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Abstract

The effect of initial out-of-straightness of steel beams with wide flange cross-sections on their
elastic lateral torsional buckling strength is investigated analytically and numerically. A variational
principle is first developed and then used to obtain the governing equilibrium conditions and
associated boundary conditions for a beam with general patterns of initial out-of-straightness and
initial angles of twist. The principle is then used to develop a finite element formulation to
characterize the lateral torsional response of beams with initial out-of-straightness under general
transverse loading. The validity of the finite element formulation is verified through comparison
against results from models based thin-walled beam finite element and shell element models
available in ABAQUS. Since the load lateral displacement responses do not exhibit a distinct point
of loss of stability, two design criteria are proposed for the characterization of the failure. The first
criterion is based on a threshold value for additional lateral displacement and the second criterial
is based on a threshold value for the normal stresses. Both criteria are applied in conjunction with
the analytical solution and finite element formulation in order to determine a moment resistance
based on lateral torsional buckling that incorporates the effect of initial out-of-straightness. The
moment capacity based on the displacement-based criterion is shown to solely depend on the ratio
between the initial out-of-straightness component associated with the first buckling mode and the
additional displacement threshold value specified. To the contrary, moment capacity based on the
stress criterion, was found to depend upon the initial out-of-straightness magnitude, the normal

stress threshold value and the geometry of the cross-section.

The effects of the above parameters on the predicted moment capacity were investigated for beams
with common sections in a systematic parametric study. Possible means of modifying the present
provisions of CAN-CSA S16 relating to elastic lateral torsional buckling to incorporate the effect

of initial out-of-straightness effects are discussed and illustrated through examples.

The load-deformation plots for beams with initial out-of-straightens as predicted by the
formulations developed in the present study are then used to extend the Southwell plot technique,
originally developed for buckling of column with initial out-of-straightness, to the lateral torsional
buckling of beams with initial out-of-straightness. The study shows that the plot, either
experimentally or analytically obtained, of the applied load versus lateral displacement, at any

point or angle of twist at any section, for a beam with initial out-of-straightness case can predict



(a) the elastic critical moment of an analogous initially straight beam, and (b) the first buckling

mode contribution to the initial out-of-straightness.
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1. Introduction

1.1 Background

In the design for laterally unsupported steel beams, the resistance is often governed by the lateral
torsional buckling (LTB) mode of failure. For the idealized case of a perfectly straight beam with
a wide flange section subjected bent about the strong axis, the buckling point is associated with a
distinct bifurcation point at which the beam exhibits a sudden change in the deformation pattern
characterized by sudden lateral bending and twist. The buckling load level corresponding to such
a point of instability is detected by solving an eigenvalue problem. Real steel beams possess
inevitable initial out-of-straightness during the manufacturing process. Thus, unlike the idealized
case of a perfectly straight beam, when real beams are subjected to strong axis bending, they do
not exhibit a clear-cut point of bifurcation. Rather, such beams exhibit gradual lateral bending and
twist as the applied transverse loads are incrementally increased. When the applied loads approach
the theoretical buckling load of a perfectly straight beam, lateral displacements and twist tend to
become excessive, typically attaining threshold displacement and/or stress values prior to attaining
the critical loads determined for idealized perfectly straight beam. Thus, the lateral torsional
buckling resistance of a real beam is, in principle, inferior to that of a comparable straight beam.
The detrimental effect of initial crookedness on lateral torsional bucking resistance is reflected in
some of the structural steel design standards, but is omitted in others. Thus, the present study
intends to characterize the lateral torsional buckling strength reduction induced by the initial
crookedness of the beams. The following sections thus provide a review of lateral torsional
buckling provisions in international steel design standards with emphasis on aspects related to
initial crookedness.

1.2 Lateral torsional buckling behavior of straight versus initially crooked

beams
Consider a perfectly straight beam (configuration 1 in Figure 1.1). Upon the application of a
transverse load P, the straight beam deflects vertically by a displacement v from configuration 1
to configuration 2. The applied load is then assumed to increase by a factor A and attain the value
AP at the onset of buckling (Configuration 3) where the pre-buckling displacement is assumed to

increase to Av. At configuration 3, the section has a tendency to buckle to Configuration 4 by



moving laterally to displacement u, and twisting through angle 6, (Configuration 4). The
corresponding load versus lateral displacement relation P -u, is depicted in Figure 1.1b where no

lateral displacements take place between 1-3 and a sudden displacement takes place between3-4.
The buckling load AP is obtained through an eigenvalue analysis. In contrast, for beams with

initial out-of-straightness u,,d, in the un-deformed state (configuration 1°) by incrementally

applying transverse load P, the section undergoes gradually increasing lateral displacement u and
angle of twist @ as depicted by the nonlinear loading path 1-2°-3°4’ and asymptotically approach
the buckling load AP from below. The behavior is fundamentally different from that of a perfectly
straight beam and no clear-cut buckling load exist. Thus, it would be of interest trace the nonlinear
load deformation path 1°-2°-3’-4". At a given lateral displacement (or a given stress), the difference
AP between the buckling load based on a perfectly straight beam and that for an initially crooked
beam is measure of loss of lateral torsional buckling loss of strength of the member due to initial
out-of-straightness. As will be shown in the following sections, this loss in strength has been
considered in some but not all structural steel design standards.

(b)

(@)

Figure 1.1 (a) Lateral torsional buckling configuration and (b) moment versus lateral displacement
relationship for straight and initially crooked beams



1.3 Design standard provisions for beams

In various national design standards for steel members, discrepancies are observed in determining
the LTB resistance for beams depending on whether the detrimental effect of the initial geometric
imperfection has been accounted for or not. Thus, design provisions for beams are demonstrated

to present the discrepancies in this section.

1.3.1 Canadian steel design standard
For laterally unsupported members with doubly symmetric sections subjected to bending in

CAN/CSA S16-14, the moment resistance M, is classified by the section class. For beams with
class 1 and 2 sections, the moment resistance M, is computed based on the sectional plastic
moment M . For class 3 and 4 sections, the sectional yield moment M, is used in calculating the

moment resistance. The following narrative is based on beams with class 1 and 2 sections. The
boundary conditions are assumed simply supported with respect to the lateral displacement and
the angle of twist. Three ranges governed by different failure modes are proposed for designing in
the Canadian design provision standard. These ranges are distinguished by the sectional plastic

moment M and the critical elastic moment M, which is given by

u

Con @ 7EY
m, =G .6+ %) i, @y

in which, L is the span between lateral torsional supports, E is the modulus of elasticity of steel,

G is the shear modulus, Iy is the weak axis moment of inertia, J is the Saint-Venant torsional

constant, and C, is the warping constant. The coefficientC_,, is a moment gradient coefficient

given by 4Mmax/\/M;f;aX+4M§+7M§+4MC2 <2.5 and accounts for the increase in lateral
torsional buckling resistance due to uniform bending moments, and M_, M, M_ are the moments

at quarter-span, half-span, and three-quarter span, respectively, and M, is the maximum

moment within the unsupported span L .

For comparatively long beams (i.e. M, <0.67M, proposed in CAN/CSA S16-14), the moment

resistance is governed by the elastic lateral torsional buckling failure mode and given by oM,



which is the primary focus of the present thesis. The resistance factor ¢ accounts for the material

variability in the material properties (e.g. E, G, F, etc.).

When M, >0.67M , , the flexural resistance of the beams with intermediate spans is governed by

inelastic lateral torsional buckling (LTB) failure mode. However, the inelastic lateral torsional

buckling moment cannot exceed the resistance oM , i.e., the flexural resistance of very short

p k)
beams is governed by yielding. To sum up, the moment resistance M, proposed in CAN/CSA

S16-14 is given by

oM, M, <0.67M,
0.28M,
M, =M, =L15M | 1-— M, >0.67M, (1.2)
oM | M, >M,

The curve for Eq. (1.2) in CAN/CSA S16-14 is depicted in Figure 1.2 (a) with the elastic buckling
curve from the bifurcation problem. For beams undergoing elastic LTB under uniform bending
moments (i.e. C.,, =1 ) and the variability in material properties are omitted (i.e. ¢ =1), Eq.
(1.2) (a) is simplified as Eq. (1.1) by Timoshenko (1961) which accounts for no initial out-of-
straightness. Thus, Eq. (1.2) (a) in CAN/CSA S16-14 is based on the eigenvalue solution which
assumes a perfectly straight member. The fact that the Canadian standard provisions do not involve
a reduction the elastic critical moment capacity M, =@M, is indicative of the fact that they do not
capture the effect of initial out-of-straightness in the design equation for flexural members. This
contrasts with approach taken by the Canadian standards for the design of compression members
as will be outlined in the following section.

For a member with doubly symmetric cross-sections subjected to axial compression, the resistance

C, is given by
C, = pAF, (L+7%) (1.3)

in which A'is the gross cross-section area, F, is the yield strength, 7= KL/;erFy/E is a

slenderness factor characterizing the length of the member and the boundary conditions, K is a



effective length factor accounting for the effect of boundary conditions on the response of the axial
compression member, r is the radius of gyration given by \/I/_A( I, or 1, based on the boundary
conditions) and y is a factor depending on the residual stress patterns in the member and is taken
as 1.34 for hot-rolled sections and 2.24 for welded sections. In Figure 1.2 (b), the dimensionless
resistance for columns C, / @AF, (normalized with respect to the factored yield strength) is plotted
in terms of the slenderness KL/r . The dimensionless resistance is observed to be lower than the
normalized elastic buckling curve C, / AF, =7z2E/Fy(KL/r)2 in Figure 1.3 (b). For example,
when the weak axis slenderness KL/r =125.4, the normalized resistances as given in Figure 1.2
(b) are C, =0.30 and C, = 0.50. The percentage difference of 40.0% accounts for initial out-of-
straightness. When KL/r increases to 170.9, the corresponding normalized resistance are C, =
0.18and C, =0.27, a 33.3% percentage difference. The lower reduction in this case, suggests that

the strength reduction due to initial out-of-strength reduces as the column slenderness increases.

The fact that the design equation plot coincides with the elastic buckling plot in Figure 1.2a, while
the design equation plot is lower than the elastic buckling plot in Figure 1.2b, indicate that initial-
out-of-straightness is omitted for beam design provisions but accounted for in compression

member design provisions. This discrepancy is one of the motives of the present study.
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Figure 1.2 Comparison between the design curves in CAN/CSA S16-14 and the elastic
buckling curve for (a) beams and (b) columns

1.3.2 American steel design standard
For members with doubly symmetric I-profile undergo bending about their strong axis, the

American design provisions (ANSI/ASCI 360-16) distinguish the governing failure mode by
lengths of the member. For beams with spans smaller than the limiting length L) =1.76r, , /E/ F

the moment resistance is deemed to be governed by yielding and is given by the sectional plastic



moment M . For beams with intermediate length, i.e., larger than L but smaller than L , The

limiting length L, is given by

2 2
0.7F
L —1o5r = |3 ) 676 = (L4)
0.7F, \s,h, \LSh, E

the resistance of the member is governed by the inelastic LTB. In Eq. (1.4) which, r? =/l yCW/SX

and c =1 for doubly symmetric I-sections and ¢=(h,/2),/I,/C, for channels. When L>L, ,

the moment resistance is governed by the elastic LTB given by F_S, , in which F, is given by

cr=x !

2 2
F _CANS'—”E\/1+0.07SLEEJ (1.5)
cr 2
[L thO rts
I

ts

where C,,q IS the moment gradient factor specified in ANSI/AISC 360-10 and given by

Cansi =12.5Mmax/(2.5Mmax+3ML/4+4ML/2+3M3L/4), h, is the distance between the flange

centroids. From the relation r, = ,/IyCW/SX , by substitution into Eq. (1.5) and multiplying both

sides by S, , one obtains

2
M, =F,S, = CLLS'”\/[E—L”j 1,C,, +EIL,GJ (0.078 Ex*/C,/1, /Gho) (1.6)

Eqg. (1.6) is similar in form as Eq. (1.1) except the term (0.078 E;zz,/CW/Iy /Gho). For a doubly

symmetric I-sections, it can be shown that the term (0.078 E7z2‘/CW/Iy /Gho) =1. Thus, Eq. (1.5)

is another form of Eq. (1.1) and does not capture the initial out-of-straightness effects. To sum up,
the nominal flexural resistance for members subjected to strong axis bending based on the

American design provision is given by



M, L<L,
L-L
M, = CANS[MF)—(MF)—OJFVSX){L — H L <L<L, (1.7)
T p
F.S, L>L,

The nominal flexural resistance-span relationship based on Eq. (1.7) is plotted in Figure 1.3 (a).

for a W200x36 cross-sections. For L>L,, the lateral torsional buckling resistance based on

ANSI/AISC 360-16 provisions coincides with the elastic critical moment, i.e., the no effects of
initial imperfection are not accounted for in the design strength provisions. This observation
contrasts with the approach taken in the same standard for compression which will be presented in
the following

For compression members, the nominal compressive strength in the ANSI/AISC 360-16 is given
by

C.=F A (1.8)

r cr

in which the stress F_, is given by

: KL/r <4.71E/F,

0.877F, KL/r>4.71/E/F,

(1.9)

. (0.658Fv/ Fe ) F

and F, = 7z2E/(KL/r)2 is the Euler’s buckling stress as determined from an elastic (eigenvalue)
buckling analysis which does not account for the detrimental effect of the initial out-of-straightness

on the buckling strength. For E =200,000MPa and F, =350MPa, the threshold value is

4.71,[E/F, =112.6.

The adoption of an empirical fraction of the theoretical elastic buckling stress 0.877F, for a

perfectly straight column, the standard accounts for the strength reduction due to the initial
geometric imperfection when determining the design strength for long columns. Figure 1.3 (b)

depicts the normalized compressive resistance based on the American steel design standard in



terms of the slenderness KL /r for a W200x36 cross-section. Like the design curve for columns
in CAN/CSA S16-14 (Figure 1.2 (b)), the nominal resistance for columns provides is lower than
the elastic buckling resistance. The 12.3% difference in strength between the nominal design
strength and the elastic buckling strength accounts for the strength reduction due to column out-
of-straightness. In a manner similar to CAN/CSA S16-14, the design rules columns of American
standard accounts for the detrimental effect of the initial out-of-straightness when characterizing

the column nominal strength but not when characterizing the beam strength.
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Figure 1.3 Comparison between the design curves in ANSI/ASCI S360-10 and the elastic
buckling curve for (a) beams and (b) columns

1.3.3 Australian Standards

In the Australian Standard (AS 4100-1998), the nominal resistance M, for a flexural member is

given by

M, =a,aM, <M, (1.10)
where ¢, is a moment modification factor (akin to moment gradient factor in CAN-CSA S16
2014) and is given by

a = 1M <25 (1.11)

L (M (M)

In Eqg. (1.11), the nominal moment resistance M. is given by

M.=FZ (1.12)

s y©=e

in which, Z, is the effective section modulus which is depends on the section slenderness A,

defined as
b F
ﬂ“e - (?j Eyo (113)

where b is the width of the element outstanding from the face of the supporting plate element or
the width of the element between the faces of supporting plate elements, and t is the element

thickness. The effective section modulus Z, is given by

min(Z,,1.5S,) A, <82
Z, = SX+K1153;/15j(min(zx,l.SSX)—Sx)} 82 < 4, <115 (1.14)
115)
S, (—j 115< 4,
/IS
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In Eqg. (1.11), o,is aslenderness reduction factor which accounts for the reduction in strength due
to yielding, The slenderness reduction factor «, depends on the ratio of the nominal moment

resistance M to the elastic critical moment M, and takes the form

2
a, =06 M ] g | M (1.15)
MO MO

in which, the elastic critical moment is given by

[P

and the effective length |, of a segment is

l. =kkkl (1.17)

where K, is a twist restraint factor, k; is a load height factor and k. is a lateral rotation restraint

factor, all given in Table 1.1-Table A1.3 in Appendix 1.A. Figure 1.4 depicts the normalized

flexural design strength for a beam with a W250x36 cross-section based on the Australian steel
provisions as provided by Eqg. (1.10). Overlain on the same plot are the elastic critical momentM
and the flexural yield strength M, for comparison. Unlike CAN/CSA-S16 and ANSI/AISC-360,

the Australian standards do not provide clear-cut slenderness limits for yielding, inelastic buckling,
and elastic buckling. As, such, the threshold slenderness values based on CAN-CSA-S16 are
overlain on the plot, which would correspond in this case to dimensionless slenderness ratios of
0.50 and 1.30.

Within the elastic range /M, /M, >1.30, the nominal flexural resistance based on the Australian
standard equation is lower than the elastic buckling resistance by a difference ranging from 15%

at M, /M =1.87 to28% at \/M, /M =1.30. The difference is indicative of the fact that the

11



Australian standards recognize the detrimental effect of initial out-of-straightness compared to the

flexural resistance for perfectly straight beams.
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Figure 1.4 Comparison between the design curves in AS 4100-1998 for beams

1.3.4 The Eurocode Standard
According to the Eurocode 3 (2005), the design flexural resistance for laterally unsupported beams

bent about the strong axis is given by

Fy
M, =7 W, — (1.18)

Ym1

where F is the yield stress, W, is the section modulus about the strong axis, etc. The section
modulus W, depends upon the section class. For class 1 and 2 sections, the value of W, is taken as
the plastic section modulusZ, and for class 3 sections, it is taken as the elastic section modulus
S, . For class 4 section, W, is based on the effective elastic section modulus S, . In Eq. (1.18),
71 1S @ partial resistance factor (akin to the resistance factor 1/ ¢ in CAN/CSA-S16) that accounts
for the variability in the material properties and section dimensions, and will be taken as y,,, =1.0

in the present discussion given our focus on the nominal resistance. In Eqg. (1.18), coefficient y ;

is a reduction factor that accounts for lateral torsional buckling and is given by

12



B 1
(DLT +\/(DiT _zLZT

At (1.19)

where @ . :0.5[1+05LT (ZLT—O.2)+ZL2T] with o, being a factor accounting for member

imperfections as listed in Table 1.1 and ranges between 0.21 and 0.76, depending upon the
manufacturing method and the height to width ratio. It accounts for misalignment and different
residual stress distributions. For example, for the value a =0.21, the nominal design resistance is

found to be 78%-88% of the elastic buckling resistance for a perfectly straight beam. In Eq. (1.19)

A7 is a slenderness parameter (akin to coefficient M, /M, In the Australian standard) and is
givenby 4., = ,/Wy F,/M, inwhich M is the elastic critical momentand W, F, is the moment

resistance based on material failure, i.e., yield moment for W200x36. The nominal flexural
resistance curves based on Eurocode 3 (EN 1993-1-1: 2005) are provided in Figure 1.5 based on

the «; values listed in Table 1.1.

Table 1.1 Recommended values for imperfection factors for lateral torsional buckling curves

Buckling curve a b c d
Imperfection 0.21 0.34 0.49 0.76
factor «;

* Descriptions of cross-sections a-d are given in Table 1.2

Table 1.2 Recommended values for lateral torsional buckling curves for cross-sections

Cross-section Limits Buckling curve
Rolled I-sections h/b<2 a
h/b>2 b
Welded I-sections h/b<2 c
h/b>2 d
Other cross-sections N/A d

13
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recommended imperfection factor a=0.21, b=0.34, c=0.49and d =0.76 (curves for b,c
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1.3.5 Comparison of approaches of various standards

While Canadian and American standards recognize the detrimental effect of the initial out-of-
straightness on column strength, such effects are not considered when characterizing the flexural
member strength. In contrast, the effect of initial out-of-straightness is accounted for in the
Australian and Eurocode standards. In the Australian design equation for beams, a slenderness

factor o is introduced to quantify the influence of initial imperfections on the buckling resistance

for beams whereupon a reduction is found when compared to the buckling resistance obtained
from the eigenvalue solution. No clear statement regarding the types of initial imperfections is
provided and no distinction is made between the treatment of rolled and welded cross-sections.
This approach contrasts with that of the Eurocode 3, in which four levels of imperfection values

a,; are provided, depending on the manufacturing method and the sectional height to width ratio.

1.4 Motivation of present study

Present standards seem to be inconsistent in that the Eurocode and the Australian standards account
for the effect of initial out-of-straightness when characterizing the LTB resistance of beams while
the Canadian and American standards omit such effects. The present thesis thus aims at providing
a theoretical foundation for quantifying the detrimental effects on initial out-of-straightens on LTB
resistance by developing analytical and finite element solutions and applying them in conjunction

14



with proposed design criteria for possible future adoption in standards. The study focuses
exclusively on elastic lateral torsional buckling and is thus intended for long span beams, as
opposed to beams with intermediate spans where the presence of residual stresses may accelerate

the yielding in portions of the cross-section.

1.5 Research Objectives

The specific objectives of the present study are to:

e Develop a finite element solution for the response of laterally unsupported steel beams
subjected to various types of loads.

e Propose failure criteria based on displacement threshold and stress threshold values.

e Establish the relationship between the LTB resistance of perfectly straight beams and
imperfect beams.

e Identify the parameters affecting design criteria and quantify their effects in a parametric
study on common cross-sections in the W150 and W310 series of Handbook of steel
construction (2014), and propose simplified design equations for both design criteria.

e Previously proposed methodologies (e.g., the Southwell plot (1931)) were devised to
predict the buckling loads for ideal columns (without imperfections) from the experimental
results on real columns (with initial-out-of-straightness). Since the present study
establishes relations between the lateral torsional buckling strength of beams with initial
imperfections and those that are perfectly straight, the study aims at assessing the
extensibility of the Southwell plot technique, and variations thereof, to lateral torsional

buckling of beams.

1.6 Outline of the thesis

Present Chapter 1 provided a comparative discussion of present standard provisions in the
treatment of out-of-straightness effects when characterizing the lateral torsional buckling of
strength of beams.

Chapter 2 provides a literature review on studies related lateral torsional buckling that account for
the effect of initial out-of-straightness of steel beams. Studies related the inclusion of initial out-
of-straightness into lateral torsional buckling strength in the Eurocode 3 provisions are also

summarized given their relevance to the topic. Studies aiming at determining the critical loads (or
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moments) for perfectly straight columns (or beams) from the load-displacements of members with
initial crookedness are also surveyed given their relevance to the developments of Chapter 5.
Chapter 3 develops a finite element solution to capture the response of beams with initial geometric
imperfections subjected to general transverse loads. The chapter also proposes two criteria, based
on threshold displacements and threshold stresses, to characterize the effect of initial out-of-
straightness on the elastic lateral torsional buckling strength of beams. The finite element solution
is used in conjunction with the criteria proposed to investigate the effects of various geometric
parameters on the moment capacity.

