripleg_2 and apply the mode 

of tripleg_5 (walk) to the tripleg_2, which makes the mode inference exactly. 

 

Figure 3.7: Motivation for trajectory similarity based travel mode inference. 

 

For mode inference, assume each tripleg in the data set as a new unlabeled user’s 

tripleg, the compare it with all his/her historical triplegs based on similarity measure 

and return the most similar tripleg’s id and the value of edit distance between them as 

sim_tripleg[a, b] in Table 3.3, which sim_tripleg[a] is the similar tripleg’s id and 

sim_tripleg[b] is the value of the edit distance. Then just apply the type of travel 

mode of the most similar triplegs to new user’s triplegs. The Algorithm 11 in 

Appendix shows this procedure. 

 

Evaluating the mode inference performance is also based on the same indexes: 

coverage and accuracy. Features used are shown in Table 3.3. 

 

 

 

Tripleg_1 

Tripleg_2 

Tripleg_3 

Tripleg_4 

Tripleg_5 
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Table 3.3: List of features used by mode inference performance evaluation  

Tripleg_id 

user_id 

Id of the identified tripleg 

id of the user 

sim_tripleg[a,b] the most similar tripleg’s id a and the edit distance b  

num_location number of locations contained in this tripleg 

duration time interval of the tripleg 

travel_mode1 

travel_mode2 

mode_eva 

the real type of the travel mode of the identified tripleg 

the type of the travel mode of the most similar tripleg 

mode inference successfully or not 

 

Specially, mode_eva is a Boolean indicator (1 if travel_mode1=travel_mode2, 0 if 

else). 

 

For coverage evaluation, firstly, length-normalized the value of the edit distance 

sim_tripleg[b] (here the number of locations contained in the tripleg is also used as 

the length of the trip same with the tripleg segmentation just like tripleg 

segmentation). Then count the number of the triplegs whose length-normalized 

sim_tripleg[b] smaller than the threshold ε (different values with 0.1, 02 and 0.3) as 

num_cov_mode. The total number of triplegs is m. Then the coverage of mode 

inference cov_mode can be defined as Equation 3.4: 

 

                    cov_mode = num_cov_mode / m                (3.4) 

 

For accuracy, it is the percentage of the trips which achieve mode inference correctly 

and if the num_acc_mode represents the number of triplegs whose mode_eva equals 

to 1. The accuracy of mode inference is defined as Equation 3.5. The Algorithm 12 in 

Appendix implements the idea of it. 

 

acc_mode = num_acc_mode / num_cov_mode            (3.5) 

4 Experiments 

4.1 Data collection system and database schema 

The data used in this thesis is the manually labeled trip information (route, mode etc.) 

and the raw data (accelerometers and location tracks) collected by MEILI system. 

MEILI system is the main tool to collect data in this project. MEILI is a travel diary 

collection, annotation and automation system. In MEILI, a user installs an application 

that collects his / her GPS trace which then the user subsequently annotates with trip 

and activity information via a web GIS based MEILI web application (Prelipcean 

2015). MEILI system automatically collects raw data, drivers’ features and performs 

predictions for the three basic tasks: trip segmentation, tripleg segmentation and mode 



 

16 
 

inference (as well as the tasks of destination location inference and trip purpose 

inference). It also provides a GUI (Graphical User Interface) for the users to view and 

verify / correct the data and the inferences, since it cannot be guaranteed that the 

inferences it makes are correct.  

 

Consideration of Privacy Laws and Regulation, in this thesis, all the personal data, 

like the manually labeled trip information (route, mode, etc.) and the raw data 

(accelerometers and location tracks) collected by the MEILI system are used and 

analyzed under strict legal conditions and with a specific purpose, which is never to 

identify an individual. More specifically, the privacy rights of the data owner (i.e., the 

individual whose trips are recorder in the data) are respected. In particular, during the 

research and the publication of the results, all privacy laws and regulations (like the 

General Data Protection Regulation (Presidency of the Council 2015)) are followed. 

4.2 Overview of the dataset 

The dataset used in this thesis contains the following sections: GPS locations which 

contains the information about the latitude and the longitude of the point, time, speed, 

locations’ id, users’ id, etc., trips with information about trips’ id, user’s id who takes 

the trip, start point, end point, start time, end time, number of triplegs, purpose, etc., 

triplegs with information about trips’ id, user’s id who takes the trip, start point, end 

point, start time, end time, transportation mode of this tripleg, etc. The Table 4.1 is the 

overview of the dataset collected for this thesis. 

 

Table 4.1: Overview of the dataset conducted for this thesis 

Start date 02.11.2015 

End date 19.04.2016 

Number of users 206 

Number of GPS locations 1012229 

Number of trips 4240 

Number of triplegs 5431                                                                                                                                                                                                                                                                                                                                                                                                                                                                 

Number of travel mode  14 

 

Specially, the 14 types of mode are showed in Table 4.2. 

 

 

 

 

 

 

 

 

 



 

17 
 

Table 4.2: Overview of the 14 types of transportation mode 

Id Name Number of triplegs 

1 Walk 2012 

2 Bicycle 319 

3 Moped / Motorcycle 44 

4 Car as driver 899 

5 Car as passenger 256 

6 Taxi 419 

7 Bus 462 

8 Subway 381 

9 Tram 202 

10 Commuter train 217 

11 Train 120 

12 Ferryboat 60 

13 Flight 33 

14 Other 7 

4.3 Test of similarity measure 

Before implementing the tasks of tripleg segmentation and mode inference, it is 

necessary to test the similarity measure. Here the matching threshold ε of EDR 

distance mentioned in Section 3.2 is set as 100m (nearly 0.001°). A random user’s trip 

is chosen to test the measure, showed in Figure 4.1. The distribution information of 

the values of most similar edit distance of this user’s all trips are showed in Table 4.3. 

 

Figure 4.1: The result of the test of similarity measure, the above line is the test trip 

and the bottom line is the most similar trip find by EDR similarity measure. x, y is the 

location of this user, t is the real time of the location, expressed in timestamp / ms. 

