
HAL Id: tel-01661569
https://tel.archives-ouvertes.fr/tel-01661569

Submitted on 12 Dec 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

software/FPGA co-design for Edge-computing :
Promoting object-oriented design

Xuan Sang Le

To cite this version:
Xuan Sang Le. software/FPGA co-design for Edge-computing : Promoting object-oriented design.
Other [cs.OH]. Université de Bretagne occidentale - Brest, 2017. English. <NNT : 2017BRES0041>.
<tel-01661569>

https://tel.archives-ouvertes.fr/tel-01661569
https://hal.archives-ouvertes.fr

THÈSE / UNIVERSITÉ DE BRETAGNE OCCIDENTALE
sous le sceau de l’Université Bretagne Loire

pour obtenir le titre de
DOCTEUR DE L’UNIVERSITÉ DE BRETAGNE OCCIDENTALE

Mention : Informatique

École Doctoral Santé, Information, Communication,
Mathématique, Matière

Software/FPGA Co‡design for
Edge‡computing: Promoting

Object‡oriented Design

présentée par

Xuan Sang LE
préparée à
École Mines‡Télécom† IMT Lille Douai et
Lab‡STICC UMR CNRS 6285†
École Nationale Supérieure de Techniques Avancées
de Bretagne

Thèse soutenue le 31 Mai 2017
devant le jury composé de:

Olivier ROMAIN
Professeur† Université de Cergy‡Pontoise/ Rapporteur

Anne ETIEN
Maître de conférences HDR† Polytech Lille/ Rapporteur

Thomas LEDOUX
Maître de conférences† IMT Atlantique/ Examinateur

Ahcene BOUNCEUR
Maître de conférencesHDR†Université de BretagneOccidentale/

Examinateur

Loïc LAGADEC
Professeur† ENSTA Bretagne / Directeur

Noury BOURAQADI
Professeur†Mines‡Télécom† IMT Lille Douai/ Co‡directeur

©2017 – Xuan Sang LE
all rights reserved•

Co‡advisors:
Loic Lagadec &
Noury Bouraqadi

Xuan Sang LE

Abstract

Cloud computing is often the most referenced computational model for Internet of Things• This model
adopts a centralized architecture where all sensor data is stored and processed in a sole location•
Despite of many advantages† this architecture suffers from a low scalability while the available data
on the network is continuously increasing• It is worth noting that† currently† more than 50% internet
connections are between things• This can lead to the reliability problem in realtime and latency‡sensitive
applications• Edge‡computing† which is based on a decentralized architecture† is known as a solution
for this emerging problem by: (1“ reinforcing the equipment at the edge (things“ of the network and (2“
pushing the data processing to the edge•

Edge‡centric computing requires sensors nodeswithmore software capability and processing power
while† like any embedded systems† being constrained by energy consumption• Hybrid hardware sys‡
tems consisting of FPGA and processor offer a good trade‡off for this requirement• FPGAs are known
to enable parallel and fast computation within a low energy budget• The coupled processor provides
a ʙexible software environment for edge‡centric nodes•

Applications design for such hybrid network/software/hardware (SW/HW“ system always re‡
mains a challenged task• It covers a large domain of system level design from high level software
to low‡level hardware (FPGA“• This results in a complex system design ʙow and involves the use of
tools from different engineering domains• A common solution is to propose a heterogeneous design
environment which combining/integrating these tools together• However† the heterogeneous nature of
this approach can pose the reliability problem when it comes to data exchanges between tools•

Our motivation is to propose a homogeneous design methodology and environment for such sys‡
tem• We study the application of a modern design methodology† in particular object‡oriented design
(OOD“† to the ʘeld of embedded systems• Our choice of OOD is motivated by the proven productivity
of this methodology for the development of software systems• In the context of this thesis† we aim at
using OOD to develop a homogeneous design environment for edge‡centric systems• Our approach
addresses three design concerns: (1“ hardware design† where object‡oriented principles and design
patterns are used to improve the reusability† adaptability† and extensibility of the hardware system• (2“
hardware / software co‡design† for whichwe propose to useOOD to abstract the SW/HW integration
and the communication that encourages the system modularity and ʙexibility• (Š“ middleware design
for Edge Computing• We rely on a centralized development environment for distributed applications†
while the middleware facilitates the integration of the peripheral nodes in the network† and allows auto‡
matic remote reconʘguration• Ultimately† our solution offers software ʙexibility for the implementation
of complex distributed algorithms† complemented by the full exploitation of FPGAs performance• These
are placed in the nodes† as close as possible to the acquisition of the data by the sensors† in order to
deploy a ʘrst effective intensive treatment•

1

Co‡directeurs:
Loic Lagadec &
Noury Bouraqadi

Xuan Sang LE

Résumé

L’informatique en nuage (cloud computing“ est souvent le modèle de calcul le plus référencé pour
l’internet des objets (Internet of Things“• Ce modèle adopte une architecture où toutes les données de
capteur sont stockées et traitées de façon centralisée• Malgré de nombreux avantages† cette archi‡
tecture souffre d’une faible évolutivité alors même que les données disponibles sur le réseau sont en
constante augmentation• Il est à noter que† déjà actuellement† plus de 50 % des connexions sur Inter‡
net sont inter objets• Cela peut engendrer un problème de ʘabilité dans les applications temps réel•
Le calcul en périphérie (Edge computing“ qui est basé sur une architecture décentralisée† est connue
comme une solution pour ce problème émergent en: (1“ renforçant l’équipement au bord du réseau et
(2“ poussant le traitement des données vers le bord•

Le calcul en périphérie nécessite des nœuds de capteurs dotés d’une plus grande capacité logicielle
et d’une plus grande puissance de traitement† bien que contraints en consommation d’énergie• Les
systèmes matériels hybrides constitués de FPGAs et de processeurs offrent un bon compromis pour
cette exigence• Les FPGAs sont connus pour permettre des calculs exhibant un parallélisme spatial†
aussi que pour leur rapidité† tout en respectant un budget énergétique limité• Coupler un processeur au
FPGA pour former un noeud garantit de disposer d’un environnement logiciel ʙexible pour ce noeud•

La conception d’applications pour ce type de systèmes hybrides (réseau/logiciel/matériel“ reste
toujours une tâche difʘcile• Elle couvre un vaste domaine d’expertise allant du logiciel de haut niveau
aumatériel de bas niveau (FPGA“• Il en résulte un ʙux de conception de système complexe† qui implique
l’utilisation d’outils issus de différents domaines d’ingénierie• Une solution commune est de proposer
un environnement de conception hétérogène qui combine/intègre l’ensemble de ces outils• Cepen‡
dant† l’hétérogénéité intrinsèque de cette approche peut compromettre la ʘabilité du système lors des
échanges de données entre les outils•

L’objectif de ce travail est de proposer une méthodologie et un environnement de conception ho‡
mogène pour un tel système• Cela repose sur l’application d’une méthodologie de conception mod‡
erne† en particulier la conception orientée objet (OOD“† au domaine des systèmes embarqués• Notre
choix de OOD est motivé par la productivité avérée de cette méthodologie pour le développement
des systèmes logiciels• Dans le cadre de cette thèse† nous visons à utiliser OOD pour développer un
environnement de conception homogène pour les systèmes de type Edge Computing• Notre approche
aborde trois problèmes de conception: (1“ la conception matérielle† où les principes orientés objet et
les patrons de conception sont utilisés pour améliorer la réutilisation† l’adaptabilité et l’extensibilité du
système matériel• (2“ la co‡conception matériel/logiciel† pour laquelle nous proposons une utilisation
de OOD aʘn d’abstraire l’intégration et la communication entre matériel et logiciel† ce qui encourage
la modularité et la ʙexibilité du système• (Š“ la conception d’un intergiciel pour l’Edge Computing•
Ainsi il est possible de reposer sur un environnement de développement centralisé des applications
distribuées† tandis ce que l’intergiciel facilite l’intégration des noeuds périphériques dans le réseau†
et en permet la reconʘguration automatique à distance• Au ʘnal† notre solution offre une ʙexibilité
logicielle pour la mise en oeuvre d’algorithmes distribués complexes† et permet la pleine exploitation
des performances des FPGAs• Ceux ci sont placés dans les noeuds† au plus près de l’acquisition des
données par les capteurs† pour déployer un premier traitement intensif efʘcace•

1

To my daughter† Uyen Nhi

i

ii

Contents

1 Introduction 1
1•1 Context: Internet of Thing† Edge computing and FPGA • • • • • • • • • • • • • • • • 1

1•1•1 Internet of Things • 1
1•1•2 Edge Computing for Cyber‡physical Systems • • • • • • • • • • • • • • • • Š
1•1•Š Using FPGAs for Edge Computing in IoT: Beneʘts and Challenges • • • • • š

1•2 Research Objectives and Contributions • 6
1•2•1 Research Objectives • 6
1•2•2 Contributions • 7

1•Š Outline of the Thesis • 8

2 State of the Art 9
2•1 Edge Computing • 10

2•1•1 Dedicated SN for Edge Computing • 10
2•1•2 Using FPGAs for Edge Computing in IoT • • • • • • • • • • • • • • • • • • • 11
2•1•Š Discussion • 11

2•2 Hardware Design Background • 12
2•2•1 Overview • 12
2•2•2 Hardware Design Methodologies • 12
2•2•Š Discussion • 1Š

2•Š Meta‡modeling for System‡level Hardware Design Using MDE • • • • • • • • • • • • 1š
2•Š•1 Model‡Driven Engineering • 1š
2•Š•2 Component‡based approaches • 16
2•Š•Š Platform‡based approaches • 18
2•Š•š UML and Object Oriented based Approaches • • • • • • • • • • • • • • • 20
2•Š•5 Summary • 22

2•š Software/Hardware Co‡design • 2š
2•š•1 Early Binding Approaches • 2š
2•š•2 Late Binding Approach • 26
2•š•Š Discussion • 27

2•5 Positioning our work • 27

Š Promoting Object Oriented Principles on HW Design Using the OoRC Meta‡model 29
Š•1 Introduction • Š0

Š•1•1 OoRC in a Nutshell • Š1
Š•2 Fine‡grained Modeling: FPGA Circuit at RTL Level • • • • • • • • • • • • • • • • • • Š2

Š•2•1 Circuit Signals as Data Objects • Š2
Š•2•2 Circuit Structures Modeling • ŠŠ
Š•2•Š Discussion • Šš

Š•Š A Simpliʘed DSL for HW Design • Š5
Š•Š•1 Overview of the DSL • Š5
Š•Š•2 OoRCScript Syntax • Š5

Š•š Coarse‡grained Modeling: Hardware System Level Design Using Object Oriented
Technique • Š7

iii

Š•š•1 Basic OO Concepts for HW Design • Š8
Š•š•2 Basic OO Design Operations • š0
Š•š•Š OOD Pattern on Hardware Design • š0

Š•5 Circuit Model Transformation • š7
Š•5•1 Overview of the Transformation Process • • • • • • • • • • • • • • • • • • • š7
Š•5•2 Exporting Circuit Models • š8
Š•5•Š Legacy VHDL Reuse via a Dedicated VHDL Parser • • • • • • • • • • • • • • š8
Š•5•š Automatic Circuits Integration and Conʘguration • • • • • • • • • • • • • • 50
Š•5•5 Discussion • 51

Š•6 ȋIn‡vivoȋ Circuit Models Simulation • 52
Š•6•1 Execution Model: time‡driven vs• event‡driven • • • • • • • • • • • • • • • 52
Š•6•2 Event‡driven Simulation of Circuit Models • • • • • • • • • • • • • • • • • • 5Š

Š•7 Interfacing the OoRC meta‡model with External Tools • • • • • • • • • • • • • • • • • 5š
Š•7•1 ȋEx‡vivoȋ Simulation Using an External Simulator • • • • • • • • • • • • • • 5š
Š•7•2 Circuit model synthesis and deployment • • • • • • • • • • • • • • • • • • • 55

Š•8 Summary • 57

š OoRCBridge: Seamless Integration of FPGAs with High‡Level Software 59
š•1 Overview • 60
š•2 Hardware Architecture • 62

š•2•1 Interface Template • 62
š•2•2 Addressing Scheme • 6š
š•2•Š IPs Integration Supporting Memory Mapping • • • • • • • • • • • • • • • • 6š

š•Š Middleware for SW/HW Communication • 65
š•Š•1 System Layer • 65
š•Š•2 API Layer • 66
š•Š•Š Software Development Using the Middleware • • • • • • • • • • • • • • • • 66
š•Š•š Impact of the Middleware on the Performance of the Link • • • • • • • • • • 67

š•š Hardware Controllability and Debugging • 69
š•5 Case Study: Using OoRCBridge Toolset and Middleware for Robotic Development • 71

š•5•1 Scenario • 71
š•5•2 Debugging Using Hardware BreakPoint • • • • • • • • • • • • • • • • • • • 7Š
š•5•Š FPGA vs Processor • 7š
š•5•š Communication Through the ROS Middleware • • • • • • • • • • • • • • • 75

š•6 Summary • 76

5 CaRDIN: A Dedicated Environment for Edge Computing on Reconʘgurable Sensor
Networks 79
5•1 CarDIN: overview • 80
5•2 Architecture of a Node • 82
5•Š Edge‡centric Nodes Development with CaRDIN’s middleware • • • • • • • • • • • • 8Š

5•Š•1 CaRDIN’s Distributed Object API • 8Š
5•Š•2 Automatic Remote SW/HW Reconʘguration of Nodes • • • • • • • • • • • 85
5•Š•Š Discussion • 87

5•š Case Study 1: Camera Sensor Node Performing Image Processing • • • • • • • • • 88
5•š•1 Scenario • 88
5•š•2 Benchmarkings • 90

5•5 Case study 2: distributed algorithm development and deployment with CARDIN • • • 91
5•6 Summary • 95

iv

6 Conclusion and Perspectives 97
6•1 Contribution Summary • 97
6•2 Current and Future Works • 99

References 111

v

vi

Acknowledgments

Firstly† I would like to express my sincere gratitude to my advisors Prof• Noury Bouraqadi and Prof•
Loic Lagadec for the continuous support of my Ph•D study and related research† for their patience† mo‡
tivation† and immense knowledge• Their guidance helped me in all the time of research and writing of
this thesis• I could not have imagined having better advisors and mentors for my Ph•D study•

My sincere thanks also goes to my supervisors Dr• Luc Fabresse† Dr• Jean‡Christophe Le Lann† and
Dr• Jannik Laval† for their kindness† their availability and their advices on techincal and scientiʘc as‡
pects during this thesis• Without their precious support it would not be possible to conduct this research•

Besides my advisors and supervisors† I would like to thank the rest of my thesis committee: Prof•
Olivier Romain† Dr• Anne Etien† Dr• Thomas Ledoux and Dr• Ahcene Bounceur† for their insightful
comments and encouragement† but also for the hard question which incented me to widen my research
from various perspectives•

I thank my fellow labmates at IMT Lille Douai and ENSTA Bretagne with whom i have pleasure to
work and for all the fun we have had in the last three years•

Last but not the least† I would like to thank my family: my wife† Phuong TRAN and to my daughter†
Uyen Nhi† for supporting me spiritually throughout writing this thesis and my life in general•

Xuan Sang LE

vii

viii

List of Figures

2•1 Hardware design productivity gap: number of transistors available on a chip vs. the
ability for the transistors to be used efʘciently in a design [int11† Sed06] • • • • • • • 12

2•2 Four layers meta‡modelling framework • 15
2•Š Model transformations allow to remodel an input model by executing transformation

rules using a transformation engine• 15
2•š Classiʘcation of model transformations• 17
2•5 Early binding: Both SW/HW parts are designed simultaneously and separately• An

automatic mapping process is needed to interfacing both parts • • • • • • • • • • • • 25
2•6 Late binding: Both SW/HWparts are speciʘed by a unique model (language‡based

or MDE‡based“• The system handles automatically the partition and the inter‡task for
interfacing at the high‡level‡synthesis phase• 26

Š•1 Simpliʘed class diagram models signals and their associated data types• OoRC sup‡
ports only synthesizable data type • Š2

Š•2 Classes deʘne meta‡descriptions of hardware structures• Theses meta‡descriptions
are based on synthesizable VHDL structures • Šš

Š•Š Description of the FIR ʘlter in listing Š•1 using OoRCScript • • • • • • • • • • • • • • Š6
Š•š Basic principle of OoRCScript syntax: ȋsending a message to a description will gen‡

erate a new descriptionȋ • Š6
Š•5 Using object oriented technique on HW system‡level design • • • • • • • • • • • • • Š8
Š•6 Base structure of decorator pattern applied on hardware design • • • • • • • • • • • š1
Š•7 Example: attach more responsibility to a pixel ʘlter using decorator pattern • • • • • šŠ
Š•8 Base structure of adapter pattern applied on hardware design • • • • • • • • • • • • šŠ
Š•9 Example: Interface conversion using adapter pattern • • • • • • • • • • • • • • • • • šš
Š•10 Base structure of composite pattern applied on hardware design • • • • • • • • • • • š5
Š•11 Base structure of bridge pattern applied on hardware design • • • • • • • • • • • • • š6
Š•12 Example: Interface & architectural implementation decoupling using bridge • • • • • š6
Š•1Š T‡diagrams represent basic model transformations supported in OoRC • • • • • • • • š7
Š•1š By using a visitor pattern† a circuit model can be independently exported to other

model (VHDL/Verilog† etc•“ • š8
Š•15 VHDL designs are parsed into parser trees before being converted to circuit models

using OoRCAdapter • š9
Š•16 HDLDynamicCompositeDesign allows semi-automatic composition of models and pro‡

vides a virtual process method for manual models linking • • • • • • • • • • • • • • • 51
Š•17 A predeʘned Master‡slave bus interface: IP designers just need to subclass Slave or

Master to deʘne their application logic • 51
Š•18 Event‡driven simulation of discrete system using an observer pattern• Assignment of

a value to a signal will cause all related processes become active• • • • • • • • • • • 5Š
Š•19 Class digram design and the corresponding GUI implementation of our model syn‡

thesis toolset • 56

š•1 Memory mapping is used to provide a convenient access to FPGA from software• The
solution must be as generic as possible to enable the reuse of the system• • • • • • • 61

ix

š•2 In OoRCBridge† OOD is used to design interface template• Designs are reused †
reʘned and enriched to provide a generic† automatic andmodularized IPs integration
mechanism• 6Š

š•Š Addressing scheme generated automatically by the bus controller• • • • • • • • • • • 6š
š•š OoRCBridge middleware provides generic APIs for hardware communication• The

OoRC toolset generates automatically application‡speciʘc accessing classes using
these APIs • 65

š•5 HWMappingScheme abstracts and encapsulates hardware circuits as regular soft‡
ware objects• It can be considered as a gateway for hardware accessing from software 67

š•6 Performance measurement for continuously read/write test • • • • • • • • • • • • • • 68
š•7 DebuggableSlave allows to inject automatically a debug sub‡circuit to the slave and

turns it to a Breakpoint controller • 69
š•8 Original design of the detection circuit • 72
š•9 Mixture use of imported VHDL designs and custom design using OoRCSCript• The

pixel counter simply count all received pixels • 7Š
š•10 Optimized design of the detection circuit with š HSV ʘlters in parallel • • • • • • • • 7š
š•11 On the left† the power consumption between the software and hardware implemen‡

tation of the object detection• On the right† the processing time per frame of each
version • 75

š•12 Publishing frequency of the topic /spybot/objectpos in regarding different window
sizes of messages • 76

5•1 Workʙow of CaRDIN• Developers need to: (1“ import the HW IP to system for soft‡
ware/bitstream generation; (2“ use the generated classes to develop their application 81

5•2 Simpliʘed hardware/software architecture of a edge‡centric node: the system is
made as generic as possible by maximizing the reusability of software/hardware
components • 8Š

5•Š (a“ The entire application is developed on base station but is executed in distributed
manner; (b“ Communication between distributed objects residing in the caller node
and the servant node • 8Š

5•š The automatic deployment and remote call of the example in listing 5•1 • • • • • • • 85
5•5 If the SW/HW is not deployed or outdated† the initialization of a distributed object

will automatically trigger the reconʘguration of the node • • • • • • • • • • • • • • • 86
5•6 Object detection implementation on the FPGA• 88
5•7 Network load of the node on different operations: (5•7a“ the software/bitstream

reconʘguration process ([t, t + ʁ]“; (5•7b“ the frequently fetching test ([t, t + ʀ]“ and
lastly (5•7c“ the streaming test ([t, t + ʀ]“• t is the time when an operation begins• • • 92

5•8 Š camera sensor nodes tracking a moving ball• Question: Which camera actually
has the ball? • 9Š

5•9 The frame buffer unit is replaced by the pixel counter unit to count the ʘltered pixels• 9Š
5•10 Deployment and execution of the distributed application via CaRDIN middleware• • 95

x

Listings

Š•1 VHDL implementation of a simplest low pass FIR ʘlter yn = xn + xn− • • • • • • • • • Šš
Š•2 Function/procedure deʘnition • Š8
Š•Š Design reuse • Š8
Š•š An optimized re‡implementation of SimpleFIR using inheritance and override features • Š9
Š•5 Abstract architecture • š0
Š•6 OoRCScript abstract method • š0
Š•7 Example of adding a counter to an existing pixel ʘlter • • • • • • • • • • • • • • • • • š1
Š•8 Implementation of interface converting using adapter pattern • • • • • • • • • • • • • šŠ
Š•9 Implementation: decouple data interface (UART† I2C“ • • • • • • • • • • • • • • • • • š5
Š•10 Create a new FIR ʘlter model and resize all data signals to 16 bits • • • • • • • • • • • š8
Š•11 Functional simulation implementation • 5š
Š•12 Behavioural simulation implementation • 5š
š•1 Example of using hardware breakpoint in software• The HWCounterMapping is the

accessing class of a simple hardware counter• This counter has an input and an output

signal† and counts from 0 to the value of input (100“• The breakpoint is set for output

at value 50 (ʘrst operand“• Note that the slave uses the address of ouput to select the
second operand for the comparator • 70

š•2 A mixture of ROS API and OoRCBridge middleware API• The code publishes object
positions through the ROS middleware • 75

5•1 ExampleApp –a subclass of SSSynchronisableObject– is a distributed class with one
annotated method (#factorialOf:“• On the base station† at the ʘrst object instantiation
of the class (line 15“† the class is automatically deployed on remote node• Line 16
requires the node to calculate the factorial of 10† then prints it on the base station • • • 8š

5•2 Example of a distributed class• The methods with a pragma are executed remotely•
Others are locally executed methods • 88

5•Š Token Ring Implementation for camera surveillance examples using CaRDIN • • • • • 9š

xi

xii

Glossary

API Application Programming Interface• iv† x† xi† 2† 8† 1š† 20† Š0† Š1† Š5† š8† 59† 62† 65–71† 75†
76† 79† 81–85† 89† 98

AST Abstract Syntax Tree• 99

AXI Advanced eXtensible Interface• 62

BLIF Berkeley Logic Interchange Format• š9

CAD Computer‡aided design• Š1† Š2† š8† 57† 98† 99

CLB Conʘgurable Logic Block(s“• š

CORBA Common Object Request Broker Architecture• 87

CPS Cyber‡physical Systems• Š

DOA Distributed Objects API• 8Š–85† 87† 9š† 95† 98† 99

DSL Domain Speciʘc Language• iii† 29–Š1† Š5† Š7† Š8† š9† 57† 97

EC Edge Computing• Š† š† 10† 11

EDA Electronic Design Automation• 12† 17† 18

FIR Finite impulse response• ix† xi† Š5† Š6† š8

FPGA Field Programmable Gate Array• iii† ix† 1† š† 5† 7† 10† 11† 1Š† 15† 21† 25–29† Š1† Š2† Š5† 52†
55† 60–62† 6š–75† 80–82† 85† 87–91† 97–100

FSM Finite State Machine• 18† 20† 26† 27

FSMD Finite State Machine with Datapath• 17

GPIO General Purpose Input/Output• 72

GUI Graphic User Interface• ix† 18† Š1† 55† 56† 99

HDL Hardware Description Language• 12–1š† 17† 18† 20–22† 2š† 25† 27† 28† Š0† Š1† Š5† 51† 52

HLS High Level Synthesis• 1Š† 2š† 26† Š0† 60

HTTP Hypertext Transfer Protocol• 82† 87† 90

HW Hardware• iii† iv† ix† x† 5–8† 12† 1Š† 16† 19† 21–Š1† Šš† Š5† Š8† Š9† š5† 51† 59† 60† 65†
79–82† 85† 86† 97–99

I2C Inter‡Integrated Circuit• xi† š5† š6

xiii

IEEE Institute of Electrical and Electronics Engineers• 17† Š2† š8

IoT Internet of Things• iii† 1–š† 9–11† 27† 28† 97† 100

IP (1“ ȋInternet Protocolȋ in the context of networking† in case of hardware design† the term means
(2“ ȋIntellectual Propertyȋ• ix† x† 8† 10–1Š† 17–22† 2š† 25† 27† Š0† Š1† 50–52† 57† 6Š–65†
79–82† 95† 97† 98

JSON Javascript Object Notation• 82† 8š

MARTE Modelling and Analysis of Real‡time and Embedded Systems• 20† 21† 26

MDE Model Driven Engineering• ix† 8† 1Š† 1š† 16† 18† 20–2š† 26† 27† Š0

MOF Meta Object Facility• 15

OMG Object Management Group• 15

OO Object Oriented• iv† 20–22† 29† Š8† š0

OOD ȋObject Oriented Designȋ• iv† x† 6–8† 18† 20–22† 2š† 25† 27–Š1† Šš† Š5† š0† 6Š† 6š†
97–99

OOL Object Oriented Language• 20

OoRC Objectiʘcation of Reconʘgurable Circuits• iii† 8† 29–Š5† š7–5Š† 55† 57† 61† 81

PCLe (Peripheral Component Interconnect Express• 60

REST Representational state transfer• 2† 81† 82† 8š† 87† 89† 90

ROS Robot Operating System• iv† xi† 25† 59† 71† 75† 76

RTL Register Transfer Level• iii† 7† 8† 12† 1Š† 17† 27† 29–Š2† š8† 91† 97

SN Sensor Network(s“• 2† Š† 10† 11† 80† 87† 100

SOAP Simple Object Access Protocol• 2

SoC System on a Chip• 19–21† 26† 60

SW Software• iv† ix† x† 5–8† 11† 12† 16† 18† 19† 2š–28† 59–61† 65† 79–82† 85† 86† 97–99

UART Universal asynchronous receiver/transmitter• xi† šŠ† š5† š6

UML Uniʘed Modelling Language• iii† 9† 1š† 20–22† 25–27† Š2† Š5† 99

VHDL Very High Speed Integrated Circuit Hardware Description Language• iv† ix–xi† 5† 8† 12† 18†
20† 21† 25† 29† Š1–Š5† Š8† Š9† š7–51† 55† 57† 6š† 67† 68† 72–7š† 81† 89† 91† 97† 99

VM Virtual Machine• 81† 82† 85† 87† 90† 98† 99

WIEM Wireless External Interface Module• 60† 62† 67† 68† 88

XML Extensible Markup Language• 17† 18† 82

xiv

1
Introduction

Contents
1•1 Context: Internet of Thing† Edge computing and FPGA 1

1•1•1 Internet of Things • 1

1•1•2 Edge Computing for Cyber‡physical Systems • • • • • • • • • • Š

1•1•Š Using FPGAs for Edge Computing in IoT: Beneʘts and Challenges š

1•2 Research Objectives and Contributions 6

1•2•1 Research Objectives • 6

1•2•2 Contributions • 7

1•Š Outline of the Thesis . 8

1.1 Context: Internet of Thing, Edge computing and FPGA

1.1.1 Internet of Things

Internet of things (IoT“ is a concept increasingly supported by various stakeholders and market forces•

It is foreseen to be a world‡wide network of interconnected devices or objects (things“ through wired

and wireless connections [VF1Š]• The network provides a unique addressing scheme and creates a

pervasive environment where a person can interact anytime with the digital and physical worlds• The

primary goal is to enable things to be connected anytime† anywhere and with anything or persons

using existing network infrastructure• Objects can identify themselves and have seamless intelligence

for context decision making• IoT can be considered as the next evolution of the internet [Eva11] and has

many potential applications† especially in smart systems such as healthcare† Smart Cities† Smart Grids†

