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linear systems, that have a saddle-point coefficient matrices, are long and costly to solve. We
propose two different classes of methods to deal with these problems. First, a direct factor-
ization method that takes advantage of the special structures and properties of these saddle
point matrices. The Gaussian elimination factorization is implemented in order to factorize
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1.1. Industrial context

1.1. Industrial context

EDF, as an operator of electric power production, needs to understand the mechanical behav-
ior of ageing equipments of which it is not the manufacturer, in the purpose to ensure their
proper functioning and to optimize their availability. Its R&D division rely on its expertise
in the field of structural mechanics through a wide-scope of research activity (vibrations,
fluid- structure interaction, seismic, rotor-dynamic machines, etc.) in order to guarantee the

safety of the generation plants and maintaining high efficiency.

Some structures may be exposed to high levels of vibration due to poor initial design and
ageing installations. As soon as the power plant starts up, a number of problems appear and
no definitive solution is adopted. These issues can result in reduced structural integrity and
could therefore be detrimental to both engine reliability and performance with a potentially

serious impact on safety.

The detection of high vibration levels leads to the production shutdown, in order to avoid
equipments damage. And this shutdown has a significant impact on the quality of service
and performance. The industrial context emphasizes the need to consider the condition of

ageing nuclear assets and manage their performance.

1.2. Considered methods and goals

This issue requires a deep understanding of the physical phenomena involved and the realiza-
tion of numerical models to assess the corrective solutions. In order to diagnose the origin of
the problem, test campaign is first and foremost performed on structures. A numerical model
is then built to reproduce the nominal behavior and evaluate proposed solutions. Therefore,
the designed numerical models must be of good quality in order to accurately predict the
behavior of analyzed structures. Experimental data is then used for model-updating or field

reconstruction purposes through inverse and namely identification problems.

Up to now, least-square’s type methods were used to solve these identification problems. In-
deed, the representativeness of numerical models is quantified during the stages of verification
and validation and experimental information is then combined with numerical simulations to
complete the a priori knowledge of structural behavior to propose industrial solutions. Hence,
we seek to give the best state and parameter estimation in structural dynamics problems
from both a finite element based mathematical model and a set of available experimental
data. This work arises from EDF’s need to improve solution methodologies for these inverse

problems and their associated constrained optimization problems in structural dynamics.
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Among the different existing approaches that enable these steps, one is based on energy
functionals. This approach has shown its efficiency and has appeared to be an appropriate
indicator of the quality of a model with respect to measured data [38][94]. Adopting the
above-mentioned approach in a finite element framework leads to a sparse and large linear
system of equations equivalent to a saddle-point system or Karush-Kuhn-Tucker (KKT) sys-
tem. It arises too in many applications of scientific computing, e.g. constrained optimization

and incompressible fluid flow [17].

The implementation of energy-based functional approach within the work of Kuczkowiak
[71] shows that direct solvers used in mechanical softwares fail to solve efficiently the inverse
problem associated to an industrial structure model with more than 10° dofs and few hun-
dreds of measurement points and provide a huge computation cost for a single calculation.
But the numerical solution of large-scale industrial scientific problems generally requires
large computational times and large memory needs. Many efforts are acknowledged with re-
spect to both computer architecture aspects and the design of efficient algorithms, in order
to provide effective simulation tools. In this thesis, we are rather interested in the second

aspect.

This research work focuses on the solution of problems issued from large-scale identification
problems. More specifically, the main goal is to provide efficient solution methods to speedup
the solution of constrained optimization problems within the framework of the open-source
software Code_Aster ®) [1], which is a general purpose finite element code developed at EDF.
The choice of the considered methods directly is guided by from the main target of memory

and computational time efficiency.

In this work, direct solution methods have been investigated as a way to address the sequence
of saddle point systems to solve. Direct solvers consist of a first factorization of the coefficient
matrix into triangular factors, then successive forward and backward substitutions. They
are usually designed as a preprocessing step is applied before the factorization. This includes
scaling, pivoting and ordering. The preprocessing step makes the numerical factorization in
many cases easier and cheaper, which influences by the way the memory and the time of the
factorization step[3]. In that sense, direct solvers have been widely and successfully used in

the past decades in structural dynamics problems, particularly in the area of vibrations.

Direct solution methods, however, require a huge memory when dealing with a large and
sparse linear system. In structural mechanics, as in other applications, these methods have
proved to be efficient in the two-dimensional case, but a significant fill-in phenomenon usually
occurs when factorizing large-scale three-dimensional problems [103]. Hence, the memory
requirement generally penalizes their use. Furthermore, the a priori saddle point structure

of the systems appears to be problematic.
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The second class of methods is the iterative methods which provide a sequence of approxi-
mations of the solution of the linear system. Contrary to the direct solvers, these methods
only require the knowledge of the action of the matrix on a vector. Furthermore, they are

particularly well adapted to parallel computing [97].

We try here by means of a hybrid approach to reduce the needed memory and computation
time. We mix up direct and iterative methods so that they contribute together to empower
each other. Therefore, the factorization which is the key element of direct methods is used

in preconditioned iterative methods.

We finally implements the developed methods in the mechanical code CodeAster®). The
contribution of this thesis will therefore be useful for industrial applications such as updating

structural finite element models from test data, or identifying unknown parameters|34].

1.3. Overview of the thesis

In light of the above topics and issues, this dissertation is divided into four chapters besides
of this short chapter of introduction. Chapter 2 proposes an introduction to important
information that is used along the different chapters. We explain the identification problems
through energy based functionals. We detail the formulation of their associated constrained
optimization problems and how it leads to the solution of a sequence of symmetric saddle
point linear systems. Next, we give a brief overview of existing methods for the solution
of those systems, where we we give relevant information about direct solvers and Krylov
subspace methods. The chapter’s main goal is to provide a detailed explanation of the

purpose of this thesis.

In Chapter 3, two different strategies using direct solution methods are proposed. The first
strategy is devoted to building a variant direct solution method that uses a dynamic process
handling factorization and ordering in the same step. This process enables to avoid pivoting
and to gain some fill-in especially in the case of indefinite symmetric matrices. While this first
strategy is of general purpose, the second one takes more advantage of the special structure
and properties of the studied saddle point system. The Gaussian elimination factorization is
implemented in order to factorize the saddle point matrices block-wise with small blocks of
orders 2 and using a fill-in reducing topological ordering. We will notice through numerical

experiments that those strategies remain less efficient in term of memory.

Then, we develop another class of solution methods in Chapter 4. We propose a double
projection of the generated saddle point system onto the nullspace of constraints. The first

projection onto the kinematic constraints is proposed as an explicit process through the
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1. Introduction and general overview

computation of a null basis. Then, we detail the application of a constraint preconditioner
as an implicit second projection of the system onto the nullspace of the sensors constraints.
We characterize the spectrum of the preconditioned matrix, and we further carry out a

comparison of different approximations of the constraint preconditioner.

Chapter 5 puts the latter strategy at work on two problems of industrial relevance, namely
on a nuclear power plant alternator and a cooling water pump. Firstly, we illustrate nu-
merical efficiency of the double projection approach when applied to the complex industrial
application of the alternator, we solve a sequence of the saddle point systems generated for
a set of experimental eigenfrequencies and we evaluate the parallel performance. The sec-
ond application investigates the use of the solution method when applying the energy-based

approach in order to update the pump numerical model.

Finally, we draw final remarks and future research plans in Chapter 6.
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2.1. Identification methods

2.1. ldentification methods

As seen in the industrial context section, it is essential in industry to understand the me-
chanical behavior of equipments to ensure their structural performance and optimize their
availability. Some structures may be exposed to high levels of vibration which requires a deep
understanding of the physical phenomena involved and the realization of numerical models
to assess the corrective solutions. In many cases, experimental information is combined with
numerical simulations to complete the a priori knowledge of structural behavior in an effort
to address industrial issues. Consequently, numerical models must be of good quality in
order to accurately predict the behavior of analyzed structures. In order to achieve a good

model prediction, we use the identification of adequate model parameters.

2.1.1. Model parameter identification as an inverse problem

Model parameter identification is a very important and challenging matter in science and

technology. This kind of inverse problem arises in many applications.