 

 

x 

y 

t 
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Table 4.3: The statistical information of the values of most similar edit distance of this 

user’s all trips 

indexes edit distance 
length-normalized 

edit distance 

number of locations 

contained in the trip 

average 33.56 0.075 72 

min 0 0 2 

max 240 1 429 

standard 

deviation 
56.87 0.125 113 

 

It can be seen form the Figure 4.2 intuitively that the two trajectories are extremely 

similar with low value of EDR distance (EDR=20 with 350 points contained in these 

two trajectories, 20/350=0.057<0.1). With the help of value of average and standard 

deviation of length-normalized edit distance in Table 4.3, it is better to judge what the 

similarity based matching threshold ε should be. Here the ε can be set around 0.2 

(0.075+0.125=0.2). 

4.4 Results evaluation and discussion 

After the data processing, the result of each task can be obtained. As mentioned, the 

analysis and evaluation focus on two indexes: coverage and accuracy. 

4.4.1 Trip segmentation 

As mentioned in Section 3.2, when doing accuracy measure, a buffer size ∆𝑑 is 

taken into considered. And the buffer size has been varied to see its influence. The 

result of the trip segmentation can be seen in Table 4.4. 

 

Table 4.4: The trip segmentation accuracy measure results vary with the buffer size, 

where “buffer size” is the width of the buffer area (relative to the length of the trip). 

“start / end points detected” is the number of the trip’s start / end point which has 

been detected successfully, “trips detected” is the number of trips whose both start 

point and end point are detected successfully, “total number of trips” is the number of 

trips in dataset whose length satisfy the minimum distance” and “accuracy” is 

percentage of trips detected, obtained by (trips detected) / (total number of trips). 

buffer size 

start 

points 

detected 

end 

points 

detected 

trips 

detected 

total 

number of 

trips 

accuracy 

0.1 824 837 660 4240 15.56% 

0.2 1357 1324 1023 4240 24.13% 

0.3 2002 1942 1629 4240 38.42% 

 

It can be seen from Table 4.4 that with increase of the buffer size, the accuracy also 
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increases. It is easy to understand that with the buffer size increase, more start / end 

points can be detected in the buffer area and as a result, more trips can be detected. 

However, this buffer size cannot be too large, because it increases the error tolerance 

range too much and makes the results meaningless. Moreover, when doing trip 

segmentation, it is found that for longer distance trips, they can be detected more 

accurate than short distance trip, so it seems the minimum length has a large influence 

on the accuracy. As a result, different values of the minimum length have been set to 

see its effects on accuracy. The Table 4.5 shows the results. (0.2 is the buffer size for 

this evaluation) 

 

Table 4.5: The evaluation result of trip segmentation compared with the minimum 

length of the trip, where “minimum length” is requirement of the minimum length of 

the trip. 

minimum length / 

km 

start 

points 

detected 

end 

points 

detected 

trips 

detected 

total 

number of 

trips 

accuracy 

0 1357 1324 1023 4240 24.13% 

5 757 742 482 1490 32.30% 

10 590 606 402 1089 36.91% 

25 359 347 311 514 60.51% 

50 145 130 127 194 65.46% 

80 81 73 67 94 71.28% 

 

It can be obtained from the Table 4.5 that the accuracy increases from 24% for all 

trips to 70% for trips whose length is larger than 80km. When the minimum length is 

larger than nearly 20km, the accuracy can reach up to 55%. This indicates that for the 

dataset used in this experiment, the longer the trip’s length is, the larger accuracy of 

the trip segmentation by using the heuristic rule will be. This is because when length 

smaller than 10km, there will be many walking periods contained in the trip and the 

speed of walk is too small for GPS recording, lots of walking-periods’ speed have 

been recorded smaller than 1 m/s. As a result, this will definitely influence the 

detection when speed is an important factor for the heuristic rule. One of the future 

research directions is to investigate how to increase the accuracy of the 

low-distance-trip based on the heuristic rule. 

4.4.2 Tripleg segmentation 

Some relevant statistics about the characteristics of the trips and triplegs are shown in 

Table 4.6 and Table 4.7. 
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Table 4.6: Relevant statistics about trips 

Trips 
number 

of trips 

avg of number 

of triplegs       

per trip 

std of number 

of triplegs      

per trip 

length>0km 4078 1.51 1.43 

length>10km 1089 2.42 2.28 

 

Table 4.7: Relevant statistics about triplegs 

Triplegs 
number of 

triplegs 

top 1 mode 

by distance 

top 2 

mode by 

distance 

length>0km 5464 Car as driver Bus 

length>5km 1049 Car as driver Subway 

 

For tripleg segmentation task, as mentioned in Section 3.4, different values (0.1, 0.2 

and 0.3) have been set as the threshold ε. As a reminder, ε is a minimum distance 

based matching threshold and points’ 3D length-normalized edit distance of two 

trajectories beyond this threshold are not matched and incur a penalty. This means that 

a higher value of threshold entails a fuzzier matching. Two indexes (coverage and 

accuracy) are evaluated and the results are showed in Figure 4.2 (coverage) and 4.3 

(accuracy). Here the x-variable for calculating accuracy and coverage is the 

percentage of the datasize, which means the percentage of the trips / triplegs which 

are taken into consideration to find similar trips / triplegs from historical diaries. For 

example, in all figures of this section, the 20% of datasize means the first 20% of the 

all trips according time order. 

 

Figure 4.2: The coverage of the tripleg segmentation result, which means the 

percentage of the inferable trips compared with the percentage of the datasize, which 

is defined by length-normalized edit distance smaller than the threshold. 
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Figure 4.3: The accuracy of the tripleg segmentation result, which means the 

percentage of the trips which achieve correct tripleg segmentation successfully. 

 

Firstly, it can be obtained from the Figure 4.3 that with the increase of the value of 

threshold, more inferable trips can be got. Specially, coverage goes stably around 20% 

with the increase of the datasize when ε is 0.1, nearly 32.5% for ε as 0.2 and about 40% 

for ε equals to 0.3. It is easy to understand that when increase the value of threshold, 

there can be more trips satisfying the condition of length-normalized edit distance 

smaller than the threshold. For accuracy, it is stable around the 50% for ε as 0.1, 52% 

when ε equals 0.2, and 53% for ε as 0.3 which has the highest value of accuracy. In 

general, a decreasing trend can be seen for coverage, which is kind of 

counter-intuitive, because with increased history size one expects that the method will 

be able to find a trip that matches a new unlabeled trip with increasing probability. In 

particular, let C(x) and H(x) represents the coverage and the size of the history that is 

based on the first x% of the trips. Then intuitively, some trips / triplegs which do not 

belong to H(x) but are in H(y) have been covered by H(x) and are not taken into 

consideration when calculating C(y) (y>x). However, this is to the case because in 

Figure 4.2 and 4.3, there is an uneven change at 40% of the datasize when ε is 0.1 can 

be explained by this situation. So more data may be needed to get an increasing trend. 