Smart Cars and mobility† Smart Homes and Assisted Living† Smart Industries† Public safety† Energy &

environmental protection† Agriculture† etc•

1

1.1.1.1 Resource for IoT

The existing internet infrastructure is the primary resource for IoT• Most IoT devices are IP‡enabled”

and are able to easily participate to the internet• Web services –such as REST† SOAP† etc•– are well

established mechanisms for the communication between IoT nodes• The advantage of web services is

that they are general purpose and thus† can be easily integrated to others systems (e•g• IoT systems“

that are built on standard (and general purpose“ IT components• The passing of IP to IPv6 allows an

unrestricted address scheme and enables a large‡scale of things•

At the physical level (sensor† actuator† etc•“† where the devices (things“ actually interact with the real

world† Sensor Networks (SN“ are an important resource for IoT architecture• IoT can be considered as

an evolution [MPV11] of SN at an internet‡scale† thus existing work on SN can be adapted to IoT• SN

offer a virtual layer where the digital system can communicate with the physical environment• Typically†

a SN architecture consist of š main concepts [CF1š]:

ȏ Network components: elements that enable connectivity within the network† connect an ap‡
plication platform at one end of the network with one or more actual physical devices• These
components correspond to the concepts of node† gateway† relay† sensor and actuator•

ȏ Hardware platforms: The hardware requirement necessary for sensor/actuator nodes† compu‡
tational/functional nodes (relay† server“•

ȏ Middlewares: software stack create an virtual layer between application and the physical
world• They aim at operating† monitoring and managing the sensor network• They are often
generic and ʙexible to different application scenario•

ȏ Topology: describes how the SN is organized• The most common network topologies used in
SN are star† tree† mesh or hybrid networks that combine the other ones• In the context of IoT†
any kind of IP‡based topologies can be applied•

At the processing level† cloud computing is currently the most referenced computational model for IoT

[BdDPP16]• Cloud computing adopts a centralized architecture with large virtual ability of storage and

processing power• It is deʘned [MG11] as ȋa model for enabling ubiquitous† convenient† on‡demand

network access to a shared pool of conʘgurable computing resources (e•g•† networks† servers† storage†

applications† and services“ that can be rapidly provisioned and released with minimal management

effort or service provider interaction•••ȋ• IoT can beneʘt from this model for sensor data collecting†

processing and decision making• The cloud can expose different services for sensor data usage (e•g•

API† web services“• It creates a virtual layer between things and applications† thus hiding the complexity

of tasks like system development† integration and management† etc•

1.1.1.2 Potential Problem of current IoT configuration

For the last decades† we have seen an important increase of IoT devices• A research in [Fri1Š] (201Š“

shows that† in 2011† there were more than 15 billion things on the internet† over 50% internet connec‡

tions are between or with things• By 2020† this number can go up to more than Š0 billion things and

”Internet Protocol

2

over 200 billion intermittent connections are forecasted• All the connections are based on the client‡

cloud model• Sensor data such as thermostats† surveillance cameras† healthcare system measurement†

etc• are centralized to the cloud• This is not always obvious since IoT devices have different radical

characteristics• Some are occasional accessed while others require realtime always‡on connections•

Connection bandwidthȍ is another crucial factor† many devices are satisʘed with low bandwidth con‡

nections while others need a high bandwidth for data transfer• This is often referred as the Big‡data

problem [ZE+11]•

This centralized infrastructure of cloud suffers from a low scalability while the available data is con‡

tinuously increasing• In real‡time IoT systems this can lead to latency problems• That is† a large amount

of IoT nodes may cause a work overhead to the system due to an intensive quantity of data to be trans‡

ferred over the network• This costs network resources and degrades the response time of the system• The

value for decision making of sensor data may be lost while it is traveling across the network• For data

processing† although multi‡core processors (on the cloud“ are powerful enough for mass processing† it

is not guaranty that they will be suitable for future calculation requirements of IoT•

Sensor networks† the base of IoT† are often considered as networks of simple devices with limited

performance• These devices are only used for data acquisition and transmission• This restricted vision

leads to simple communication‡centric middleware models• While these devices and middleware re‡

spond well the requirements of SN† they may be not suitable at the scale of IoT• IoT systems† especially

in smart system† may need more powerful devices with the ability to perform some local computations

and decision making•

1.1.2 Edge Computing for Cyber-physical Systems

Cyber‡physical systems (CPS“ are integrations of computation and physical processes [Lee08]• It can

be considered as a merger of embedded systems –a composition of standalone computing elements

– and sensor network• CPS shares the same basic architecture with IoT• Nevertheless† it presents a

higher combination and coordination between physical and computational elements [RHTO15]• The

integration of software‡intensive embedded systems and internet communication into CPS is considered

to be the next revolution of IoT• CPS provides the necessary infrastructure to deal with the Big‡data

problems•

ȋIn many aspects of human activity† there has been a continuous struggle between the forces of

centralization and decentralization•••ȋ [GLME+15]• While today internet activities are dominant by the

cloud† solution for the emerging IoT problems (as presented“ requires a new evolution for the compu‡

tational model• The network topology and the computing resource distribution need to be revised† in

order to exploit the powerful features of IoT• The combination of Edge computing (EC“ and CPS can be

considered as a solution for these problems by: (1“ migrating from a centralized architecture (cloud“

to a distributed computing architecture; (2“ strengthening the equipment at the edge of the network†

where sensors are deployed and (Š“ performing analytics and knowledge generation at the source of

the data•

ȍToday† two thirds of Internet trafʘc are dedicated to image transmission† this can go up to 80% in the next
years

Š

Lopez et al. [GLME+15] and Faure et al. [FFH+11b† FFH+11a] share a human‡centric vision on EC in

which they consider the important role of human in the edge devices• This vision shows a global view of

edge‡centric computing with different interesting discussions about: Trust† Privacy† Control† Intelligence

and Proximity• My vision here† in this thesis† is limited in the context of IoT and shares some similarities

with one presented by Bonomi et al. [BMZA12]† where EC extends the cloud computing to the edge

of the network• EC considers a node‡oriented view of the internet• This architecture consists of data

center and clouds at the core and surrounding by nodes with small web server and content‡distributed

network• At the edge of the network† some distinguishing characteristics can be found:

ȏ Low latency and proximity: by pushing the data processing to the edge of the network† a large
amount of raw sensor data can be processed locally in order to produce a compact and rich
information before delivery to the centralized point• This reduces the network trafʘc and thus
allows a fast response time• It also adds the possibility of ʘltering sensor data before delivery•
EC promotes also the distributed communication between closed nodes rather than using a far‡
away central point (cloud“•

ȏ Scalability: EC allows large‡scale sensor network with large number of nodes since the network
overload are distributed to the edge•

ȏ Realtime interaction: EC is suitable for realtime IoT applications by allowing fast response time
between things and application (over the network“•

ȏ Heterogeneity: different form factor of edge‡devices can be easily deployed in wide‡variety of
EC environment•

ȏ Intelligence and Control are on the edges: nowadays† hardware devices become smaller and
more powerful while being cheaper• Thus† IoT devices have more processing and storage ca‡
pacity• This implies that edge‡centric nodes are more capable and can make local decision
and control what to do with sensor data•

Edge‡centric nodes are processing‡centric† thus† requires more processing capability• However† as

regular embedded systems† they are constrained by power consumption• There are always the struggle

to balance the performance/energy ratio on these systems• Moreover† as complex processing units†

edge‡centric nodes need an evolutive and ʙexible architecture to boost the application development

productivity•

1.1.3 Using FPGAs for Edge Computing in IoT: Benefits and Challenges

1.1.3.1 FPGAs

FPGAs [Xil] –stands for Field Programmable Gate Array– are integrated circuits designed to be re‡

conʘgured by designers• They were ʘrst invented by Xilinx in 1985 and have been increasingly grown

up since then• Xilinx and Altera (now acquired by Intel“ are two vendors that have a crucial role in

the development of FPGAs• These devices are based on a matrix of conʘgurable logic blocks (CLBs“

connected by programmable interconnects (switches“• Thus FPGAs can be reconʘgured to ʘt different

application contexts after manufacturing• This can be done by specifying the functionality of each CLB

and then wiring them together (using conʘgurable switches“• Traditionally† FPGA conʘgurations are

š

described using Hardware Description Languages such as VHDL or Verilog• These descriptions are

synthesized† using dedicated synthesis tools† into binary form (bitstream“† that conʘgures the device•

FPGAs are used in wide range of applications such as Aerospace†Automotive† Data Center† Med‡

ical† Security† Image and Signal processing† etc• Advantageous characteristics of FPGAs are: (1“

Reconʘgurability and Flexibility: FPGAs are reconʘgurable and can implement easily tailored circuits

for different application contexts; (2“ Performance: FPGAs enable parallel and fast computations† thus

are suitable for acceleration purpose; (Š“Energy consummation: direct parallel hardware execution

of tasks avoids the overhead problem of traditional software system such as processors and thus is

energy‡friendly; (š“ Maintainability: FPGAs circuits can be easily reconʘgured when performance im‡

provements or bug ʘx are available; (5“ Reliability: FPGA circuits are a real hardware implementation

of tasks† they minimize the reliability problem in comparison to software on processors since tasks are

executed in parallel and have their own deterministic hardware resource•

1.1.3.2 FPGAs and Edge-computing

As stated† in edge‡computing† edge‡centric nodes’ functionality often exceeds simple data collection

and embeds more complex features• These nodes require more processing capabilities while keeping

power consumption low• Reconʘgurable architectures such as FPGAs are known to enable parallel

and fast computations within a low energy budget† hence can play a crucial role in edge‡centric nodes

[DLPBT12]• FPGAs add more processing ability to the nodes and thus allow to locally perform more

sophisticated tasks• Furthermore† using FPGAs improves the ʙexibility of the node’s hardware• That is†

the hardware can be simply tailored to adapt to different kinds of sensors•

Today FPGA devices often come in a hybrid form factor consisting of an FPGA coupled with an

embedded processor (e•g• ARM“• This kind of devices is ideal for building edge‡centric nodes since:

(1“ they offer the hardware acceleration (FPGA“ while (2“ providing a ʙexible and powerful software

environment (processor“ for complex middleware and applications (IP‡stack† web services“•

1.1.3.3 Challenges

Digital Hardware (FPGAs“ design is always a complicate task• The design process requires a speciʘc

knowledge which remains a challenge for developers and usually results in a loss of productivity• Es‡

pecially† when FPGAs are used together with advanced software systems (edge‡centric middleware†

web services† distributed content network† etc•“† the problem of HW/SW co‡design (detailed in sec‡

tion 2•š“ becomes a real challenge• There is a need for a dedicated environment to support efʘcient

development and deployment of such hybrid systems into the network• The environment should address

to the following criteria:

ȏ Generalization and Heterogeneity: since we target a network of nodes rather than a single de‡
vice† the design environment (both SW and HW“ should be generic enough to deal with differ‡
ent edge‡centric devices (FPGA/processor“• A standardized environment also helps applying
design constraints on the system and thus better support system scalability•

ȏ Integrability and Interoperability: the environment should promote the integration of: (1“ SW
and HW parts in an individual node and (2“ the integration of each node to the over‡all net‡

5

work• A common communication protocol is needed for the SW/HW interfacing as well as the
distribution of content over the network•

ȏ Reconʘgurability and maintainability : a network may contain hundreds to thousands of hybrid
nodes† manual deployment† reconʘguration† or maintenance of each node is an important is‡
sue• An automatic mechanism is mandatory for remote (over‡the‡network“ deployment and
conʘguration of nodes† both on SW and HW•

ȏ Distributed computing: Edge computing relies on distributed computing to push the processing
to the edge• Therefore† middleware should promote the development and deployment of dis‡
tributed algorithm/application over the network•

These challenges cover a large domain of system level design from high level software to low level

hardware• On the one hand† we rely on an high‡end edge‡centric (based on web services“ software

environment for end user application development and deployment• On the other hand† we need to

deal with low‡level FPGAdesign and SW/HW integration• There is always the need of a uniʘed design

methodology and environment for closing this important gap between the two worlds•

1.2 Research Objectives and Contributions

1.2.1 Research Objectives

When looking at existing design methodologies for both SW and HW system† it is clear that software

design methodologies† such as Object Oriented Design (OOD“† are in advance of hardware† in term

of productivity• Hardware design always remains a long and tedious process† especially when it comes

to the SW/HW co‡design problem• This result in a complex system design ʙow and involve the use of

tools from different engineering domains• Common solutions tend to propose a heterogenous design

environment that integrates/combines these tools togethers• However† the heterogeneous nature of this

approach can pose the reliability problem when it comes to data exchanges between tools of different

expertise domains (i•e• syntactical and semantics interoperability“• Our motivation is to propose a

homogeneous design methodology and environment for such system to minimize this problem•

This work studies the application of modern design methodologies† in particular the OOD† on em‡

bedded system design• Firstly† we aim at proʘting object oriented principles to hardware design for a

more productive HW design environment• This latter complements the traditional HW design method‡

ologies by promoting the concepts of Generalization† Generation† Standardization and Separation of

concerns• Therefore it allows better system Reusability† Maintainability† and Extendability•

Secondly† we explore the use of OOD to produce a uniform methodology and environment for

SW/HW co‡design• The largest gain of OOD here is the ability to abstract the SW/HW integration

process in an implementation‡independent way• Hence† the interfacing gap can be automatized at

certain level by some correct‡by‡construction and automatic generation techniques• This is important

seeing that closing SW/HW gap remains always a complex† time‡consuming† error‡prone and less‡

contributive task•

Last but not least† we want to position the proposed design approaches on the context of edge‡

centric computing where the target system becomes much more complicated with a network of hybrid

6

SW/HW nodes connected together• This forms a complex distributed environment and rises the ques‡

tion of how to efʘciently manage† develop† deploy and maintain such system• A manual solution is

not an option considering the network scale of the system• In this case† while the processing is de‡

centralized (distributed“† the development (both SW and HW“† should be centralized to facilitate the

management and maintenance• The deployment should be automatized to be able to handle a large

scale of nodes• Such dedicated edge‡centric environment is still missing in our perspective•

1.2.2 Contributions

The research towards this thesis has been partly included in the following publications (papers or poster†

chronological order“:

1• Xuan Sang LE† Loïc Lagadec† Luc Fabresse† Jannik Laval† andNoury Bouraqadi• From Smalltalk
to Silicon: Towards a methodology to turn Smalltalk code into FPGA• In IWST 14† Cambridge†
United Kingdom† August 201š

2• Xuan Sang LE† Loïc Lagadec† Luc Fabresse† Jannik Laval† and Noury Bouraqadi• A meta model
supporting both hardware and smalltalk‡based execution of fpga circuits• IWST ’15† pages
6:1–6:1š† 2015• IWST best paper award

Š• Xuan Sang LE† Luc Fabresse† Jannik Laval† Jean‡Christophe Le Lann† Loïc Lagadec† and Noury
Bouraqadi• Dynamic distributed programming on reconʘgurable ip‡based smart sensor net‡
works• Presented as poster at 11ème Colloque du GDR SoC‡SiP† France† 2016

š• Xuan Sang LE† Luc Fabresse† Jannik Laval† Jean‡Christophe Le Lann† Loïc Lagadec† and Noury
Bouraqadi• Speeding Up Robot Control Software Through Seamless Integration With FPGA•
In SHARC ’16: 11th National Conference on Software and Hardware Architectures for Robots

Control† Brest† France† 2016

5• Xuan Sang LE† Jean‡Christophe Le Lann† Loïc Lagadec† Luc Fabresse† Noury Bouraqadi† and
Jannik Laval• Cardin: An agile environment for edge computing on reconʘgurable sensor net‡
works• In the proceedings of The 2016 International Conference on Computational Science and

Computational Intelligence (CSCI’16“† Las Vegas† Nevada† USA† 2016

The contribution presented in this thesis are designed and developed by the author• The software en‡

vironment used for modeling and middleware† toolset building is based on Pharo Smalltalk [DZHC17]

– an elegant object oriented language and environment• The research carried out for this thesis resulted

in the following contributions (listed in the order they appear in this thesis“:

1• Conceptual meta‡model –baptized OoRC– that brings OOD concepts and principles to hard‡
ware design• The meta‡model support modeling hardware system at two levels of granularity:
(1“ ʘne‡grained level where it is used to specify FPGA circuits at RTL level; (2“ coarse‡grained
level where OOD principles and design patterns are employed to abstract and modularize the
hardware system•

2• Dedicated design environment (middleware and toolset“ for SW/HW integrationwhich is based
on theOOD and platform‡based design approaches• The essential is to close the SW/HWgap
by abstracting the communication and provide automatic implementation (generation“ of the in‡
terface (both SW and HW“ depending on the application context•

7

Š• Hardware architecture† middleware and toolset for edge‡centric application development• The
philosophy here is to (1“ centralize the development of distributed (decentralized“ application†
(2“ automatize the application deployment and (Š“ abstract the network communications•

OOD is the main design methodology employed throughout these contributions to produce a unique

design environment and ʙow• It is used in conjunction with (1“ Model‡Driven Engineering (MDE“ to

model hardware system† (2“ platform‡based design for SW/HW co‡design and (Š“ distributed pro‡

gramming to provide environment for distributed application development and deployment on the net‡

work•

1.3 Outline of the Thesis

Chapter 2 presents the state of the art of our research which covers the following domains: edge‡

computing† hardware design† and HW/SWco‡design• Chapter Š describes our OoRCmeta‡model at

conceptual level• Both RTL‡level modeling and system‡level modeling are addressed• The chapter also

describes how the meta‡model handles the reuse of VHDL legacy IPs as regular object oriented models•

Chapter š targets the SW/HW co‡design problem with OoRCBridge† middleware and toolset ded‡

icated for integrating FPGA devices in existing high‡level software system• Concretely† the SW/HW

communication is standardized† a mechanism for automatic interface generation is speciʘed and an

API for abstracting HWaccessing is also provided• Chapter 5 puts it all together in the context of edge‡

computing• We present our dedicated distributed environment named CaRDIN• It has been developed

for application building and deploying on such hybrid system• Finally† in chapter 6† conclusions are

drawn and future work related to the OoRC meta‡model and CaRDIN are discussed•

8

ȊCreativity is thinking up new things. Innovation is doing

new things.ȋ

Theodore Levitt

2
State of the Art

Contents
2•1 Edge Computing . 10

2•1•1 Dedicated SN for Edge Computing • • • • • • • • • • • • • • • 10

2•1•2 Using FPGAs for Edge Computing in IoT • • • • • • • • • • • • • 11

2•1•Š Discussion • 11

2•2 Hardware Design Background . 12

2•2•1 Overview • 12

2•2•2 Hardware Design Methodologies • • • • • • • • • • • • • • • • 12

2•2•Š Discussion • 1Š

2•Š Meta‡modeling for System‡level Hardware Design Using MDE 14

2•Š•1 Model‡Driven Engineering • 1š

2•Š•2 Component‡based approaches • • • • • • • • • • • • • • • • • 16

2•Š•Š Platform‡based approaches • • • • • • • • • • • • • • • • • • • 18

2•Š•š UML and Object Oriented based Approaches • • • • • • • • • 20

2•Š•5 Summary • 22

2•š Software/Hardware Co‡design . 24

2•š•1 Early Binding Approaches • 2š

2•š•2 Late Binding Approach • 26

2•š•Š Discussion • 27

2•5 Positioning our work . 27

9

This chapter covers an examination of existing research in the ʘeld of embedded system design

methodologies and application of FPGA‡based device in IoT and edge‡centric computing• The ʘrst

section enlightens the current use of SN and FPGA in the edge computing domain• We then analyze

the hardware design gap by comparing different existing hardware design methodologies• Hard‡

ware/software co‡design is another related important research ʘeld which will be discussed at the end

of the chapter•

2.1 Edge Computing

2.1.1 Dedicated SN for Edge Computing

Edge centric architecture consists of a data center at the core surrounded by capable nodes with

small web server constituting a content distribution network• Sensor Networks compliant with Inter‡

net protocol (IP“ are good candidates for building such architecture• Unfortunately† most SNs solutions

are non‡IP‡compatible SNs† thus have difʘculty to participate to internet (missing of IP stack“• In the

context of EC† the integration of such SN to IP‡based network requires the deployment of an extra

layer at the edge of the two networks to link non‡IP SN communications with internet communications

[GRL+08† KBLK07]• Proposed approaches are focused on wrapping data coming from sensor sources

for sharing and processing over the Internet• Those works provide heterogeneity out of SN• Commu‡

nication and application‡level code needs to be hand‡programmed for each node• Recently† a new

research trend has emerged in this area: the IP‡based sensor networks† [PKGZ08† D+09]† that offers a

more natural and direct way to bring SN to the internet• These approaches assume that sensor nodes

are powerful enough to implements an IP stack• The web services can be used on top of these systems

and offer the compatibility between SN and standard IoT infrastructures• These works show an impor‡

tant advance in the area• They† however† provide only the infrastructure without further software API

for the operations and interactions of the node•

Middleware plays a crucial role in SN† it deʘnes an application platform that: (1“ can be deployed in

various application scenarios; (2“ can handle the heterogeneous and distributed nature of the network

and (Š“ promotes the integrability of the system• Diverse middleware solutions have been proposed

for SN• Some approaches such as [YG02† MFHH05] consider the SN as a virtual database that can

be queried through an SQL‡like language• Others rely on Mobile agent approach in which applica‡

tions are modular and each module can be distributed through the network [BHSS07† ORRM09]• The

works in [MAK07† SCC+06] propose a Virtual Machine approach which is more general than Mobile

Agents• They allow arbitrary code to run on sensor nodes and make the software independent from

the hardware architecture• Message oriented middleware [KS09† CCD+09] is another possible solu‡

tion for communication inside SN• These approach support sending and receiving messages between

distributed systems via an event‡driven mechanism (publish/subscribe service“• These middle‡wares

could be a standalone architecture that runs directly on bare‡metal hardware or could be built on top

of anOS –such as TinyOS [LMP+05]– dedicated for sensor network• All of these middleware are used

mainly for querying raw sensor data rather than support the development and deployment of complex

applications on the nodes•

10

2.1.2 Using FPGAs for Edge Computing in IoT

Since the application of FPGAs for Edge Computing is a brand new topic† the state of the art is still

limited in the context of IoT• However† we can consider the use of FPGA on SN as references† see‡

ing that SN is the base of IoT and Edge Computing• Many researchers have explored the beneʘt of

parallel processing and hardware reconʘguration in FPGA for prototyping sensor networks• Some

approaches use only FPGA with [MR08† CSM08] or without [LSKT1Š† HRVG08] soft‡core processor

(e•g• NIOS“ to build the sensor nodes• Those enable the ʙexible adaptation of hardware changes on

sensor nodes† but do not offer the ʙexible reconʘguration that software approaches do† nor do they

support remote reconʘguration of the node• Since the system is entirely implemented in FPGA† the soft‡

ware capacity of these nodes is limited that lead to the missing of an efʘcient middleware• Other works

such as [Ber12† KPC+08† PRDC] address to these problems by proposing a non IP‡based approach

with an entire workʙow to generate† remotely conʘgure and reconʘgure the FPGA• Theses work use

a micro‡controller (µC“ to reconʘgure the FPGA• Both software (µC“ and hardware (FPGA“ can be

reprogrammed/reconʘgured remotely from host via a wireless link (e•g• ZigBee“•However† the use of

µC still limits the software capability of the node• The development is entirely baremetal (µC/FPGA“

which is speciʘc and limits the reusability of the system• All of these approaches are non IP‡based and

are not compatible with an internet and edge‡centric usage• Firstly† to support IoT† the IP‡stack (and

web services“ must be implemented on µC or on FPGA which requires speciʘc skills• Secondly† they

are designed only for sensor data acquisition and thus are not suitable for edge‡centric applications•

2.1.3 Discussion

Current proposed SNarchitectures are based on the cloud‡computingmodel† where all sensor data are

centralized and processed in a sole place• Sensor nodes are often simple devices with limited software

capabilities and used for data acquisition and transmission• This results a very simple communication‡

based middleware• When passing to an edge computing model† these architectures and middlewares

need to be revised• The IP protocol should be the base protocol for network communication• By rein‡

forcing the edge of the network† edge‡centric nodes are more powerful• This requires a new generation

of middleware to be able to (1“ efʘciently exploit the hardware capability of the nodes† (2“ provide a

rich set SW features for building complex application•

FPGAs show interesting application in edge computing since they offer parallel and realtime pro‡

cessing ability to the node with a reasonable energy budget• However† current uses of FPGAs on SN

come up with pure hardware nodes that have limited SW capability and thus are unsuitable for EC•

EC requires nodes with (1“ rich SW features† (2“ ʙexible middleware for nodes communication and

interaction and (Š“ real‡time data processing capability• Hybrid FPGA devices consisting of an FPGA

coupled with embedded processor are therefore good candidates• The processor greatly simpliʘes

the implementation of an IP‡based software stack and associated web services as well as provides

enough performance for an edge‡centric middleware• The FPGA is dedicated to critical and real‡time

data processing tasks•

11

1998 2000 2002 2004 2006 2008 2010 2012 2014
0

2000

4000

6000

8000

10000

12000

14000

16000

Year

M
ill

io
n
s
 o

f
tr

a
n
s
is

to
rs

Transistors per ASIC

Productivity

Design gap

Figure 2.1: Hardware design productivity gap: number of transistors available on a chip vs. the ability for the
transistors to be used efĆciently in a design [int11, Sed06]

2.2 Hardware Design Background

2.2.1 Overview

Basically† a good systemdesignmethodology should consider following important criteria: (1“ Time‡to‡

market (design time“† (2“ Productivity (production outputs/inputs ratio“† (Š“ Maintainability (repair/re‡

place† ʙexible to change† easy to maintenance† etc•“† (š“ Extensibility (adding new capability“ and (5“

Reusability (reuse with less modiʘcation possible“• A ʙexible and generic solution for software/hard‡

ware integration involves SW/HW co‡design• Software design has shown an important evolution with

Oriented Object Design and Design Pattern• These design methodologies have been well proven on

real world projects• They are claimed to be the best methodologies to satisfy the presented criteria•

In [LHKS91]† authors have shown that object‡oriented paradigm can improve productivity of software

design by about 50% (1•5 times“• Hardware design† however† alway remains a long and tedious

process• According to More’s Law† the complexity of hardware system in terms of logic transistors in‡

tegrated on a chip increases about 58% per year• Nevertheless† the hardware design productivity

increases around 21% per year [int11]• In Electronic Design Automation (EDA“ community† this rate

is known as design productivity gap (ʘgure 2•1“ which results in inʙating design costs• Most current

research efforts on hardware design are aimed at closing this gap by rising the abstraction level and

increase IP (Intellectual Property“ reuse•

2.2.2 Hardware Design Methodologies

The traditional and commonly used languages for hardware design is HardwareDescription Languages

(HDL“† such as VHDL or Verilog• These languages allow to describe IP (Intellectual Property“ cores

at Register Transfer Level (RTL“• For decades† the main concern of hardware designer is to create an

efʘcient component (e•g• speed† area or power usage“ using these languages• They focus on the

creation and qualiʘcation of IP content for a speciʘc application regardless of its further reusability in

the application domain• This can cause a redundancy of similar IPs designed for different applications

depending on different requirements• This design habit is called content-based design [DS0š]• It is

worth noting that reuse does not necessarily apply only to circuits (content“† but can also be applied

12

to concepts and techniques• Hardware designers are using methodologies (concepts + techniques“

that are several years behind software• Traditional HW design methods and HDLs are not equipped

with modern design features –such as object oriented– and thus limit the reusability† extendability and

maintainability of existing IPs•

The increased complexity of hardware system requires more productive methodologies• Currently†

to gain productivity† modern hardware design seeks to rise the design abstraction level• Literally† there

are mainly two directions of abstraction: content-level abstraction and system-level abstraction•

Content-level abstraction –also known as High Level Synthesis (HLS“ [MS09]– allows to describe

hardware IPs at an abstraction level higher than RTL using some traditional software languages like C†

C++† SystemC† Matlab† etc• [Ren1š† MVG+12]• These systems have a dedicated compiler that trans‡

forms an algorithm written in a target software language to a low‡level RTL representation• This method

improves the productivity of designers by providing automatic ȋcorrect‡by‡construction featuresȋ (via

the compiler“ and ȋseparating correctness design concern from timing design concernȋ [PBMB16]• HLS

methods are currently supported by FPGA vendors (Intel Altera† Xilinx† etc•“ and commercial tools• They

can be considered as future methodologies for IP content-design•

The system-level abstraction approaches† on the other hand† improve productivity by considering the

abstraction at the system level in order to automatize the design process and to maximize the reusabil‡

ity of IPs• These approaches aim at a more integration-based solution for hardware components reuse•

