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Abstract 

The effect of initial out-of-straightness of steel beams with wide flange cross-sections on their 

elastic lateral torsional buckling strength is investigated analytically and numerically. A variational 

principle is first developed and then used to obtain the governing equilibrium conditions and 

associated boundary conditions for a beam with general patterns of initial out-of-straightness and 

initial angles of twist. The principle is then used to develop a finite element formulation to 

characterize the lateral torsional response of beams with initial out-of-straightness under general 

transverse loading. The validity of the finite element formulation is verified through comparison 

against results from models based thin-walled beam finite element and shell element models 

available in ABAQUS. Since the load lateral displacement responses do not exhibit a distinct point 

of loss of stability, two design criteria are proposed for the characterization of the failure. The first 

criterion is based on a threshold value for additional lateral displacement and the second criterial 

is based on a threshold value for the normal stresses. Both criteria are applied in conjunction with 

the analytical solution and finite element formulation in order to determine a moment resistance 

based on lateral torsional buckling that incorporates the effect of initial out-of-straightness. The 

moment capacity based on the displacement-based criterion is shown to solely depend on the ratio 

between the initial out-of-straightness component associated with the first buckling mode and the 

additional displacement threshold value specified. To the contrary, moment capacity based on the 

stress criterion, was found to depend upon the initial out-of-straightness magnitude, the normal 

stress threshold value and the geometry of the cross-section. 

The effects of the above parameters on the predicted moment capacity were investigated for beams 

with common sections in a systematic parametric study. Possible means of modifying the present 

provisions of CAN-CSA S16 relating to elastic lateral torsional buckling to incorporate the effect 

of initial out-of-straightness effects are discussed and illustrated through examples. 

The load-deformation plots for beams with initial out-of-straightens as predicted by the 

formulations developed in the present study are then used to extend the Southwell plot technique, 

originally developed for buckling of column with initial out-of-straightness, to the lateral torsional 

buckling of beams with initial out-of-straightness. The study shows that the plot, either 

experimentally or analytically obtained, of the applied load versus lateral displacement, at any 

point or angle of twist at any section, for a beam with initial out-of-straightness case can predict 
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(a) the elastic critical moment of an analogous initially straight beam, and (b) the first buckling 

mode contribution to the initial out-of-straightness. 
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1. Introduction 

1.1 Background 

In the design for laterally unsupported steel beams, the resistance is often governed by the lateral 

torsional buckling (LTB) mode of failure. For the idealized case of a perfectly straight beam with 

a wide flange section subjected bent about the strong axis, the buckling point is associated with a 

distinct bifurcation point at which the beam exhibits a sudden change in the deformation pattern 

characterized by sudden lateral bending and twist. The buckling load level corresponding to such 

a point of instability is detected by solving an eigenvalue problem. Real steel beams possess 

inevitable initial out-of-straightness during the manufacturing process. Thus, unlike the idealized 

case of a perfectly straight beam, when real beams are subjected to strong axis bending, they do 

not exhibit a clear-cut point of bifurcation. Rather, such beams exhibit gradual lateral bending and 

twist as the applied transverse loads are incrementally increased. When the applied loads approach 

the theoretical buckling load of a perfectly straight beam, lateral displacements and twist tend to 

become excessive, typically attaining threshold displacement and/or stress values prior to attaining 

the critical loads determined for idealized perfectly straight beam. Thus, the lateral torsional 

buckling resistance of a real beam is, in principle, inferior to that of a comparable straight beam. 

The detrimental effect of initial crookedness on lateral torsional bucking resistance is reflected in 

some of the structural steel design standards, but is omitted in others. Thus, the present study 

intends to characterize the lateral torsional buckling strength reduction induced by the initial 

crookedness of the beams. The following sections thus provide a review of lateral torsional 

buckling provisions in international steel design standards with emphasis on aspects related to 

initial crookedness. 

1.2 Lateral torsional buckling behavior of straight versus initially crooked 

beams 

Consider a perfectly straight beam (configuration 1 in Figure 1.1). Upon the application of a 

transverse load P , the straight beam deflects vertically by a displacement v from configuration 1 

to configuration 2. The applied load is then assumed to increase by a factor   and attain the value 

P at the onset of buckling (Configuration 3) where the pre-buckling displacement is assumed to 

increase to v . At configuration 3, the section has a tendency to buckle to Configuration 4 by 



2 

 

moving laterally to displacement bu  and twisting through angle b (Configuration 4). The 

corresponding load versus lateral displacement relation P - bu  is depicted in Figure 1.1b where no 

lateral displacements take place between 1-3 and a sudden displacement takes place between3-4.    

The buckling load P  is obtained through an eigenvalue analysis. In contrast, for beams with 

initial out-of-straightness 0 0,u   in the un-deformed state (configuration 1’) by incrementally 

applying transverse load P, the section undergoes gradually increasing lateral displacement u  and 

angle of twist   as depicted by the nonlinear loading path 1-2’-3’4’ and asymptotically approach 

the buckling load P  from below. The behavior is fundamentally different from that of a perfectly 

straight beam and no clear-cut buckling load exist. Thus, it would be of interest trace the nonlinear 

load deformation path 1’-2’-3’-4’. At a given lateral displacement (or a given stress), the difference 

P between the buckling load based on a perfectly straight beam and that for an initially crooked 

beam is measure of loss of lateral torsional buckling loss of strength of the member due to initial 

out-of-straightness. As will be shown in the following sections, this loss in strength has been 

considered in some but not all structural steel design standards. 

v

v
P

P
P

bu

1

2

3 4

1'

2'

3'

4'

1u 2u 3u

b

1

2

3

1P

2P

3P

 

(a) 

1

2

3
4

1'

2'

3'

4'

P

u0u

P

 

(b) 

Figure 1.1 (a) Lateral torsional buckling configuration and (b) moment versus lateral displacement 

relationship for straight and initially crooked beams 
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1.3 Design standard provisions for beams  

In various national design standards for steel members, discrepancies are observed in determining 

the LTB resistance for beams depending on whether the detrimental effect of the initial geometric 

imperfection has been accounted for or not. Thus, design provisions for beams are demonstrated 

to present the discrepancies in this section. 

1.3.1 Canadian steel design standard  

For laterally unsupported members with doubly symmetric sections subjected to bending in 

CAN/CSA S16-14, the moment resistance rM  is classified by the section class. For beams with 

class 1 and 2 sections, the moment resistance rM is computed based on the sectional plastic 

moment pM . For class 3 and 4 sections, the sectional yield moment YM is used in calculating the 

moment resistance. The following narrative is based on beams with class 1 and 2 sections. The 

boundary conditions are assumed simply supported with respect to the lateral displacement and 

the angle of twist. Three ranges governed by different failure modes are proposed for designing in 

the Canadian design provision standard. These ranges are distinguished by the sectional plastic 

moment pM   and the critical elastic moment uM  which is given by 

2

CAN
u y y w

C E
M EI GJ I C

L L

  
   

 
   (1.1) 

in which, L is the span between lateral torsional supports, E  is the modulus of elasticity of steel, 

G is the shear modulus, yI is the weak axis moment of inertia, J  is the Saint-Venant torsional 

constant, and wC is the warping constant. The coefficient CANC  is a moment gradient coefficient 

given by 2 2 2 2

max max4 4 7 4 2.5a b cM M M M M     and accounts for  the increase in lateral 

torsional buckling resistance due to uniform bending moments, and , ,a b cM M M  are the moments 

at quarter-span, half-span, and three-quarter span, respectively, and maxM  is the maximum 

moment within the unsupported span L  . 

For comparatively long beams (i.e. 0.67u pM M  proposed in CAN/CSA S16-14), the moment 

resistance is governed by the elastic lateral torsional buckling failure mode and given by uM , 
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which is the primary focus of the present thesis. The resistance factor   accounts for the material 

variability in the material properties (e.g. E , G , yF   etc.). 

When 0.67u pM M  , the flexural resistance of the beams with intermediate spans is governed by 

inelastic lateral torsional buckling (LTB) failure mode. However, the inelastic lateral torsional 

buckling moment cannot exceed the resistance pM , i.e., the flexural resistance of very short 

beams is governed by yielding. To sum up, the moment resistance rM  proposed in CAN/CSA 

S16-14 is given by 

0.67

0.28
1.15 1 0.67

u u p

p

r i p u p

u

p i p

M M M

M
M M M M M

M

M M M







 


 
     

 
 

  (1.2) 

The curve for Eq. (1.2) in CAN/CSA S16-14 is depicted in Figure 1.2 (a) with the elastic buckling 

curve from the bifurcation problem. For beams undergoing elastic LTB under uniform bending 

moments (i.e. 1CANC   ) and the variability in material properties are omitted (i.e. 1   ), Eq. 

(1.2) (a) is simplified as Eq. (1.1) by Timoshenko (1961) which accounts for no initial out-of-

straightness. Thus, Eq. (1.2) (a) in CAN/CSA S16-14 is based on the eigenvalue solution which 

assumes a perfectly straight member. The fact that the Canadian standard provisions do not involve 

a reduction the elastic critical moment capacity r uM M  is indicative of the fact that they do not 

capture the effect of initial out-of-straightness in the design equation for flexural members. This 

contrasts with approach taken by the Canadian standards for the design of compression members 

as will be outlined in the following section. 

For a member with doubly symmetric cross-sections subjected to axial compression, the resistance 

rC  is given by 

 
1

21r yC AF
 



     (1.3) 

in which A is the gross cross-section area, yF is the yield strength, yKL r F E  is a 

slenderness factor characterizing the length of the member and the boundary conditions, K  is a 
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effective length factor accounting for the effect of boundary conditions on the response of the axial 

compression member, r  is the radius of gyration given by I A ( xI  or yI  based on the boundary 

conditions) and   is a factor depending on the residual stress patterns in the member and is taken 

as 1.34 for hot-rolled sections and 2.24 for welded sections. In Figure 1.2 (b), the dimensionless 

resistance for columns r yC AF  (normalized with respect to the factored yield strength) is plotted 

in terms of the slenderness KL r . The dimensionless resistance is observed to be lower than the 

normalized elastic buckling curve  
22/ / /e y yC AF E F KL r  in Figure 1.3 (b). For example, 

when the weak axis slenderness 125.4KL r  , the normalized resistances as given in Figure 1.2 

(b) are rC  = 0.30 and eC  = 0.50. The percentage difference of 40.0% accounts for initial out-of-

straightness. When KL r  increases to 170.9, the corresponding normalized resistance are rC  = 

0.18 and eC  = 0.27, a 33.3% percentage difference. The lower reduction in this case, suggests that 

the strength reduction due to initial out-of-strength reduces as the column slenderness increases.  

The fact that the design equation plot coincides with the elastic buckling plot in Figure 1.2a, while 

the design equation plot is lower than the elastic buckling plot in Figure 1.2b, indicate that initial-

out-of-straightness is omitted for beam design provisions but accounted for in compression 

member design provisions. This discrepancy is one of the motives of the present study. 
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(a) 

 

(b) 

Figure 1.2 Comparison between the design curves in CAN/CSA S16-14 and the elastic 

buckling curve for (a) beams and (b) columns 

1.3.2 American steel design standard  

For members with doubly symmetric I-profile undergo bending about their strong axis, the 

American design provisions (ANSI/ASCI 360-16) distinguish the governing failure mode by 

lengths of the member. For beams with spans smaller than the limiting length 1.76p y yL r E F , 

the moment resistance is deemed to be governed by yielding and is given by the sectional plastic 
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moment pM . For beams with intermediate length, i.e., larger than pL  but smaller than rL , The 

limiting length rL  is given by 

2 2
0.7

1.95 6.76
0.7

y

r ts

y x o x o

FE Jc Jc
L r

F S h S h E

   
     

  
  (1.4) 

the resistance of the member is governed by the inelastic LTB. In Eq. (1.4) which, 2

ts y w xr I C S  

and 1c   for doubly symmetric I-sections and  2o y wc h I C  for channels. When rL L  , 

the moment resistance is governed by the elastic LTB given by cr xF S  , in which crF  is given by 

2
2

2

0

1 0.078ANSI c b
cr

x ts

ts

C E J L
F

S h rL

r

  
   

   
 
 

   (1.5) 

where ANSIC  is the moment gradient factor specified in ANSI/AISC 360-10 and given by 

 max max 4 2 3 412.5 2.5 3 4 3ANSI L L LC M M M M M    , 0h  is the distance between the flange 

centroids. From the relation st y w xr I C S , by substitution into Eq. (1.5) and multiplying both 

sides by xS  , one obtains 

 
2

2

00.078ANSI
r cr x y w y w y

C E
M F S I C EI GJ E C I Gh

L L

 


 
   

 
  (1.6) 

Eq. (1.6) is similar in form as Eq. (1.1) except the term  2

00.078 w yE C I Gh . For a doubly 

symmetric I-sections, it can be shown that the term  2

00.078 1w yE C I Gh  . Thus, Eq. (1.5)

is another form of Eq. (1.1) and does not capture the initial out-of-straightness effects. To sum up, 

the nominal flexural resistance for members subjected to strong axis bending based on the 

American design provision is given by 
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 0.7

p p

p

r ANSI p p y x r p

r p

cr x r

M L L

L L
M C M M F S L L L

L L

F S L L




  
            




  (1.7) 

The nominal flexural resistance-span relationship based on Eq. (1.7) is plotted in Figure 1.3 (a). 

for a W200x36 cross-sections. For rL L ,  the lateral torsional buckling resistance based on 

ANSI/AISC 360-16 provisions coincides with the elastic critical moment, i.e., the no effects of 

initial imperfection are not accounted for in the design strength provisions. This observation 

contrasts with the approach taken in the same standard for compression which will be presented in 

the following 

For compression members, the nominal compressive strength in the ANSI/AISC 360-16 is given 

by  

r crC F A    (1.8) 

in which the stress crF  is given by  

 0.658 4.71

0.877 4.71

y eF F

y y

cr

e y

F KL r E F
F

F KL r E F

 
 



  

 (1.9) 

and  
22

eF E KL r  is the Euler’s buckling stress as determined from an elastic (eigenvalue) 

buckling analysis which does not account for the detrimental effect of the initial out-of-straightness 

on the buckling strength. For 200,000E MPa  and 350yF MPa , the threshold value is

4.71 112.6yE F  . 

The adoption of an empirical fraction of the theoretical elastic buckling stress 0.877 eF for a 

perfectly straight column, the standard accounts for the strength reduction due to the initial 

geometric imperfection when determining the design strength for long columns. Figure 1.3 (b) 

depicts the normalized compressive resistance based on the American steel design standard in 
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terms of the slenderness /KL r  for a W200x36 cross-section. Like the design curve for columns 

in CAN/CSA S16-14 (Figure 1.2 (b)), the nominal resistance for columns provides is lower than 

the elastic buckling resistance. The 12.3% difference in strength between the nominal design 

strength and the elastic buckling strength accounts for the strength reduction due to column out-

of-straightness. In a manner similar to CAN/CSA S16-14, the design rules columns of American 

standard accounts for the detrimental effect of the initial out-of-straightness when characterizing 

the column nominal strength but not when characterizing the beam strength. 

 

(a) 

 

(b) 
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Figure 1.3 Comparison between the design curves in ANSI/ASCI S360-10 and the elastic 

buckling curve for (a) beams and (b) columns 

1.3.3 Australian Standards 

In the Australian Standard (AS 4100-1998), the nominal resistance rM for a flexural member is 

given by 

r m s s sM M M      (1.10) 

where m  is a moment modification factor (akin to moment gradient factor in CAN-CSA S16 

2014) and is given by  

     

max

2 2 2

1.7
2.5m

a b c

M

M M M

  
  
 

   (1.11) 

In Eq. (1.11), the nominal moment resistance sM  is given by 

s y eM F Z    (1.12) 

in which, eZ is the effective section modulus which is depends on the section slenderness e  

defined as 

250

y

e

Fb

t


 
  
 

   (1.13) 

where b  is the width of the element outstanding from the face of the supporting plate element or 

the width of the element between the faces of supporting plate elements, and t  is the element 

thickness. The effective section modulus eZ  is given by 

 

  

2

min ,1.5 82

115
min ,1.5 82 115

33

115
115

x x e

s
e x x x x e

x e

s

Z S

Z S Z S S

S















    
       

  


     

  (1.14) 
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In Eq. (1.11), s is a slenderness reduction factor which accounts for the reduction in strength due 

to yielding, The slenderness reduction factor s  depends on the ratio of the nominal moment 

resistance sM   to the elastic critical moment oM  and takes the form  

2

0.6 3s s
s

o o

M M

M M


 
   

      
    
 

   (1.15) 

in which, the elastic critical moment is given by 

2 2

2 2

y w
o

e e

EI EC
M GJ

l l

      
       

     

   (1.16) 

and the effective length el  of a segment is 

e t l rl k k k l    (1.17) 

where tk  is a twist restraint factor, lk is a load height factor and rk is a lateral rotation restraint 

factor, all given in Table 1.1-Table A1.3 in Appendix 1.A. Figure 1.4 depicts the normalized 

flexural design strength for a beam with a W250x36 cross-section based on the Australian steel 

provisions as provided by Eq. (1.10). Overlain on the same plot are the elastic critical moment oM

and the flexural yield strength YM   for comparison. Unlike CAN/CSA-S16 and ANSI/AISC-360, 

the Australian standards do not provide clear-cut slenderness limits for yielding, inelastic buckling, 

and elastic buckling. As, such, the threshold slenderness values based on CAN-CSA-S16 are 

overlain on the plot, which would correspond in this case to dimensionless slenderness ratios of 

0.50 and 1.30. 

Within the elastic range 1.30Y crM M  , the nominal flexural resistance based on the Australian 

standard equation is lower than the elastic buckling resistance by a difference ranging from 15% 

at 1.87Y crM M    to 28% at 1.30Y crM M  . The difference is indicative of the fact that the 
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Australian standards recognize the detrimental effect of initial out-of-straightness compared to the 

flexural resistance for perfectly straight beams. 

 

Figure 1.4 Comparison between the design curves in AS 4100-1998 for beams 

1.3.4 The Eurocode Standard 

According to the Eurocode 3 (2005), the design flexural resistance for laterally unsupported beams 

bent about the strong axis is given by 

1

y

r LT y

M

F
M W


    (1.18) 

where yF is the yield stress, yW is the section modulus about the strong axis, etc. The section 

modulus yW depends upon the section class. For class 1 and 2 sections, the value of yW is taken as 

the plastic section modulus xZ  and for class 3 sections, it is taken as the elastic section modulus

xS . For class 4 section, yW is based on the effective elastic section modulus effS . In Eq. (1.18),  

1M is a partial resistance factor (akin to the resistance factor 1/  in CAN/CSA-S16) that accounts 

for the variability in the material properties and section dimensions, and will be taken as 1 1.0M   

in the present discussion given our focus on the nominal resistance. In Eq. (1.18), coefficient LT  

is a reduction factor that accounts for lateral torsional buckling and is given by 
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2 2

1
LT

LT LT LT





   

   (1.19) 

where   20.5 1 0.2LT LT LT LT        
 with LT  being a factor accounting for member 

imperfections as listed in Table 1.1 and ranges between 0.21 and 0.76, depending upon the 

manufacturing method and the height to width ratio. It accounts for misalignment and different 

residual stress distributions. For example, for the value 0.21a  , the nominal design resistance is 

found to be 78%-88% of the elastic buckling resistance for a perfectly straight beam. In Eq. (1.19)

LT is a slenderness parameter (akin to coefficient Y oM M   In the Australian standard) and is 

given by LT y y crW F M   in which crM  is the elastic critical moment and  y yW F  is the moment 

resistance based on material failure, i.e., yield moment for W200x36.  The nominal flexural 

resistance curves based on Eurocode 3 (EN 1993-1-1: 2005) are provided in Figure 1.5 based on 

the LT   values listed in Table 1.1.  

Table 1.1 Recommended values for imperfection factors for lateral torsional buckling curves 

Buckling curve a b c d 

Imperfection 

factor LT  

0.21 0.34 0.49 0.76 

* Descriptions of cross-sections a-d are given in Table 1.2 

Table 1.2 Recommended values for lateral torsional buckling curves for cross-sections 

Cross-section Limits Buckling curve 

Rolled I-sections 2h b   

2h b   

a 

b 

Welded I-sections 2h b   

2h b   

c 

d 

Other cross-sections N/A d 
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Figure 1.5 Comparison between the design curves in EN 1993-1-1: 1998 for beams for 

recommended imperfection factor 0.21a   , 0.34b  , 0.49c  and 0.76d  (curves for b,c 

and d not practical for W250X36 section) 

1.3.5 Comparison of approaches of various standards 

While Canadian and American standards recognize the detrimental effect of the initial out-of-

straightness on column strength, such effects are not considered when characterizing the flexural 

member strength. In contrast, the effect of initial out-of-straightness is accounted for in the 

Australian and Eurocode standards. In the Australian design equation for beams, a slenderness 

factor s  is introduced to quantify the influence of initial imperfections on the buckling resistance 

for beams whereupon a reduction is found when compared to the buckling resistance obtained 

from the eigenvalue solution. No clear statement regarding the types of initial imperfections is 

provided and no distinction is made between the treatment of rolled and welded cross-sections. 

This approach contrasts with that of the Eurocode 3, in which four levels of imperfection values 

LT   are provided, depending on the manufacturing method and the sectional height to width ratio.  