 

Obviously, the accuracy is not satisfactory enough. With the inspiration of trip 

segmentation evaluation, the length of the trajectory may also influence the accuracy 

of the tripleg segmentation. So the trips whose length is larger than 10 km (nearly 0.1°) 

are selected and do tripleg segmentation again. The results are showed in Figure 4.4 

and 4.5. 
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Figure 4.4: The coverage of the tripleg segmentation result with different values of 

threshold when the minimum length of the all trips is larger than 10 km 

 

Figure 4.5: The accuracy of the tripleg segmentation result with different values of 

threshold when the minimum length of the all trips is larger than 10 km. 

 

It can be seen from Figure 4.5 that the accuracy has increased a lot; especially when ε 

is 0.1, the accuracy is around 97% with all data used. It increases 47% compared with 

the first condition (no minimum length limitation). For ε with 0.2 and 0.3, they also 

share the dramatic growth: 91.5% increased by 39.5% for threshold as 0.2 and 91% 

rise by 38% with ε as 0.3. So the same with trip segmentation, this similarity measure 

and historical data based tripleg segmentation is more accurate for long-distance-trip 

(larger than 10km). However, the curve with 0.3 as threshold is uneven compared 

with the other two. It has an apparent bottom point when temporally 70% of trips are 

considered. This is because the random fluctuations similar with the uneven changes 

in Figure 4.2 and 4.3. Moreover, different with no length limitation, the accuracy 

decreases, but not a lot, with increasing the values of threshold. However, neither of 

the two conditions has a high value of coverage, this is because the limitation of each 
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user’s travel diary data. The data set has 4240 trips with 206 users, which means that 

averagely each user only has 20 trips for his / her travel diary database, while in real 

life; this number is too few for a person. As a result, many trips cannot find a similar 

historical trip and this leads a low value of the coverage. 

 

Here taking the tripleg segmentation as the example, the effects of taking reverse trip 

into consideration are evaluated as mentioned in Section 3.3. Firstly, set ε equals to 

0.2 and no minimum length limitation, and then evaluate the tripleg segmentation 

again based on the similarity measure which cannot match a labeled historical trip to 

the reverse of a trip. The results are shown in Figure 4.6 (coverage) and 4.7 

(accuracy). 

 

Figure 4.6: The coverage evaluation results of the effect of reverse trip identifiable 

based on tripleg segmentation 

 
Figure 4.7: The accuracy evaluation results of the effect of reverse trip identifiable 

based on tripleg segmentation 
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It can be seen from Figure 4.6 and 4.7 that both coverage and accuracy have increased 

by nearly 10% because of the reverse trip identifiable and the benefit of this feature 

can be seen obviously. 

4.4.3 Mode inference 

For mode inference task, as mentioned in Section 3.5, different values (0.1, 0.2 and 

0.3) also have been set as the threshold of the length-normalized edit distance to 

define the inferable triplegs. Two indexes (coverage and accuracy) are evaluated and 

the results are showed in Figure 4.8 (coverage) and 4.9 (accuracy). In all figures of 

this section, the 20% of datasize means the first 20% of the triplegs according time 

order. 

 
Figure 4.8: The coverage of mode inference result with different values of threshold 

 

Figure 4.9: The accuracy of mode inference result with different values of threshold. 
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As showed in Figure 4.8, the coverage of the result of mode inference also increases 

with the growth of the threshold with the same reason of the tripleg segmentation but 

overall it is larger than the results of tripleg segmentation because of the larger 

number of triplegs than trips’. However, in Figure 4.9, the accuracy decreases, but not 

a lot, with increasing the values of threshold. The reason for the accuracy decrease is 

that a high standard for two trajectories to be similar will decrease the number of 

inferable trips but increase the possibilities that the two trajectories have the same 

transport mode sequence / segmentation. The highest one is 57% considering the all 

triplegs when ε is 0.1 and the lowest one is 56.4% for ε as 0.3. Overall, the accuracy 

trends to between 56% and 58%. The decreasing trend of the accuracy also depends 

on the order of the datasize and has kind of occasionality. 

 

Similarly, the length of the triplegs is also taken into consideration for mode inference 

and the result is showed in Figure 4.10 and 4.11.  

 

Figure 4.10: The coverage of the mode inference result with different values of 

threshold when the minimum length of the all trips is larger than 5 km. 

 

Figure 4.11: The accuracy of the mode inference result with different values of 

threshold when the minimum length of the all trips is larger than 5 km. 
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Here the length threshold is 5km (nearly 0.05°), smaller than tripleg segmentation, 

because generally the length of the triplegs is smaller than trips’. Apparently, compare 

the Figure 4.11 with 4.9, an obvious increase of accuracy can be observed. The 

accuracy now is between 66%~70%, increased by nearly 10%. Similarly, the accuracy 

also decreases, but not a lot, with increasing the values of ε. However, the decreasing 

trend here is more dramatic compared with Figure 4.9. This is because that firstly, the 

number of triplegs whose length larger than 5 km is 1534, much smaller than the total 

number of triplegs 5431, which means that one tripleg’s mode inference failed has a 

larger effect on accuracy of long distance trips than short ones’. Secondly, many long 

distance trips are only done once by the user (like flight and train) and it is hard to 

find a similar tripleg in user’s historical tripleg dataset (low coverage), as a result, 

thinking about these two factors, when the number of considered triplegs are too few, 

the accuracy of mode inference decreases a lot and it becomes stable until nearly all 

triplegs are taken into consideration. 

 

A confusion matrix for the mode detection task is showed in Table 4.8.  

 

Table 4.8: Confusion matrix for the mode detection task with the condition: ε is 0.1. 

The diagonals data are the number of triplegs which have been correctly classified for 

the specific mode and the accuracy. The other data are the number of triplegs which 

have been confused by other specific mode when doing mode inference. 