They encourage new hardware design habits [DS0š† ĔD1Š]: (1“ design‡for‡reuse rather than design‡

for‡use (reusability“† (2“ designing for a generic problem rather than for a speciʘc application (gener‡

alization“† (Š“ customizing existing IPs for a problem rather than designing it from scratch (extensibil‡

ity“• Currently trending system‡level abstraction methodologies rely on meta-modeling techniques using

Model Driven Engineering (MDE“ [Dam06]• The basic motivation is to model the hardware system at

a higher level of abstraction and allows to describe hardware components (IPs“ and their conceptual

relationships at multi levels of abstraction• Therefore† designers need lesser focus on technological de‡

tails and may beneʘt from high‡level models for modern design techniques (i•e• object‡oriented“• This

improves the productivity by increasing the modularity of the system (efʘcient reuse“ and automating

the design process (low‡level code generation“•

2.2.3 Discussion

To improve productivity† two abstraction methodologies –content-level abstraction vs• system-level ab-

straction– rely on two different strategies• One focuses on rising the abstraction of IP description and

allows designer to work at algorithmic level rather than at RTL level• The other methodology† on the

other hand† emphasizes the modularity of the hardware system and encourage the reusability and

extensibility of hardware components (IPs“• Although HLS approaches allow designers to describes

hardware IP using decent software languages† they remain alway content-based design approaches

and thus suffer the same reusability limit of HDL languages• Most research in this area focuses on sci‡

entiʘc computing applications; it is not certain that HLSs is appropriate for system design• Approaches

relied on MDE address to this problem by modelling the hardware system at a higher level abstraction•

They are powerful to describe hardware components structure and relationships• However† it is not al‡

ways obvious to express detailed behaviour of each component using these approaches• These issues

1Š

will be detailed in the following sections which will focus on the different system level design techniques

using MDE•

2.3 Meta-modeling for System-level Hardware Design Using MDE

System‡level design relied onMDE is becomingwidespread since late 1990’s [MC99†DMĔ0Š† BSP05†

LBMD08]• Such design methodology has proven to be beneʘcial to deal with the increasing com‡

plexity of digital systems• Proposed solutions are diverse† some approaches deʘne their own formal

modelling semantic [BH98†WHMT08† IEE1š] while others rely on well‡known modelling standard like

UML and Object Oriented Design [LW16a† EBZ+12† DS0š]• These approches offer a high‡level ab‡

straction speciʘcation† APIs and tools for hardware system modelling• Model‡to‡HDL is available with

or without restriction for supporting low‡level synthesis on actual hardware• In this section† we ʘrst dis‡

cuss about MDE in general† then consider three main categories of MDE methodologies for hardware

system design: Component-based† Platform-based and Object-oriented based approaches•

2.3.1 Model-Driven Engineering

Before presenting different system-level design approaches for hardware design† we introduce –in this

section– all methodological aspects related to meta-modeling with MDE• Model‡Driven Engineering

[RA12† VDMV1š] uses abstraction to bridge the cognitive gap between the problem space and the

solution space in a system• Models are the keys principle to describe the system at multi‡levels of

abstraction in order to close this gap• They are deʘned by formalism Meta-models• Models processing

is mainly performed via Model Transformations which is considered as the Ȋheart and soul of model‡

driven software and system developmentȋ [SK0Š]• Transformations can be used for code‡generation†

or for models mapping in the same or multiple levels of abstraction•

2.3.1.1 Model

The fundamental of MDE is model• A model is an abstraction representation of a real system or an

environment• Models are based on generic concepts (or speciʘc set of concerns“ and their relations

for system description and speciʘcation• MDE considers model as data that we can ȋquery† analyze†

report on† validate† simulate and transform in other useful formatsȋ [OMG1š]• More precisely† ac‡

cording to [Küh05]† the model concept can be deʘned based on three main criteria: (1“ Mapping: the

model is related to the system by an explicit or implicit mapping between the reality and the concepts

forming it• (2“ Reduction: the model abstracts the system by representing only core properties that char‡

acterize that system and ignoring all unnecessary details• (Š“ Pragmatic: ȋA model need to be usable

in place of the original with respect to some purposeȋ•

2.3.1.2 Meta-model

A model represents an abstract view of a real system by using an abstract syntax deʘned by a meta-

model• A meta‡model describes precisely (1“ the generic concepts and their relationships (used by

models“† (2“ the structuring rules that constrain these concepts and (Š“ the combinations of the concepts

1š

2.3.1.3 Model Transformations

Model transformations are key operations of MDE• They allow to transform a model conforming to

a source meta‡model at an abstraction level into another model conforming to a target meta‡model

at the same or different abstraction level• Figure 2•Š shows the basic principle• Transformations are

performed by applying transformations rules to the input model using a transformation engine• Rules

are software artefacts that implement basic transformation steps• A transformation engine executes a

collection of rules on a source model and derive the target model•

Model transformations can be classiʘed differently according to different criteria• However† –

in general– all transformations can be categorized into two classes: Exogenous and Endogenous

[MVG06]† as shown in ʘgure 2•š•

A transformation is endogenous when the source model and the target model conform to a same

meta‡model• This operation can be an optimisation† a restructuring of model or a combination of indi‡

vidual models to form a complete model• A sub‡category of this type of transformation is deʘned as

model composition or model weaving• This operation allows to combine several models in to a single

one and presents the links between model elements• It is used in applications that require traceability†

model comparison or model annotation [RA12]• This model weaving concept is similar to the aspect

weaving concept presented in aspect-oriented programming [Jéz08]•

On the opposite side† a transformation exogenous is a transformation that derives an output model

conforming to a different meta‡model from the source meta‡model• This category can be separated into

two sub‡categories: horizontal and vertical based on the abstraction levels• Horizontal transformations

mean that the two meta‡models (source and target“ share the same abstraction level• This operation

performs the migration of models between different aspects or domains within a system at the same

level of abstraction• Vertical transformations† on the other hand† allow passing models between differ‡

ent abstraction levels• This can be a reʘnement (top‡down“ or a generalization (bottom‡up“ of model

[FB01]• Model-to-text or Text-to-model are special kinds of vertical transformation• Model‡to‡text is

used mostly for generating source code from low‡level model and text‡to‡model deʘnes the reverse

engineering to construct model from source code•

Transformation rules allow mapping between concepts and relationships described by source meta‡

model to the corresponding concepts and relationships deʘned by target meta‡model• These rules can

be implemented by using software functions and procedures or by using a dedicated language• this

language can be a declarative language (e•g• ATL [JK06]† QVT [OMG16]† etc•“† which describes

what will be produced by the rule† or an imperative language (e•g• Xtend and Xpand [Kla07]† etc•“

that speciʘes how the rule is executed•

2.3.2 Component-based approaches

In software engineering† Component‡based design is a process that emphasizes the design and con‡

struction of SW systems using reusable software components [Fab07† Spa1Š]• It shifts the design

perspective from programming SW to composing SW systems by mean of separation of concerns†

in respect of the wide‡ranging functionality of a given SW system• When it comes to HW design†

Component‡based design methodologies usually handle ȋthe problems of representation† retrieval and

16

and code generation† it is the responsibility of user to implement plugins† EDA tools conforming to the

standard•

The work on [WHMT08] introduces another approach of using MDE for component‡based hard‡

ware system‡level design• This approach relies on COLA –COmponent LAnguage– [HKT+07]† a

synchronous dataʙow language and tool• COLA has its own well‡deʘned formal modelling syntax

and semantic• The COLA tool allows the system high level speciʘcation as well as the generation of

VHDL description† both for structures and behaviours• In general† a hardware system is modeled as

a network of units† which can be composed hierarchically• Interactions between units/components

are performed via channels• The network is controlled by an automata† which is actually a ʘnit state

machine diagram• This approach improves the productivity by raising the design abstraction• Beside†

it handles the component integration problem by using abstract synchronous data ʙow models• GUI

editor (e•g• for FSM diagram“ reduces design complexity and avoid error‡prone design tasks• COLA

has also polymorphism components and library system for encouraging model reuse•

Discussion

The COLA and MetaRTL design approaches follow a ȋtop‡downȋ design method• The hardware com‡

ponents and theirs connections are speciʘed at a high level abstraction using models• The low‡level

code (e•g• HDL“ –both behavioural and structural– can be generated from these models following a

predeʘned syntax and semantic• Therefore† the backward support to reuse existing HDL components

is not possible• The IP‡XACT approach† on the other hand† uses a ȋbottom‡upȋ method• It is dedicated

only to meta‡specify existing HDL components• Since it enhances the automatic conʘguration and in‡

tegration of IPs and thus improves reuse† it does not reduce the complexity of IP design• Unlike others

approaches† where IP design and integration can be speciʘed using a single high‡level abstraction

meta‡model† in IP‡XACT† designers need to handle separately the design task (in HDL“ and the pack‡

aging task (in XML“ of the IP• Changes made on one task can cause the modiʘcation on other task• This

is error‡prone and unnecessary•

Component‡based approaches focus on the modularity of the hardware system• They resolve the

integration problems using high level abstraction concepts† design space exploration and code gener‡

ation• Therefore† these approaches improve reuse compared to traditional approaches• However†

for the problem domain abstraction† despite efforts of merging OOD in component‡based design

[SDTF12† SDTF1Š] (in SW design“† component‡based approaches are not alway as ʙexible as Object

Oriented approaches (abstract† inheritance† polymorphism† etc•“ in term of reusability and adaptabil‡

ity• Furthermore† these approaches often rely on their own formal modelling semantic which† sometime†

is not standard (apart from IP‡XACT“† thus† hindering its widely adoption on other system•

2.3.3 Platform-based approaches

Platform‡based design” [SVM01† PBSV+0š† Sed06] is a methodology for creating a highly integrated

design• It improves productivity chieʙy through extensive and planned IP reuse• A platform represents

an abstract view of an application domain• Its architecture is based on a ʘx set of generic components

”In MDE† the term ȋplatform modelȋ is also know as ȋarchitectural modelȋ

18

that can be parameterized at certain degree• Such platform allows to design various hardware systems

in a given domain (e•g• video/image processing“ and thus attain some generalization• Applications

development is based on the composition and parameterization of generic components• Platform can

be built on top of each other where the lower level design is abstracted away [SV02]•

Platform‡based design deʘnes a ʘxed architectural model for an application domain based on two

key principles [KNRSV00]: interface standardization and Orthogonalisation of concerns• Interface stan‡

dardization means abstract communications between modular circuit components• This abstraction is

mapped to physical interconnection by communication protocols which are deʘned by interconnec‡

tion type (e•g• point‡to‡point† shared bus† network† etc•“ and topology• Orthogonalisation of concerns

means isolation of different design aspects so that they can be independently implemented† optimized†

and explored• This isolation could be the separation of communication from computation or of function

from architecture• These two principles promote design reuse by allowing the independent evolution

of hardware blocks with respect to the system architecture• A component can be reused on different

applications as long as it responds to all requirement to the architectural constraints•

Application design can be performed either in bottom‡up or top‡down manner• In the ʘst case†

the system has a library of IPs† cores† or virtual components implementing high complexity functions

(e•g• image processing“• The application is built by selecting the component designs from library and

connecting them together• In the other case† the library consists of only basic generic components

(e•g• multipliers† vector processing etc•“• they are automatically mapped together as the result of a

top‡down design process• Both methods must respect the pre‡deʘned system architecture to ensure

ȋgeneralizationȋ of the platform•

Platform‡based design is basically used for system‡on‡chip design [CF16]• For example† in com‡

puter vision domain† the work in [Sed06] proposes a platform –Sonic‡on‡Chip– with architecture and

module libraries dedicated for reconʘgurable video image processing• The HW application can be

construct at run‡time using dynamic reconʘguration• [Nga11] provides a network‡on‡chip for process‡

ingmulti‡image sensors• This network makes it possible to dynamically manage different ʙow in parallel

by automatically adapting the data path between the computing units in order to efʘciently execute

different applications• Or† most recently† [KTO16] has reported the beneʘt of platform‡based design

for real‡time image and video processing• Platform‡base design can also be used for communication‡

based SoC architecture [Mar16† CF16] such as bus‡based [OWTK10] or network‡on‡chip [Nga11]

systems; or for multi‡interconnect processors [Pom16† SF16]† etc•

Discussion

Platform‡based design shows interesting use on domain speciʘc applications• By emphasizing on in‡

terface standardization and orthogonalisation of concerns† it imposes constrains on system architecture

and thus allow efʘcient reusability and scalability (on large designs“• Since it focuses on an applica‡

tion domain† platform‡based design can be opted for speciʘc system performance enhancement (e•g•

image processing“• Moreover† platform‡based design is not mutually exclusive† that is† it can be used

conjointly with other design methodologies such as HLS† component‡based or object oriented based

design for better productivity• The architectural model can also be applied on SW/HW co‡design that

is helpful for automatic SW/HW communication•

19

2.3.4 UML and Object Oriented based Approaches

In the context of hardware system‡level design† the term ȋObject‡orientedȋ (OO“means the application

of Object‡oriented Design (OOD“ principles on hardware design using MDE rather than the use of

object oriented languages (OOLs“ for hardware description• There are work that did use OOLs for

hardware description such as [GL95] (Ruby“† [BH98† HBH+99] (Java†JHDL“† [Dec0š] (Python“† etc•

These approaches have dedicated API that allows to describe hardware design using an OOL• They

attain some productivity improvement by abstracting data type and constructs and by avoiding the

syntax verbose problem of traditional HDL• Nevertheless† despite the use of an OOL† the application

of OOD principles (abstraction† inheritance† polymorphism† etc•“ on hardware design itself is missing

or limited† making these approaches unsuitable for system‡level design•

OO‡based system‡level design approaches share some similarities with the component based ap‡

proaches such as systemmodularization† auto code generation† etc• However† they use amore ʙexible

abstraction models for problem domain abstraction that support better IP reusability and adaptability•

Moreover† like on software domain† the use of OOD on hardware domain also improves the docu‡

mentation for the further reuse and system maintenance•

Most recent OO‡based approaches rely on the well‡known standard modeling language UML

[OU15]• UML† developed by the Object Management Group† is an open standard language for

specifying† visualizing† constructing and documenting the software systems• However† it can also be

used to model other non software system• UML has a rich set of diagrams that allow to specify –at

a hight level speciʘcation– the structure (e•g• class diagram“ as well as the behaviour (e•g• state or

sequence diagram“ of a system• Several UML proʘles have been proposed for hardware system mod‡

elling such as UML for SoC [VMD08]† UML of System C [RSRB05] or the standard MARTE [OU11]•

MARTE† stand for Modelling and Analysis of Real-time and Embedded Systems† is an UML proʘle for

model driven development of real time and embedded system (for both functional and non‡functional

aspects“• It is used in most recent proposed approaches for hardware system‡level design•

Most proposed approaches allow themapping between UML diagrams andHDL concepts• Several

works model the hardware system behaviour using UML behavioural diagram with different mapping

models• MODEASY [WAU+08] introduces a method and modelling tool for transforming a subset

of UML state diagram elements into synthesizeable VHDL description• It allows to specify system be‡

haviour in form of FSM• The work in [DA1Š] proposes method for mapping UML state diagram to an

intermediate model based on hierarchical conʘgurable Petri net• Then† this intermediate model can

be converted to HDL such as VHDL or Verilog• Another mapping possible is shown in [BAS1š]† this

method allows transformation from a state diagram using temporal Hierarchical Concurrent Finite State

Machine (HCFSM“ model† into Verilog hardware speciʘcation† the generated HDL can be simulated or

synthesized on hardware• A part from state diagram† there are some other works that use a sequence

diagram instead† such as [EFQ15† LW16b]• The proposed approach in [EFQ15] uses UML/MARTE to

model the hardware system† it starts from a a sequence diagram with timing constraints† then automat‡

ically generates its implementation in both System C or VHDL for veriʘcation•

Using UML behavioural diagram allows to specify the structure and functionality of interacting com‡

ponents using a high‡level abstract model and hence reduces the design complexity• However† since

these kind of diagrams focus only on behavioural description† they are not appropriate for structural

20

speciʘcation† which is important in system‡level design• Furthermore† these approaches do not use

the main principle of OOD (e•g• inheritance† polymorphism† etc•“† and thus limit the reusability and

adaptability of the system• Other modelling approaches address this problem by using UML structural

diagrams•

GASPARD [GLBP+11† QMD08† EBZ+12] is a MARTE compliant SoC design tool and environment

that allows to obtain executable system (such as hardware system in VHDL“ from a high level MARTE

speciʘcation• It relies heavily on the concepts presented in the Hardware Resource Model package•

Such tool focus on the system modularization (using component diagrams“ and components mapping†

thus allows efʘcient system structural speciʘcation• The system allows to generate structural skeleton

VHDL codes which consist of entity and components mapping• The component behaviour must rely on

existing IP or be described manually (using HDL“•

The work in [DMĔ0Š† DS0š] brings the principles of OOD and design pattern into hardware design•

It proposes a framework for OOD concepts† domain speciʘc concepts and meta programming on

hardware design• The system focus on (1“ the structuring† the enscaptsulation† and reuse of HWdesigns

at a highest level of abstraction; (2“ using OOD techniques not only on hardware system modelling but

also on hardware design processes• The work uses class diagram for system speciʘcation and is able

to map between UML class diagram and structural VHDL abstractions (skeleton code“• The component

behaviour is manually described using HDL or meta‡programming• Some software design patterns

such as composite† decorator† adapter have been adapted on hardware design for efʘcient IP reuse

and customizing•

Most recently† AMoDE‡RT [MWP+10† LW16a] is a MDE approach compliant with MARTE that

target the FPGA‡based embedded realtime system design• UML models are intensively used to gen‡

erate system implementation• It provides a script‡based tool called GenERTiCA for mapping between

UML model element and VHDL structures• The system proposes a complete design solution by support‡

ing to describe both structure (using class diagram“ and behaviour (using sequence diagram“ of the

hardware system• Some basic OOD design principles (without design pattern“ are allowed† such as

encapsulation† inheritance† association•

Apart from UML† there exist also other OO approaches based on OO HDL such as System C•

[MGSPF11] introduces a case study of using Aspect Oriented Programming and OOD in hardware

design using System C• The work focuses on increasing components reuse by decreasing components

coupling• The proposed approach supports the use of OO concept (inheritance† interface“† design

pattern† and meta‡programing on the design process•

Discussion

OOD techniques promote productivity by describing the system in an abstract and implementation‡

independent way• They raise signiʘcantly the abstraction level and encourage system reusability and

adaptability• This has been well proven on software domain• From the conception perspective† hard‡

ware systems share some similarities with OOD concepts (components vs• classes† component com‡

munication vs object communication† etc•“† and thus can be expressed using OOD•

UML shows an important application in high‡level system design• It allows to combine the OO

concepts for structural design (component† class diagrams“ with the behavioural models (state† se‡

21

quence diagrams† etc•“• Some works focus on the use of UML for modelling system functionality that

can produce behavioural HDL code from graphical diagrams• However† they lose the support of OOD

techniques in the design process• Other works emphasize on system structural speciʘcation• OOD tech‡

niques is the primary concerns of these approaches• They have shown that† the use of OO concepts

and design pattern in hardware can solve the design reuse problem using abstract concepts• Nev‡

ertheless† they are hard to specify the system behaviour which needs to be described manually or via

meta‡programming• Only the work on [LW16a] proposes a complete solution for both system structural

and behavioural•

Because of the natural difference betweenUML high level graphical aspects and low level hardware

concepts† it is not obvious to use all possible diagrams (structural and behavioural“ elements to express

hardware concepts• Most proposed solutions use only a subset elements of a target diagram to model

hardware system• This constrains the design process to a subset hardware elements and patterns† which

sometime† limit the design ʙexibility and the scalability of system• We argue that there is the need of an

intermediate meta-model to ʘll in this gap• A meta‡model that is familiar with high‡level OOD design

principles –and therefore UML compliant– while being ʙexible enough to express low level hardware

behaviour and structure•

2.3.5 Summary

To deal with the increasing complexity of digital systems† MDE gains advantage over traditional ap‡

proach by: (1“ reducing system complexity via high‡level abstract model† (1“ encouraging design reuse

and adaptation by mean of separation of concerns† generalization and generation (to HDL“† and (Š“

aiming at integrating different existing design methods and tools into a unique high‡level design en‡

vironment and ʙow• Table 2•1 shows a review of presented approaches using MDE† based on the

reusability† adaptability and extensibility of a HW design• Platform‡based approaches particularly ad‡

dress a speciʘc application domain• They rely on common architectures based on principle components

ʘxed within a certain degree of parameterization• Such architectures supports a variety of application

in a given domain† thus attain some generalization• Component‡based and OOD approaches are

more generic• Component‡based approaches are service‡oriented and best at system functional ab‡

stractions• They are powerful for IP integration by using a high‡level abstraction concepts of component

communication protocol• OOD approaches† on the other hand† are identity‡oriented and are best at

abstracting the problem domain of a system• They offer a more ʙexible model to describe† reuse† adapt

and extend hardware IPs• OOD can be integrated in platform‡based design models in order to add

more abstraction to the architectural model† thus enhances the components reuse and integration in an

application domain•

22

Solution Design
methodolology

Modeling syn‡
tax/semantic

Abstraction level Design
adaptability

Inheritance
(Extensibility“

Legacy HDL
reuse

MetaRTL Component‡
based

Language‡
centric
meta‡model

Functional†
protocol level

no no no

IP‡XACT Component‡
based

XML Protocol level Parameterization no yes

COLA Component‡
based

Language‡
centric
meta‡model

functional†
protocol level

Polymorphism no no

[Sed06]†
[Nga11]†
[KTO16]†
[OWTK10]†
[Pom16]

Platform‡based Architectural
model

Application
domain†
interface
standardisation

Parameterization no Fixed set of
generic
components

MODEASY†
[DA1Š]†
[BAS1š]

Object‡
oriented

UML Functional (state
diagram“

no no no

[EFQ15]†
[LW16b]

Object‡
Oriented

UML Functional
(sequence dia•“

no no no

GASPARD Object‡
oriented

UML Structural
(component dia•“

Parameterization no no

[DMĔ0Š]†
[DS0š]

Object‡
oriented

UML Structural (class
diagram“

Design pattern yes no

AMoDE‡RT Object‡
oriented

UML Structural (class
dia•“ &
functional
(sequence dia•“

abstract
methods

yes no

Table 2.1: Synthetic table of presented HW system-level design approaches using MDE

2Š

A common problem of current MDE design approaches is that they only allow one‡way mapping

between high level concepts and low level hardware elements (HDL“• The inverse process that efʘciently

reuses existing HDL designs in MDE environment is not considered enough† apart from IP‡XACT which

is only intended for regular IP reuse• By reuse† we mean the use of HDL designs† not as a low‡level

static elements but as high level active design elements• It is important to note that most currently existing

legacy IP library are designed using traditional HDL• Allowing reuse of regular HDL designs in MDE

environment should be considered as an important factor of a productive design system•

As shown in table 2•1† none of presented approaches satisfy all the criteria (reusability† adaptabil‡

ity† extensibility and legacy HDL reuse“• Our objective is to propose a design approach aiming at

fulʘlling all these criteria• We argue that OOD is suitable for our purpose since it naturally promote the

integration-based design concepts (presented in section 2•2•2“: (1“ design for reuse (abstraction“† (2“

design for generic problem (problem domain abstraction“† (Š“ design for easy adaptability and exten‡

sibility (design pattern† inheritance“• However† we do not try to directly map between high level OOD

concepts to low‡level hardware structures• We aim at ʘlling this gap using an intermediate meta‡model

that bring OOD principles to HW design•

2.4 Software/Hardware Co-design

SW/HW integration is another factor that has a signiʘcant impact on the overall productivity of the

embedded system design process† mostly on complex systems which requires simultaneous develop‡

ment of software and hardware• SW/HW interaction problem remains always problematic• It varies

from project to project due to the change of requirements and takes an important amount of develop‡

ment time while has less contribution on the overall system functionality• Such tedious† unnecessary

and error‡prone task† need to be taken in to account in SW/HW system level design•

SW/HW co‡design [Tei12† JDM+07] addresses this problem by abstracting the SW/HW system‡

level design process• It meets the design objectives by exploiting the synergism of hardware and soft‡

ware through their concurrent design• This is achieved using various methodologies for design space

exploration†generalization and generation• SW/HW co‡design provides a heterogeneous design en‡

vironment that includes descriptions of SW/HW† and communication modules• Literately† proposed

solutions for SW/HW co‡design can be classed into two categories : Early binding and late binding

approaches•

2.4.1 Early Binding Approaches

Early binding means that the SW/HW separation of the system is performed at the early stage of a

top‡down design process• In complex SW/HW system† this reduces the design complexity by decom‡

posing the system into a hierarchy of manageable and coordinated sub‡systems• Figure 2•5 shows

the basic steps of the design process• At the beginning† the designer performs a system analysis and

identiʘcation of tasks† from here† the system is separated into two parts (SW and HW“• Both parts

are then developed simultaneously and separately• Usually† the hardware part is modelled in a high‡

level abstract form (e•g• MDE† HLS† etc•“† that afterward promotes the SW/HW integration• It may

be constrained to some architectural requirements if needed• The mapping stage is an automatic or

2š

nication Finite StateMachines (FSM“† Synchronous/Reactive andData‡ʙow ProcessNetworksModels

in SW/HW co‡design• These models include: formal speciʘcations† set of system and non functional

properties and design constraints• The functional speciʘcation fully characterizes the system while sat‡

isfying the set of properties• In [CT05]† authors propose a co‡design approach based on the transfor‡

mation of different UML diagrams into SW or HW tasks• The work introduces MODCO† a tools that

help generate HDL code from UML state diagram• They state that the tool is the ʘrst step to bridge the

gap between hardware and software design•

2.4.3 Discussion

SW/HW co‡design is an important step for rapid prototype of complex embedded systems• It aims

at an heterogenous architecture and environment (SW† HW and communication modules“ for system

design• The goal is to optimize the design constraints such as cost† performance and power as much

as possible while reducing the time‡to‡market of the system• Trade off are often made between these

requirements to achieve a reasonable design productivityȍ•

Late binding co‡design approaches often focuses on language‡based design method• Despite the

advantages of using uniʘed language for specifying both SW and HW at a algorithm level† these

approaches have some limits due to the nature of the language• Firstly† this latter usually invokes the use

of a compiler which is architecture speciʘc• Changing the underlying architecture (processor+ FPGA“

leads to an important overhead to develop a new compiler that supports the new hybrid platform• This

is not always faisaible• Secondly† the language emphasize on algorithm description† which is content‡

based and does not inherently encourage design reuse† as discussed in section 2•2•2•

A combination of Early binding co‡design† with platform‡based design and high‡level system mod‡

elling (OOD† UML“ offers a better system modularity (both on SW and HW“† thus promotes the system

reusability and adaptability• It allows also a better decoupling of the system with the underlying hard‡

ware platform• This increases the ʙexibility of the design environment with regard to different projects

or different architectures (processor/FPGA and their interfacing“•

2.5 Positioning our work

The main contribution of this thesis is to study the application of modern design principles –Object

Oriented Design (OOD“– on hybrid hardware/software system design† in the context of IoT and edge‡

centric computing• The work focuses on three main design concerns:

The ʘrst design concern is Hardware Design• We introduce an object oriented meta‡model that bring

OOD principles to hardware system‡level design• Our approach is based on the observation that: (1“

most content-based design methodologies lack the ability to efʘciently abstract the hardware at system

level (coarse‡grained level“; (2“ the majority of proposed system-level design methodologies are not

fulʘlled enough to specify the detail hardware behaviour (ʘne‡grained† RTL level“ and promote ʙexible

IPs reusability† adaptability and extensibility; and (Š“ modern MDE‡based approaches have difʘculty

to reuse and integrated existing legacy HDL designs in their environment• Our meta‡model aims to

ȍthe amount of design space exploration possible will be limited in complex system† thus the result is not
alway optimal

27

ʘll the different gap between high‡level design concepts (i•e• OOD concept“ and low‡level hardware

concepts• It plays the role of an immediate meta‡model that is familiar with most modern object oriented

design methodologies† while being ʙexible enough to express any low‡level hardware structures and

have backward support to legacy HDL design reuse•

Second design concern is Software/hardware co-design• The application context is focused on the

use of FPGA hybrid system for IoT edge‡centric computing• The design environment here is limited to

an application domain• Therefore† our solution on HW/SW design is based on a combination of early

binding co‡design approach with an object oriented platform‡based system‡level design approach•