Chapter 4 presents the results of a parametric study on common cross-sections under three loading
conditions: uniform moments, mid-span point loading, and uniformly distributed loading. The
study investigates the effect of key parameters affecting the lateral torsional buckling resistance
based on the both criteria proposed. Illustrative examples for incorporating the effect of initial-
out-of-straightness into the present Canadian standards are provided.

Chapter 5 presents an extension of the Southwell plot technique that predicts the critical moments
and initial geometric imperfections for an initially crooked beam. The extension of the Southwell
plot technique is based on the finite element solution developed in Chapter 3. Various scenarios
for initial out-of-straightness are examined to study the effect of higher modes on prediction in
initial geometric imperfections.

Chapter 6 provides a summary of the work done, compiles the findings and conclusions of the

study, and provides recommendations for future research.
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Appendix 1. A

Table Al.1 Twist restraint factor k,

Restraint arrangement Factor k,
FF, FL, LL, FU 1.0
FP, PL, PU (dlj (Y
I 2t,
40—
nW
3
e
I 2t,
1+
n

Table A1.2 Load height factor k, for gravity loads

Longitudinal position Restraint Load height position
of the load arrangement Shear centre Top flange
Within segment FF, FP, FL, PP, PL, 1.0 1.4
LL, FU, PU 1.0 2.0
At segment end FF, FP, FL, PP PL, 1.0 1.0
LL, FU, PU 1.0 2.0
Table Al1.3 Lateral rotation restraint factor k,
Restraint arrangement Ends with lateral rotation Factor k,
restraints
FU, PU Any 1.0
FF, FP, FL, PP, PL, LL None 1.0
FF, FP, PP One 0.85
FF, FP, PP Both 0.70

* F = fully restrained, L = laterally restrained, P = partially restrained and U = unrestrained
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2. Literature review

The present study focuses on investigating the reduction effect of initial geometric imperfections
on the lateral torsional buckling resistance of steel beams. Thus, Section 2.1 of this chapter presents
a review of studies depicting mechanical or experimental approaches to capture the effect of initial
geometric imperfections on the LTB problem. Section 2.2 provides an overview of studies related
to the treatment for initial geometric imperfections in the Eurocode 3 (EN 1993-1-1(2005)). A
review of studies investigating the probability and stochastics aspects of LTB problem is presented
in Section 2.3. A summary of studies on experimental treatment to obtain the LTB critical load is

provided in Section 2.4.

2.1 LTB for beams with initial geometric imperfections

Using the transfer matrix method, Yoshida and Maegawa (1983) determined the load-lateral
displacement relationship of a laterally curved beam subjected to uniform moments. The beam
radius of curvature was taken as constant and had a large magnitude compared to the dimensions
of the cross section. The stress-strain was assumed to be perfectly elastic-plastic. The transfer
matrix was derived based on the direct equilibrium approach of an infinitesimal element. To assess
the validity of the analysis, the numerical results were compared to experimental results by
Fukumoto and Nishida (1981) for IPE200, IPE250 and IPE600 sections.

Yoshida and Maegawa (1984) distinguished between the critical loads of perfectly straight
members which are obtained an eigenvalue solution and the ultimate load for initially crooked
members which are obtained from a non-linear analysis. The load-displacement relations were
obtained based on the work of Yoshida and Maegawa (1983). The cases investigated involved (1)
a beam with initial lateral deflection approximated by a circular arc, (2) a beam subjected to a mid-
span point force acting on the top flange at horizontal offset from the center line of the section, (3)
a beam subjected to vertical and a horizontal load acting at the same point on the top flange and
(4) a beam with initial lateral out-of-straightness subjected to laterally eccentric point load acting
at mid-span. The results were provided in a dimensionless form. The study investigated the effect
of residual stress distribution, amplitude of the initial circular arc, loading conditions, and cross-
section dimension. The influence of residual stress on the ultimate load was found to be low
compared to initial imperfections and the dimensions of the cross section was found to have small

effects on the ultimate strength.
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Hasham and Rasmussen (1995) conducted two series of experiments on members under
compression and major axis bending. Two spans were considered; 1990mm and 3990mm and
different axial force to major axis bending moment ratios were applied on the specimens. The
authors measured the sectional dimensions of the specimens and reported the average value and
standard deviation. The authors also measured the initial out-of-straightness at the flange tips and
section centroid. The axial force- bending moments interaction relations were plotted and
compared against the predictions of AS4100 (1990), AISC-LRFD (1993) and Eurocode 3(1993)
for the problem of out of plane lateral torsional buckling. The authors concluded that the design
capacities based on AS4100, AISC-LRFD and Eurocode 3 were conservative when the bending
moments to axial force ratios were comparatively high. In contrast, AISC-LRFD interaction

relations were found to be overly conservative for series 2.

Dubina and Ungureanu (2002) performed nonlinear finite element analyses (FEA) on beams and
columns with non-lipped and lipped channel sections which incorporate the effects of residual
stresses and initial geometric imperfections. Two types of geometric imperfections were
considered; transverse, and lateral/torsional imperfections and local-sectional imperfections in the
form of web distortion. Local-section imperfections were introduced as symmetrical or
asymmetric sine shapes along the web height as well as imperfections based on probabilistic
analysis. The study investigated the reduction in the buckling strength due to imperfections and
interactive buckling. Comparisons were conducted with the Australian and European standard
predictions. The buckling strength based on the symmetric and asymmetric local imperfections
were found to differ and the sinusoidal shape was not always appropriate for representing local-
sectional imperfections. Also, the influence of local imperfections was found relatively low
compared to global imperfections. The erosion of critical bifurcation load (ECBL) imperfection

approach was found to be effective in charactering the geometric imperfections.

McCann et al. (2013) investigated the lateral torsional buckling (LTB) for beams with discrete
lateral restraints that are vertically offset from the shear center. The model developed related to
simply supported beams with doubly symmetric I-sections and linearly elastic lateral restraints.
The solution was based the Rayleigh-Ritz method and the lateral displacement, angle of twist, and
initial imperfections were expressed as Fourier series. Two eigen-value models were developed

for perfectly straight beams; the first accounted for the flexibility of the lateral braces while the
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second omitted their flexibility. A third solution was developed for beams with initial out of
straightness. The work investigated the effect of bracing height on the required lateral restraint
stiffness. Comparisons were performed against the predictions of LTBeam, a software for
determining the critical moments of restrained beams. The comparison has shown that while a
single harmonic solution may not be sufficient to predict the critical moments, the use of the full

Fourrier series predictions in very good agreement with numerical results.

Nguyen and Chan et al. (2013) conducted geometric nonlinear FEA on I-section beams with Fibre
Reinforced Polymer (FRP) and steel materials. The study examined the influence of load height
effect and end warping fixity conditions on the critical lateral torsional buckling load and then
incorporated the effect of initial lateral and twist imperfections in their analysis. The lateral out-
of-straightness and the initial twist imperfection were assumed as half and quarter wave sinusoidal
functions. The authors observed that the reduction in strength due to load height effects and the

release of end warping fixity conditions to be more significant in FRP beams than in steel beams.

Ascione (2014) developed a finite element formulation wide flange beams with initial
imperfections. The model was used to investigate the lateral torsional buckling of simply supported
beams made of pultruded GFRP subjected to transverse uniformly distributed load acting at the
top flange. Three types of imperfections were investigated; (1) lateral out-of-straightens and (2)
non-orthogonality of the flanges and the web, and (3) combinations of both types of imperfections.
The author observed that lateral out-of-straightness had a larger detrimental effect than the non-

orthogonality of the flanges and the web.

2.2 Studies related to the Eurocode 3 buckling provisions for beams or beam-

columns
Maquoi et al. (2001) presented a theoretical treatment for interaction equations of beam columns
and provided a framework for generalizing the design provisions for beam-columns in Australia
(AS 4100-1998), America (AISC 1966 and 1986), Europe (ECCS 1976 and 1978) and Germany
(DIN 18800 1988). The proposed method can account for the lateral torsional buckling through

amendments in computing the coefficients appearing in the interaction equations.

Boissonade et al. (2002) developed a second-order in-plane elastic analysis and used it to propose

a new interaction equation as an alternative to that of the Eurocode 3 (1993). The alternative
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interaction equation was developed by adopting the closed form solution developed by Maquoi
and Rondal (1982) in conjunction with the interaction equation in the German steel standard
provisions (DIN 18800). The work captured biaxial moments and plasticity effects. Finite element
analyses on practical section dimensions were performed to assess the validity of the proposed
solution. The proposed solution was found safe, efficient, and more accurate than that in EC 3 with

the ability to account for lateral torsional buckling.

Aguero and Pallares (2007) summarized the approach methodology and simplified method used
in the Spanish steel standard (NBE-EA-95) and Eurocode 3 (1992) for the ultimate strength of
members in slender frames. A simplified method to capture second order effects was proposed by
separating the analysis into sway and non-sway parts, and an auxiliary coefficient was developed
to amplify the bending moments. The Dutheil’s method (1952) was adopted to obtain equivalent
imperfections. An illustrative example was presented for a beam with lateral and twist initial
geometric imperfections subjected to biaxial bending. The accuracy of the proposed method was
assessed by comparison against a closed form solution. The proposed solution was observed to be
valid for predicting the ultimate limit state of slender members.

Szalai and Papp (2010) developed a generalization of the Ayrton-Perry Formula (APF) (Ayrton
and Perry 1886) originally developed for predicting the buckling resistance for columns
undergoing flexural buckling, and extended the APF to account for effect of initial imperfections

on the lateral torsional buckling strength of beams and beam-columns.

Taras and Greiner (2010) conducted geometric and material nonlinear analyses for the lateral
torsional buckling (LTB) analysis of beams. The results were found to be inconsistent with the
Eurocode 3 solution. Based on the first yield criterion and a consistent derivation, the authors

proposed new design curves.

By relating the stresses to the derivatives of the displacement fields, and adopting the first yield
criterion based on von Mises stress, Aguero and Pallares (2015a) proposed initial lateral out-of-
straight and angle of twist patterns for the design of members undergoing lateral torsional buckling.
The proposed treatment simplified that design of members with initial out-of-straightness in a

manner consistent with EC 3 and extended its scope to various load and boundary conditions.
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Aguero and Pallares (2015b) implemented the Eurocode 3 in design members in frames by
proposing a procedure to estimate the most adverse imperfection direction. A criterion was
proposed to determine the number of buckling modes needed to define a proper imperfection shape
based on the lowest buckling mode corresponding to a non-zero strain energy.

2.3 Probabilistic and Stochastic studies on LTB of beams with initial geometric

imperfections

Kala and Melcher (2009) compiled statistical information on the measured yield strength and
cross-sectional geometric parameters for Czech hot rolled steel | sections using various
probabilistic distributions with S355 structural steel (yield strength =355MPa). The statistical
characteristics compiled were subsequently used in Kala (2013) to investigate the lateral torsional
buckling problems of simply supported beams with doubly symmetric-sections under major axis
uniform bending moments. The authors assumed simple sinusoidal lateral and twist imperfections
and provided a stress approach to predict the ultimate moment for initially crooked beams. A
stochastic analysis was performed based on the Monte Carlo simulation to determine the stochastic
characteristics of the critical moments. The lateral torsional buckling strength of I-section thin-
walled members were reported to be sensitive to the magnitude of the initial imperfections

Papadopoulos and Soimiris et al. (2013) conducted finite element analyses for beam-columns and
frames with I-sections in which members with imperfect geometry were modeled. The initial
imperfections were given as non-homogeneous Gaussian fields and were generated based on the
evolutionary power spectra using the method of separation. The relationship between local and the
global imperfections were based on geometric equilibrium considerations. Two types of models
were investigated (1) a column with an imperfection field under a compressive load and (2) a portal
frames consisting of I-sections under a uniformly distributed vertical loading and a horizontal
concentrated force. A Monte Carlo simulation was conducted on multiple initial imperfection
scenarios were generated and a statistical description of the buckling load capacity and strength

reduction were obtained.

2.4 The Southwell plot and its extension to lateral torsional buckling
A common challenge encountered when conducting buckling experiments on real (i.e., with initial

of out straightness) columns or beams is that the obtained load deflection relation exhibits a
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nonlinear relationship. The buckling behavior of such members is fundamentally different from
that of ideal (i.e., perfectly straight members) for which theoretical eigenvalue analysis predicts a
sudden change in the deformation pattern once the applied load attains a critical value. Several
researchers have attempted to use the experimental nonlinear load deformation relations to predict
the critical load of a perfectly straight members (e.g., Southwell (1931) method and its variations
by Ariartnam 1960, Massey 1963, Meck 1977, and Mandal and Cadalin 2002). Such studies are
discussed given that the present study will develop techniques to predict the magnitudes of lateral
displacements and angles of twist for beams with initial lateral out-of-straightness and initial angle
of twist. Such expressions will provide a basis to assess the seemingly conflicting variation of the

Southwell plot solutions (Chapter 5).

Southwell (1931) developed a technique to estimate the critical load for pin-ended ideal perfectly
straight column from the measured axial load-lateral displacement curves for real columns with
initial out-of-straightness. The initial out-of-straightness of the column is assumed as a Fourier
series. By omitting the contribution of higher modes on the lateral defection, Southwell observed
a linear relationship between the lateral deflection-to-applied-load u/P ratio and the lateral
deflectionu . The Southwell method forms a basis to predict the critical load for columns from
experimental results and was shown to compare well with classical buckling loads based on

eigenvalue solution results.

Ariaratnam (1960) developed a theoretical framework to extend the work by Southwell plot
methodology (Southwell 1931) for the prediction of the critical loads of plane frames and the

torsional buckling loads for columns. Massey (1963) proposed a modified version of the Southwell
plot technique, in which rather than adopting the u/P —u plot, they advocated the use ¢/M?
versus ¢ plots to estimate the critical moments for beams with I-sections with initial lateral or

twist imperfections subjected to a uniform bending moments. The method was further extended to

account for material inelastic effects.

Meck (1977) proposed a modified method based on the original Southwell plot where they have

advocated the use of u/P versus ¢ or ¢/P versus uto predict the critical load for beams with

initial lateral and twist imperfections. The load conditions investigated were extended to mid-span
point load. By using a direct equilibrium method in conjunction with the principle of stationary
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potential energy, a linear relation was observed between lateral displacement to moment ratio and
the angle of twist. Also, the relation between the twist-to-moment ratio and the lateral displacement
was found to be linear. These two sets of relations formed the basis of the proposed method to
predict the LTB critical load for beams. The method was verified through comparison of

experimental results with eigenvalue solution results.

Mandal and Calladine (2002) developed a theoretical framework for the evaluation of the work of
Southwell (1931), that of Massey (1963) and that of Meck (1977). The analysis advocated the
extension of the original u/P —u Southwell plot, originally developed for columns, for the lateral

torsional buckling analysis of beams with initial imperfects.

Table 2.1 Comparison of variations of the Southwell plot studies (simply supported beams)

Author Buckling | Plot method Load condition Type of
Type imperfections

considered

Southwell | Flexural | §/P versus § | Axial force Uy

(1931)

Massey | LTB 6/M?versus | Uniform bending u, and 6,

(1963) 0 moment

Meck LTB u/M versus 6 | Uniform bending u, and 6,

(1977) and ¢/P versus moment

U Midspan point load

Mandal LTB u/P versus u Uniform bending u, and 6,

and moment

Cadalin

(2002)

* &, P are the deflection at mid-span and corresponding applied axial force respectively.

**@ , M are the angle of twist at mid-span and corresponding applied uniform bending moment.

2.5 Conclusions

As summarized in section 2.1, the behavior of beams with initial geometric imperfections has been
studied in multiple studies for hot-rolled, FRP and cold-form sections through mechanical and
experimental approaches. Capturing the effect of initial geometric imperfections on LTB behavior
through the Ayrton-Perry formula has been well studied through various studies related to
Eurocode 3 (EC 3) reported in Section 2.2. Scenarios investigated in these studies are limited to

simply supported members subjected to uniform bending moment or point load at mid-span. Also,
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the shapes of the initial geometric imperfections are assumed to be sinusoidal functions. Thus, a
finite element solution investigating the LTB behavior of geometrical imperfect beams is
developed in Chapter 3 accounting for imperfections given by superpositions of amplified
buckling modes. Relatively fewer stochastic studies are reported to investigate beams with initial
geometric imperfections as presented in Section 2.3 while no key parameters are found for design.
In Chapter 4, a throughout parametric study for displacement and stress based design criteria is
provided to depict key parameters in designing beams with initial geometric imperfections.
Experimental treatments for estimating the critical load for practical members are well developed
in studies summarized in Section 2.4. These studies focus on the prediction for the critical load
and overlook the estimation for the initial geometric imperfections. A trial is presented in Chapter
5 to adopt the Southwell to estimate the initial geometric imperfections through the load-
displacement curve generated in the finite element solution developed in Chapter 3.
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3. Finite element for the lateral torsional response of beams with

initial geometric imperfections

3.1 Scope and Objective

This chapter develops a simplified beam finite element formulation to predict the load-
displacement response of laterally unsupported beams with initial crookedness subjected to general
transverse loading. The present finite element solution is validated by comparison with results
based on the commercial software ABAQUS. A parametric study is then presented to investigate
the influence of various geometric parameters on the lateral torsional response of initially crooked

beams.

3.2  Statement of the problem and Notation
A beam with a doubly symmetric I-section is assumed (Figure 3.1) with span L is assumed to

have an initial lateral out-of-straightness (10S) u, (z) and initial angle of twist (IAT) 6,(z). The
beam is subjected to transverse loads q(z) . Under such loads, the beam deforms from
Configuration 1 to Configuration 2 (Figure 3.1) by undergoing displacementsv(z), u(z) and twist
0(2). The bending moments associated with the transverse displacements v(z) are M (z) The
loads are assumed to incrementally increase to /’tq(z),where A isascaling factor. The associated
transverse displacement function is Av(z) and the corresponding bending moments is AM (z)
As the beam deflects transversely, it undergoes lateral displacement u(/l,z) and angle of twist
6(4,2). Unlike the transverse response, u(4,z) and 6(4,z) are nonlinear functions of the load
parameter 4. It is required to determine the lateral and torsional response of the system u(i, z)
and 6(4,z) . As a matter of notation, the sum of the 10S u,(z)and the lateral displacement
u(i,z)is referred as the total lateral out-of-straightness U, (TLOS). Also, the sum of the IAT

6,(z) and the angle of twist 6(,z) is the Total Angle of Twist (TAT) (Figure 3.1). A right-

handed Cartesian coordinate system is adopted in which the z-axis is oriented along the
longitudinal direction and the x and y-axes (Figure 3.1) are parallel to lateral and transverse

directions, respectively.
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Figure 3.1 Model under investigation and deformed configurations

3.3  Assumptions

The following assumptions are adopted

1. The formulation is restricted to prismatic thin-walled members with doubly-symmetric
sections.

2. The cross-section is assumed to move as a rigid disk in its own plane during deformation (i.e.,
the beam cross-section follows the first Vlasov hypothesis (Vlasov 1961))

3. The transverse shear deformation within the middle surface of the cross-section is neglected
(i.e., the section is assumed to follow the second Vlasov hypothesis)

4. The material is linearly elastic isotropic and follows Hooke’s law

5. When characterizing the destabilizing term due to lateral torsional buckling, pre-buckling

effects are assumed to be negligible.
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3.4 Formulation

34.1 Total potential energy

At agiven load level Aq, the total potential energy for the member is given by
7=U+V (3.2)

in which U is the internal strain energy stored throughout the deformation of the member in going
from the initial crooked configuration to the final deformed configuration and V is the load

potential energy gained by the applied loads. The internal strain energy is given by
_1 L ”\2 1. "2 1 12 1. "2
u _EJ.O El (Av") o|z+5jO Elu o|z+§jO GJé dz+§j0 EC,0"dz (3.2)

in which E is the Young’s modulus and G is the shear modulus and the relevant section properties

are the strong axis moment of inertia |, = _[A y*dA, the weak axis moment of inertia |, = _[A X*dA |

the Saint-Venant torsional constant J = Z(bt3/3) and the warping constantis C, =1, (d —t)° /4.

The load potential energy V =V, +V, gained by the loads is the sum of two components;
V,=-— _[OL(ﬂ,q)(lv)dz due to transverse forces Aq undergoing transverse displacements Av and
V, due to weak axis bending moments in the deformed configuration undergoing lateral curvatures.

In Figure 3.2 coordinate system oxy is fixed in space while coordinate system ox'y’ rotates with

the section. The bending moments AM due to transverse loads, acting on a segment of beam of
length dz are denoted by the double headed arrow in Figure 3.2 and are assumed to preserve their
direction (i.e., conservative loading) as the beam deforms and rotates. As the cross section twists

fromangle 6, in the un-deformed configuration to angle 6, + &, the bending moment AM acting
about the un-deformed y axis induces a weak axis bending moment about the deformed x"' axis.