 
 

It can be seen from Table 4.8 that subway and walk are mostly correctly predicted 

relatively. Moreover, walk is often confused with taxi, car and bicycle. Moped is often 

confused with walk and car. The rest modes are often confused with walk except for 

mode Walk Bicycle
Moped /

Motorcycle

Car as

driver

Car as

passenger
Taxi Bus Subway Tram

Commuter

train
Train Ferryboat Flight Total

Walk
596

(69.1%)
22 2 28 14 33 14 13 7 11 7 0 0 862

Bicycle 20
45

(54.9%)
0 5 1 2 1 0 0 4 0 0 0 82

Moped /

Motorcycle
3 0

7

(43.8%)
3 0 1 0 0 0 0 0 2 0 16

Car as

driver
37 4 1

102

(63.8%)
6 8 3 1 6 1 0 2 0 158

Car as

passenger
12 2 0 7

30

(54.5%)
4 7 0 0 0 0 0 0 55

Taxi 48 3 1 9 7
86

(61.4%)
3 1 2 0 1 0 0 139

Bus 22 3 0 0 4 2
69

(60.5%)
3 0 1 3 1 0 114

Subway 7 0 0 2 0 1 3
30

(69.8%)
1 0 0 0 0 43

Tram 10 1 0 5 0 2 1 1
29

(65.9%)
1 0 0 0 44

Commuter

train
10 2 0 1 0 0 2 1 1

28

(65.1%)
1 0 0 43

Train 5 0 0 0 0 3 1 0 1 0
13

(52%)
0 0 25

Ferryboat 5 0 0 0 0 0 0 0 0 0 0
8

(61.5%)
0 13

Flight 0 0 0 0 0 0 0 0 0 0 0 0
4

(100%)
4

Actual class

predicted

class
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flight. Most of the triplegs confused with walk are extremely short triplegs with low 

speed. This may also explain the increase in accuracy for longer trips. It is strange that 

walk is confused with motorized transport (like car and taxi). The reason for this 

strange class confusion is unknown and can be the subject of future work. Some other 

feature based methods, see Prelipcean (2016b and 2016c), have less trouble 

differentiating between these modes that have highly different motion characteristics, 

hence hybrid methods can be used in the future to correct these misclassifications. 

 

Cohen's Kappa coefficient (κ) is used to summarize the classification results here. It 

is a statistic to measure the agreement between two raters when each of them 

classifies A items into B categories (Smeeton 1985). If the raters are in complete 

agreement then κ = 1. If there is no agreement among the raters, κ ≤ 0. Here it is used 

to measure the consistency of actual class and predicted class. The κ for the confusion 

matrix is 0.52, which means the actual class has the moderate consistency with the 

predicted class. 

 

To sum up the tripleg segmentation and mode inference, 1) in general, low value of 

the threshold (low value of length-normalized edit distance limitation) can obtain high 

accuracy but low coverage, because a high standard for two trajectories to be similar 

will decrease the number of inferable trips but increase the possibilities that the two 

trajectories have the same transport mode sequence / segmentation. The Figure 4.5 

and 4.6 shows the different conclusion, because the coverage between them is much 

larger than other three situations; 2) all situations has a low value of coverage, this is 

because the limitation of each user’s travel diary data and many trips / triplegs cannot 

find a similar historical trip / tripleg; 3) the decreasing or increasing trend of the 

coverage / accuracy depends on the order of the datasize and has kind of occasionality. 

So it does not have meaningful indications; 4) no matter tripleg segmentation or mode 

inference, they are both sensitive to the length of the trajectory. Long-distance-trips / 

tripleg have a higher value of accuracy than low-distance-trip / tripleg. This is 

probably because that the long-distance-trip has more regularities and people are not 

willing or able to break down these regularities (like the route followed, often using 

subway or train, car or public transport), they do not have many options in 

long-distance-trip. However, for low-distance-trips, people can have many options 

collocations, so even two trajectories are similar based on similarity measures (like 

the car and bus), and they may have different transport mode sequence / segmentation; 

5) moreover, compared the results with the previous work, firstly, for the task of trip 

segmentation, Prelipcean (2016a) gains the accuracy of 28.6% for 2142 trips (in this 

case, 24.13% for 4240 trips with buffer size equals to 0.2), which has been a similar 

result. For tripleg segmentation, Schüssler et al., 2011 report a tripleg segmentation 

accuracy of 68%, while in this case, it is around 52%, but over 90% for trips’ length is 

larger than 10 km, so it is necessary to increase the accuracy for short distance trip in 

future research. For mode inference, Prelipcean (2016a) performs the accuracy of 

64.40% for 16 types of modes and 5961 triplegs with classifier type of Nearest 

Neighbor, compared with nearly 57.5% for 14 types of modes and 5431 triplegs 
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(around 68% for tripleg’s length is larger than 5 km) in this thesis.  

5 Conclusion 

Travel diary data processing has become a hot research in recent years and GPS-based 

user trajectory similarity analysis is also a very important area. Based on the related 

research and the basic idea that a trip which has a (geographically and temporally) 

very similar route to a previously historical mode-segmented / labeled trip will likely 

have the same destination as well as transport mode sequence / segmentation, this 

dissertation puts forward a method of travel diary semantics enrichment of trajectories 

based on historical labeled data and trajectory similarity measures, which mainly 

includes the following tasks: 1) implement trip segmentation based on the heuristic 

rule: if the speed is very low (3.6 km/h used in this dissertation) for longer than a 

period of time (120s used in this thesis), then the end of a trip has been identified; 2) 

define the similarity measures between two trajectories based on the EDR distance; 3) 

implement tripleg segmentation based on similarity measures and the historical 

labeled data, then apply the same tripleg segmentation pattern of the most similar 

historical labeled trip to the new identified trip; 4) implement mode inference also 

based on similarity measures, then apply the transportation mode of the most similar 

historical tripleg to the new unlabeled tripleg. After the evaluation of the result, it can 

be obtained that this trajectory similarity measures and historical labeled data based 

method is valid, however, this method is sensitive to the length of the trajectory. The 

result shows a better performance when the length of the trajectory is relatively longer 

(larger than 10km). 

6 Future work 

Firstly, as mentioned in conclusion, the method proposed in this thesis is sensitive to 

the length of the trajectory. As a result, one important direction in the future is to 

study how to increase the accuracy of trip segmentation, tripleg segmentation and 

mode inference for low-length-trip. Secondly, in the thesis, all users use the same 

similarity measures but it does not take the individual needs into consideration. In real 

life, different users have different preferences about their own travel diary and using 

the same similarity measures for different users may not be able to meet diversities. 