1.4 Motivation of present study 

Present standards seem to be inconsistent in that the Eurocode and the Australian standards account 

for the effect of initial out-of-straightness when characterizing the LTB resistance of beams while 

the Canadian and American standards omit such effects. The present thesis thus aims at providing 

a theoretical foundation for quantifying the detrimental effects on initial out-of-straightens on LTB 

resistance by developing analytical and finite element solutions and applying them in conjunction 
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with proposed design criteria for possible future adoption in standards. The study focuses 

exclusively on elastic lateral torsional buckling and is thus intended for long span beams, as 

opposed to beams with intermediate spans where the presence of residual stresses may accelerate 

the yielding in portions of the cross-section. 

1.5 Research Objectives 

The specific objectives of the present study are to: 

• Develop a finite element solution for the response of laterally unsupported steel beams 

subjected to various types of loads. 

• Propose failure criteria based on displacement threshold and stress threshold values. 

• Establish the relationship between the LTB resistance of perfectly straight beams and 

imperfect beams. 

• Identify the parameters affecting design criteria and quantify their effects in a parametric 

study on common cross-sections in the W150 and W310 series of Handbook of steel 

construction (2014), and propose simplified design equations for both design criteria. 

• Previously proposed methodologies (e.g., the Southwell plot (1931)) were devised to 

predict the buckling loads for ideal columns (without imperfections) from the experimental 

results on real columns (with initial-out-of-straightness).  Since the present study 

establishes relations between the lateral torsional buckling strength of beams with initial 

imperfections and those that are perfectly straight, the study aims at assessing the 

extensibility of the Southwell plot technique, and variations thereof, to lateral torsional 

buckling of beams. 

1.6 Outline of the thesis 

Present Chapter 1 provided a comparative discussion of present standard provisions in the 

treatment of out-of-straightness effects when characterizing the lateral torsional buckling of 

strength of beams.  

Chapter 2 provides a literature review on studies related lateral torsional buckling that account for 

the effect of initial out-of-straightness of steel beams. Studies related the inclusion of initial out-

of-straightness into lateral torsional buckling strength in the Eurocode 3 provisions are also 

summarized given their relevance to the topic. Studies aiming at determining the critical loads (or 
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moments) for perfectly straight columns (or beams) from the load-displacements of members with 

initial crookedness are also surveyed given their relevance to the developments of Chapter 5. 

Chapter 3 develops a finite element solution to capture the response of beams with initial geometric 

imperfections subjected to general transverse loads. The chapter also proposes two criteria, based 

on threshold displacements and threshold stresses, to characterize the effect of initial out-of-

straightness on the elastic lateral torsional buckling strength of beams. The finite element solution 

is used in conjunction with the criteria proposed to investigate the effects of various geometric 

parameters on the moment capacity. 

Chapter 4 presents the results of a parametric study on common cross-sections under three loading 

conditions: uniform moments, mid-span point loading, and uniformly distributed loading. The 

study investigates the effect of key parameters affecting the lateral torsional buckling resistance 

based on the both criteria proposed. Illustrative examples for incorporating the effect of initial-

out-of-straightness into the present Canadian standards are provided.  

Chapter 5 presents an extension of the Southwell plot technique that predicts the critical moments 

and initial geometric imperfections for an initially crooked beam. The extension of the Southwell 

plot technique is based on the finite element solution developed in Chapter 3. Various scenarios 

for initial out-of-straightness are examined to study the effect of higher modes on prediction in 

initial geometric imperfections.  

Chapter 6 provides a summary of the work done, compiles the findings and conclusions of the 

study, and provides recommendations for future research. 
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Appendix 1. A  

Table A1.1 Twist restraint factor  tk  

Restraint arrangement Factor tk  

FF, FL, LL, FU 1.0 

FP, PL, PU 3

1

2
1

f

w

w

td

l t

n

   
   
      

PP 3

12
2

1

f

w

w

td

l t

n

   
   
      

 

Table A1.2 Load height factor lk for gravity loads 

Longitudinal position 

of the load 

Restraint 

arrangement 

Load height position 

Shear centre Top flange 

Within segment FF, FP, FL, PP, PL, 

LL, FU, PU 

1.0 

1.0 

1.4 

2.0 

At segment end FF, FP, FL, PP PL, 

LL, FU, PU 

1.0 

1.0 

1.0 

2.0 

 

Table A1.3 Lateral rotation restraint factor rk  

Restraint arrangement Ends with lateral rotation 

restraints 

Factor rk  

FU, PU Any 1.0 

FF, FP, FL, PP, PL, LL None 1.0 

FF, FP, PP One 0.85 

FF, FP, PP Both 0.70 

* F ≡ fully restrained, L ≡ laterally restrained, P ≡ partially restrained and U ≡ unrestrained 
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2. Literature review 

The present study focuses on investigating the reduction effect of initial geometric imperfections 

on the lateral torsional buckling resistance of steel beams. Thus, Section 2.1 of this chapter presents 

a review of studies depicting mechanical or experimental approaches to capture the effect of initial 

geometric imperfections on the LTB problem. Section 2.2 provides an overview of studies related 

to the treatment for initial geometric imperfections in the Eurocode 3 (EN 1993-1-1(2005)). A 

review of studies investigating the probability and stochastics aspects of LTB problem is presented 

in Section 2.3. A summary of studies on experimental treatment to obtain the LTB critical load is 

provided in Section 2.4.  

2.1  LTB for beams with initial geometric imperfections  

Using the transfer matrix method, Yoshida and Maegawa (1983) determined the load-lateral 

displacement relationship of a laterally curved beam subjected to uniform moments. The beam 

radius of curvature was taken as constant and had a large magnitude compared to the dimensions 

of the cross section.  The stress-strain was assumed to be perfectly elastic-plastic.  The transfer 

matrix was derived based on the direct equilibrium approach of an infinitesimal element. To assess 

the validity of the analysis, the numerical results were compared to experimental results by 

Fukumoto and Nishida (1981) for IPE200, IPE250 and IPE600 sections. 

Yoshida and Maegawa (1984) distinguished between the critical loads of perfectly straight 

members which are obtained an eigenvalue solution and the ultimate load for initially crooked 

members which are obtained from a non-linear analysis. The load-displacement relations were 

obtained based on the work of Yoshida and Maegawa (1983). The cases investigated involved (1) 

a beam with initial lateral deflection approximated by a circular arc, (2) a beam subjected to a mid-

span point force acting on the top flange at horizontal offset from the center line of the section, (3) 

a beam subjected to vertical and a horizontal load acting at the same point on the top flange and 

(4) a beam with initial lateral out-of-straightness subjected to laterally eccentric point load acting 

at mid-span. The results were provided in a dimensionless form. The study investigated the effect 

of residual stress distribution, amplitude of the initial circular arc, loading conditions, and cross-

section dimension. The influence of residual stress on the ultimate load was found to be low 

compared to initial imperfections and the dimensions of the cross section was found to have small 

effects on the ultimate strength. 
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Hasham and Rasmussen (1995) conducted two series of experiments on members under 

compression and major axis bending. Two spans were considered; 1990mm and 3990mm and 

different axial force to major axis bending moment ratios were applied on the specimens. The 

authors measured the sectional dimensions of the specimens and reported the average value and 

standard deviation. The authors also measured the initial out-of-straightness at the flange tips and 

section centroid. The axial force- bending moments interaction relations were plotted and 

compared against the predictions of AS4100 (1990), AISC-LRFD (1993) and Eurocode 3(1993) 

for the problem of out of plane lateral torsional buckling. The authors concluded that the design 

capacities based on AS4100, AISC-LRFD and Eurocode 3 were conservative when the bending 

moments to axial force ratios were comparatively high. In contrast, AISC-LRFD interaction 

relations were found to be overly conservative for series 2. 

Dubina and Ungureanu (2002) performed nonlinear finite element analyses (FEA) on beams and 

columns with non-lipped and lipped channel sections which incorporate the effects of residual 

stresses and initial geometric imperfections. Two types of geometric imperfections were 

considered; transverse, and lateral/torsional imperfections and local-sectional imperfections in the 

form of web distortion. Local-section imperfections were introduced as symmetrical or 

asymmetric sine shapes along the web height as well as imperfections based on probabilistic 

analysis. The study investigated the reduction in the buckling strength due to imperfections and 

interactive buckling. Comparisons were conducted with the Australian and European standard 

predictions. The buckling strength based on the symmetric and asymmetric local imperfections 

were found to differ and the sinusoidal shape was not always appropriate for representing local-

sectional imperfections. Also, the influence of local imperfections was found relatively low 

compared to global imperfections. The erosion of critical bifurcation load (ECBL) imperfection 

approach was found to be effective in charactering the geometric imperfections. 

McCann et al. (2013) investigated the lateral torsional buckling (LTB) for beams with discrete 

lateral restraints that are vertically offset from the shear center. The model developed related to 

simply supported beams with doubly symmetric I-sections and linearly elastic lateral restraints. 

The solution was based the Rayleigh-Ritz method and the lateral displacement, angle of twist, and 

initial imperfections were expressed as Fourier series. Two eigen-value models were developed 

for perfectly straight beams; the first accounted for the flexibility of the lateral braces while the 
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second omitted their flexibility. A third solution was developed for beams with initial out of 

straightness. The work investigated the effect of bracing height on the required lateral restraint 

stiffness. Comparisons were performed against the predictions of LTBeam, a software for 

determining the critical moments of restrained beams. The comparison has shown that while a 

single harmonic solution may not be sufficient to predict the critical moments, the use of the full 

Fourrier series predictions in very good agreement with numerical results. 

Nguyen and Chan et al. (2013) conducted geometric nonlinear FEA on I-section beams with Fibre 

Reinforced Polymer (FRP) and steel materials. The study examined the influence of load height 

effect and end warping fixity conditions on the critical lateral torsional buckling load and then 

incorporated the effect of initial lateral and twist imperfections in their analysis.   The lateral out-

of-straightness and the initial twist imperfection were assumed as half and quarter wave sinusoidal 

functions. The authors observed that the reduction in strength due to load height effects and the 

release of end warping fixity conditions to be more significant in FRP beams than in steel beams.  

Ascione (2014) developed a finite element formulation wide flange beams with initial 

imperfections. The model was used to investigate the lateral torsional buckling of simply supported 

beams made of pultruded GFRP subjected to transverse uniformly distributed load acting at the 

top flange. Three types of imperfections were investigated; (1) lateral out-of-straightens and (2) 

non-orthogonality of the flanges and the web, and (3) combinations of both types of imperfections. 

The author observed that lateral out-of-straightness had a larger detrimental effect than the non-

orthogonality of the flanges and the web. 

2.2  Studies related to the Eurocode 3 buckling provisions for beams or beam-

columns 

Maquoi et al. (2001) presented a theoretical treatment for interaction equations of beam columns 

and provided a framework for generalizing the design provisions for beam-columns in Australia 

(AS 4100-1998), America (AISC 1966 and 1986), Europe (ECCS 1976 and 1978) and Germany 

(DIN 18800 1988). The proposed method can account for the lateral torsional buckling through 

amendments in computing the coefficients appearing in the interaction equations. 

Boissonade et al. (2002) developed a second-order in-plane elastic analysis and used it to propose 

a new interaction equation as an alternative to that of the Eurocode 3 (1993). The alternative 
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interaction equation was developed by adopting the closed form solution developed by Maquoi 

and Rondal (1982) in conjunction with the interaction equation in the German steel standard 

provisions (DIN 18800). The work captured biaxial moments and plasticity effects. Finite element 

analyses on practical section dimensions were performed to assess the validity of the proposed 

solution. The proposed solution was found safe, efficient, and more accurate than that in EC 3 with 

the ability to account for lateral torsional buckling. 

Aguero and Pallares (2007) summarized the approach methodology and simplified method used 

in the Spanish steel standard (NBE-EA-95) and Eurocode 3 (1992) for the ultimate strength of 

members in slender frames. A simplified method to capture second order effects was proposed by 

separating the analysis into sway and non-sway parts, and an auxiliary coefficient was developed 

to amplify the bending moments. The Dutheil’s method (1952) was adopted to obtain equivalent 

imperfections.  An illustrative example was presented for a beam with lateral and twist initial 

geometric imperfections subjected to biaxial bending. The accuracy of the proposed method was 

assessed by comparison against a closed form solution. The proposed solution was observed to be 

valid for predicting the ultimate limit state of slender members. 

Szalai and Papp (2010) developed a generalization of the Ayrton-Perry Formula (APF) (Ayrton 

and Perry 1886) originally developed for predicting the buckling resistance for columns 

undergoing flexural buckling, and extended the APF to account for effect of initial imperfections 

on the lateral torsional buckling strength of beams and beam-columns. 

Taras and Greiner (2010) conducted geometric and material nonlinear analyses for the lateral 

torsional buckling (LTB) analysis of beams. The results were found to be inconsistent with the 

Eurocode 3 solution. Based on the first yield criterion and a consistent derivation, the authors 

proposed new design curves. 

By relating the stresses to the derivatives of the displacement fields, and adopting the first yield 

criterion based on von Mises stress, Aguero and Pallares (2015a) proposed initial lateral out-of-

straight and angle of twist patterns for the design of members undergoing lateral torsional buckling. 

The proposed treatment simplified that design of members with initial out-of-straightness in a 

manner consistent with EC 3 and extended its scope to various load and boundary conditions. 
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Aguero and Pallares (2015b) implemented the Eurocode 3 in design members in frames by 

proposing a procedure to estimate the most adverse imperfection direction. A criterion was 

proposed to determine the number of buckling modes needed to define a proper imperfection shape 

based on the lowest buckling mode corresponding to a non-zero strain energy.  

2.3  Probabilistic and Stochastic studies on LTB of beams with initial geometric 

imperfections 

Kala and Melcher (2009) compiled statistical information on the measured yield strength and 

cross-sectional geometric parameters for Czech hot rolled steel I sections using various 

probabilistic distributions with S355 structural steel (yield strength =355MPa). The statistical 

characteristics compiled were subsequently used in Kala (2013) to investigate the lateral torsional 

buckling problems of simply supported beams with doubly symmetric-sections under major axis 

uniform bending moments. The authors assumed simple sinusoidal lateral and twist imperfections 

and provided a stress approach to predict the ultimate moment for initially crooked beams. A 

stochastic analysis was performed based on the Monte Carlo simulation to determine the stochastic 

characteristics of the critical moments. The lateral torsional buckling strength of I-section thin-

walled members were reported to be sensitive to the magnitude of the initial imperfections  

Papadopoulos and Soimiris et al. (2013) conducted finite element analyses for beam-columns and 

frames with I-sections in which members with imperfect geometry were modeled. The initial 

imperfections were given as non-homogeneous Gaussian fields and were generated based on the 

evolutionary power spectra using the method of separation. The relationship between local and the 

global imperfections were based on geometric equilibrium considerations. Two types of models 

were investigated (1) a column with an imperfection field under a compressive load and (2) a portal 

frames consisting of I-sections under a uniformly distributed vertical loading and a horizontal 

concentrated force. A Monte Carlo simulation was conducted on multiple initial imperfection 

scenarios were generated and a statistical description of the buckling load capacity and strength 

reduction were obtained. 

2.4  The Southwell plot and its extension to lateral torsional buckling 

A common challenge encountered when conducting buckling experiments on real (i.e., with initial 

of out straightness) columns or beams is that the obtained load deflection relation exhibits a 
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nonlinear relationship. The buckling behavior of such members is fundamentally different from 

that of ideal (i.e., perfectly straight members) for which theoretical eigenvalue analysis predicts a 

sudden change in the deformation pattern once the applied load attains a critical value. Several 

researchers have attempted to use the experimental nonlinear load deformation relations to predict 

the critical load of a perfectly straight members (e.g., Southwell (1931) method and its variations 

by Ariartnam 1960, Massey 1963, Meck 1977, and Mandal and Cadalin 2002). Such studies are 

discussed given that the present study will develop techniques to predict the magnitudes of lateral 

displacements and angles of twist for beams with initial lateral out-of-straightness and initial angle 

of twist. Such expressions will provide a basis to assess the seemingly conflicting variation of the 

Southwell plot solutions (Chapter 5). 

Southwell (1931) developed a technique to estimate the critical load for pin-ended ideal perfectly 

straight column from the measured axial load-lateral displacement curves for real columns with 

initial out-of-straightness. The initial out-of-straightness of the column is assumed as a Fourier 

series. By omitting the contribution of higher modes on the lateral defection, Southwell observed 

a linear relationship between the lateral deflection-to-applied-load /u P  ratio and the lateral 

deflection u  . The Southwell method forms a basis to predict the critical load for columns from 

experimental results and was shown to compare well with classical buckling loads based on 

eigenvalue solution results. 

Ariaratnam (1960) developed a theoretical framework to extend the work by Southwell plot 

methodology (Southwell 1931) for the prediction of the critical loads of plane frames and the 

torsional buckling loads for columns. Massey (1963) proposed a modified version of the Southwell 

plot technique, in which rather than adopting the /u P u  plot, they advocated the use 
2M

versus   plots to estimate the critical moments for beams with I-sections with initial lateral or 

twist imperfections subjected to a uniform bending moments. The method was further extended to 

account for material inelastic effects. 

Meck (1977) proposed a modified method based on the original Southwell plot where they have 

advocated the use of u P  versus   or P versus u to predict the critical load for beams with 

initial lateral and twist imperfections. The load conditions investigated were extended to mid-span 

point load. By using a direct equilibrium method in conjunction with the principle of stationary 
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potential energy, a linear relation was observed between lateral displacement to moment ratio and 

the angle of twist. Also, the relation between the twist-to-moment ratio and the lateral displacement 

was found to be linear. These two sets of relations formed the basis of the proposed method to 

predict the LTB critical load for beams. The method was verified through comparison of 

experimental results with eigenvalue solution results. 

Mandal and Calladine (2002) developed a theoretical framework for the evaluation of the work of 

Southwell (1931), that of Massey (1963) and that of Meck (1977). The analysis advocated the 

extension of the original /u P u  Southwell plot, originally developed for columns, for the lateral 

torsional buckling analysis of beams with initial imperfects. 

Table 2.1 Comparison of variations of the Southwell plot studies (simply supported beams) 

Author Buckling 

Type 

Plot method Load condition Type of 

imperfections 

considered 

Southwell 

(1931) 

Flexural  P  versus    Axial force 
0u   

Massey 

(1963) 

LTB 2M versus 

   

Uniform bending 

moment 
0u  and 0   

Meck 

(1977) 

LTB u M  versus   

and P versus 

u  

Uniform bending 

moment  

Midspan point load  

0u  and 0  

Mandal 

and 

Cadalin 

(2002) 

LTB u P  versus u  Uniform bending 

moment  

 

0u  and 0  

*  , P  are the deflection at mid-span and corresponding applied axial force respectively. 

**  , M  are the angle of twist at mid-span and corresponding applied uniform bending moment. 

 

2.5  Conclusions 

As summarized in section 2.1, the behavior of beams with initial geometric imperfections has been 

studied in multiple studies for hot-rolled, FRP and cold-form sections through mechanical and 

experimental approaches. Capturing the effect of initial geometric imperfections on LTB behavior 

through the Ayrton-Perry formula has been well studied through various studies related to 

Eurocode 3 (EC 3) reported in Section 2.2. Scenarios investigated in these studies are limited to 

simply supported members subjected to uniform bending moment or point load at mid-span. Also, 
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the shapes of the initial geometric imperfections are assumed to be sinusoidal functions. Thus, a 

finite element solution investigating the LTB behavior of geometrical imperfect beams is 

developed in Chapter 3 accounting for imperfections given by superpositions of amplified 

buckling modes. Relatively fewer stochastic studies are reported to investigate beams with initial 

geometric imperfections as presented in Section 2.3 while no key parameters are found for design. 

In Chapter 4, a throughout parametric study for displacement and stress based design criteria is 

provided to depict key parameters in designing beams with initial geometric imperfections. 

Experimental treatments for estimating the critical load for practical members are well developed 

in studies summarized in Section 2.4. These studies focus on the prediction for the critical load 

and overlook the estimation for the initial geometric imperfections. A trial is presented in Chapter 

5 to adopt the Southwell to estimate the initial geometric imperfections through the load-

displacement curve generated in the finite element solution developed in Chapter 3. 
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3. Finite element for the lateral torsional response of beams with 

initial geometric imperfections 

3.1 Scope and Objective 

This chapter develops a simplified beam finite element formulation to predict the load-

displacement response of laterally unsupported beams with initial crookedness subjected to general 

transverse loading. The present finite element solution is validated by comparison with results 

based on the commercial software ABAQUS. A parametric study is then presented to investigate 

the influence of various geometric parameters on the lateral torsional response of initially crooked 

beams. 

3.2 Statement of the problem and Notation 

A beam with a doubly symmetric I-section is assumed (Figure 3.1) with span L   is assumed to 

have an initial lateral out-of-straightness (IOS)  0u z  and initial angle of twist (IAT)  0 z . The 

beam is subjected to transverse loads  q z . Under such loads, the beam deforms from 

Configuration 1 to Configuration 2 (Figure 3.1) by undergoing displacements ( )v z ,  u z  and twist

 z . The bending moments associated with the transverse displacements ( )v z  are  M z . The 

loads are assumed to incrementally increase to  q z , where    is a scaling factor.  The associated 

transverse displacement function is  v z  and the corresponding bending moments is  M z . 

As the beam deflects transversely, it undergoes lateral displacement  ,u z  and angle of twist

 , z  . Unlike the transverse response,  ,u z  and  , z   are nonlinear functions of the load 

parameter .   It is required to determine the lateral and torsional response of the system  ,u z

and  , z  . As a matter of notation, the sum of the IOS  0u z and the lateral displacement 

 ,u z is referred as the total lateral out-of-straightness cu  (TLOS). Also, the sum of the IAT 

 0 z   and the angle of twist  , z   is the Total Angle of Twist (TAT) (Figure 3.1). A right-

handed Cartesian coordinate system is adopted in which the z-axis is oriented along the 

longitudinal direction and the x and y-axes (Figure 3.1) are parallel to lateral and transverse 

directions, respectively.  
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Figure 3.1 Model under investigation and deformed configurations 

3.3 Assumptions 

The following assumptions are adopted 

1. The formulation is restricted to prismatic thin-walled members with doubly-symmetric 

sections. 