In direct problems, it is often considered as a general rule to impose boundary conditions
either on the primal variable (temperature, displacement, electric potential, ...) as a Dirichlet
problem or on the dual one (temperature flux, surface force density, current vector) as a
Neumann problem. In the most complicated cases, one can have a combination of conditions
as a mixed boundary conditions problem but the number of independent conditions must
always be the same. These conditions generally ensure that the direct problem is solvable.
Basically, we consider that the solid geometry and its physical characteristics (conductivity,
elastic moduli,...) are also known. Conversely and from a physical point of view, an inverse
problem is a situation in which we want to evaluate some physical quantities # that are
inaccessible through experimental setting. In order to identify these unknown quantities
called parameters, we need to exploit experimental information from another measurable
physical quantities d. And using a mathematical model of the direct problem, we get 6
explicitly from d (which is symbolically denoted d = G(0)). The principle of identification
methods consists in establishing a mathematical relation based on physical laws, also known
as the model, linking both measurable and non-measurable quantities in a way that the

sought-after quantities can be found from the available measurements.

The solution of inverse problems may encounter, mathematically speaking, problems of exis-
tence, uniqueness and continuity of the solutions [21]. The reader may find a general overview

on these methods describing general theory and inversion techniques in [106] and [22].
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Direct problem

Parameters ‘ Observation
7 G o M(0)

4 Inverse problem

Figure 2.1.: An inverse problem and its associated direct problem

It is usually possible to access in-service structures information and their structural behavior
like their frequencies or their modal displacements. These modal data can be calculated by
means of a continuous or discrete model, if the structures are perfectly known. Conversely,
this experimental modal data makes it possible to cover up a certain degree of ignorance of

the system. More concretely, they are used in some industrial applications like

e Model-updating, if the used model is suspected. Due to aging and evolving structures,

their functioning is affected and does not comply with the initial design;
e Identification of imperfectly known boundary conditions;
e Monitoring, detection or quantification of defects.

Solving model parameters identification problems depends on the nature of the problem
(statics, dynamics, etc.). Parameters identification problems ends up generally being for-
mulated as an optimization problem, namely seeking the minimum of a cost function that
quantifies in a certain metrics the difference between a model prediction and the available
data. The cost function is built in the literature in different ways. Among the different

approaches, there are
e Approaches based on least-squares [107] where the metrics is a L? norm.

e An approach based on auxiliary fields, which are fields whose equations of motion
admit a single solution. Generally, cost functions are built upon the overdetermined
data over the boundary domain [6].

e Approaches consisting on energy-based functionals. An interesting example using this
approach within the framework of the Error in Constitutive Relation (ECR) [72] can
be found in [34].
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2.1. Identification methods

In the next section, a more in-depth description of energy-based identification methods
is provided. For more information on identification problems for structural mechanics, the
reader can find a general overview in [23] and [22], and in particular for industrial applications
like modal-updating or fields reconstruction in [75], [5], [14] and [15].

2.1.2. Energy-based functional approaches

This approach has first been introduced by P. Ladeveze [72] in the 1970s as a method that
uses an error indicator to check the quality of the solutions obtained by finite element (FE)
model. Unlike in the case of the auxiliary fields or the least-squares approaches, where the
quality of the model is measured by the distance between the solution of the direct problem
to the measured data, the energy-based functionals measure the model error.

As mentioned before, many applications and different versions have been proposed, for in-
stance for model updating [29, 40] and identification problems [55, 85], or model quality
assessment [73, 76]. Besides, several studies have successfully applied this principle under
linear or nonlinear conditions [14, 29], either in the frequency domain [40] or the time domain
[55, 54].

Therefore, the energy-based functional approach appears to be an appropriate indicator of
the quality of a model with respect to measured data and some particularly good properties
deserve to be highlighted. Indeed, it is able to locate erroneously modeled regions in space
[13, 67]. It is robust even in presence of noisy data and provides good convexity properties

of cost functions[62].

Thanks to energy based functional approach, we are able to build a model that predict the
structural behavior of structures [71, 34]. It is called the hybrid model, and is the combination
of the numerical and experimental ones. We integrate the identified experimental data into
the numerical model instead of looking at both models separately. An expansion operator is
then constructed introducing an additional approximation. More precisely, we seek to extend
the specific solutions identified experimentally on the numerical model. This step makes it
possible to eliminate the model calibration phase and to ensure that the finite element model

has an overall good inertia and stiffness properties.

2.1.3. The constrained optimization problem

In most of the industrial and application cases, and in the particular scope of interest of this
work, the study of structural dynamic behavior is performed by means of Finite Element

models. Besides, for industrial application cases energy-based functional approach aims to
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2. Large-scale identification problems

reconstruct fields on a numerical model from experimentally obtained data. In structural
dynamics, the kind of data we seek to reconstruct on a FE model are often eigenmodes or
displacement fields. The objectives are various as seen in above sections reconstruction for
visualization, test assessment, model calibration, damage identification and extrapolation of

the delicate degrees of freedom (dofs) that can not be obtained by experiments.

Let us consider a structure and its FE model with n degrees of freedom (dofs), where
[M] € R™™ and [K] € R™" are the so-called mass and stiffness matrices respectively. We
know that each couple of eigenvalue and eigenvector (w, ) of the finite element numerical

model satisfies
(K] = w?[M]) {¢} = 0,{¢p} # 0. (2.1)

Nevertheless, the model equations are not correct nor complete to represent the physical
equations, due to modeling assumptions, simplifications, misconceptions and possible model
errors. Besides there are some model parameters errors, which include the uncertainty on
boundary conditions, and inaccuracy on model parameters. These factors imply that the
numerical eigencouples may not correspond to the real dynamic behavior of the structure.
We use a set of unknown model parameters 6 that parametrize the mass matrix [M] =
[M(0)] € R™™ and the stiffness matrix [K] = [K(0)] € R™", and consequently couples
of eigenvalue and eigenvector (wy, ¢g), in order to modelize these uncertainties and mis-
knowledge.

The identification problem aims to find this set of parameters 6 such that each couple of
numerical eigenvalue and eigenvector (wy, ¢g) is close to the correspondent experimental one
(Weaps Pexp) Where ¢y is only defined on s << n sensors.

The energy-based functional is constructed using two fields

e Let {¢} be the solution field and interpreted as the best estimation of the eigenmode
©p, minimizing the distance with the measured eigenmode ¢, at the pulsation wey,

while maintaining the regularity properties of eigenmodes.

e Let {¢} be an error field that expresses the error in stiffness in the model which facil-
itates identifying the best set of parameters # that enables a satisfactory reproduction

of the measurements through successive iterations. It satisfies
[K(O){v} = ([K(0)] — we,, [M(0)]) {¢}. (2.2)

The energy functional consists of the elastic potential energy of the error term v and aug-
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2.1. Identification methods

mented by the distance between measured and computed eigenmodes

r

eol{eh 400 = 5 K OHOH 5 (e~ {6 )T 1o}~ }) ©23)
where r € [0,1] is a weighting scalar, II is a projection operator from the space of the
numerical finite element model to the observation space and K, € R**® is a symmetric
positive definite scaling matrix. Although the choice of K, is not a priori defined, it is
usually chosen to be dimensionally consistent with the induced energy norm and can be
obtained, for instance, by using the Guyan reduction on the observation space. More details
about K, are available in [34].

In addition to the constraint (2.2), there are kinematic linear constraints which are described

as follows
[CH{et =0, [CHv}=0, (2.4)

where [C] € R™*" represents m linear relations coming from the kinematic boundary con-
ditions and modeling constraints as will be detailed in section 2.2.1. It is supposed to be of
full row rank m. If it is not the case, we find either that the problem is inconsistent or that
some of the constraints are redundant and can be deleted without affecting the solution of
the problem. Moreover, the matrix [K] is supposed to be positive definite on ker([C]), which
ensures that the constraints lock the rigid body motions of the structure.

An important question to ask is what role experimental measurements play in the energy-

based functional in equation (2.3) 7

Before answering this question, let us present some helpful concepts. As seen before, energy-
based functional approach is generally based on the minimization of a cost function. In
general, this kind of problems leads to the resolution of a sub-determined linear system, and
whose solution may be in many cases ill-posed in the sense of Hadamard [30] as it may not

respect one or more of these listed conditions
e a solution exists,
e the solution is unique,
e the solution’s behavior changes continuously with the initial conditions.

The ill-posedness of the identification problem will generally lead to instability and sensi-
tivity of the solutions with respect to noisy data. To overcome this issue, we use Tikhonov
regularization techniques [108, 22], which are widely used when solving inverse problems
[106]. It consists on adding, among the set of admissible solutions, what we call regular-

ization conditions. It thus makes possible to introduce an a priori knowledge about the
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sought-after solution, which has the property to stabilize the solution with respect to noise

in data.