The projection of moment AM on the x' axis is AM,, =-AM sin(49+490). For small angles

(6+86,) one can write the approximation AM,, ~ —AM (6+6,) . The corresponding curvature

3/2
(Figure 3.2(b)) is given by —(u+u,) / {1+(u +U,) 2} which simplifies to —(u+u, ) for small
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lateral deflections u+u,. The load potential gain of an element of length dz due to weak axis
moment —M (6+6,) undergoing curvature —(u+U,)" is dV, =-M (¢9+<90)><[—(u+u0)"}dz ,

where the minus sign is consistent with the fact that the curvature depicted in Figure 3.2a is

opposite to the direction of the weak axis moment—AM (9 +6,) and the total potential gain for the

system is given by integration yielding V, :IOLAM (z)(u +u0)"(¢9+90)dz , and

V= [ aM (2)(u+u,) (0+6,)dz— [ (2q)(Av)dz (3.3)

Functions u,(z) and 6,(z) arethe 10S and IAT and are assumed to be known. In the first of term

Eq. (3.3), the pre-buckling deformation effect have been neglected in line with most lateral
torsional buckling solutions (e.g., Trahair 1993). The stationarity condition of the total potential
energy is evoked by setting 67 =0 . By performing integration by parts, one recovers the

governing differential equations of equilibrium

ElLV"+q=0 (34)
Elu"+A[M(2)(0+6,)] =0 (3.5)
EC,0" +AM (z)(u+U,) —GJ@" =0 (3.6)

The resulting boundary terms lead to the boundary conditions summarized in Table 3.1.
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Table 3.1: Possible boundary conditionsatends z=0 and Z=L

Essential boundary conditions Natural boundary conditions
oV’ is specified ElL,V'=0

ov is specified ElLV"=0

Su’ is specified ElLu"+M(z)(@+6,)=0
08" is specified EC,0"=0

ou is specified Elyu'”+[M (z)(9+490)]' _0
00 is specified GJOY'-EC,0"=0

In Egs. (3.4), (3.5) and (3.6), the governing equilibrium equation for the vertical displacement

v(z) is observed to be independent from those of the lateral displacement u(z) and the angle of
twist &(z). Thus, for a given transverse load q=q(z), Eq. (3.4) can be used to independently
solve for v(z) In contrast, Equations (3.5) and (3.6) are coupled and characterize the lateral
torsional buckling response of the beam. It can be verified that when the initial crookedness u, (z)

and 6, (z)vanish, one recovers the governing classical lateral torsional buckling neutral stability

conditions for a perfectly straight beam (e.g., Trahair 1993).
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Figure 3.2 Displacement field for (a) cross-section and (b) plan view configuration for load potential energy
expression
3.4.2 Closed form Solution for beam under uniform moments

A simply supported beam with initial out-of-straightnessu,(z),6,(z) is subjected to uniform

bending moments M (z) =M . It is required to characterize the lateral displacement and angle of
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twist in terms of the applied moments M . It is expedient to express the initial imperfection pattern

as a linear summation of n buckling mode shapes for a perfectly straight beam, i.e.,

(Uy(2) 6,(2)) = ¢, (u,(2).6,(z)) where u,(z),6,(z) are the buckling shapes for modes

m

m=12.n and ¢, isa scaling factor for modem.

The mode shapes for a perfectly straight beam are obtained by setting u, (z) ,6, (z) in Egs. (3.5)
and (3.6) to zero and +. The governing equations become El u™+AM&"=0 and
EC,0"+AMuU"-GJ#" =0 and the  corresponding  boundary  conditions  are
u(0)=u"(0)=6(0)=0"(0)=0u(L)=u"(L)=6(L)=0"(L)=0. The solution of the above
system of homogeneous of equations yields the critical moments M, and the buckling modes

u,(z) and@g,(z) are

M, =AM =m—|_”\/E|yGJ (mej C.l,

(3.7)

’El
u,(z)=¢, sm% em(z):¢m('\7;mml_yzjsinmfzm=1,2,..n

Using Fourier decomposition, a general IOS/IAT pattern can be expressed as a linear summation

of mode shapes, i.e.

(U(2) 6 (2)) Z¢< [MZE'LZ J>(sin%j (38)

where both sides of the above equation become equal as n — oo . For practical purposes, the series

will be truncated by taking only the first few modes. From Egs. (3.5) and (3.6), by setting
M (z) =M and substituting the IOS/IAT expressions from Egs. (3.8), one obtains the additional

displacements u(z) and&(z)
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’El 2 2?El
EIM+| EIyECW(mﬂ) + 250 11,6
M @ M, L L M, L . mnzj
= SIn L

u(z)=——2> ¢ ; . (3.9)
=
y EC, El (m”] +EIL,GJ (m”] —M?
"L L
W( 7°El JHV' (mﬂ_)z
Bl (M, L2 L
0(2)=Y g——om . sin(mﬂj (3.10)
"l EC (m”j +GJ (m”j _Miz L
v L L) El

For the special case where the initial geometric imperfections are assumed to be characterized by
the first buckling mode as (u,(z) 6,(2))’ =¢1[1,(7r2Ely/McrlL2)](sin 7z/L), Eq. (3.9) and

(3.10) simplify to

72El Y ([ 7%El
El M+ YIEILLEC | = | + Y 1ElLLGJ
2 w 2 y
M ! McrlL ! L McrlL . wZ
u(z)=——¢, - : sin| — (3.11)
El, P P ) L
ECWEIy I +EIyGJ I -M

2 ZEI 2
El, [ ML L) (2
ECW(”j +GJ ”j ELUE
L L) El

Equations (3.11) and (3.12) coincide with the work by Massay (1963).

0(z)=4¢,

3.4.3 Finite element formulation

The displacement fieldsu(z), 6(z) , and initial imperfections u,(z) and &,(z) are related to

the nodal displacements, i.e.,

u(2)=(N,(2))', fun}, 0(2)=(Ny(2))',,, {0y
uo(z): Nu(z)>TM{u0N}, 00(2)=<N0(Z)>T1X4{90N}

(3.13)

where N, (z), N,(z) are the shape functions given by

33



<Nu(z)>T (1-82°/1 +22°/1° | —z+22°/L-2°/17 | 82 /12 -22°/° | - 2°/ 1P + 2% /L)

1x4

(No(2)),, =(1-32°/1 +22°/° | 2-22°/L+2°/ 1 [ 32° /1" -22°/° | /1P - 2*/L)

(U ) =(u u u, u), (8,) =(6 6 6 ) are the vectors of nodal displacements,
(Up) =(Up Uy Uy UG), (850) =(6, 6 6, 6,) arethevector of nodal initial out-
of-straightness, and u,,u;,...,6, are the nodal displacements. The moment distribution within the

element is related to the nodal moments vectors M™ =(M, M,) through linear interpolation,

AM (Z)=/1<H(Z)>1x2 {M}le (3.14)

in which <H(z)>L2 =((-1+2z/L) (z/L)). From Eq. (3.13), by substituting into the energy

expressions Egs. (3.1)-(3.3), and omitting the strong axis bending terms as they are uncoupled

from the lateral torsional response, one obtains

1

”:§<UN>T [kel]{uN}+§< > [ 2] 10n }

Uy)' [Kq [{00)+A(uy) [k, {00y} + 2 {ugy ) [ Ky {8} + A {ug) [k, {00y )
(3.15)

in which [k, ]= Ely_[OLNI"N[jdz, and [k,,]=GJ IOLN;'N'HdHECWJ'OLNZ"Ngdz are the elastic

stiffness matrices pertaining to weak axis flexure and torsion/warping, respectively, and

[kg] = AIOL[—Ml(l— z/L)+M,(z/L)|N;TN,dz is the geometric stiffness matrix and the entries

of matrices [k, ] ,[K.,] and [kg] are provided in Appendix 3-A. By evoking the stationarity

condition and rearranging, one obtains

k. ielh+2[k, Jid} = 4 {F ()} 3.16

in which
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ka2 w0 ] e =fl

where [ke] is the elastic stiffness matrix, and {d} is the nodal displacement vector. The right-hand
side vector /I{F (d, )} = —/‘t[kg ] {d, } represents the external force vector induced by the initial out-

of-straightness. For a perfectly straight beam, the nodal initial out-of-straightness vector {do}

vanishes and so does the right hand-side of Eq. (3.16) . The resulting equation reverts to the well-

known eigenvalue problem
[k Jtet}+ 2[k, J{a} = fo} (317)

which can be solved for the critical load level 4 and corresponding buckling mode shape{d}.
This special case coincides the work by Barsoum and Ghallagher (1971). For a beam with 10S
and IAT, the right hand side of Eq. (3.16) does not vanish and the solution of Eq. (3.16) provides

a nonlinear relationship between the load factor 4 and the nodal displacements {d} .

3.5 Convergence study and verification for a perfectly straight beam

A convergence study is conducted by examining a 6m span simply supported beam with a

W250X45 cross-section (Section dimensions and properties are: depth d =266mm , flange

width b=148mm | flange thickness t =13mm , web thickness w=7.6mm , Saint-Venant

torsional constant J =261x10°mm* , weak axis moment of inertia Iy:7.03><106 mm* and

warping constant C, =1.13x10° mm®) subjected to a) a concentrated transverse force acting at
beam mid-span and b) uniform bending moments. The modulus of elasticity is E = 200,000 MPa
and the Poisson ratio is v =0.3. The beam is assumed to be perfectly straight. Thus, the right hand-
side of Eq. (3.16) vanishes. The resulting eigenvalue problem is solved for the critical load. A
mesh sensitivity analysis is conducted by modelling the problem using 2, 4, 8, and 16 elements.
The results shown in Table 3.2 indicate that no more than 8 elements are needed to predict the

critical load within four significant digits.
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Table 3.2: convergence study on the critical load

Number of Critical |\/|a/|\/|;*_16 Critical moment |\/|b/|\/|;_16 Moment
elements moments for for case (b) gradient
case (a) (kNm) (KNm) (Ma/Mb)
2 137.66 1.005 101.14 1.005 1.361
4 137.00 1.001 100.70 1.000 1.360
8 136.91 1.000 100.67 1.000 1.360
16 136.91 1.000 100.67 1.000 1.360

* M, =critical moment based on 16 elements in case (a), M, ,, = critical bending moments
based on 16 elements in case (b)

The moment gradient obtained in the last column of Table 3.2 compares to

CCAN=4Mmax/\/Mfm+4M,§+7M§+4M§ =1.265 based on the Canadian Standards

(CAN/CSA S16-14) whereM ,, M and M. are the bending moments at the quarter-span, mid-
span and three-quarter span points. The corresponding value in American Standards (ANSI/AISC

360-16) is Cyysc =12.5|M ,|/(2.5|M | +3|M 5|+ 4[M|+3]M|)=1.316 , that based on the

Australian Standard (AS 4100-1998) is C, s =1.7M ., / \/ M2 +MZ+MZ =1.388 and that based
on the Eurocode Guide (EN 1993-1-1:2005) is C, =1.365. For the case of uniform moments, the

present solution predicts a critical moment M of 100.7 kNm. This value nearly coincides with

that based on the thin-walled B310S element in ABAQUS of 99.5 kNm using 40 elements.
Another comparison is done by modeling the problem using the shell element S4R in ABAQUS.
The S4R element has 4 nodes with six degrees of freedom per node with reduced integration and
hourglass control. The mesh used involves six elements for each flange, eight elements along the
web height, and 180 elements along the span. The simply supported boundary conditions are
imposed by restraining the vertical, horizontal displacement and the rotation about the longitudinal
axis of both flanges and web at both ends. The critical moment obtained is 95.9 kNm which is 4.8%
percent lower than that predicted by the present element. The slight difference is due to the fact
that, unlike thin-walled beam elements, the shell solution captures shear deformation and
distortional effects. The corresponding buckling mode is depicted in Figure 3.3. A comparison of

the buckling modes shapes normalized with respect to the peak lateral displacement at the centroid
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of the mid-span @, (z = L/2) shows that the buckling mode shapes based on the present solution

essentially coincide with those based on B310S and S4R elements model in ABAQUS (Figure
3.4). Slight differences are observed in the angle of twist plots depicted in Figure 3.4 (b) where a
difference of 1.16% is observed between the present solution and the B310S solution and a 3.11%
difference with the S4R model.

Figure 3.3 Buckling shape for a 6-m span beam with W250X45 section under uniform bending moments
based on S4R model in ABAQUS
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Figure 3.4 First buckling mode for 6m straight beam based on a) present study, b) B310S solution and c) S4R
solution

3.6  Verification for a beam with initial geometric imperfections

3.6.1 Mesh sensitivity analysis

A beam with initial geometric imperfections, cross-section, span, and material properties identical
to those described in section 3.5 is considered in this section. The 10S u,(z) and IAT §,(z) are
assumed to follow the first buckling mode shape as obtained from the eigen-solution for the
perfectly straight beam in Section 3.5. The amplitude of the peak 10S at mid-span of the
compression flange isu, . (L/2)=u,(L/2)+(d/2)8,(L/2), in which subscript ¢ denotes the

compression flange, subscript 0 denotes the initial out-of-straightness, and d is the total section
height. The peak 10S u, . ( L/ 2) was set equal to L /1000 = 6mm. A mesh sensitivity analysis for
the present element is conducted by analyzing the beam using 2, 4, 8 and 16 elements as illustrated
in Figure 3.5. The lateral displacements at the centroid of the mid-span section against the the
number of elements when the applied moment is M =90.1kNm . The difference in lateral
displacement at mid-span as predicted by the 8 and 16 elements is found negligible. Thus, 8
elements in the model are judged to be adequate to capture the displacement response for beams

with initial out-of-straightness. In the following analyses, 40 elements are used in the present finite

element solution to obtain smooth curves for the additional lateral displacement u(z) and the

angle of twist9(z).
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Figure 3.5 Lateral displacement at centroid at mid-span versus the number of elements used in the present
finite element solution (applied moment = 90.1kNm)

3.6.2 Comparison with other solutions

The problem was solved using the present model and a nonlinear incremental load-deformation
analysis based on the S4R element shell FEA (Figure 3.6). The specifics of the S4R mesh are
identical to those of Section 3.5. Keyword NLGEOM in ABAQUS is adopted to evoke the
geometric nonlinear feature. Under the present model, the beam is meshed into 40 elements.

Figure 3.6 depicts the applied moments versus the peak total lateral displacement at compression
flange mid-span as given byuc (L/2)=u,(L/2)+u(L/2)+(d/2)[6,(L/2)+6(L/2)] where,

as matter of convention, the bar on top of an argument displacement denotes the total out-of-
straightness obtained by the summation of the initial out-of-straightness and the additional
displacement. When the applied moments are comparatively low, the peak total lateral
displacement predicted by the present finite element formulation is observed to coincide with that
based on the ABAQUS model. The difference between the two models is observed to slightly grow
with the loading level, but still agree within 2.2% within the range of deformations investigated.
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Figure 3.6 Bending moments versus total lateral displacement at the compression flange For W250x45 section

3.6.3 Verification and Comparisons

Four common cross-sections (Table 3.3) are examined using the present finite element solution
and the B310S element in ABAQUS to assess the validity of the present finite element solution.
The B310S element is a two-node linear element and has seven degrees of freedom (three
translations, three rotations and a warping deformation) for each node. The B310S model is
discretized into 40 elements along the span. The initial out-of-straightness is modeled directly by
input of the pre-calculated coordinates for the considered beam with initial out-of-straightness.
Option NLGEOM in Abaqus is evoked to apply the load incrementally and generate the load-
displacement relation in Figure 3.7.

Figure 3.7 shows that, for all four sections examined, the lateral displacement increases slowly
with the applied moments within the range M/M_, <0.8, but rises rapidly beyond this range. The

present finite element solution predicts a moment-displacement relationship that asymptotically

approaches the relation M/M_ =1, M_, being the elastic critical moments as determined by the

eigen-value solution of a perfectly straight beam.

The best agreement between the present finite element solution and B310S model is obtained for
the W250X28 section. When the additional lateral displacement at the compression fiber is

u, =L/270 the differencein M /M, predictions is 1.5% (Figure 3.7). This percentage difference
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decreases to 1.3% whenu_ = L/180, and 0.9% whenu, = L/90. The largest difference between the

predictions of the present finite element and B310S solutions is observed for the W250X58 section,

where the difference in M /M, is found to be 9.7% when the additional lateral displacement at
the extreme fiber isu, = L/270. This difference is found to marginally increase to 10.2% and 10.5%

when the displacements increases tou, = L/180 and u, = L/90, respectively.

Table 3.3 Section dimensions and geometric properties for the examined cross-sections

d b t w l, I, C. J
mm* | mm* | mm® mm?
mm x10° x10° %10 x10*

W250X18 | 251 | 101 | 53 4.8 22.4 9.1 14 2.2
W250X28 | 260 | 102 10 6.8 40.0 17.8 2.8 9.7
W250X45 | 266 | 148 13 7.6 71.7 70.3 11.3 26.1
W250X58 | 252 | 203 | 13.5 8 87.3 | 188.0 26.8 40.9
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Figure 3.7 Moment-lateral displacement relations for W250X18, W250X28, W250X45 and W250X58
obtained from B310S mode in ABAQUS

3.7 Effect of the 10S pattern on response for beams under uniform moments

In the absence of experimental measurements, previous studies (e.g., Kala and Melcher 2009 and

Nguyen and Chan et al. 2013) have assumed the initial out of straightness to follow a sinusoidal
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distribution. Other studies (Aguero et al. 2015 a,b) have postulated that initial geometric
imperfections to follow the first buckling mode for a straight beam. The validity of such

assumptions on the response need to be examined and is the scope of the following sub-sections.

3.7.1 Effect of IOS/IAT patterns
Consider a beam with a W250x45 under strong axis moment M that induces compression at the

top flange (Figure 3.8). It is assumed that the initial geometric imperfections are fully characterized
by the 10S u,(z) (defined at the section centroid) and the IAT 6, (z) for the cross-section. The
corresponding initial 10S at the compression flange is u, . (z)=u,(z)+(d/2)6,(z) and that at
the tension flange isu,_, (z) =u,(z)—(d/2)6,(z). It is assumed that both u,(z) and 6,(z) are
sinusoidal curves so that peak 10S u,_, =max (U, (L/2),u,_.(L/2)) may take place either at

the top flange under compression (Pattern a in Figure 3.8) or the bottom under tension (Pattern b
in Figure 3.8b) of the mid-span section. The peak 10S is specified to take some value such as

U,_, = L/1000 while the I0S at the other flangeu,_, ranges from -u,_, to +u,_,. Five 10S cases

(1 through 5) are considered
(Upp.Upq)=(L/1000)[ (11) (L,0.325)  (L0) (L-1) (0.1)]

where Case 1 corresponds to equal lateral 10S at both flanges (i.e., with no 1AT), Case 2
corresponds to first mode shape of the beam where the bottom flange undergoes a lateral
displacement equal to 32.5% of that of the top flange for the present problem, Case 3 corresponds
to a top flange 10S with no 10S at bottom flange, Case 4 corresponds to two equal and opposite
lateral displacements of both flanges, thus corresponding to the case with IAT but no 10S, and

Case 5 corresponds to bottom flange 10S (with no 10S at top flange).
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(@) (b)

............... Perfectly straight configuration
Imperfect beam

Figure 3.8 Illustration for the combination of 10S and IAT for (a) pattern a and (b) pattern b
Figure 3.9 (a) shows that a beam with a specified 10S a larger positive and a given load level, an

increase in IAT 6?0(2) corresponds to a larger total lateral out-of-straightness (TLOS)
displacement at the compression flange U, (Case a in Figure 3.8 a). However, for the case where
the IAT Ho(z) is negative (Figure 3.8 b), a larger IAT magnitude results in a smaller TLOS

displacement the compression flange since the cross-section rotates to the position of zero twist as
the applied load is increased before it undergoes a positive angle of twist. This observation

coincides with the characteristics of the closed form solution buckling solution where both u(z)

and 6(z) are positive.

Taking Case 1 (uin Ug_q ) =(L/1000)(1,0) which conforms to pattern (a) in Figure 3.8 (a) the load-

displacement curves for the lateral displacement at the compression flange/angle of twist at mid-
span are presented in the plot labelled as (1, 0) in Figure 3.8 (b). If the beam is installed upside

down, the compression flange in case (a) becomes the tension flange in case (b) (i.e.
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(uofp,uofq):(L/1000)(0,1)), and the behavior of the load-displacement curve would differ as

depicted in the plot labelled (0,1) in Figure 3.9. This suggests that the orientation of the section
influences the load-displacement curves.

In the absence of specific experimental measurements for initial geometric imperfections, past
studies on steel beams (Kala and Melcher 2009 and Nguyen and Chan et al. 2013) have been

postulated to conform to the first buckling mode shape. Such an approach corresponds to

(L/1000)(1,0.325) in the present study. The plots provided Figure 3.9(a), suggest that this
approach leads to conservative estimates for the lateral displacements and the angle of twist for
the cases (U, ,. U, )=(L/1000)(0,1) and (u,_,. U, ,)=(L/1000)(11) but corresponds to un-
conservative estimates for cases (uo,p,uo,q)=(L/1ooo)(1, 0) and (uo,p,uo,q)=(L/1ooo)(1, -1).

However, it is observed that the difference between all five cases considered decreases as the

applied moments decrease. For example, the ratio of moments for the two extreme cases

(Us_p»Up_q ) =(L/2000)(0,1) and (L/1000)(1,~1), is 25% when uc =30mm while the difference
between the case (uofp,uofq):(L/1000)(1,1) and (L/1000)(1,0.325) is smaller than 6%. The

corresponding difference in total angle of twist & for these two cases are found negligible when

6>0.15rad .
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Figure 3.9 Bending moments versus (a) peak total lateral out-of-straightness (TLOS) at section mid-height and

(b) total angle of twist (TAT) for (Uy_,.U,,)= (@ (L/1000)(11), () (L/1000)(1,0.325), (c)

(L/1000)(1,0), (d) (L/1000)(1,—1)and (f) (L/1000)(0,1) (peak lateral displacement is L/1000 in
all cases)
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3.7.2 Contribution of higher modes

A perfectly straight beam corresponding to that investigated in the previous section is examined
to obtain the first and third buckling modes by conducting an eigenvalue analysis. The extracted
buckling modes are then normalized so that the peak lateral displacement for the corresponding

mode at the top flange of mid-span section is equal to unity to reach the normalized buckling

modes {7,} and {77,} . A load-displacement analysis based on the present model is conducted
based on an I0S pattern given by a linear combination
(L71000)(p{m} +(1- p){ns})=6mm(o{m}+(1-p){n}) . Six cases are considered for
p»=10,5/6,4/6, 3/6 ,2/6,1/6 where p=1.0 corresponds to the case where 10S follows only

the first mode, and p =5/6 corresponds to the case where the magnitude of 10S due to the first

mode is 5mm and that due to the third mode is Imm, etc. Plots for the bending moments versus
the peak TLOS are provided in Figure 3.10. At a given bending moment level, the beam with the

lower contribution of the first buckling mode is observed to undergo a smaller lateral displacement.