So the next step is to study how to build a trajectory similarity measures easy to meet 

the different preferences of individual. Finally, with known of the travel diary of 

different users, it can infer the similarity between two users’ behavior so that a user 

can be recommended to other users who has a high level of similarity. This can 

increase the chances of social contact between people. 



 

29 
 

7 References 

Agrawal, R., Faloutsos, C., & Swami, A. N. (1993). Efficient Similarity Search In 

Sequence Databases. International Conference on Foundations of Data Organization 

and Algorithms (Vol.730, pp.69-84). Springer-Verlag. 

 

Chen, L., & Oria, V. (2005). Robust and fast similarity search for moving object 

trajectories. ACM SIGMOD International Conference on Management of Data 

(pp.491-502). ACM. 

 

Chen, L., & Ng, R. (2004). On the Marriage of Edit Distance and Lp Norms. Very 

Large Data Bases. 

 

Crochemore, M., & Rytter, W. (1994). Text algorithms. Oxford University Press, Inc. 

ISBN 0-19-508609-0 

 

Deng, K., Xie, K., Zheng, K., & Zhou, X. (2011). Trajectory Indexing and Retrieval. 

Computing with Spatial Trajectories. ISBN 978-1-4614-1628-9 

 

Doherty, S. T., Noël, N., Gosselin, M. L., Sirois, C., and Ueno, M. (2001). Moving 

beyond observed outcomes: integrating global positioning systems and interactive 

computer-based travel behavior surveys. Transportation Research Circular. 

 

Filip Biljecki, Hugo Ledoux, & Peter van Oosterom. (2013). Transportation 

mode-based segmentation and classification of movement trajectories. International 

Journal of Geographical Information Science Ijgis, 27(2): 385-407. 

 

Gong Xudong. (2011). Similarity Search of Trajectory data and Its Application 

(Doctoral dissertation, Hefei: University of Science and Technology of China). 

 

Hemminki, S., Nurmi, P., & Tarkoma, S. (2013). Accelerometer-based transportation 

mode detection on smartphones. ACM Conference on Embedded Networked Sensor 

Systems (pp.13). ACM. 

 

K Kucuk, A., Hamdi, S. M., Aydin, B., Schuh, M. A., & Angryk, R. A. (2016, 

October). PG-TRAJECTORY: A PostgreSQL/PostGIS based Data Model for 

Spatiotemporal Trajectories. In Big Data and Cloud Computing (BDCloud), Social 

Computing and Networking (SocialCom), Sustainable Computing and 

Communications (SustainCom)(BDCloud-SocialCom-SustainCom), 2016 IEEE 

International Conferences on (pp. 81-88). IEEE. 

 

Li, Q., Zheng, Y., Xie, X., Chen, Y., Liu, W., & Ma, W. Y. (2008). Mining user 

similarity based on location history. ACM Sigspatial International Conference on 



 

30 
 

Advances in Geographic Information Systems (pp.34). ACM. 

 

Parent, C., Spaccapietra, S., Renso, C., Andrienko, G., Andrienko, N., Bogorny, V., ... 

& Theodoridis, Y. (2013). Semantic trajectories modeling and analysis. ACM 

Computing Surveys (CSUR), 45(4): 42. 

 

Prelipcean, A. C., Gidofalvi, G., & Susilo, Y. O. (2015). Comparative framework for 

activity-travel diary collection systems. International Conference on MODELS and 

Technologies for Intelligent Transportation Systems (pp.251-258). IEEE. 

 

Prelipcean, A. C. (2016a). Capturing travel entities to facilitate travel behaviour 

analysis: A case study on generating travel diaries from trajectories fused with 

accelerometer readings (Doctoral dissertation, KTH Royal Institute of Technology). 

 

Prelipcean, A. C., Gidofalvi, G., & Susilo, Y. O. (2016b). Measures of transport mode 

segmentation of trajectories. International Journal of Geographical Information 

Science, 30(9): 1763-1784. 

Prelipcean, A. C., Gidófalvi, G., & Susilo, Y. O. (2016c). Transportation mode 

detection–an in-depth review of applicability and reliability. Transport Reviews, 37(4): 

442-464.  

 

Prelipcean, A.C., Gidófalvi, G. and Susilo, Y.O. (2016d). MEILI: A Travel Diary 

Collection, Annotation and Automation System. Journal of Urban Technology. 

 

Presidency of the Council. (2015). "Compromise text. Several partial general 

approaches have been instrumental in converging views in Council on the proposal 

for a General Data Protection Regulation in its entirety. The text on the Regulation 

which the Presidency submits for approval as a General Approach appears in annex.", 

pages 201 

 

Rasmussen, T. K., Ingvardson, J. B., Halldórsdóttir, K., & Nielsen, O. A. (2015). 

Improved methods to deduct trip legs and mode from travel surveys using wearable 

GPS devices: A case study from the Greater Copenhagen area. Computers, 

Environment and Urban Systems, 54: 301-313. 

 

Sefidmazgi, M. G., Sayemuzzaman, M., & Homaifar, A. (2014). Non-stationary time 

series clustering with application to climate systems, 312: 55-63. 

 

Schuessler, N., & Axhausen, K. W. (2009). Processing raw data from global 

positioning systems without additional information. Transportation Research Record 

Journal of the Transportation Research Board, 2105(2105): 28-36. 

 

Shalaby, E. H. C. A. (2005). A trip reconstruction tool for gps-based personal travel 



 

31 
 

surveys. Transportation Planning & Technology, 28(5): 381-401. 

 

Smeeton, N. C. (1985). Early history of the kappa statistic. Biometrics, 

41(3):795-795. 

 

Stenneth, L., Wolfson, O., Yu, P. S., & Xu, B. (2011). Transportation mode detection 

using mobile phones and GIS information. ACM Sigspatial International Symposium 

on Advances in Geographic Information Systems, Acm-Gis 2011, November 1-4, 2011, 

Chicago, II, Usa, Proceedings (pp.54-63). DBLP. 