Hence, to answer the above question, the role of experimental measurements here is to
be Tikhonov regularization parameters, which facilitates the reconstruction of unobserved
fields. The parameter r makes it possible to control the importance of regularization in
the cost function. It represents the confidence that we have in the identified eigenvectors.
Actually, the more the coefficient r tends to 1, the more the motion of identified solution
degrees of freedom corresponds to the motion of the experimental degrees of freedom. On
the contrary, the more r tends to 0, the more the motion of the identified solution degrees of
freedom tends towards the motion of the numerical model degrees of freedom. In the many
publications dealing with energy-based approaches for identification problems, few provide a
real justification for the value of r, and choosing its suitable value is not trivial. Nevertheless,
the value of » = 0.5 makes the cost function robust with respect to the noise as mentioned
in [90, 74]. Here, we choose this value, so that both terms in the cost function (2.3) fulfill
a different role during the identification. The term corresponding to the error in stiffness
try to highlight the admissible forms while the second term try to obtain the best solution
among all admissible ones, in the sense that it minimizes the distance between experimental

and numerical model data.

Remark 2.1. It is also possible to choose a varying scheme for r, as done in [12] where
the energy-based approach is used as a cost function for the identification of elastodynamic
parameters from experimental measurements. Since the minimization is done in an iterative
way, the paper proposes an increasing iterative scheme for r in order to reduce the number
of iterations to obtain the optimal identified parameters. This approach may facilitate the
solution of the inverse problem due to the effect of the reqularization terms that constrain

the cost function more and more.

In order to evaluate the discrepancy of a FE model with respect to a set of measurements,
we adopt the following method. Given a set of model parameters ¢ that parametrize [M] =
[M(6)] € R™™ and [K] = [K(0)] € R™" we obtain the admissible fields

So = ({2} {0}, (2.5)

that minimizes (2.3). This minimization leads to the resolution of linear systems as developed
in next section. Finally, we evaluate the model error by computing e, (S, ).
To find the best set of model parameters €, since the admissible fields solution of (2.3)

depends on 0 (S, = (S,(#)), we solve the identification problem over a number of iterations.
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2.2. Toward a saddle point system

The mathematical problem is formally written as

0 =arg min ew(Swu,0). (2.6)

2.2. Toward a saddle point system

We search a solution that minimize the energy functional (2.3) under the constraints (2.2)
and (2.4). In order to solve this constrained optimization problem, a Lagrangian functional
is introduced using the following Lagrange multipliers A, A\;, and Ay and is presented in the

following

Fw ({()0}7 {¢}a {)‘}7 {)‘1}7 {)‘2}7 6) = €y ({90}7 {¢}7 0>+Cw ({90}7 {¢}7 {)‘}7 {/\1}7 {)‘2}7 9) ) (27>

where

co({ed o h A0 I (e}, 0) = {7 (([K(0)] — wi, [M(9)]) {¢} — [K(O){v})
— M CHYY + {2} (ICH{w} = [CHel) - (28)

The variable 0 is considered as implicit here and it will be used afterwards for model up-
dating and robust expansion purposes. The optimal value of {(p, 1, A\, A\, Ao} satisfies the

stationarity condition

de ({30}7{w}a{A}a{Al}a{)‘Q}ae) = 07 V{%%)\,)\l,)\z} (29)
oF, OF, OF, 0OF, oF,
5 ey de + —d>\ o 2 d\ + a—/\2d/\2 =0, Vi, 0.\ AL et (2.10)

which yields the following system of equations using the symmetry property of [M] and [K]

(TG0} — {Gep}) + (K ()] = w2, [MOD{A} = [C]T (Ao} = 0
K@)y} = IKOHAL +[CT{ A} = [CT{M} =0

—[K(O){¢} + ((K(0)] — wl,, [M(O)){e} = 0 (2.11)
[CHy} =0
[ [CHY} = [CHp} =0
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2. Large-scale identification problems

The third equation of (2.11) allows us to write
[KO){} = ([K(0)] — werp [M (0)]) {0} (2.12)
consequently transforming the second equation in (2.11)
([K(0)] — weap [MOD{0} — [K(O){A} + [ {A} = [C]{M} =0 (2.13)

Using first, third and fourth equations in (2.11) in addition to (2.13), yields the following

system of linear equations

—[K(0)] —[C]" [K(0)] — wZ,[M(0)] [CT" [{v} 0
-] 0 €] 0 {M3] 0

[K(0)] — wZ, [M(0)]  [CT" oI KG I 0 {e} T K feap
C 0 0 0 {A2} 0

(2.14)
This system arises as the first-order optimality conditions for an equality-constrained quadratic
programming problem.

The stifflness and mass matrices considered here have different structures from usual ones

o (KoL Cm (@) o
m-(m O>,Wh<0 J (2.15)

with [K] € R™" [M] € R and [C] € R™", m < n. In this case, the matrices [K] and
[M] are the stiffness and mass matrices respectively without any constraints. [K] is sparse
and symmetric positive semidefinite. The dimension of its nullspace ker([K]) corresponds to
the number of rigid body motions of the studied body.

Through this formulation, the constrained mass [M] and stiffness [K] operators enable to
describe the studied system (2.14) as follows

<~—ﬁww mwh@mme@}{ ~q~> (216)
[KO)] - w2, [M(0)] =TT @) \SIK ) dewy

1—r

where the symbol ~ describes the augmented form of each operator and each variable.

Remark 2.2. The constraint equations are introduced via Lagrange multipliers {\}, {\1}
and {\o}. Here, we choose a specific form to describe the kinematic constraints through
the Lagrange multipliers which is —ATCvy + MF(C — C) instead of the classical form
MNCy + N Cop, in order to get the same structure of the constrained matriz (2.16) as the

one generated by the industrial mechanical software Code_Aster ®).
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2.2.1. Different approaches for introducing kinematic constraints

As we study linearly constrained structures, the constraint matrix [C] € R™*"™ has m linear

equations coming from two kinds of constraints

o single-freedom constraints (SFCs) they are essential boundary conditions on individual
degrees of freedom. For example u; = 0 means that only the node ¢ is constrained,

where {u} = (u;) is the vector of physical degrees of freedom (dofs).

o multifreedom constraints (MFCs) These are functional equations that connect two or
more displacement components. In our case of study only linear constraints will be
studied. As usually done in industrial solvers, these relations are introduced directly
into the discretized problem. They can model for instance a non-deformable part of

the structure or connecting conditions between modelings [83].

The stiffness matrix is assembled ignoring all constraints. these constraints is imposed by
changing the assembled stiffness matrix to produce a modified one. The modification process
is not unique because there are many constraint imposition methods. These ones offer trade-
offs in implementation, computational effort, numerical accuracy and stability. Among these
methods, we find in the mechanical software C'ode_Aster® two main ones : elimination and

dualization of linear and affine kinematic constraints.

Remark 2.3. In Code_Aster®), the SFCs can be either directly eliminated or dualized. The
MFCs can not be easily eliminated in the matriz [K]. They are added to the discretized
problem in Code_Aster®), as in many industrial software. Nevertheless, the imposition of
MFCs directly on the discretized unknowns is much easier to implement and much more
versatile (it easily mizes displacement and rotation) so that it is real common and powerful

modelization tool for the engineers.

We discuss in the following sections both methods for introducing the linear kinematic con-
straints and their application within the developed solutions methods in Chapters 3 and
4.

Dualization of the boundary conditions

The dualization method is the one used in section 2.2 by introducing Lagrange multipliers,

and also the one that is considered in Chapter 3 to generate the saddle point systems.

This approach is used in Code_Aster@® and in many other general-purpose finite element
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programs that it is supposed to work as a black-box by minimizing guesses from its users. It
increases the size of the problem by introducing new unknowns through Lagrange multipliers.
Physically this set of unknowns represent constraint forces that would enforce the kinematic
constraints applied to the unconstrained system. This approach is exact aside from finite
precision arithmetic problems, it is extended to nonlinear constraints and we could obtain

the constraint forces directly.

The approach has two drawbacks. On the one hand, the adjunction of Lagrange multipli-
ers increases the number of degree of freedom of the whole problem, requiring expansion
of the original stiffness and mass matrices, which means more complicated storage alloca-
tion procedures. This may be disadvantageous when the number of boundary conditions

mcreases.