2. The cross-section is assumed to move as a rigid disk in its own plane during deformation (i.e., 

the beam cross-section follows the first Vlasov hypothesis (Vlasov 1961)) 

3. The transverse shear deformation within the middle surface of the cross-section is neglected 

(i.e., the section is assumed to follow the second Vlasov hypothesis) 

4. The material is linearly elastic isotropic and follows Hooke’s law 

5. When characterizing the destabilizing term due to lateral torsional buckling, pre-buckling 

effects are assumed to be negligible. 
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3.4 Formulation 

3.4.1 Total potential energy 

At a given load level q , the total potential energy for the member is given by 

U V      (3.1) 

in which U is the internal strain energy stored throughout the deformation of the member in going 

from the initial crooked configuration to the final deformed configuration and V  is the load 

potential energy gained by the applied loads.  The internal strain energy is given by 

 
2

0

2 2 2

0 0 0

1 1 1

2 2

1

22

L L L L

wx yEI dz GJ dU EI z EC dzv dz u            (3.2) 

in which E is the Young’s modulus and G is the shear modulus and the relevant section properties 

are the strong axis moment of inertia 2

x
A

I y dA  , the weak axis moment of inertia 2

y
A

I x dA   ，

the Saint-Venant torsional constant  3 3J bt   and the warping constant is  
2

4w xC I d t  .  

The load potential energy 1 2V V V   gained by the loads is the sum of two components; 

  1
0

L

V q v dz     due to transverse forces q   undergoing transverse displacements v   and 

2V due to weak axis bending moments in the deformed configuration undergoing lateral curvatures. 

In Figure 3.2 coordinate system  oxy  is fixed in space while coordinate system ox y   rotates with 

the section. The bending moments M  due to transverse loads, acting on a segment of beam of 

length dz  are denoted by the double headed arrow in Figure 3.2 and are assumed to preserve their 

direction (i.e., conservative loading) as the beam deforms and rotates. As the cross section twists 

from angle 0  in the un-deformed configuration to angle 0  , the bending moment  M  acting 

about the un-deformed y  axis induces a weak axis bending moment about the deformed 'x  axis. 

The projection of moment M  on the x  axis is  0sinxM M       . For small angles 

 0   one can write the approximation  0xM M       . The corresponding curvature 

(Figure 3.2(b)) is given by    
3/2

2

0 01u u u u     
  

 which simplifies to  0u u   for small 
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lateral deflections 0u u . The load potential gain of an element of length dz  due to weak axis 

moment  0M      undergoing curvature  0u u    is    2 0 0dV M u u dz        
  

, 

where the minus sign is consistent with the fact that the curvature depicted in Figure 3.2a is 

opposite to the direction of the weak axis moment  0M     and the total potential gain for the 

system is given by integration yielding     2 0 0
0

L

V M z u u dz      , and  

       0 0
0 0

L L

V M z u u dz q v dz           (3.3) 

Functions  0u z  and  0 z  are the IOS and IAT and are assumed to be known. In the first of term 

Eq. (3.3), the pre-buckling deformation effect have been neglected in line with most lateral 

torsional buckling solutions (e.g., Trahair 1993). The stationarity condition of the total potential 

energy is evoked by setting 0   . By performing integration by parts, one recovers the 

governing differential equations of equilibrium 

0xEI v q      (3.4) 

  0 0y MEI zu     
      (3.5) 

  0 0w M z uE uC GJ          (3.6) 

The resulting boundary terms lead to the boundary conditions summarized in Table 3.1. 
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Table 3.1: Possible boundary conditions at ends 0z   and z L   

Essential boundary conditions Natural boundary conditions 

v   is specified 0xEI v    

v  is specified 0xEI v    

u   is specified   0( ) 0yEI u M z        

  is specified 0wEC     

u  is specified 
  0( ) 0yEI u M z           

  is specified 0wGJ EC      

 

In Eqs. (3.4), (3.5) and (3.6), the governing equilibrium equation for the vertical displacement 

 v z  is observed to be independent from those of the lateral displacement  u z  and the angle of 

twist  z . Thus, for a given transverse load  q q z , Eq. (3.4) can be used to independently 

solve for  v z  In contrast, Equations (3.5) and (3.6) are coupled and characterize the lateral 

torsional buckling response of the beam.  It can be verified that when the initial crookedness  0u z  

and  0 z vanish, one recovers the governing classical lateral torsional buckling neutral stability 

conditions for a perfectly straight beam (e.g., Trahair 1993). 
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Figure 3.2 Displacement field for (a) cross-section and (b) plan view configuration for load potential energy 

expression 

 

3.4.2 Closed form Solution for beam under uniform moments 

A simply supported beam with initial out-of-straightness  0u z ,  0 z  is subjected to uniform 

bending moments  M z M . It is required to characterize the lateral displacement and angle of 
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twist in terms of the applied moments M . It is expedient to express the initial imperfection pattern 

as a linear summation of n  buckling mode shapes for a perfectly straight beam, i.e., 

       0 0

1

,
n

T T

m m m

m

u z z u z z  


  where  mu z ,  m z  are the buckling shapes for modes 

1, 2..m n   and m   is a scaling factor for mode m .  

The mode shapes for a perfectly straight beam are obtained by setting  0u z ,  0 z  in Eqs. (3.5) 

and (3.6) to zero and +. The governing equations become 0yEI u M      and 

0wC JuE M G       and the corresponding boundary conditions are

       0 0 0 0 0u u               0u L u L L L      . The solution of the above 

system of homogeneous of equations yields the critical moments crmM  and the buckling modes 

 mu z  and  m z  are 

   

2

2

2
sin sin 1,2,..

crm m y w y

y

m m m m

crm

m m E
M M EI GJ C I

L L

EIm z m z
u z z m n

L M L L

 


 
  

 
    

 

 
    

 

       (3.7) 

Using Fourier decomposition, a general IOS/IAT pattern can be expressed as a linear summation 

of mode shapes, i.e. 

   
2

0 0 2
1

1 sin
n

T y

m

m crm

EI m z
u z z

M L L

 
 



   
        
   (3.8) 

where both sides of the above equation become equal as n    . For practical purposes, the series 

will be truncated by taking only the first few modes. From Eqs. (3.5) and (3.6), by setting 

 M z M  and substituting  the IOS/IAT expressions from Eqs. (3.8), one obtains the additional 

displacements  u z   and  z   
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1 2

sin

y y

y y w y
n

crm crm

m
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w y y

EI EIm
EI M EI EC EI GJ

M L L M LM m z
u z

EI Lm m
EC EI EI GJ M

L L

 




 
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For the special case where the initial geometric imperfections are assumed to be characterized by 

the first buckling mode as         2 2

0 0 1 11, sin
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y cru z z EI M L z L    
 

, Eq. (3.9) and 

(3.10) simplify to 
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Equations (3.11) and (3.12) coincide with the work by Massay (1963). 

3.4.3 Finite element formulation 

The displacement fields  u z ,  z  , and initial imperfections  0u z  and  0 z   are related to 

the nodal displacements, i.e., 

           

           

1 4 1 4

0 01 4 1 4

,

,

T T

T T

u z z z z

u z z z z





 

 

 

 

u N θ N

u 0N θ 0N

N u N θ

N u N θ
  (3.13) 

where  zuN ,  zθN   are the shape functions given by 
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  2 2 3 3 2 3 2 2 2 3 3 3 2 2

1 4
1 3 2 2 3 2

T

z z L z L z z L z L z L z L z L z L

        uN  

  2 2 3 3 2 3 2 2 2 3 3 3 2 2

1 4
1 3 2 2 3 2

T

z z L z L z z L z L z L z L z L z L

      θN   

1 1 2 2 1 1 2 2,
T T

u u u u        N Nu θ  are the vectors of nodal displacements, 

01 01 02 02 ,
T

u u u u 0Nu   01 01 02 02

T
    0Nθ   are the vector of nodal initial out-

of-straightness, and 1 1 2, ,...,u u     are the nodal displacements. The moment distribution within the 

element is related to the nodal moments vectors 1 2M MT
M   through linear interpolation, 

i.e.,  

     
2 11 2

T

M z z 


 H M    (3.14) 

in which      
1 2

1
T

z L z L

  H z . From Eq. (3.13), by substituting into the energy 

expressions Eqs.  (3.1)-(3.3), and omitting the strong axis bending terms as they are uncoupled 

from the lateral torsional response, one obtains  
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  (3.15) 

in which   1
0

,
L

yEI dz  
T

e u uk N N and  2
0 0

L L

wGJ dz EC dz   
    

T T

ek N N N N are the elastic 

stiffness matrices pertaining to weak axis flexure and torsion/warping, respectively, and 

   1 2
0

1
L

M z L M z L dz          
T

g uk N N  is the geometric stiffness matrix and the entries 

of matrices  1ek ,  2ek  and   gk  are provided in Appendix 3-A. By evoking the stationarity 

condition and rearranging, one obtains 

           e g 0k d k d F d     (3.16) 

in which 
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k 00 k θ θ
  

where  ek  is the elastic stiffness matrix, and d is the nodal displacement vector. The right-hand 

side vector           0 g 0F d k d represents the external force vector induced by the initial out-

of-straightness. For a perfectly straight beam, the nodal initial out-of-straightness vector  0d

vanishes and so does the right hand-side of Eq. (3.16) . The resulting equation reverts to the well-

known eigenvalue problem  

          e gk d k d 0    (3.17) 

which can be solved for the critical load level   and corresponding buckling mode shape d . 

This special case coincides the work by Barsoum and Ghallagher (1971).   For a beam with IOS 

and IAT, the right hand side of Eq. (3.16) does not vanish and the solution of Eq. (3.16)  provides 

a nonlinear relationship between the load factor   and the nodal displacements d . 

3.5 Convergence study and verification for a perfectly straight beam 

A convergence study is conducted by examining a 6m span simply supported beam with a 

W250X45 cross-section (Section dimensions and properties are:  depth 266d mm    , flange 

width 148b mm     , flange thickness 13t mm    , web thickness 7.6w mm   , Saint-Venant 

torsional constant
3 4261 10J mm   , weak axis moment of inertia 

6 47.03 10yI mm   and 

warping constant 
9 61.13 10wC mm  ) subjected to a) a concentrated transverse force acting at 

beam mid-span and b) uniform bending moments. The modulus of elasticity is 200,000E MPa  

and the Poisson ratio is 0.3  . The beam is assumed to be perfectly straight. Thus, the right hand-

side of Eq. (3.16) vanishes. The resulting eigenvalue problem is solved for the critical load. A 

mesh sensitivity analysis is conducted by modelling the problem using 2, 4, 8, and 16 elements. 

The results shown in Table 3.2 indicate that no more than 8 elements are needed to predict the 

critical load within four significant digits.  
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Table 3.2: convergence study on the critical load 

Number of 

elements 

Critical 

moments for 

case (a) (kNm) 

*

16a aM M   Critical moment 

for case (b) 

(kNm) 

*

16b bM M   Moment 

gradient 

 a bM M  

2 137.66 1.005 101.14 1.005 1.361 

4 137.00 1.001 100.70 1.000 1.360 

8 136.91 1.000 100.67 1.000 1.360 

16 136.91 1.000 100.67 1.000 1.360 

* 16aM   critical moment based on 16 elements in case (a), 16bM   critical bending moments 

based on 16 elements in case (b) 

The moment gradient obtained in the last column of Table 3.2 compares to

2 2 2 2

max max 1.4 2654 7 4CAN A B CC M M M M M      based on the Canadian Standards 

(CAN/CSA S16-14) where AM , BM  and CM  are the bending moments at the quarter-span, mid-

span and three-quarter span points. The corresponding value in American Standards (ANSI/AISC 

360-16) is  max max12.5 2.5 3 4 3 1.316AISC A B CC M M M M M     , that based on the 

Australian Standard (AS 4100-1998) is 2 2 2

max1.7 1.388AUS A B CC M M M M      and that based 

on the Eurocode Guide (EN 1993-1-1:2005) is 1.365EUC  . For the case of uniform moments, the 

present solution predicts a critical moment crM    of 100.7 kNm. This value nearly coincides with 

that based on the thin-walled B31OS element in ABAQUS of 99.5 kNm using 40 elements. 

Another comparison is done by modeling the problem using the shell element S4R in ABAQUS. 

The S4R element has 4 nodes with six degrees of freedom per node with reduced integration and 

hourglass control.  The mesh used involves six elements for each flange, eight elements along the 

web height, and 180 elements along the span. The simply supported boundary conditions are 

imposed by restraining the vertical, horizontal displacement and the rotation about the longitudinal 

axis of both flanges and web at both ends. The critical moment obtained is 95.9 kNm which is 4.8% 

percent lower than that predicted by the present element. The slight difference is due to the fact 

that, unlike thin-walled beam elements, the shell solution captures shear deformation and 

distortional effects. The corresponding buckling mode is depicted in Figure 3.3. A comparison of 

the buckling modes shapes normalized with respect to the peak lateral displacement at the centroid 
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of the mid-span  / 2cu z L   shows that the buckling mode shapes based on the present solution 

essentially coincide with those based on B31OS and S4R elements model in ABAQUS (Figure 

3.4). Slight differences are observed in the angle of twist plots depicted in Figure 3.4 (b) where a 

difference of 1.16% is observed between the present solution and the B31OS solution and a 3.11% 

difference with the S4R model. 

 

 

Figure 3.3 Buckling shape for a 6-m span beam with W250X45 section under uniform bending moments 

based on S4R model in ABAQUS 
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(a) 

 

(b) 

Figure 3.4 First buckling mode for 6m straight beam based on a) present study, b) B31OS solution and c) S4R 

solution 

3.6 Verification for a beam with initial geometric imperfections 

3.6.1 Mesh sensitivity analysis 

A beam with initial geometric imperfections, cross-section, span, and material properties identical 

to those described in section 3.5 is considered in this section. The IOS  0u z   and IAT  0 z  are 

assumed to follow the first buckling mode shape as obtained from the eigen-solution for the 

perfectly straight beam in Section 3.5.  The amplitude of the peak IOS at mid-span of the 

compression flange is        0 0 0/ 2 / 2 / 2 / 2cu L u L d L   , in which subscript c  denotes the 

compression flange, subscript 0  denotes the initial out-of-straightness, and d is the total section 

height. The peak IOS  0 / 2cu L was set equal to /1000 6L mm . A mesh sensitivity analysis for 

the present element is conducted by analyzing the beam using 2, 4, 8 and 16 elements as illustrated 

in Figure 3.5. The lateral displacements at the centroid of the mid-span section against the the 

number of elements when the applied moment is 90.1M kNm . The difference in lateral 

displacement at mid-span as predicted by the 8 and 16 elements is found negligible. Thus, 8 

elements in the model are judged to be adequate to capture the displacement response for beams 

with initial out-of-straightness. In the following analyses, 40 elements are used in the present finite 

element solution to obtain smooth curves for the additional lateral displacement  u z   and the 

angle of twist  z . 
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Figure 3.5 Lateral displacement at centroid at mid-span versus the number of elements used in the present 

finite element solution (applied moment = 90.1kNm) 

3.6.2 Comparison with other solutions  

The problem was solved using the present model and a nonlinear incremental load-deformation 

analysis based on the S4R element shell FEA (Figure 3.6). The specifics of the S4R mesh are 

identical to those of Section 3.5. Keyword NLGEOM in ABAQUS is adopted to evoke the 

geometric nonlinear feature. Under the present model, the beam is meshed into 40 elements.  

Figure 3.6 depicts the applied moments versus the peak total lateral displacement at compression 

flange mid-span as given by            0 0/ 2 / 2 / 2 / 2 / 2 / 2cu L u L u L d L L        where, 

as matter of convention, the bar on top of an argument displacement denotes the total out-of-

straightness obtained by the summation of the initial out-of-straightness and the additional 

displacement. When the applied moments are comparatively low, the peak total lateral 

displacement predicted by the present finite element formulation is observed to coincide with that 

based on the ABAQUS model. The difference between the two models is observed to slightly grow 

with the loading level, but still agree within 2.2% within the range of deformations investigated.  
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Figure 3.6 Bending moments versus total lateral displacement at the compression flange For W250x45 section 

3.6.3 Verification and Comparisons  

Four common cross-sections (Table 3.3) are examined using the present finite element solution 

and the B31OS element in ABAQUS to assess the validity of the present finite element solution. 

The B31OS element is a two-node linear element and has seven degrees of freedom (three 

translations, three rotations and a warping deformation) for each node. The B31OS model is 

discretized into 40 elements along the span. The initial out-of-straightness is modeled directly by 

input of the pre-calculated coordinates for the considered beam with initial out-of-straightness. 

Option NLGEOM in Abaqus is evoked to apply the load incrementally and generate the load-

displacement relation in Figure 3.7. 

Figure 3.7 shows that, for all four sections examined, the lateral displacement increases slowly 

with the applied moments within the range 0.8crM M  , but rises rapidly beyond this range. The 

present finite element solution predicts a moment-displacement relationship that asymptotically 

approaches the relation 1crM M  , crM  being the elastic critical moments as determined by the 

eigen-value solution of a perfectly straight beam.  

The best agreement between the present finite element solution and B31OS model is obtained for 

the W250X28 section. When the additional lateral displacement at the compression fiber is 

270cu L  the difference in / crM M  predictions is 1.5% (Figure 3.7). This percentage difference 
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decreases to 1.3% when 180cu L , and 0.9% when 90cu L . The largest difference between the 

predictions of the present finite element and B31OS solutions is observed for the W250X58 section, 

where the difference in / crM M  is found to be 9.7% when the additional lateral displacement at 

the extreme fiber is 270cu L . This difference is found to marginally increase to 10.2% and 10.5% 

when the displacements increases to 180cu L  and 90cu L , respectively. 

Table 3.3 Section dimensions and geometric properties for the examined cross-sections 

  d   b   t   w   xI   yI   
wC   J   

  mm   

4

610

mm


  

4

510

mm


  

6

1010

mm


  

3

410

mm


  

W250X18 251 101 5.3 4.8 22.4 9.1 1.4 2.2 

W250X28 260 102 10 6.8 40.0 17.8 2.8 9.7 

W250X45 266 148 13 7.6 71.7 70.3 11.3 26.1 

W250X58 252 203 13.5 8 87.3 188.0 26.8 40.9 

 

 

Figure 3.7 Moment-lateral displacement relations for W250X18, W250X28, W250X45 and W250X58 

obtained from B31OS mode in ABAQUS 

3.7 Effect of the IOS pattern on response for beams under uniform moments 

In the absence of experimental measurements, previous studies (e.g., Kala and Melcher 2009 and 

Nguyen and Chan et al. 2013) have assumed the initial out of straightness to follow a sinusoidal 
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distribution. Other studies (Aguero et al. 2015 a,b) have postulated that initial geometric 

imperfections to follow the first buckling mode for a straight beam. The validity of such 

assumptions on the response need to be examined and is the scope of the following sub-sections. 

3.7.1 Effect of IOS/IAT patterns 

Consider a beam with a W250x45 under strong axis moment M  that induces compression at the 

top flange (Figure 3.8). It is assumed that the initial geometric imperfections are fully characterized 

by the IOS  0u z  (defined at the section centroid) and the IAT  0 z for the cross-section. The 

corresponding initial IOS at the compression flange is        0 0 02cu z u z d z     and that at 

the tension flange is        0 0 02tu z u z d z   . It is assumed that both  0u z  and   0 z  are 

sinusoidal curves so that peak IOS     0 0 0max / 2 , / 2p t cu u L u L    may take place either at 

the top flange under compression (Pattern a in Figure 3.8) or the bottom  under tension (Pattern  b 

in Figure 3.8b) of the mid-span section.  The peak IOS is specified to take some value such as 

0 1000pu L   while the IOS at the other flange 0 qu   ranges from  0 pu   to 0 pu  . Five IOS cases 

(1 through 5) are considered  

             0 0, /1000 1,1 1,0.325 1,0 1, 1 0,1p qu u L       

where Case 1 corresponds to equal lateral IOS at both flanges (i.e., with no IAT), Case 2 

corresponds to first mode shape of the beam where the bottom flange undergoes a lateral 

displacement equal to 32.5% of that of the top flange for the present problem, Case 3 corresponds 

to a top flange IOS  with no IOS at bottom flange, Case 4 corresponds to two equal and opposite 

lateral displacements of both flanges, thus corresponding to the case with IAT but no IOS, and 

Case 5 corresponds to bottom flange IOS (with no IOS at top flange). 
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(a) (b) 

Perfectly straight configuration

Imperfect beam
 

 

Figure 3.8 Illustration for the combination of IOS and IAT for (a) pattern a and (b) pattern b 

Figure 3.9 (a) shows that a beam with a specified IOS a larger positive and a given load level, an 

increase in IAT  0 z   corresponds to a larger total lateral out-of-straightness (TLOS) 

displacement at the compression flange cu   (Case a in Figure 3.8 a). However, for the case where 

the IAT  0 z is negative (Figure 3.8 b), a larger IAT magnitude results in a smaller TLOS 

displacement the compression flange since the cross-section rotates to the position of zero twist as 

the applied load is increased before it undergoes a positive angle of twist. This observation 

coincides with the characteristics of the closed form solution buckling solution where both  u z  

and  z  are positive. 