The observation suggests that, for a given peak initial out-of-straightness uO_C(L/ 2) , the first

mode is consistently more detrimental and then the third mode and will thus be adopted in

subsequent investigations.
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Figure 3.10 Bending moments versus the peak total lateral out-of-straightness (TLOS) for the first and third
buckling modes superposition cases
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3.8  Proposed design criteria for beams with initial geometric imperfections

As depicted in Figure 3.6, an eigenvalue solution provides a clear-cut value for the critical
load/moments for an initially perfectly straight beam. Such an analysis does not incorporate the
IOS-IAT effects. To the contrary, a nonlinear analysis accounts for 10S-IAT effects but provides
no clear-cut value for critical load. To establish a design value, it is thus necessary to introduce
failure criteria for design. Two types of failure criteria can be considered:

(1) A serviceability criterion can be postulated such that it limits the peak additional lateral
displacementu(L/2)+(d /2)6(L/2) under service loads to a threshold value such as L /180,

L /360 etc. where the magnitude of such a threshold value depends on the type of application

involved.

(2) A stress based criterion, where the normal stresses induced by the combined normal stresses

induced by the strong axis momentM, , weak axis moment M, and bimoments B are not to
exceed the yield strength of the material F,, taken as 350MPa in subsequent runs, or a fraction

thereof ¢F,, to account for the presence of residual stresses such a criterion may take the form

o(2) =+ Mul2)h M, (2)b B(2)bd _ o (3.18)
, 2 1, 2 ¢, 4

X y w

in which, & is a fraction of the yield strength that accounts for the presence of residual stress. In
ANSI- AISC 360-16 the fraction & is taken as 0.7. The criterion in Eq. (3.18) is valid for Class 3
sections (i.e., non-compact in ANSI/AISC 360-16), and would yield conservative results for Class
1 or 2 section (compact sections). To obtained the normal stress at section z for the uniform
bending moment case, Eq. (3.18) is expressed in terms of the applied moment M as (Figure 3.11)
o(2)=+ M colse(z)g_ M si:10(z)%+ BC(;

X y

) bd
4

(3.19)

in which, B(z) is obtained by post-multiplying the elastic stiffness matrix [ke] of the relevant

element by the corresponding nodal displacements {d,}. When the angle of twist 6(z) in Eq.

(3.19) is small, one obtains
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a(z)z+|M—— g+ — (3.20)

The maximum compressive stress takes place at beam mid-span and is obtained by settingz=_L/2.

4

B

Figure 3.11 Geometric relationship for the projections of the applied moment on the bending axes

3.8.1 Verification of stresses

Consider a six-meter-span beam with W250X28 cross-section with 10S L/1000 =6mm based on

IOS that follows the first mode. For a beam under uniform bending moments, the normal stresses

have been computed using three different approaches as detailed in the following:

(1) Inthe present finite element solution, the internal forces (M,,M, and B) are obtained by post-
multiplying the elastic stiffness matrix [k, ] of the relevant element by the corresponding nodal
displacement {d,} to recover the nodal force vector {f{  =[k,],.{d.},,- The elements of nodal
forcv vector {f} contain the internal forces M,, M, B needed to compute the stresses from Eq.
(3.18).

(2) For a simply supported beam under uniform moments M (z)=M , the bending moments are

given from equilibrium, i.e., M, (z)=Mcosé(z), M, (z)=Msind(z) as illustrated in Figure
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3.11. However, the bimoment B(z) needs to be determined from the technique described in the

previous section. The stresses are then computed from Eq. (3.19).
(3) For the verification, the stress output as obtained from a B310S solution.

A comparison of the results is shown in Figure 3.12. All three solutions predict nearly coinciding
normal stresses. Thus, the present FEM solution in conjunction with Eqg. 3.18 will be used to

compute the normal stresses in subsequent sections.
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Figure 3.12 Comparison between normal stresses as determined by various techniques

3.8.2 Applying the displacement failure criterion-lllustrative Example

A simply supported beam with W250X45 cross-section has a 6m span and is subjected to uniform
bending moments M . The beam is assumed to be initially non-straight and to follow the first
buckling mode. Three 10S magnitudes are examined for the peak initial out-of-straightness at the
top flange u, ,=L/600=10mm u, =L/800=75mm and u, =L/1000=6mm . The
relationships between the bending moments and corresponding total lateral displacement at the
compression flange uc (L/2)=u,(L/2)+u(L/2)+(d/2)[6,(L/2)+0(L/2)]are compared in
Figure 3.13. All three cases exhibit an asymptotic behaviour towards the critical moment as
predicted by the eigenvalue solution for a hypothetically perfectly straight beam with similar

dimensions. For a given target total lateral displacement at the compression flange, an increase in

IOS is observed to decrease the corresponding bending moments attained. For example, if a total
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lateral displacement at the compression flange of Ue (L/2) =30mm is targeted, the cases where
the total peak 10S are L/600 , L/800 and L /1000, respectively correspond to 66.6%, 75.0%,
and 80.0% of the critical moments M_ of the perfectly straight beam (as determine by an
eigenvalue solution). Also, depicted in Figure 3.13 are the bending moments corresponding to a
additional peak lateral displacementu, = L /180 . Bending moment fractions of 0.77Mcr, 0.82Mcr

and 0.85Mcr are attained respectively for peak IOS =L /600 , L /800 and L /1000.
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Figure 3.13 Bending moments versus total lateral displacement at compression flange midspan for various
I0Sa) U, =L/1000=6mm b)u, =L/800=7.5mm andc)u,, =L/600=10mm

3.8.3 Illustrative example for applying stress failure criterion

A comparison between the stress predictions of ABAQUS-S4R and ABAQUS-B310S solutions
and those of the present study is provided in Figure 3.14 for the example defined in the previous
section. For a specified target peak normal stress of 70% of the yield strength, the present solution
is observed to slightly underestimate the peak bending moments compared to the ABAQUS S4R
shell model predictions. The present model predicts that the beam with W250X45 cross-section
attains 80.3% of the critical moments while the corresponding fraction of the W250X18 cross-

section is 91.2%. The present solution predicts that the peak normal stress as determined from Eqg.

(3.18) attains the threshold yield stress of 0.7F, =245MPa when the applied bending moment is

80.34 kNm (Figure 3.14 a). The corresponding prediction based on the S4R model is 83.9kNm, a
4.29% difference. In comparison, for the W250X18 section, Figure 3.14 (b) shows that the
moments predicted by the present model is 10.0 kNm while the corresponding value based on the
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ABAQUS model is 10.6 kNm, a 5.67% difference. For the W250X45 cross-section, the bending
moment-normal stress relationship based on all three solutions are in close agreement (Fig. 3.13a).
The plot based on the B310S element is observed to be close to that based on the present FEM for
small applied moments (i.e., M <60kNm ). Beyond this range, the response of the B310OS model
slightly departs from the present solution and merges with the response of the SAR model. To the
contrary, for the W250x18 beam, the difference between the applied moments from B310S
element and the present FEM is found to decrease as the normal stresses increase. For example,
when o =50MPa , the difference between the two models is 14.1%. When the peak normal

stresses at mid-span increase to o = 200MPa , the corresponding difference is 3.4%.
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Figure 3.14 Peak normal stresses for 6m-span simply supported beams with a) W250X45 and b) W250X18

Stress contours

The stress contours for the longitudinal stresses in the compression flange of the W250X45 cross-

section as predicted by the present model are illustrated in Figure 3.15 for applied strong axis

moment levels of M =60 ,70 ,80, and 90kNm . The maximum stresses as given by Eg. (3.18)
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are observed to occur at the flange tip of the mid-span section since the stress contributions of the

strong axis bending, weak axis bending and bimoments attain peak values at these locations.

(b) ﬂ

(@

(©) (d)
Figure 3.15 Stress contours predicted by the present solution for top flange under a) M =60.0 KNm , b)

M =70.0 kKNm,c) M =80.0kNm and d) M =90.0kKNm for simply supported beam with W250X45
cross-section (scaling factor for width=10x scaling factor for span)

Contributions of moments and bimoments to stresses

The applied moment M is normalized with respect to the elastic critical moments M, as
determined from the corresponding eigenvalue solution for the straight beam and the ratio M /M,

is plotted against the normalized peak displacement at the compression flange E normalized with

respect to the beam span (Figure 3.16).

The contribution of the internal forces to the normal stress (normalized by the yield strength) are
illustrated in Figure 3.16 for the four cross-sections considered. Figure 3.16 (a, c, e and g), show
that the normal stress due to the strong axis bending moments increases rapidly with the applied

moments and reach a plateau when the normalized peak TLOS is around 0.01.
At a normalized peak lateral displacement ratio u_c/ L =0.01, the stress level due to the strong axis

bending is found to take the values 0.17F , 0.25F , 0.49F and 0.80F, for W250X18, W250X28,

W250X45 and W250X58, respectively. These stress ratios correspond with moment of inertia
ratios of Iy/lX = 0.041, 0.045, 0.098, and 0.215 respectively, suggesting that the attained strong

axis moment stress ratio decreases as the ratio decreases.

In all cases, the normal stresses due to the weak axis bending moment and bimoment are found to

linearly increase with the increase in the normalized peak TLOS GC/L. As a result, for low load
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levels, the normal stresses are primarily due to strong axis bending. As the applied loads increase,

the share of normal stresses due to weak axis bending and bimoments increase compared to that
of the strong axis contribution which decreases with Ue / L as illustrated in Figure 3.16 (b, d, f,

and h). At a normalized peak TLOS of 0.03, the percentage of the normal stress due to weak axis

bending moment is around 50% of the total normal stress in all four cases.
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Figure 3.16 Normal stress ratio and percentage of normal stresses versus normalized peak displacement for
W250X18 (a b), W250X28 (c and d), W250X45 (e and f) and W250X58 (g and h)

3.9 Parametric study

39.1 Effect of beam span on bending moment and normal stress ratios

To investigate the influence of beam span, four simply supported beams with a W250X45 cross-
section with spans ranging from five to eight meters are investigated using the present solution.
The imperfection pattern is assumed to follow the first mode (as discussed in Section 3.7.2) and

the peak 10S is set to u, . =L /1000 in all cases, corresponding to values of a) 5mm, b) 6mm, c)

7mm and d) 8mm, respectively.

The relationship between the normalized peak TLOS GC(LIZ)/ L and the normalized bending

moments M /M, is depicted in in Figure 3.17 (a) for all spans examined. All four relationships

are observed to perfectly coincide, indicating that the span has no effect on the normalized

moment-displacement curves. Figure 3.17 (b) shows that for a given normalized peak total lateral
out-of-straightnessuc / L , the normal stresses ratio 0/ F, attained is found to decrease with the

span, suggesting that longer span beams can sustain a larger normalized peak displacement

compared to short span beams.
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Figure 3.17 (a) Normalized bending moments and (b) normalized normal stresses versus normalized peak
total lateral out-of-straightness (TLOS) for W250X45 with span from 5 m to 8 m
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3.9.2

Four simply supported beams with different section classes are examined. The W250x25 is taken

Effect of section class on normalized bending moments and normal stress

as a reference case (Case 1 in Table 3.4). For a yield strength of 350MPa, the web meets class 1
requirements according to CAN-CSA S16 (2014). The web thickness is then reduced so that it
becomes class 2 (Case 2), and then further reduced to become class 3 (Case 3) and class 4 (Case
4). The geometric parameters of the four sections are provided in Table 3.4. Figure 3.18 (a) shows
identical bending moment versus normalized TLOS in all four cases while Figure 3.18 (b), shows

a minor difference in stress ratios.

Table 3.4: Section properties for the four examined I-section class

Total web Web thickness Flange Flange
depth (mm) (mm) breadth thickness
(mm) (mm)
Class 1 257 6.1 102 8.4
Class 2 257 6.1 102 6.5
Class 3 257 6.1 102 5.0
Class 4 257 6.1 102 4.0
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SR S Class3  — —Class 4 07 [ e Class3 = =Classd |
:: I g 0.6 =
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Normalized Peak TLOS ;_,-_, I_-"L Normalized Peak TLOS u(/L

(@) (b)

Figure 3.18 (a) Normalized bending moments and (b) stress ratios versus normalized peak total lateral out-of-
straightness (TLOS) for various classes

3.10 Summary and Conclusions

A thin-walled-beam finite element solution was developed for the lateral torsional response of
steel beams with initial geometric imperfections. The validity of the solution was assessed by
comparisons against Abaqus shell models (using S4R elements) and thin-walled elements (using
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B310S elements). Two design criteria were proposed based on threshold values for (1) the total
lateral displacement and (2) the maximum normal stress. Illustrative examples were provided for
applying each of the criteria. Patterns of the initial geometric imperfections were studied and a
parametric study was performed to study the effect of spans and section class on the behavior of

examined beams. The main findings of the study are summarized as follows:

1. The present finite element solution reliably predicts the load-displacement behavior for

geometrically imperfect beams.

2. For a given peak initial lateral out-of-straightness, the most detrimental initial imperfection
patterns were found to be associated with the highest initial angle of twist where the other flange

has an equal and opposite lateral out-of-straightness.

3. When the initial imperfections are expressed as the summation of buckling modes, the most

adverse geometric imperfection pattern is found to be associated with the first buckling mode.

3. For the displacement based design criterion, it is observed that only the magnitude of the initial
imperfection affects the response of the beam. Thus, the LTB resistance of a beam is solely

influenced by the magnitude of the initial imperfectionu, . , and the threshold displacement

chosen by the designer.

4. The stress ratios o/ F, due to minor axis bending and warping are found to linearly increase
with the normalized peak additional lateral displacement T, /L while normal stress ratio <7/Fy

due to major axis bending reaches a plateau value.

5. According the stress-based design criterion, for a given normalized peak TLOS u. / L the stress

ratio o/ F, is found to decrease with the beam span.

6. The present model suggests that web thickness does not influence the normalized moment versus

Uc / L response and to have a rather minor role in the stress ratio o/ F, versus Uc /L response.
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Appendix 3.A. Matrices in Finite Element Solution

This appendix provides the explicit expression for the matrices in the finite element solution. In

Eq.(3.16), [ke] and [kg] shall be computed numerically as follows

Elastic stiffness matrix [k, |

7 sl T o1
{'2F¢ THT 23y O
T 01 J TS
‘g9 MO DFTT 199
0 0
0 0
7 . 0E T 0
| "oFT I ‘JF9 O
1 0 a 15
279 /Mo 2FTl o9
0 0
0 0

-
=]

Fichd gy

k-]
k-]

159 HI1

N
[

5T =39

739 HIT

T 0f 7 01
‘27T U 279 O
T 0 7 1§
‘079 M JFI1 99
0 0
0 0
7 4 T 0r
‘o3t IOt DF9 o
T 01 T 1S
‘279 Mo JFT 99
0 0
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Geometric stiffness matrix [kg]

0 0
0 0
01 o 01 ¢
T/ I 6
01 701 _ 701
11 o
0 0
0 0
113 £ 01

0
0
1}
01
...:._.n
0
0
0 01
T TH
01
....._.u
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4. Parametric study for proposed design equations

4.1 Objectives

The present chapter complements the study in Chapter 3 by identifying the key parameters
affecting the moment fraction attainable based on the displacement and stress criteria proposed in
the previous chapter. The influential dimensionless parameters are first extracted from the closed
form solution for an initially crooked beam under uniform moments. Next, the parameters

identified are extended to investigate other loading cases.

4.2  Considered beams for the parametric study

A total of 21 cross-sections (Table 4.1) among common W150 to W310 sections in Part 6 of
Handbook of Steel Construction 2016 are selected for the parametric study. The dimensions and
section properties based on the idealized sections are provided in Table 4.1. In the calculation of
section properties rounded fillets were omitted to compare the results of the present model to that
of shell solution which does not model fillets. All spans were selected to lie within the range
L. <L<L

min — max !

where the lower limit L, by equating the equation for the elastic LTB to
0.67M(Eq. (4.1)) for class 1 and 2 sections which is based at the border of the elastic LTB
buckling failure and inelastic LTB in the Canadian design standard (CAN/CSA S16-14) for beams

under uniform bending moment (i.e. C.,, =1 ). For class 3 section, the plastic moment M | in

Eqg. (4.1) shall be replaced by the yield moment M, .

7 J2El EC
L. = S (4.1)

" ELG) +J(E1,63) +4E71,C, (067M, )’

The upper limit L, is taken as the lesser of 2L, and 12m given that beams longer than 12m

would require splicing and would thus normally avoided by designers.
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Table 4.1 Dimensions and section properties for the considered cross-sections in the parametric study

Section d| b | t | w | span| A IX ly J Cw
mmM*2 [mn™ 4 | mm™4 | mm*4 fmn*4
x1073 |x1076 [x1076 (x1074|x10"9
W150x24|160| 102 [10.3| 6.6 | 5.37 | 30.6 | 134 | 1.8 | 9.3 | 10.2
W200x42|205| 166 |11.8( 7.2 | 8.74 | 53.1 | 409 | 9.0 | 22.2 | 84.0

W200x36(201| 165 |10.2| 6.2 | 8.68 | 45.7 | 344 | 7.6 | 14.5 ] 69.6
W150x18|153| 102 | 7.1 | 58 | 537 | 229 | 9.2 | 1.3 | 3.7 | 6.7
W200x31|210| 134 |10.2| 6.4 | 7.05 | 40.0 | 31.4 | 4.1 | 11.9 | 40.9
W250x45(266| 148 |13.0( 7.6 | 7.79 | 57.2 | 71.1 | 7.0 | 26.1 |113.0
W250x39(262| 147 |11.2| 6.6 | 7.74 | 49.2 | 60.1 | 59 | 16.9 | 93.4
W?200x27{207| 133 |84 | 58 | 7.00 | 339 | 258 | 3.3 | 7.1 | 325
W200x22{206| 102 | 8.0 | 6.2 | 5.37 | 28.6 | 200 | 1.4 | 57 | 13.9
W150x14|150{ 100 | 55| 43 | 526 | 17.3 | 69 | 09 | 1.7 | 4.8
W250x28(260| 102 |10.0| 6.4 | 5.37 | 36.3 | 40.0 | 1.8 | 9.7 | 27.7
W150x13|148( 100 | 49| 43 | 526 | 16.1 | 6.1 | 0.8 | 14 | 4.2
W250x33|258| 146 | 9.1 | 6.1 | 7.68 | 41.7 | 48.9 | 47 | 9.9 | 73.2
W310x45(313| 166 |11.2| 6.6 | 8.74 | 56.9 | 99.2 | 8.6 | 19.1 |195.0
W200x19|203| 102 | 6.5| 5.8 | 5.37 | 248 | 166 | 1.2 | 3.6 | 11.1
W200x21{203| 133 |64 | 5 | 700| 270 | 198 | 25 | 3.6 | 24.3
W250x25(257| 102 | 8.4 | 6.1 | 5.37 | 323 | 342 | 15 | 6.5 | 23.0
W310x33|313| 102 |10.8| 6.6 | 5.37 | 41.8 | 65.0 | 1.9 | 12.2 | 43.8
W310x39(310| 165 | 9.7 | 5.8 | 8.68 | 49.4 | 85.1 | 7.3 | 12.6 |164.0
W250x241253| 145 | 64| 5 | 763 | 31.1 | 347 | 3.3 | 40 | 49.5
W310x31|306f 164 | 74| 5 | 863 ] 393 | 654 | 54 | 6.1 [121.0

(mm) (m)
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4.3 Moment ratios based on threshold displacement criterion

431 Formulation

Chapter 3 formulated expressions for the additional lateral displacement u(z) and the angle of
twist 6’(2) for a beam under uniform moments M with a general initial out-of-straightness

pattern of the form

(U(2) a(2)) =4, <1 (R’ZZE'LZ ]>sin e (4.2)

n
m=1 crm
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inwhich M, =AM = myz/L\/ElyGJ +(mzE/L) C,l, is the critical moment corresponding to

buckling mode m . The corresponding response as characterized by the additional displacements

u(z) and €(z) was found to take the form

’El 2 ’El
EIM -+ 2 el EC,[ ™| +| 222 |E1,G
M ! McrmL ’ L McrmL ! . mrz
y =t EC,El (”j +EI1,GJ (”j —M?
"L L

2 ZEI 2
M?[ 7 ] +M(mﬂj
El [ ML L

" ~ sin(mﬂj (4.4)
(mﬂj +Gj(mﬂj ML

El,

(4.3)

L

Consider the special case where the initial imperfections follow the first mode. By setting ¢, #0
and ¢, =¢, =...4..=0 in (4.2) and setting z=L/2 to recover the peak lateral 10S u, (L/2) at

the compression flange located at a height d /2 , one obtains

M, L

cr

uo_c(L/2):u0(L/2)+(d/2)90(L/2):¢1[1+(d/2)”2E|y] (4.5)

, - If the peak lateral 10S is not to exceed a

in which M, =M., = (z/L)E,GJ +(7E/L) C,|
threshold value L/y, , the amplitude ¢, associated with the an initial imperfection following the

first buckling mode is obtained by equating u,_, (L/2) to L/y, yielding
L

7 (1+(d/2)7,;E|I_Zj

cr

(4.6)

¢ =

Under applied moments M , the corresponding additional peak lateral displacement uC(L/Z)

takes place also in the compression flange of the mid-span section and is obtained from (4.3) and
(4.4) as
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U, (L/2) =u(L/2) +(d/2)6(L/2) = M_M {“%;\[AEEJ 4.7)

From Eq. (4.6) by substituting into Eq. (4.7), one obtains

L(M/Mcr)

UC(L/2)27i(1_M/Mcr)

(4.8)

By adding the initial out-of-straightness u, . =L/, to both sides of Eq. (4.8), the total lateral out-
of-straightness at mid-span section u,, (L/2) of the compression flange is obtained as

GC(L/2)=UC(L/2)+UOC(L/2)=L[ﬁ} (4.9)
7i - cr

Solving Eq. (4.9) for M /M,

r

one obtainsM /M, :l—[L/GC (L/Z)yi]. If the total lateral out-of-

straightness GC(LIZ) is not to exceed the specified threshold value GC(LIZ): L/y+L/y, , the

magnitude of the corresponding moment M, is given by

M?’,Yi =1— Y
M Vr7i

cr

(4.10)

In the absence of other information, typical threshold values for initial out-of-straightness y, can

be taken consistent with allowable camber and sweep limits for beams provided in Part 6 of the
Handbook of Steel Construction (2016) and plumbness limits for column as provided in Clause

29.3.3 of CAN-CSA-S16 (2014) and could be in the order of y; =1000, 1500, ...etc. Also, in the
absence of additional application-specific information for beams, typical threshold values of »

could be in the range 180-360 in a manner consistent with displacement thresholds specified in
informative Appendix D of CSA/CAN S16-14.