 

Stopher, P., FitzGerald, C., & Zhang, J. (2008). Search for a global positioning system 

device to measure person travel. Transportation Research Part C: Emerging 

Technologies, 16(3): 350-369. 

 

Toohey, K., & Duckham, M. (2015). Trajectory similarity measures. SIGSPATIAL 

Special, 7(1): 43-50. 

 

Tsui, S., & Shalaby, A. (2006). Enhanced system for link and mode identification for 

personal travel surveys based on global positioning systems. Transportation Research 

Record Journal of the Transportation Research Board, 1972(1): 38-45. 

 

Wang, S., Chen, C., & Ma, J. (2010). Accelerometer Based Transportation Mode 

Recognition on Mobile Phones. Asia-Pacific Conference on Wearable Computing 

Systems (pp.44-46). IEEE Computer Society. 

 

Wolf, J. L. (2000). Using GPS data loggers to replace travel diaries in the collection 

of travel data (Doctoral dissertation, School of Civil and Environmental Engineering, 

Georgia Institute of Technology). 

 

Yang, A. Y., Jafari, R., Sastry, S. S., & Bajcsy, R. (2009). Distributed recognition of 

human actions using wearable motion sensor networks. Journal of Ambient 

Intelligence & Smart Environments, 1(2): 103-115. 

 

Ying, J. C., Lu, H. C., Lee, W. C., Weng, T. C., & Tseng, V. S. (2010). Mining user 

similarity from semantic trajectories. ACM Sigspatial International Workshop on 

Location Based Social Networks (pp.19-26). ACM. 

 

Zheng, Y., Chen, Y., Li, Q., Xie, X., & Ma, W. Y. (2010). Understanding 

transportation modes based on gps data for web applications. ACM Transactions on 

the Web, 4(1): 1-36. 



 

32 
 

8 Appendix 

Algorithm 1: creating a Trajectory object from a collection of TG_PAIRs. 

DROP TYPE IF EXISTS tg_pair CASCADE; 

CREATE TYPE tg_pair AS ( -- timestamp-geometry pair type 

    t timestamp, 

    g geometry 

); 

 

DROP TYPE IF EXISTS trajectory CASCADE; 

CREATE TYPE trajectory AS ( 

    s_time TIMESTAMP, 

    e_time TIMESTAMP,  

    bbox GEOMETRY, 

    sampling_interval INTERVAL, 

    tr_data tg_pair[]); 

 

DROP FUNCTION IF EXISTS _trajectory(tg_pair[]) CASCADE; 

CREATE OR REPLACE FUNCTION _trajectory(tg_pair[]) RETURNS trajectory AS 

$BODY$ 

DECLARE 

  t trajectory; 

BEGIN 

     

    t.bbox = tg_mbr($1); 

    t.e_time = tg_end_time($1); 

    t.s_time = tg_start_time($1); 

    t.tr_data = array_sort($1); 

    IF array_length($1, 1) > 1 THEN 

        t.sampling_interval = (t.e_time - t.s_time) / (array_length($1, 1) - 1); 

    ELSE 

        t.sampling_interval = INTERVAL '-1 seconds'; 

    END IF; 

    RETURN t; 

END 

$BODY$ 

LANGUAGE 'plpgsql'; 

 

Algorithm 2: calculate the number of the locations contained in the trajectory 

DROP FUNCTION IF EXISTS t_length( tg_pair[] ); 

CREATE OR REPLACE FUNCTION t_length(tg tg_pair[]) 

  RETURNS INTEGER AS 

$BODY$ 
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DECLARE 

  time_count      INTEGER; 

  tgp             tg_pair; 

 

BEGIN 

 

  if tg ISNULL THEN 

    RETURN 0; 

  END IF; 

 

  time_count = 0; 

 

  FOREACH tgp IN ARRAY tg 

  LOOP 

      time_count = time_count + 1; 

  END LOOP; 

 

  RETURN time_count; 

 

END 

 

$BODY$ 

LANGUAGE 'plpgsql'; 

 

Algorithm 3: calculate the length of the trajectory 

DROP FUNCTION IF EXISTS t_distance( trajectory ); 

CREATE OR REPLACE FUNCTION t_distance(tr trajectory) 

  RETURNS FLOAT AS 

$BODY$ 

 

DECLARE 

  length      FLOAT; 

  tgp tg_pair; 

  prev  tg_pair; 

 

BEGIN 

  if tr.tr_data ISNULL THEN 

    RETURN -1; 

  END IF; 

 

  length = 0; 

 

  prev = tg_head(tr.tr_data); 
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  FOREACH tgp IN ARRAY tr.tr_data 

  LOOP 

      length =  length + st_distance(prev.g, tgp.g); 

      prev=tgp; 

  END LOOP; 

 

  RETURN length; 

 

END 

 

$BODY$ 

LANGUAGE 'plpgsql'; 

 

Algorithm 4: classify the state of each point into stops or moving 

DROP FUNCTION IF EXISTS stop_detection(id int) CASCADE; 

CREATE FUNCTION stop_detection(id int) RETURNS int AS $$ 

DECLARE  

v double precision; 

v1 double precision; 

i double precision; 

j int; 

a int; 

t bigint; 

t1 bigint; 

k double precision[]; 

 

    BEGIN 

    SELECT speed into v from locations where id_location=id; 

    SELECT time into t from locations where id_location =id; 

    SELECT user_id into j from locations where id_location =id; 

    t1=t+120000; 

    IF v>1 THEN 

        a=1; 

    ELSIF v=-1 THEN 

        a=-1; 

    ELSE  

        SELECT ARRAY_AGG(speed) into k FROM locations WHERE time 

BETWEEN t AND t1 AND user_id=j; 

        FOREACH v1 in ARRAY k 

        LOOP 

          i=v1-1; 

            IF i<=0 THEN 

               a:=0; 

            ELSE 
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               a:=1; 

            END IF; 

            EXIT WHEN i>0; 

          END LOOP; 

           

    END IF; 

    return a; 

    END 

$$ LANGUAGE plpgsql; 

 

Algorithm 5: classify the stop point into start point. 