Taking Case 1     0 0, 1000 1,0p qu u L   which conforms to pattern (a) in Figure 3.8 (a) the load-

displacement curves for the lateral displacement at the compression flange/angle of twist at mid-

span are presented in the plot labelled as (1, 0) in Figure 3.8 (b). If the beam is installed upside 

down, the compression flange in case (a) becomes the tension flange in case (b) (i.e. 
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    0 0, 1000 0,1p qu u L   ), and the behavior of the load-displacement curve would differ as 

depicted in the plot labelled (0,1) in Figure 3.9. This suggests that the orientation of the section 

influences the load-displacement curves.  

In the absence of specific experimental measurements for initial geometric imperfections, past 

studies on steel beams (Kala and Melcher 2009 and Nguyen and Chan et al. 2013) have been 

postulated to conform to the first buckling mode shape. Such an approach corresponds to 

  1000 1,0.325L  in the present study. The plots provided Figure 3.9(a), suggest that this 

approach leads to conservative estimates for the lateral displacements and the angle of twist for 

the cases     0 0, 1000 0,1p qu u L   and     0 0, 1000 1,1p qu u L    but corresponds to un-

conservative estimates for cases     0 0, 1000 1,0p qu u L    and     0 0, 1000 1, 1p qu u L    . 

However, it is observed that the difference between all five cases considered decreases as the 

applied moments decrease. For example, the ratio of moments for the two extreme cases

    0 0, 1000 0,1p qu u L   and   1000 1, 1L  , is 25% when 30cu mm   while the difference 

between the case     0 0, 1000 1,1p qu u L   and   1000 1,0.325L  is smaller than 6%. The 

corresponding difference in total angle of twist   for these two cases are found negligible when

0.15rad  . 

 

(a) 

 

(b) 

Figure 3.9 Bending moments versus (a) peak total lateral out-of-straightness (TLOS) at section mid-height and 

(b) total angle of twist (TAT) for  0 0,p qu u  =  (a)   /1000 1,1L , (b)   /1000 1,0.325L , (c)

  /1000 1,0L , (d)   /1000 1, 1L  and (f)   /1000 0,1L  (peak lateral displacement is 1000L   in 

all cases) 
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3.7.2 Contribution of higher modes  

A perfectly straight beam corresponding to that investigated in the previous section is examined 

to obtain the first   and third   buckling modes by conducting an eigenvalue analysis. The extracted 

buckling modes are then normalized so that the peak lateral displacement for the corresponding 

mode at the top flange of mid-span section is equal to unity to reach the normalized buckling 

modes  1  and  3 . A load-displacement analysis based on the present model is conducted 

based on an IOS pattern given by a linear combination

             1 3 1 3/1000 1 6 1L mm            . Six cases are considered for 

1.0, 5 6, 4 6, 3 6 ,2 6 ,1 6   where 1.0   corresponds to the case where IOS follows only 

the first mode, and 5 6   corresponds to the case where the magnitude of IOS due to the first 

mode is 5mm  and that due to the third mode is 1mm , etc. Plots for the bending moments versus 

the peak TLOS are provided in Figure 3.10. At a given bending moment level, the beam with the 

lower contribution of the first buckling mode is observed to undergo a smaller lateral displacement. 

The observation suggests that, for a given peak initial out-of-straightness  0 / 2cu L  ,  the first 

mode is consistently more detrimental and then the third mode and will thus be adopted in 

subsequent investigations. 

 

Figure 3.10 Bending moments versus the peak total lateral out-of-straightness (TLOS) for the first and third 

buckling modes superposition cases 
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3.8 Proposed design criteria for beams with initial geometric imperfections 

As depicted in Figure 3.6, an eigenvalue solution provides a clear-cut value for the critical 

load/moments for an initially perfectly straight beam. Such an analysis does not incorporate the 

IOS-IAT effects. To the contrary, a nonlinear analysis accounts for IOS-IAT effects but provides 

no clear-cut value for critical load. To establish a design value, it is thus necessary to introduce 

failure criteria for design. Two types of failure criteria can be considered:  

(1) A serviceability criterion can be postulated such that it limits the peak additional lateral 

displacement      / 2 / 2 / 2u L d L   under service loads to a threshold value such as /180L ,  

/ 360L etc. where the magnitude of such a threshold value depends on the type of application 

involved. 

 (2) A stress based criterion, where the normal stresses induced by the combined normal stresses 

induced by the strong axis moment xM  , weak axis moment yM  and bimoments B  are not to 

exceed the yield strength of the material yF , taken as 350MPa in subsequent runs, or a fraction 

thereof yF ,  to account for the presence of residual stresses such a criterion may take the form 

   
     

2 2 4

yx

y

x y w

M zM z B zh b bd
z F

I I C
             (3.18) 

in which,   is a fraction of the yield strength that accounts for the presence of residual stress. In 

ANSI- AISC 360-16 the fraction    is taken as 0.7. The criterion in Eq. (3.18) is valid for Class 3 

sections (i.e., non-compact in ANSI/AISC 360-16), and would yield conservative results for Class 

1 or 2 section (compact sections). To obtained the normal stress at section z  for the uniform 

bending moment case, Eq. (3.18) is expressed in terms of the applied moment M as (Figure 3.11) 

 
     cos sin

2 2 4x y w

M z M z B zh b bd
z

I I C

 
       (3.19) 

in which,  B z  is obtained by post-multiplying the elastic stiffness matrix  ek  of the relevant 

element by the corresponding nodal displacements  ed . When the angle of twist  z  in Eq. 

(3.19) is small, one obtains 



47 

 

 
   

2 2 4x y w

M z B zM h b bd
z

I I C


        (3.20) 

The maximum compressive stress takes place at beam mid-span and is obtained by setting / 2z L .  

 

Figure 3.11 Geometric relationship for the projections of the applied moment on the bending axes 

3.8.1 Verification of stresses 

Consider a six-meter-span beam with W250X28 cross-section with IOS 1000 6L mm   based on 

IOS that follows the first mode. For a beam under uniform bending moments, the normal stresses 

have been computed using three different approaches as detailed in the following: 

(1) In the present finite element solution, the internal forces ( ,x yM M  and B ) are obtained by post-

multiplying the elastic stiffness matrix  ek  of the relevant element by the corresponding nodal 

displacement  ed  to recover the nodal force vector      
8 1 8 18 8 

 e ef k d . The elements of nodal 

forcv vector  f contain the internal forces , ,x yM M B  needed to compute the stresses from Eq. 

(3.18).   

(2) For a simply supported beam under uniform moments  M z M  , the bending moments are 

given from equilibrium, i.e.,    cosxM z M z ,    sinyM z M z   as illustrated in Figure 
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3.11. However, the bimoment  B z  needs to be determined from the technique described in the 

previous section. The stresses are then computed from Eq. (3.19). 

(3) For the verification, the stress output as obtained from a B31OS solution.  

A comparison of the results is shown in Figure 3.12. All three solutions predict nearly coinciding 

normal stresses. Thus, the present FEM solution in conjunction with Eq. 3.18 will be used to 

compute the normal stresses in subsequent sections. 

 

Figure 3.12 Comparison between normal stresses as determined by various techniques 

3.8.2 Applying the displacement failure criterion-Illustrative Example 

A simply supported beam with W250X45 cross-section has a 6m span and is subjected to uniform 

bending moments M . The beam is assumed to be initially non-straight and to follow the first 

buckling mode. Three IOS magnitudes are examined for the peak initial out-of-straightness at the 

top flange 0 / 600 10cu L mm    0 / 800 7.5cu L mm     and 0 /1000 6cu L mm    . The 

relationships between the bending moments and corresponding total lateral displacement at the 

compression flange            0 0/ 2 / 2 / 2 / 2 / 2 / 2cu L u L u L d L L       are compared in 

Figure 3.13. All three cases exhibit an asymptotic behaviour towards the critical moment as 

predicted by the eigenvalue solution for a hypothetically perfectly straight  beam with similar 

dimensions. For a given target total lateral displacement at the compression flange, an increase in 

IOS is observed to decrease the corresponding bending moments attained. For example, if a total 
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lateral displacement at the compression flange of  / 2cu L  30mm is targeted, the cases where 

the total peak IOS are / 600L  , / 800L  and /1000L , respectively correspond to 66.6%, 75.0%, 

and 80.0% of the critical moments crM   of the perfectly straight beam (as determine by an 

eigenvalue solution). Also, depicted in Figure 3.13 are the bending moments corresponding to a 

additional peak lateral displacement /180cu L . Bending moment fractions of 0.77Mcr, 0.82Mcr 

and 0.85Mcr are attained respectively for peak IOS = / 600L  , / 800L  and /1000L . 

 

Figure 3.13 Bending moments versus total lateral displacement at compression flange midspan for various 

IOS a) 0 /1000 6cu L mm   b) 0 / 800 7.5cu L mm     and c) 0 / 600 10cu L mm   

3.8.3 Illustrative example for applying stress failure criterion 

A comparison between the stress predictions of ABAQUS-S4R and ABAQUS-B31OS solutions 

and those of the present study is provided in Figure 3.14 for the example defined in the previous 

section. For a specified target peak normal stress of 70% of the yield strength, the present solution 

is observed to slightly underestimate the peak bending moments compared to the ABAQUS S4R 

shell model predictions. The present model predicts that the beam with W250X45 cross-section 

attains 80.3% of the critical moments while the corresponding fraction of the W250X18 cross-

section is 91.2%. The present solution predicts that the peak normal stress as determined from Eq. 

(3.18) attains the threshold yield stress of 0.7 245yF MPa  when the applied bending moment is 

80.34 kNm (Figure 3.14 a). The corresponding prediction based on the S4R model is 83.9kNm, a 

4.29% difference. In comparison,  for the W250X18 section, Figure 3.14 (b) shows that the 

moments predicted by the present model is 10.0 kNm while the corresponding value based on the 
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ABAQUS model is 10.6 kNm, a 5.67% difference. For the W250X45 cross-section, the bending 

moment-normal stress relationship based on all three solutions are in close agreement (Fig. 3.13a). 

The plot based on the B31OS element is observed to be close to that based on the present FEM for 

small applied moments (i.e., 60M kNm ). Beyond this range, the response of the B31OS model 

slightly departs from the present solution and merges with the response of the S4R model. To the 

contrary, for the W250x18 beam, the difference between the applied moments from B31OS 

element and the present FEM is found to decrease as the normal stresses increase. For example, 

when 50MPa   , the difference between the two models is 14.1%. When the peak normal 

stresses at mid-span increase to 200MPa   , the corresponding difference is 3.4%. 
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(a) 

 

(b) 

Figure 3.14 Peak normal stresses for 6m-span simply supported beams with a) W250X45 and b) W250X18 

 

Stress contours 

The stress contours for the longitudinal stresses in the compression flange of the W250X45 cross-

section as predicted by the present model are illustrated in Figure 3.15 for applied strong axis 

moment levels of 60M   , 70  ,80 , and 90kNm . The maximum stresses as given by Eq. (3.18) 
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are observed to occur at the flange tip of the mid-span section since the stress contributions of the 

strong axis bending, weak axis bending and bimoments attain peak values at these locations.  

 

(a) 

 

(b) 

 

 

(c) 

 

(d) 

Figure 3.15 Stress contours predicted by the present solution for top flange under a) 60.0 kNmM  , b) 

70.0 kNmM  , c) 80.0 kNmM   and d) 90.0 kNmM   for simply supported beam with W250X45 

cross-section  (scaling factor for width=10x scaling factor for span) 

Contributions of moments and bimoments to stresses 

The applied moment M  is normalized with respect to the elastic critical moments crM as 

determined from the corresponding eigenvalue solution for the straight beam and the ratio / crM M  

is plotted against the normalized peak displacement at the compression flange cu  normalized with 

respect to the beam span (Figure 3.16).  

The contribution of the internal forces to the normal stress (normalized by the yield strength) are 

illustrated in Figure 3.16 for the four cross-sections considered. Figure 3.16 (a, c, e and g), show 

that the normal stress due to the strong axis bending moments increases rapidly with the applied 

moments and reach a plateau when the normalized peak TLOS is around 0.01.  

At a normalized peak lateral displacement ratio 0.01cu L   , the stress level due to the strong axis 

bending is found to take the values 0.17 yF , 0.25 yF , 0.49 yF and 0.80 yF for W250X18, W250X28, 

W250X45 and W250X58, respectively. These stress ratios correspond with moment of inertia 

ratios of y xI I = 0.041, 0.045, 0.098, and 0.215 respectively, suggesting that the attained strong 

axis moment stress ratio decreases as the ratio decreases. 

In all cases, the normal stresses due to the weak axis bending moment and bimoment are found to 

linearly increase with the increase in the normalized peak TLOS cu L . As a result, for low load 
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levels, the normal stresses are primarily due to strong axis bending. As the applied loads increase, 

the share of normal stresses due to weak axis bending and bimoments increase compared to that 

of the strong axis contribution which decreases with  cu L  as illustrated in Figure 3.16 (b, d, f, 

and h). At a normalized peak TLOS of 0.03, the percentage of the normal stress due to weak axis 

bending moment is around 50% of the total normal stress in all four cases. 
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(a) 

 
(b) 

 
 (c) 

 
(d) 

 
 (e) 

  
(f) 

 
 (g) 

 
(h) 
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Figure 3.16 Normal stress ratio and percentage of normal stresses versus normalized peak displacement for 

W250X18 (a b), W250X28 (c and d), W250X45 (e and f) and W250X58 (g and h) 

3.9 Parametric study 

3.9.1 Effect of beam span on bending moment and normal stress ratios 

To investigate the influence of beam span, four simply supported beams with a W250X45 cross-

section with spans ranging from five to eight meters are investigated using the present solution. 

The imperfection pattern is assumed to follow the first mode (as discussed in Section 3.7.2) and 

the peak IOS is set to 0 /1000cu L   in all cases, corresponding to values of a) 5mm, b) 6mm, c) 

7mm and d) 8mm, respectively. 

The relationship between the normalized peak TLOS  / 2 /cu L L  and the normalized bending 

moments / crM M  is depicted in in Figure 3.17 (a) for all spans examined. All four relationships 

are observed to perfectly coincide, indicating that the span has no effect on the normalized 

moment-displacement curves. Figure 3.17 (b) shows that for a given normalized peak total lateral 

out-of-straightness /cu L , the normal stresses ratio yF  attained is found to decrease with the 

span, suggesting that longer span beams can sustain a larger normalized peak displacement 

compared to short span beams.  

 

(a) 

 

(b) 

Figure 3.17 (a) Normalized bending moments and (b) normalized normal stresses versus normalized peak 

total lateral out-of-straightness (TLOS) for W250X45 with span from 5 m to 8 m 
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3.9.2 Effect of section class on normalized bending moments and normal stress 

Four simply supported beams with different section classes are examined. The W250x25 is taken 

as a reference case (Case 1 in Table 3.4). For a yield strength of 350MPa, the web meets class 1 

requirements according to CAN-CSA S16 (2014). The web thickness is then reduced so that it 

becomes class 2 (Case 2), and then further reduced to become class 3 (Case 3) and class 4 (Case 

4). The geometric parameters of the four sections are provided in Table 3.4. Figure 3.18 (a) shows 

identical bending moment versus normalized TLOS in all four cases while Figure 3.18 (b), shows 

a minor difference in stress ratios.  

Table 3.4: Section properties for the four examined I-section class 

 Total web  

depth (mm) 

Web thickness 

(mm) 

Flange  

breadth  

(mm) 

Flange 

thickness  

(mm) 

Class 1 257 6.1 102 8.4 

Class 2 257 6.1 102 6.5 

Class 3 257 6.1 102 5.0 

Class 4 257 6.1 102 4.0 

 

 

(a) 

 

(b) 

Figure 3.18 (a) Normalized bending moments and (b) stress ratios versus normalized peak total lateral out-of-

straightness (TLOS) for various classes 

3.10 Summary and Conclusions 

A thin-walled-beam finite element solution was developed for the lateral torsional response of 

steel beams with initial geometric imperfections. The validity of the solution was assessed by 

comparisons against Abaqus shell models (using S4R elements) and thin-walled elements (using 
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B31OS elements). Two design criteria were proposed based on threshold values for (1) the total 

lateral displacement and (2) the maximum normal stress. Illustrative examples were provided for 

applying each of the criteria. Patterns of the initial geometric imperfections were studied and a 

parametric study was performed to study the effect of spans and section class on the behavior of 

examined beams. The main findings of the study are summarized as follows: 

1. The present finite element solution reliably predicts the load-displacement behavior for 

geometrically imperfect beams. 

2. For a given peak initial lateral out-of-straightness, the most detrimental initial imperfection 

patterns were found to be associated with the highest initial angle of twist where the other flange 

has an equal and opposite lateral out-of-straightness. 

3. When the initial imperfections are expressed as the summation of buckling modes, the most 

adverse geometric imperfection pattern is found to be associated with the first buckling mode. 

3. For the displacement based design criterion, it is observed that only the magnitude of the initial 

imperfection affects the response of the beam. Thus, the LTB resistance of a beam is solely 

influenced by the magnitude of the initial imperfection 0 cu   , and the threshold displacement 

chosen by the designer. 

4. The stress ratios / yF   due to minor axis bending and warping are found to linearly increase 

with the normalized peak additional lateral displacement /cu L   while normal stress ratio yF   

due to major axis bending reaches a plateau value.  

5. According the stress-based design criterion, for a given normalized peak TLOS /cu L  the stress 

ratio / yF  is found to decrease with the beam span.  

6. The present model suggests that web thickness does not influence the normalized moment versus 

/cu L response and to have a rather minor role in the stress ratio / yF  versus  /cu L  response. 
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Appendix 3.A. Matrices in Finite Element Solution 

This appendix provides the explicit expression for the matrices in the finite element solution. In 

Eq.(3.16),  ek  and   gk    shall be computed numerically as follows 

Elastic stiffness matrix  ek   
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Geometric stiffness matrix   gk   
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4. Parametric study for proposed design equations 

4.1 Objectives 

The present chapter complements the study in Chapter 3 by identifying the key parameters 

affecting the moment fraction attainable based on the displacement and stress criteria proposed in 

the previous chapter. The influential dimensionless parameters are first extracted from the closed 

form solution for an initially crooked beam under uniform moments. Next, the parameters 

identified are extended to investigate other loading cases. 

4.2 Considered beams for the parametric study 

A total of 21 cross-sections (Table 4.1) among common W150 to W310 sections in Part 6 of 

Handbook of Steel Construction 2016 are selected for the parametric study. The dimensions and 

section properties based on the idealized sections are provided in Table 4.1. In the calculation of 

section properties rounded fillets were omitted to compare the results of the present model to that 

of shell solution which does not model fillets.  All spans were selected to lie within the range 

min maxL L L  , where the lower limit minL  by equating the equation for the elastic LTB to 

0.67 pM (Eq. (4.1))  for class 1 and 2 sections which is based at the border of the elastic LTB 

buckling failure and inelastic LTB  in the Canadian design standard (CAN/CSA S16-14) for beams 

under uniform bending moment (i.e. 1CANC   ). For class 3 section, the plastic moment pM   in 

Eq. (4.1) shall be replaced by the yield moment YM . 

   
min

2 2
2

2

+4 0.67

y w

y y y w p

EI EC
L

EI GJ EI GJ E I C M




 

  (4.1) 

The upper limit maxL is taken as the lesser of min2L  and 12m given that beams longer than 12m 

would require splicing and would thus normally avoided by designers. 
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Table 4.1 Dimensions and section properties for the considered cross-sections in the parametric study 

 

4.3 Moment ratios based on threshold displacement criterion 

4.3.1 Formulation 

Chapter 3 formulated expressions for the additional lateral displacement  u z  and the angle of 

twist  z  for a beam under uniform moments M  with a general initial out-of-straightness 

pattern of the form 

   
2

0 0 2
1

1 sin
n

T y

m

m crm

EI m z
u z z

M L L

 
 



 
   

 
   (4.2) 

Section d b t w span A Ix Iy J Cw

(m)
mm^2 

x10^3

mm^4      

x10^6

mm^4      

x10^6

mm^4      

x10^4

mm^4                    

x10^9

1 W150x24 160 102 10.3 6.6 5.37 30.6 13.4 1.8 9.3 10.2

2 W200x42 205 166 11.8 7.2 8.74 53.1 40.9 9.0 22.2 84.0

3 W200x36 201 165 10.2 6.2 8.68 45.7 34.4 7.6 14.5 69.6

4 W150x18 153 102 7.1 5.8 5.37 22.9 9.2 1.3 3.7 6.7

5 W200x31 210 134 10.2 6.4 7.05 40.0 31.4 4.1 11.9 40.9

6 W250x45 266 148 13.0 7.6 7.79 57.2 71.1 7.0 26.1 113.0

7 W250x39 262 147 11.2 6.6 7.74 49.2 60.1 5.9 16.9 93.4

8 W200x27 207 133 8.4 5.8 7.00 33.9 25.8 3.3 7.1 32.5

9 W200x22 206 102 8.0 6.2 5.37 28.6 20.0 1.4 5.7 13.9

10 W150x14 150 100 5.5 4.3 5.26 17.3 6.9 0.9 1.7 4.8

11 W250x28 260 102 10.0 6.4 5.37 36.3 40.0 1.8 9.7 27.7

12 W150x13 148 100 4.9 4.3 5.26 16.1 6.1 0.8 1.4 4.2

13 W250x33 258 146 9.1 6.1 7.68 41.7 48.9 4.7 9.9 73.2

14 W310x45 313 166 11.2 6.6 8.74 56.9 99.2 8.6 19.1 195.0

15 W200x19 203 102 6.5 5.8 5.37 24.8 16.6 1.2 3.6 11.1

16 W200x21 203 133 6.4 5 7.00 27.0 19.8 2.5 3.6 24.3

17 W250x25 257 102 8.4 6.1 5.37 32.3 34.2 1.5 6.5 23.0

18 W310x33 313 102 10.8 6.6 5.37 41.8 65.0 1.9 12.2 43.8

19 W310x39 310 165 9.7 5.8 8.68 49.4 85.1 7.3 12.6 164.0

20 W250x24 253 145 6.4 5 7.63 31.1 34.7 3.3 4.0 49.5

21 W310x31 306 164 7.4 5 8.63 39.3 65.4 5.4 6.1 121.0

(mm)
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in which  
2

crm m y w yM M m L EI GJ m E L C I      is the critical moment corresponding to 

buckling mode m   . The corresponding response as characterized by the additional displacements 

 u z  and  z  was found to take the form 

 