Object oriented design is used for both software and hardware design• The SW/HW system is highly

modularized and reusable for different ʙavours of applications•

Last design concern covers the middleware design for IoT edge‡computing• We provides an edge‡

centric middleware dedicated to the proposed hybrid system• This middleware eases the integration of

FPGA edge‡centric devices to the network• It supports distributed development and remote reconʘgu‡

ration of nodes (both on SW at runtime and HW“•

28

ȋMeta-design is much more difʘcult than design; it’s easier

to draw something than to explain how to draw itȋ

Donald Knuth† The Metafont Book

3
Promoting Object Oriented Principles on

HW Design Using the OoRC Meta‡model

Contents
Š•1 Introduction . 30

Š•1•1 OoRC in a Nutshell • Š1

Š•2 Fine‡grained Modeling: FPGA Circuit at RTL Level 32

Š•2•1 Circuit Signals as Data Objects • • • • • • • • • • • • • • • • • • Š2

Š•2•2 Circuit Structures Modeling • ŠŠ

Š•2•Š Discussion • Šš

Š•Š A Simpliʘed DSL for HW Design . 35

Š•Š•1 Overview of the DSL • Š5

Š•Š•2 OoRCScript Syntax • Š5

Š•š Coarse‡grained Modeling: Hardware System Level Design Using Object

Oriented Technique . 37

Š•š•1 Basic OO Concepts for HW Design • • • • • • • • • • • • • • • Š8

Š•š•2 Basic OO Design Operations • • • • • • • • • • • • • • • • • • š0

Š•š•Š OOD Pattern on Hardware Design • • • • • • • • • • • • • • • • š0

Š•5 Circuit Model Transformation . 47

Š•5•1 Overview of the Transformation Process • • • • • • • • • • • • • š7

Š•5•2 Exporting Circuit Models • š8

Š•5•Š Legacy VHDL Reuse via a Dedicated VHDL Parser • • • • • • • • š8

29

Š•5•š Automatic Circuits Integration and Conʘguration • • • • • • • • 50

Š•5•5 Discussion • 51

Š•6 ȋIn‡vivoȋ Circuit Models Simulation 52

Š•6•1 Execution Model: time‡driven vs• event‡driven • • • • • • • • • 52

Š•6•2 Event‡driven Simulation of Circuit Models • • • • • • • • • • • • 5Š

Š•7 Interfacing the OoRC meta‡model with External Tools 54

Š•7•1 ȋEx‡vivoȋ Simulation Using an External Simulator • • • • • • • • 5š

Š•7•2 Circuit model synthesis and deployment • • • • • • • • • • • • • 55

Š•8 Summary . 57

This chapter presents OoRC (Objectiʘcation of Reconʘgurable Circuits“† a dedicated meta‡model

for integration‡based HW design• It begins with an overview of the meta‡model and its associated

features• Section Š•2 enlightens about how the meta‡model can be used for content-based design•

Section Š•Š presents OoRCScript† a dedicated Domain Speciʘc Language (DSL“ for describing digital

circuits using our meta‡model• Hardware system‡level design with object oriented technique will be

presented in section Š•š• We talk about different kinds of model transformation in OoRC in Section

Š•5• The simulation of circuit models is covered in section Š•6• Section Š•7 describes the interfacing of

OoRC with external tools such as external simulator or synthesizer† etc• Finally† section Š•8 concludes

the chapter•

3.1 Introduction

Content-based design methodologies (such as HDL or HLS“ mainly focus on the creation and qualiʘca‡

tion of IP (Intellectual Property“ content• They have very limited features that support efʘcient reusability†

extendability and maintainability of IPs• Many System-level design methodologies use different design

paradigm to address these problems• They aim at abstracting and automatizing the hardware design

process at system level by mean of generalization† system standardization† separation of concerns and

system modularization• That said† they are designed to handle the design task at a system perspective•

However† when tearing down to the RTL level† these methodologies lack the ability to efʘciently de‡

scribe the content of each IP• Often† they rely on an external design methodology for IP‡content design

(e•g• MDE for system‡level design while using HDL or HLS for content‡based design“• This ends up with

an heterogenous design environment which is complex and error prone• Some methodologies support

built‡in IP content design but with limited structures or computational model (e•g• FSM† state diagram†

sequence diagram† etc“† thus are not ʙexible•

The OoRC meta‡model offers a unique and homogenous environment for both hardware system

level design and IP content description• It uses Object oriented paradigm for System-level design while

having dedicated API and language for IP content design• It means to close the different gap between

modern SWdesign methodology (OOD“ and low level HW concepts and allows the two design direc‡

tions can cohabit so that developers can beneʘt the advantages of both worlds in a sole environment•

Š0

3.1.1 OoRC in a Nutshell

3.1.1.1 Objectives

The OoRC meta‡model aims at covering both content-level design and system-level design problem•

At RTL level† it has API and dedicated DSL for modeling HW circuits as a graph of connected objects•

Unlike most RTL approaches that rely on static meta‡model for deʘning passive and rigid models of

circuits† OoRC’s models are able to evolve dynamically thank to the live objects• This feature simpliʘes

and promotes the (run‡time“ (semi‡“automatic models processing† such as: (1“ structural refactoring of

circuit models for optimization; (2“ automatic injection of structures and behaviours to a circuit model

depending on application context (e•g• debug sub‡circuit“; (Š“ automatic incremental construction of

circuit model via GUI (CAD“ tool or DSL; (š“ deʘnition of abstract structures from OoRC structures†

providing correct‡by‡construction feature and automatic structure and code generation† etc•

At system-level† OOD techniques and design pattern can be directly applied on circuit models• This

provides the abstraction for presenting a design solution of a problem in a implementation‡independent

way• The main philosophy here is that the subject of OOD is not a physically existing object (objects at

RTL level“† but the abstract concepts for solving a design problem• This separation of concerns allows

better design modularity† reusability and adaptability•

In OoRC† when talking about design reuse† we do not only mean the reuse of models represented by

our meta‡model but also the reuse of traditional HDL models• The OoRC provides backward support

to legacy VHDL IPs• That is† out meta‡model is able to import and present VHDL IPs as regular circuit

models which then can be used to perform model processing† model integration† etc• As stated† this

feature is important since the majority existing IP libraries are in traditional HDL forms•

3.1.1.2 Features

The meta‡model is equipped with dedicated libraries for structural and behavioural modelling of hard‡

ware structures (at RTL level as well as system level“• It is implemented using Pharo Smalltalk† an object

oriented language and environment suitable for system modelling• On top of these APIs† different fea‡

tures are available:

ȏ OoRCScript is a DSL based on Smalltalk syntax• It allows to design FPGA circuits right inside
the programming environment•

ȏ OoRC supports OOD and design pattern for hardware system‡level design• These techniques
can also be used for model processing and automatic IPs integration•

ȏ To support reuse of legacy VHDL† the system relies on a dedicated VHDL parser to import and
transform a HDL model to OoRC model•

ȏ Circuits models support both in-vivo (internal“ simulation and ex-vivo external simulation (e•g•
GHDL“•

ȏ Circuit models can be exported to VHDL for synthesis• OoRC has a toolchain that automatizes
the circuit synthesis using vendor tools•

Š1

tional logic† or latches or registers• A Port is a Signal with additional information about its direction• In

our meta model† a Port must be either input† output or bidirectional (inout“•

As shown in ʘgure Š•1† the meta‡model supports basic synthesizable data type supported by most

synthesis tools:

ȏ Integer† Natural† Logic† LogicVector† Signed and Unsigned (in accordance with the integer†
natural† std_logic† std_logic_vector† signed and unsigned types in VHDL“: for basic arithmetic
and logic operations•

ȏ Record (collection of elements of different data types“; and Array (collection of similar elements
of any datatype“ described using a composite pattern•

ȏ Enumeration for enumerated and user deʘned type•

In digital circuits† each operation has a propagation delay† and thus the assignment of its outputs to

signals needs also a delay to take effect• In OoRC† we model a Signal as an object with history• To

maintain this time history† a signal holds two informations: (1“ the current value of the signal (before

the operation“ and (2“ the new value that will take effect after the propagation delay of the operation•

Each time the signal is updated (i•e• once the propagation delay elapses“† the new value will become

current•

Note that† in OoRC† variables are modeled as an instance of a data type class• They hold one value

at a time and have no history• Variables are used in processes† functions or procedures•

3.2.2 Circuit Structures Modeling

Figure Š•2 shows a simpliʘed class diagram of circuit’s meta‡descriptions• The class HDLDesignEntry

models a complete circuit with an interface (HDLEntity“ and one or more architecture(s“ (HDLArchitec-

ture“• An entity speciʘes the external interface of a circuit while an architecture describe its internal

structure and behaviour• A circuit may have different architectures but only one is used at a time• A

subclass of HDLDesignEntry –when created or changed– will be assigned automatically a signature

number• Therefore† all instances of it (models“ share the same signature• This signature number is syn‡

thesizable as a constant signal on actual hardware• It has nothing to do in circuit modelling but is useful

to verify whether the circuit is deployed on actual hardware•

All subclasses of HDLStructure are meta‡descriptions that describes circuit elements (i•e• sub‡circuits“•

They allow to: (1“ specify the structure of an element and (2“ deʘne the behaviour of that element

in responding to the change of its inputs (signals“• Circuit elements can be broadly classiʘed in two

domains: combinational domain and sequential domain• A combinational circuit has no internal memory

(i•e• latches or ʙiplops“ or state (i•e• closed feedback loop“• Its outputs are deʘned as a function of

inputs only• The same input value will always produce an identical output (when settled“• In OoRC† all

synthesizable VHDL concurrent structures (e•g• conditional signal assignment, selected signal assignment,

etc.“ are modeled as subclasses of HDLConcurrent• Note that† although processes are composed of

sequential statements†they are deʘned as a concurrent structure• They are executed in parallel with

other processes or other concurrent statements•

A sequential circuit† on the other hand† has an internal state and its output is a function of inputs as

well as the internal state• Although sequential circuit can be described using concurrent statements

ŠŠ

1š -- combinational logic
15 x_prev_next <= unsignedȁsampleȂ when start = 'ǐ' else x_prevǦ
16 y_n_next <= unsignedȁsampleȂ + x_prev when start = 'ǐ' else y_nǦ
17 filtered <= std_logic_vectorȁy_nȂǦ
18 -- sequential logic
19 processȁ clk Ȃ
20 begin
21 if reset = 'ǐ' then
22 x_prev <= ȁothers=>'Ǐ'ȂǦ
2Š y_n <= ȁothers=>'Ǐ'ȂǦ
2š elsif rising_edgeȁclkȂ then
25 x_prev <= x_prev_nextǦ
26 y_n <= y_n_nextǦ
27 end ifǦ
28 end process Ǧ
29 end architecture Ǧ

Listing 3.1: VHDL implementation of a simplest low pass FIR Ćlter yn = xn + xn−

3.3 A Simplified DSL for HW Design

3.3.1 Overview of the DSL

OoRCScript is an embedded DSL in the Pharo environment and is based on OoRC API for circuit de‡

scription• It is extensible† compiler‡free and inherits all characteristics of an interpreted language aswell

as the dynamic environment of Pharo• With its compact and minimalist syntax† OoRCScript simpliʘes

and abstracts the circuit speciʘcation in comparing to the API• While being able to express low‡level

hardware concepts (using the API“† the language is naturally object oriented• Hence† it is familiar with

most object oriented design principles• The OOD concepts can be used directly on OoRCScript for

system level design• The same language is used for both HW content and system level design• Further‡

more† OORCScript is not mutually exclusive† it can be used conjointly with other system‡level design

methodologies such as UML• Since the language is object oriented friendly† mapping UML diagrams

to OoRCScript is more straightforward and easier than to a traditional HDL language (e•g• VHDL or

Verilog“•

3.3.2 OoRCScript Syntax

The meta‡model has dedicated APIs for circuit model construction• This is helpful for automatic model

processing or building high level tools• One can use these APIs to manually describe the circuit† but

it is more preferable to use OoRCScript† a dedicated DSL for this purpose• This DSL allows to simply

and directly describe the FPGA circuits• Figure Š•Š shows the example use of the DSL for describing

the FIR circuit presented in listing Š•1ȍ• A circuit model can be described by subclassing the class

ȍOoRCScript has been evolved since the last version presented in [LLF+15] by eliminating the need of a
compiler and improving/simplifying the syntax

Š5

HDLDesignEntry and implementing the virtual method build with OoRCScript• The DSL is self-deʘning

and its syntax is based on message send as shown in ʘgure Š•š• The principle is as follow:

ȏ All objects in OoRCScript are instances of meta‡descriptions• These object are denoted as de‡
scription objects•

ȏ The syntax is deʘned by sending a message (method“ –denoted as description message– to
a description object• This action will create a new description object based on the received
message•

ȏ Some built‡in description objects are available for any design:

– input†output†inout: for port declaration•

– signal,var : for signal and variable declaration•

– arch: for architecture deʘnition•

– function, procedure: for DSL function and procedure deʘnition•

– alias: create a reference to others signals/ports instead of creating new one•

OoRCScript can be executed normally inside the Pharo environment without the need of a dedicated

compiler• The code can be veriʘed (at run‡time“ as an interpreted language• The language is extensible

by adding more description methods to meta‡description classes• These methods can then be used

directly in OoRCScript without any further modiʘcation•

OoRCScript codewhen executed† will create and connect all description objects tomodel a (sub“circuit•

Although at this point the DSL code is syntactically correct† sometimes† its semantics are erroneous which

makes the generated model improper• Therefore† it is worthwhile to perform an integral check of the

circuit‡model• For instance† the meta‡model is able to detect some common problems: (1“ assignment

to signals of different data types† (2“ sequential statements outside of process/procedure/function or

using combinational statements inside a process† etc•† (Š“ illegal operations on the data type of a sig‡

nal† or (š“ multi‡source driving to a signal• In addition to this veriʘcation† in this phase† the system also

the automatic signal resizing in the operations of two or more LogicVector signals of different size•

3.4 Coarse-grained Modeling: Hardware System Level Design Using Object Oriented

Technique

Integration-based design approach involves two main steps: system-level design and content based

design• The ʘrst step describes the system at conceptual level• It generalizes the system and speciʘes

the relation between components without any detail of implementation• This allows to build an overall

system speciʘcation• In doing so† a speciʘc design problem can be generalized to have amore generic

solution• This promotes the reuse† maintainability and integrability of the system in different application

contexts with minimal modiʘcation and design effort• OO technique therefore plays an crucial role

in system analysis and design• The second step consists of the implementation of the system for a

speciʘc application context• It is the traditional content‡based design with respect to the overall system

speciʘcation•

Š7

3.4.1.3 Polymorphism

Polymorphism allows some part of the design’s architecture can be deʘned differently• This can be

done by subclassing a design and redeʘne the desired structure• Redeʘnition (override“ is supported

in OoRCScript but is restricted• Only the entire architecture and reuse methods (OoRCScript methods

and VHDL likes functions/procedures“ are allowed to be redeʘned• This restriction ensures the semantic

coherence of the circuit• Listing Š•š shows an example of architecture override• The class TwoTapFIR†

subclass of SimpleFIR† reimplements the entire architecture of the circuit by using an DFF (D Flip Flop ‡

for introducing a delay between xn and xn−“• This introduces a more optimized solution for the circuit

architecture•

In hardware design† polymorphism can be used to adapt an existing design to a new application

context• A part of the design can be reused while the other part may be redeʘned to be compatible

with the new context•

sample
+

q filteredadd_out

clk

1 SimpleFIR subclassǥ#TwoTapFIR >> build
2 super build.
Š "override the entire architecture"
š arch nameǥ#arch overrideǥ{
5 signal nameǥ#ȁadd_out qȂ isǥȁUnsigned sizeǥǒǑȂ.
6 DFF mapǥ{#d-> sample. #clk->clk. #q->q}.
7 add_out <- q + sample asUnsigned.
8 {clk} onChangeǥ{
9 clk posedge ifTrueǥ{ filtered <- add_out asLogicVector }

10 }
11 }

Listing 3.4: An optimized re-implementation of SimpleFIR using inheritance and override features

3.4.1.4 Abstraction

Abstraction enables the deʘnition of HW designs at a very conceptual level without any architectural

detail• It provides an overall view of design’s functionality while suppressing the details below the

current level• Thus† an abstraction design can be used as a common interface for a family of circuits

with different architectural and/or behavioural implementations but which share the same external

view• For example† in a Master/Slave bus design† the bus controller may be interested mainly in

the way masters/slaves are controlled rather than how they are actually performed• In this case† all

masters/slaves can be generalized into a single abstract master/slave design•

OoRCScript allows to deʘne virtual (abstract“ architecture or methods (OoRCScript method† VHDL‡

like functions/procedures“ in a design• This kind of design does not represent an actual circuit† but

instead it materializes a template• Sub‡designs have responsibility to implement the virtual architecture

or methods•

Š9

In listing Š•5† the class SimpleFIR deʘnes an abstract architecture• An actual architecture must be

implemented in all subclasses (e.g. TwoTapFIR“ of this class• Listing Š•6 shows another possibility of

abstraction using an OoRCScript method• The architecture is set as a return of the buildArch method•

This is an abstract method• All subclass must implement it by specifying the architecture’s descriptions•

1 SimpleFIR >> build
2 "inputs/outputs definition"
Š ...
š arch abstractǥ#arch

Listing 3.5: Abstract architecture

1 SimpleFIR >> build
2 "inputs/outputs definition"
Š ...
š architecture nameǥ#arch isǥself

buildArch
5 "virtual method definition"
6 SimpleFIR >> buildArch
7 ^self subclassResponsibility

Listing 3.6: OoRCScript abstract method

Abstraction is ideal to perform system level design• It provides an overall view of the conceptual

system by specifying how circuit modules are connected and interact with other• Detail implementation

can be realized later depending on the use context of the system•

3.4.2 Basic OO Design Operations

Design operations are driven by basic OO concepts• They strengthen the system speciʘcation by main‡

taining the clarity of the design hierarchies• Basically† there are š main design operations:

1• GENERALIZATION: As deʘned by the name† generalization is the process of extracting share
characteristics of two or more designs and combining them into a generalized design• Share
characteristics may be external interface or internal structures• This operation aims at general‡
izing a design problem or deʘning a generic family of similar designs• Generalization uses the
inheritance and abstraction concepts•

2• SPECIALIZATION: In contrast to generalization† speciʘcation reduces the application context
of existing designs by adding more speciʘc features to the original design• It promotes the ex‡
tensibility and reusability of existing designs• Specialization uses inheritance and polymorphism
concepts•

Š• REALIZATION: Provides a content‡based implementation of a design• Unlike specialization†
–which relies on existing designs– realization speciʘes the implementation of a design from
scratch• This design could be a brand new design using OoRCScript or an implementation of
existing abstracting design•

š• COMPOSITION: this operation allows to embed one or more low‡level design to a higher‡level
design• It aims at performing hierarchical system design• It uses the previously presented design
reuse concept•

3.4.3 OOD Pattern on Hardware Design

Design operations† once combined together† can specify the relationship of system components and

thus allow to construct the system speciʘcation• Some frequently used combinations –denoted as design

š0

5 output nameǥ#ȁflag doneȂ isǥLogic.
6 arch abstractǥ#arch.
7 "Two concret components implementing two filtersǥ RGB filter and HSV filter

"
8 PixelFilter subclassǥ#RGBFilter >> build
9 super build.

10 arch nameǥ#arch isǥ{..."filter process here"}
11 PixelFilter subclassǥ#HSVFilter >> build
12 super build.
1Š arch nameǥ#arch isǥ{..."filter process here"}
1š "A decorator component add an extra functionality to existing filter"
15 PixelFilter subclassǥ#ExtraFilter >> newFromǥaFilter
16 filter ǥ= aFilter
17 ExtraFilter >> build
18 super build.
19 arch nameǥ#arch isǥ{self extra}
20 ExtraFilter >> extra
21 self subclassResponsibility
22 "A concret decorator that adds a pixel counter to existing Filter ȁRGB

filter or HSV filterȂ"
2Š ExtraFilter subclassǥ#FilterWithCounter >> extra
2š outputǥ#pxcnt isǥInteger.
25 signal nameǥ#ȁs_flag s_doneȂ isǥLogic.
26 filter mapǥ{#clk->clk. #reset->reset. #start->start. #pixel->pixel.

#color_pt -> color_pt. #flag->s_flag. #done->s_done}.
27 done <- s_done.
28 flag <- s_flag.
29 {reset. clk} onChangeǥ{
Š0 var nameǥ#cnt isǥInteger.
Š1 reset ifTrueǥ{cnt <- Ǐ} ifFalseǥ{
Š2 clk posedge ifTrueǥ{
ŠŠ ȁs_done = true andǥȁs_flag = trueȂȂ ifTrueǥ{
Šš cnt <- cnt+ǐ.
Š5 }}}.
Š6 pxcnt <- cnt
Š7 }

Listing 3.7: Example of adding a counter to an existing pixel Ćlter

3.4.3.2 Adapter

Intent Convert the interface of a design into another interface expected by the system• This pattern

allows to plug an existing design of different interface into the system by using an commonly

known interface•

Structure ʘgure Š•8•

š2

left this test as future work• Moreover† the test requires proper and well‡deʘned synthesizable VHDL

benchmarks Ȏ•

3.5.4 Automatic Circuits Integration and Configuration

Automatic circuits integration and conʘguration provide a mechanism to put designs together and en‡

able a compatible communication between them via a common interface• OoRC supports this by

introducing HDLDynamicCompositeDesign§† a dedicated class for designs integration as illustrated in

ʘgure Š•16• This class allows to compose a set of input designs and wrap them in a common interface•

This interfacing‡process is semi‡automatic and can be deʘned as a function of: MI = Ecomposite(D, S)

where D = {Di|i = ..n} is a set of input designs and S = {Si|i = ..n} is a set of corresponding ports

classiʘcations (for each input design“• A ports classiʘcation Si of a design Di speciʘes how a port of Di

will be connected to the interface• Basically† all ports can be classiʘed into one of following categories:

ȏ clock,reset: clock and reset ports† these ports will be connected directly to the clock,reset port
of the interface•

ȏ Control ports: start,end, etc. control the behaviour of the circuit• These ports will be connected
to corresponding internal signals of the interface for manual processing• A design may or may
not have these type of ports•

ȏ Physical ports are ports which need to be forwarded directly to the interface inputs/outputs
without any processing• They may be used to connect to an actual hardware device (sensors†
physical bus† etc•“• These ports will be connected directly to corresponding input/output ports
(also denoted as forwarded ports“ of the interface• They are optional in a design•

ȏ Logical ports: address/data and other control ports that need manually wired inside the inter‡
face to adapt the design to the new interface•

Since it’s a semi‡automatic process† the Ecomposite function will be performed in two phases:

Automatic pre-processing : in this phase† an empty composite model is ʘrst initialized• The model

then generates all necessary signals/ports and connects them to corresponding input design Di based

on their port classiʘcation Si•

Manual processing: Additional ports of the interface are manually deʘned in this phase• The model

then execute the method craft to perform the internal linking of logical signals (connected to logical

ports in previous phase“ and control signal (start,end“ of each input design Di to the interface (red zone

in ʘgure Š•16“• In HDLDynamicCompositeDesign† this method is a virtual method• The class is not used

directly† it must to be subclassed• All its subclasses have the responsibility to implement the method craft

to specify internal linking logic depending on each interface•

Predefined Interface for IP Integration

The dynamic composite design method can be used to build a predeʘned interface for IP‡integration•

This can be considered as an interface template• Designers can use it to implement their application

ȎThe Parser can work with either simulation or synthesizable VHDL code† but the meta‡model supports only
synthesizable VHDL structures

§This class is based on the hardware composite pattern

50

system‡level design methodologies support this feature in their system• Some approaches (e•g• IP‡

XACT [IEE1š]“ allow this but require an additional manual IP decoration/meta‡descriptions step† then

work on these descriptions/decorations rather than on the IP itself• Therefore† they are hard to deeply

commit change to the IP (optimization† restructuring† etc•“• On the other hand† OoRC† allows to fully

import legacy HDL IP as a native model† that one can perform any transformation on it lately•

Automatic circuits integration and conʘguration provides a (semi“‡automatic mechanism for com‡

bining several arbitrary designs together via a common interface template• This feature uses design

pattern and performs some correct‡by‡constructions and automatic structure generation of the inter‡

face depending on the input set of designs• Advantage of this approach is that it abstracts away and

separates the interface from the real implementation so that it can be independently applied on dif‡

ferent application contexts• This reduces the design cost for the interface which alway remains as a

time‡consuming and less‡contributive task•

3.6 ”In-vivo” Circuit Models Simulation

3.6.1 Execution Model: time-driven vs. event-driven

To understand how the simulated execution of FPGA circuits works† one must understand what kind

of execution model is used in the meta‡model• For such a model† two kinds of systems need to be

taken into account† the continuous systems and the discrete systems [Slo15]• In the ʘrst ones† the state

of the system (signals† ports“ changes continuously with respect to time† whereas in the latter ones†

the state changes instantaneously at separate points in times• In reality† there are few systems that are

either completely continuous or discrete† although often† one type dominates the other• For example† a

synchronous circuit that uses the global clock can be considered as a continuous system since its state

can be changed at each clock• But when we consider the system at gate‡level† when a part of the

circuit is active† all related operations will be performed and make change on its outputs• This change†

in consequence† will trigger instantaneously other parts connected to it• This process is repeated until the

state of each part becomes stable• These parts† therefore† can be considered as discrete systems• The

challenge here is to ʘnd a computational model that mimics closely the behaviour of such time‡advance

systems• There are† in fact† two models that can be used in this case: time-driven and event-driven•

A continuous system can be easily simulated using the time-driven [PL08† Slo15]• With this approach†

the simulation advances time with a ʘx increment of exactly Δt time units which is called simulation

clock¶• After each clock† the state of the system is updated for the interval of [t, t + Δt]• This approach†

however† is not very appropriate for simulating a discrete system• For a such system† the time step

Δt must be small enough to capture all events• Often† this time step is extremely small which is unac‡

ceptable as the simulation time involved• Furthermore† there are obviously empty time steps that cause

wasting simulation time•

An event-driven simulation [PL08† Slo15† SC95] has a nature close to a discrete system• The simula‡

tion time in this case advances directly to the next‡event time• An event represents a state change of the

system caused by incoming data or internal processes• For the case of a discrete system† the approach

¶The simulation clock is unrelated to the hardware clock and is used only by the simulator to keep track of the
simulation time as the simulation proceeds

52

is met• At that point† the outputs of the model can be inspected• This kind of simulation† as explained

by its name† interests only how outputs values of a circuit change depending on its inputs† regardless

of the time needed to complete the calculation• This is helpful for software/hardware co‡development•

Developers can use the circuit model as an hardware abstraction to build and test their software without

worrying about the actual hardware implementation• Listing Š•11 shows an implementation of this

simulation mode•

1 HDLDesignEntry >> execUntilǥaCond
2 aCond whileFalseǥ[
Š self clock ifNotNilǥ[
š self clock toggle].
5 self discreteExecution.
6]

Listing 3.11: Functional simulation implementation

1 HDLDesignEntry >>
execWithǥqueue dumpOnǥstream

2 |candidate|
Š [
š candidate ǥ= queue nextEvent.
5 candidate notNil
6] whileTrueǥ[
7 self assignSignalsǥcandidate

signals.
8 self discreteExecution.
9 self snapshotAtǥȁcandidate timeȂ

onǥstream
10]

Listing 3.12: Behavioural simulation implementation

Behavioural simulation: this is the traditional hardware simulation• In this mode† the system keeps

tracking the behaviour of the circuit during time• This behaviour can be deʘned by the intrinsic signal

values of the circuit over time• To do this† the execution of the circuit model will be performed with a

time queue• This latter contains the next‡event times and signals that will be assigned to new values in

each event† as illustrated in listing Š•12• We can consider this time‡queue as a test‡bench in traditional

simulators• At each execution step† the simulation time advances to the closest next‡event time† the inputs

signals related to this event are assigned to new values and the propagation execution is performed•

At the end of each event† the state of the circuit along with the current timing information is recorded in

a Value Change Dump ʘle (VCD“• This process is repeated until the time‡queue is empty• The ʘnal VCD