The moment ratios M /M, as computed from Eq. (4.10) are provided in Table 4.2. For

comparison, the critical moments M (FEA) were obtained based on the present eigenvalue

analysis to characterize the critical moment for the hypothetical case of a perfectly straight beam.
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Also, the moment M (FEA) corresponding to the threshold GC(LIZ): L/y +L/y, is obtained

based on the finite element formulation developed in Chapter 3. Threshold initial out-of-

straightness values of y, =1000, 1500, 2000 are taken and a threshold for the additional
displacement of » =180 is assumed. The results in Table 4.2 show that both approaches lead to
essentially identical results. A plot of the results is provided in Figure 4.1where the moment M

(as obtained from the present FEM) corresponding to a peak additional lateral displacement at the

compression flange u, = L/180 is normalized by the critical moment M, for a perfectly straight
beam is plotted against the ratio of the yield moment to the critical moment ratio M, /M, which
can be regarded as a measure of beam slenderness (for a given section M, /M, increases as the

span increases). In a manner consistent with the predictions of Eq. (4.10), the moment resistance

ratio M, /M, is found to be independent of the beam slenderness and solely dependent upon
the 10S magnitude selected. For a selected threshold lateral displacement » =180, the ratios

M, I M, are found to decease as the initial out of straightness increase (i.e., as y, increases).
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Table 4.2 Moment resistance ratios between the present finite element solution and the prediction of Eq. (4.10)

Critical | Critical
moment | moment
Section |Span|based on|based on
FEA CSA

(kNm) | (kNm) Displacement based moment | Moment resistance fraction

resistance fraction (FEM) based on Eq. (4.10) Percentage difference

(m) | (kNm) | (kNm) [L/1000 |L/1500 |L/2000 [L/1000 |L/1500 (L/2000 |L/1000 |[L/1500 |L/2000
\W150x24{5.37| 31.4 314 0.847] 0.898] 0.924] 0.848| 0.893] 0.917] 0.12%| 0.56%| 0.76%
\W200x42[8.74| 66.9 67.0 0.847] 0.898] 0.924] 0.848| 0.893] 0.917] 0.12%| 0.56%| 0.76%
\W200x36/8.68| 51.0 51.0 0.847] 0.898] 0.923] 0.848| 0.893] 0.917] 0.12%| 0.56%| 0.65%
W150x18/5.37| 17.0 17.0 0.847] 0.898| 0.924] 0.848| 0.893] 0.917] 0.12%| 0.56%| 0.76%
W200x31{7.05| 41.9 41.9 0.847] 0.898| 0.924] 0.848| 0.893] 0.917] 0.12%| 0.56%| 0.76%
\W250x45[7.79| 73.7 73.7 0.847] 0.898| 0.924] 0.848| 0.893] 0.917] 0.12%| 0.56%| 0.76%
W250x39[7.74| 56.1 56.1 0.847] 0.899] 0.924] 0.848| 0.893] 0.917] 0.12%| 0.67%| 0.76%
W200x27/7.00] 30.1 30.1 0.847] 0.898] 0.924] 0.848| 0.893] 0.917] 0.12%| 0.56%| 0.76%
W200x22[5.37| 22.7 22.7 0.847] 0.898] 0.924] 0.848| 0.893] 0.917] 0.12%| 0.56%| 0.76%
W150x14{5.26| 10.4 10.4 0.848] 0.898| 0.923] 0.848| 0.893] 0.917] 0.00%| 0.56%| 0.65%
W250x28/5.37| 33.7 33.7 0.847] 0.898] 0.924] 0.848| 0.893] 0.917] 0.12%| 0.56%| 0.76%
W150x13[5.26] 8.9 8.9 0.847] 0.898] 0.924] 0.848| 0.893] 0.917] 0.12%| 0.56%| 0.76%
W250x33[7.68| 39.9 39.8 0.847] 0.898] 0.924] 0.848| 0.893] 0.917] 0.12%| 0.56%| 0.76%
W310x45[8.74| 66.1 66.1 0.847] 0.898] 0.924] 0.848| 0.893] 0.917] 0.12%| 0.56%| 0.76%
W200x19[5.37| 16.7 16.7 0.847] 0.898| 0.923] 0.848| 0.893] 0.917] 0.12%| 0.56%| 0.65%
\W200x21{7.00] 19.4 19.4 0.849] 0.898] 0.923] 0.848| 0.893] 0.917] 0.12%| 0.56%| 0.65%
W250x25[5.37| 33.7 25.9 0.846] 0.899] 0.924] 0.848| 0.893] 0.917] 0.24%| 0.67%| 0.76%
\W310x33|5.37| 40.4 40.4 0.847] 0.898| 0.923] 0.848| 0.893] 0.917] 0.12%| 0.56%| 0.65%
W310x39[8.68| 51.6 51.6 0.847] 0.898] 0.924] 0.848| 0.893] 0.917] 0.12%| 0.56%| 0.76%
W250x24{7.63| 22.9 22.9 0.846] 0.898| 0.923] 0.848| 0.893] 0.917] 0.24%| 0.56%| 0.65%
W310x31/8.63| 33.8 33.8 0.847] 0.898] 0.924] 0.848| 0.893] 0.917] 0.12%| 0.56%| 0.76%
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Figure 4.1 Moment resistance ratio based on displacement criterion for 21 common cross-sections under
uniform bending moment

432 Extension of the approach to other loading cases

While the FEM findings of the past section were evident given the closed form expression in Eqg.
(4.10), itis not possible to obtain a similar closed form solutions of cases of non-uniform moments.
Thus, the present section aims at investigating whether similar findings can numerically be
obtained for other loading conditions. Two cases are considered; uniformly distributed loading and
mid-span point loading. As depicted in Figure 4.2 a, b, it turns out that the moment resistance ratio

M, /M, obtained is also (1) independent of the slenderness M, /M., (2) solely dependent on

the initial out of straightness y; , and (3) its value can be accurately predicted by Eq. 4.10. It is

emphasized that while Eq. (4.10) was developed for the case of uniform moments, the FEA results

suggest that it remains equally valid for uniformly distributed and mid-span point loading.
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Figure 4.2 Moment resistance ratio based on displacement criterion for considered sections under (a) uniform
distributed load and (b) point load at mid-span with three scenarios for out-of-straightness
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433 Effect of span

To investigate the effect of the span on the moment resistance ratio attained based on the
displacement criterion, a beam is considered with a W200X36 cross-section under uniform
bending moment with spans varying from 6 to 10m which correspondto L/b=36.4 to L/b=60.6
(Figure 4.3). As in previous sections, three initial out-of-straightness scenarios are considered

7, =1000, 1500, 2000. For a given out-of-straightness, the moment resistance ratio is found to be

independent of the slenderness L/b .

1
= 0.95
= ® ° ° ° °
= 09 = * * * &
=]
S 085 | 2 2 2 x
=
=]
g 038
% 0.75 =7, =1000 | |
8 W200X36 ——7, =1500
E 0.7 | —e—, =2000 B
g 0.65
b=

0.6

35 40 45 50 55 60 65
Ljb

Figure 4.3 moment resistance ratio for W200X36 cross-section with varying spans

434 Nominal moment resistance based on displacement criterion
In the previous section, it was observed that the only parameter influencing the moment resistance

ratio M, I M., istheratio of the initial out-of-straightness coefficient and the displacement target
value 7, /¥ . When the displacement target value is set to L/180, the moment resistance ratios are
always found to be 0.847, 0.898 and 0.924 for y, =L/1000,L/1500 and L/2000 for examined

beams, respectively. Thus, if the effect of out-of-straightness is to be incorporated into the solution,

an out-of-straightness reduction factor can be applied to the critical moment M, . The value of
the reduction factor is 0.847, 0.898 and 0.924 for y, = L/1000,L/1500 and L/2000 respectively.

For example, the nominal design moment M accounting for initial out of straightness is given by
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M, =0.847M_ when y, =L/1000 . The reduction factor is applicable for uniform moments,

uniformly distributed loading, or mid-pan point loading.

Figure 4.4 (a) depicts the nominal moment normalized with respect to the plastic moment versus
the span (presented using the dimensionless slenderness M, /M, ) for beam with a W150X14
cross-section for three out-of-straightness scenarios (7; =1000,1500, 2000 ) in addition to the case
of zero out-of-straightness , = as extracted from the eigen-solution. The results indicate that
the nominal resistance ranges from 84.7% of the critical moment for y, =2000 to 92.4% for

7 =1000.

Strictly speaking, the above findings are limited to the elastic range of the response as no attempts
were made to model the effect of plasticity nor to account for residual stresses. One recalls that for
a perfectly straight beam of a Class 1 or 2 cross-section, CAN-CSA-S16 (2014) stipulates that

whenM_, <0.67M  , the nominal resistance is governed by the inelastic lateral torsional buckling
resistance as given by Mn=1.15Mp[1—0.28Mp/MCJ where the elastic critical moment

expressions for M as provided in the present standard do not account for initial-out-of-
straightness effects. The present study provides a basis to account for such effects by simply
replacing M, by M so thatM  <0.67M, the nominal resistance would be governed by
inelastic  lateral  torsional buckling as given by the modified equation

M,,, =115M [1—0.28M p/Mm ] It is clear that the proposed equation reverts to the present

ny.7
standard equation for the case of no initial out-of-straightness y —o whereM_— M. The
resulting plots are presented in Fig. 4.4b for the case y, . The validity of proposed modified

equation would have to be verified by conducting a finite element analysis that incorporates such
effects and is outside the scope of the present study.
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Figure 4.4 Normalized nominal moment resistance for W150x14 section (7 = L/180) (a) Elastic range for
various out-of-straightness values ( ; =1000,1500, 2000, c ) and (b) total range for the case ; =1000

Moment ratio based on the threshold stress criterion

Formulation

For a wide flange beam subjected to biaxial bending and warping, the normal stresses a(x, Y,Z, a))

at a point with coordinates(x, y,) of a section z is given by
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a(x,y,z,a)):MXI(Z)y+M1(Z)x+BéZ)a) (4.11)

X y w

The peak stresses o, (z)take place at the corner points of the section where the point coordinates

have maximal values, i.e., (X, Y, ®)=(Xyu: Ymax: @max ) =[P/ 2,d/2,bd /4] . By defining the

sectionmoduli S, =1,/y.., ,S,=1,/x,.,and S, =C, /@, one has
M M B
oo (2) =M () M, (2) B(2) (4.12)
S, S, S,

Noting that M, (z)=-Elu"(z) and B(z)=-EC,0", the magnitude of maximum stress in the

section is can be expressed as

4

u(z)" ) EC,|6(z)

S S S

X y w

El,

(4.13)

From Eqs. (4.3) and (4.4), by differentiating u(z) and 6(z), and substituting into (4.13) one

(” Jotl (£t o )
sm == |+|o, ! sin| —
L M, LM, -M L
=M+ E¢1 7[ 9 bd)z . sin[”—zj

S, M, L 2 4 (M,L L

The peak normal stress takes place at mid-span where z =L/2 and is given by

M, M zY|b bd(7%El
L/2 Ed| = || =+— 4 4.15
Omar = maX( / ) Sx Ivlcr_l\/I ¢1£Lj [2 4 (MCrLZJ:| ( )

From Eq. (4.15), by substituting into Eq. (4.5), one obtains

obtains

amax(z)=SM+E¢{|xmax|(’[j

X

(4.14)

2
oo (L12) =L [ M| 7ED (4.16)
Sx Mcr_M 27|L
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The peak stress is set to a specified threshold fraction & of the yield stress, i.e., o=¢F, .
Typically, design standards assume the residual stresses around 0.3F,—0.33F, . Thus, the
conditiona, ., <0.7F, or o, <0.67F, must be satisfied for the material to remain in the elastic
range and the typical values for the threshold stress fraction are £=0.67,0.7. By equating

O (L/2) as obtained from (4.16) to the threshold value F, , one obtains

2
cp M M _|7Eb (4.17)
’ Sx Mcr -M 27/|L
Rearranging, one has
2
M? —(MC, + ”ZEbLSX +ngst|v| +£F,SM, =0 (4.18)
Vi

Solving Eq. (4.18) for the moment M , one obtains

M =2 m, +ZEDS, veFs, |1 M, +7 EbS, +5F,S, | —4sS,F M, (4.19)
2 2y,L 2 27.L

Dividing both sides by M, one recovers the moment ratio M, . /M, attainable based on the

threshold stress ng

2
M 2 2
ne g 2P DM My D e 2B M o Mg My g 20)
M, 2| 21| FL)\M, M, | 2 27, F,L )M, M., M,

Equation 1.16 indicates that the moment ratio attainable depends on the four dimensionless

parameters 7, , ¢ , Eb/F.L and M,/M, where one recalls that M, =SF,

M, = n/L\/ElyGJ +(7rE/L)2 C,l, andratio M, /M will be adopted in subsequent sections to

provide a dimensionless measure of the section slenderness.
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442 Comparison and Verification
The comparison for the moment ratios M, / M, as predicted by Eq. (4.20) and those based on

the present FEM (Table 4.3) are found to be nearly identical, with a maximum difference of 0.7%.

Equation (4.20) indicates that the moment ratio M, . /MCr depends on seven parameters

7i,&,M,/M_,L/d,d/b,b/t,d/w. In the following sections, the effects of each of the seven

parameters are assessed by varying each parameter at a time while keeping the other six constants.
An idealized (i.e., with no fillets) W200x36 with (d/b,b/t,d/w=1.22, 16.18, 32.4) cross-section

with a stress fraction £ =0.70 and an out-of-straightness coefficient y; =1000 is used as a

reference case when assessing the geometric dimensionless parametersd/b,b/t,d/w.
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Table 4.3 Percentage difference in predicted moment resistance ratio based on FEA critical moment and CSA critical moment approach for Beams under
uniform bending moment ( Eb/FyL =11.54 , ¢=0.70 and @, =1.0)

Critical | Critical Yuﬂd 10
critical

moment | moment moment FEA moment (kNm) for Moment resistance fraction

Section |Span|based on|based on . . . Moment resistance fraction* based on Mcr-CSA** Percentage difference***
ratio imperfection
FEA CSA based on (©2=1.00)
kN kN
(kNm) | (kNm) |22

(M) | «Nm) | «Nm) | ™, /M, | 171000 | /1500 | /2000 | /1000 | L/1500 | L/2000 | L/1000 | L/1500 | L/2000 | L/1000 | L/1500 | L/2000
W150x24]5.37] 31.4 | 314 | 19 | 260 | 273 | 280 | 0.828 | 0.869 | 0.893 | 0.829 | 0.869 | 0.893 | 0.0% | 0.1% | 0.1%
W200x428.74] 669 | 67.0 21 | 567 | 593 | 60.8 | 0847 | 0.886 | 0.909 | 0.846 | 0.886 | 0.908 | -0.1% | -0.1% | 0.0%
W200x36/8.68] 51.0 | 51.0 23 | 440 | 459 | 470 | 0863 | 0.900 | 0.921 | 0.862 | 0.899 | 0.920 [ -0.2% | -0.1% | -0.1%
W150x185.37] 170 | 17.0 2.5 147 | 153 | 157 | 0.868 | 0904 | 0925 | 0.867 | 0.904 | 0.924 | -0.1% | 0.0% | 0.0%
W200x31[7.05] 41.9 | 41.9 25 | 364 | 379 | 388 | 0869 | 0.905 | 0925 | 0868 | 0.904 | 0925 | -0.1% | -0.19% | 0.0%
W250x45)7.79] 737 | 737 25 | 642 | 668 | 683 | 0870 | 0906 | 0.926 | 0870 | 0.906 | 0926 | -0.1% | 0.0% | 0.0%
W250x397.74] 561 | 56.1 29 | 494 | 513 | 524 | 0881 | 0915 | 0934 | 0880 | 0914 | 0933 | -0.1% | 0.0% | 0.0%
W200x277.00] 30.1 | 30.1 29 | 265 | 275 | 281 | 0882 | 0916 | 0935 | 0881 | 0915 | 0934 [ -02% | -0.1% | -0.1%
w200x225.37| 227 | 227 | 30 | 201 | 208 | 213 | 0884 | 0917 | 0936 | 0883 | 0917 | 0935 | 0.0% | 0.0% | 0.0%
W150x14/5.26] 104 | 104 | 3.1 9.2 9.6 98 | 0.886 | 0919 | 0937 | 0.885 | 0918 | 0937 | -0.1% | -0.1% | -0.1%
W250x28/5.37| 337 | 337 | 32 | 300 | 311 | 317 | 0888 | 0920 | 0938 | 0887 | 0920 | 0938 | 0.0% | 0.0% | 0.0%
W150x13/5.26] 8.9 8.9 3.3 7.9 8.2 83 | 0890 | 0922 | 0940 | 0.889 | 0921 | 0939 | -0.1% | -0.1% | -0.1%
W250x337.68] 399 | 398 | 33 | 355 | 368 | 375 | 0891 | 0923 | 0940 | 0890 | 0922 | 0940 | -0.1% | -0.1% | 0.0%
W310x45/8.74] 661 | 661 | 34 | 589 | 610 | 621 | 0891 | 0923 | 0.940 | 0.890 | 0.923 | 0.940 | -0.1% | -0.1% | 0.0%
wW200x19/5.37] 167 | 167 | 34 | 149 | 154 | 157 | 0892 | 0924 | 0941 | 0.891 | 0923 | 0941 | -0.1% | 0.0% | 0.0%
w200x21|7.00] 194 | 194 | 35 173 | 179 | 183 | 0.894 | 0925 | 0942 | 0893 | 0924 | 0942 | -0.1% | -0.1% | -0.1%
W250x255.37| 337 | 259 | 36 | 209 | 311 | 317 | 0887 | 0920 | 0938 | 0894 | 0925 | 0942 | 0.7% | 05% | 05%
W310x33]5.37| 404 | 404 | 36 | 361 | 374 | 380 | 0894 | 0926 | 0943 | 0894 | 0925 | 0942 | 0.0% | 0.0% | 0.0%
w310x398.68] 516 | 516 | 37 | 463 | 479 | 487 | 0896 | 0927 | 0944 | 0896 | 0927 | 0943 | -0.1% | 0.0% | 0.0%
W250x24]7.63] 229 | 229 | 42 | 206 | 213 | 217 | 0901 | 0931 | 0947 | 0901 | 0930 | 0946 | -0.1% | -0.1% | 0.0%
Ww310x31/8.63] 338 | 338 | 44 | 305 | 315 | 321 | 0903 | 0932 | 0948 | 0903 | 0932 | 0948 | -0.1% | 0.0% | 0.0%

Min -0.2% | -0.1% [ -0.1%
Max 0.7% 0.5% 0.5%
Mean 0.0% 0.0% 0.0%

Stan Deviation 0.0018 | 0.00133 | 0.00112
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443 Effect of slenderness
The ratio MM,/MCr for the sections in Table 4.1 is determined based on solution (Eqg. 4.20) for a

yield stress fraction of £=0.70 . Three scenarios are considered for the out-of-straightness

coefficient; y, =1000,1500,2000 . Figure 4.5 (a) shows that an increase in the slenderness
M, /M, corresponds to an increase in the moment resistance ratioM / M, . For example, when
7; =1000 , a beam with a slenderness M, /M, =4.06 attains a moment resistance ratio of 0.894
and when M, /M, reduces to 1.75, the moment resistance ratio drops to 0.808. Also shown is a
beam with a relatively low 10S (e.g., »; =2000) is able to attain a relatively high moment
resistance ratio compared to a beam with higher 10S (e.g., 7, =1000 ). For example, for a
slenderness M, /M_, =2.36, the moment resistance ratio attained is 0.916 when y, = 2000 but

drops to 0.856 when y; =1000 .

The sections are reconsidered under three specified yield stress fraction scenarios ¢ =0.67,0.70
and 0.75, while maintaining constant the out-of-straightness coefficienty, =1000. Figure 4.5 b

shows that, for a given slenderness M, /M., , an increase in the specified yield stress fraction & is

cr?

associated with an increase the moment resistance ratio M, /MCr . For instance, when

M, /M, =2.78 , the moment resistance ratio is 0.863 at & =0.67 and increases to 0.872 at

£=0.70 and further increases to 0.884 when £ =0.75. The difference between the attained
moment resistance ratios based on different specified yield stress fractions & is small for low
slenderness values and becomes negligible for larger slenderness. For example, when the

slenderness is M, /M =1.75, the difference in moment resistance ratios corresponding to

£=0.67 and £=0.75 is 0.037 and drops to 0.009 when the slenderness increases to
M, /M, =4.06.
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Figure 4.5 Effect of yield to buckling moment ratio I\/IY /I\/ICr on the moment resistance ratio for (a) various

out-of-straightness coefficient »; and (b) various yield stress fractions &

444 Effect of initial out-of-straightness and yield stress fraction

To assess the effect of out-of-straightness coefficient y, and yield stress fraction ¢ on the moment

resistance ratioM, , / M, , two sets of analyses are conducted on a beam with W200X36 cross-
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section. In the first series, the yield stress fraction is kept constant at & = 0.7 while the initial out-

of-straightness coefficient y, is varied from 1000 to 2000 (Figure 4.6 a). In the second series, the

out-of-straightness coefficient is kept constant at y, =1000 while the yield stress fraction ¢ is

varied from 0.67 to 1.0 (Figure 4.6 b).