DROP FUNCTION IF EXISTS trip_segmentation_start(id int) CASCADE; 

CREATE FUNCTION trip_segmentation_start(id int) RETURNS int AS $$ 

DECLARE  

i int; 

j int; 

k int; 

a int[]; 

c int; 

b int; 

e int; 

 

    BEGIN 

    RAISE NOTICE  'times here is %', id; 

    SELECT stop_detection into b from locations where id_location =id; 

    IF b=1 THEN 

    SELECT user_id into i from locations where id_location =id; 

    j=id-5; 

    k=id+5; 

    SELECT ARRAY_AGG(stop_detection) into a FROM locations WHERE 

id_location BETWEEN j AND id-1; 

    FOREACH c in ARRAY a 

    LOOP 

            IF c=0 THEN 

               e:=1; 

            ELSE 

               e:=0; 

            END IF; 

            EXIT WHEN c!=0; 

          END LOOP; 

    return e; 

    ELSE  

    return 0; 

    END if; 
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    END 

$$ LANGUAGE plpgsql; 

 

Algorithm 6: classify the stop point into end point. 

DROP FUNCTION IF EXISTS trip_segmentation_end(id int) CASCADE; 

CREATE FUNCTION trip_segmentation_end(id int) RETURNS int AS $$ 

DECLARE  

i int; 

k int; 

b int[]; 

c int; 

d int; 

e int; 

 

    BEGIN 

    RAISE NOTICE  'times here is %', id; 

    SELECT stop_detection into c from locations where id_location =id; 

    IF c=1 THEN 

    SELECT user_id into i from locations where id_location =id; 

    ELSE 

    k=id+5; 

    SELECT ARRAY_AGG(stop_detection) into b FROM locations WHERE 

id_location BETWEEN id+1 AND k; 

        FOREACH d in ARRAY b 

        LOOP 

            IF d=0 THEN 

               e:=-1; 

            ELSE 

               e:=0; 

            END IF; 

            EXIT WHEN d=1; 

          END LOOP; 

    return e; 

    ELSE 

    return 0; 

    END IF; 

    END 

    $$ LANGUAGE plpgsql; 

 

Algorithm 7: check the success of the trip segmentation 

DROP FUNCTION IF EXISTS trip_evaluation(id int) CASCADE; 

CREATE FUNCTION trip_evaluation(id int) RETURNS int AS $$ 

DECLARE  

i int; 
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j int; 

a int[]; 

b int; 

c int; 

k tg_pair[]; 

m int; 

 

    BEGIN 

    SELECT (t).tr_data into k from trips where to_point_id=id; 

    m=t_length(k); 

    i=id-ceil(m/5); 

    j=id+ceil(m/5); 

SELECT ARRAY_AGG(end_point) into a FROM locations WHERE location_id 

BETWEEN i AND j; 

    FOREACH b in ARRAY a 

    LOOP 

            IF b=0 THEN 

               c:=0; 

            ELSE 

               c:=1; 

            END IF; 

            EXIT WHEN b=1; 

          END LOOP; 

          return c; 

    END 

    $$ LANGUAGE plpgsql; 

 

DROP FUNCTION IF EXISTS detect(id int) CASCADE; 

CREATE FUNCTION detect(id int) RETURNS int AS $$ 

DECLARE  

i int; 

j int; 

a int; 

 

    BEGIN 

       SELECT detect_start into i from trips where trip_id=id; 

       SELECT detect_end into j from trips where trip_id =id; 

       IF i=1 and j=1 THEN 

        a=1; 

        ELSE 

        a=0; 

        END IF; 

        return a; 

    END 



 

38 
 

    $$ LANGUAGE plpgsql; 

 

Algorithm 8: key part of the similarity measure 

1) DROP FUNCTION IF EXISTS t_edit_distance( tg_pair[], tg_pair[], 

NUMERIC ); 

CREATE OR REPLACE FUNCTION t_edit_distance(tg1 tg_pair[], tg2 

tg_pair[], e NUMERIC) 

  RETURNS FLOAT AS 

$BODY$ 

DECLARE 

  D int[][]; 

  v int; 

  m INT; 

  n INT; 

  geom1 GEOMETRY; 

  geom2 GEOMETRY; 

  subcost INT; 

  te TEXT; 

BEGIN 

 

  m := t_length(tg1); 

  n := t_length(tg2); 

 

  --RAISE NOTICE 'i: %', m; 

 

  D := array_fill(0, ARRAY[m, n]); 

 

  FOR i IN 2..m LOOP 

    D[i][1] := n; 

  END LOOP; 

 

  FOR j IN 2..n LOOP 

    D[1][j] := m; 

  END LOOP; 

 

  FOR i IN 2..m LOOP 

    FOR j IN 2..n LOOP 

 

      geom1 = (tg1)[i].g; 

      geom2 = (tg2)[j].g; 

 

 

      subcost = 1; 

      if edit_match(geom1, geom2, e) THEN 
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        subcost = 0; 

      END IF; 

 

D[i][j] := LEAST(LEAST(D[i-1][j-1] + subcost, D[i-1][j] + 1), D[i][j-1] + 1); 

 

      --RAISE NOTICE 'i: %, j: %, D %', i, j,  D[i][j]; 

 

    END LOOP; 

  END LOOP; 

 

  RETURN D[m][n]; 

 

END 

$BODY$ 

LANGUAGE 'plpgsql'; 

 

2) DROP FUNCTION IF EXISTS edit_match( GEOMETRY, GEOMETRY, 

NUMERIC ); 

CREATE OR REPLACE FUNCTION edit_match(g1 GEOMETRY, g2 

GEOMETRY, e NUMERIC) 

  RETURNS BOOL AS 

$BODY$ 

 

DECLARE 

 

BEGIN 

      IF edit_point_distance(g1, g2) < e THEN 

      RETURN TRUE; 

    ELSE 

      RETURN FALSE; 

    END IF; 

     

  RETURN FALSE; 

END 

 

$BODY$ 

LANGUAGE 'plpgsql'; 

 

3) DROP FUNCTION IF EXISTS edit_point_distance( GEOMETRY, 

GEOMETRY ); 

CREATE OR REPLACE FUNCTION edit_point_distance(p1 GEOMETRY, p2 

GEOMETRY) 

  RETURNS FLOAT AS 

$BODY$ 
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DECLARE 

  x1             FLOAT; 

  x2             FLOAT; 

  y1             FLOAT; 

  y2             FLOAT; 

 

BEGIN 

  x1 = ST_X(p1); 

  x2 = ST_X(p2); 

  y1 = ST_Y(p1); 

  y2 = ST_Y(p2); 