ʘle can then be viewed by a external VCD viewer for analyzing•

3.7 Interfacing the OoRC meta-model with External Tools

3.7.1 ”Ex-vivo” Simulation Using an External Simulator

It is possible to simulate the circuit model with an external simulate• This can be done in an indirect

manner by: (1“ generating a test‡bench from the time queue and (2“ exporting the target circuit as Unit

Under Test for the test‡bench• The simulation can then be performed on the test‡bench by invoking a

series of external simulator’s commands• This method applies only for behavioural simulation•

Currently† the system supports automatic ȋex‡vivoȋ simulation using the open‡source simulator GHDL

5š

3.7.2 Circuit model synthesis and deployment

To support the deployment of circuit models on an actual hardware† OoRC has a dedicated toolset for

automatic synthesis• It can be performed in three main steps:

Firstly† it encapsulates the target model in a dedicated interface• This interface allows an agreed

communication between the FPGA circuit and the physical world (e•g• processor† sensors† etc•“• The

ʘnal model (including interface“ will be ʘnally exported to VHDL for low level synthesis•

Secondly† it generates a device conʘguration for a selected hardware• This conʘguration is hard‡

ware speciʘc and different between vendors• It speciʘes all the options needed for a low level synthesis

on a particular device• The conʘguration also sets up the physical mapping of the interface generated

on the previous step• This allows to connect circuit ports to actual FPGA IO ports•

Finally† the toolset performs a low level synthesis based on the VHDL code and the device conʘg‡

uration obtained from previous steps• This is done automatically by invoking a series of commands

provided by vendor synthesis tools• If all commands are successfully executed† a bitstream will be

generated at the end of the process and ready for deployment•

In the system† these steps can be modelled by three main concepts: PhysicalInterface† DeviceCon-

ʘguration and Synthesis as illustrated on top of ʘgure Š•19• PhysicalInterface is a subclass of HDLDy-

namicCompositeDesign• It is a composite design which allows to deʘne a generic physical interface

wrapper (e•g• serial† parallel† usb† ethernet† etc•“ for any input circuit model• This wrapper enables

the communication of the circuit with the outside world (e•g• processor† network† etc•“• The Device-

Conʘguration class† in additional to device speciʘcation† also speciʘes how an interface is mapped

to the FPGA IOs• The mapping conʘguration of an interface is separated from its deʘnition to ensure

the interface independent regard to different devices• When an interface (PhysicalInterface“ accept a

conʘguration (DeviceConʘguration“† it requires the conʘguration to set up the ports map for it (via the

method portMap“• A new added device needs to deʘne all portMap methods for the interfaces that it

supports• Note that† physical ports (of the input design“ forwarded by the interface are design speciʘc

and are undeʘned at the design time of the generic interface• In this case† they need to be manually

mapped at run time by the conʘguration (using the method manualMap“•

The interface and conʘguration are used by the Synthesis to generate all manifest ʘles needed for

a low‡level synthesis• The system supports synthesis via SSH (using the class RemoteSynthesis“• This

allows all vendors tools (Xilinx† Altera† etc•“ can be centralized on a server† and the synthesis will be

performed remotely based on a selected vendor device•

The bottom of ʘgure Š•19 shows a simple implementation of synthesis GUI tool from the class dia‡

gram• The list on the left displays all design classes available in the system• Users need to manually

classify all ports for a selected design (LGCameraUnit“• This decides how each port are connected in

the interface• On the right† one can select an desired interface (APF51Builder“ and a supported de‡

vice (APF51Imx“• Users may also need to specify the port map (IO“ for all physical ports of the target

design† since they are unknown by the interface at design time• Thanks to the dynamic environment of

Smaltalk† when new design† interface† or device classes are added to the system† they will be updated

automatically to the GUI•

55

3.8 Summary

In this chapter† we have presented the OoRC meta‡model† our ʘrst contribution that provides an object

oriented approach for digital circuits modeling• The meta‡model allows to describe a circuit as a graph

of connected live objects• This graph is especially handy for model transformation/processing (refac‡

toring† integration† etc•“• A circuit model is executable an can perform a in-vivo hardware simulation

relying on events• This work was partly published in [LLF+15]•

One can manually design circuit models using the dedicated DSL• The DSL brings oriented‡object

technique to hardware description to support system‡level design and enables efʘcient reuse of IPs• It is

also possible to reuse third‡party hardware designs (in VHDL“ in our system thanks to the built‡in VHDL

parser•

The chapter focused mainly on basic concepts and methodologies of OoRC• The meta‡model covers

all basic aspects of digital hardware design† from hardware description and simulation to automatic

low level synthesis• Based on this solution† high level (CAD“ tools can be built for circuit design or for

automatic circuit model processing• Chapter š will show another possible use of theOoRCmeta‡model

for abstracting hardware circuits and automatically handling software/hardware communication•

57

58

You can mass-produce hardware; you cannot mass-

produce software - you cannot mass-produce the human

mind.

Michio Kaku

4
OoRCBridge: Seamless Integration of

FPGAs with High‡Level Software

Contents
š•1 Overview . 60

š•2 Hardware Architecture . 62

š•2•1 Interface Template • 62

š•2•2 Addressing Scheme • 6š

š•2•Š IPs Integration Supporting Memory Mapping • • • • • • • • • • 6š

š•Š Middleware for SW/HW Communication 65

š•Š•1 System Layer • 65

š•Š•2 API Layer • 66

š•Š•Š Software Development Using the Middleware • • • • • • • • • • 66

š•Š•š Impact of the Middleware on the Performance of the Link • • • • 67

š•š Hardware Controllability and Debugging 69

š•5 Case Study: Using OoRCBridge Toolset andMiddleware for Robotic De‡

velopment . 71

š•5•1 Scenario • 71

š•5•2 Debugging Using Hardware BreakPoint • • • • • • • • • • • • • 7Š

š•5•Š FPGA vs Processor • 7š

š•5•š Communication Through the ROS Middleware • • • • • • • • • 75

š•6 Summary . 76

59

This chapter presents OoRCBridge† our dedicated middleware and toolset for software/hardware

interfacing• It aims at being a generic solution for integrating FPGA within existing software systems•

Middlewares interoperability is supported in our system so that programmers can stay on their mid‡

dleware while having a possibility of hardware (FPGA“ interaction• Section š•1 provides an overview

of our methodology• Section š•2 describes the hardware architecture needed for deʘning a common

communication protocol between software and hardware• Themiddleware is detailed in section š•Š• In

section š•š† an approach for software‡like hardware debugging will be presented• Section š•5 shows

a case study where we use OoRCBridge in robotic application• The chapter will ʘnally be summarized

in section š•6•

4.1 Overview

As discussed in chapter 2† there are many advantages to use FPGA with high level software in embed‡

ded or robotic applications• However† the interfacing problem between FPGA and high level software

always remains problematic• Especially† when one want to integrate FPGAs in existing SW system

which results a hybrid heterogenous system (different devices† physical interfaces† or high‡level SW

systems† etc•“• Late binding approaches such as language-based approaches (HLS“ allows using a

unique model for SW/HW co‡design and abstracting SW/HW communication• However† these ap‡

proaches suffer from a low scalability since they are heavily architecture‡dependent (compiler† inter‡

face† etc•“• Therefore† they are not versatile enough to adapt to different devices† interface or software

systems• We argue that a solution based on a combination of early binding approach and platform-

based approach support better system modularity• By focusing on the separation of concerns and the

interface standardization† these approaches promote reusability and adaptability† thus enhance the

system scalability• Basically† the proposed approach must have the ability to easily adapt to different

kinds of physical FPGA‡processor communication interface• This may be a general purpose interface

(USB† ethernet† serial† etc•“ or a dedicated high performance SoC interface (WIEM† PCLe† etc•“• More‡

over† the solution needs to be as generic as possible to maximize the reuse of the system on different

application contexts• This can be done by deʘning a uniform middleware for SW/HW communica‡

tion• Beside being ʙexible† this middleware must provide an intuitive protocol to high level software•

The protocol has to be software‡friendly and requires less effort on hardware processing from software•

Traditional software languages are designed to work efʘciently with memory access• Therefore† a

natural way to access the underlying resources from software is to map each hardware device to a

segment of virtual memory• In doing so† all of the actual I/O interaction on hardware now occurs in

memory in the form of standard memory addressing• This can be achieved by using memory mapped

ʘle technique as in operating systems such as Unix• Each hardware device appears as a device ʘle

in the system• This ʘle can be easily mapped to a segment of virtual memory• Registers on hardware

devices are associated with address values• The software can therefore treat the device as if it is a part

of the primary memory• The same method can be applied on FPGA by mapping the FPGA into a virtual

memory region where each FPGA circuit occupies a segment of it as shown in ʘgure š•1•

60

2• Deployment stage: the bitstream generated from previous stage is deployed on the FPGA• On
the software side† the corresponding hardware driver is installed• The system then generates all
necessary APIs to allow accessing to FPGA registers via our middleware• This middleware is
application independent since it is based on memory mapping technique•

Accessing FPGA circuit registers by address requires an address resolution mechanism• An ad‡

dress/data IO interface is suitable for this purpose• The implementation ofOoRCBridge usesWishbone

interface as base addressing scheme for FPGA modules• Wishbone is an open source address/data

IO logic bus” intended to modules integration• This interfaceȍ is used widely on FPGAs to connect

several designs together• On the software side† the OoRCBridge is optimized for software develop‡

ment using Pharo (Smalltalk“• However† all (software/hardware“ principles presented in this thesis are

generic and can be applied on other hardware buses (e•g• AXI š•“ or object oriented programming

languages (e•g• Python“•

4.2 Hardware Architecture

4.2.1 Interface Template

The automatic encapsulation of inputs modules withinWishbone interface happens at the design stage•

OoRCBridge has a generic interface template that allows to automatically embed any input designs•

This template is based on the integration feature of the meta‡model presented in section Š•5•š† as shown

in the upper part of the ʘgure š•2•

The template has threemain parts: WishboneMaster† WBBusController andDynamicWishboneSlave•

The WishboneMaster is an architectural abstract design• It deʘnes only the regular master interface to

the bus controller• A subclass of this design has the responsibility to implement the detail communica‡

tion (decoder/encoder“ between Wishbone and a speciʘc physical interface• The WEIM2Wishbone

is an example† it describes how an incoming data from the physical WIEM (Wireless External Inter‡

face Module“ can be adapted to Wishbone and vice‡versa• Each realization of WishboneMaster is

speciʘc to a physical link• One can easily develop a library of classes describing different Wishbone

adapters for most popular used physical interfaces• As long as a new master is implemented based on

WishboneMaster† it can be used directly by the Wishbone template without any further modiʘcation•

A DynamicWishboneSlave is a composite design of a user‡input design• It encapsulates automati‡

cally the input design in a Wishbone slave interface• This can be done by connecting all logical ports

(speciʘed by Si† ports classiʘcation“ of the input design to a corresponding registers• These registers

are Wishbone data words aligned (8/16/Š2 bits aligned“• They are then assigned automatically to a

virtual address• Therefore† they can be accessed from the slave using the address bus• All other ports

classiʘed as physical will be forwarded directly to the bus controller for external communication•

A WBBusController is a composite design of a master and several slaves• Internally† it deʘnes an

arbiter that decides which slave is activated at a time based on the requested address from the master•

”Wikipedia: A logic bus does not specify electrical information or the bus topology• In‡
stead† the speciʘcation is written in terms of ȋsignalsȋ† clock cycles† and high and low levels•
https://en•wikipedia•org/wiki/Wishbone_(computer_bus“

ȍIt is deʘned to have 8† 16†Š2 and 6š bits buses• In our system† only 8†16 and Š2 bits buses are supported
(which can be easily converted to computer type on software side“

62

to provide the same memory mapping mechanism to the high‡level software† since the higher layer

operates independently of the lower one; (2“ they must be able to encode the address/data from

higher layer to a data format compatible with the physical interface (serial† parallel† etc•“; and (Š“ they

share the same communication protocol with the corresponding Wishbone master on FPGA† so that†

the master can decode data it receives from the driver and map it back to the wishbone•

One can have a library of pre‡built drivers for commonly used physical interface† likewise theWish‡

bone master on hardware side• These drivers can be easily added into the middleware without any

further modiʘcation at API level• Different drivers can be activated at the same time to provide access

to different FPGA devices•

4.3.2 API Layer

The API layer is completely decoupled from the system layer• The only link between them is via the

device ʘle (produced by the system layer“ which is conʘgurable• The layer has two API levels• The ʘrst

one is the low-level API which is developed in C• At this level† the system uses the memory mapping

technique on the provided device ʘle• The whole FPGA is considered as a virtual memory region• Every

FPGA register can therefore be accessible via its corresponding virtual address• Furthermore† the API

is able to access the IRQ Manager on the FPGA and makes the interruption handle available to users•

This feature allows user applications to react to an event raised on the FPGA† for example† when the

circuit ʘnishes the processing or when a hardware breakpoint meets its condition† etc• The second level

–the high-level API– is a high level language binding of the low‡level API• OoRCBridge middleware

has a Smalltalk implementation as an example of binding• The same principle can be used to bind the

API to any high level object‡oriented languages (Python† Ruby† etc•“• User application† which use the

high-level API† can therefore interact with FPGA registers as if they were plain objects•

In our system† different FPGA devices can be used simultaneously• Each one is mapped to a sep‡

arated virtual memory region• Multiple circuits can run in parallel on one or more FPGAs• They are

assigned to independent memory segments• On software† these circuits can be considered as pro‡

cesses• Since Smalltalk supports concurrency at the language level† it’s trivial to map each circuit on

FPGA to a equivalent Smalltalk process• Note that† on hardware† the circuits are independent and

there is no physical connection between them† so the synchronisation between processes must be done

on the software side• This can be achieved by using the interruption handle feature to determine which

process is ʘnished and is ready for synchronizing•

4.3.3 Software Development Using the Middleware

Both API levels can be used for software development† but the high-level API is more ʙexible and

software‡friendly since it is coupled with an object oriented language• At this level† more abstrac‡

tion can be added to hide all hardware aspects• Hardware accessing can therefore be performed in

a convenient way as plain software objects• In OoRCBridge† this is achieved using an automatic code

generation process as illustrated in ʘgure š•š• When circuit models are deployed on hardware† based

on the addressing scheme performed at the integration phase† the OoRCBridge toolset will generate

automatically an accessing class for each circuit• This class –subclass of HWMappingScheme– en‡

66

M
B

/s

0

2

4

6

8

Ideal Interface + low-level SW Interface + Smalltalk

1,528

2,715

7,77

1,98

3,153

5,009

Read speed (MB/s) write speed (MB/s)

Figure 4.6: Performance measurement for continuously read/write test

2• With the generated interface + low-level software API: the Block RAM design has been imported
to our framework and automatically integrated with the Wishbone interface without any further
modiʘcation• Therefore† the data/address registers of the block RAM were accessed via the
wishbone interface by using their associated address• On the software side† a small C applica‡
tion using our low‡level software API is developed to provide access to these registers•

Š• With the generated interface + high-level software API: This case uses the same hardware con‡
ʘguration as the second one• But on the software side† the toolset generates also the accessing
classes• The application has been developed in Smalltalk and used these classes to perform the
read/write operation to Block RAM registers on FPGA•

For the last two test cases† the wishbone has been conʘgured conforming to the WIEM on AFP51

with 16 bits of data width† 16 bits of address width and 100 Mhz clock•

The same test scenario has been carried out for these three cases: a 20 MB of data was written

continuously to the block RAM (2KB“ and then was read back and stored into an array• This process

has been repeated 10 times for each case and the average read/write speed has been calculated•

The result is shown in the ʘgure š•6•

In the ʘrst case† since the communication interface is optimized only for the block RAM on FPGA† an

ideal transfer rate of 5MB/s for reading and 7•77MB/s for writing is obtained• This† however† takes

an important amount of development time both on hardware and software which can be quantiʘed

by the number of active lines of code• The process – which performs simple read/write on the block

RAM– took totally about Š20 lines of code (180 lines of VHDL for the interface¶ + 26 lines for the IO

conʘguration + 11š lines of C code“•

In the second case† to make the interface more generic† a wishbone interface was inserted on hard‡

ware side† and the accessing on software side was realized via our low‡level API• Although the read‡

/write speed is reduced to around ŠMB/s† developers can save a lot of development time since the

interface was generated automatically• It took about 112 lines of codes (1Š lines for IO conʘguration +

99 lines for the C code“• They† however† must take care of direct management of data on the low‡level

software (registers addresses† data conversions† •etc“•

¶Not counting the VHDL code of the Single Clock Block RAM

68

disable the output clock when a control signal is triggered (i•e• the break signal“• Cutting off the clock

results in stopping the execution of the target circuit while holding its current state• Since the slave uses

the global clock† it is not affected by this event and thus can read the target circuit’s state on software

demand• The break signal is also used by the slave to trigger an interrupt to the IRQ Manager• This

allows the manual handle on software side when the breakpoint takes place• In addition to the clock

controller† a third component† the clock counter† is added to measure the execution time of the target

circuit in clock cycles• It starts as the circuit to debug starts the computations and stops when the done

signal of the circuit is asserted• Since the counter uses the same clock as the circuit† it is also halted

when the clock is disabled• In this way† the developer can inspect exactly the execution time of the

circuit at the breakpoint•

1 cnt ǥ= HWCounterMapping new.
2 cnt inputǥǐǏǏ.
Š cnt setBreakpointOnǥ#output forValueǥǔǏ conditionǥ#=.
š cnt startǥtrue.
5 cnt waitForIRQǥ[
6 cnt bpActive ifTrueǥ[
7 ȁ'Stop atǥ ', cnt output asStringȂ print.
8 ȁ'Stepsǥ ', cnt clockCount asStringȂ print.
9 cnt resumeǥtrue.

10] ifFalseǥ[
11 'Execution done' print.
12]
1Š] timeOutǥǐǏ milliseconds.

Listing 4.1: Example of using hardware breakpoint in software. The HWCounterMapping is the accessing class
of a simple hardware counter. This counter has an input and an output signal, and counts from 0 to the value of
input (100). The breakpoint is set for output at value 50 (Ćrst operand). Note that the slave uses the address of
ouput to select the second operand for the comparator

Software can resume the halted execution at anytime by writing a true boolean to the resume register

which connects to the clock controller• This action allows the clock controller to enable the output clock†

and hence wake up the target circuit and the clock counter• The execution ʙow can then continue• This

debug feature is built in supported by our low‡level API and is easily bound to any high level binding

(e•g• Smalltalk implementation“•

The listing š•1 shows an example (in Smalltalk“ of how the breakpoint is set on the software side

and how to use the IRQ Manager to handle the breakpoint• HWCounterMapping is a subclass of

HWMappingScheme• This class –generated by the toolset– abstracts a simple hardware counter circuit

on FPGA• The program simplywaits until interrupt happens then prints the value ofoutput and the number

of executed clocks at the breakpoint• The execution of the circuit is resumed (line 9“ after the breakpoint

is processed•

The only drawback of this method is that the implementation of the debug circuit requires to use

the clock‡gating technique to control the clock (clock controller“• The vendor speciʘc Digital Clock

Manager (DCM“ is required to produce a low‡skew gated clock• This feature† therefore† is vendor

dependent• Vendor speciʘc features are limited in our system since we focus on a hardware/software

independent platform to enforce the portability between systems•

70

4.5 Case Study: Using OoRCBridge Toolset and Middleware for Robotic Development

Today robotic computing systems are usually implemented using general purpose processors because

of their accessibility and simplicity which do not require speciʘc knowledge• Furthermore† many robotic

middleware are available that facilitate the development process• However† this approach restricts sev‡

eral optimization opportunities andmay not always satisfy performance† cost† and energy requirements

[CWFH1Š]• FPGA infrastructures can be considered as a good solution for these issues† especially in

complex robotic systems that require time consuming tasks• Advantages are many to use FPGAs along

with general purpose processors• On the one hand† FPGAs provide hardware acceleration and on the

other hand† CPUs allow developers to use ʙexible software development environments• This combina‡

tion also allows reduce the overall energy consuming of the application by carrying critical tasks on

FPGA and hence deducing the software overhead•

However† software/hardware integration remains a challenge for robotic developers and usually

results in a loss of productivity [BRS1Š]• Robotics development involves experts from different domains•

To encourage them to adopt FPGAs in their projects† a uniʘed software/hardware platform for easily

integrating FPGAs in existing robotic system is mandatory• Above all† this platform must be generic

enough to be reused fromproject to project withminimal modiʘcation• OoRCBridge is well suited for this

purpose• Firstly† it eases the software/hardware integration with the help of a dedicated middleware

and an automatic code generation process• Secondly† its API can be easily integrated to other robotic

middleware – by binding the low‡level APIs to the new environment• This allows developers to stay on

their robotic middleware while have additional hardware accessing feature•

This section demonstrates a use case of OoRCBridge in robotic development where a robot uses a

camera to detect and follow an object speciʘc by a colour pattern•

4.5.1 Scenario

The robot follower is developed using the ROS middleware• The application consists of a ROS network

with many nodes for controllers and sensors• We use Pharo Smalltalk for the implementation of ROS

nodes –as the Smalltalk binding of ROS client API is available•

Among the sensor nodes† there is a node that handles a camera –called detector node• It is the

principal node for object tracking• The principle is simple† the nodewill capture images from the camera

and use a colour ʘlter algorithm to detect object position• This latter will then be communicated to the

controller node via the ROS network• Since a software implementation of the image processing can

easily be achieved† it is not an optimal solution• The application require a real‡time tracking from the

detector node which is therefore a time‡critical task• A software implementation may not fast enough

to respond to this characteristic† especially for a large image resolution (e•g• VGA“• Furthermore† the

use of a high level language to implement the task can add more overhead to the system and thus can

increase the overall energy consummation –another factor that should be considered in such robotic

application• The comparison in section š•5•Š will verify these hypothesis•

FPGAs are suitable for resolving these kinds of problem• In this demonstration† we focusmainly on the

implementation of the image processing algorithm –critical part of the node– on FPGA• For simplicity†

we use the same device (i•e• APF51“ as the previous experiment to build the detector node• The idea is

71

address

OV7670

Camera

Capture

Logic
HSV Filter

Center of

mass

Block RAM

32k x 16bit

I2C

Registers

data

sioc

siod

8 bits

href

vsync

pclk

ready

address

16 bits

pixel

ready pixon

rez160x120

rez320x240

x y

controller

addr.

data

frame_ok

16 bits

collector

a
d

d
r. d

a
ta

Frame buffer

Figure 4.8: Original design of the detection circuit

that we connect directly a 0V7670 camera to the FPGA (APF51“ via its GPIOs• The FPGA captures the

image from the camera (pixel by pixel“ and ʘlters each pixel using a hardware HSV ʘlter by a speciʘc

colour pattern• The ʘltered pixels are then used to calculate the barycenter of the detected region

which ʘnally provides the position of object• The hardware design of this process can be described

using our meta‡model† but here we use existing VHDL design from another project instead• This allows

to demonstrate the ability of reusing existing third‡party designs (backward compatible“ of the meta‡

model•

Figure š•8 shows the original design of the detection circuit† it contains 5 main components:

ȏ The camera controller is used to conʘgure the functionalities of the camera via a I2C‡like inter‡
face• The two important conʘgurations used in this experiment are: (1“ the pixel is 16 bits RGB
565 format and (2“ the image is in VGA mode (6š0xš80“•

ȏ The capture logic controls the image acquisition• From here the resolution of the image can
be conʘgured by either 6š0xš80 (VGA“ or Š20x2š0 (QVGA“ or 160x120 (QQVGA“ via
dedicated ʙags• This is achieved by downsampling the input image from camera by a factor
(e•g• for the QVGAmode† for every 2 lines 1 is skipped and every 2 pixels† only 1 is captured“•

ȏ The HSV ʘlter unit ʘlters each pixel by converting it from RGB to HSV format and then test if it
falls into the threshold colour range of a speciʘc colour pattern• This unit outputs a 1 bit binary
pixel•

ȏ The center of mass unit uses the binary pixel from the HSV ʘlter and the pixel position to calculate
the barycenter of the detected region• The unit assumes that there is only one region in the ʘltered
image• The object position will be the barycenter of all regions•

ȏ The frame buffer stores the ʘltered image into a block RAM† each pixel is encoded as 1 bit
(binary image“•

This design has been imported to our system using the meta‡model without any modiʘcations• Each

component corresponds to a design class• The OoRCBridge toolset has been used to generate the

The HSV colour space is used because it is less sensitive to lighting variations

72

OV7670

Camera

Capture

Logic

HSV Filter

Center of

mass

8 bits

href

vsync

pclk

a
d

d
r.

1
6
 b

its

4 pixels

Collector

ready

pixel 1

HSV Filterpixel 2

HSV Filterpixel 3

HSV Filterpixel 4

ready

address

Block RAM

32k x 16bit

addr.

data

16 bits

collector

a
d

d
r. d

a
ta

address

4 bits

ready

ready

Frame buffer

Figure 4.10: Optimized design of the detection circuit with 4 HSV Ćlters in parallel

we’ve acquired a value around 2556 global clocks cycles”” (for VGA setting“• So that it takes about

š global clocks cycles to produce a pixel at the highest resolution (shortest pixel production time on the

capture unit“• This result conʘrms the proposed hypothesis•

A possible solution to this problem is to collect š pixels (∼ /“ from the capture unit and then

process them in parallel by using š separated ʘlters• At highest resolution† the time of collecting š

pixels (16 clocks cycles“ is approximatively the processing time of a pixel on the ʘlter unit (1š clocks

cycles“• By pipelining the capture unit† the ʘlters unit† and the center of mass unit† the pixels processing

part takes no extra time compared to the pixel capture time• This was done bymodifying the VHDL code

of the original design• The new version is shown in the ʘgure š•10• Since this new design is optimized

for the highest image resolution (VGA“† it obviously works well with the lower ones• Again† the design

can be imported and used in the framework without any problem•

4.5.3 FPGA vs Processor

As mentioned previously† using FPGA to handle the complex processing task can improve the per‡

formance while reducing the power consumption• To verify this hypothesis† we have performed an

experiment based on object detection algorithm with two scenarios:

Image processing using software: The FPGA is used to acquire image from the camera sensor and

store it in a local block ram• The processing software is developed in C and runs on the ARM• This

program continuously fetches image from FPGA’s block RAM and ʘlter it (in HSV colour space“ based

on a colour pattern• Since the internal BRAM (Block RAM“ is limited† the FPGA can only store each

time an image colour of QQVGA resolution (160x120“• Therefore the scenario works narrowly on

QQVGA image•

Image processing using FPGA: In this scenario the image processing part is handled by the FPGA•

The optimized detection circuit on ʘgure š•10 is used• For the experimentation† the circuit is conʘgured

to work with VGA image• In this scenario† the software part simply fetches the object position as soon

as it is available•

””Note that† here we measure the number of global clocks cycles† not of pixel clocks cycles that are provided
by the camera

7š

0

8,5

17

25,5

34

FPGA (VGA) processor  

(QQVGA)

Processing time per frame (ms)

0

0,4

0,8

1,2

1,6

 FPGA (VGA) processor  

(QQVGA)

power (W)

Figure 4.11: On the left, the power consumption between the software and hardware implementation of the
object detection. On the right, the processing time per frame of each version

Figure š•11 shows the average power consumption and the processing time of each frame between

the two scenarios• The result demonstrates that† the VGA image processing on FPGA is two times

faster than the QQVGA software version while consuming two times less power• The ʘrst scenario is

performed entirely sequential• So the total processing time for each image is denoted as : t = tc+ttf+tp•

With tc is captured time† ttf is the image transfer time and tp is the processing time on processor• In the

second scenario† since the data is streamed† the ʘlters are in parallel and the processing units are

pipelined† the processing part takes no extra time compared to the capturing part† that is: tʁ = tc• This

proves why the image processing on FPGA (VGA“ is much faster than on the processor (QQVGA“•

Regarding the power consumption† the ʘrst scenario requires energy on both FPGA (for captur‡

ing“ and processor (for processing“• In the second scenario† only the FPGA is in need of power† the

processor only fetches the object position from the FPGA and hence† has less impact on the power

consumption•

Literally† the work on [CWFH1Š] has proved that FPGAs outperformed GPU and CPU for ʘxed

algorithms using streaming such as digital signal processing† or data encryption† etc•; which is exactly

our case•

4.5.4 Communication Through the ROS Middleware

The detector node’s software runs on the ARM processor of the APF51 board• The Smalltalk binding

of the ROS client API is prior installed on the node• Since our middleware API also supports Smalltalk

binding† it is straightforward to develop application using a mixture of the two middlewares without

any problem† as shown in listing š•2•

1 |node pub hwdetector pos|
2 "Hardware accessing class generated by the middleware"
Š hwdetector ǥ= ODMappingScheme new.
š hwdetector resolutionǥǓ "VGA".
5 hwdetector startǥtrue.
6 "ROS API for communication via ROS middleware"
7 node ǥ= ROSNode new.