In both series, the beam slenderness L/b is varied and the moment resistance ratio M, , /M, is

predicted in Eq. (4.20). Figure 4.6 a, b shows that the moment resistance ratio increases with

slenderness. For example, for the case y, =1000 , £ =0.70 , when L/b=33.3 the moment
resistance ratio attained is 0.691. When the slenderness increases to L/b=66.7 , the moment
resistance ratio MM/MCr is found to increase to 0.905. Figure 4.6 (a) shows that a large out-of-
straightness coefficienty corresponds to a low I0S, which corresponds to a comparatively high
moment resistance ratio. For example, for a slenderness L/b = 45.5, the moment resistance ratio
attained is 0.890 when y, = 2000 and drops to 0.821 when y; =1000 . As expected, in Figure 4.6(b),
where y; =1000 is kept constant, the moment resistance ratio attained is found to increase with

the yield stress fraction. For instance, when L/b=51.52 the moment resistance ratio is 0.846 at

£=0.67, increases to 0.856 when, ¢ =0.70 and further increases to 0.916 when & =1.00.
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Figure 4.6 effect of slenderness on Moment resistance ratios of W200x36 for (a) various out-of-straightness
coefficient ; and (b) various yield stress fraction & on the moment resistance ratio — All beams are under

uniform moments

445 Effect of slenderness

Five common cross-sections are investigated; 1) W150X18, 2) W200X36, 3) W250X45, 4)

W250X58 and 5) W310X60 to assess the effect of slenderness L/b on the moment resistance ratios

M, . I M, attained. In all cases, the slenderness L/b is varied while keeping constant parameters
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£=0.70 and y; =1000 . The results in Figure 4.7 show slight differences in the moment resistance
ratios attained for all five sections for short spans and become negligible for large slenderness. For
example, for a slenderness L/b =35, the difference between the highest and lowest moment

resistance ratio is 0.057. This difference drops to 0.016 when the slenderness increases to about
59.

0.95
= 0.90
3
= 0.85 ;
=t e = =
£ 0.0 i
g (s ..--;;>:}/ — - -WISX18 |
g 0 F, =
g , - - - W200X36
S . £=0.70
0.70 ) O e W250X45 [
:!/. = ko]
s j w250X58 | |
......... W310X58
0.60 | | I
30 35 40 45 50 55 60 65

Slenderness L/b

Figure 4.7 Effect of the span to flange width ratio on moment resistance ratio for beams under uniform
moment for various beam cross-sections

446 Effect of cross-section parameters
For a beam with a given cross-section and loading pattern, the critical moments depend on the

beam span L , section depthd , flange width b , flange thickness t and web thickness w or, in a

dimensionless form, one hasM, , /M, = f (d/b,b/t,d/w, L/b). A study is thus conducted to
investigate the effects of the dimensionless parameters on moment resistance ratio M, , /M, by

varying one of parametersd/b, b/tand d/w at a time while keeping the other two parameters
constant. An idealized W200X36 cross-section is adopted as the reference case (geometric

parameters are d, =201mm, b, =165mm , t, =10.2mm, w, =6.2mm , and the corresponding

dimensionless parameters are (d/b) =1.22 , (d/w) =324 and (b/t) =16.2 ). All

dimensionless parameters were varied from 0.8 to 1.2 of the reference case value (i.e., d /b =0.8-
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1.2(d/b) , d/w=0.8-1.2(d/w)_andb/t = 0.8-1.2(b/t) ). When assessing the effect of d /b , the
web thickness is changed proportionally with the section depth to maintain a constant ratio d/w
(Appendix 4.A). Figure 4.8 provides plots for the moment resistance ratio MM_/MCr versus the

slendernessL/d . A family of plots is depicted for d /t values ranging from 16.4 to 24.6 in Figure

4.8 (a). The moment resistance ratio is found to increase with the slenderness L/b . For a given
slenderness, a relatively thick flange (i.e. with lowb/t) leads to a lower moment resistance ratio

M, ./M, . The difference in moment resistance ratio is found to be relatively large for

comparatively short span beams (e.g., L/b =42.0 ) and reduces for longer spans (e.g., L/b =58.0 ).

Figure 4.8 b is provides a series of plots for the moment resistance ratio MM/MCr as a function

of the slenderness L/b for y, =1000, ¢=0.70, d/w=32.4 and b/t=16.2 . Five plots are

provided for various d /b ratios ranging from 0.97 to 1.46. The moment resistance ratio is
observed to increase with the slenderness. At a given slenderness, a comparatively deeper section

(i.e., d/b is large) corresponds to a higher moment resistance ratio. The difference in moment
resistance ratio is observed to be large for relatively short span beams (e.g., L/b=38.0 ) and

decreases for larger spans (e.g., L/b=53.0).

The plots in Figure 4.8 ¢ illustrate the effect of web slenderness d/w on the moment resistance
ratio. Web slenderness was varied from 27.0 to 405 while keeping constant

£=0.70,7,=1000,d /w=32.4,b/t=16.2 . The moment resistance ratio is found to be nearly

independent from the web slenderness d/w For example, when L/b=37.0 , the moment

resistance ratio is 0.747 for d/w=40.5 and marginally changes to 0.744 for d/w=27.0 .
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Figure 4.8 . Effects of (a) flange thickness (b) section depth and (c) web thickness on moment resistance ratio
for W200x36 under uniform bending

447 Moment resistance ratios for other loading cases

Figure 4.9 a provides a comparison of the attained moment ratios Myi'g/MCr for the beams

defined in Table 4.1 for three loading cases; 1) uniform bending moments (UM), 2) Mid-span point
load (PL) and 3) uniformly distributed load (UDL). The moment resistance ratios attained for the
uniform bending moment case are computed based on Eq.(4.20), while those for the cases of point
load (PL) and uniformly distributed loads (UDL) are determined from the present finite element

analysis.

A family of plots (Figure 4.9 a) is provided for the moment resistance ratio MW/Mcr as a function
of the slenderness M, /M, for a vyield stress fraction &£=0.70 and 10S coefficients
7; =1000,1500,2000 . The moment resistance ratio M, , /M, is found to increase with the

slenderness M, /M, and with the out-of-straightness coefficient y, (i.e., decreases with the

r
degree of out-of-straightness of the beam). For a given beam and an out-of-straightness coefficient,
the moment resistance ratio attained is lowest for the point load (PL) case, followed by the
uniformly loaded case (UDL) and is largest the case of uniform moment (UM). As a general
observation, the predicted moment resistance ratios for the three loading cases considered are

observed to differ largely for relatively low slenderness M, /M_, but the difference decreases as
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slenderness increases. For example, when the initial out of straightness coefficient is y, =1000,

the difference between the point load case (PL) and the uniformly distributed case (UDL) is 7.4%

when the slenderness is M, /M_ =1.38 and difference decreases to 26% when the slenderness

increases toM, /M, =3.26 .

In Figure 4.9b, where », =1000 is kept constant and yield stress fractions were varied, i.e.,
£=0.67,0.70,0.75, it is found that an increase in the specified yield stress fraction corresponds to

a higher moment resistance ratio at a given slenderness M, /M., .

Figure 4.9 c depicts for the moment resistance ratio attained MW/MCr as a function of the
slenderness L/b for a specified yield fraction £ =0.70 and out-of-straightness coefficients
7, =1000,1500, 2000 for a beam with a W200X36 cross-section with varying spans for the loading
cases UM, UDL, and PL. The moment resistance ratio MN/MCr is found to increase with the
slenderness L/b . Increasing the out-of-straightness coefficient attains a high moment resistance
ratioM, . / M,, . The difference in the attained moment resistance ratios M, . / M, between the
different loading cases is observed to slightly decrease with the slenderness L/b . For example,
when the initial out of straightens coefficient is y, =1000 and the slenderness isL/b =43.0 , the
difference in moment resistance ratio between the PL and UDL cases is 7.1%. The difference

decreases to 5.7% when slenderness increases to 55.2.

A family of plots (Figure 4.9 d) is provided for the moment resistance ratio with the slenderness
for an initial-out of straightens coefficient y; =1000 or specified yield stress fractions of
£=0.67,0.70,0.75 . Again, it is found that moment resistance ratio increases with the slenderness.

Also, a higher specified yield stress fraction corresponds to a higher moment resistance ratio at a

given slenderness.
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Figure 4.9 Moment resistance ratio for considered sections under uniform moment, point load at mid-span
and UDL for (a) out-of-straightness »; = 1000, 1500 and 2000, (b) yield stress fraction & =0.67, 0.70 and

0.75. Moment resistance ratio for W200X36 for (c) out-of-straightness coefficients y; = 1000, 1500 and 2000,
(d) yield stress fractions & =0.67, 0.70 and 0.75
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448 Extension of the analytical solution to other loading cases

The trends of the three loading cases considered observed in Figure 4.9 but are offset given that
the critical moments differ due to the moment gradient effect. This observation suggests a possible
modification of Eq. (4.20) by replacing the uniform critical moment M by o,M .. , in which o,

crm crm?

is a moment gradient factor. Thus, a modified form of Eq. (4.20) is proposed in the following

2
M 2 2
1ié zl 1+7z._ E_b MY +& MY il 1_|_7T_ Eb MY +e MY _48 MY
a)ZMcrm 2 27/| FyL a)ZMcrm a)ZMcrm 2 2}/| FyL a)ZMcrm a)ZMcrm a)ZMcrm

(4.21)

For the point load case (PL), the moment gradient factor based on FEA can be computed by

dividing the critical moment for a perfectly straight beam as predicted by the present eigenvalue

model, by that for the case of uniform moment, leading to @, (FEM ) = 1.36. This value is close

to that provided by American Standards (ANSI/AISN 360-10), Australian Standards (AS 4100-
1998) and Eurocode Guide (EN 1993-1-1:2005) as discussed in (Hassan and Mohareb 2015), but

slightly higher than that based the Canadian standards (CAN/CSA S16-14) is w, (CSA)=1.265.
Thus, the predictions of Eq. (4.21), based on moment gradients a)zza)z(CSA):l.ZGS and

w,(FEA)=1.360 will be compared to FEM results will be investigated.

For the uniform distributed load case (UDL), the moment gradient factor computed by the present

FEM is @, (FEM )=1.13, which is identical to that provided in Canadian standards (CAN/CSA
S16-14) and Eurocode Guide (EN 1993-1-1:2005) and closed to a, (AS) =1.17in the Australian
Standards (AS 4100-1998) and a)z(AISC):l.14 in American Standards (ANSI/AISN 360-10).
Thus, the moment gradient w, :a)z(CSA)zl.13 is adopted in Eq. (4.21) when predicting the
moment ratio M, , /M, for the UDL case.

The beams described in Table 4.1 are re-examined the cased of point load at mid-span (PL) and

uniform distributed load (UDL). The specified yield stress fraction £ =0.70 is kept constant in all

runs while the out-of-straightness coefficient y, is taken as 1000, 1500, and 2000. The moment
resistance ratios M, / M, as predicted the present finite element solution and those predicted
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by Eq. (4.21) under the two loading cases are summarized in Table 4.4 to Table 4.6 for PL with
w, =1.265 , PL with @, =1.36, and UDL with @, =1.13, respectively. Also provided is the

percentage difference in moment resistance ratios as predicted on the present finite element
solution and those based on Eq. (4.21) is calculated to evaluate the accuracy of the predictions of
Eqg. (4.21).

For the point load (PL) case, Table 4.4 indicates that proposed Eqg. (4.21) with
w, = w,(CSA) =1.265 yield moment ratio predictions MW/MCr deviate from FEM predictions

with percentage differences ranging from 1.9% to 8.4% with an mean difference of 4.1%.

Improved moment ratio predictions are attained by adopting the more accurate moment gradient

@, :a)Z(FEM):l.36 in conjunction with Eq. (4.21) where the percentage difference between

both solutions range from 0.5% to 2.7% with a mean difference of 1.8%.

For the UDL case, Table 4.6 presents the prediction by Eq. (4.21) with @, = w, (CSA) =1.13 and

by the present FEM. The percentage difference is found to range from 0.5% to 2.1% with an

average of 1.0%.

Also, it is found that the percentage difference decreases with the increase of the initial out-of-
straightness , . For example, the maximum percentage difference for y, =1000 is found as 2.1%.
The corresponding value is 1.5% for the case with y, =2000. Beams with comparatively larger
M, /M, attain a lower percentage difference. For instance, for W150X24 of which the
slenderness isM, /M, =1.7, the percentage difference is 2.1% for y; =1000 . On the contrary, for

W310X31 withM, /M, =3.9, the percentage difference is 0.8%.
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Table 4.4 Percentage difference in predicted moment resistance ratio based on FEA critical moment and CSA critical moment approach f or Beams under
point load at mid-span ( Eb/ F,L=1154, £=0.70 and @, =1.265)

Yield to
Critical | Critical | critical

Moment resistance fraction
moment | moment | moment FEA moment (kNm) for

Section |Span . . ) Moment resistance fraction* based on Mcr-CSA** Percentage difference***
based on|based on| ratio imperfection (©2=1.265)
FEA CSA |based on '
FEA

(m) | (kNm) | (kNm) | M,/M,, | L/1000 | L/1500 | L/2000 | L/1000 | L/1500 | L/2000 | L/1000 | L/1500 | L/2000 | L/1000 | L/1500 | L/2000
W150x24{5.37| 425 39.7 1.4 30.3 32.1 33.3 0.712 | 0.755 [ 0.782 | 0.771 | 0.812 | 0.837 | 8.4% 7.5% 7.0%
W200x42/8.74] 90.8 84.7 15 67.7 71.9 74.4 0.746 | 0.792 | 0.820 | 0.801 | 0.842 | 0.868 | 7.4% 6.3% 5.8%
W200x36{8.68| 69.3 64.5 1.7 53.8 57.0 59.0 0.777 | 0.823 | 0.852 | 0.827 | 0.867 [ 0.892 | 6.4% 5.4% 4.6%
W150x18/5.37] 23.0 21.5 1.8 18.1 19.2 19.9 0.787 | 0.834 | 0.862 | 0.836 | 0.876 [ 0.900 | 6.2% 5.1% 4.4%
W200x31{7.05| 56.9 53.0 1.8 45.0 47.6 49.2 0.790 | 0.836 | 0.865 | 0.838 | 0.878 [ 0.901 | 6.0% 5.0% 4.2%
W250x45/7.79] 100.1 93.3 1.9 79.4 84.0 86.8 0.793 | 0.839 [ 0.867 | 0.840 | 0.880 [ 0.903 | 5.9% 4.9% 4.2%
W250x39|7.74| 76.2 71.0 2.1 62.1 65.6 67.5 0.815 | 0.860 | 0.886 | 0.857 | 0.895 [ 0.917 | 52% 4.1% 3.5%
W200x27|7.00] 40.9 38.0 2.1 334 35.2 36.3 0.817 | 0.862 | 0.889 | 0.859 | 0.896 | 0.918 | 51% 4.0% 3.3%
W200x22/5.37| 30.9 28.7 2.2 25.3 26.7 27.5 0.820 | 0.865 | 0.892 | 0.862 | 0.900 [ 0.921 | 5.2% 4.0% 3.2%
W150x14{5.26| 14.2 13.2 2.3 11.7 12.3 12.7 0.826 | 0.870 [ 0.896 | 0.865 | 0.902 [ 0.923 | 4.8% 3.7% 3.0%
W250x28/5.37| 45.8 42.7 2.3 38.1 40.1 41.2 0.830 | 0.874 | 0.899 | 0.869 | 0.905 [ 0.925 | 4.7% 3.6% 2.9%
W150x13(5.26| 12.1 11.2 2.4 10.1 10.6 10.9 0.835 | 0.877 [ 0.902 | 0.871 | 0.907 [ 0.927 | 4.4% 3.4% 2.8%
W250x33| 7.68| 54.2 50.4 2.4 45.3 47.7 49.0 0.836 | 0.879 [ 0.904 | 0.873 | 0.908 [ 0.928 | 4.4% 3.4% 2.1%
W310x45(8.74| 89.8 83.6 2.5 75.3 79.0 81.3 0.838 | 0.880 [ 0.905 | 0.874 | 0.909 [ 0.929 | 4.3% 3.3% 2.6%
W200x19/5.37| 22.7 21.1 2.5 19.1 20.0 20.6 0.839 | 0.881 [ 0.906 | 0.875 | 0.910 [ 0.930 | 4.3% 3.3% 2.6%
W200x21|7.00| 26.4 24.5 2.6 22.2 234 24.0 0.843 | 0.885 [ 0.909 | 0.878 | 0912 [ 0932 | 4.1% 3.1% 2.5%
W250x25[5.37| 35.3 32.8 2.6 29.7 31.2 32.1 0.843 | 0.886 [ 0.910 | 0.879 | 0914 | 0.933 | 4.3% 3.1% 2.5%
W310x33|5.37] 54.9 51.1 2.6 46.3 48.6 49.9 0.844 | 0.886 | 0.910 | 0.879 | 0914 | 0933 | 4.2% 3.1% 2.5%
W310x39[8.68| 70.3 65.3 2.7 59.7 62.6 64.2 0.849 | 0.890 | 0.913 | 0.882 | 0.916 [ 0.934 | 3.9% 2.9% 2.4%
W250x24{7.63] 31.2 28.9 3.1 26.8 28.0 28.7 0.860 | 0.899 [ 0.921 | 0.889 | 0.922 | 0.940 | 3.4% 2.5% 2.0%
\W310x31|8.63| 46.0 42.8 3.3 39.8 41.6 425 0.865 | 0.903 [ 0.924 | 0.893 | 0.924 | 0941 | 3.2% 2.4% 1.9%

Min 3.2% 2.4% 1.9%
Max 8.4% 7.5% 7.0%
Mean 5.0% 4.0% 3.4%

Stan Deviation | 0.01256 | 0.01249 | 0.01242
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Table 4.5 Percentage difference in predicted moment resistance ratio based on FEA critical moment and CSA critical moment approach f or Beams under
point load at mid-span ( Eb/ FyL =1154 , £=0.70 and w, =1.36 )

Yield to
Critical | Critical | critical

Moment resistance fraction
moment | moment | moment FEA moment (kNm) for

Section |Span . . . Moment resistance fraction* based on Mcr-CSA** Percentage difference***
based on|based on| ratio imperfection (©2=1.36)
FEA | CSA |basedon ’
FEA

M) | «Nm) | «Nm) | m,/m. | 171000 | /1500 | /2000 | /1000 | L/1500 | L/2000 | L/1000 | L/1500 | L/2000 | L/1000 | L/1500 | L/2000
W150x24/5.37| 425 | 39.7 14 | 303 | 321 | 333 | 0712 [ 0755 | 0782 | 0726 | 0763 | 0.786 | 2.0% | 1.1% | 0.5%
W200x428.74] 908 | 847 15 | 677 | 719 | 744 | 0746 | 0792 | 0820 | 0763 | 0803 | 0828 | 229 | 1.4% | 1.0%
W200x36/8.68] 69.3 | 645 17 | 538 | 570 | 59.0 | 0777 | 0823 | 0852 | 0795 | 0837 | 0863 | 2.4% | 1.8% | 1.3%
W150x185.37] 230 | 215 18 181 | 192 | 199 | 0787 | 0.834 | 0.862 | 0.808 | 0.850 | 0.875 | 2.6% | 1.9% | 1.5%
W200x31]7.05] 569 | 53.0 18 | 450 | 476 | 492 | 0790 | 0.836 | 0.865 | 0.810 | 0.852 | 0.877 | 25% | 1.9% | 1.4%
W250x45/7.79] 100.1 | 93.3 19 | 794 | 840 | 868 | 0793 | 0839 | 0867 | 0813 | 0855 | 0880 | 25% | 1.9% | 1.5%
W250x397.74] 762 | 710 21 | 621 | 656 | 675 | 0815 | 0.860 | 0.886 | 0.835 | 0.876 | 0.900 | 25% | 1.8% | 1.6%
W200x277.00] 40.9 | 38.0 21 | 334 | 352 | 363 | 0817 | 0862 | 0889 | 0837 | 0878 | 0902 | 25% | 1.8% | 1.4%
W200x225.37] 309 | 287 22 | 253 | 267 | 275 | 0820 | 0865 | 0892 | 0842 | 0882 | 0905 | 2.7% | 2.0% | 1.5%
W150x14/5.26] 142 | 13.2 2.3 117 | 123 | 127 | 0.826 | 0.870 | 0.896 | 0.846 | 0.886 | 0.909 | 2.4% | 1.8% | 1.4%
W250x28]5.37| 458 | 427 23 | 381 | 401 | 412 | 0830 | 0874 | 0899 | 0851 | 0890 | 0912 | 25% | 1.8% | 1.5%
W150x13/5.26] 12.1 | 11.2 24 | 101 | 106 | 109 | 0835 | 0.877 | 0.902 | 0.854 | 0.893 | 0915 | 2.3% | 1.8% | 1.4%
W250x337.68] 542 | 504 | 24 | 453 | 477 | 490 | 0836 | 0879 | 0904 | 0856 | 0.894 | 0916 | 2.4% | 1.8% | 1.4%
W310x45/8.74] 89.8 | 836 25 | 753 | 790 | 813 | 0838 | 0.880 | 0.905 | 0.857 | 0.895 | 0917 | 23% | 1.7% | 1.3%
wW200x19/5.37] 227 | 211 2.5 191 | 200 | 206 | 0.839 | 0.881 | 0.906 | 0.859 | 0.897 | 0.919 | 2.4% | 1.8% | 1.4%
W200x21|7.00] 264 | 245 26 | 222 | 234 | 240 | 0843 | 0885 | 0009 | 0862 | 0900 | 0921 | 23% | 1.7% | 1.3%
W250x255.37] 353 | 328 26 | 297 | 312 | 321 | 0843 | 0.886 | 0910 | 0864 | 0901 | 0922 | 25% | 1.7% | 1.4%
W310x33]5.37| 549 | 511 26 | 463 | 486 | 499 | 0844 | 0886 | 0910 | 0864 | 0902 | 0923 | 2.4% | 1.8% | 1.4%
Ww310x39/8.68] 703 | 653 27 | 597 | 626 | 642 | 0849 | 0890 | 0913 | 0867 | 0904 | 0925 | 22% | 1.6% | 1.3%
wW250x24]7.63] 312 | 289 | 31 | 268 | 280 | 287 | 0860 | 0899 | 0921 | 0877 | 0912 | 0932 | 2.0% | 15% | 1.2%
w310x31/8.63] 460 | 428 | 33 | 398 | 416 | 425 | 0865 | 0903 | 0924 | 0881 | 0915 [ 0934 | 1.9% | 1.4% | 1.1%

Min 1.9% 1.1% 0.5%
Max 2.7% 2.0% 1.6%
Mean 2.4% 1.7% 1.3%

Stan Deviation | 0.00205 | 0.00206 | 0.00222
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Table 4.6 Percentage difference in predicted moment resistance ratio based on FEA critical moment and CSA critical moment approach for Beams under
uniform distributed load (Eb/F L =11.54 , £ =0.70 and @, =1.13)