22 2

2 2
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    
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   

   (4.3) 
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    
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   (4.4) 

Consider the special case where the initial imperfections follow the first mode. By setting 1 0   

and 2 3 ... .. 0i       in (4.2) and setting / 2z L  to recover the peak lateral IOS  0 / 2cu L at 

the compression flange located at a height / 2d   , one obtains 

         
2

0 0 0 1 2
/ 2 2 2 2 1 2

y

c

cr

EI
u L u L d L d

M L


 

 
     

 

  (4.5) 

in which    
2

1cr cr y w yM M L EI GJ E L C I     . If the peak lateral IOS is not to exceed a 

threshold value / iL   , the amplitude 1  associated with the an initial imperfection following the 

first buckling mode is obtained by equating   0 / 2cu L  to /L  , yielding  

 
1 2

2
1 2

y

i

cr

L

EI
d

M L







 
  

 

   (4.6) 

Under applied moments M , the corresponding additional peak lateral displacement  / 2cu L  

takes place also in the compression flange of the mid-span section and is obtained from (4.3) and 

(4.4) as 
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       
2

1 2
2 2 2 2 1

2

y

c

cr cr

EIM d
u L u L d L

M M M L


 

 
       

  (4.7) 

From Eq. (4.6) by substituting into Eq. (4.7), one obtains 

 
 

 
/ 2

1

cr

c

i cr

L M M
u L

M M



   (4.8) 

By adding the initial out-of-straightness 0 c i
u L    to both sides of Eq. (4.8), the total lateral out-

of-straightness at mid-span section  / 2ctu L  of the compression flange is obtained as 

     0

1
/ 2 / 2 / 2

1
c c c

i cr

L
u L u L u L

M M


 
    

 
  (4.9) 

Solving Eq. (4.9) for / crM M  one obtains  1 / 2ccr iM M L u L     
. If the total lateral out-of-

straightness  / 2cu L  is not to exceed the specified threshold value  / 2c iu L L L   , the 

magnitude of the corresponding moment  , i
M   is given by 

,
1i

cr i

M

M

  

 
 


   (4.10) 

In the absence of other information, typical threshold values for initial out-of-straightness i can 

be taken consistent with allowable camber and sweep limits for beams provided in Part 6 of the 

Handbook of Steel Construction (2016) and plumbness limits for column as provided in Clause 

29.3.3 of CAN-CSA-S16 (2014) and could be in the order of 1000, 1500, ...i  etc. Also, in the 

absence of additional application-specific information for beams, typical threshold values of   

could be in the range 180-360 in a manner consistent with displacement thresholds specified in 

informative Appendix D of CSA/CAN S16-14. 

The moment ratios , /
i crM M    as computed from Eq. (4.10) are provided in Table 4.2. For 

comparison, the critical moments  crM FEA  were obtained based on the present eigenvalue 

analysis to characterize the critical moment for the hypothetical case of a perfectly straight beam. 
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Also, the moment  M FEA   corresponding to the threshold  / 2c iu L L L   is obtained 

based on the finite element formulation developed in Chapter 3. Threshold initial out-of-

straightness values of 1000, 1500, 2000i   are taken and a threshold for the additional 

displacement of 180   is assumed. The results in Table 4.2 show that both approaches lead to 

essentially identical results. A plot of the results is provided in Figure 4.1where the moment , i
M   

(as obtained from the present FEM) corresponding to a peak additional lateral displacement at the 

compression flange 180cu L  is normalized by the critical moment crM  for a perfectly straight 

beam is plotted against the ratio of the yield moment to the critical moment ratio Y crM M which 

can be regarded as a measure of beam slenderness (for a given section Y crM M  increases as the 

span increases). In a manner consistent with the predictions of Eq. (4.10), the moment resistance 

ratio , /
i crM M    is found to be independent of the beam slenderness and solely dependent upon 

the IOS magnitude selected. For a selected threshold lateral displacement 180  , the ratios 

, /
i crM M  are found to decease as the initial out of straightness increase (i.e., as i increases). 
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Table 4.2 Moment resistance ratios between the present finite element solution and the prediction of Eq. (4.10) 

 

 

Section Span

Critical 

moment 

based on 

FEA 

(kNm)

Critical 

moment 

based on 

CSA 

(kNm)

(m) (kNm) (kNm) L/1000 L/1500 L/2000 L/1000 L/1500 L/2000 L/1000 L/1500 L/2000

W150x24 5.37 31.4 31.4 0.847 0.898 0.924 0.848 0.893 0.917 0.12% 0.56% 0.76%

W200x42 8.74 66.9 67.0 0.847 0.898 0.924 0.848 0.893 0.917 0.12% 0.56% 0.76%

W200x36 8.68 51.0 51.0 0.847 0.898 0.923 0.848 0.893 0.917 0.12% 0.56% 0.65%

W150x18 5.37 17.0 17.0 0.847 0.898 0.924 0.848 0.893 0.917 0.12% 0.56% 0.76%

W200x31 7.05 41.9 41.9 0.847 0.898 0.924 0.848 0.893 0.917 0.12% 0.56% 0.76%

W250x45 7.79 73.7 73.7 0.847 0.898 0.924 0.848 0.893 0.917 0.12% 0.56% 0.76%

W250x39 7.74 56.1 56.1 0.847 0.899 0.924 0.848 0.893 0.917 0.12% 0.67% 0.76%

W200x27 7.00 30.1 30.1 0.847 0.898 0.924 0.848 0.893 0.917 0.12% 0.56% 0.76%

W200x22 5.37 22.7 22.7 0.847 0.898 0.924 0.848 0.893 0.917 0.12% 0.56% 0.76%

W150x14 5.26 10.4 10.4 0.848 0.898 0.923 0.848 0.893 0.917 0.00% 0.56% 0.65%

W250x28 5.37 33.7 33.7 0.847 0.898 0.924 0.848 0.893 0.917 0.12% 0.56% 0.76%

W150x13 5.26 8.9 8.9 0.847 0.898 0.924 0.848 0.893 0.917 0.12% 0.56% 0.76%

W250x33 7.68 39.9 39.8 0.847 0.898 0.924 0.848 0.893 0.917 0.12% 0.56% 0.76%

W310x45 8.74 66.1 66.1 0.847 0.898 0.924 0.848 0.893 0.917 0.12% 0.56% 0.76%

W200x19 5.37 16.7 16.7 0.847 0.898 0.923 0.848 0.893 0.917 0.12% 0.56% 0.65%

W200x21 7.00 19.4 19.4 0.849 0.898 0.923 0.848 0.893 0.917 0.12% 0.56% 0.65%

W250x25 5.37 33.7 25.9 0.846 0.899 0.924 0.848 0.893 0.917 0.24% 0.67% 0.76%

W310x33 5.37 40.4 40.4 0.847 0.898 0.923 0.848 0.893 0.917 0.12% 0.56% 0.65%

W310x39 8.68 51.6 51.6 0.847 0.898 0.924 0.848 0.893 0.917 0.12% 0.56% 0.76%

W250x24 7.63 22.9 22.9 0.846 0.898 0.923 0.848 0.893 0.917 0.24% 0.56% 0.65%

W310x31 8.63 33.8 33.8 0.847 0.898 0.924 0.848 0.893 0.917 0.12% 0.56% 0.76%

Displacement based moment 

resistance fraction (FEM)

Moment resistance fraction 

based on Eq. (4.10) Percentage difference
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Figure 4.1 Moment resistance ratio based on displacement criterion for 21 common cross-sections under 

uniform bending moment 

4.3.2 Extension of the approach to other loading cases 

While the FEM findings of the past section were evident given the closed form expression in Eq. 

(4.10), it is not possible to obtain a similar closed form solutions of cases of non-uniform moments. 

Thus, the present section aims at investigating whether similar findings can numerically be 

obtained for other loading conditions. Two cases are considered; uniformly distributed loading and 

mid-span point loading. As depicted in Figure 4.2 a, b, it turns out that the moment resistance ratio  

, /
i crM M   obtained is also (1) independent of the slenderness , /

i crM M  , (2) solely dependent on 

the initial out of straightness i   , and (3) its value can be accurately predicted by Eq. 4.10. It is 

emphasized that while Eq. (4.10) was developed for the case of uniform moments, the FEA results 

suggest that it remains equally valid for uniformly distributed and mid-span point loading.  
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(a) 

 

(b) 

Figure 4.2 Moment resistance ratio based on displacement criterion for considered sections under (a) uniform 

distributed load and (b) point load at mid-span with three scenarios for out-of-straightness 
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4.3.3 Effect of span 

To investigate the effect of the span on the moment resistance ratio attained based on the 

displacement criterion, a beam is considered with a W200X36 cross-section under uniform 

bending moment with spans varying from 6 to 10m which correspond to  36.4L b   to 60.6L b     

(Figure 4.3). As in previous sections, three initial out-of-straightness scenarios are considered

1000, 1500, 2000i  . For a given out-of-straightness, the moment resistance ratio is found to be 

independent of the slenderness L b . 

 

Figure 4.3 moment resistance ratio for W200X36 cross-section with varying spans 

4.3.4 Nominal moment resistance based on displacement criterion 

In the previous section, it was observed that the only parameter influencing the moment resistance 

ratio , /
i crM M   is the ratio of the initial out-of-straightness coefficient and the displacement target 

value i  . When the displacement target value is set to 180L , the moment resistance ratios are 

always found to be 0.847, 0.898 and 0.924 for 1000, 1500i L L   and 2000L  for examined 

beams, respectively. Thus, if the effect of out-of-straightness is to be incorporated into the solution, 

an out-of-straightness reduction factor can be applied to the critical moment crM  . The value of 

the reduction factor is 0.847, 0.898 and 0.924 for 1000, 1500i L L   and 2000L  respectively. 

For example, the nominal design moment nM  accounting for initial out of straightness is given by  
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0.847n crM M  when 1000i L   . The reduction factor is applicable for uniform moments, 

uniformly distributed loading, or mid-pan point loading. 

Figure 4.4 (a) depicts the nominal moment normalized with respect to the plastic moment versus 

the span (presented using the dimensionless slenderness Y crM M ) for beam with a W150X14 

cross-section for three out-of-straightness scenarios ( 1000,1500,2000i  ) in addition to the case 

of zero out-of-straightness i    as extracted from the eigen-solution. The results indicate that 

the nominal resistance ranges from 84.7% of the critical moment for 2000i    to 92.4% for

1000i  . 

Strictly speaking, the above findings are limited to the elastic range of the response as no attempts 

were made to model the effect of plasticity nor to account for residual stresses. One recalls that for 

a perfectly straight beam of a Class 1 or 2 cross-section, CAN-CSA-S16 (2014) stipulates that 

when 0.67cr pM M  , the nominal resistance is governed by the inelastic lateral torsional buckling 

resistance as given by 1.15 1 0.28n p p crM M M M     where the elastic critical moment 

expressions for crM  as provided in the present standard do not account for initial-out-of-

straightness effects. The present study provides a basis to account for such effects by simply 

replacing crM  by 
1,M   so that

1, 0.67 pM M   , the nominal resistance would be governed by 

inelastic lateral torsional buckling as given by the modified equation

, ,1.15 1 0.28
i in p pM M M M   

    . It is clear that the proposed equation reverts to the present 

standard equation for the case of no initial out-of-straightness      where , i
M   crM . The 

resulting plots are presented in Fig. 4.4b for the case i  . The validity of proposed modified 

equation would have to be verified by conducting a finite element analysis that incorporates such 

effects and is outside the scope of the present study. 
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(a) 

 

(b) 

Figure 4.4 Normalized nominal moment resistance for W150x14 section ( 180L  ) (a) Elastic range for 

various out-of-straightness values ( 1000,1500,2000,i    ) and (b) total range for the case 1000i   

4.4 Moment ratio based on the threshold stress criterion 

4.4.1 Formulation 

For a wide flange beam subjected to biaxial bending and warping, the normal stresses  , , ,x y z   

at a point with coordinates  , ,x y   of a section z  is given by 
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 
     

, , ,
yx

x y w

M zM z B z
x y z y x

I I C
                           (4.11) 

The peak stresses  max z take place at the corner points of the section where the point coordinates 

have maximal values, i.e.,      max max max, , , , / 2, / 2, / 4x y x y b d bd   . By defining the 

section moduli max/x xS I y  , max/y yS I x , and max/w wS C  , one has 

 
     

max

yx

x y w

M zM z B z
z

S S S
       (4.12) 

Noting that    yM z EIu z   and   wB z EC    , the magnitude of maximum stress in the 

section is can be expressed as 

 
     

max

y

x y w

EI u z EC z
M z

z
S S S

 



 

      (4.13) 

From Eqs. (4.3) and (4.4), by differentiating  u z  and  z , and substituting into (4.13) one 

obtains 

 
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 (4.14) 

The peak normal stress takes place at mid-span where 2z L  and is given by 

 
2

max m

2

2ax 12
2 4

y

cr crx

EIM

M

M b bd
L E

S M L M L



 
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 
    

    
  (4.15) 

From Eq. (4.15), by substituting into Eq. (4.5), one obtains 

 
2

max
2

/ 2
cr ix

M Eb

M
L

S

M

M L






 
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 
    (4.16) 
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The peak stress is set to a specified threshold fraction    of the yield stress, i.e.,   yF   . 

Typically, design standards assume the residual stresses around 0.3 0.33y yF F  . Thus, the 

condition max 0.7 yF   or max 0.67 yF  must be satisfied for the material to remain in the elastic 

range and the typical values for the threshold stress fraction are 0.67,0.7  . By equating 

 max / 2L as obtained from (4.16) to the threshold value yF , one obtains 

2

2
y

x cr i

M M
F

S M LM

Eb




 
   

 
   (4.17) 

Rearranging, one has 
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  (4.18) 

Solving Eq. (4.18) for the moment M , one obtains 
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2 2

1 1
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  (4.19) 

Dividing both sides by crM   one recovers the moment ratio , crM M   attainable based on the 

threshold stress yF  

2
2 2

, 1 1
1 1 4

2 2 2 2

i Y Y Y Y Y

cr i y cr cr i y cr cr cr

M M M M M MEb Eb

M F L M M F L M M M

   
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  (4.20) 

Equation 1.16 indicates that the moment ratio attainable depends on the four dimensionless 

parameters i  ,  , yEb F L  and Y crM M  where one recalls that Y x yM S F  ,  

 
2

cr y w yM L EI GJ E L C I    and ratio Y crM M  will be adopted in subsequent sections  to 

provide a dimensionless measure of the section slenderness. 
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4.4.2 Comparison and Verification 

The comparison for the moment ratios ,i crM M  as predicted by Eq. (4.20) and those based on 

the present FEM (Table 4.3) are found to be nearly identical, with a maximum difference of 0.7%. 

Equation (4.20) indicates that the moment ratio ,i crM M  depends on seven parameters

, , , , , ,i Y crM M L d d b b t d w  . In the following sections, the effects of each of the seven 

parameters are assessed by varying each parameter at a time while keeping the other six constants. 

An idealized (i.e., with no fillets) W200x36 with ( , ,d b b t d w =1.22, 16.18, 32.4) cross-section 

with a stress fraction 0.70    and an out-of-straightness coefficient 1000i    is used as a 

reference case when assessing the geometric dimensionless parameters , ,d b b t d w .  
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Table 4.3 Percentage difference in predicted moment resistance ratio based on FEA critical moment and CSA critical moment approach for Beams under 

uniform bending moment ( 11.54yEb F L   , 0.70   and 2 1.0   ) 

Section Span

Critical 

moment 

based on 

FEA 

(kNm)

Critical 

moment 

based on 

CSA 

(kNm)

Yield to 

critical 

moment 

ratio 

based on 

FEA

(m) (kNm) (kNm) L/1000 L/1500 L/2000 L/1000 L/1500 L/2000 L/1000 L/1500 L/2000 L/1000 L/1500 L/2000

W150x24 5.37 31.4 31.4 1.9 26.0 27.3 28.0 0.828 0.869 0.893 0.829 0.869 0.893 0.0% 0.1% 0.1%

W200x42 8.74 66.9 67.0 2.1 56.7 59.3 60.8 0.847 0.886 0.909 0.846 0.886 0.908 -0.1% -0.1% 0.0%

W200x36 8.68 51.0 51.0 2.3 44.0 45.9 47.0 0.863 0.900 0.921 0.862 0.899 0.920 -0.2% -0.1% -0.1%

W150x18 5.37 17.0 17.0 2.5 14.7 15.3 15.7 0.868 0.904 0.925 0.867 0.904 0.924 -0.1% 0.0% 0.0%

W200x31 7.05 41.9 41.9 2.5 36.4 37.9 38.8 0.869 0.905 0.925 0.868 0.904 0.925 -0.1% -0.1% 0.0%

W250x45 7.79 73.7 73.7 2.5 64.2 66.8 68.3 0.870 0.906 0.926 0.870 0.906 0.926 -0.1% 0.0% 0.0%

W250x39 7.74 56.1 56.1 2.9 49.4 51.3 52.4 0.881 0.915 0.934 0.880 0.914 0.933 -0.1% 0.0% 0.0%

W200x27 7.00 30.1 30.1 2.9 26.5 27.5 28.1 0.882 0.916 0.935 0.881 0.915 0.934 -0.2% -0.1% -0.1%

W200x22 5.37 22.7 22.7 3.0 20.1 20.8 21.3 0.884 0.917 0.936 0.883 0.917 0.935 0.0% 0.0% 0.0%

W150x14 5.26 10.4 10.4 3.1 9.2 9.6 9.8 0.886 0.919 0.937 0.885 0.918 0.937 -0.1% -0.1% -0.1%

W250x28 5.37 33.7 33.7 3.2 30.0 31.1 31.7 0.888 0.920 0.938 0.887 0.920 0.938 0.0% 0.0% 0.0%

W150x13 5.26 8.9 8.9 3.3 7.9 8.2 8.3 0.890 0.922 0.940 0.889 0.921 0.939 -0.1% -0.1% -0.1%

W250x33 7.68 39.9 39.8 3.3 35.5 36.8 37.5 0.891 0.923 0.940 0.890 0.922 0.940 -0.1% -0.1% 0.0%

W310x45 8.74 66.1 66.1 3.4 58.9 61.0 62.1 0.891 0.923 0.940 0.890 0.923 0.940 -0.1% -0.1% 0.0%

W200x19 5.37 16.7 16.7 3.4 14.9 15.4 15.7 0.892 0.924 0.941 0.891 0.923 0.941 -0.1% 0.0% 0.0%

W200x21 7.00 19.4 19.4 3.5 17.3 17.9 18.3 0.894 0.925 0.942 0.893 0.924 0.942 -0.1% -0.1% -0.1%

W250x25 5.37 33.7 25.9 3.6 29.9 31.1 31.7 0.887 0.920 0.938 0.894 0.925 0.942 0.7% 0.5% 0.5%

W310x33 5.37 40.4 40.4 3.6 36.1 37.4 38.0 0.894 0.926 0.943 0.894 0.925 0.942 0.0% 0.0% 0.0%

W310x39 8.68 51.6 51.6 3.7 46.3 47.9 48.7 0.896 0.927 0.944 0.896 0.927 0.943 -0.1% 0.0% 0.0%

W250x24 7.63 22.9 22.9 4.2 20.6 21.3 21.7 0.901 0.931 0.947 0.901 0.930 0.946 -0.1% -0.1% 0.0%

W310x31 8.63 33.8 33.8 4.4 30.5 31.5 32.1 0.903 0.932 0.948 0.903 0.932 0.948 -0.1% 0.0% 0.0%

-0.2% -0.1% -0.1%

0.7% 0.5% 0.5%

0.0% 0.0% 0.0%

0.0018 0.00133 0.00112

Max

Mean

Stan Deviation

Min

Percentage difference***

Moment resistance fraction 

based on Mcr-CSA**                     

(ω2=1.00 )

FEA moment (kNm) for 

imperfection
Moment resistance fraction*

Y crM M
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4.4.3 Effect of slenderness  

The ratio ,i crM M   for the sections in Table 4.1 is determined based on solution (Eq. 4.20) for a 

yield stress fraction of 0.70  . Three scenarios are considered for the out-of-straightness 

coefficient; 1000,1500,2000i  . Figure 4.5 (a) shows that an increase in the slenderness 

Y crM M   corresponds to an increase in the moment resistance ratio ,i crM M  . For example, when 

1000i   , a beam with a slenderness 4.06Y crM M   attains a moment resistance ratio of 0.894 

and when Y crM M  reduces to 1.75, the moment resistance ratio drops to 0.808.  Also shown is a 

beam with a relatively low IOS (e.g., 2000i  ) is able to attain a relatively high moment 

resistance ratio compared to a beam with higher IOS (e.g., 1000i  ). For example, for a 

slenderness 2.36Y crM M  , the moment resistance ratio attained is 0.916 when 2000i   but 

drops to 0.856 when 1000i  . 