On the other hand, it leads to a loss of the positivity property of the stiffness matrix. We
recall that the resulting augmented stiffness and mass matrices have different structures from
usual ones as mentioned in (2.15). The resulting stiffness matrix becomes indefinite which
restrains the use of many factorization methods without permutation especially LDL” that

rely on positive definiteness. In fact, breakdown can occur due to zeros on the diagonal of
the (2,2) block in (2.16).

Even though, we will consider this approach when solving the system directly in Chapter 3,

as done in C'ode_Aster®) software. In this case, the studied linear system is the system 2.16.

Remark 2.4. To overcome the stiffness matriz indefiniteness issue in Code_Aster®), the
stiffness matriz in 2.15 is transformed into an equivalent one, using double Lagrange multi-
pliers [88] as follows

(K] o[C]" alC]T
[C] —al al , (2.17)
[C] ol —al

Q

where a > 0 is a scaling coefficient, chosen in order to obtain coefficients in the matriz o[C]

of similar magnitude with the ones of [K]. And similarly
0 0

[M]=1 0 0 0 (2.18)
0 0

where [M] is the mass matriz of the unconstrained system.
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The saddle point linear system 2.16 becomes as follows

CCIRE) [RO)] - w2, M (0)] (@>: 0 210
KO) -2, b)) =R )P\l K,

where the symbol =~ describes the new augmented form of each operator and each variable,

and .
L IT[K,T 0 0
=T =~ = r

1T (K] = 0 00|,

0 00

AT ~ o~ {TTHT[KT]QberP
1%1_[ [K'fkbea:p: O )

0

) (2.20)

Y= {)\11} )
{A2}
a2

SAO/ {>\21} )
\ {22}

where A1, A2, Ao1 and oo are the associated Lagrange multipliers. In [88], we prove the

equivalence of both linear systems 2.16 and 2.19.

Remark 2.5. If we seek to find the eigencouples

(K] o[C]" alC]T [M] 0 0 o 0
alC] —al ol |—-w?| 0 00 Ml=10], (2.21)
alC] ol —al 0 00 Ao 0

searching eigenvalues will be more costly because of the loss of the properties of positivity
of the operator. Moreover, the spectrum of the problem widens due to the rise in degrees of

freedom, which implies different numerical problems to solve [81].

Elimination of boundary conditions

There is a more suitable approach when dealing with fixed and affine boundary conditions.
Instead of using the dual form through the Lagrange multipliers to constraint the problem
with affine boundary conditions, we eliminate some of the variables from the problem, to

obtain a simpler problem with fewer degrees of freedom. We use this technique as a first
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step in the iterative method developed in Chapter 4 in order to eliminate the kinematic

constraints.

We do so by projecting the problem in a more suitable space. Actually, we choose to describe
the subspace of feasible points that are solutions of [C]{u} = d.

Let Z € R™ (™ ™) be a matrix such that span(Z) = ker(C) and Y € R™™ be a matrix
such that span(Y’) = range(C?). We now express any solution of the linear constraints as
u = Yuy + Zuy for some vectors uy € R™ and uy € R*"™. By substitution, we obtain
Cu = (CY)uy = d, hence by nonsingularity of C'Y we conclude that any vector u of the
form u = Y(CY)'d + Zuy satisfies the constraints Cu = d. We say that the solution is
the sum of a particular one u, = Y(CY)"'d and a general one u, = Zuyz. In other words,
the elimination technique expresses feasible points as the sum of a particular solution plus
a displacement along the null space of the constraints.

If we consider the problem [K]{u} = {f} under these affine boundary conditions, we obtain

a new equivalent problem which is
Z'KZ =7 (f —Y(CY)d) (2.22)
Where [K.| = ZTKZ € R=m)*(=m) g the reduced stiffness matrix.

Remark 2.6. Searching for eigencouples is also simplified in the nullspace of the constraints.
The mass and the stiffness matrices ([M],[K]) are assembled in a first step without taking
into account the boundary conditions, they describe an unconstrained structure. Then, We
project the eigenmodes of the unconstrained problem ([K] — w?[M]){p} = 0 to obtain the
eigenmodes of the constrained one (ZTKZ — wQZTMZ) v = 0. Therefore, the elimination
approach seems more natural, and suits better the eigenvalue problem in presence of affine

constraints.

Remark 2.7. In [88], we prove that the dualized system is equivalent to the reduced, in the
condition if we dualize the stiffness matrixz and not the mass matriz, which is used within
the mechanical code Code_Aster®).

2.2.2. Sensors constraints and observability of shape modes

Let us recall in the following the remaining constraints applied to the optimization problem.
As mentioned above, they are the equality constraints that represent imposed equations at

the sensors degrees of freedom

[K(O){0} = ([K(0)] — we,, [M(9)]) {0}, (2.23)
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2.2. Toward a saddle point system

where {9} is the error field that expresses the error in stiffness in the model, and {¢} is the
solution field and interpreted as the best estimation of the numerical eigenmode ¢y, which

is minimizing the distance with the measured eigenmode ¢.,, at the experimental pulsation

Weap-

We call the sensors constraints here the constraints described by the third line of the system
2.14, which represent sensors degrees of freedom that are constrained through the equation
2.23. We notice that they are dependent of the experimental frequency we,p, therefore they
slowly change for each linear system along the sequence. In section 4.1.2, we present an

approach that enables us to eliminate them implicitly.

Here, there is an interest in a better understanding of the structural dynamic behavior, and
identifying the modal parameters, namely the natural frequencies, damping ratios and mode
shapes. In this context, observability is a notion that plays a major role in the reconstruction
of states from inputs and outputs. Together with reachability, observability is central to the
understanding of feedback control systems [104].
Let us consider ¢ an eigenmode of the structure. We present in the following a condition on
¢ such that

[Ty # 0 (2.24)

where II is the projection operator from the space of numerical finite element model to the
observation space. If the condition 2.24 holds then the eigenmode ¢ is called observable.
The observability notion enables by using only information from the output measurements

to learn everything about the dynamical behavior.

This notion is mainly used here to describe the experimental configuration of the structure.
We see later in Chapter 4, that the studied linear system is invertible if and only if every

eigenmode is observable 7.e. can be seen in at least one output channel.

2.2.3. Saddle-point linear systems

Adopting the above approach in a FE framework leads to a large and sparse linear system
which, as recommended by industrial guidelines of this work, is formulated symmetrically.
This symmetric formulation generates a sparse and large linear system of equations equiva-
lent to a saddle-point or Karush-Kuhn-Tucker (KKT) system. Such systems arise typically
in many applications of scientific computing, including for instance constrained optimization
[51], electromagnetism [89], incompressible fluid flow [52] and contact mechanics [83]. Hence,
there has been in recent years a growth of interest in saddle point problems, and many solu-

tion techniques have been developed. A review of the most known resolution techniques is
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found in [17].

In solid mechanics, the most known saddle point linear system is as follows

G BT\ (u c
i () ()-() »

where G' € R™*" is symmetric positive semidefinite, B € R™*" ¢ € R", d € R™ and m < n.
This symmetric indefinite problem of dimension N = n 4+ m is assumed to belong to the
class of large and sparse saddle point problems.

Let us state a theorem related to the nonsingularity of I which makes sure the existence

and uniqueness of the solution.

Theorem 2.8. Let K € RV*N be the coefficient matrix in (2.25). Assume that G is sym-
metric positive semidefinite, B has full row rank m and ker(G) Nker(B) = {0}. Then K is

nonsingular.

The proof can be found in [17]. In this manuscript, we focus on the case where the (1,1)
block G is also an indefinite saddle point matrix. As we will see later in this section, this
property can imply some restrictions about the nonsingularity and the choice of the method
used to solve the saddle point system.

According to the previous Section, the initial linear problem to solve (2.16) has a saddle

point structure and is described as follows

_ ~[K(0)] [K(0)] — w2, [M(9)]
4 ([f( (0)] — w2, [M(0)] - II7[K,] ) (2.26)

where A is a 2N x 2N matrix partitioned into 2-by-2 block structure of dimension N x N
~ K] [C]F
each. First, there is the constrained stiffness matrix [K(0)] = ([ )] €] ), then the

¢ o
constrained impedance [K ()] — w2, []T/[/(H)] = <[K(9>] ~ Weap| M ()] [C]T> that shares the
" €] 0
same structure as [K (6)].
T[T 0

Finally fjﬁT [I?r]ﬁ = is a very sparse symmetric matrix, it is composed

0
of a dense ¢ x ¢ sub-block scattered into a N x N matrix.