75

H
z

0

15

30

45

60

window

47 146 195 245 295 345 395 443 493 543 593 644 694 744 794 843 893

Average

Frequency(hz)

Figure 4.12: Publishing frequency of the topic /spybot/objectpos in regarding different window sizes of messages

8 node nameǥ'/detector'.
9 node masterǥ'ǐǘǑ.ǐǕǗ.ǐǏ.ǐǏǏ' atǥǐǐǒǐǐ.

10 pub ǥ= node createPublisherǥ'/spybot/objectpos' typeǥ'std_msgs/IntǒǑ
MultiArray'.

11 node deploy.
12 "main loop for publisher"
1Š [node rosOk] whileTrueǥ[
1š [hwdetector fram_ok = true] whileFalse.
15 pub publishǥ { hwdetector x. hwdetector y}.
16]

Listing 4.2: A mixture of ROS API and OoRCBridge middleware API. The code publishes object positions
through the ROS middleware

Thanks to the automatic code generation feature of the toolset† the hardware accessing via our

middleware is simple and convenient• Software developer only need about 16 lines of code to connect

the node to the ROS network† access object positions from hardware and publish them to the controller•

The code is quite comprehensive for roboticists who are not hardware experts• Without the toolset and

middleware† the implementation would be more speciʘc and complicate• Manual development will

take an important amount of time on software/hardware communication and make the maintenance

of the application more difʘcult† since each change on the hardware may cause a propagation change

on the software –from low level to high level•

Figure š•12 shows the publishing frequency of the detector node to the network• We’ve achieved a

frequency of around 27 Hz• This frequency is quite good for a real‡time tracking robot•

4.6 Summary

Software/hardware interfacing remains always problematic as a time‡consuming† expert‡requiring

and error‡prone task• It demands an important development effort while has less contribution to the

overall application and can cause a loss of productivity• Nevertheless† by using middleware† the task

76

can be generalized and simpliʘed at certain levels• OoRCBridge proposes a solution for this problem•

It provides a highly abstract environment for software/hardware communication• The design of the

system relies on the perspective of software programmers –who are not always hardware experts –

and therefore is software‡friendly• The middleware and the toolset allow to close the interfacing gap

by abstracting the software/hardware communication• Automatic code generation (both on software

and hardware“ handles complex software/hardware co‡design tasks and therefore avoid the error‡

prone problem• In OoRCBridge† some manual tasks have to be done at the very low level where the

physical interface meets the hardware driver• This is unavoidable since they depend on how the FPGA

is physically connected to the processor• However† these tasks can be considered as generic to a

speciʘc physical link and can be reused on different applications without any problem –as long as the

physical interface remains the same•

77

78

The Internet will disappear. There will be so many IP ad-

dresses, so many devices, sensors, things that you are

wearing, things that you are interacting with, that you won’t

even sense it. It will be part of your presence all the time...

Eric Schmidt† Google chairman

5
CaRDIN: A Dedicated Environment for Edge

Computing on Reconʘgurable Sensor

Networks

Contents
5•1 CarDIN: overview . 80

5•2 Architecture of a Node . 82

5•Š Edge‡centric Nodes Development with CaRDIN’s middleware 83

5•Š•1 CaRDIN’s Distributed Object API • • • • • • • • • • • • • • • • • 8Š

5•Š•2 Automatic Remote SW/HW Reconʘguration of Nodes • • • • • 85

5•Š•Š Discussion • 87

5•š Case Study 1: Camera Sensor Node Performing Image Processing . . . 88

5•š•1 Scenario • 88

5•š•2 Benchmarkings • 90

5•5 Case study 2: distributed algorithm development and deployment with

CARDIN . 91

5•6 Summary . 95

This chapter mainly focuses on the problem of developing and deploying applications on edge‡

centric sensor networks† consisting of hybrid nodes• The network topology is† however† shadowed and

unspeciʘed• Since the network is based on internet protocol† any IP‡based (Internet Protocol“ network

topology can be used with the middleware (CaRDIN“ as an underlying networking layer (system level“•

We start with the discussion about the context and the general view of CaRDIN in section 5•1• Its

79

architecture is then detailed in the section 5•2• Section 5•Š describes the programming mechanism of

edge‡centric SN based on CaRDIN middleware• Before concluding the chapter† two case studies is

showed to demonstrate the proposed platform as a proof of concept in section 5•š and 5•5•

5.1 CarDIN: overview

Despite of various existing middlewares† developing and deploying end‡to‡end application on SN (in

general“ remains highly complex• There are alway the problems of scalability and heterogeneity• Scal-

ability issue often relates to the handleability of a middleware in different SN scales• In a large scale

SN† manual management† development and deployment of each node is not a good idea• Remote

and dynamic methods are more preferable in this case• Such mechanism allows developing and re‡

conʘguring the nodes without physically removing them from the deployment site• The heterogeneity

problem impacts not solely the hardware architecture of a node but also the software design process•

That is† nodes’ hardware is often homogenous while software development is usually performed in a

heterogeneous way• Most existing middlewares rely on a ʘx hardware architecture for building nodes

and have difʘculty to adapt different node’s hardware architectures to the system• On the software

side† application development involves programming both server and nodes• This result in a complex

process since programmer needs to individually develop each nodes† then link them together on the

server side• This process may not be homogenous since the development of the development of the

server part and the nodes may use different languages† technics or architectures (processor vs• micro‡

controller“• Hardware homogeneity limits the heterogeneity of the SN while SW heterogeneity makes

the development process more complicated and error prone•

Existing middleware solutions tend to focus on data centralization† they operate on SN consisting

simple nodes (HW and SW“ with limited capabilities• These nodes simply perform data collection and

delivery• A decentralized architecture such as edge‡centric computing† on the other hand† pushes the

data processing to the edge of the network and thus requires more capable nodes (SW and HW“•

Such nodes can handle more complex application for data processing and decision making• A truly

distributed environment is therefore needed for such systems that allows to: (1“ push the processing

power of the application to the edge‡centric node† (2“ promote the development† management and

deployment of distributed application on the network•

Up until now† the problems of HWdesign and HW/SW integration have been addressed• We have

proposed dedicated toolset andmiddleware for SW/HWco‡design on a hybrid FPGA/processor de‡

vices• However† to use the system for edge‡computing† a dedicated distributed environment for edge‡

centric applications is still missing• The proposed middleware must take into account the development

and deployment of not only the SW but also the HW on hybrid nodes• CARDIN is our proposition to

solve this problem•

CaRDIN proposes a dedicated middleware† hardware architecture and toolset for edge computing

environment based on IP‡based SN• As discussed in chapter 2† IP‡based SNs provide an homogeneous

communication layer for connecting heterogeneous devices• The use of IP‡based SN has two main

beneʘts: (1“ it solves the hardware heterogeneity problem by promoting the integration of wide‡range

of IP‡compliant devices; (2“ it provides the compatibility with existing IoT infrastructure and thus easily

80

<<use>>

HW
designs

Developper CaRDIN

Import Meta-Model

Interface
integration

Synthesis

generateDistributed
classses

bitstream

Application

distributed
API

Automatic
HW/SW

Deployment

software
partition

Distributed
execution

Execution

D
E

S
IG

N
 TIM

E
R

U
N

 TIM
E

1

2

Figure 5.1: Workćow of CaRDIN. Developers need to: (1) import the HW IP to system for software/bitstream
generation; (2) use the generated classes to develop their application

connects things to the internet•

In CaRDIN† to reinforce the equipment at the edge of the network† hybrid FPGA devices (i•e• FPGA

+ processor“ are used• These devices are ideal for balancing the performance requirement with the

energy consumption limitation of edge‡centric nodes• They could have many form‡factors and archi‡

tectures• Therefore† to ease the SW/HW co‡design† CaRDIN abstracts the SW/HW interaction on a

node using a generic communication model (based on OORC‡Bridge“•

Basically† the network’s architecture adopts a base station (data center† cloud“ at the core where the

services are exposed to the end‡user• This base station is surrounded by nodes with small web server

constituting a content‡distributed network”• Web services (REST‡based† websocket“ are used as the

base communication model for the network• To develop applications across the proposed network†

the CaRDIN’s middleware relies on a Virtual Machine solution• The VM creates a unique SW layer for

application building• This provides an homogenous SW environment for the development and deploy‡

ment of distributed applications on the network• The VM and web‡services enable also the possibility

of automatically and remotely reconʘguring SW/HWon edge‡centric nodes• With these features† ap‡

plications now can be developed and centralized in one place† while being executed in a distributed

manner across the network•

CaRDIN consists of a predeʘned software/hardware architecture and a toolset that help to efʘ‡

ciently build and deploy edge‡centric nodes• Figure 5•1 shows the workʙow of CaRDIN both at design

time and runtime• At design time† the base station has a toolset dedicated to interface integration• The

toolset takes HW designs (could be legacy IPs (VHDL“ or OoRC models“ as input and generates all

the required interfaces to : (1“ the communication between the FPGA and the processor on the node†

(2“ the node‡to‡node and node‡to‡base station communication• This toolset outputs a bitstream and

software API classes that will be deployed on the nodes at runtime• Developers can use the generated

”The network topology could be any IP‡compliant topology

81

API classes along with our distributed object API to remotely access the FPGA on the nodes• From the

developer perspective† the entire application is developed on one place as a regular program† while

being distributively running across the network• For that† at runtime† CaRDIN provides a mechanism

for automatic SW partitioning and deploying software/bitstream on the nodes from the base station•

5.2 Architecture of a Node

Since OoRCBridge is designed for SW/HW co‡development† it ʘts well with the purpose of building

edge‡centric nodes• OoRCBridge can apply architectural design constraints on edge‡centric nodes

and allows to have a generic and homogenous application layer on top of heterogenous devices•

The SW/HW interface is standardised with an uniform SW/HW communication mechanism• This al‡

lows to abstract the HW accessing from SW point of view• This separation of concerns promotes the

independence of higher middleware from the underlying HW architecture• The middleware handles

automatically the SW/HW communication and thus reduces the application design complexity•

Figure 5•2 shows the simple view of the proposed SW/HW architecture for an edge‡centric node

built on top of an FPGA coupled with a processor (e•g• ARM“• We use OoRCBridge for HW (FPGA

IPs“ integration and HW/SW communication• CaRDIN middleware relies on APIs exposed by OoR‡

CBridge to provide abstract hardware access to user application• Both OoRCBridge and CaRDIN are

hosted by an embedded‡oriented Linux OS• The IP Stack is part of the OS and is used by CaRDIN to

implement the communication protocol (HTTP† REST“• Our middleware is based on a lightweight (small

memory footprint“ HTTP server that supports plugins• These plugins can be loaded at runtime on de‡

mand• There are two core plugins: the REST engine and an embedded interpreted language Virtual

Machine (e•g• Smalltalk VM“•

The REST engine implements the web service mechanism that handles the network communication•

The REST architecture does not have the deʘnition of common data formats• The exchanged data can be

formatted differently depending on application• XML is commonly used for data formatting† but using it

on sensor nodes is not very suitable• The XML syntax is too verbose and requires a complicated parser

with signiʘcation computational overhead• Javascript Object Notation (JSON“ is a good alternative

for data formatting• Its syntax is simple and compact• Hence† it is well suited to sensor nodes• In

CaRDIN† all network messages are in JSON format•

All remote commands between nodes (in JSON“ are decoded to software objects (e•g• Smalltalk

objects“ by the REST engine and handled by the VM• This VM has a dedicated API and primitives to

access to the FPGA registers (using OoRCBridge“ and to reconʘgure the FPGA given the bitstream•

Returned data objects from the VM can be serialized to JSON message which can be transferred to

other nodes using the REST engine•

The VM along with the REST web services offers two beneʘts : ʘrst† since the node supports dynamic

language† the software on the node can be evolved at runtime; second† the node can be reconʘg‡

ured (software/hardware“ remotely without the needing to restart the node• The system enables the

distributed programming on the node• In other words† the software development can be centralised

on the base station while its deployment and execution are actually automatically distributed across

nodes•

82

SSSynchronisableObject• This class handles the network communication between objects (caller object

and callee object“ using the REST API• The key different of our DOA in comparison to other DOA is that†

at deployment time† the same distributed class will be deployed on both caller node and servant node•

No partition of methods needed• An instance of this class can play the role of either caller (master“

object or callee (slave“ object• Depending on the role of this instance (caller or callee“† its behaviour

when executing a method is different• Concretely† if the instance is a caller object† all annotated meth‡

ods (e•g• with pragma“ will be considered as remote methods and will be remotely invoked using our

DOA• Otherwise† if the instance is a callee object† it will recognize all annotated methods as local

methods and others methods as remote methods• This mechanism allows a full bidirectional communi‡

cation between objects using the same connection (for each remote call“• That is† beside performing

any remote call from the caller object† the callee object can also perform a remote call (e•g• callback

for returned data“ to the caller object on the same connection• The mechanism is applied on any node

on the network† and allows a peer‡to‡peer communication between nodes without passing to the base

station• Note that† to record changes on a distributed class† CaRDIN will assign a (new“ version num‡

ber to it when it is created or modiʘed• A deployment process on remote nodes will be automatically

triggered when this number is changed•

1 "Simple distributed class with a remote method that calculates the
factorial value of a given number"

2 ExampleApp >> factorialOfǥ aNumber
Š <#remote>
š |f|
5 "implementation of the method on callee"
6 f ǥ= ȁǐ toǥ aNumberȂ injectǥ ǐ intoǥ [ǥproduct ǥeach | product * each].
7 "remote callback to caller"
8 self printFactorialǥf
9

10 "This is a normal method"
11 ExampleApp >> printFactorialǥ aNumber
12 Transcript showǥaNumber
1Š

1š "This distributed class can be used by creating an object and binding it to
the address of a node, the callee object will be automatically created
on that node"

15 obj ǥ= ExampleApp bindToǥ 'ǐǘǑ.ǐǕǗ.ǐ.ǐǏǥǘǐǘǐ'.
16 obj factorialOfǥ ǐǏ. "ǒǕǑǗǗǏǏ"

Listing 5.1: ExampleApp –a subclass of SSSynchronisableObject– is a distributed class with one annotated
method (#factorialOf:). On the base station, at the Ćrst object instantiation of the class (line 15), the class is
automatically deployed on remote node. Line 16 requires the node to calculate the factorial of 10, then prints
it on the base station

When a caller wants to perform remote call on the callee object† it initiates the communication with

the remote object• The caller arguments are then serialized to JSON and passed to the callee object

via the REST API• On the servant node† the REST engine receives the JSON data and reconstructs the

argument objects† the corresponding method is then called on the callee object• The result of the call is

ʘnally serialized to JSON and send back to the caller object•

8š

Distributed class Node address

If the class is not found or outdated

1

If the circuit is not found or outdated

2

<<doIt>>

obj := CameraUnitWrapper bindTo:'192.168.1.10:9192'

Caller node

Figure 5.5: If the SW/HW is not deployed or outdated, the initialization of a distributed object will automatically
trigger the reconĆguration of the node

86

and the signature of the current circuit on FPGAȎ• The sequence diagram on ʘgure 5•5 describes in

detail this update process•

5.3.3 Discussion

The main ideas behind our middleware is Centralization of code† automatic deployment and Collab-

oration execution• Centralization of code facilitates the maintenance† management and development

of distributed applications• All edge‡centric nodes carry the same initial software setup with CaRDIN

middleware pre‡deployed• Application development is incremental and centralized on one place•

New node’s behaviour can be easily incorporated to the application by binding objects to the node•

The DOA automatically handles the deployment and synchronisation of objects• A node can† at the

same time† plays the role of a master(caller“ or slave(callee“ node• The middleware is dedicated to

edge‡centric computing and thus promotes the development of distributed algorithms on edge‡centric

nodes• Collaboration execution means the execution and the calculation resource of applications are

diffused to the edge of the network† through transparently referencing and mixing surrogates for remote

objects with local objects•

Our DOA shares some similarities with the base principle of the CORBA [OC12] speciʘcation† but

indeed has some distinguished characteristics• Firstly† since we target a homogenous and centralized

software environment on top of heterogenous hardware devices† a single language is used for dis‡

tributed application development• Therefore there are no need for object interface deʘnition (using

an interface deʘnition language and dedicated compiler“• Client and server code coexist in a same

distributed class so that the caller object and callee object naturally share the same interface• This

simpliʘes the application development and reduces the middleware overhead on embedded system•

Secondly† in our DOA† nodes on the network are equal (including the base station“† a node can at the

same time play the role of caller node and servant node (depending on the role of distributed objects“•

Therefore† nodes can coordinate between them without the present of a centralized server or name

server• We rely on the REST protocol for object inter‡communication• This allows us to beneʘt from the

existing embedded HTTP server without adding additional software layer for the communication and

thus results in a small footprint middleware•

While provide enough features to develop distributed application on the SN• This version of our DOA

still has some limitations: (1“ To successfully deploy a distributed class on a remote node† its supper class

must be already existed on that node• Although the DOA allows to remotely deploy a speciʘc class

on the remote node† this must be manually handled by developer• (2“ The error/exception mechanism

is simple by returning an error object describing the stack trace of the remote VM• (Š“ There is not yet

a mechanism to automatically manager the life cycle of remote objects• Our DOA allows to delete

remote reference objects by manually performing remote delete (garbage“ operation•

ȎAssigned automatically by OoRCBridge toolset

87

OV7670

Camera

Capture

Logic

HSV Filter

Center of

mass

8 bits

href

vsync

pclk

a
d

d
r.

1
6

 b
its

4 pixels

Collector

ready

pixel 1

HSV Filterpixel 2

HSV Filterpixel 3

HSV Filterpixel 4

ready

address

Block RAM

32k x 16bit

addr.

data

16 bits

collector

a
d

d
r. d

a
ta

address

4 bits

ready

ready

Frame buffer

Figure 5.6: Object detection implementation on the FPGA.

5.4 Case Study 1: Camera Sensor Node Performing Image Processing

5.4.1 Scenario

This section describes an experiment that demonstrates and validates the proposed prototype platform•

The CarDIN middleware is implemented to support the Smalltalk language but the principle applies to

any dynamic language (Python† Ruby† etc•“• The node’s hardware is based on an Armadeus APF51 Sin‡

gle Board Computer which adopts a Freescale i•MX515 (Cortex‡A8 @ 800MHz† 512MB DDR RAM“

and a Xilinx Spartan 6 (LX9“• The physical interface between the FPGA and the processor is WIEM

(Wireless External InterfaceModule“ with 16‡bit dedicated data/address bus• The experiment is based

on the image processing example presented in the previous chapter• It shows an implementation of a

sensor node for image processing using our platform based on the FPGA circuit presented in the previ‡

ous chapter• An OV7670 camera is connected directly to the GPIOs of the FPGA (APF51“• The FPGA

acquires image from camera and ʘlters it using a HSV ʘlter based on a color pattern• This ʘltered image

is then used to estimate the position of object as the barycenter of the largest connected component•

Figure 5•6 shows the simpliʘed block diagram of the object detection circuit (at 100Mhz“• This circuit

can be conʘgured (via dedicated ʙags“ to work with either VGA or QVGA or QQVGA image• The

base station and the node participate to the same LAN network using ethernet•

1 DeviceMapper subclassǥ #CameraUnitWrapper
2 CameraUnitWrapper >> gateway
Š ^'ffvm/portal'
š CameraUnitWrapper >> signature
5 <remote>
6 ^self intǐǕAtǥǐǗ
7 CameraUnitWrapper >> x
8 <remote>
9 ^self intǒǑAtǥǑǓ

10 CameraUnitWrapper >> y
11 <remote>
12 ^self intǒǑAtǥǑǗ
1Š "The following methods are manually added"
1š CameraUnitWrapper >> position

88

15 <remote>
16 ^{self x. self y}
17 CameraUnitWrapper >> positionDoǥaCallbackBlock nsǥanInt
18 <remoteǥ#aCallbackBlock>
19 anInt timesRepeatǥ[
20 aCallbackBlock valueǥ self position.
21 ǐǏǏ milliseconds wait.
22]
2Š CameraUnitWrapper >> stream
2š self positionDoǥ[ǥp| p print] nsǥǔǏǏ.

Listing 5.2: Example of a distributed class. The methods with a pragma are executed remotely. Others are
locally executed methods

The image processing VHDL code is imported to the OORCBridge toolset for interface generation

and virtual address mapping• The bitstream and the corresponding distributed class are then generated

automatically and ready to be deployed on the node• Listing 5•2 shows the completed distributed class•

The ʘrst 5 methods (lines 2‡16“ are generated automatically by the toolset• The last 2 methods (lines

17‡2š“ are manually added for more complex features• At this point† no further development is needed

for the node• In the developer point of view† the remote access to FPGA can be coded in a single class

(11 active development lines“• The system abstracts all the network communication† software partition†

and hardware accessing that are performed transparently behind the code•

The API supports two kinds of pragma• The <remote> pragma on a method informs the caller that

the method should be called remotely• When executing this kind of methods† the caller gathers all

necessary arguments then passes them to the corresponding callee object• This latter will handle the

execution and send back the result to the caller• The second kind of pragma† the <remote:...>† operates

similarly to the ʘrst one† except that it allows to specify a callback for each returned data• This is

especially helpful when continuously streaming data from the servant node to the caller node• The

#positionDo:ns: (line 17“ method in the listing 5•2 uses this kind of pragma• It allows to stream a number

of samples of object position (speciʘed by anInt“ to the base station at a frequency of 10 Hz (100

milliseconds“• Each sample will be handled by the callback aCallbackBlock† which is a Smalltalk block

closure• Since the method is executed on callee object† the callback (line 20“† on the opposite† is

executed locally on caller object for every returned sample of data•

The #gateway method enables the caller object to identify the REST resource (url“ of the sensor node•

This is necessary when the caller intends to initialize a communication with the callee object• On the

sensor node† all the annotated methods of CameraUnitWrapper† such as #signature†#x† #y† #position†

and #positionDo:ns:† operate as local methods and have direct access to the FPGA register• On the

base station† annotated methods (with <remote> or <remote:...>“ are recognized as remote methods

and will perform remote calls when executed• Others (without pragma“ are normal Smalltalk methods

and therefore will be performed locally on the base station•

The method #stream in line 2Š is a normal Smalltalk method that uses a remote method in its body•

The code requires the #positionDo:ns: method to stream 500 samples of object position from the node

and then simply prints each one of these on the base station•

89

Table 5.1: Memory footprint(KB) of the web services
Module Resident Set Size Shared memory
Httpd 6š0 5šš

REST+VM 5Š2 80

Resource Object detection circuit
Slice registers 1†00Š/11†šš0 (8%“
Slice LUTs 1†551/5†720 (27%“
RAMB16BWERs Š2/Š2 (100%“
BUFG/BUFGMUXs Š/16 (18%“

Table 5.2: FPGA resource used

5.4.2 Benchmarkings

At the beginning† when the node is powered on† only the software stack is running: the http server†

the REST engine and the Smalltalk VM• Table 5•1 shows the static memory footprint of the software

stack• The Resident Set Size points out the actual physical memory occupied by the software stack• This

memory portion can be increased when the objects memory allocated for the Smalltalk image is full•

In this case† the VM will claim for more dynamic memory allocation•

Table 5•Š shows the average percentage of the resources occupied by the software stack at different

operation tests: (1“ idle stage (with or without plugins“• (2“ The SW is deployed on the Smalltalk image•

(Š“ The bitstream is conʘgured on FPGA• (š“ The base station continuously fetches 500 samples of object

position from the node with the rate of 10Hz• (5“ The node streams 500 samples of object data to the

base station at a frequency of 10Hz•

At the idle stage (with or without plugins“† the software stack has no impact on the CPU consumption•

TheHTTP server takes around0†Š%ofmemory† up to 0†5%when the system is fully loaded• Thememory

used is nearly constant when the node is in operation mode•

The hardware reconʘguration takes most of CPU resource in the 5 tests• This process consists in

streaming the bitstream from the base station to the node† then deploying the bit stream on the FPGA•

Since it invokes some kernel modules to communicate with the FPGA† the CPU has a work overhead

(26†2%“• After the reconʘguration† the FPGA starts its processing and is ready for communication• The

table 5•2 shows the resource used by the object detection circuit on the FPGA•

Stage Memory used(%“ CPU used(%“
(1“ Httpd only (idle“ 0•Š 0
(1“ Full system (idle“ 0•5 0
(2“ Software reconʘg• 0•5 š•7
(Š“ Bitstream reconʘg• 0•5 26•2
(š“ Frequently fetching 0•55 21
(5“ Streaming 0•5 5•Š

Table 5.3: Resource used of the software stack in the node.

90

The last two tests carry the same operation: fetching 500 samples of object position from the node

at the rate of 10 Hz• The frequently fetching test requires to open repeatedly a connection between

the node and the base station (500 connections“• These connections add more overhead to the CPU

consumption (21%“• The streaming test involves only one connection† then continuously streams data

via that connection• Therefore† the process consumes averagely only 5% of the CPU resource•

Figure 5•7 shows the network load on the node in different active operations• Since the software/hard‡

ware reconʘguration requires ʘles transfer† the bandwidth used for this operation goes up to 2Š5 KiB/s

for reception (RX“ and 9•58 KiB/s for transmission (TX“ in around 2 seconds• Others operations require

the bandwidth of less than 20 KiB/s for RX and less than 5 KiB/s for TX• Obviously† the frequently fetch‡

ing mode uses more network resource than the streaming mode• Above all† the fetching feature can

be used to handle occasional requests since the network resource could be rapidly free at the end of

a transmission• The streaming feature† in the other hand† is suitable for persistent and real‡time con‡

nection† however† it requires that the network resource is reserved and blocked for a long time• There

may be many connections on a node at the same time† therefore† the choice (fetching vs streaming“

depends on the frequency of data that one wants to transmit•

This experiment uses an existing VHDL code for the image processing on the FPGA• But the scenario

can be expanded by starting with a pure software image processing implementation (e•g• in C“• Mod‡

ern high level synthesis tools are able to synthesize this code to RTL• Our toolset can then handle the

generated VHDL•

5.5 Case study 2: distributed algorithm development and deployment with CARDIN

To demonstrate the development and deployment of distributed algorithmon the network usingCARDIN†

we consider a simple camera surveillance scenario† as shown in ʘgure 5•8: Š camera sensor (hybrid“

nodes are deployed on the network† they cary the same operation that tracks a moving ball based on

a colour pattern• At anytime† the base station can ask any one of them about the node that actually has

the ball• These nodes need to coordinate between them to decide who is handling the ball• This deci‡

sion could be based on the size of the ball seen by each camera• The node with the largest detected

zone will be voted for the leader•

The three camera sensor nodes are based on the same setup of the previous case study (section 5•š“•

For the detection circuit† to calculate the size of the detected zone† we replace the frame buffer unit with

a pixel counter unit† as shown in ʘgure 5•9• This latter will count the total number of the ʘltered pixels

as the size of the detected zone• This value can be query from software via CARDIN middleware•

For the voting algorithm† we base on a simple Token Ring Election algorithm§ as shown in algorithm

1 [Ray1Š]• Concretely† each node on the network has a unique ID and a reference to the next node•

The last node refers to the ʘrst node to constitute a ring• The same token ring election algorithm is

implemented on each node• When the base station wants to know the leader (e•g• the node which has

the ball“† it demands a node to start the election† an election message is created and sent from node

to node until it reaches the original sender (the starter node“• At this point† the decision is made to vote

§http://www•cs•colostate•edu/ cs551/CourseNotes/Synchronization/RingElectExample•html

91

t t+5

 (s)

t t+5

 (s)

(a)

t t+5 t+10 t+15 t+20 t+25 t+30 t+35 t+40 t+45 t+50 t+55 t+60 t+65

t t+5 t+10 t+15 t+20 t+25 t+30 t+35 t+40 t+45 t+50 t+55 t+60 t+65

(s)

(s)

(b)

t t+5 t+10 t+15 t+20 t+25 t+30 t+35 t+40 t+45 t+50 t+55 t+60 t+65

t t+5 t+10 t+15 t+20 t+25 t+30 t+35 t+40 t+45 t+50 t+55 t+60 t+65

(s)

(s)

(c)
Figure 5.7: Network load of the node on different operations: (5.7a) the software/bitstream reconĆguration
process ([t, t + ʁ]); (5.7b) the frequently fetching test ([t, t + ʀ]) and lastly (5.7c) the streaming test ([t, t + ʀ]). t
is the time when an operation begins.