The sections are reconsidered under three specified yield stress fraction scenarios 0.67,0.70 

and 0.75 , while maintaining constant the out-of-straightness coefficient 1000i  . Figure 4.5 b 

shows that, for a given slenderness Y crM M , an increase in the specified yield stress fraction  is 

associated with an increase the moment resistance ratio ,i crM M  . For instance, when

2.78Y crM M  , the moment resistance ratio is 0.863 at 0.67   and increases to 0.872 at

0.70   and further increases to 0.884 when 0.75  . The difference between the attained 

moment resistance ratios based on different specified yield stress fractions   is small for low 

slenderness values and becomes negligible for larger slenderness. For example, when the 

slenderness is 1.75Y crM M  , the difference in moment resistance ratios corresponding to 

0.67   and 0.75   is 0.037 and drops to 0.009 when the slenderness increases to

4.06Y crM M  . 
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 (a) 

 

(b) 

Figure 4.5 Effect of yield to buckling moment ratio Y crM M on the moment resistance ratio for (a) various 

out-of-straightness coefficient i  and (b) various yield stress fractions   

 

4.4.4 Effect of initial out-of-straightness and yield stress fraction  

To assess the effect of out-of-straightness coefficient i  and yield stress fraction   on the moment 

resistance ratio ,i crM M  , two sets of analyses are conducted on a beam with W200X36 cross-



77 

 

section. In the first series, the yield stress fraction is kept constant at 0.7  while the initial out-

of-straightness coefficient i is varied from 1000 to 2000 (Figure 4.6 a). In the second series, the 

out-of-straightness coefficient is kept constant at  1000i   while the yield stress fraction   is 

varied from 0.67 to 1.0 (Figure 4.6 b).  

In both series, the beam slenderness L b   is varied and the moment resistance ratio ,i crM M   is 

predicted in Eq. (4.20). Figure 4.6 a, b shows that the moment resistance ratio increases with 

slenderness. For example, for the case 1000i  , 0.70  , when 33.3L b   the moment 

resistance ratio attained is 0.691. When the slenderness increases to 66.7L b  , the moment 

resistance ratio ,i crM M   is found to increase to 0.905. Figure 4.6 (a) shows that a large out-of-

straightness coefficient  corresponds to a low IOS, which corresponds to a comparatively high 

moment resistance ratio.  For example, for a slenderness 45.5L b  , the moment resistance ratio 

attained is 0.890 when 2000i   and drops to 0.821 when 1000i  . As expected, in Figure 4.6(b), 

where 1000i    is kept constant, the moment resistance ratio attained is found to increase with 

the yield stress fraction. For instance, when 51.52L b   the moment resistance ratio is 0.846 at 

0.67  ,  increases to 0.856 when, 0.70  and further increases to 0.916 when 1.00  . 
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(a) 

 

(b) 

Figure 4.6 effect of slenderness on Moment resistance ratios of W200x36 for (a) various out-of-straightness 

coefficient i  and (b) various yield stress fraction   on the moment resistance ratio – All beams are under 

uniform moments 

 

4.4.5 Effect of slenderness  

Five common cross-sections are investigated; 1) W150X18, 2) W200X36, 3) W250X45, 4) 

W250X58 and 5) W310X60 to assess the effect of slenderness L b  on the moment resistance ratios

, /
i crM M   attained. In all cases, the slenderness L b  is varied while keeping constant parameters
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0.70   and 1000i  . The results in Figure 4.7 show slight differences in the moment resistance 

ratios attained for all five sections for short spans and become negligible for large slenderness. For 

example, for a slenderness 35L b  , the difference between the highest and lowest moment 

resistance ratio is 0.057. This difference drops to 0.016 when the slenderness increases to about 

59.  

 

Figure 4.7 Effect of the span to flange width ratio on moment resistance ratio for beams under uniform 

moment for various beam cross-sections  

 

4.4.6 Effect of cross-section parameters  

For a beam with a given cross-section and loading pattern, the critical moments depend on the 

beam span L  , section depth d  , flange width b  , flange thickness t  and web thickness w  or, in a 

dimensionless form, one has  , / , / , / , /
i crM M f d b b t d w L b   . A study is thus conducted to 

investigate the effects of the dimensionless parameters on moment resistance ratio 
1 , crM M   by 

varying one of parameters d b , b t and d w  at a time while keeping the other two parameters 

constant. An idealized W200X36 cross-section is adopted as the reference case (geometric 

parameters are 201rd mm , 165rb mm  , 10.2rt mm , 6.2rw mm ，and the corresponding 

dimensionless parameters are  / 1.22
r

d b   ,   32.4
r

d w   and   16.2
r

b t  ). All 

dimensionless parameters were varied from 0.8 to 1.2 of the reference case value (i.e., /d b  =0.8-
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1.2  /
r

d b , d w  0.8-1.2  
r

d w  and b t   0.8-1.2  
r

b t ). When assessing the effect of /d b , the 

web thickness is changed proportionally with the section depth to maintain a constant ratio d w

( Appendix 4.A).  Figure 4.8 provides plots for the moment resistance ratio 
1 , crM M   versus the 

slenderness /L d  . A family of plots is depicted for /d t values ranging from 16.4 to 24.6 in Figure 

4.8 (a). The moment resistance ratio is found to increase with the slenderness L b . For a given 

slenderness, a relatively thick flange (i.e. with low b t ) leads to a lower moment resistance ratio

1 , crM M   . The difference in moment resistance ratio is found to be relatively large for 

comparatively short span beams (e.g., 42.0L b    ) and reduces for longer spans (e.g., 58.0L b   ). 

Figure 4.8 b is provides a series of plots for the moment resistance ratio 
1 , crM M    as a function 

of the slenderness /L b  for 1000i  , 0.70  , 32.4d w   and 16.2b t    . Five plots are 

provided for various /d b  ratios ranging from 0.97 to 1.46. The moment resistance ratio is 

observed to increase with the slenderness. At a given slenderness, a comparatively deeper section 

(i.e., d b  is large) corresponds to a higher moment resistance ratio. The difference in moment 

resistance ratio is observed to be large for relatively short span beams (e.g., 38.0L b   ) and 

decreases for larger spans (e.g., 53.0L b  ). 

The plots in Figure 4.8 c illustrate the effect of web slenderness d w  on the moment resistance 

ratio. Web slenderness was varied from 27.0 to 40.5 while keeping constant 

0.70, 1000, / 32.4, / 16.2i d w b t       .  The moment resistance ratio is found to be nearly 

independent from the web slenderness  d w  For example, when 37.0L b   , the moment 

resistance ratio is 0.747 for 40.5d w   and marginally changes to 0.744 for 27.0d w   . 
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(a) 

 

(b) 
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(c) 

Figure 4.8 . Effects of (a) flange thickness (b) section depth and (c) web thickness on moment resistance ratio 

for W200x36 under uniform bending 

4.4.7 Moment resistance ratios for other loading cases 

Figure 4.9 a provides a comparison of the attained moment ratios ,i crM M    for the beams 

defined in Table 4.1 for three loading cases; 1) uniform bending moments (UM), 2) Mid-span point 

load (PL) and 3) uniformly distributed load (UDL). The moment resistance ratios attained for the 

uniform bending moment case are computed based on Eq.(4.20), while those for the cases of point 

load (PL) and uniformly distributed loads (UDL) are determined from the present finite element 

analysis. 

A family of plots (Figure 4.9 a) is provided for the moment resistance ratio ,i crM M  as a function 

of the slenderness Y crM M  for a yield stress fraction 0.70  and IOS coefficients

1000,1500,2000i  . The moment resistance ratio ,i crM M   is found to increase with the 

slenderness  Y crM M  and with the out-of-straightness coefficient i  (i.e., decreases with the 

degree of out-of-straightness of the beam). For a given beam and an out-of-straightness coefficient, 

the moment resistance ratio attained is lowest for the point load (PL) case, followed by the 

uniformly loaded case (UDL) and is largest the case of uniform moment (UM). As a general 

observation, the predicted moment resistance ratios for the three loading cases considered are 

observed to differ largely for relatively low slenderness Y crM M   but the difference decreases as 
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slenderness increases. For example, when the initial out of straightness coefficient is 1000i  , 

the difference between the point load case (PL) and the uniformly distributed case (UDL) is 7.4% 

when the slenderness is 1.38Y crM M    and difference decreases to 26% when the slenderness 

increases to 3.26Y crM M   . 

In Figure 4.9b, where 1000i   is kept constant and yield stress fractions were varied, i.e., 

0.67,0.70,0.75  , it is found that an increase in the specified yield stress fraction corresponds to 

a higher moment resistance ratio at a given slenderness Y crM M . 

Figure 4.9 c depicts for the moment resistance ratio attained ,i crM M  as a function of the 

slenderness L b  for a specified yield fraction 0.70  and out-of-straightness coefficients  

1000,1500,2000i   for a beam with a W200X36 cross-section with varying spans for the loading 

cases UM, UDL, and PL.  The moment resistance ratio ,i crM M   is found to increase with the 

slenderness L b . Increasing the out-of-straightness coefficient attains a high moment resistance 

ratio ,i crM M  . The difference in the attained moment resistance ratios ,i crM M   between the 

different loading cases is observed to slightly decrease with the slenderness L b . For example, 

when the initial out of straightens coefficient is 1000i   and the slenderness is 43.0L b   , the 

difference in moment resistance ratio between the PL and UDL cases is 7.1%. The difference 

decreases to 5.7% when slenderness increases to 55.2. 

A family of plots (Figure 4.9 d) is provided for the moment resistance ratio with the slenderness 

for an initial-out of straightens coefficient 1000i   or specified yield stress fractions of

0.67,0.70,0.75   . Again, it is found that moment resistance ratio increases with the slenderness. 

Also, a higher specified yield stress fraction corresponds to a higher moment resistance ratio at a 

given slenderness. 
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(a) 

 

(b) 
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(c) 

 

(d) 

Figure 4.9 Moment resistance ratio for considered sections under uniform moment, point load at mid-span 

and UDL for (a) out-of-straightness i   1000, 1500 and 2000, (b) yield stress fraction   0.67, 0.70 and 

0.75.  Moment resistance ratio for W200X36 for (c) out-of-straightness coefficients i   1000, 1500 and 2000, 

(d) yield stress fractions   0.67, 0.70 and 0.75 
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4.4.8 Extension of the analytical solution to other loading cases 

The trends of the three loading cases considered observed in Figure 4.9 but are offset given that 

the critical moments differ due to the moment gradient effect. This observation suggests a possible 

modification of Eq. (4.20) by replacing the uniform critical moment crmM by 2 crmM , in which 2  

is a moment gradient factor. Thus, a modified form of Eq. (4.20) is proposed in the following 

2
2 2

,

2 2 2 2 2 2

1 1
1 1 4

2 2 2 2

i Y Y Y Y Y

crm i y crm crm i y crm crm crm

M M M M M MEb Eb

M F L M M F L M M M

   
  

       
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                              

 

 (4.21) 

For the point load case (PL), the moment gradient factor based on FEA can be computed by 

dividing the critical moment for a perfectly straight beam as predicted by the present eigenvalue 

model, by that for the case of uniform moment, leading to   2 FEM   1.36. This value is close 

to that provided by American Standards (ANSI/AISN 360-10), Australian Standards (AS 4100-

1998) and Eurocode Guide (EN 1993-1-1:2005) as discussed in (Hassan and Mohareb 2015), but 

slightly higher than that based the Canadian standards (CAN/CSA S16-14) is  2 CSA  1.265. 

Thus, the predictions of Eq. (4.21), based on moment gradients  2 2 1.265CSA    and 

 2 1.360FEA    will be compared to FEM results will be investigated.  

For the uniform distributed load case (UDL), the moment gradient factor computed by the present 

FEM is  2 1.13FEM  , which is identical to that provided in Canadian standards (CAN/CSA 

S16-14) and Eurocode Guide (EN 1993-1-1:2005) and closed to  2 1.17AS  in the Australian 

Standards (AS 4100-1998) and  2 1.14AISC  in American Standards (ANSI/AISN 360-10). 

Thus, the moment gradient  2 2 1.13CSA    is adopted in Eq. (4.21) when predicting the 

moment ratio ,i crM M   for the UDL case. 

The beams described in Table 4.1 are re-examined the cased of point load at mid-span (PL) and 

uniform distributed load (UDL). The specified yield stress fraction 0.70   is kept constant in all 

runs while the out-of-straightness coefficient i    is taken as 1000, 1500, and 2000.  The moment 

resistance ratios ,i crM M    as predicted the present finite element solution and those predicted 
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by Eq. (4.21) under the two loading cases are summarized in Table 4.4 to Table 4.6 for PL with

2 1.265   , PL with 2 1.36  , and UDL with 2 1.13  , respectively. Also provided is the 

percentage difference in moment resistance ratios as predicted on the present finite element 

solution and those based on Eq. (4.21) is calculated to evaluate the accuracy of the predictions of 

Eq. (4.21).  

For the point load (PL) case, Table 4.4 indicates that proposed Eq. (4.21) with 

 2 2 1.265CSA   yield moment ratio predictions ,i crM M  deviate from FEM predictions 

with percentage differences ranging from 1.9% to 8.4% with an mean difference of 4.1%. 

Improved moment ratio predictions are attained by adopting the more accurate moment gradient 

 2 2 1.36FEM   in conjunction with Eq. (4.21) where the percentage difference between 

both solutions range from 0.5% to 2.7% with a mean difference of 1.8%.  

For the UDL case, Table 4.6 presents the prediction by Eq. (4.21) with  2 2 1.13CSA    and 

by the present FEM. The percentage difference is found to range from 0.5% to 2.1% with an 

average of 1.0%. 

Also, it is found that the percentage difference decreases with the increase of the initial out-of-

straightness i . For example, the maximum percentage difference for 1000i  is found as 2.1%. 

The corresponding value is 1.5% for the case with 2000i  . Beams with comparatively larger 

Y crM M  attain a lower percentage difference. For instance, for W150X24 of which the 

slenderness is 1.7Y crM M  , the percentage difference is 2.1% for 1000i  . On the contrary, for 

W310X31 with 3.9Y crM M  , the percentage difference is 0.8%.  
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Table 4.4 Percentage difference in predicted moment resistance ratio based on FEA critical moment and CSA critical moment approach f or Beams under 

point load at mid-span ( 11.54yEb F L   , 0.70   and 2 1.265   ) 

 

 
 

Section Span

Critical 

moment 

based on 

FEA

Critical 

moment 

based on 

CSA

Yield to 

critical 

moment 

ratio 

based on 

FEA

(m) (kNm) (kNm) L/1000 L/1500 L/2000 L/1000 L/1500 L/2000 L/1000 L/1500 L/2000 L/1000 L/1500 L/2000

W150x24 5.37 42.5 39.7 1.4 30.3 32.1 33.3 0.712 0.755 0.782 0.771 0.812 0.837 8.4% 7.5% 7.0%

W200x42 8.74 90.8 84.7 1.5 67.7 71.9 74.4 0.746 0.792 0.820 0.801 0.842 0.868 7.4% 6.3% 5.8%

W200x36 8.68 69.3 64.5 1.7 53.8 57.0 59.0 0.777 0.823 0.852 0.827 0.867 0.892 6.4% 5.4% 4.6%

W150x18 5.37 23.0 21.5 1.8 18.1 19.2 19.9 0.787 0.834 0.862 0.836 0.876 0.900 6.2% 5.1% 4.4%

W200x31 7.05 56.9 53.0 1.8 45.0 47.6 49.2 0.790 0.836 0.865 0.838 0.878 0.901 6.0% 5.0% 4.2%

W250x45 7.79 100.1 93.3 1.9 79.4 84.0 86.8 0.793 0.839 0.867 0.840 0.880 0.903 5.9% 4.9% 4.2%

W250x39 7.74 76.2 71.0 2.1 62.1 65.6 67.5 0.815 0.860 0.886 0.857 0.895 0.917 5.2% 4.1% 3.5%

W200x27 7.00 40.9 38.0 2.1 33.4 35.2 36.3 0.817 0.862 0.889 0.859 0.896 0.918 5.1% 4.0% 3.3%

W200x22 5.37 30.9 28.7 2.2 25.3 26.7 27.5 0.820 0.865 0.892 0.862 0.900 0.921 5.2% 4.0% 3.2%

W150x14 5.26 14.2 13.2 2.3 11.7 12.3 12.7 0.826 0.870 0.896 0.865 0.902 0.923 4.8% 3.7% 3.0%

W250x28 5.37 45.8 42.7 2.3 38.1 40.1 41.2 0.830 0.874 0.899 0.869 0.905 0.925 4.7% 3.6% 2.9%

W150x13 5.26 12.1 11.2 2.4 10.1 10.6 10.9 0.835 0.877 0.902 0.871 0.907 0.927 4.4% 3.4% 2.8%

W250x33 7.68 54.2 50.4 2.4 45.3 47.7 49.0 0.836 0.879 0.904 0.873 0.908 0.928 4.4% 3.4% 2.7%

W310x45 8.74 89.8 83.6 2.5 75.3 79.0 81.3 0.838 0.880 0.905 0.874 0.909 0.929 4.3% 3.3% 2.6%

W200x19 5.37 22.7 21.1 2.5 19.1 20.0 20.6 0.839 0.881 0.906 0.875 0.910 0.930 4.3% 3.3% 2.6%

W200x21 7.00 26.4 24.5 2.6 22.2 23.4 24.0 0.843 0.885 0.909 0.878 0.912 0.932 4.1% 3.1% 2.5%

W250x25 5.37 35.3 32.8 2.6 29.7 31.2 32.1 0.843 0.886 0.910 0.879 0.914 0.933 4.3% 3.1% 2.5%

W310x33 5.37 54.9 51.1 2.6 46.3 48.6 49.9 0.844 0.886 0.910 0.879 0.914 0.933 4.2% 3.1% 2.5%

W310x39 8.68 70.3 65.3 2.7 59.7 62.6 64.2 0.849 0.890 0.913 0.882 0.916 0.934 3.9% 2.9% 2.4%

W250x24 7.63 31.2 28.9 3.1 26.8 28.0 28.7 0.860 0.899 0.921 0.889 0.922 0.940 3.4% 2.5% 2.0%

W310x31 8.63 46.0 42.8 3.3 39.8 41.6 42.5 0.865 0.903 0.924 0.893 0.924 0.941 3.2% 2.4% 1.9%

3.2% 2.4% 1.9%

8.4% 7.5% 7.0%

5.0% 4.0% 3.4%

0.01256 0.01249 0.01242

Min

Max

Mean

Stan Deviation

FEA moment (kNm) for 

imperfection
Moment resistance fraction*

Moment resistance fraction 

based on Mcr-CSA**                     

(ω2=1.265 )

Percentage difference***

Y crM M
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Table 4.5 Percentage difference in predicted moment resistance ratio based on FEA critical moment and CSA critical moment approach f or Beams under 

point load at mid-span ( 11.54yEb F L   , 0.70   and 2 1.36   ) 

 

Section Span

Critical 

moment 

based on 

FEA

Critical 

moment 

based on 

CSA

Yield to 

critical 

moment 

ratio 

based on 

FEA

(m) (kNm) (kNm) L/1000 L/1500 L/2000 L/1000 L/1500 L/2000 L/1000 L/1500 L/2000 L/1000 L/1500 L/2000

W150x24 5.37 42.5 39.7 1.4 30.3 32.1 33.3 0.712 0.755 0.782 0.726 0.763 0.786 2.0% 1.1% 0.5%

W200x42 8.74 90.8 84.7 1.5 67.7 71.9 74.4 0.746 0.792 0.820 0.763 0.803 0.828 2.2% 1.4% 1.0%

W200x36 8.68 69.3 64.5 1.7 53.8 57.0 59.0 0.777 0.823 0.852 0.795 0.837 0.863 2.4% 1.8% 1.3%

W150x18 5.37 23.0 21.5 1.8 18.1 19.2 19.9 0.787 0.834 0.862 0.808 0.850 0.875 2.6% 1.9% 1.5%

W200x31 7.05 56.9 53.0 1.8 45.0 47.6 49.2 0.790 0.836 0.865 0.810 0.852 0.877 2.5% 1.9% 1.4%

W250x45 7.79 100.1 93.3 1.9 79.4 84.0 86.8 0.793 0.839 0.867 0.813 0.855 0.880 2.5% 1.9% 1.5%

W250x39 7.74 76.2 71.0 2.1 62.1 65.6 67.5 0.815 0.860 0.886 0.835 0.876 0.900 2.5% 1.8% 1.6%

W200x27 7.00 40.9 38.0 2.1 33.4 35.2 36.3 0.817 0.862 0.889 0.837 0.878 0.902 2.5% 1.8% 1.4%

W200x22 5.37 30.9 28.7 2.2 25.3 26.7 27.5 0.820 0.865 0.892 0.842 0.882 0.905 2.7% 2.0% 1.5%

W150x14 5.26 14.2 13.2 2.3 11.7 12.3 12.7 0.826 0.870 0.896 0.846 0.886 0.909 2.4% 1.8% 1.4%

W250x28 5.37 45.8 42.7 2.3 38.1 40.1 41.2 0.830 0.874 0.899 0.851 0.890 0.912 2.5% 1.8% 1.5%

W150x13 5.26 12.1 11.2 2.4 10.1 10.6 10.9 0.835 0.877 0.902 0.854 0.893 0.915 2.3% 1.8% 1.4%

W250x33 7.68 54.2 50.4 2.4 45.3 47.7 49.0 0.836 0.879 0.904 0.856 0.894 0.916 2.4% 1.8% 1.4%

W310x45 8.74 89.8 83.6 2.5 75.3 79.0 81.3 0.838 0.880 0.905 0.857 0.895 0.917 2.3% 1.7% 1.3%

W200x19 5.37 22.7 21.1 2.5 19.1 20.0 20.6 0.839 0.881 0.906 0.859 0.897 0.919 2.4% 1.8% 1.4%

W200x21 7.00 26.4 24.5 2.6 22.2 23.4 24.0 0.843 0.885 0.909 0.862 0.900 0.921 2.3% 1.7% 1.3%

W250x25 5.37 35.3 32.8 2.6 29.7 31.2 32.1 0.843 0.886 0.910 0.864 0.901 0.922 2.5% 1.7% 1.4%

W310x33 5.37 54.9 51.1 2.6 46.3 48.6 49.9 0.844 0.886 0.910 0.864 0.902 0.923 2.4% 1.8% 1.4%

W310x39 8.68 70.3 65.3 2.7 59.7 62.6 64.2 0.849 0.890 0.913 0.867 0.904 0.925 2.2% 1.6% 1.3%

W250x24 7.63 31.2 28.9 3.1 26.8 28.0 28.7 0.860 0.899 0.921 0.877 0.912 0.932 2.0% 1.5% 1.2%

W310x31 8.63 46.0 42.8 3.3 39.8 41.6 42.5 0.865 0.903 0.924 0.881 0.915 0.934 1.9% 1.4% 1.1%

1.9% 1.1% 0.5%

2.7% 2.0% 1.6%

2.4% 1.7% 1.3%

0.00205 0.00206 0.00222

FEA moment (kNm) for 

imperfection
Moment resistance fraction*

Moment resistance fraction 

based on Mcr-CSA**                     

(ω2=1.36 )

Percentage difference***

Min

Max

Mean

Stan Deviation

Y crM M
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Table 4.6 Percentage difference in predicted moment resistance ratio based on FEA critical moment and CSA critical moment approach for Beams under 

uniform distributed load ( 11.54yEb F L   , 0.70   and 2 1.13   ) 

 

* Moment resistance ratio = FEA cr FEAM M    ;   ** Moment resistance ratio based on cr CSAM    is computed in Eq.  