In the following and throughout the remainder of the manuscript, we consider the following
abbreviations A = [K(0)], B = [K(0)] — w2,,[M(0)] and T = =II"[K,]II. The coefficient

erp
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2.2. Toward a saddle point system

matrix A is then described as follows

A —CT BT (T
—C 0 C 0
A=l o 1 (2:27)

C 0 0 O

An other alternative structure is presented below, it is more appealing than (2.27) and is
more suited for the developed solution method in Chapter 4 as will be shown later. It

represents a saddle point coefficient matrix with a null (2,2) block. Using the permutation

matrix
L, 0 0 O
0O 0 L, O
P = (2.28)
0O I, 0 O
O 0 0 I,

we get the equivalent saddle-point structure

—A BT —cT (CT

- B T (T E CT

A=PIrAP = vl (EC (2.29)
-C C 0 0 C 0
cC 0 0 0

_ . T
where F = A B
B T

C is an augmented incidence matrix that is created from the contraint matrix C of the

~ -C C
) € R¥*2 and C = ( o 0) € R?™*2n  The constraint matrix

numerical model.

Remark 2.9. We present in (2.30) a partitioning of the saddle point coefficient matriz
(2.29), that takes into account the sensors degrees of freedom in order to highlight their
influence

—A. —Aw B B, -Cj -Cj C Cj
A —Auw Bj By -CL -Cf C Cf
By By T, 0 CL CL 0 0
~ Bs By 0 0 CL CF
—Css —Cq Css Cy 0 0
—Cis —Cy Cis Cy 0
Css Cq 0 0 0
Ceis Cy 0 0 0

, (2.30)

o O O o O
o O O o O
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O _ Css Cst ,T _ r HT[KT]H _ Tss O :
Cis Cy I—r 0 0

AT inen= (i fiﬁ) B = [K(0)] — w2, [M(0)] = (ﬁ g:) .

where

Subscript s indicates the set of sensors degrees of freedom in the numerical model. Since there
are s sensors then T,y € R**® is a small symmetric positive definite matriz. The equality
constraint 2.23 is described through the third block line/column in the coefficient matriz 2.50.

In the next section, we state some results and properties related to the coefficient matrix A.

2.2.4. The coefficient matrix properties

First, here are some important assumptions considered in this manuscript and imposed in
the mechanical code C'ode_Aster (R

e C € R™" is supposed to be of full row rank m, if such is not the case, we find either
that the problem is inconsistent or that some of the constraints are redundant and can
be deleted without affecting the solution of the problem. Also, if C' is of full row rank
it is obvious that the augmented constraint matrix C' € R Jescribed above in
(2.29), is of full row rank 2m.

e The matrix A in (2.29) is supposed to be positive definite on ker(C'), which ensures
that the constraints forbid the rigid body motions of the structure. This hypothesis is
verified also if A is only symmetric positive semidefinite and ker(A) Nker(C) = {0}.

These assumptions will be supposed to be satisfied from now on.

Solvability conditions of the coefficient matrix block (1,1) E

Let us consider the coefficient matrix (2.29), in the following we present the conditions that
guarantee the nonsingularity of A. We begin by proving the nonsingularity of E which is
the (1,1) block in (2.29).

-A BT
T

invertible whenever the intersection of ker(B) and ker(T) is reduced to the null vector.

Theorem 2.10. Let the matriz E = € R pe qs defined in (2.29). E is

39



2.2. Toward a saddle point system

Proof. Assume A and B admit the following spectral decomposition

A=ATAA = Diag(w3), B=A"BA= Diag (w} — w?) (2.31)
1<5<p 1<5<p
Where 0 < w? < ... < wg are the p eigenvalues (counting possible multiplicities), and

A = (A1, Ay, ..., A,) their correspondent eigenvectors..
Since A is semidefinite then rank(A) = n —r with 0 < r < 6 the number of dofs of rigid

body motions, which implies the following decomposition

n 07‘7“ 0 D - 2]7”7‘ 0 - frr fr n—r
A= B= " T=( 2 I (2.32)
0 An—r,n—r 0 Bn—r,n—r Tn—r,r Tn—r,n—r

In the following, we will use the symbol = to describe similarity between two matrices.
Hence, if X = P7'Y P for some invertible matrix P, then X =Y with P being the change

of basis matrix. Using the spectral decomposition on the whole matrix leads to the similar

matrix F
~  — AT 0 —A BT\ (A O —ATAN ATBTA
E=FE= = (2.33)
0 AT B T 0 A ATBA  ATTA
Oy 0 —w?l,, 0
_ Ay Byrn-
Jo 0 n—r,n—r AO IL\ rn—r (234)
_wglr,r 0 Tr,r Tr,nfr

~ ~ ~

0 Bn—r,n—'r' Tn—r,r Tn—r,n—r

Permuting the above matrix leads to the following similar form

~ ~

_Anfr,nfr 0 anr,nfr 0

Enl 0 Orr 0 - 217‘1"
E=| - A W (2.35)
anr,nfr 0 Tnfr,nfr Tnfr,r
0 _w2]7‘,r ,-Z/;r,n—’r fr,T

This decomposition leads to a saddle point matrix with a (1, 1) invertible block. We use here
the following LDL™ block decomposition

—~A BT I 0\ /A 0 I A-'BT
= ) B (2.36)
By, C BoAt 1) \0 C+B,A'BF ) \0 1
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which enables us to prove the following similarity

_A BT A 0
= (2.37)
B, C 0 C+ ByA BT

From this similarity, it is clear that A is congruent to the matrix

_A\n—r,n—r 0 0 0
— O 0 O - 2Ir r
E= . . . . bt (2.38)
0 0 Tn—r,n—r + Bn—r,n—r(An—r,n—r)ian—r,n—r Tn—r,r
0 _w2[7",r j:r,n—r ﬁ,r

Permuting this matrix so that the block (2,2) gets triangular leads to

_A\nfr,nfr 0 0
_ 0 — 2, 0
E= i _ ~ _ (2.39)
0 Tnfr,r Tnfr,nfr + anr,nfr(Anfr,n7r>_an7r,n7r 0
0 frﬂ« fr,n—r _w2I7",7"

~

Since —A,,_, ,—, is symmetric and negative definite, it follows that E is invertible if and only
if S = fn_m_r—|—§n_m_r(gn_m_r)_lén_r,n_r is invertible. As En_m_r(fAln_m_r)_lén_m_r
and T n—rm—r are symmetric positive semi-definite matrices, it is obvious that S is a symmetric
positive semi-definite matrix. S is singular if and only if 3V # 0 such that VTSV = 0. Since
for any W, WTfn_rvn_TW > 0and WTB\,L_M_T(;ln_m_r)*lén_m_rW > 0 then S is singular
if and only if

VT eV =0and VI B, r(Aneynes) " BornyV =0 (2.40)

which implies that fn_,ﬂ,n_rv = (0 and (ﬁn_m_r)’lén_r,n_ﬂ/ = 0 since fn_m_r and (ﬁn_m_r)*1
are symmetric positive, then T\n,m,rv =0 and En,m,rv =0 as (ﬁn,m,,ﬂ)_1 is invertible.

A~ A~

Finally, S is singular if and only if V' € ker(By,—n—r) Nker (1) ). O

We notice that it suffices that A being positive semidefinite without being invertible to prove
the nonsingularity of E.

Thanks to the congruence (2.37) and from Sylvester’s Law of Inertia [66, p. 224] we conclude
that E is highly indefinite, with n — r positive and n +r = n — r + 2s negative eigenvalues,
where r = dim(ker(A)). The same is of course true if B is rank deficient, as long as S

remains positive definite which is true as long as ker(B) Nker(T") = 0.
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2.2. Toward a saddle point system

Solvability conditions of the coefficient matrix A

In the following theorem, we prove the condition of invertibility of the whole matrix (2.29).

~ (E CT
Theorem 2.11. Let the matriz A = (5 0 ) € RAn+m)x2(ndm) be s defined in (2.29).

iof E is positive definite then A is invertible. If E is wnvertible, the nonsingularity of.,z 18

gquaranteed iff CE-LCT is nonsingular.