92

1 2 3

Ball

Figure 5.8: 3 camera sensor nodes tracking a moving ball. Question: Which camera actually has the ball?

OV7670

Camera

Capture

Logic

HSV Filter

Center of

mass

8 bits

href

vsync

pclk

a
d

d
r.

1
6

 b
its

4 pixels

Collector

ready

pixel 1

HSV Filterpixel 2

HSV Filterpixel 3

HSV Filterpixel 4

ready

address

Pixel counter

address

4 bits

ready

ready

x y frame_ok

I2C

Registers

data

sioc siod

controller

rez160x120

rez320x240

zone_size

Figure 5.9: The frame buffer unit is replaced by the pixel counter unit to count the Ćltered pixels.

for the leader• A coordinator message will then be returned to each node to acknowledge the new

leader• This election process is happened between sensor nodes without passing to the base station•

Data: passedNodes = {Ni = {ID, token}|i = ʀ..n}

Result: The elected node N = {ID, token}

Nc = {ID, token} is the identity of the current node;

if passedNodes includes Nc then

leader := Ni with Ni.token = max({Nj.token|j = ..n});

return leader;

else

Nc := query the identity of the current node;

Add Nc to passedNodes;

leader := send passedNodes to the next node for electing;

Acknowledge leader;

return leader;

end
Algorithm 1: Simple Token Ring Election Algorithm

To implement this algorithm in CaRDIN† we ʘrst import the image processing VHDL code to the

OORCBridge toolset to generate the bitstream and the corresponding distributed class• This class is then

used to implement the election mechanism (by adding additional methods to it“• The entire distributed

application can be coded in a single class as shown in listing 5•Š• The Token Ring Election Algorithm

is implemented in the method #elect: which is deʘned as a remote method•

9Š

1 DeviceMapper subclassǥ #CameraUnitWrapper
2 ...
Š CameraUnitWrapper >> zone_size
š <remote>
5 ^self intǒǑAtǥǒǑ
6 CameraUnitWrapper >> idǥv
7 id ǥ= v
8 CameraUnitWrapper >> nextNodeǥv
9 nextNode ǥ= v

10 CameraUnitWrapper >> electǥelectors
11 <remote>
12 |arr leader role|
1Š arr ǥ= electors collectǥ[ǥe| e atǥǐ].
1š ȁarr includesǥ idȂ ifTrueǥ[
15 "The message has gone around the ring. Time for the leader decision"
16 leader ǥ= electors atǥǐ.
17 electors doǥ[ǥe | ȁȁe atǥǑȂ > ȁleader atǥǑȂȂ ifTrueǥ[leader ǥ= e]].
18 ^leader
19] ifFalseǥ[
20 "Backup the role of the next node"
21 role ǥ= nextNode master.
22 "Set the next node as master, so that it can make a remote call"
2Š nextNode masterǥtrue.
2š "Passing the message to the next node"
25 leader ǥ= nextNode electǥȁelectors withǥ{id. self zone_size}Ȃ.
26 "restore the role of the next node"
27 nextNode masterǥrole.
28 ^leader
29]

Listing 5.3: Token Ring Implementation for camera surveillance examples using CaRDIN

Figure 5•10 shows how the application is deployed and run on the network• On the base station†

three objects of the class CameraUnitWrapper are created and bound to the Š camera sensor nodes•

The ring is built by associating a successor node to each node• The base station then demands the

node1 to start the election by performing a remote call via the method #elect:• At the ʘrst run† the

distributed class and the associated bitstream are automatically deployed on the corresponding node

before each execution• This process is repeatedwhen a node require its successor to perform the #elect:

method (line 25 of the listing 5•Š“• This causes an automatic deployment chain of the application on all

the three nodes on the network•

In our DOA† all nodes are equal† a node can play at the same time the role of a caller node and a

callee node• That is† a node can handle a remote call while being able to perform remote calls to other

nodes• For example† while the node 1 executes the #elect: method required by the base station† it can

passing the election message to the node 2 by performing a remote call of #elect: to that node† and

so on• Therefore† sensor nodes are able to communicate with each other without passing to the base

station• Note that at line 2Š of the listing 5•Š† we need to set the role of the current’s successor object

9š

"Binding object to each node"

node1 := CameraUnitWrapper bindTo:'192.168.1.10:9090'.

node2 := CameraUnitWrapper bindTo:'192.168.1.11:9090'.

node3 := CameraUnitWrapper bindTo:'192.168.1.12:9090'.

"build the ring"

node1 id:1; nextNode:node2.

node2 id:2; nextNode:node3.

node3 id:3; nextNode:node1.

"ask a node about the leader"

leader := node1 elect:{}.

Transcript show:'The leader is ', (leader at:1)

1 2

3

Base station

(1) #elect:()

(2) #elect:(1)

(3) #elect:(1,2)

(4) #elect:(1,2,3)

<leader>
<leader>

<leader>

<leader>

Deployment on the first run

Remote call to the #elect: method

Return leader

<doIt>

Figure 5.10: Deployment and execution of the distributed application via CaRDIN middleware.

to a master object† so that it can actually perform an remote call to the next node•

This case study show how complex distributed algorithms can be developed and deployed using

CaRDIN• It demonstrates the main philosophy behind our DOA: centralization development† automatic

deployment and distributed execution• Firstly† the entire application are written on the base station•

Our DOA allows developers to focus on the algorithm implementation without worrying about net‡

work communication† code deployment and node‡to‡node coordination• Secondly† the deployment

of the application on the network is at runtime and automatic• This process can happen between nodes

without the intervention of the base station• Finally† the middleware encourages the independent coor‡

dination between nodes† which is important in edge‡centric applications where nodes may coordinate

between them to make a decision instead of relying on centralized server• Futhermore† new node can

be easily incorporated into the system by simply binding it to remote objects•

5.6 Summary

In this chapter† we introduced CaRDIN† a platform for efʘciently developing and deploying IP‡based

edge‡centric network• Our proposal uses an FPGA† that offers high performancewhile reducing power

consumption• We show that an hybrid hardware system (FPGA + processor“ along with a web service

oriented software platform enables remote reconʘguration/reprogramming of sensor nodes• The use

of web services favors straightforward integration with existing IoT standards• Moreover† we rely on

an object‡oriented language to support transparently referencing remote objects• The Virtual machine

brings the dynamicity of interpreted languages and allow the development of distributed algorithms on

the node† through mixing surrogates for remote objects with local objects• The distributed software API

hides all the details of node operations and interactions and let developers focus on the functionalities

of their application•

To demonstrate the proposed platform† in the ʘst case study† we have built a smart sensor node on an

APF51 board as a proof of concept• This node connects to a camera and performs an object detection

algorithm on the FPGA• It communicates the object position to the base station using the distributed

objects API• The second case study demonstrates the use of CarDIN to develop and development

distributed applications on the network which allow node‡to‡node coordination•

95

96

La conclusion résulte souvent de ce moment précis où vous

en avez eu marre...

–Anonyme

6
Conclusion and Perspectives

Contents
6•1 Contribution Summary . 97

6•2 Current and Future Works . 99

6.1 Contribution Summary

The research in this thesis studies the application of modern design methodology† in particular OOD†

on embedded system• The context here converges to the utilization of FPGA/processor hybrid devices

in IoT and edge‡computing• This results in a propositional of a dedicated design ʙow† middleware

and toolsets for simplifying the SW/HW development process• The ultimate goal is to provide an

environment that allows end users to beneʘt from OOD to easily develop edge‡centric applications†

while always have the ability to exploit the hardware features of FPGAs in a software‡friendly way•

Therefore† our contribution address the targeted problem following three main axes:

Promoting OOD on HW design with the OoRC meta-model

The OoRC meta‡model is designed with OOD principles and design pattern in mind• While it fully

support modelling FPGA circuits at RTL (ʘne‡grained“ level (using the dedicated DSL“† its main objective

is to enhance the HW system‡level (coarse‡grained“ design experience• The philosophy here is to

use abstraction to separate as much as possible the problem space from the implementation space•

Thus† one can use the meta‡model to provide a generic solution (i•e• implementation‡independent“

to a speciʘc problem so that it can be adaptable in different application contexts• This encourages

the intensive use of modularity† adaptability and extensibility concepts in hardware design to increase

system reusability and hence improve productivity• One advantage of our meta‡model compared to

existing approaches is that it supports reuse of VHDL legacy IPs as regular object oriented models• This

97

feature extends the ability of the meta‡model to manipulate existing third party IPs† such as performing

automatic processing† integration† structural refactoring or feature injection† etc•

The meta‡model can be employed as the base model for different design purposes• For example†

it can be used to develop CAD tools† to build higher level graphical modelling tool (e•g• UML“ or to

design a HW/SW co‡design environment/platform† etc•

Bridging the HW/SW interfacing gap with OoRCBridge

OoRCBridge is a platform built on top of the OoRC meta‡model• It uses OOD combined with the

platform‡based methodology and the early‡binding approach for SW/HW co‡design• It aims at inte‡

grating FPGA devices with existing high level object oriented software• The key point of OoRCBridge

is independent integration via interface standadization• Both SW and HW (FPGA“ parts of the system

comply with a standadized communication interface and protocol• They can therefore freely vary with

respect to this agreement† regardless of the underlying physical architecture• The standadized interface

is architecture speciʘc• Fortunately† its implementation can be abstracted and automatized using the

correct-by-construction and generation techniques• An interface model (template“ can be constructed

in an abstract form• It is used to reason about the proposed implementation of the interface depending

on the inputs† then ensuring that all required functionality will be delivered and the correct behaviour

exhibited• Automatic code generation closes the SW/HW gap and provides software‡friendly API for

hardware accessing from high‡level software environment•

Centralized development and automatic remote deployment of edge-centric applica-

tions with CaRDIN

CaRDIN provides a dedicated environment for developing edge‡centric applications on the network

(IP‡based“ of hybrid FPGA/processor devices• It uses OoRCBridge to facilitates and standardizes

the HW/SW integration on each node• On top of this† a distributed software environment is set up

using a VM approach• The proposed DOA allows to centralize the development process by mean of

transparently referencing andmixing surrogates for remote objects with local objects• On the one hand†

this feature favours the application development† management and maintenance• On the other hand†

it simpliʘes the incorporation of new nodes into the application using the automatic object binding

mechanism• In addition† SW/HW on the nodes can be remotely reconʘgured without the need of

manually detaching them from the deployment site• This supports better system scalability seeing that

edge‡centric applications may rely on a large‡scale network•

To demonstrate and validate the proposed prototype platform (CaRDIN“† an experiment based on

sensor node that perform image process has been built† as a proof of concept• This node connects to a

camera and performs an object detection algorithm on the FPGA• It communicates the object position

to the base station using our distributed objects API•

98

6.2 Current and Future Works

Regarding the OoRC meta‡model† beside applying OOD on hardware design† reuse of existing third

party VHDL legacy is also an important feature† since it can reduce the design cost and time• For the

moment† we have only checked the validity of the VHDL parser† which transforms the VHDL code to

an abstract syntax tree (AST“• However† the transformation of ASTs to OoRC circuit models still remains

unveriʘed”• Therefore† the next step is ʘnding methods and benchmarks to verify the correctness this

transformation• This involves additional work on the model‡checking domain for a formal veriʘcation•

The meta‡model can be further abstracted by adding more abstraction layers on top of it• Apart

from OoRCBridge† we plan to study other use‡cases in hardware design• It can be used to build high‡

level CAD tool (GUI“† that can automatize the design process at certain level• Or† it can be combined

with other system‡level design methodology† such as UML† to provide high‡level graphical hardware

speciʘcation and SW/HW co‡design environment•

As for the CaRDIN environment† while it is possible to dynamically reconʘgure software on a node†

the remote hardware reconʘguration (FPGA“ is often done in an ofʙine manner• That is† the entire FPGA

needs to be reconʘgured and reset even if the change only affects a small part of the circuit• This can

cause an interruption on other independent parts that are processing data• A solution to this problem

is adding FPGA partial reconʘguration support to the node’s middleware• This feature allows to make

change only on a part of the FPGA while conserving the others part from resetting•

The current version of our DOA still has some limitations as presented in section 5•Š•Š• These lim‡

itations could be the future features of the DOA• Concretely: (1“ we can add classes dependencies

mechanism to the DOA† when a distributed class is deployed on a node† the system automatically de‡

ploys also all its missing dependency classes•(2“ The DOA supports automatic garbage collection of

remote objects• This can be done at VM level• The idea is when the VM reclaims the memory occu‡

pied by a caller object (that is no longer in use by the program“† it also perform a remote call to the

corresponding remote VM to delete the referenced object of the servant node•

The edge‡centric experiments in this thesis is only a proof of concept• The ultimate goal is to use the

prototype platform to deploy truly distributed applications on an edge‡centric network (e•g• surveil‡

lance“• Such sensor network consists of many smart nodes and has the capacity to simply incorpo‡

rate new nodes into the system• Then different strategies can be performed and tested to optimize the

distribution of calculation resource on the network• Concretely† the distribution of an application on

edge‡centric network should be scheduled based on the resource –such as memory† CPU† or battery

status– available on each node• This may lead to the development of a task scheduler on the CaRDIN

middleware that allows to efʘcient delivery calculation tasks to the edge of the network† while away

balancing the energy/power constraint on each node• In software domain† this relates to the work

on dynamic software update which targets solutions for dynamically migrating code between nodes

[TPF+16]• Moreover† it becomes more interesting if one can not only migrate code between nodes†

but also the execution state of the nodes• With the VM† it is trivial to take a snapshot of a software

on a node then execute it on other nodes• As for the FPGA† we can rely on a hardware virtualization

”In fact† the validation can be manually performed by re‡exporting the imported legacy model to VHDL and
then comparing the two VHDL codes

99

solution• There are actually some remarkable works on this topic† such as [LLLB1š† BNLLL16] that allow

to capture the current execution state of an FPGA then continue it on other FPGAs using a virtual FPGA

architecture• Security and Privacy of sensor data on the network are another interesting research topic•

In traditional SN† outputs of sensor nodes are often vulnerable to unauthorized observation• When

these nodes participate to the internet (IoT“† this become a serious problem since the sensor data can

be easily sniffed by enemy/third‡party application over the internet• This raises the need of a cryptog‡

raphy mechanism on SN [GKS05† AB08]• Cryptography is complex† slow and power hungry† thus

is not alway suitable to use on traditional sensor nodes• However† our proposed edge‡centric nodes

can overcome this constraint with the help of FPGA• Cryptography algorithm can be implemented on

real hardware (FPGA“ which allows fast execution and power friendly•

100

Bibliography

[AB08] Tuncer Can Aysal and Kenneth E Barner• Sensor data cryptography in wireless sensor net‡

works• IEEE Transactions on Information Forensics and Security† Š(2“:27Š–289† 2008•

[Alb05] C• Albrecht• Iwls 2005 benchmarks• 2005 International Workshop on Logic Synthesis† June

2005•

[Arm] Armadeus• APF51 Single Board Computer•

[BAS1š] G• Bazydlo† M• Adamski† and Ł• Stefanowicz• Translation uml diagrams into verilog• In 2014

7th International Conference on Human System Interactions (HSI“† pages 267–271† June 201š•

[BdDPP16] Alessio Botta† Walter de Donato† Valerio Persico† and Antonio Pescapé• Integration of

cloud computing and internet of things: a survey• Future Generation Computer Systems† 56:68š–

700† 2016•

[Ber12] Gonçalo Bernardo• Online deployment of dependent tasks onto networked systems• PhD thesis†

TU Delft† Delft University of Technology† 2012•

[Béz05] Jean Bézivin• On the uniʘcation power of models• Software & Systems Modeling† š(2“:171–

188† 2005•

[BH98] P• Bellows and B• Hutchings• JHDL‡an HDL for reconʘgurable systems• Proceedings. IEEE

Symposium on FPGAs for Custom Computing Machines (Cat. No.98TB100251“† 1998•

[BHSS07] Athanassios Boulis† Chih‡Chieh Han† Roy Shea† and Mani B Srivastava• Sensorware: Pro‡

gramming sensor networks beyond code update and querying• Pervasive and Mobile Comput-

ing† Š(š“:Š86–š12† 2007•

[BMZA12] Flavio Bonomi† Rodolfo Milito† Jiang Zhu† and Sateesh Addepalli• Fog computing and its

role in the internet of things• In Proceedings of the ʘrst edition of the MCC workshop on Mobile

cloud computing† pages 1Š–16• ACM† 2012•

[BNLLL16] Théotime Bollengier† Mohamad Najem† Jean‡Christophe Le Lann† and Loïc Lagadec• Zeff:

Une plateforme pour l’intégration d’architectures overlay dans le cloud• In COMPAS 2016†

2016•

[BRS1Š] David F• Bacon† Rodric Rabbah† and Sunil Shukla• Fpga programming for the masses• Com-

mun. ACM† 56(š“:56–6Š† April 201Š•

[BSP05] Andrew Bainbridge‡Smith and Su‡Hyun Park• Adh: an aspect described hardware program‡

ming language• In Proceedings. 2005 IEEE International Conference on Field-Programmable

Technology, 2005.† pages 28Š–28š• IEEE† 2005•

101

[CCA+1Š] Andrew Canis† Jongsok Choi† Mark Aldham† Victor Zhang† Ahmed Kammoona† Tomasz

Czajkowski† Stephen D Brown† and Jason H Anderson• Legup: An open‡source high‡level

synthesis tool for fpga‡based processor/accelerator systems• ACM Transactions on Embedded

Computing Systems (TECS“† 1Š(2“:2š† 201Š•

[CCD+09] Eduardo Canete† Jaime Chen† Manuel Diaz† Luis Llopis† and Bartolome Rubio• A service‡

oriented middleware for wireless sensor and actor networks• In Information Technology: New

Generations, 2009. ITNG’09. Sixth International Conference on† pages 575–580• IEEE† 2009•

[CF1š] José Cecílio and Pedro Furtado• Wireless Sensors in Heterogeneous Networked Systems• 201š•

[CF16] Alessandro Cilardo and Edoardo Fusella• Design automation for application‡speciʘc on‡chip

interconnects: A survey• Integration, the VLSI Journal† 52:102–121† 2016•

[CRS00] F• Corno† M•S• Reorda† and G• Squillero• Rt‡level itc’99 benchmarks and ʘrst atpg results•

Design Test of Computers, IEEE† 17(Š“:šš–5Š† Jul 2000•

[CS0Š] Cincom‡Systems• VisualWorks ® Distributed Smalltalk Application Developer ’ s Guide• 200Š•

[CSM08] G• Chalivendra† R• Srinivasan† and N• S• Murthy• Fpga based re‡conʘgurable wireless

sensor network protocol• In 2008 International Conference on Electronic Design† pages 1–š†

Dec 2008•

[CT05] Frank P Coyle andMitchell A Thornton• From uml to hdl: a model driven architectural approach

to hardware‡software co‡design• 2005•

[CWFH1Š] Christopher Cullinan† Christopher Wyant† Timothy Frattesi† and Xinming Huang• Comput‡

ing performance benchmarks among cpu† gpu† and fpga• Internet: www. wpi. edu/Pubs/E-

project/Available/E-project-030212-123508/unrestricted/Benchmarking Final† 201Š•

[D+09] Adam Dunkels et al• Efʘcient application integration in ip‡based sensor networks• In Proceed-

ings of the First ACM Workshop on Embedded Sensing Systems for Energy-Efʘciency in Buildings†

pages šŠ–š8• ACM† 2009•

[DA1Š] M• Doligalski and M• Adamski• Uml state machine implementation in fpga devices by means

of dual model and verilog• In 2013 11th IEEE International Conference on Industrial Informatics

(INDIN“† pages 177–18š† July 201Š•

[Dam06] R Damaĕevičius• On the application of meta‡design techniques in hardware design domain•

International Journal of Computer Science (IJCS“† 1(1“:67–77† 2006•

[Dec0š] Jan Decaluwe• Myhdl: a python‡based hardware description language• Linux journal†

200š(127“:5† 200š•

[DLPBT12] Antonio De La Piedra† An Braeken† and Abdellah Touhaʘ• Sensor systems based on fpgas

and their applications: A survey• Sensors† 12(9“:122Š5–1226š† 2012•

102

[DMĔ0Š] Robertas Damaĕevičius† Giedrius Majauskas† and Vytautas Ĕtuikys• Application of design

patterns for hardware design• In Proceedings of the 40th annual Design Automation Conference†

pages š8–5Š• ACM† 200Š•

[DS0š] Robertas Damasevicius and Vytautas Stuikys• Application of uml for hardware design based

on design process model• In Proceedings of the 2004 Asia and South Paciʘc Design Automation

Conference† ASP‡DAC ’0š† pages 2šš–2š9† Piscataway† NJ† USA† 200š• IEEE Press•

[DZHC17] Stéphane Ducasse† Dmitri Zagidulin† Nicolai Hess† and Dimitris Chloupis• Pharo by Exam-

ple 50• Lulu•com & Square Bracket Associates† 2017•

[EBZ+12] Majdi Elhaji† Pierre Boulet† Abdelkrim Zitouni† Samy Meftali† Jean‡Luc Dekeyser† and

Rached Tourki• System level modeling methodology of noc design from uml‡marte to vhdl•

Des. Autom. Embedded Syst.† 16(š“:161–187† November 2012•

[EFQ15] Emad Ebeid† Franco Fummi† and Davide Quaglia• Hdl code generation from uml/marte

sequence diagrams for veriʘcation and synthesis• Design automation for embedded systems†

19(Š“:277–299† 2015•

[ELLSV01] Stephen Edwards† Luciano Lavagno† Edward A Lee† and Alberto Sangiovanni‡Vincentelli•

Design of embedded systems: Formal models† validation† and synthesis• Readings in hard-

ware/software co-design† 86† 2001•

[Eva11] Dave Evans• The internet of things: How the next evolution of the internet is changing every‡

thing• CISCO white paper† 1(2011“:1–11† 2011•

[Fab07] Luc Fabresse• From Decoupling to Unanticipated Component Assembly: Design and Implemen-

tation of the Component-Oriented Language Scl• Theses† Université Montpellier II ‡ Sciences et

Techniques du Languedoc† December 2007•

[FB01] Robert France and James Bieman• Multi‡view software evolution: a uml‡based framework

for evolving object‡oriented software• In Proceedings of the IEEE International Conference on

Software Maintenance (ICSM’01“† page Š86• IEEE Computer Society† 2001•

[FCC+1š] Blair Fort† Andrew Canis† Jongsok Choi† Nazanin Calagar† Ruolong Lian† Stefan Hadjis†

Yu Ting Chen† Mathew Hall† Bain Syrowik† Tomasz Czajkowski† et al• Automating the design of

processor/accelerator embedded systems with legup high‡level synthesis• In Embedded and

Ubiquitous Computing (EUC“, 2014 12th IEEE International Conference on† pages 120–129• IEEE†

201š•

[FFH+11a] Matthieu Faure† Luc Fabresse† Marianne Huchard† Christelle Urtado† and Sylvain Vaut‡

tier• A service component framework for multi‡user scenario management in ubiquitous envi‡

ronments• In ICSEA’2011: 6th International Conference on Software Engineering Advances† page

N/A† Barcelona† Spain† October 2011•

[FFH+11b] Matthieu Faure† Luc Fabresse† Marianne Huchard† Christelle Urtado† and Sylvain Vauttier•

User‡deʘned scenarios in ubiquitous environments: creation† execution control and sharing•

10Š

In SEKE: Software Engineering and Knowledge Engineering† pages Š02–Š07† Miami† United

States† July 2011•

[Fri1Š] Peter Friess• Internet of things: converging technologies for smart environments and integrated

ecosystems• River Publishers† 201Š•

[GHJV95] Erich Gamma† Richard Helm† Ralph Johnson† and John Vlissides• Design Patterns: Elements

of Reusable Object-oriented Software• Addison‡Wesley Longman Publishing Co•† Inc•† Boston†

MA† USA† 1995•

[GKS05] Gunnar Gaubatz† Jens‡Peter Kaps† and Berk Sunar• Public Key Cryptography in Sensor

Networks—Revisited† pages 2–18• Springer Berlin Heidelberg† Berlin† Heidelberg† 2005•

[GL95] Shaori Guo and Wayne Luk• Compiling ruby into fpgas• In International Workshop on Field

Programmable Logic and Applications† pages 188–197• Springer† 1995•

[GLBP+11] Abdoulaye Gamatié† Sébastien Le Beux† Éric Piel† Rabie Ben Atitallah† Anne Etien†

Philippe Marquet† and Jean‡Luc Dekeyser• A model‡driven design framework for massively

parallel embedded systems• ACM Trans. Embed. Comput. Syst.† 10(š“:Š9:1–Š9:Š6† Novem‡

ber 2011•

[GLME+15] Pedro Garcia Lopez† Alberto Montresor† Dick Epema† Anwitaman Datta† Teruo Hi‡

gashino† Adriana Iamnitchi† Marinho Barcellos† Pascal Felber† and Etienne Riviere• Edge‡

centric computing: Vision and challenges• ACM SIGCOMM Computer Communication Review†

š5(5“:Š7–š2† 2015•

[GRL+08] Levent Gurgen† Claudia Roncancio† Cyril Labbé† André Bottaro† and Vincent Olive•

Sstreamware: a service oriented middleware for heterogeneous sensor data management• In

Proceedings of the 5th international conference on Pervasive services† pages 121–1Š0• ACM†

2008•

[HBH+99] B• Hutchings† P• Bellows† J• Hawkins† S• Hemmert† B• Nelson† and M• Rytting• A CAD suite

for high‡performance FPGA design• Seventh Annual IEEE Symposium on Field-Programmable

Custom Computing Machines (Cat. No.PR00375“† 1999•

[HKT+07] Wolfgang Haberl† Stefan Kugele† Michael Tautschnig† Andreas Bauer† Christian Schall‡

hart† Stefano Merenda† Christian Kühnel† Florian Müller† Zhonglei Wang† Doris Wild† et al•

Cola–the component language• 2007•

[HRVG08] H• Hinkelmann† A• Reinhardt† S• Varyani† and M• Glesner• A reconʘgurable prototyping

platform for smart sensor networks• In 2008 4th Southern Conference on Programmable Logic†

pages 125–1Š0† March 2008•

[IEE0š] IEEE• IEEE Standard for VHDL Register Transfer Level (RTL“ Synthesis• Technical Report Octo‡

ber† 200š•

10š

[IEE1š] IEEE• IEEE Standard for IP‡Xact† Standard structure for packaging† integrating† and reusing IP

within Tool Flows• Technical report† IEEE Computer Society† 201š•

[int11] International technology roadmap for semiconductors† 2011•

[JDM+07] A• Jerraya† J•M• Daveau† G• Marchioro† C• Valderrama† M• Romdhani† T• Ben Ismail† N•E•

Zergainoh† F• Hessel† P• Coste† Ph• Le Marrec† A• Baghdadi† and L• Gauthier• Hardware/Soft-

ware co-design† pages 1ŠŠ–158• Springer US† Boston† MA† 2007•

[Jéz08] Jean‡Marc Jézéquel• Model driven design and aspect weaving• Software & Systems Model-

ing† 7(2“:209–218† 2008•

[JK06] Frédéric Jouault and Ivan Kurtev• Transforming models with atl• In Proceedings of the 2005 In-

ternational Conference on Satellite Events at the MoDELS† MoDELS’05† pages 128–1Š8† Berlin†

Heidelberg† 2006• Springer‡Verlag•

[KBLK07] T• Kobialka† R• Buyya† C• Leckie† and R• Kotagiri• A sensor web middleware with stateful

services for heterogeneous sensor networks• In 2007 3rd International Conference on Intelligent

Sensors, Sensor Networks and Information† pages š91–š96† Dec 2007•

[Kla07] Benjamin Klatt• Xpand: A closer look at the model2text transformation language• Language†

10(16“:2008† 2007•

[KNRSV00] Kurt Keutzer† A Richard Newton† Jan M Rabaey† and Alberto Sangiovanni‡Vincentelli•