Section Span

Critical 

moment 

based on 

FEA

Critical 

moment 

based on 

CSA

Yield to 

critical 

moment 

ratio 

based on 

FEA

(m) (kNm) (kNm) L/1000 L/1500 L/2000 L/1000 L/1500 L/2000 L/1000 L/1500 L/2000 L/1000 L/1500 L/2000

W150x24 5.37 35.5 35.5 1.7 27.9 29.4 30.4 0.786 0.829 0.856 0.802 0.844 0.869 2.1% 1.8% 1.5%

W200x42 8.74 75.6 75.7 1.8 61.4 64.6 66.5 0.812 0.855 0.880 0.826 0.867 0.891 1.7% 1.4% 1.2%

W200x36 8.68 57.7 57.6 2.1 48.0 50.4 51.9 0.832 0.874 0.899 0.846 0.885 0.908 1.6% 1.2% 1.0%

W150x18 5.37 19.2 19.2 2.2 16.1 16.9 17.4 0.839 0.880 0.904 0.853 0.892 0.914 1.7% 1.3% 1.1%

W200x31 7.05 47.4 47.3 2.2 39.9 41.8 42.9 0.841 0.881 0.905 0.854 0.893 0.915 1.6% 1.3% 1.1%

W250x45 7.79 83.4 83.3 2.2 70.2 73.7 75.6 0.842 0.884 0.906 0.856 0.894 0.916 1.7% 1.2% 1.1%

W250x39 7.74 63.5 63.4 2.5 54.4 56.9 58.3 0.857 0.896 0.918 0.870 0.906 0.926 1.5% 1.1% 0.9%

W200x27 7.00 34.0 34.0 2.6 29.2 30.5 31.2 0.859 0.897 0.919 0.871 0.907 0.927 1.4% 1.1% 0.8%

W200x22 5.37 25.7 25.7 2.6 22.2 23.1 23.7 0.862 0.900 0.921 0.874 0.909 0.929 1.3% 1.0% 0.8%

W150x14 5.26 11.8 11.8 2.7 10.2 10.6 10.9 0.864 0.902 0.923 0.876 0.911 0.930 1.4% 1.0% 0.8%

W250x28 5.37 38.2 38.1 2.8 33.1 34.5 35.3 0.867 0.904 0.925 0.879 0.913 0.932 1.4% 1.0% 0.8%

W150x13 5.26 10.0 10.0 2.9 8.7 9.1 9.3 0.869 0.906 0.927 0.881 0.915 0.934 1.4% 1.0% 0.7%

W250x33 7.68 45.2 45.0 2.9 39.4 41.0 41.9 0.872 0.908 0.928 0.882 0.916 0.935 1.1% 0.9% 0.7%

W310x45 8.74 74.8 74.7 3.0 65.2 68.0 69.5 0.872 0.909 0.929 0.883 0.916 0.935 1.2% 0.8% 0.6%

W200x19 5.37 18.9 18.9 3.0 16.5 17.2 17.6 0.874 0.909 0.929 0.884 0.917 0.936 1.1% 0.9% 0.7%

W200x21 7.00 22.0 21.9 3.1 19.3 20.1 20.5 0.875 0.912 0.931 0.886 0.919 0.937 1.2% 0.8% 0.7%

W250x25 5.37 29.4 29.3 3.2 25.8 26.8 27.4 0.876 0.912 0.931 0.887 0.920 0.938 1.3% 0.9% 0.7%

W310x33 5.37 45.7 45.6 3.2 40.0 41.6 42.5 0.876 0.911 0.931 0.887 0.920 0.938 1.3% 1.0% 0.8%

W310x39 8.68 58.6 58.3 3.3 51.5 53.6 54.7 0.879 0.914 0.933 0.889 0.922 0.939 1.2% 0.8% 0.7%

W250x24 7.63 26.0 25.8 3.7 23.1 23.9 24.4 0.887 0.919 0.939 0.895 0.926 0.943 0.9% 0.8% 0.5%

W310x31 8.63 38.4 38.2 3.9 34.2 35.4 36.1 0.891 0.922 0.939 0.898 0.928 0.945 0.8% 0.7% 0.6%

0.8% 0.7% 0.5%

2.1% 1.8% 1.5%

1.4% 1.0% 0.8%

0.00286 0.00246 0.00235

Min

Max

Mean

Stan Deviation

FEA moment (kNm) for 

imperfection
Moment resistance fraction*

Moment resistance fraction 

based on Mcr-CSA**                     

(ω2=1.13 )

Percentage difference***

Y crM M
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*** Percentage difference =      cr CSA FEA cr FEA FEA cr FEAappx
M M M M M M  

 
 
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4.4.9 Nominal moment resistance based on stress criterion 

The solution provided by Eq. (4.21) accounts for the initial-out-of-straightness effect and should 

replace the eigenvalue solution in the elastic buckling range. For medium span beams, inelastic 

lateral torsional buckling will likely take place. For instance when, for a perfectly straight beam 

with a class 3 cross-section with 0.67cr pM M  , the Canadian standards assume that inelastic 

lateral torsional buckling takes place and one needs to account for the effects of plasticity and 

residual stresses, using the equation  1.15 1 0.28 /n Y Y crM M M M   with a ceiling value of

n YM M which corresponds to pure yielding. An extension of the concept was proposed for the 

displacement criterion under section 4.3.4.  

In the present section, we adopt an alternative approach to account for plasticity and residual 

stresses in the inelastic lateral torsional buckling range in a manner consistent with the column 

resistance equations in CAN-CSA-S16 (2014), where the nominal resistance of a column nC   takes 

the form  
1

21n yC AF




  , yAF  being the yield strength of the column,   being the column 

slenderness, and 1.34n   is a constant that it intended to match the outcome of the inelastic 

analysis and/or tests. An analogous equation is postulated here whereby the inelastic moment is 

assumed to be obtained by  
1

1n x yM S F




   where Y x yM S F  is the yield moment, 

Y crM M  is the slenderness ratio, and constant   is to be obtained by matching the predictions 

of the present FEA analysis.  In a manner similar to the column equation, the proposed equation 

approaches the yield moment Y x yM S F  as the slenderness approaches zero ( 0   ). Constant 

  can be obtained by matching the attained moment ratios n Y
M M   based on the FEM predictions 

within the elastic range. However, it is cautioned that the extrapolation of the curve predictions 

beyond the elastic domain is not recommended without conducting verifying the predictions of the 

equation against inelastic analysis results that accounts for the effects of plasticity and residual 

stresses, in addition to initial-of-straightness. As an illustration, a simply supported beam with a 

W150x14 cross-section is considered with variable spans (Section class is 3 based on yield strength 

of 350F MPa  ). The moment ratio n YM M  as predicted by the FEM is provided for a yield 

stress fraction 0.7   and initial out-of-straightness coefficients of 1000,1500,2000i   . 
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Given the FEA predictions for the nominal ratio n YM M and the corresponding slenderness 

Y crM M  ,  an equation of the form  
1

1n x yM S F




  is fitted to the results, where the 

coefficient   is obtained by minimizing the differences between the equation and the FEA 

predictions. The values    1.36, 1.63 and 1.80 were obtained for 1000,1500,2000i  , 

respectively and percentage difference between the proposed equation and FEM were no larger 

than 2.41%, 2.42% and 2.13% respectively. The corresponding plots are depicted in Figure 4.10 

for comparison. As discussed, since the present finite element solution does not account the effects 

of plasticity and the residual stress, equation  
1

1n x yM S F




  is currently limited in the range 

of the elastic LTB. The validity of this proposed equation for the range of the inelastic LTB should 

be verified by performing a finite element analysis incorporating these effects.  

 

Figure 4.10 Proposed design curves based on stress target value 0.7 yF  for 1000, 1500i L L   and 

2000L   (W150X14) 

4.5 Summary and Conclusions 

Closed form expressions were developed for moment ratio predictions under displacement and 

stress based criteria for the case of uniform moments. The validity of the expressions was 

demonstrated by comparison with the finite element solution developed in Chapter 3. The closed 

form expressions provided the dimensionless parameters influencing the moment ratios and the 

effects of each parameter was systematically investigated by varying one parameter at a time while 
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maintaining constant all other parameters. The closed form solutions for the moment ratio were 

modified to extend their use to other loadings cases involving mid-span point loading uniformly 

distributed loading.  The accuracy of the modified equations was demonstrated by comparison 

against numerical results based on the FEM solution developed in Chapter 3. Design curves 

incorporating the effect of IOS in the elastic range were proposed by modifying the current design 

equations in CAN/CSA S16-14 based on the parametric study results. The main findings of the 

study are summarized as follows: 

1. The predicted moment ratio based on the yield criterion solely depends on the ratio between the 

IOS coefficient and the displacement threshold value. Thus, it is independent of the slenderness, 

cross-section dimensions, and the loading conditions considered. 

2. The closed form solution for the moment ratio predicted by the stress based criterion for beams 

under uniform moments were found to be extendable to other loading cases considered (UDL and 

PL) by adopting appropriate moment gradient factors. 

3. Based on the stress criterion, the predicted moment ratio , /
i crM M   was shown to increase with 

the IOS coefficient, yield stress fraction, yield-to-critical moment ratio, span-to-section-depth ratio, 

flange-width-to-depth ratio and depth-to-flange-thickness ratio.  
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Appendix 4.A 

Table 4.A.1 Cross-section geometry and properties for the parametric study on d b   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

d b t w Ix Sx Zx Iy Sy J Cw

0.97 160.8 165 10.2 4.96 2.03 2.52 2.78 7.64 9.26 1.18 4.94

1.1 180.9 165 10.2 5.58 2.65 2.93 3.25 7.64 9.26 1.22 6.36

1.22 201.0 165 10.2 6.2 3.37 3.35 3.72 7.64 9.26 1.26 7.71

1.34 221.1 165 10.2 6.82 4.21 3.8 4.24 7.64 9.26 1.33 9.33

1.46 241.2 165 10.2 7.44 5.16 4.28 4.76 7.64 9.26 1.42 11.1

(mm)

4

710

mm



3

510

mm



3

510

mm



4

610

mm



3

410

mm



4

510

mm



6

1010

mm


d b
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5. Estimating critical moments for perfectly straight beams from the 

lateral torsional response of initially crooked beams 

5.1 Introduction 

Chapters 3 developed an FEM solution that characterizes the nonlinear moment-lateral 

displacement relationship for a beam with a given IOS and IAT pattern subjected to transverse 

loads. The obtained relationships did not exhibit a distinct plateau corresponding to the critical 

moment of a perfectly straight beam but approached the critical moment asymptotically from 

below. When conducting experimental results beams with IOS and IAT, two questions arise: (a) 

Can the nonlinear moment-lateral displacement obtained be used to predict the critical moment for 

a perfectly straight beam? and (b) Can the nonlinear moment-lateral displacement be used to 

characterize the magnitude of initial imperfections of the beam. The original work of Southwell 

(1931) provided a basis to answer similar questions for simply supported columns with initial 

crookedness. The present chapter aims to extend the findings of Southwell for beams with IOS 

and IAT by developing a closed form solution for the nonlinear response of beams with IOS and 

IAT under uniform moments and developing Southwell-like solutions. Since closed form solutions 

cannot be developed for the cases involving variable moments, the FEM solution developed in 

chapter 3 used then to produce nonlinear moment-lateral displacement relations for various IOS-

IAT scenarios, and the applicability of the Southwell-like solution is used to estimate the critical 

moments. Comparisons are then performed with the critical moments obtained from the eigen-

value solutions. The numeric results suggest that the extended Southwell technique remains valid 

for case of non-uniform moments. 

5.2 Theoretical Background 

5.2.1 Overview of the Southwell plot technique for column buckling  

Consider a simply supported column with an initial out-of- straightness  0y z  an elastic flexural 

stiffness EI  subjected to an axial load P . The equilibrium condition can be shown (e.g., Southwell 

1931), to take the form  

 0 0EI y y Py       (5.1) 
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in which,  y z  is the transverse deflection. By expressing the transverse deflection  y z  and 

initial out-of-straightness  0y z as Fourier series, one obtains 

 

 

1

0

1

sin

sin

m

m

m

m

m z
y z w

L

m z
y z w

L













 
  

 

 
  

 





    (5.2)a,b 

in which, mw  and mw are the magnitudes of the transverse deflection and initial transverse out-of-

straightness corresponding to mode m . From Eqs. (5.2) by substituting into Eq. (5.1), one obtains 

1
, 1,2...

1

m

m m

w
m

w P P
 


   (5.3) 

where mP  is the mth critical load obtained from the eigenvalue solution for equilibrium equation 

or a corresponding perfectly straight column. By setting 2z L  into Eq. 5.2a, the additional 

deflection    at mid-span is obtained as 

     1 3 50 1 3 5

1 1

2 2 sin sin ...
2

m m

m m

m m z
y L y L w w w w w w w w

L

 


 

 

   
            

   
   

  (5.4) 

From Eq, (5.3) by substituting into Eq. (5.4). one obtains 

3 51

1 3 5

...
1 1 1

w ww

P P P P P P
   

  
   (5.5) 

As 1P P  , the first term of Eq. (5.5) gains dominance and the contributions of subsequent terms 

become comparatively negligible and one obtains 

1

1 1

w

P P
 


   (5.6) 

Eq. (5.6) can be rearranged as  

  1

1 1

1 w

P P P




 
  

 
   (5.7) 
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The above equation suggests that as the applied load P  approaches the first critical load 1P , the 

relationship between Y P  and X   becomes linear, and the slope 11/dY dX P  provides 

a basis to estimate the critical load 1P  . The intersection of the linear relationship with the Y P

axis is 1 1w P  and provides an estimate of the initial out-of-straightness amplitude 1w

corresponding to the first Fourier term. 

5.2.2 Extension to lateral torsional buckling of beams under uniform moments 

This section extends the Southwell plot technique, to beams with initial out-of-straightness (IOS) 

and initial angle of twist (IAT) lateral torsional buckling.  A close form solution is attainable only 

for the case of uniform moments. Thus, a prismatic beam with initial out-of-straightness  0u z  

and initial angle of twist  0 z  under uniform moment M  is considered. As discussed in Section 

4.3.1, the initial out-of-straightness  0u z  and initial angle of twist  0 z can be expressed as 

   
2

0 0 2
1

1.0 sin
T y

m

m crm

EI m z
u z z

M L L

 
 





 
   

 
   (5.8) 

where m  is the contribution of the mth  eigen mode to the IOS and IAT    0 0

T

u z z .  The 

corresponding contribution of the mth  eigen mode to the initial out-of-straightness of the 

compression flange has been shown to be 

           
2

0 , 2
/ 2 1 / 2 sin

y

c m m m

crm

EI
u z u z d z d m z L

M L


  

  
      

   

  

The corresponding additional lateral displacement  cu z  was found to be 

     , 0 ,

1 1

1

1
c c m c m

m m crm

u z u z u z
M M

 



 

 


     (5.9) 

where   ,c mu z  is the additional lateral displacement corresponding to mode m  and is given by 

   , 0 ,

1
, 1,2...

1
c m c m

crm

u z u z m
M M

 


 (5.10) 
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As 1crM M  , the first term of Eq. (5.9) gains dominance and the contributions of subsequent 

terms become comparatively negligible and one obtains 

   0

1

1

1
c c

cr

u z u z
M M




   (5.11) 

By re-arranging Eq.(5.10), one obtains 

 
 

 0

1 1

1c c

c

cr cr

u z u z
u z

M M M

 
     

 
   (5.12) 

Equation (5.12) is linear between  cY u z M     and  cX u z in a manner similar to Eq. (5.7) 

and the slope  11/ crdY dX M  of the  cu z M -  cu z plot provides a basis to estimate the first 

critical moment 1crM   . Also, the intersection of the linear relationship with the  cY u z M  axis 

is  0 1c cr
u z M  which provides an estimate of the initial out-of-straightness amplitude associated 

with the first buckling mode. 

5.3   Extension of the Southwell plot technique to beams with non-uniform 

moments 

Since the findings of the previous section are confined to the case of beams under uniform 

moments, it is of interest to determine whether similar patterns can be observed for the more 

general case of non-uniform moments. Unlike the case of uniform moments, a closed form solution 

is unattainable under non-uniform moments. As such, the problem will be investigated numerically 

based on the FEM developed in Chapter 3. 

A 7.80m span beam with a W250X45 cross-section is subjected to mid-span point load. Two cases 

for the initial out-of-straightness are examined. In Case 1, the initial out-of-straightness is assumed 

to be sum of the first, third and fifth modes, with equal amplitudes

     1 3 5, , / 3000 1,1,1 2.6 1,1,1L mm      . In Case 2, the initial out-of-straightness is assumed 

to exclusively follow the first mode with amplitudes

     1 3 5, , 3000,0,0 2.6,0,0L mm     .The critical moments for the perfectly straight beam as 

obtained from the eigenvalue analysis is 100.3 kNm which corresponds to a load of 51.4kN. Using 
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the present FEM analysis, the load is ramped from 0.1kN to 51.4kN with a 0.01kN increments to 

obtain the non-linear load-lateral displacement relationship. The additional lateral displacement at 

the compression flange is examined at mid-span point  2c cu u L . The analysis under Section 

5.2.2 is postulated to hold true for the case of non-uniform moment and the validity of the 

assumption will be examined by comparing the buckling moment predictions of the developments 

of Section 5.2.2 to those based on the eigenvalue analysis. Thus, the critical moment crM  is 

obtained from the inverse of the slope of  cY u M  versus cX u plot and the intercept of the 

relationship with cY u M  axis is assumed to be equal to 0 1c cr
u M  .Figure 5.1 presents the 

cu M - cu relationship for the two IOS patterns considered. 

The cu M - cu  relations for both IOS patterns are observed to slightly deviate for low values for 

the displacement cu . Initially, the difference between both curves is 9.5% at an applied moment of

0.2M kNm .  As the applied moments increase, both relations approach one another, and when 

the applied moments 66.0M kNm  , the difference between both displacements reduces to 2.7%. 

This case corresponds to the right-most point in Figure 5.1. When the applied moment further 

increases to 87.8M kNm , the corresponding percentage difference decreases further to 0.9% 

(not shown on Figure 5.1). 

When conducting a lateral torsional buckling experiment on a beam with IOS, the loading is 

ramped up and the corresponding lateral displacement is recorded. Thus, the quantities  , c k
M u  

would be known for multiple points 1,2.... maxk k  along the loading path. The data collected is 

then used to determine  k c k
Y u M  versus  k c k

X u . The computed   ,k kX Y  data within a 

given test range r  can then be used to conduct a linear regression analysis of the form 

k r k rY A X B  , where the regression coefficients ,r rA B depend on the regression range r and are 

related to the critical moment and initial IOS through the relations 

0

1 1

1
, c

r r

cr crr r

u
A B

M M


   

    
   

   (5.13) 
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It is evident that the accuracy of the predictions of 1crM and 0 cu  depends on the selected regression 

range. In order to characterize the effect of regression range r  on the predictions of 1crM and 0 cu  , 

five ranges for applied moments are selected to conduct the regression analysis. These are 0.2-

19.5, 19.7-39.0, 39.2-58.5, 58.7-78.0, and 78.2-100.3 kNm.  The critical moment predictions and 

the IOS magnitude predictions are provided in Table 5.1. Column (7) indicates that the ratio of 

critical moment predicted based on the regression to that based on the eigenvalue prediction to 

range from 9.2% (for the lowest loading range considered of 0.2-19.5 kNm) down to 0.00% (for 

the highest loading range considered of 78.2- 100.3 kNm). 

For the IOS scenario corresponding to case 2, given that the higher mode amplitudes were chose 

to vanish, it is observed that excellent predictions of the critical moments are obtained irrespective 

of the range of loading used for the regression. For a regression range of 0.20-19.5 and 78.2-

100.3kNm, the predicted critical moment was 100.3 kNm, which coincide to that corresponding 

to that based on an eigenvalue analysis within four significant digits.  