 

  RETURN |/((x1 - x2)^2.0 + (y1 - y2)^2.0); 

 

END 

 

$BODY$ 

LANGUAGE 'plpgsql'; 

 

Algorithm 9: check the success of the trip segmentation 

DROP FUNCTION IF EXISTS sim(id1 int,id2 int) CASCADE; 

CREATE FUNCTION sim(id1 int,id2 int) RETURNS int[] AS $$ 

DECLARE  

i tg_pair[]; 

j tg_pair[]; 

b float; 

c float; 

d int; 

e double precision; 

f double precision; 

k int[]; 

x int; 

m int; 

n int; 

p numeric; 

 

    BEGIN 

    SELECT ARRAY_AGG(trip_id) into k from trips where user_id=id2; 

    SELECT tg_pair[] into i from trips where trip_id =id1; 

    SELECT distance into e from trips where trip_id =id1; 

    m=t_length(i); 

    IF e+1!=0 THEN 

    c=1000000; 
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    FOREACH x in ARRAY k     

    LOOP         

    SELECT distance into f from trips where trip_id =x; 

    IF x!=id1 AND f+1!=0 THEN 

    RAISE NOTICE  'times here is %', x; 

    SELECT tg_pair[] into j from trips where trip_id =x; 

    n=t_length(j); 

    p=LEAST(m,n)/GREATEST(m,n)::numeric; 

    IF p>=0.7 THEN 

    b=t_edit_distance(i,j,0.001); 

    RAISE NOTICE  'edit distance is %', b; 

    IF b<c THEN 

    c=b; 

    d=x; 

    END IF; 

    END IF; 

    END IF; 

    END LOOP; 

    return ARRAY[d,c]; 

       ELSE  

   return ARRAY[0,0]; 

   END if; 

    END 

    $$ LANGUAGE plpgsql; 

 

Algorithm 10: tripleg segmentation evaluation  

DROP FUNCTION IF EXISTS tripleg_evaluation(id1 int,id2 int) CASCADE; 

CREATE FUNCTION tripleg_evaluation(id1 int,id2 int) RETURNS float AS $$ 

DECLARE  

i int[]; 

j int[]; 

a text; 

b text; 

c1 int; 

c2 int; 

d double precision; 

k int; 

g1 geometry; 

g2 geometry; 

x int; 

y int; 

 

    BEGIN 

    RAISE NOTICE  'id here is %', id1; 
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    k=0; 

    SELECT number_of_triplegs into c1 from trips where trip_id =id1; 

    SELECT number_of_triplegs into c2 from trips where trip_id =id2; 

    IF c1=c2 THEN         

    SELECT trip_id into a from trips where trip_id =id1; 

    SELECT trip_id into b from trips where trip_id =id2; 

      IF c1=1 THEN 

      SELECT to_point_id into x from trips where trip_id=id1; 

      SELECT to_point_id into y from trips where trip_id=id2; 

      SELECT the_geom into g1 from locations where no=x; 

      SELECT the_geom into g2 from locations where no=y; 

     d=edit_point_distance(g1,g2); 

      ELSE 

      d=0; 

    SELECT array_sort(ARRAY_AGG(to_point_id)) into i from triplegs where 

trip_id=a; 

    SELECT array_sort(ARRAY_AGG(to_point_id)) into j from triplegs where 

trip_id=b; 

    LOOP 

    SELECT the_geom into g1 from locations where id_location=i[k+1]; 

    SELECT the_geom into g2 from locations where id_location =j[k+1]; 

    d=d+edit_point_distance(g1,g2); 

    k=k+1; 

    EXIT WHEN k=c1-1; 

    END LOOP; 

        END IF; 

    return d; 

    ELSE 

    return -1; 

    END IF; 

    END 

    $$ LANGUAGE plpgsql; 

 

Algorithm 11: check the success of the mode inference 

DROP FUNCTION IF EXISTS sim_leg(id1 int,id2 int) CASCADE; 

CREATE FUNCTION sim_leg(id1 int,id2 int) RETURNS int[] AS $$ 

DECLARE  

i tg_pair[]; 

j tg_pair[]; 

b float; 

c float; 

d int; 

e double precision; 

f double precision; 
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k int[]; 

x int; 

m int; 

n int; 

p numeric; 

 

    BEGIN 

    SELECT ARRAY_AGG(tripleg_id) into k from triplegs where user_id=id2; 

    SELECT tg_pair[] into i from triplegs where tripleg_id =id1; 

    SELECT distance into e from triplegs where tripleg_id =id1; 

    m=t_length(i); 

    IF e+1!=0 THEN 

    c=1000000; 

    FOREACH x in ARRAY k     

    LOOP         

    SELECT distance into f from triplegs where tripleg_id =x; 

    IF x!=id1 AND f+1!=0 THEN 

    RAISE NOTICE  'times here is %', x; 

    SELECT tg_pair[] into j from triplegs where tripleg_id =x; 

    n=t_length(j); 

    p=LEAST(m,n)/GREATEST(m,n)::numeric; 

    IF p>=0.7 THEN 

    b=t_edit_distance(i,j,0.001); 

    RAISE NOTICE  'edit distance is %', b; 

    IF b<c THEN 

    c=b; 

    d=x; 

    END IF; 

    END IF; 

    END IF; 

    END LOOP; 

    return ARRAY[d,c]; 

       ELSE  

   return ARRAY[0,0]; 

   END if; 

    END 

    $$ LANGUAGE plpgsql; 

 

Algorithm 12: mode inference evaluation  

DROP FUNCTION IF EXISTS mode_evaluation(id int) CASCADE; 

CREATE FUNCTION mode_evaluation(id int) RETURNS int AS $$ 

DECLARE  

i int; 

j int; 
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a int; 

k int; 

 

    BEGIN 

    RAISE NOTICE  'id here is %', id; 

       SELECT sim1[1] into i from triplegs where tripleg_id=id; 

       SELECT transportation_type into j from triplegs where tripleg_id=id; 

       SELECT transportation_type into k from triplegs where tripleg_id =i; 

       IF j=k THEN 

       a=1; 

       ELSE 

       a=0; 

       END IF; 

          return a; 

       SELECT count(mode_eva) from triplegs where mode_eva=1; 

    END 

    $$ LANGUAGE plpgsql; 