Yield to
Critical | Critical | critical
moment | moment | moment FEA moment (kNm) for

Moment resistance fraction

Section |Span . . ) Moment resistance fraction* based on Mcr-CSA** Percentage difference***
based on|based on| ratio imperfection (©2=1.13 )
FEA CSA |based on ’
FEA

(m) | (kNm) | (kNm) | M,/M,, | L/1000 | L/1500 | L/2000 | L/1000 | L/1500 | L/2000 | L/1000 | L/1500 | L/2000 | L/1000 | L/1500 | L/2000
W150x24{5.37] 355 355 1.7 27.9 29.4 30.4 0.786 | 0.829 | 0.856 | 0.802 | 0.844 | 0.869 | 2.1% 1.8% 1.5%
W200x42/8.74| 75.6 75.7 1.8 61.4 64.6 66.5 0.812 | 0.855 [ 0.880 | 0.826 | 0.867 | 0.891 1.7% 1.4% 1.2%
W200x36{8.68| 57.7 57.6 2.1 48.0 50.4 51.9 0.832 | 0.874 [ 0.899 | 0.846 | 0.885 | 0.908 1.6% 1.2% 1.0%
W150x18/5.37] 19.2 19.2 2.2 16.1 16.9 17.4 0.839 | 0.880 [ 0.904 | 0.853 | 0.892 | 0914 | 1.7% 1.3% 1.1%
W200x31{7.05| 47.4 47.3 2.2 39.9 41.8 42.9 0.841 | 0.881 | 0.905 | 0.854 | 0.893 | 0.915 1.6% 1.3% 1.1%
W250x45/7.79] 83.4 83.3 2.2 70.2 73.7 75.6 0.842 | 0.884 [ 0.906 | 0.856 | 0.894 | 0.916 1.7% 1.2% 1.1%
W250x39|7.74| 63.5 63.4 2.5 544 56.9 58.3 0.857 | 0.896 [ 0.918 | 0.870 | 0.906 | 0.926 1.5% 1.1% 0.9%
W200x27|7.00] 34.0 34.0 2.6 29.2 30.5 31.2 0.859 | 0.897 [ 0.919 | 0.871 | 0.907 | 0.927 1.4% 1.1% 0.8%
W200x22[5.37| 25.7 25.7 2.6 22.2 23.1 23.7 0.862 | 0.900 [ 0.921 | 0.874 | 0.909 | 0.929 1.3% 1.0% 0.8%
W150x14{5.26] 11.8 11.8 2.7 10.2 10.6 10.9 0.864 | 0.902 [ 0.923 | 0.876 | 0.911 | 0.930 1.4% 1.0% 0.8%
W250x28/5.37| 38.2 38.1 2.8 33.1 34.5 35.3 0.867 | 0904 [ 0.925 | 0.879 | 0.913 | 0.932 1.4% 1.0% 0.8%
W150x13(5.26] 10.0 10.0 2.9 8.7 9.1 9.3 0.869 | 0.906 [ 0.927 | 0.881 | 0.915 [ 0.934 | 1.4% 1.0% 0.7%
W250x33| 7.68| 45.2 45.0 2.9 39.4 41.0 41.9 0.872 | 0.908 [ 0.928 | 0.882 | 0.916 | 0.935 1.1% 0.9% 0.7%
W310x45(8.74| 74.8 74.7 3.0 65.2 68.0 69.5 0.872 | 0909 [ 0.929 | 0.883 | 0.916 | 0.935 1.2% 0.8% 0.6%
W200x19/5.37] 18.9 18.9 3.0 16.5 17.2 17.6 0.874 | 0.909 [ 0.929 | 0.884 | 0.917 | 0.936 1.1% 0.9% 0.7%
W200x21{7.00| 22.0 21.9 3.1 19.3 20.1 20.5 0.875 | 0912 | 0.931 | 0.886 | 0.919 | 0.937 1.2% 0.8% 0.7%
W250x25/5.37| 29.4 29.3 3.2 25.8 26.8 27.4 0.876 | 0912 [ 0.931 | 0.887 | 0.920 | 0.938 1.3% 0.9% 0.7%
W310x33|5.37| 45.7 45.6 3.2 40.0 41.6 425 0.876 | 0911 [ 0.931 | 0.887 | 0.920 | 0.938 1.3% 1.0% 0.8%
W310x39[8.68| 58.6 58.3 3.3 51.5 53.6 54.7 0.879 | 0914 [ 0.933 | 0.889 | 0.922 | 0.939 1.2% 0.8% 0.7%
W250x24{ 7.63| 26.0 25.8 3.7 23.1 23.9 24.4 0.887 | 0.919 [ 0.939 | 0.895 | 0.926 | 0.943 | 0.9% 0.8% 0.5%
W310x31{8.63| 38.4 38.2 3.9 34.2 354 36.1 0.891 | 0922 | 0.939 | 0.898 | 0.928 | 0.945 | 0.8% 0.7% 0.6%

Min 0.8% 0.7% 0.5%
Max 2.1% 1.8% 1.5%
Mean 1.4% 1.0% 0.8%

Stan Deviation | 0.00286 | 0.00246 | 0.00235

* Moment resistance ratio = M FEA/MCFFEA ; ** Moment resistance ratio based on M, ., is computed in Eq.
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*** Percentage difference = [( M/M,, csa )appX —(Meea/Mg_eea )}/( M e /M _ren)
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449 Nominal moment resistance based on stress criterion

The solution provided by Eq. (4.21) accounts for the initial-out-of-straightness effect and should
replace the eigenvalue solution in the elastic buckling range. For medium span beams, inelastic
lateral torsional buckling will likely take place. For instance when, for a perfectly straight beam

with a class 3 cross-section withM,, /M >0.67, the Canadian standards assume that inelastic
lateral torsional buckling takes place and one needs to account for the effects of plasticity and
residual stresses, using the equation M, =1.15M, (1-0.28M, /M) with a ceiling value of
M, = M, which corresponds to pure yielding. An extension of the concept was proposed for the
displacement criterion under section 4.3.4.

In the present section, we adopt an alternative approach to account for plasticity and residual

stresses in the inelastic lateral torsional buckling range in a manner consistent with the column

resistance equations in CAN-CSA-S16 (2014), where the nominal resistance of a column C_ takes

the form C, = AF, (1+7* )71/1, AF, being the yield strength of the column, z being the column
slenderness, and n=1.34 is a constant that it intended to match the outcome of the inelastic
analysis and/or tests. An analogous equation is postulated here whereby the inelastic moment is

assumed to be obtained by M, =S,F, (1+ﬂ,{),1/,( where M, =S,F, is the yield moment,

=M, /M, is the slenderness ratio, and constant x is to be obtained by matching the predictions

of the present FEA analysis. In a manner similar to the column equation, the proposed equation

approaches the yield moment M, =S F, as the slenderness approaches zero ( x — 0 ). Constant

x can be obtained by matching the attained moment ratios M, /M, based on the FEM predictions

within the elastic range. However, it is cautioned that the extrapolation of the curve predictions
beyond the elastic domain is not recommended without conducting verifying the predictions of the
equation against inelastic analysis results that accounts for the effects of plasticity and residual
stresses, in addition to initial-of-straightness. As an illustration, a simply supported beam with a
W150x14 cross-section is considered with variable spans (Section class is 3 based on yield strength
of F =350MPa ). The moment ratio M, /M, as predicted by the FEM is provided for a yield

stress fraction £ =0.7 and initial out-of-straightness coefficients of y, =1000,1500,2000 .
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Given the FEA predictions for the nominal ratio M /M, and the corresponding slenderness

M, /M, , an equation of the form M, =S F, (1+y")_w is fitted to the results, where the
coefficient x is obtained by minimizing the differences between the equation and the FEA
predictions. The values x= 1.36, 1.63 and 1.80 were obtained for y, =1000,1500,2000 ,

respectively and percentage difference between the proposed equation and FEM were no larger
than 2.41%, 2.42% and 2.13% respectively. The corresponding plots are depicted in Figure 4.10

for comparison. As discussed, since the present finite element solution does not account the effects
of plasticity and the residual stress, equation M, =S, F, (1+ ﬂ”)% is currently limited in the range

of the elastic LTB. The validity of this proposed equation for the range of the inelastic LTB should
be verified by performing a finite element analysis incorporating these effects.
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Figure 4.10 Proposed design curves based on stress target value 0.7 F, for 7, = L/1000, L/1500 and
L/2000 (W150X14)

45 Summary and Conclusions

Closed form expressions were developed for moment ratio predictions under displacement and
stress based criteria for the case of uniform moments. The validity of the expressions was
demonstrated by comparison with the finite element solution developed in Chapter 3. The closed
form expressions provided the dimensionless parameters influencing the moment ratios and the

effects of each parameter was systematically investigated by varying one parameter at a time while
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maintaining constant all other parameters. The closed form solutions for the moment ratio were
modified to extend their use to other loadings cases involving mid-span point loading uniformly
distributed loading. The accuracy of the modified equations was demonstrated by comparison
against numerical results based on the FEM solution developed in Chapter 3. Design curves
incorporating the effect of 10S in the elastic range were proposed by modifying the current design
equations in CAN/CSA S16-14 based on the parametric study results. The main findings of the

study are summarized as follows:

1. The predicted moment ratio based on the yield criterion solely depends on the ratio between the
IOS coefficient and the displacement threshold value. Thus, it is independent of the slenderness,
cross-section dimensions, and the loading conditions considered.

2. The closed form solution for the moment ratio predicted by the stress based criterion for beams
under uniform moments were found to be extendable to other loading cases considered (UDL and
PL) by adopting appropriate moment gradient factors.

3. Based on the stress criterion, the predicted moment ratio M, /M, was shown to increase with

the 10S coefficient, yield stress fraction, yield-to-critical moment ratio, span-to-section-depth ratio,
flange-width-to-depth ratio and depth-to-flange-thickness ratio.
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Appendix 4.A

Table 4.A.1 Cross-section geometry and properties for the parametric study on d/b

d [ b [ t | w Ix Sx 7x ly Sy J cw

a/b () mm* mm? mm?® mm* mm® mm* mm®
x10’ x10° | x10° x10° | x10* x10° x10'°

097 | 1608 | 165 102 | 4.96 2.03 2.52 2.78 7.64 9.26 1.18 4.94
11 | 1809 | 165 10.2 5.58 2.65 2.93 3.25 7.64 9.26 1.22 6.36
122 | 2010 | 165 10.2 6.2 3.37 3.35 3.72 7.64 9.26 1.26 7.71
134 | 2211 | 165 10.2 6.82 4.21 3.8 4.24 7.64 9.26 1.33 9.33
146 | 2412 | 165 10.2 7.44 5.16 4.28 4.76 7.64 9.26 1.42 11.1
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5. Estimating critical moments for perfectly straight beams from the

lateral torsional response of initially crooked beams

5.1Introduction

Chapters 3 developed an FEM solution that characterizes the nonlinear moment-lateral
displacement relationship for a beam with a given 10S and IAT pattern subjected to transverse
loads. The obtained relationships did not exhibit a distinct plateau corresponding to the critical
moment of a perfectly straight beam but approached the critical moment asymptotically from
below. When conducting experimental results beams with 10S and IAT, two questions arise: (a)
Can the nonlinear moment-lateral displacement obtained be used to predict the critical moment for
a perfectly straight beam? and (b) Can the nonlinear moment-lateral displacement be used to
characterize the magnitude of initial imperfections of the beam. The original work of Southwell
(1931) provided a basis to answer similar questions for simply supported columns with initial
crookedness. The present chapter aims to extend the findings of Southwell for beams with 10S
and IAT by developing a closed form solution for the nonlinear response of beams with 10S and
IAT under uniform moments and developing Southwell-like solutions. Since closed form solutions
cannot be developed for the cases involving variable moments, the FEM solution developed in
chapter 3 used then to produce nonlinear moment-lateral displacement relations for various 10S-
IAT scenarios, and the applicability of the Southwell-like solution is used to estimate the critical
moments. Comparisons are then performed with the critical moments obtained from the eigen-
value solutions. The numeric results suggest that the extended Southwell technique remains valid

for case of non-uniform moments.

5.2Theoretical Background
521 Overview of the Southwell plot technique for column buckling

Consider a simply supported column with an initial out-of- straightness y, (z) an elastic flexural

stiffness El subjected to an axial load P . The equilibrium condition can be shown (e.g., Southwell
1931), to take the form

El(y"—yy)+Py=0 (5.2)
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in which, y(z) is the transverse deflection. By expressing the transverse deflection y(z) and

initial out-of-straightness y, (z)as Fourier series, one obtains

(z)= gwm sin(%}
z)= g"_"m sin(%j

(5.2)a,b

inwhich, w_ and w,_ are the magnitudes of the transverse deflection and initial transverse out-of-

straightness corresponding to mode m. From Egs. (5.2) by substituting into Eq. (5.1), one obtains

m _ , m=12.. (5.3)

where P, is the mth critical load obtained from the eigenvalue solution for equilibrium equation

or a corresponding perfectly straight column. By setting z=L/2 into Eq. 5.2a, the additional

deflection & at mid-span is obtained as

=y(L/2)-y,(L/2) ZW sm( )iv‘vmsin[%j:Wl—v_vl—(w3—v_v3)+w5—v_vs...

=1

(5.4)
From Eq, (5.3) by substituting into Eq. (5.4). one obtains

_ V_Vl _ V_Va + V_Vs
P/P-1 R/P-1 R/P-1"

(5.5)

As P — P, , the first term of Eq. (5.5) gains dominance and the contributions of subsequent terms

become comparatively negligible and one obtains

d= Pl/Pl_l (5.6)

Eqg. (5.6) can be rearranged as
(éj L) % (5.7)
P) RV R
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The above equation suggests that as the applied load P approaches the first critical load P,, the
relationship between Y =&/P and X =& becomes linear, and the slope dY/dX =1/P, provides
a basis to estimate the critical load P, . The intersection of the linear relationship with the Y = §/P

axis is W,/P, and provides an estimate of the initial out-of-straightness amplitude W,

corresponding to the first Fourier term.

522 Extension to lateral torsional buckling of beams under uniform moments
This section extends the Southwell plot technique, to beams with initial out-of-straightness (10S)

and initial angle of twist (IAT) lateral torsional buckling. A close form solution is attainable only

for the case of uniform moments. Thus, a prismatic beam with initial out-of-straightness u, (z)
and initial angle of twist &, (z) under uniform moment M is considered. As discussed in Section

4.3.1, the initial out-of-straightness u, (z) and initial angle of twist 6, (z) can be expressed as

((2) 6(2) =4, <1.0 (;ZE'LZ ]>sin$ (5.8)

where ¢, is the contribution of the mth eigen mode to the 10S and IAT (u,(2) 90(2)>T. The

corresponding contribution of the mth eigen mode to the initial out-of-straightness of the

compression flange has been shown to be

2

Upom(Z)=U, (2)+(d/2)6(z)=4¢, {1+(d /2)(;; EILVZ Hsin(mnz/L)

crm

The corresponding additional lateral displacement u, (z) was found to be

uc(z):iuc,m(z):imuo_c,m(z) (5.9)

m=1 m=1 crm
where U, (z) is the additional lateral displacement corresponding to mode m and is given by

1

uc,m(z):muo—c,m(z) ,m:1,2... (510)
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As M > M the first term of Eq. (5.9) gains dominance and the contributions of subsequent

crl 1

terms become comparatively negligible and one obtains

UC(Z)=WUOC(Z) (511)

By re-arranging Eq.(5.10), one obtains

0L 2y e 512

M M crl M

Equation (5.12) is linear between Y = u, (z)/M | and X =u,(z)in a manner similar to Eq. (5.7)
and the slope dY/dX =(1/M,,) ofthe u,(z)/M - u (z) plot provides a basis to estimate the first
critical moment M, . Also, the intersection of the linear relationship with the Y =u_(z)/M axis

IS Uy, (z) / M _, which provides an estimate of the initial out-of-straightness amplitude associated

with the first buckling mode.

5.3 Extension of the Southwell plot technique to beams with non-uniform

moments
Since the findings of the previous section are confined to the case of beams under uniform
moments, it is of interest to determine whether similar patterns can be observed for the more
general case of non-uniform moments. Unlike the case of uniform moments, a closed form solution
is unattainable under non-uniform moments. As such, the problem will be investigated numerically
based on the FEM developed in Chapter 3.

A 7.80m span beam with a W250X45 cross-section is subjected to mid-span point load. Two cases
for the initial out-of-straightness are examined. In Case 1, the initial out-of-straightness is assumed

to be sum of the first, third and fifth modes, with equal amplitudes

(4. 45.¢5)=L/3000(1,1,1) = 2.6(1,1,1)mm . In Case 2, the initial out-of-straightness is assumed

to exclusively follow the first mode with amplitudes

(4.4, ¢5) =(L/3000,0,0)=(2.6,0,0)mm .The critical moments for the perfectly straight beam as

obtained from the eigenvalue analysis is 100.3 kKNm which corresponds to a load of 51.4kN. Using
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the present FEM analysis, the load is ramped from 0.1kN to 51.4kN with a 0.01kN increments to

obtain the non-linear load-lateral displacement relationship. The additional lateral displacement at

the compression flange is examined at mid-span pointu, =u, (L/2). The analysis under Section

5.2.2 is postulated to hold true for the case of non-uniform moment and the validity of the
assumption will be examined by comparing the buckling moment predictions of the developments

of Section 5.2.2 to those based on the eigenvalue analysis. Thus, the critical moment M, is
obtained from the inverse of the slope of Y = [uC/M] versus X =u,_plot and the intercept of the
relationship with Y =u /M axis is assumed to be equal to u, /M _, .Figure 5.1 presents the

u,/M - u_ relationship for the two 10S patterns considered.

The u,/M - u, relations for both 10S patterns are observed to slightly deviate for low values for
the displacementu, . Initially, the difference between both curves is 9.5% at an applied moment of
M =0.2kNm. As the applied moments increase, both relations approach one another, and when
the applied moments M = 66.0kNm , the difference between both displacements reduces to 2.7%.

This case corresponds to the right-most point in Figure 5.1. When the applied moment further

increases to M =87.8kNm, the corresponding percentage difference decreases further to 0.9%

(not shown on Figure 5.1).

When conducting a lateral torsional buckling experiment on a beam with 10S, the loading is
ramped up and the corresponding lateral displacement is recorded. Thus, the quantities (M ,uc)k
would be known for multiple points k =1,2...k . along the loading path. The data collected is
then used to determine Y, =[u,/M], versus X, =[u.] . The computed (X,,Y,) data within a

given test range r can then be used to conduct a linear regression analysis of the form

Y, = A X, +B,, where the regression coefficients A , B, depend on the regression range rand are

related to the critical moment and initial 10S through the relations

1 Uy ¢
A = { - ] B, = (M—l] (5.13)
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It is evident that the accuracy of the predictions of M, and u, . depends on the selected regression

crl

range. In order to characterize the effect of regression range r on the predictions of M, andu, .,

crl
five ranges for applied moments are selected to conduct the regression analysis. These are 0.2-
19.5, 19.7-39.0, 39.2-58.5, 58.7-78.0, and 78.2-100.3 kNm. The critical moment predictions and
the 10S magnitude predictions are provided in Table 5.1. Column (7) indicates that the ratio of
critical moment predicted based on the regression to that based on the eigenvalue prediction to
range from 9.2% (for the lowest loading range considered of 0.2-19.5 kNm) down to 0.00% (for
the highest loading range considered of 78.2- 100.3 KNm).

For the 10S scenario corresponding to case 2, given that the higher mode amplitudes were chose
to vanish, it is observed that excellent predictions of the critical moments are obtained irrespective
of the range of loading used for the regression. For a regression range of 0.20-19.5 and 78.2-
100.3kNm, the predicted critical moment was 100.3 kNm, which coincide to that corresponding

to that based on an eigenvalue analysis within four significant digits.

In summary, the previous findings suggest that proposed extension of the Southwell plot technique
can be reliably used to predict the critical moments for a perfectly straight beam. For a beam with
general 10S pattern involving higher mode contributions, the accuracy of predictions of the
proposed method tends to quickly improve with the increase of the load range chosen for
regression. For the hypothetical case where the 10S imperfection is assumed to follow solely the
first mode, fast convergence towards the critical moment is observed and the use of data at low

range of loading is found to reliably predict the critical moment for a perfectly straight beam.
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Table 5.1 The predicted critical moment and magnitude of the 10S based on the considered range for the
applied moment

_ _ Percentage difference
. Predicted | Predicted IOS | for predicted moments* | for predicted 10S associated
Range #| Range Regression critical | associated with with first mode**
coefficient moment | the first mode
(Mcrl)p _(Mcrl)Ev (UO*C)p _(UOfC)Ex
Ar Br (Mcrl)p (uo—c)p (Mcrl)EV (UO*C)EX
@) 2 ©)] (4) (©) (6) () ®)
KNm | 2/kNm | I/kN kNm mm % %
1 0.2-19.5 | 0.0214 [4.57E-05 91.1 2.14 9.2 18
2 19.7-39.0 | 0.0205 |4.63E-05 95.2 2.26 5.1 13
3 39.2-58.5 | 0.0199 |4.72E-05 97.9 2.37 2.4 8.8
4 58.7-78.0 | 0.0196 |4.83E-05 99.5 247 0.8 5.0
5 78.2-100.3| 0.0194 [5.00E-05 100.3 2.57 0.0 1.2
*(M,, )., critical moment as determined from eigenvalue analysis

**(Uy_, )., initial imperfection associated with first mode =L/3000=2.6mm

0.1 10%
h - casel
0.09 P —O—case2 9%
\ ol
0.08 Ayl ===~ percentage difference 8% =
B
0.07 AN % 1
\‘b ?_‘1«
'E_'0.06 << 6% 3
=90.05 S 5% 8
= -
S0.04 AT T 1% 3
= -""-..--
0.03 (WVM SPe——ezoy % ¥
0.02 2% 8
B
0.01 1% m~
0 0%

0 0.5 1 L5 2 2.5 3 3.5 4 4.5 5

Additional peak lateral displacement (mm)

Figure 5.1 Relation between the additional peak lateral displacement to the applied load ratio and the
additional peak lateral displacement (Southwell plot)

5.4 Extension of the technique to other displacements

The analysis in Section 5.3 adopted the mid-span lateral displacement at the compression flange

and the corresponding critical moments to characterize the critical moment for a hypothetically
perfectly straight beam and estimate the out-of-straightness. The mid-span displacement was
adopted in a manner analogous to the technique advocated by Southwell (1931) to determine the

buckling strength of columns based on the observed mid-span displacements. The present section
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aims at assessing whether the findings remain valid if the lateral displacement is measured at other
locations within the beam, or if the angle of twist is measured (instead the top flange displacement).