Proof. E is invertible, it yields that the saddle point matrix A admits the following block

triangular factorization
~ I 0\ (E 0\ (1 E'CT
A= -~ z 2.41
(C’E‘1 ]I) (0 S) (0 I ) (2.41)

where S = —CE'CT is the the Schur complement of E in A. Since the triangular blocks
are nonsingular, it follows that A is nonsingular iff S is nonsingular.
Now if E is positive definite, it is easy to see that £~! is also positive definite. For a nonzero

x # 0, we have

dT(CE'CTYe = (CTx)"E~Y(C"z) > 0 (2.42)

we recall that C7xz # 0 since C has full row rank. Hence, S is negative definite and A is
nonsingular.
It is not sufficient that F is nonsingular and C has full rank for S being nonsingular. Let us

consider

Clearly S =0 so that A is singular.

~ E 0 ~ ~
Besides, as A is congruent to (O §)’ it readily follows that A is nonsingular iff S =
—CE~'C7 is invertible. O

The condition considered here to prove the nonsingularity of Ais algebraic and not practical.

We present in section 4.1.1 an alternative way to prove the nonsingularity of A by using
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the nullspace projection, and we prove that the nonsingularity condition depends on the

experimental set up, and precisely on the fact that each eigenmode need to be observable.

Coefficient matrix pattern and numerical properties

An important care must be taken when dealing with saddle point systems, as these systems
can be poorly conditioned. Their special structure makes them vulnerable to many numerical
difficulties. Besides, it can be used to avoid or attenuate the ill-conditioning. Actually, the
special structure of the resulting saddle point linear system (2.16) is a difficult challenge
especially for mechanical softwares which are more developed for FE-like matrices. The
coefficient matrix A is real and symmetric and presents several difficulties for mechanical

solvers
e It is not positive definite;
e [t is poorly conditioned;
e it has a large bandwidth;

Figure 2.2 shows the structure of the non-zero elements of a 60 x 60 matrix A and illustrates
its mathematical properties, namely the very large bandwidth besides the very sparse block

(2,2). The second figure (right) presents a similar size finite element matrix.

L ? L L L L 1
o 10 20 30 40 50 60 0 10 20 30 40 50 60
nz = 360 nz = 236

Figure 2.2.: The pattern of non-zero elements of the coefficient matrix (2.27) (left) and a
finite element stiffness matrix (right)
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2.3. Solution methods of saddle point problems

Moreover, the structure of the right-hand side in (2.16) also plays a role

0
hs=|  ~. = ~ (2.43)
e (EHT[KT]Q%MU)

Here, the right hand side is composed of two sub-blocks. The first block is null and the
second one is sparse and its non-zero elements correspond to sensors degrees of freedom.

If we consider that

-1
(G FT G-I+ FTS'FG) —G'FTS!
AT = (F D) B ( —SIFG! S ) (2:44)

where S = D — FG7'FT. Then, it is clear that the (1,1) and (2, 1) blocks in A~ have no
influence on the solution u = A~1rhs, so that any ill-conditioning that may be present in
these blocks will not affect the solution. For details, see [43, 56, 111, 17].

2.3. Solution methods of saddle point problems

Many existing resolution methods are used to solve the saddle-point problems like (2.16),
a review of the most known resolution techniques is found in [17]. The most used solvers
are coupled (or global) ones which enables to solve the whole system at once and then to

compute the unkowns simultaneously.

2.3.1. Solving symmetric indefinite systems with sparse direct solvers

Direct methods are a tightly-coupled combination of techniques from numerical linear alge-
bra, combinatorics, graph theory and numerical analysis. The direct approach is used as a
black box in simulation software. The solutions obtained by these solvers are precise and
robust. Direct methods are thus often used in industrial codes where reliability is paramount
or for difficult problems. If the efficiency of direct methods is now difficult to surpass for 2D

problems, the unknowns of 3D problems are more coupled.

Depending on the topology of the matrix processed, a specific factorization is used. For a
positive definite symmetric matrix A, we will use a Cholesky decomposition A = LLT where
L is a lower triangular matrix. For a symmetric indefinite matrix, we prefer a decomposition
A = LDL" with D a block diagonal matrix. And more generally, we will use a decomposition
A = LU where U is an upper triangular matrix. For dense and structured matrices, an in-

depth coverage of these methods could be found in [33, 35].
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Direct solvers are usually implemented with a preprocessing step before the factorization.
This includes scaling, pivoting and ordering. The preprocessing step makes the numerical
factorization in many cases easier and cheaper, which influences the memory and the CPU
time of the factorization step [3]. The preprocessing step highlights two important parame-
ters in the factorization process. First, a low fill-in is sought by using ordering methods on
the matrix. Then, stability by preventing division by zero or by small quantities through
pivoting strategies. In fact, after the application of an ordering method to reduce fill-in, it
may be necessary to use pivoting in order to prevent a numerical breakdown, since pivots
may become very small or vanish which impacts stability [105]. We present a simple example

of this issue in the following

G (1)) ) (1 ?) (0 —0> (é 1) (2.45)

Rows and/or columns are permuted to first have pivotal elements with a large magnitude

=

and then to reorder null or small pivots last in the hope that these entries will be filled
before they are chosen as pivots[63]. Many pivot selection techniques have been proposed
for symmetric indefinite matrices. Bunch-Parlett [26] is based on complete pivoting and is the
most stable pivoting technique. Bunch-Kaufman [25] is based on partial pivoting and may
be instable whenever its factor matrix L got unbounded. In addition, there are two others
pivoting strategies that are usually referred to as rook’s pivoting : bounded Bunch-Kaufman
method and fast Bunch-Kaufman [8]. Nevertheless, it is difficult to achieve simultaneously
a good fill-in and stability because of complex interplays between ordering (for sparsity) and

pivoting (for stability)[10].

In the case of sparse matrices, numerical pivoting restrains a full static prediction of factors
pattern: it forces the use of dynamic data structures because it dynamically modifies the
structure of the factors, which have a significant impact on the fill-in and on the amount of
floating-point operations. To limit the amount of numerical pivoting, and stick better to the
sparsity predictions done during the symbolic factorization, partial pivoting can be relaxed,
leading to the partial threshold pivoting strategy [3].

The studied linear system (2.16) is symmetric, indefinite and very sparse saddle point system.
As Cholesky decomposition requires symmetric positive semidefiniteness, it is not used.
Instead, there are only two possible factorization techniques in this case, which are LU
and LDLT decompositions [57]. LU decomposition leads to ignore the matrix symmetry
by doing Gaussian elimination with partial or complete pivoting. This decomposition is
stable and recommended for the solution of such systems [26]. It is considered in the first

direct approach of section 3.2. For symmetric indefinite factorization and in the purpose of
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preserving symmetry, we use LDLT where L is lower unit triangular matrix, and D is block
diagonal with 1-by-1 and 2-by-2 diagonal blocks. This latter is used partially in the second

direct approach developed in section 3.3 to maintain the numerical stability.

Let us consider A = —[K(6)], B = [K(0)] — ngp[M(G)] and T = frﬁT[f?r]ﬁ Since A is an
invertible matrix, the saddle point matrix can be factorized in the following block diagonal

triangular LDL” factorization

T —1pT
c_ A B _ I 0\ (A 0 I A'B (2.46)
BT BA™' 1 0 T—-BA'BT)\0 I

As usually found in classical saddle point systems, if A is symmetric negative (or positive)
definite, if B has a full column rank and if 7' is symmetric positive (or negative) semi-
definite, the saddle-point matrix admits the LDL? factorization with no pivoting is needed
[17], and with D diagonal. For instance, using the Cholesky decomposition of A = —L4L7%
and T — BA™'BT = Lo LL in this case

A BT L —1I LY LTA-1BT ~
(B0 ) (L L _ FDET (2.47)
B T BA 'L, Lc 0 I 0 Lg

The singular values of the factor Z, in this case, can be then bounded with the following
inequality [95]
R(L) < [IENGIETH] +2[]ATH)). (2.48)

~K -CT
(<) v

which means that A and 7' — BA"'BT are not definite. Consequently, they only admit a

Here A is augmented and equal to

symmetric LDLT factorization, and in such factorizations, the inequality 2.48 do not hold.

We conclude that the numerical stability comes at the expense of pivoting.

In Chapter 3, we present a global approach that combines factorization and ordering and
that avoids pivoting. We present in the same chapter a more in-depth method that takes

advantage of the saddle point structure of the coefficient matrix of the linear system 2.16.