In summary, the previous findings suggest that proposed extension of the Southwell plot technique 

can be reliably used to predict the critical moments for a perfectly straight beam. For a beam with 

general IOS pattern involving higher mode contributions, the accuracy of predictions of the 

proposed method tends to quickly improve with the increase of the load range chosen for 

regression. For the hypothetical case where the IOS imperfection is assumed to follow solely the 

first mode, fast convergence towards the critical moment is observed and the use of data at low 

range of loading is found to reliably predict the critical moment for a perfectly straight beam. 
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Table 5.1 The predicted critical moment and magnitude of the IOS based on the considered range for the 

applied moment 

 
*  1cr EV

M  critical moment as determined from eigenvalue analysis 

**  0 c EX
u    initial imperfection associated with first mode =L/3000=2.6mm 

 

Figure 5.1 Relation between the additional peak lateral displacement to the applied load ratio and the 

additional peak lateral displacement (Southwell plot) 

5.4   Extension of the technique to other displacements  

The analysis in Section 5.3 adopted the mid-span lateral displacement at the compression flange 

and the corresponding critical moments to characterize the critical moment for a hypothetically 

perfectly straight beam and estimate the out-of-straightness. The mid-span displacement was 

adopted in a manner analogous to the technique advocated by Southwell (1931) to determine the 

buckling strength of columns based on the observed mid-span displacements. The present section 

(1) (2) (3) (4) (5) (6) (7) (8)

% %

1 0.2-19.5 0.0214 4.57E-05 91.1 2.14 9.2 18

2 19.7-39.0 0.0205 4.63E-05 95.2 2.26 5.1 13

3 39.2-58.5 0.0199 4.72E-05 97.9 2.37 2.4 8.8

4 58.7-78.0 0.0196 4.83E-05 99.5 2.47 0.8 5.0

5 78.2-100.3 0.0194 5.00E-05 100.3 2.57 0.0 1.2

for predicted moments* for predicted IOS associated 

with first mode**

Percentage difference

Regression 

coefficient

Range # Range

Predicted 

critical 

moment

Predicted IOS 

associated with 

the first mode

rA
rB

kNm kNm mm

   

 
1 1

1

cr crp EV

cr EV

M M

M

    

 
0 0

0

c cp EX

c EX

u u

u

 





 1cr p
M  0 c p

u 

1 kNm 1 kN
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aims at assessing whether the findings remain valid if the lateral displacement is measured at other 

locations within the beam, or if the angle of twist is measured (instead the top flange displacement).  

The beam defined in section 5.3 is re-considered, with the IOS pattern of Case 2 with 

   1 3 5, , / 3000 1,0,0L    . Four alternative displacements are investigated (1) additional mid-

span lateral displacement at the centroid  / 2u L  , (2) additional mid-span angle of twist  / 2L  , 

(3) additional centroid lateral displacement at quarter span  / 4u L . The additional mid-span 

lateral displacement at the compression flange  / 2cu L , which was adopted in Section 5.4, is 

provided for comparison. Given the Southwell plot takes the form k r k rY A X B  , similar 

Southwell plots were assumed to hold true for each of the considered displacements, i.e., 

 

 

 
 

 

 

 

 
 

 

 

 

 
 

 

 

 

 

0

1 1/2 /2

0

1 1/2 /2

0

1 1/4 /4

1 /2

/ 2 / 21
/ 2

/ 2 / 21
/ 2

/ 4 / 41
/ 4

/ 2 1
/ 2

c

cr cru L u L

cr crL L

cr cru L u L

c

c

cr u L

u L u L
u L

M M M

L L
L

M M M

u L u L
u L

M M M

u L
u L

M M

 

 


    
        
    

    
        
    

    
        
    

   
    
  

 

 

0

1 /2

/ 2

c

c

cr u L

u L

M

 
   
 

  (5.14)a-d 

Since the examined IOS pattern is solely based on the first buckling mode, the data in the range 

0.2-19.5 kNm is used for regression in all four cases. The corresponding modified Southwell plots 

are provided in Figure 5.2a-d and the predicted moments and the magnitude of the IOS associated 

with mode 1 are provided in Table 5.2. For all four displacements considered, the predicted critical 

moments were found to match those based on the eigenvalue analysis within four significant digits. 

Also, the predicted value for the initial imperfection at the considered location (Column 3) is found 

identical to the exact input initial imperfection (Column 4). The results indicate that the modified 

Southwell plot technique can be applied to any lateral displacement (or angle of twist), irrespective 

of its location, to reliably predict the critical moment and the initial imperfection associated with 

the first mode.  
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Table 5.2 Predicted critical moment and the magnitude of the IOS based on the considered displacement 

 

a based on 
 

 
2 2

1

3000
sin , 2

1 2y cr

L
z L z L

EI h M L






  

b based on  2 2

1

3000
sin , 2

2 cr y

L
z L z L

h M L EI






  

c based on  2 2

1

3000
sin , 4

1 2y cr

L
z L z L

EI h M L






  

d based on    3000 sin , 2L z L z L    

 

(a) 

 

(b) 

 

for predicted moments for predicted IOS 

associated with first mode

(1) (2) (3) (4) (5) (6)

100.3 1.82mm 1.82mm  
a 0 0

100.3 0.0058rad 0.0058rad  
b 0 0

100.3 1.20mm 1.20mm
  c 0 0

100.3 2.59mm 2.60mm
   d 0 0.4%

Displacement
Predicted 

moment

Predicted 

IOS

IOS exact 

value

Percentage difference

   

 
1 1

1

cr crp EV

cr EV

M M

M

    

 
p EX

EX

IOS IOS

IOS



 / 2u L

 / 2L

 / 4u L

 / 2cu L

 kNm  
EX

IOS
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(c) 

 

(d) 

Figure 5.2 Southwell plot based on four types of displacement (a) lateral displacement at the centroid at mid-

span  2u L , (b) angle of twist about the centroid at mid-span  / 2L , (c) lateral displacement at 

centroid at location  4u L  and (d) lateral displacement at the extreme fibre at mid-span  / 2cu L  

5.5     Prediction of the IOS magnitude  

Sections 5.3 and 5.4 have shown that the Southwell plot are able to predict for the IOS magnitude 

associated with the first mode. 

The 7.80m -span beam with a W250X45 cross-section defined in the previous under a mid-span 

point load is reconsidered is in this section. Four initial out-of-straightness scenarios are examined 

as a linear combination of modes1, 3, and 5.    1 3 5, , /1000 1,0,0L     for case 1, 

   1 3 5, , / 3000 1,1,1L     for case 2,    1 3 5, , /1000 1,1,1L     for case 3,  and 

   1 3 5, , / 3000, 3,1,1L     for case 4. The corresponding mode contributions are provided in 

Columns 3 to 5 of TableTable 5.3. The moment resistance fractions , /
I crM M   corresponding to 

the target displacements 360L , 270L , 180L  are provided in Columns 8 to 10,  where the 

moment  , I
M    is that predicted based on the FEM model developed in Chapter 3 and crM is 

predicted by an eigen value analysis. Columns 11 of Table 5.3 show the predictions of the critical 

moments for a hypothetical perfectly straight beam and various IOS measures based on three 

variations of the Southwell plot technique, based on the mid-span values of (1) additional lateral 

displacement at the compression flange, (2) additional lateral displacement at the centroid and (3) 

additional angle of twist.  
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In all three cases, the results show that the Southwell plot accurately predicts the IOS associated 

with the first buckling mode, as the percentage difference between the estimated IOS and the input 

IOS nearly vanishes.  

For cases where the IOS is based on a linear combination of multiple buckling modes (Cases 2-4), 

the Southwell plot technique is found to predict IOS magnitude associated to the first buckling 

mode (Column 15-17), rather than the total IOS amplitude. For example, in Cases 2-4, the 

predicted displacement at the compression flange mid-span are 7.78, 2.59, and 7.79mm, which 

respectively nearly match the first mode contributions of 7.79, 2.60, and 7.79mm. These values 

generally differ from the corresponding total IOS values of 23.4, 7.79 and 13.0 mm. 

Given the moment resistance fraction , /
I crM M  calculated from the present finite element 

solution for threshold displacement values / 360, 270cu L L L   and 180L  (Columns 8- 10),  

the predicted IOS / IL   are computed from Eq. 4.10:  1I crM M   . The resulting 

predictions are provided in Columns 18-20 for displacement thresholds 360, 270cu L L  and 

180L , respectively. The corresponding percentage differences in Columns 21-23 range from to 

0.4% respectively for case 1, suggesting that the equation  1I crM M    is able to estimate 

the first mode IOS contribution (in a manner similar to the Southwell plot since both methods 

neglect the contributions of higher modes). In all cases considered, the Southwell plot technique 

and Eq. (4.10) are unable to capture the contributions of the higher modes. 
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Table 5.3 Assessment of Southwell plot technique to estimate IOS 

 

1 , 3 and 5 amplitudes of first, third, and fifth modes respectively to the IOS 
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5.6   Effect of higher modes on the response 

Figure 5.3 (a) depicts the relation between the applied mid-span point load and the total lateral 

displacement at the compression flange  cu , as predicted by the present finite element solution, 

for the four cases considered in Table 5.3. The plots for all four cases are found to asymptotically 

approach from below the critical moment obtained predicted from the eigenvalue solution. While 

cases 1 and 3 share the same total IOS magnitude 0 /1000cu L  , a large difference is observed 

between the predicted moment ratio for case 1 is distinctly higher than that of case 3 given that the 

IOS contribution of the first mode in case 1 is three times higher than that of case 3. To the contrary, 

Cases 1, 2 and 4 tend to approach one another as the lateral displacement increases, although they 

happened to have different total IOS. This is due to the fact that the mode 1 contribution to the 

IOS is equal in all three cases. 

In Figure 5.3 (b), the relation between the applied mid-span point load and the additional peak 

lateral displacement at the compression flange cu  is provided for the all four cases. All four curves 

are also found to asymptotically approach the critical load predicted by an eigenvalue solution 

from below. Unlike Figure 5.3(a), the plots for cases 1, 2 and 4 are observed to nearly coincide 

since they share a common IOS first mode contribution 1 1000 7.79L mm   . In contrast, Case 3 

has a lower IOS first mode contribution 1 3000 2.59L mm    and thus approaches the eigen 

value solution faster than the other thee plots. The results suggest that effect of the higher mode 

contributions to IOS on the moments predicted reduces as the additional lateral displacements 

decrease. 

 

(a) 

 

(b) 

Figure 5.3 Relation between (a) the peak lateral displacement and (b) the additional peak lateral 

displacement and the applied load for the examined four cases 



109 

 

5.7  Predicting the number of contributing modes 

The previous sections suggest that the Southwell plot technique can predict only the magnitude of 

the first buckling mode to the IOS. The present section proposes a technique to estimate the 

contributions of all modes by assuming all modes contribute equally to the IOS.  In Chapter 3, we 

recall that the additional displacement at the compression flange cu was given by summing the 

amplified IOS for each mode, resulting in the equation 

 
1

sinc m

m crm

M m z
u z

M M L








 
  

  
    (5.15) 

The exact IOS is assumed to be based on a linear combination of the first, third and fifth buckling. 

In the absence of measurements suggesting otherwise, the contributions of three modes are 

assumed equal, i.e.,   

1 3 5 2 4, 0             (5.16) 

From Eq. (5.16)  by substituting into Eq. (5.15) and adopting 2z L  , and solving for  one 

obtains 

 
1,3,5

c crm

m

u M M M


     (5.17) 

Equation (5.17) is restricted for uniform moments. To extend its applicability to other loading 

cases, the elastic critical moments ( 1,3,5,..)crmM m   are first obtained from the Eigen solutions. 

For a given moment M  , the corresponding lateral displacement cu is then obtained from the FEM 

developed in chapter 3. The terms on the right-hand side of Eq. (5.17) are known, which allows 

the characterization of the contributions 1 3 5       of the three modes.  

Eq. (5.17) is applied to the IOS pattern corresponding to Case 2 defined in section 5.5. The 

percentage differences between the IOS predicted by Eq. (5.17) and the input IOS are provided in 

Figure 5.4. The percentage difference between the predicted and input IOS is found to decreases 

as the applied moments increase in a nearly linear manner. For example, the percentage difference 

between the predicted and input IOS is 16.5% at a moment of 40 kNM and reduces to 6.10% at a 

moment of 80kNm. 
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The previous example is based on the assumptions that (1) the number of the buckling modes n  

contributing to the IOS is known, and (2) the buckling modes contribute equally to the IOS. For a 

real beam, if the second assumption retained, it would be of interest to develop a technique to 

estimate the number of contributing modes n  to the IOS.  Equation (5.15) is normalized by 

dividing both sides by the maximum lateral displacement  2cu L , yielding 

 

  1

1

sin , 1,3,5...
2

n
c crm

n
mc n

m crm

M

u z M M m z
m n

Mu L L

M M







    
    

  





  (5.18) 

The normalized lateral displacement distribution    2c c n
u z u L     based on 1,3,5,...n   modes 

are compared to the lateral displacements at a relatively low value of the applied moment M  (in 

comparison to the critical moment). Here, the lateral displacements are obtained from the FEM 

model, while for a real beam, the lateral displacement distribution would be experimentally 

determined. Figure 5.5 provides a comparison between the normalized lateral displacements for 

an applied moment M    39.2 kNm as predicted by Eq. (5.18) based on 1,3,5n  . Overlaid on the 

same plot is the FEA predicted additional lateral displacement based on the input IOS. Given that 

in the present example, only modes 1, 3, and 5 were postulated to contribute to the IOS, the 

predictions of Eq. (5.18) provide a very close approximation to the FEA predicted additional 

lateral displacement when  5n  , correctly predicting that, in this case,  n   should be taken as five. 



111 

 

 

Figure 5.4 Relation between the percentage difference between the predicted IOS and the input IOS and the 

applied moment for case 2 

 

Figure 5.5 Normalized lateral displacement versus normalized coordinate of case 2 under 39.2kNm and the 

predicted shapes by   

5.8   Summary and Conclusions 

In this chapter, the theoretical background for the Southwell plot technique was reviewed and 

extended to the elastic lateral torsional buckling problem. The modified Southwell plot technique 

was extended for cases of non-uniform moments. The moment lateral displacement plots were 

developed for various IOS scenarios based on the FEM developed in Chapter 3. The effect of the 

higher modes on the accuracy of the critical moment and IOS predictions was investigated through 
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comparison of Southwell plot predictions to the critical moments predictions based on eigenvalue 

solution and the input in IOS. A method to estimate the contribution of higher modes was provided 

when the contributions of all modes are assumed equal. The main findings of the study are 

summarized as follows: 

1. The modified Southwell plot technique can predict the elastic critical moment for a perfectly 

straight beam as well as the magnitude of the first mode contribution to the IOS. 

2. When using the extended Southwell plot technique, using the data corresponding to larger 

loads and displacement was shown to lead to more accurate critical moment predictions. 

3. The technique is found applicable and valid for any lateral displacement (or angle of twist) 

within the beam. Thus, the use of any displacement was found to reliably predict the critical 

moments and contribution of the first buckling mode to the IOS.  

4. A method was devised to estimate the contributions of all modes in situations where the analyst 

believes that n  modes contribute equally to the IOS.  
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6. Summary and Conclusions 

6.1   Summary  

1. A variational principle was developed in Chapter 3 for the lateral torsional analysis of beams 

with initial out-of-straightness (IOS) and initial angle of twist (IAT) subjected to strong axis 

bending. The variational principle was used to obtain the governing equations and boundary 

conditions by evoking the stationary conditions. The governing equations were solved for a 

simply supported beam under uniform moments to obtain a closed form solution for the load-

displacement relationship. The variational principle was then used to develop a finite element 

formulation for crooked beams under general transverse loads and boundary conditions.  

2. The validity of the finite element model was assessed through comparisons against the 

ABAQUS models for the thin walled beam element B31OS, the shell S4R and closed form 

solutions where applicable, and the present finite element model was found to reliably predict 

the load-displacement relationship for beams with IOS. 

3. The finite element model was used to investigate the effect of the IOS/IAT patterns and the 

contribution of the higher modes on the load-displacement relationships of the initially crooked 

beams. 

4. Two types of design criteria were proposed based on the threshold displacement and threshold 

stress values and applied in conjunction with load-displacement curves obtained from the 

present FEM to propose elastic lateral torsional buckling moments that account for initial 

imperfections. 

5. Chapter 4 developed a closed form solution to determine the moment resistance fraction 

, I crM M    based on the displacement based criterion. The expression is limited to simply 

supported beams under uniform moments. Numerical results were used to modify the 

expression and extend it to accommodate other loading cases. 

6. Another closed form solution was developed in chapter 4 to characterize the moment resistance 

fraction ,I crM M    based on the stress-based criterion. The parameters influencing the 

moment resistance were identified and systematically investigated on members with common 

cross-sections. 

7. The moment ratios based on the displacement-based criterion were used to propose a modified 

design curve design for the elastic critical moment resistance that could incorporate the IOS 
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effect into CAN/CSA S16-14 provisions. The moment ratios corresponding to the stress-based 

criterion were also used to propose modified design curves by adopting a format similar to the 

one used for columns in CAN/CSA S16-14. 

8. A modified form of the Southwell plot technique was extended for the lateral torsional 

buckling of simply supported beams under uniform moments, and then the technique was 

numerically extended for other loading cases in Chapter 5. The technique was shown to be 

valid for any load versus lateral displacement or versus angle of twist history within the beam. 

9. Using the load-displacement relationship obtained from the present FEM, in conjunction with 

the modified Southwell plot technique, the effect of the moment range on the accuracy of the 

predicted critical moments was studied. 

10. The Southwell plot technique was shown to be able to estimate only the IOS associated to the 

first buckling mode. A method was proposed to predict the higher mode contributions to IOS, 

under the assumption that the first n modes contribute equally to the IOS. 

6.2   Conclusions 

The main conclusions of the work are: 

1. When initial imperfections are expresses as a linear combination of the buckling modes, the 

most detrimental IOS contribution was shown to be associated with the first buckling mode. 

The relative contributions of higher modes to the lateral displacement (or angle of twist) tend 

to decrease as the applied loads approach the elastic critical loads. 

2. For a specified initial out-of-straightness at the compression flange 0 cu   , among the initial 

out-of-straightness scenarios attempted for the tension flange within the range

0 0 0c t cu u u      , the most adverse IOS pattern was found to correspond to the case 

0 0t cu u   , which maximizes the initial angle of twist. In particular, for a specified initial out-

of-straightness at the compression flange 0 cu  , the assumption that the IOS follows the first 

buckling mode is found to be less detrimental.  

3. Based the displacement based design criterion, the LTB resistance of a beam is found solely 

to depend on the magnitude of the initial imperfection and the threshold displacement specified 

by the designer. 
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4. In contrast, the LTB resistance ,I crM M    based on the stress based design criterion was 

found to depend upon the IOS coefficient, yield stress fraction, yield-to-critical moment ratio, 

span-to-section-depth ratio, flange-width-to-depth ratio and depth-to-flange-thickness ratio. 

5. For an initially crooked beam under increasing moment, the normal stress ratio / yF induced 

by minor axis bending and warping were found to increase at a higher rate than the normal 

stress ratio due to major axis bending as the applied loads are increased. 

6. The equation for predicting the moment resistance ratio , /
I crM M   based on the displacement 

criterion, while developed for the case of uniform moments, was found to provide reliable 

approximate results for non-uniform moments when appropriate moment gradient factors are 

adopted to modify the critical moment crM  . 

7. A modified form of the Southwell plot technique was found to reliably predict the elastic 

critical moment for a perfectly straight beam and the magnitude of the first buckling mode 

contribution to the IOS, given the load-displacement data from the lateral torsional buckling 

experiments (or analyses) on an initially crooked beam. 

8. The accuracy of the modified Southwell plot technique is found to increase with the applied 

load magnitudes. The predicted critical moment is found to be more accurate when using data 

in the large moment range, as long as the specimen does not undergo yielding. 

9. The modified Southwell technique is found to be valid for any displacement (or angle of twist) 

within the beam and is able to capture the contribution of the first buckling mode.  

6.3   Recommendations for Future Research 

Possible extensions of the present study include 

1. While the finite element solution developed in Chapter 3 is applicable for any loading and 

boundary conditions, subsequent sections have focused solely on simply supported beams under 

three loading patterns. It is recommended to use the model developed to extend the study to 

other loading and boundary conditions. 

2. The present developments were limited to doubly symmetric cross-sections. It is recommended 

to extend the model to mono-symmetric cross-sections. 

3. The present model is based on the Vlasov theory which neglects the effect of cross-section 

distortion, shear deformation, and pre-buckling deformations. It is of interest to expand the work 
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to incorporate such effects by adopting thin-walled beam theories with more enriched 

kinematics. 

4. The present work was primarily aimed at characterizing the effect of initial out of straightness 

on the elastic lateral torsional buckling resistance. It is of practical interest to extend the study 

within the inelastic range by incorporating the effects of plasticity, and the contribution of the 

residual stresses into the inelastic lateral torsional buckling range. 

5. The present work was based on postulating initial out-of-straightness limits in line with 

manufacturing tolerances. While the above approach is conservative, it is of practical interest 

to supplement the information by measuring the initial out-of-straightness in real steel beams 

to possibly determine more representative initial out-of-straightness values. For such beams, it 

would be of interest to conduct full-scale testing to experimentally determine the load-lateral 

displacement relations and assess the applicability of the modified Southwell plot technique 

proposed in the present study. 
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