The beam defined in section 5.3 is re-considered, with the IOS pattern of Case 2 with

(4,45, ¢5)=L/3000(1,0,0). Four alternative displacements are investigated (1) additional mid-
span lateral displacement at the centroid u(L/2) , (2) additional mid-span angle of twist 8(L/2) ,
(3) additional centroid lateral displacement at quarter span u(L/4). The additional mid-span

lateral displacement at the compression flange uC(L/2), which was adopted in Section 5.4, is

provided for comparison. Given the Southwell plot takes the form Y, = A X, +B,, similar
Southwell plots were assumed to hold true for each of the considered displacements, i.e.,
u(L/2)] [ 1] [u(L/Z)}{UO(L/Z)}
L M J _Mcrl_u(L/z) Mcrl u(L/2)
o(L/2)| | 1 [H(L/Z)]{eo(uz)}
M MCI‘ MCI‘
- oo o (5.14)a-d
u(L/4)| [ 1 [U(LM)}{UO(LM)}
L M . _Mcrl_u(l_/4) Mar u(L/4)
uc(l_/z)}{ 1 } u (L/z)]{”()-c("/z)}
L M Mcrl ug(L/2) Mcrl ug(L/2)

Since the examined 10S pattern is solely based on the first buckling mode, the data in the range
0.2-19.5 kNm is used for regression in all four cases. The corresponding modified Southwell plots
are provided in Figure 5.2a-d and the predicted moments and the magnitude of the 10S associated
with mode 1 are provided in Table 5.2. For all four displacements considered, the predicted critical
moments were found to match those based on the eigenvalue analysis within four significant digits.
Also, the predicted value for the initial imperfection at the considered location (Column 3) is found
identical to the exact input initial imperfection (Column 4). The results indicate that the modified
Southwell plot technique can be applied to any lateral displacement (or angle of twist), irrespective
of its location, to reliably predict the critical moment and the initial imperfection associated with

the first mode.
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Table 5.2 Predicted critical moment and the magnitude of the 10S based on the considered displacement

_ _ Percentage difference
Displacemment Predicted| Predicted | 10S exact |for predicted moments for predicted 10S
moment | 10S value associated with first mode
(kNm) (IOS) (Mcrl)p_(Mcrl)EV (Ios)p_(IOS)EX
£ (Mcrl)Ev (IOS)EX
1) ) @) (4) () (6)
u(L/2) | 100.3 | 1.82mm | 1.82mm ? 0 0
6(L/2) | 100.3 |0.0058rad|0.0058rad " 0 0
u(L/4) | 100.3 | 1.20mm | 1.20mm°© 0 0
u,(L/2) | 1003 | 2.59mm | 2.60mm ° 0 0.4%
% pased on - L/3000 ~sin(zz/L),z=1/2
1+(7°Elh/2M,, L)
® based on L/30(2)0 ——sin(zz/L),z=L/2
h/2+M,L*/7°El,
¢ based on - L/3000 ~sin(zz/L),z=L/4
1+ 72Elh/2M L
9 based on (L/3000)sin(7z/L),z=L/2
20 10
16 . 8
=12 T
= =
S 54 /
I, z
0 0
0 0.005 0.01 0.015 0.02 0 0.02 0.04 0.06 0.08 01

Additional mid-span lateral displacement at centroid (i)

(@)
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Figure 5.2 Southwell plot based on four types of displacement (a) lateral displacement at the centroid at mid-
span U ( L/2) , (b) angle of twist about the centroid at mid-span 9( L/ 2) , (c) lateral displacement at

centroid at location U ( L/4) and (d) lateral displacement at the extreme fibre at mid-span U, (L / 2)

5.5 Prediction of the IOS magnitude
Sections 5.3 and 5.4 have shown that the Southwell plot are able to predict for the IOS magnitude

associated with the first mode.

The 7.80m -span beam with a W250X45 cross-section defined in the previous under a mid-span

point load is reconsidered is in this section. Four initial out-of-straightness scenarios are examined
as a linear combination of modesl, 3, and 5. (¢,¢;,¢)=L/1000(1,0,0) for case 1,
(4. ¢,,¢5)=L1/3000(1,1,1) for case 2, (¢.¢¢)=L/1000(1,1,1) for case 3, and
(4. 45.¢5)=L/3000,(3,1,1) for case 4. The corresponding mode contributions are provided in
Columns 3 to 5 of TableTable 5.3. The moment resistance fractions M, /M, corresponding to
the target displacements L/360, L/270, L/180 are provided in Columns 8 to 10, where the
moment M is that predicted based on the FEM model developed in Chapter 3 and M is

predicted by an eigen value analysis. Columns 11 of Table 5.3 show the predictions of the critical
moments for a hypothetical perfectly straight beam and various 10S measures based on three
variations of the Southwell plot technique, based on the mid-span values of (1) additional lateral
displacement at the compression flange, (2) additional lateral displacement at the centroid and (3)

additional angle of twist.
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In all three cases, the results show that the Southwell plot accurately predicts the 10S associated
with the first buckling mode, as the percentage difference between the estimated 10S and the input

IOS nearly vanishes.

For cases where the 10S is based on a linear combination of multiple buckling modes (Cases 2-4),
the Southwell plot technique is found to predict 10S magnitude associated to the first buckling
mode (Column 15-17), rather than the total I0OS amplitude. For example, in Cases 2-4, the
predicted displacement at the compression flange mid-span are 7.78, 2.59, and 7.79mm, which
respectively nearly match the first mode contributions of 7.79, 2.60, and 7.79mm. These values

generally differ from the corresponding total 10S values of 23.4, 7.79 and 13.0 mm.

Given the moment resistance fraction M, /M, calculated from the present finite element
solution for threshold displacement values u, =L/ =L/360, L/270 and L/180 (Columns 8- 10),
the predicted 10S L/y, are computed from Eq. 4.10: y, :y/(Mcr/M —1) . The resulting
predictions are provided in Columns 18-20 for displacement thresholds u, = L/360, L/270 and
L/180, respectively. The corresponding percentage differences in Columns 21-23 range from to

0.4% respectively for case 1, suggesting that the equation y, = y/(Mcr/M —1) is able to estimate

the first mode 10S contribution (in a manner similar to the Southwell plot since both methods
neglect the contributions of higher modes). In all cases considered, the Southwell plot technique

and Eq. (4.10) are unable to capture the contributions of the higher modes.
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Table 5.3 Assessment of Southwell plot technique to estimate 10S

[0) @lealewlele] @ @ 1 @ [ Jan[ a2 a3 aa [ @5 [ @6 | a7 [a8)[a9] @o) [ @1 | (22) | @3)
10S information FEM predicted moment Southwell plot predictions 10S predicted by Equation™
ratio corresponding to
Contribution of &; o = corresponding to
e = <= —_ STeTg
£ @ o 3 € N
- —~
2 El o | T3] |E|E|e 777
< =9 e = e 1<
£ sl £ e |8 |E|s|e|S|sle|lelc|slslslelels
© = 8 s g 5 8 s |l |8 8 | =2|l=|=|elele|l=|l=2|=
< @ E oy £ < s S sl ol lal3l8g|lg|sg|x|3a|R
© o ) # ¢ | ® 2 & g g | 2| & |8l ||| =2lslels ||l
= 0 E S 2 s || 8|8 % |s|les|lcl|l2lg|l2|las|la|a
5 Q S = = = 8 = n = | = | = |5 | o = | = | =
= 2 e s L S = n e T|B| S
o < = = h=] © o S |8 S
S 2 = 3 = 2|2 | 2
8 = ® | < 3183
[+ © [+
L/1000=
1 S L1000 O 0 |546| 00175 | 0.735 | 0.787 | 0.848 | 100.3| 7.79 | 5.46 [0.0175| 0.0% | 0.0% | 0.0% |7.80|7.81| 7.76 |-0.2%|-0.2%| 0.4%
3L/1000 {L/1000
2 |)337| =779 | /1000| /1000 5.46 | 0.0175 | 0.739 | 0.790 | 0.849 | 100.3| 7.78 | 5.46 |0.0174| 0.1% | 0.0% | 0.6% |7.64|7.67| 7.70 | 1.5% | 1.9% | 1.2%
3 “;070902 L/3000| L/3000 | L/3000 | 1.82 | 0.00583 | 0.893 | 0.917 | 0.944 | 100.3| 2.59 | 1.82 [0.0058| 0.4% | 0.0% | 0.5% |2.59|2.61| 2.57 [-0.4%] 0.3% | 1.3%
5L/3000
4 ||, 0g |L/1000| L/3000|L/3000| 5.46 | 00175 | 0.737 | 0.788 | 0.848 | 100.3| 7.79 | 5.46 |0.0174| 0.0% | 0.0% | 0.6% |7.72|7.76| 7.76 | 0.4% | 0.9% | 0.4%

@, ¢,and @, amplitudes of first, third, and fifth modes respectively to the 10S

1
*Vi=V

Mcr/M -1
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5.6 Effect of higher modes on the response

Figure 5.3 (a) depicts the relation between the applied mid-span point load and the total lateral
displacement at the compression flange Uc, as predicted by the present finite element solution,
for the four cases considered in Table 5.3. The plots for all four cases are found to asymptotically
approach from below the critical moment obtained predicted from the eigenvalue solution. While
cases 1 and 3 share the same total 10S magnitudeu, . =L /1000, a large difference is observed
between the predicted moment ratio for case 1 is distinctly higher than that of case 3 given that the
IOS contribution of the first mode in case 1 is three times higher than that of case 3. To the contrary,

Cases 1, 2 and 4 tend to approach one another as the lateral displacement increases, although they

happened to have different total 10S. This is due to the fact that the mode 1 contribution to the
IOS is equal in all three cases.

In Figure 5.3 (b), the relation between the applied mid-span point load and the additional peak
lateral displacement at the compression flange u, is provided for the all four cases. All four curves
are also found to asymptotically approach the critical load predicted by an eigenvalue solution
from below. Unlike Figure 5.3(a), the plots for cases 1, 2 and 4 are observed to nearly coincide

since they share a common I10S first mode contribution ¢, = L/1000 = 7.79mm . In contrast, Case 3
has a lower 10S first mode contribution ¢ =L/3000=2.59mm and thus approaches the eigen

value solution faster than the other thee plots. The results suggest that effect of the higher mode

contributions to 10S on the moments predicted reduces as the additional lateral displacements
decrease.
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Figure 5.3 Relation between (a) the peak lateral displacement and (b) the additional peak lateral
displacement and the applied load for the examined four cases
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5.7 Predicting the number of contributing modes

The previous sections suggest that the Southwell plot technique can predict only the magnitude of
the first buckling mode to the 10S. The present section proposes a technique to estimate the
contributions of all modes by assuming all modes contribute equally to the 10S. In Chapter 3, we

recall that the additional displacement at the compression flange u,was given by summing the

amplified 10S for each mode, resulting in the equation

< M . (mzz
u.(z)= sin 5.15
(2) =Sy sin T2 515
The exact 10S is assumed to be based on a linear combination of the first, third and fifth buckling.

In the absence of measurements suggesting otherwise, the contributions of three modes are

assumed equal, i.e.,

b=b=¢=0,¢0,=¢=0 (5.16)

From Eq. (5.16) by substituting into Eq. (5.15) and adopting z=L/2 , and solving for ¢ one

obtains

p=u/ > M/(M,, -M) (5.17)
m=1,3,5

Equation (5.17) is restricted for uniform moments. To extend its applicability to other loading

cases, the elastic critical momentsM ., (m=1,3,5,..) are first obtained from the Eigen solutions.
For a given moment M , the corresponding lateral displacement u, is then obtained from the FEM

developed in chapter 3. The terms on the right-hand side of Eq. (5.17) are known, which allows

the characterization of the contributions ¢ = ¢, = ¢, = ¢ of the three modes.

Eqg. (5.17) is applied to the IOS pattern corresponding to Case 2 defined in section 5.5. The
percentage differences between the 10S predicted by Eq. (5.17) and the input I0S are provided in
Figure 5.4. The percentage difference between the predicted and input 10S is found to decreases
as the applied moments increase in a nearly linear manner. For example, the percentage difference
between the predicted and input 10S is 16.5% at a moment of 40 kNM and reduces to 6.10% at a
moment of 80kNm.
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The previous example is based on the assumptions that (1) the number of the buckling modes n
contributing to the 10S is known, and (2) the buckling modes contribute equally to the 10S. For a
real beam, if the second assumption retained, it would be of interest to develop a technique to

estimate the number of contributing modes n to the 10S. Equation (5.15) is normalized by

dividing both sides by the maximum lateral displacementu, (L/2), yielding

M
U, (2) " M,,-M . (mzz
_ . m=135.. 5.18
LC(L/z)l Sy oM S'”( L) " " 519
m=lMcrm_M

The normalized lateral displacement distribution [uc(z)/uC(L/Z)]n based on n=1,3,5,... modes

are compared to the lateral displacements at a relatively low value of the applied moment M (in
comparison to the critical moment). Here, the lateral displacements are obtained from the FEM
model, while for a real beam, the lateral displacement distribution would be experimentally
determined. Figure 5.5 provides a comparison between the normalized lateral displacements for
an applied moment M = 39.2 KNm as predicted by Eq. (5.18) based onn =1,3,5. Overlaid on the

same plot is the FEA predicted additional lateral displacement based on the input I0S. Given that
in the present example, only modes 1, 3, and 5 were postulated to contribute to the 10S, the
predictions of Eq. (5.18) provide a very close approximation to the FEA predicted additional

lateral displacement when n =5, correctly predicting that, in this case, n should be taken as five.

110



30%

¥
= U
'ﬁo L
5o 2%
o =
S 9 20% ™S
© &
5 \
& 5 15% AN
<9 \
L=
&2 10% ™
=
(="
gé \
A2 5% N

0%

40 60 80 100 120
Applied moment (KNm)

Figure 5.4 Relation between the percentage difference between the predicted 10S and the input 10S and the
applied moment for case 2

=12

(8]

2038 Vd

Y /

[

o

= 0.4 — displacement from FEM

'g --------- predicted by Mode 1 ’ \
=02 — - = predicted by Mode 1+3 -

3 - < = predicted by Mode 1+3+5 \
-E 0 | |

g 0 0.2 0.4 0.6 0.8 1
.

Normalized z-coordinate z/L

Figure 5.5 Normalized lateral displacement versus normalized coordinate of case 2 under 39.2kNm and the
predicted shapes by

5.8 Summary and Conclusions

In this chapter, the theoretical background for the Southwell plot technique was reviewed and
extended to the elastic lateral torsional buckling problem. The modified Southwell plot technique
was extended for cases of non-uniform moments. The moment lateral displacement plots were
developed for various 10S scenarios based on the FEM developed in Chapter 3. The effect of the

higher modes on the accuracy of the critical moment and 10S predictions was investigated through
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comparison of Southwell plot predictions to the critical moments predictions based on eigenvalue
solution and the input in 10S. A method to estimate the contribution of higher modes was provided
when the contributions of all modes are assumed equal. The main findings of the study are

summarized as follows:

1. The modified Southwell plot technique can predict the elastic critical moment for a perfectly
straight beam as well as the magnitude of the first mode contribution to the 10S.

2. When using the extended Southwell plot technique, using the data corresponding to larger
loads and displacement was shown to lead to more accurate critical moment predictions.

3. The technique is found applicable and valid for any lateral displacement (or angle of twist)
within the beam. Thus, the use of any displacement was found to reliably predict the critical
moments and contribution of the first buckling mode to the 10S.

4. A method was devised to estimate the contributions of all modes in situations where the analyst

believes that n modes contribute equally to the 10S.
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6. Summary and Conclusions

6.1 Summary

. A variational principle was developed in Chapter 3 for the lateral torsional analysis of beams
with initial out-of-straightness (10S) and initial angle of twist (IAT) subjected to strong axis
bending. The variational principle was used to obtain the governing equations and boundary
conditions by evoking the stationary conditions. The governing equations were solved for a
simply supported beam under uniform moments to obtain a closed form solution for the load-
displacement relationship. The variational principle was then used to develop a finite element
formulation for crooked beams under general transverse loads and boundary conditions.

. The validity of the finite element model was assessed through comparisons against the
ABAQUS models for the thin walled beam element B310S, the shell S4R and closed form
solutions where applicable, and the present finite element model was found to reliably predict
the load-displacement relationship for beams with 10S.

. The finite element model was used to investigate the effect of the IOS/IAT patterns and the
contribution of the higher modes on the load-displacement relationships of the initially crooked
beams.

. Two types of design criteria were proposed based on the threshold displacement and threshold
stress values and applied in conjunction with load-displacement curves obtained from the
present FEM to propose elastic lateral torsional buckling moments that account for initial
imperfections.

Chapter 4 developed a closed form solution to determine the moment resistance fraction

M, /Mcr based on the displacement based criterion. The expression is limited to simply

supported beams under uniform moments. Numerical results were used to modify the
expression and extend it to accommodate other loading cases.
. Another closed form solution was developed in chapter 4 to characterize the moment resistance

fraction M, . / M, Dbased on the stress-based criterion. The parameters influencing the
moment resistance were identified and systematically investigated on members with common
Cross-sections.

. The moment ratios based on the displacement-based criterion were used to propose a modified

design curve design for the elastic critical moment resistance that could incorporate the 10S
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effect into CAN/CSA S16-14 provisions. The moment ratios corresponding to the stress-based
criterion were also used to propose modified design curves by adopting a format similar to the
one used for columns in CAN/CSA S16-14.

8. A modified form of the Southwell plot technique was extended for the lateral torsional
buckling of simply supported beams under uniform moments, and then the technique was
numerically extended for other loading cases in Chapter 5. The technique was shown to be
valid for any load versus lateral displacement or versus angle of twist history within the beam.

9. Using the load-displacement relationship obtained from the present FEM, in conjunction with
the modified Southwell plot technique, the effect of the moment range on the accuracy of the
predicted critical moments was studied.

10. The Southwell plot technique was shown to be able to estimate only the 10S associated to the
first buckling mode. A method was proposed to predict the higher mode contributions to 10S,

under the assumption that the first n modes contribute equally to the 10S.

6.2 Conclusions

The main conclusions of the work are:

1. When initial imperfections are expresses as a linear combination of the buckling modes, the
most detrimental 10S contribution was shown to be associated with the first buckling mode.
The relative contributions of higher modes to the lateral displacement (or angle of twist) tend
to decrease as the applied loads approach the elastic critical loads.

2. For a specified initial out-of-straightness at the compression flange u, . , among the initial
out-of-straightness scenarios attempted for the tension flange within the range
—Uy . SUy, <U, . , the most adverse 10S pattern was found to correspond to the case
Uy =—U,_. , Which maximizes the initial angle of twist. In particular, for a specified initial out-
of-straightness at the compression flange u, ., the assumption that the 10S follows the first

buckling mode is found to be less detrimental.

3. Based the displacement based design criterion, the LTB resistance of a beam is found solely
to depend on the magnitude of the initial imperfection and the threshold displacement specified
by the designer.
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In contrast, the LTB resistance M, . /M based on the stress based design criterion was

found to depend upon the 10S coefficient, yield stress fraction, yield-to-critical moment ratio,
span-to-section-depth ratio, flange-width-to-depth ratio and depth-to-flange-thickness ratio.

For an initially crooked beam under increasing moment, the normal stress ratio o/ F, induced

by minor axis bending and warping were found to increase at a higher rate than the normal

stress ratio due to major axis bending as the applied loads are increased.

The equation for predicting the moment resistance ratio M, I M_, based on the displacement

criterion, while developed for the case of uniform moments, was found to provide reliable
approximate results for non-uniform moments when appropriate moment gradient factors are

adopted to modify the critical momentM,, .

A modified form of the Southwell plot technique was found to reliably predict the elastic
critical moment for a perfectly straight beam and the magnitude of the first buckling mode
contribution to the 10S, given the load-displacement data from the lateral torsional buckling
experiments (or analyses) on an initially crooked beam.

The accuracy of the modified Southwell plot technique is found to increase with the applied
load magnitudes. The predicted critical moment is found to be more accurate when using data
in the large moment range, as long as the specimen does not undergo yielding.

The modified Southwell technique is found to be valid for any displacement (or angle of twist)

within the beam and is able to capture the contribution of the first buckling mode.

6.3 Recommendations for Future Research

Possible extensions of the present study include

1.

While the finite element solution developed in Chapter 3 is applicable for any loading and
boundary conditions, subsequent sections have focused solely on simply supported beams under
three loading patterns. It is recommended to use the model developed to extend the study to
other loading and boundary conditions.

. The present developments were limited to doubly symmetric cross-sections. It is recommended

to extend the model to mono-symmetric cross-sections.

. The present model is based on the Vlasov theory which neglects the effect of cross-section

distortion, shear deformation, and pre-buckling deformations. It is of interest to expand the work
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to incorporate such effects by adopting thin-walled beam theories with more enriched
Kinematics.

. The present work was primarily aimed at characterizing the effect of initial out of straightness
on the elastic lateral torsional buckling resistance. It is of practical interest to extend the study
within the inelastic range by incorporating the effects of plasticity, and the contribution of the
residual stresses into the inelastic lateral torsional buckling range.

. The present work was based on postulating initial out-of-straightness limits in line with
manufacturing tolerances. While the above approach is conservative, it is of practical interest
to supplement the information by measuring the initial out-of-straightness in real steel beams
to possibly determine more representative initial out-of-straightness values. For such beams, it
would be of interest to conduct full-scale testing to experimentally determine the load-lateral
displacement relations and assess the applicability of the modified Southwell plot technique

proposed in the present study.
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