Remark 2.12. Two main direct methods are available in the mechanical code Code_Aster
®/20]. First, The inhouse multifrontal method MULTFRONT which is parallelized in
shared memory (OpenMP). This method does not use any pivoting, and a breakdown can oc-

cur due to zeros on the diagonal of the (2,2) block in (2.27). To overcome this situation, the
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original system is transformed into an equivalent one, using the notion of “double Lagrange”
multipliers as described in section 2.2.1. The second one is MUMPS [3] which is a pack-
age with a multifrontal approach for solving systems of linear equations. it is designed for
square sparse matriz that can be either unsymmetric, symmetric positive definite, or general

symmetric. The direct factorization is performed depending on the symmetry of the matriz.

2.3.2. block factorization approach

This approach is based on the implicit factorization block preconditioners which is used to
figure out a better application of block preconditioners for saddle point systems by consid-
ering the decomposition of the block preconditioner P = FEFT where solutions with each
of the matrices £ and F are easily obtained [41]. Then the preconditioner P is derived
implicitly from specially chosen £ and F. Using this same idea in order to produce block
factorization can be considered to solve large saddle point systems. We present in this section

two different block factorization methods for the studied coefficient matrix.

Before that, let us recall here the second variant of the coefficient matrix structure presented

in equation (2.29)

—-A BT —cT (CT
" " B T T T
¢ _ (B (2.50)
-C C 0 0 c 0

¢ 0 0 0

~ —-A BT ~ —
where F = € R*%2" and C = ¢ ¢ € R?mx2n,
B T cC 0

This structure of the coefficient matrix A is useful in the framework of the block factorization
approach. Actually, it is mainly used with a specific partitioning such that
Ey EL CT
A=|FEy Exn CT|, (2.51)
cy, Cy O

where Ell c R2m><2m’ E21 c RZ(n—m)me’ EQQ c R2(n—m)><2(n—m)’ 51 c R2mx2m and 61 c
R2mx2(n=m) I this configuration, we assume that C; is invertible. This structure enables
us to find triangular block factorizations. This is achievable by many existing methods.

The first one uses an algebraic description of the nullspace method in order to factor the
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coefficient matrix. It is used in the fields of optimization and known as reduced Hessian
methods, structural mechanics and known as “direct elimination” / “force method*, electrical
engineering and known as “loop analysis”, and fluid mechanics and known as the “dual
variable” method. Even if these different interpretations of the nullspace method have never
been used in the context of matrix factorization, the nullspace method remains a good
approach if we want to guarantee the stability of numerical factors and to predetermine the

elimination ordering [92].

In this method, we use a new basis, called the fundamental basis relative to the nullspace VA

of the constraint matrix C. We use

— 7 € R¥2(n=m) the nullbasis such that span(Z) = ker(C),
— Y € R2»2m gych that span(Y) = range(C7),
we write the fundamental nullspace basis N as :

- (Y Z
N = 0 (2.52)
0 0 Iy,

It turns out that o
YTEY YTEZ YTCOT
NTAN = | ZTEY ZTEZ 0 (2.53)
CY 0 0
then the coefficient matrix A is as follows
VIRV VTEZ VIOT
A=NT|ZTEY Z'EZ 0 |N! (2.54)
cYy 0 0
From the decomposition 2.54, it is sufficient to build N as a triangular matrix, which is for

instance achievable by taking 77 = (V ]Ig(n_m)>, where V' = —6’1—152 and ¥ = (1[ ())

[17]. The factors can be expressed as

-1

~ ~ -1 Iy V 0 Iy, =V 0
Y Z 0
0 0 I,

0 0 ]Igm O O ]I2m

The second method is the Schilders factorization [80]. It was originally derived by considering
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models for electronic circuits. This decomposition is given by :

Ey EL CT ct o 5\ (Li 0 1\ [C, Co 0
A=|Ey Ep CT|=|CF 7, U||0 Ly 0|0 J& 0 (2.56)
C, Gy 0 0 0 I I 0 o/ \J' U" I

where L; € R¥mx2m [, ¢ R2n—m)x2(n-m) pnongingular, J; € RZW2m  J, ¢ R2(n—m)x2(n-m)

nonsingular, U € R2(n=m)x2m 4

EH - :fl’cv’l + élTj/lT + 61717151
Egl = 661 + égj;T + 5§FZ152
By = Jy Ly JY + UCy + CTUT 4+ CI'L,Cy

Since we search for an exact decomposition, we need to define implicitly A by the choices of

L; and J;. One possible choice as mentioned in [92] is :

Ly = —C7"DaCy, Ji = LaCy!
where L4 and Dy the strictly lower triangular part and the diagonal part of Ei;. Through

this and precedent equations, we get U , Ly and Jo.

We present in section 3.3 a direct solution method that exploits the special saddle point
structure of the coefficient matrix using a sparse 2-by-2 block factorization. We then compare

it numerically to existing direct solvers.

2.3.3. Krylov subspace methods

The iterative methods are the most used when we treat a large and sparse problem. They
use an initial guess to generate successive approximations to a solution. There are many
iterative methods in the literature like stationary iterations or Krylov subspace methods. we
present in this section those latter for solving saddle point problems. Rather than discussing
all existing methods and implementations, we will describe the main properties of the most

commonly used methods.

Krylov subspace Theory

Suppose we have the following system to solve

Ax =01 (2.57)
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2.3. Solution methods of saddle point problems

If we consider xy the initial guess for the solution x and define the initial residual to be
ro = b — Axg. Krylov subspace is constructed as an iterative process whose kth iterate x
satisfies

xp € xo+ Kp(A,rg), Ve, 1<k<n (2.58)

where (A, 7o) is the kth Krylov subspace generated by A and r and equals to
Ki(A, zo) = span{ry, Arg, ..., A" 11y} (2.59)

The starting idea of the Krylov subspace methods comes from the Cayley-Hamilton theorem
that proves that the inverse of a matrix can be expressed as a linear combination of its
powers [97]. Krylov subspace methods involve finding an “optimal” solution in a given

space, augmenting the space, and repeating the procedure.

Conjugate gradient method

The conjugate gradient (CG) method is one of the well known iterative techniques for solving
sparse symmetric positive definite linear systems. The method converges to the solution via
the minimization of the A-norm of the error as the Krylov subspace is increased at each step
[65].

Theoretically the method could take at most n steps to calculate the exact solution if
A € R™™ However, in practice, convergence to acceptable accuracy often occurs after
only a few steps [93]. The conjugate gradient method uses a 3-term recurrence relation,
so as we increase the subspace from which we seek a solution, we need only recall the ap-
proximations from the two most recent subspaces to produce the approximation x; that
minimizes the norm of the error at the kth step e = u — ux. We present in the following
the CG algorithm

Algorithm 2.1: Conjugate Gradient Method

Choose .
Set rg = b — Axg and pg = rp.
for £k + 0 to .. do

<Tk 7r1€>
(Apr,pr)’

Ugr1 = Up + APk,
Tk+1 =Tk — Oék-Apk;

B, = {ret1ret1)
k= <Tk:’7‘k> !

Pkt1 = Tkt + Bk

. —
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2. Large-scale identification problems

In order to prevent any possible breakdown in the calculation of o and [ in Algorithm 2.1,
we need that the matrices A be symmetric positive definite. Indeed, the vector sequences in
the Conjugate Gradient method correspond to a factorization of a tridiagonal matrix similar
to the coefficient matrix. Therefore, a breakdown of the algorithm can occur corresponding to
a zero pivot if the matrix is indefinite. Furthermore, for indefinite matrices the minimization
property of the Conjugate Gradient method is no longer well-defined. If the coefficient matrix
is symmetric but indefinite, then we could use the MINRES or SYMMLQ algorithms [87].

The MINRES and SYMMLQ methods are variants of the CG method that avoid the LU
factorization and do not suffer from breakdown. MINRES minimizes the 2-norm of the
residual in Krylov subspaces of increasing dimension instead of minimizing the A-norm of
the error. SYMMLQ solves the projected system, but does not minimize anything (it keeps
the residual orthogonal to all previous ones). It is based on the LQ factorization of the
tridiagonal matrices formed in the Lanczos method. Though, those methods can be less
robust and more vulnerable to rounding errors, in this case we can use GMRES. Actually,
when the problem is symmetric, GMRES and MINRES do the same calculations in exact
arithmetic, but GMRES tends to suffer less from loss of orthogonality. We can describe
GMRES as the best implementation of MINRES [97].