System‡level design: orthogonalization of concerns and platform‡based design• IEEE Transac-

tions on Computer-Aided Design of Integrated Circuits and Systems† 19(12“:152Š–15šŠ† 2000•

[KPC+08] YE Krasteva† J Portilla† JM Carnicer† E de la Torre† and T Riesgo• Remote hw‡sw reconʘg‡

urable wireless sensor nodes• In Industrial Electronics, 2008. IECON 2008. 34th Annual Con-

ference of IEEE† pages 2š8Š–2š88• IEEE† 2008•

[KS09] Kavi Kumar Khedo and RK Subramanian• A service‡oriented component‡based middleware

architecture for wireless sensor networks• 2009•

[KTO16] L• Kechiche† L• Touil† and B• Ouni• Real‡time image and video processing: Method and

architecture• In 2016 2nd International Conference on Advanced Technologies for Signal and

Image Processing (ATSIP“† pages 19š–199† March 2016•

[Küh05] Thomas Kühne• What is a model? In Dagstuhl Seminar Proceedings• Schloss Dagstuhl‡Leibniz‡

Zentrum für Informatik† 2005•

[LBMD08] Sébastien Le Beux† Philippe Marquet† and Jean‡Luc Dekeyser• Model Driven Engineering

Beneʘts for High Level Synthesis• Research Report RR‡6615† INRIA† 2008•

[Lee08] E• A• Lee• Cyber physical systems: Design challenges• In 2008 11th IEEE International Sym-

posium on Object and Component-Oriented Real-Time Distributed Computing (ISORC“† pages

Š6Š–Š69† May 2008•

105

[LFL+16a] Xuan Sang LE† Luc Fabresse† Jannik Laval† Jean‡Christophe Le Lann† Loïc Lagadec† and

Noury Bouraqadi• Dynamic distributed programming on reconʘgurable ip‡based smart sensor

networks• Presented as poster at 11ème Colloque du GDR SoC‡SiP† France† 2016•

[LFL+16b] Xuan Sang LE† Luc Fabresse† Jannik Laval† Jean‡Christophe Le Lann† Loïc Lagadec† and

Noury Bouraqadi• Speeding Up Robot Control Software Through Seamless Integration With

FPGA• In SHARC ’16: 11th National Conference on Software and Hardware Architectures for

Robots Control† Brest† France† 2016•

[LHKS91] John A• Lewis† Sallie M• Henry† Dennis G• Kafura† and Robert S• Schulman• An empirical

study of the object‡oriented paradigm and software reuse• SIGPLAN Not.† 26(11“:18š–196†

November 1991•

[LLF+1š] Xuan Sang LE† Loïc Lagadec† Luc Fabresse† Jannik Laval† and Noury Bouraqadi• From

Smalltalk to Silicon: Towards a methodology to turn Smalltalk code into FPGA• In IWST 14†

Cambridge† United Kingdom† August 201š•

[LLF+15] Xuan Sang LE† Loïc Lagadec† Luc Fabresse† Jannik Laval† and Noury Bouraqadi• A meta

model supporting both hardware and smalltalk‡based execution of fpga circuits• IWST ’15†

pages 6:1–6:1š† 2015•

[LLLB1š] Loic Lagadec† Jean‡Christophe Le Lann† and Theotime Bollengier• A prototyping platform

for virtual reconʘgurable units• In Reconʘgurable and Communication-Centric Systems-on-Chip

(ReCoSoC“, 2014 9th International Symposium on† pages 1–7• IEEE† 201š•

[LLLL+16] Xuan Sang LE† Jean‡Christophe Le Lann† Loïc Lagadec† Luc Fabresse† Noury Bouraqadi†

and Jannik Laval• Cardin: An agile environment for edge computing on reconʘgurable sensor

networks• In the proceedings of The 2016 International Conference on Computational Science

and Computational Intelligence (CSCI’16“† Las Vegas† Nevada† USA† 2016•

[LMP+05] Philip Levis† Sam Madden† Joseph Polastre† Robert Szewczyk† Kamin Whitehouse† Alec

Woo† David Gay† Jason Hill† Matt Welsh† Eric Brewer† et al• Tinyos: An operating system for

sensor networks• In Ambient intelligence† pages 115–1š8• Springer† 2005•

[LSKT1Š] Junsong Liao† Brajendra K Singh† Mohammed AS Khalid† and Kemal E Tepe• Fpga based

wireless sensor node with customizable event‡driven architecture• EURASIP Journal on Embed-

ded Systems† 201Š(1“:1† 201Š•

[LSS1Ša] Anders B Lange† Ulrik P Schultz† and Anders S Soerensen• Unity: A uniʘed software/hard‡

ware framework for rapid prototyping of experimental robot controllers using fpgas• In Proc.

of the 8th full-day Workshop on Software Development and Integration in Robotics, Karlsruhe,

Germany† 201Š•

[LSS1Šb] Andre B Lange† Ulrik Pagh Schultz† and Anders Stengaard Soerensen• Unity‡link: A

software‡gateware interface for rapid prototyping of experimental robot controllers on fpgas• In

Intelligent Robots and Systems (IROS“, 2013 IEEE/RSJ International Conference on† pages Š899–

Š906• IEEE† 201Š•

106

[LSS1š] Anders Blaabjerg Lange† Ulrik Pagh Schultz† and Anders Stengaard Soerensen• Towards

Automatic Migration of ROS Components from Software to Hardware• 201š•

[LW16a] Marcela Leite and Marco Aurélio Wehrmeister• System‡level design based on uml/‡

marte for fpga‡based embedded real‡time systems• Design Automation for Embedded Systems†

20(2“:127–15Š† 2016•

[LW16b] Marcela Leite and Marco Aurélio Wehrmeister• System‡level design based on uml/‡

marte for fpga‡based embedded real‡time systems• Design Automation for Embedded Systems†

20(2“:127–15Š† 2016•

[MAK07] Rene Mueller† Gustavo Alonso† and Donald Kossmann• Swissqm: Next generation data

processing in sensor networks• 2007•

[Mar16] Umit Y Ogras Radu Marculescu• Communication‡based design for nanoscale socs• The VLSI

Handbook† 2016•

[MC99] W• E•McUmber and B• H• C• Cheng• Uml‡based analysis of embedded systems using a map‡

ping to vhdl• In High-Assurance Systems Engineering, 1999. Proceedings. 4th IEEE International

Symposium on† pages 56–6Š† 1999•

[MFHH05] Samuel R Madden† Michael J Franklin† Joseph M Hellerstein† and Wei Hong• Tinydb:

an acquisitional query processing system for sensor networks• ACM Transactions on database

systems (TODS“† Š0(1“:122–17Š† 2005•

[MG11] Peter Mell and Tim Grance• The nist deʘnition of cloud computing• 2011•

[MGSPF11] T• R• Muck† M• Gernoth† W• Schroder‡Preikschat† and A• A• Frohlich• A case study of aop

and oop applied to digital hardware design• In 2011 Brazilian Symposium on Computing System

Engineering† pages 66–71† Nov 2011•

[MPV11] L•Mainetti† L• Patrono† and A• Vilei• Evolution of wireless sensor networks towards the internet

of things: A survey• In SoftCOM 2011, 19th International Conference on Software, Telecommu-

nications and Computer Networks† pages 1–6† Sept 2011•

[MR08] PMuralidhar and CB Rama Rao• Reconʘgurable wireless sensor network node based on nios

core• InWireless Communication and Sensor Networks, 2008. WCSN 2008. Fourth International

Conference on† pages 67–72• IEEE† 2008•

[MS09] G• Martin and G• Smith• High‡level synthesis: Past† present† and future• IEEE Design Test of

Computers† 26(š“:18–25† July 2009•

[MVG06] Tom Mens and Pieter Van Gorp• A taxonomy of model transformation• Electronic Notes in

Theoretical Computer Science† 152:125–1š2† 2006•

[MVG+12] Wim Meeus† Kristof Van Beeck† Toon Goedeme† Jan Meel† and Dirk Stroobandt• An

overview of today’s high‡level synthesis tools• Design Automation for Embedded Systems†

16(Š“:Š1–51† August 2012•

107

[MWP+10] Tomas GMoreira† Marco AWehrmeister† Carlos E Pereira† Jean‡Francois Petin† and Eric

Levrat• Automatic code generation for embedded systems: From uml speciʘcations to vhdl

code• In 2010 8th IEEE International Conference on Industrial Informatics† pages 1085–1090•

IEEE† 2010•

[Nga11] Nicolas Ngan• Etude et conception d’un réseau sur puce dynamiquement adaptable pour la

vision embarquée• PhD thesis† Paris Est† 2011•

[OC12] OMG‡CORBA• Common Object Request Broker Architecture (CORBA“ Speciʘcation† Ver‡

sion Š•Š• Technical report† Object Management Group† 2012•

[OMG1š] OMG• Moden Driven Architecture (MDA“ guide rev• 2•0• Technical report† Object Man‡

agement Group† 201š•

[OMG15] OMG• Meta Object Facility (MOF“ Core Speciʘcation v2•5• Technical report† Object

Management Group† 2015•

[OMG16] OMG• Meta Objet Facility (MOF“ 2•0 Query/View/Transformation† V1•Š• Technical

report† Object Management Group† 2016•

[Ora12] Oracle• Java RMI Release Notes† 2012•

[ORRM09] FrankOldewurtel† Janne Riihijarvi† Krisakorn Rerkrai† and Petri Mahonen• The runes archi‡

tecture for reconʘgurable embedded and sensor networks• In Sensor Technologies and Appli-

cations, 2009. SENSORCOMM’09. Third International Conference on† pages 109–116• IEEE†

2009•

[OU11] OMG‡UML/MARTE• UML Proʘle for MARTE: Modeling and Analysis of Real‡Time Embed‡

ded Systems• Technical report† Object Management Group† 2011•

[OU15] OMG‡UML• OMG Uniʘed Modeling Language TM (OMG UML“• Technical report† Object

Management Group† 2015•

[OWTK10] A• Oetken† S• Wildermann† J• Teich† and D• Koch• A bus‡based soc architecture for ʙexi‡

ble module placement on reconʘgurable fpgas• In 2010 International Conference on Field Pro-

grammable Logic and Applications† pages 2Šš–2Š9† Aug 2010•

[PBMB16] Maxime Pelcat† Cédric Bourrasset† Luca Maggiani† and François Berry• Design Produc‡

tivity of a High Level Synthesis Compiler versus HDL• In 2016 International Conference on Em-

bedded Computer Systems: Architectures, Modeling and Simulation (IC-SAMOS 2016“† Agios

Konstantinos† SAMOS† Greece† July 2016•

[PBSV+0š] Alessandro Pinto† Alvise Bonivento† Allberto L Sangiovanni‡Vincentelli† Roberto

Passerone† and Marco Sgroi• System level design paradigms: Platform‡based design and

communication synthesis• In ACM Transactions on Design Automation of Electronic Systems (TO-

DAES“† volume 11† pages 5Š7–56Š• ACM† 200š•

108

[PBV07] Elena Moscu Panainte† Koen Bertels† and Stamatis Vassiliadis• The molen compiler for re‡

conʘgurable processors• ACM Transactions on Embedded Computing Systems (TECS“† 6(1“:6†

2007•

[PF11] Terence Parr and Kathleen Fisher• Ll(”“: the foundation of the ANTLR parser generator• Pro-

ceedings of the 32nd ACM SIGPLAN Conference on Programming Language Design and Imple-

mentation, PLDI 2011, San Jose, CA, USA, June 4-8, 2011† pages š25–šŠ6† 2011•

[PKGZ08] Nissanka B Priyantha† Aman Kansal† Michel Goraczko† and Feng Zhao• Tiny web services:

design and implementation of interoperable and evolvable sensor networks• In Proceedings of

the 6th ACM conference on Embedded network sensor systems† pages 25Š–266• ACM† 2008•

[PL08] Damien Picard and Loic Lagadec• Multi‡Level Simulation of Heterogeneous Reconʘgurable

Platforms• ReCoSoC’08, Barcelona, Spain† 2008•

[Pom16] Luigi Pomante• Electronic System-Level HW/SW Co-Design of Heterogeneous Multi-

Processor Embedded Systems• River Publishers† 2016•

[PRDC] Jorge Portilla† Teresa Riesgo† and Angel De Castro• A reconʘgurable fpga‡based architec‡

ture for modular nodes in wireless sensor networks• In 2007 3rd Southern Conference on Pro-

grammable Logic† pages 20Š–206• IEEE•

[QMD08] I• R• Quadri† S• Meftali† and J• L• Dekeyser• Marte based modeling approach for partial

dynamic reconʘgurable fpgas• In 2008 IEEE/ACM/IFIP Workshop on Embedded Systems for

Real-Time Multimedia† pages š7–52† Oct 2008•

[RA12] Jean‡Claude Royer and Hugh Arboleda• Model-Driven and Software Product Line Engineering

(ISTE“• Wiley‡IEEE Press† 1st edition† 2012•

[Ray1Š] Michel Raynal• Leader Election Algorithms† pages 77–92• Springer Berlin Heidelberg† Berlin†

Heidelberg† 201Š•

[Ren1š] Haoxing Ren• A brief introduction on contemporary high‡level synthesis• In 2014 IEEE Inter-

national Conference on IC Design & Technology† 201š•

[RHTO15] Ciprian‡Radu Rad† Olimpiu Hancu† Ioana‡Alexandra Takacs† and Gheorghe Olteanu•

Smart monitoring of potato crop: a cyber‡physical system architecture model in the ʘeld of

precision agriculture• Agriculture and Agricultural Science Procedia† 6:7Š–79† 2015•

[RSRB05] Elvinia Riccobene† Patrizia Scandurra† Alberto Rosti† and Sara Bocchio• A soc design

methodology involving a uml 2•0 proʘle for systemc• In Design, Automation and test in Europe†

pages 70š–709• IEEE† 2005•

[SC95] Douglas C• Schmidt and Charles D• Cranor• Half‡sync/half‡async ‡ an architectural pattern

for efʘcient and well‡structured concurrent i/o• in Proceedings of the 2 nd Annual Conference

on the Pattern Languages of Programs† pages 1–10† 1995•

109

[SCC+06] Doug Simon† Cristina Cifuentes† Dave Cleal† John Daniels† and DerekWhite• Java™on the

bare metal of wireless sensor devices: The squawk java virtual machine• In Proceedings of the

2Nd International Conference on Virtual Execution Environments† VEE ’06† pages 78–88† New

York† NY† USA† 2006• ACM•

[ĔD1Š] Vytautas Ĕtuikys and Robertas Damaĕevičius• Applications of Meta-Programming Methodol-

ogy† pages 291–Š16• Springer London† London† 201Š•

[SDTF12] Petr Spacek† Christophe Dony† Chouki Tibermacine† and Luc Fabresse• An inheritance sys‡

tem for structural and behavioral reuse in component‡based software programming• SIGPLAN

Not.† š8(Š“:60–69† September 2012•

[SDTF1Š] Petr Spacek† Christophe Dony† Chouki Tibermacine† and Luc Fabresse• Wringing out ob‡

jects for programming and modeling component‡based systems• In Proceedings of the Second

International Workshop on Combined Object-Oriented Modelling and Programming Languages†

ECOOP’1Š† pages 2:1–2:6† New York† NY† USA† 201Š• ACM•

[Sed06] Nicholas Peter Sedcole• Reconʘgurable platform-based design in FPGAs for video image

processing• 2006•

[SF16] Sima Sinaei and Omid Fatemi• Novel heuristic mapping algorithms for design space explo‡

ration of multiprocessor embedded architectures• In 2016 24th Euromicro International Con-

ference on Parallel, Distributed, and Network-Based Processing (PDP“† pages 801–80š• IEEE†

2016•

[SK0Š] Shane Sendall andWojtek Kozaczynski• Model transformation: The heart and soul of model‡

driven software development• IEEE Softw.† 20(5“:š2–š5† September 200Š•

[Slo15] Peter Sloot• Model Execution: Event driven versus Time driven† 2015•

[Spa1Š] Petr Spacek• Design and Implementation of a Reʙective Component-Oriented Programming

and Modeling Language• PhD thesis† PhD thesis† Montpellier II University† Montpellier† France†

201Š•

[SV02] Alberto Sangiovanni‡Vincentelli• Deʘning platform‡based design• EEDesign of EETimes† 2002•

[SVM01] Alberto Sangiovanni‡Vincentelli and Grant Martin• Platform‡based design and software

design methodology for embedded systems• 2001•

[Tei12] Jürgen Teich• Hardware/software codesign: The past† the present† and predicting the future•

Proceedings of the IEEE† 100(Special Centennial Issue“:1š11–1šŠ0† 2012•

[TPF+16] Pablo Tesone† Guillermo Polito† Luc Fabresse† Noury Bouraqadi† and Stéphane Ducasse•

Instance migration in dynamic software update• 2016•

[VDMV1š] Ken Vanherpen† Joachim Denil† Paul De Meulenaere† and Hans Vangheluwe• Design‡

Space Exploration in Model Driven Engineering• In CEUR Workshop Proceedings: CMSEBA

2014† pages š2–51† 201š•

110

[VF1Š] Ovidiu Vermesan and Peter Friess• Converging Technologies for Smart Environments and Inte-

grated Ecosystems• River Publishers† 201Š•

[VMD08] Yves Vanderperren† Wolfgang Mueller† and Wim Dehaene• Uml for electronic systems

design: a comprehensive overview• Design automation for embedded systems† 12(š“:261–292†

2008•

[WAU+08] Steve K Wood† David H Akehurst† Oleg Uzenkov† W Gareth J Howells† and Klaus D

McDonald‡Maier• A model‡driven development approach to mapping uml state diagrams to

synthesizable vhdl• IEEE Transactions on Computers† 57(10“:1Š57–1Š71† 2008•

[WHMT08] Z• Wang† A• Herkersdorf† S• Merenda† and M• Tautschnig• A model driven develop‡

ment approach for implementing reactive systems in hardware• In Speciʘcation, Veriʘcation and

Design Languages, 2008. FDL 2008. Forum on† pages 197–202† Sept 2008•

[Xil] Xilinx• Field Programmable Gate Array•

[YG02] Yong Yao and Johannes Gehrke• The cougar approach to in‡network query processing in

sensor networks• ACM Sigmod record† Š1(Š“:9–18† 2002•

[ZE+11] Paul Zikopoulos† Chris Eaton† et al• Understanding big data: Analytics for enterprise class

hadoop and streaming data• McGraw‡Hill Osborne Media† 2011•

[Zhu01] Jianwen Zhu• Metartl: Raising the abstraction level of rtl design• In Proceedings of the confer-

ence on Design, automation and test in Europe† pages 71–76• IEEE Press† 2001•

111

112

Software/FPGA Co‡design for Edge‡computing: Promoting Object‡oriented Design
Co‡conception Logiciel/FPGA pour Edge‡computing: Promotion de la conception orientée objet

Cloud computing is often the most referenced computational model
for Internet of Things• This model adopts a centralized architecture
where all sensor data is stored and processed in a sole location• De‡
spite of many advantages† this architecture suffers from a low scal‡
ability while the available data on the network is continuously in‡
creasing• It is worth noting that† currently† more than 50% internet
connections are between things• This can lead to the reliability prob‡
lem in realtime and latency‡sensitive applications• Edge‡computing†
which is based on a decentralized architecture† is known as a solu‡
tion for this emerging problem by: (1“ reinforcing the equipment at
the edge (things“ of the network and (2“ pushing the data processing
to the edge•
Edge‡centric computing requires sensors nodes with more software
capability and processing power while† like any embedded systems†
being constrained by energy consumption• Hybrid hardware sys‡
tems consisting of FPGA and processor offer a good trade‡off for this
requirement• FPGAs are known to enable parallel and fast compu‡
tation within a low energy budget• The coupled processor provides
a ʙexible software environment for edge‡centric nodes•
Applications design for such hybrid network/software/hardware
(SW/HW“ system always remains a challenged task• It covers a
large domain of system level design from high level software to low‡
level hardware (FPGA“• This results in a complex system design ʙow
and involves the use of tools from different engineering domains•
A common solution is to propose a heterogeneous design environ‡
ment which combining/integrating these tools together• However†
the heterogeneous nature of this approach can pose the reliability
problem when it comes to data exchanges between tools•
Our motivation is to propose a homogeneous design methodology
and environment for such system• We study the application of a
modern design methodology† in particular object‡oriented design
(OOD“† to the ʘeld of embedded systems• Our choice of OOD is
motivated by the proven productivity of this methodology for the de‡
velopment of software systems• In the context of this thesis† we aim
at using OOD to develop a homogeneous design environment for
edge‡centric systems• Our approach addresses three design con‡
cerns: (1“ hardware design† where object‡oriented principles and
design patterns are used to improve the reusability† adaptability† and
extensibility of the hardware system• (2“ hardware / software co‡
design† for which we propose to use OOD to abstract the SW/HW
integration and the communication that encourages the system mod‡
ularity and ʙexibility• (Š“ middleware design for Edge Comput‡
ing• We rely on a centralized development environment for dis‡
tributed applications† while the middleware facilitates the integra‡
tion of the peripheral nodes in the network† and allows automatic
remote reconʘguration• Ultimately† our solution offers software ʙexi‡
bility for the implementation of complex distributed algorithms† com‡
plemented by the full exploitation of FPGAs performance• These are
placed in the nodes† as close as possible to the acquisition of the data
by the sensors† in order to deploy a ʘrst effective intensive treatment•

L’informatique en nuage (cloud computing“ est souvent le modèle de
calcul le plus référencé pour l’internet des objets (Internet of Things“•
Ce modèle adopte une architecture où toutes les données de cap‡
teur sont stockées et traitées de façon centralisée• Malgré de nom‡
breux avantages† cette architecture souffre d’une faible évolutivité
alors même que les données disponibles sur le réseau sont en con‡
stante augmentation• Il est à noter que† déjà actuellement† plus de
50 % des connexions sur Internet sont inter objets• Cela peut engen‡
drer un problème de ʘabilité dans les applications temps réel• Le
calcul en périphérie (Edge computing“ qui est basé sur une architec‡
ture décentralisée† est connue comme une solution pour ce problème
émergent en: (1“ renforçant l’équipement au bord du réseau et (2“
poussant le traitement des données vers le bord•
Le calcul en périphérie nécessite des nœuds de capteurs dotés d’une
plus grande capacité logicielle et d’une plus grande puissance de
traitement† bien que contraints en consommation d’énergie• Les sys‡
tèmes matériels hybrides constitués de FPGAs et de processeurs of‡
frent un bon compromis pour cette exigence• Les FPGAs sont connus
pour permettre des calculs exhibant un parallélisme spatial† aussi
que pour leur rapidité† tout en respectant un budget énergétique lim‡
ité• Coupler un processeur au FPGA pour former un noeud garantit
de disposer d’un environnement logiciel ʙexible pour ce noeud•
La conception d’applications pour ce type de systèmes hybrides
(réseau/logiciel/matériel“ reste toujours une tâche difʘcile• Elle
couvre un vaste domaine d’expertise allant du logiciel de haut
niveau au matériel de bas niveau (FPGA“• Il en résulte un ʙux de
conception de système complexe† qui implique l’utilisation d’outils
issus de différents domaines d’ingénierie• Une solution commune est
de proposer un environnement de conception hétérogène qui com‡
bine/intègre l’ensemble de ces outils• Cependant† l’hétérogénéité
intrinsèque de cette approche peut compromettre la ʘabilité du sys‡
tème lors des échanges de données entre les outils•
L’objectif de ce travail est de proposer une méthodologie et un envi‡
ronnement de conception homogène pour un tel système• Cela re‡
pose sur l’application d’une méthodologie de conception moderne†
en particulier la conception orientée objet (OOD“† au domaine des
systèmes embarqués• Notre choix de OOD est motivé par la pro‡
ductivité avérée de cette méthodologie pour le développement des
systèmes logiciels• Dans le cadre de cette thèse† nous visons à utiliser
OOD pour développer un environnement de conception homogène
pour les systèmes de type EdgeComputing• Notre approche aborde
trois problèmes de conception: (1“ la conception matérielle† où les
principes orientés objet et les patrons de conception sont utilisés pour
améliorer la réutilisation† l’adaptabilité et l’extensibilité du système
matériel• (2“ la co‡conception matériel/logiciel† pour laquelle nous
proposons une utilisation de OOD aʘn d’abstraire l’intégration et la
communication entre matériel et logiciel† ce qui encourage la mod‡
ularité et la ʙexibilité du système• (Š“ la conception d’un intergi‡
ciel pour l’Edge Computing• Ainsi il est possible de reposer sur un
environnement de développement centralisé des applications dis‡
tribuées† tandis ce que l’intergiciel facilite l’intégration des noeuds
périphériques dans le réseau† et en permet la reconʘguration au‡
tomatique à distance• Au ʘnal† notre solution offre une ʙexibilité logi‡
cielle pour la mise en oeuvre d’algorithmes distribués complexes† et
permet la pleine exploitation des performances des FPGAs• Ceux ci
sont placés dans les noeuds† au plus près de l’acquisition des don‡
nées par les capteurs† pour déployer un premier traitement intensif
efʘcace•

Keywords: IoT† Edge Computing† FPGA† Object Oriented Design† Distributed Objects
Mots clés: l’internet des objets† Calcul en Périphériques† FPGA†Conception orientée objet† Objets distribués

	Introduction
	Context: Internet of Thing, Edge computing and FPGA
	Internet of Things
	Edge Computing for Cyber-physical Systems
	Using FPGAs for Edge Computing in IoT: Benefits and Challenges

	Research Objectives and Contributions
	Research Objectives
	Contributions

	Outline of the Thesis

	State of the Art
	Edge Computing
	Dedicated SN for Edge Computing
	Using FPGAs for Edge Computing in IoT
	Discussion

	Hardware Design Background
	Overview
	Hardware Design Methodologies
	Discussion

	Meta-modeling for System-level Hardware Design Using MDE
	Model-Driven Engineering
	Component-based approaches
	Platform-based approaches
	 UML and Object Oriented based Approaches
	Summary

	Software/Hardware Co-design
	Early Binding Approaches
	Late Binding Approach
	Discussion

	Positioning our work

	Promoting Object Oriented Principles on HW Design Using the OoRC Meta-model
	Introduction
	OoRC in a Nutshell

	Fine-grained Modeling: FPGA Circuit at RTL Level
	Circuit Signals as Data Objects
	Circuit Structures Modeling
	Discussion

	A Simplified DSL for HW Design
	Overview of the DSL
	OoRCScript Syntax

	Coarse-grained Modeling: Hardware System Level Design Using Object Oriented Technique
	Basic OO Concepts for HW Design
	Basic OO Design Operations
	OOD Pattern on Hardware Design

	Circuit Model Transformation
	Overview of the Transformation Process
	Exporting Circuit Models
	Legacy VHDL Reuse via a Dedicated VHDL Parser
	Automatic Circuits Integration and Configuration
	Discussion

	"In-vivo" Circuit Models Simulation
	Execution Model: time-driven vs. event-driven
	Event-driven Simulation of Circuit Models

	Interfacing the OoRC meta-model with External Tools
	"Ex-vivo" Simulation Using an External Simulator
	Circuit model synthesis and deployment

	Summary

	OoRCBridge: Seamless Integration of FPGAs with High-Level Software
	Overview
	Hardware Architecture
	Interface Template
	Addressing Scheme
	IPs Integration Supporting Memory Mapping

	Middleware for SW/HW Communication
	System Layer
	API Layer
	Software Development Using the Middleware
	Impact of the Middleware on the Performance of the Link

	Hardware Controllability and Debugging
	Case Study: Using OoRCBridge Toolset and Middleware for Robotic Development
	Scenario
	Debugging Using Hardware BreakPoint
	FPGA vs Processor
	Communication Through the ROS Middleware

	Summary

	CaRDIN: A Dedicated Environment for Edge Computing on Reconfigurable Sensor Networks
	CarDIN: overview
	Architecture of a Node
	Edge-centric Nodes Development with CaRDIN's middleware
	CaRDIN's Distributed Object API
	Automatic Remote SW/HW Reconfiguration of Nodes
	Discussion

	Case Study 1: Camera Sensor Node Performing Image Processing
	Scenario
	Benchmarkings

	Case study 2: distributed algorithm development and deployment with CARDIN
	Summary

	Conclusion and Perspectives
	Contribution Summary
	Current and Future Works

	References