Generalized Minimum Residual Method (GMRES)

When the coefficient matrix is symmetric but indefinite, it is possible to find an approxima-
tion in a particular subspace which minimizes the 2-norm of the residual. The Generalized
Minimum Residual (GMRES) Method [98] is a robust algorithm that do that. It generates
an orthogonal basis for the Krylov subspace via the Arnoldi method mentioned in Algorithm
2.2.

Algorithm 2.2: Arnoldi Method

Given vy such that ||[vy]| = 1.
for i < 1 to .. do

Uiy = Avj,
for j < 1to ¢ do
L hij = <5i+1avj>7

Vit1 = Vit1 — hyjvy,

hi-‘rl,i :J|7[J/Z‘+1||7
Viy1 = hliz_:—llﬂl

After making use of the Arnoldi process, we construct the GMRES method presented in
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2.3. Solution methods of saddle point problems

Algorithm 2.3.

Algorithm 2.3: The GMRES algorithm

Choose x.

Set ro = b — Auxg.
— "o

Set V1 = roll "

for k< 0 to .. do
<& Compute vgyq and h; g, Vi =1,2,...,k + 1 using Arnoldi method,
ie. Compute Vi1 and Hyyqp, such that AV = Vipr Hiq g,

¢ Solve the least squares problem y;, = mink l|Ber — Hi1..Yll,
yER

B & Set xp = 2o + Viys

In term of convergence, we notice that if k& < n exists such that ICx(A, 1) = Kri1(A,10),
then 2, = x = A7'b in exact real arithmetic [61], which stops the process. Otherwise, it
yields Kx(A,ro) = R™ which means that z,, is obviously the expected solution. Moreover in
the case of the GMRES method we have a bound for the residual of the kth iteration given
by

17112 < flrofl2 min flg(A)ll> (2.60)

where P, = {q | ¢ is a polynomial of degree at most k with ¢(0) = 1}.

In the GMRES method, the convergence behavior is described by the spectrum in the sym-
metric case. Actually it is influenced namely by the minimization of a polynomial over the
set of eigenvalues of the matrix, which is proved for instance in [98]. In the unsymmetric
case, although the spectrum is not a sufficient parameter to characterize the convergence
behavior of GMRES [60], nevertheless the existence of clustered eigenvalues contributes to

speedup the convergence as shown in [17, 27, 101].

When solving large-scale linear systems of size n, it is possible that a large number of
iterations may be necessary to obtain an acceptable solution, which is prohibitive in terms
of memory requirement. Indeed, at each iteration, an additional basis vector of the Krylov
subspace need to be stored. Besides when the number of iterations increases, then the
dimension of the the least-squares problem goes up as well. There is a restarted version of
GMRES, in which we choose to restart the method after each m steps [98]. This method,
called GMRES(m), restarts with a vector xy equal to the last computed iterate z,,, which

limits the the memory requirements.
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2. Large-scale identification problems

2.3.4. Preconditioning

It is usually conceivable to transform the original system Az = b in a new one, maintaining
the same solution but getting more favorable properties for the con vergence of iterative
methods. Generally, the rate of convergence is accelerated when many clusters appear away
from 0 [27]. There is different ways to transform the original problem using a nonsingular

preconditioner M

e left preconditioning

MAx = Mb (2.61)
e right preconditioning
{ AMa= b (2.62)
r =Mz

e split preconditioning using M = M; M,

{ M1AM2$:M1() (263)

T :Mgf

It is worth mentioning that the number of iterations of the Krylov subspace method is
generally different if M is used as a left, right or split preconditioner, even though the
spectrum of the associated preconditioned matrices are identical. In particular, the stopping
criterion is evaluated with A replaced by the left-preconditioned operator M1 A and the
preconditioned residual M™!(Axj, — b) or with the right-preconditioned operator AM ™!
and the error M(zp — x). If M~ is a good preconditioner, the preconditioned operator
will be well-conditioned. For left-preconditioning, this means the preconditioned residual
can be made small, but the true residual may not be. For right preconditioning, ||M () —
x)||2 is easily made small, but the true error ||xy — x|| may not be. This explains why
left-preconditioning is better for making error small while right-preconditioning is better
for making the residual small and for debugging unstable preconditioners. Besides, right
preconditioning can be attractive, since the preconditioned residual is equal to the original

one.

General-purpose preconditioners

Since preconditioners play a very important role in the convergence of iterative methods, it is
an active domain of research (see e.g. [17, 16, 109]). Many different preconditioning strategies

can be applied to a system. A trivial example of a very simple preconditioner can be obtained
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2.3. Solution methods of saddle point problems

using, for instance, M = diag(.A). The following classes of algebraic preconditioners can be

distinguished

e Stationary iterative methods (Chapters 4 and 10 in [97]) the oldest methods em-

ployed to solve linear systems. Even if they are supplanted by more sophisticated meth-
ods, they remain in action as simple preconditioners. The main ones are the Richardson
method, the Jacobi method, the Gauss-Seidel method, the Successive Overrelaxation
(SOR) method and the Symmetric Successive Overrelaxation (SSOR) method.

Incomplete factorization (ILU) (Sections 10.3 and 10.4 in [97]) They are first
Introduced separately around 1960 [24]. The theoretical existence of incomplete fac-
torization can be verified for some classes of matrices [82], nevertheless it may fail for
other ones. The principle of an incomplete factorization is to limit the fill-in during the
factorization by ignoring some factors entries, in order to get a good approximation
of the matrix, at least cost in terms of time and memory. Such a factorization can be
used as a preconditioner of an iterative method, in the form M = LU where L and
L are the approximate factors of the factorization of A. The incomplete factorization

method generally use two kinds of criteria
— The position of different entries in the matrix,
— The numerical values of the different entries.

It is of course possible to combine these two criteria respectively lower and upper
triangular matrices. The main issue with this method, concerns the fill-in of the
factorization, as the factors can be much more dense than the original matrix. There

is then recommended to use ordering techniques in the same way as in direct methods.

Sparse approximate inverses (Section 10.5 in [97]) These methods focus on finding

a sparse matrix M that approximates the inverse A~! under the condition
M = argmin ||T — AM||r (2.64)
MeT

where ||.||r is the Frobenius norm and 7 is a sparsity pattern to impose. The advantage
of this type of preconditioners compared to incomplete factorizations is to be more
stable numerically and easier to parallelize. Nevertheless, it remains very expansive in
terms of computational time. The study of these preconditioners is beyond the scope
of this state of the art.

Algebraic Multigrid (AMG) (Section 13.6 in [97]) Relaxation schemes, such as the
Gauss-Seidel or the Jacobi method, efficiently damp high frequency errors, however

they make no progress towards reducing low frequency errors. The main idea of multi-
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2. Large-scale identification problems

grid methods is to move the problem to a coarser grid so that previously low frequency
errors turn now into high frequency errors and can be damped efficiently. If we apply
this procedure recursively, we obtain a method with a computational cost that depends
only linearly on the problem size.

Contrary to physics-based geometric multigrid approach, where the geometry of the
problem is used to define the various multigrid components, the algebraic multigrid
(AMG) methods use only the information available in the linear system of equations
and are therefore suitable to solve problems on more complicated domains and un-

structured grids.

Remark 2.13. Different techniques are accessible in Code_Aster ®). We can find an in-
house preconditioned conjugate gradient method (PCG), used for both symmetric positive

definite and indefinite linear systems. Besides several Krylov subspace methods such as
GMRES, are performed with the PETSc library [11].

Some preconditioning techniques for saddle point problems

Recently, a large amount of work has been devoted to developing effective preconditioners to
enhance iterative solution methods for large symmetric linear systems in saddle point forms

which are mostly special cases of :

A BT
)y = (7 (2.65)
B —-D Y g
where A € R™" nonsingular, B € R™*" m < n and D € R"". We present mainly two

important classes : block diagonal /triangular preconditioners and constraint preconditioners.

e Block preconditioners They are based explicitly on the block factorization

(A BT) :< ]1_ o) (A 0) (]1 AlBT> (2.66)
B -D BA' 1)/ \o s)\o I

where S = —(D + BA™'BT) is the Shur complement. Their performance depends on
the existence of efficient approximations to A and S [96].

Assuming that A and —S are both symmetric positive definite, the essential diagonal

A 0
Pdiag - (0 —S) (267)

preconditioner is
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2.3. Solution methods of saddle point problems

More details about this preconditioner can be found in [84].

Similarly, the essentially block triangular preconditioner is

A BT
Ptm'ang = <O :l:S) (268)

Choosing the minus sign in Piiang results in a diagonalizable preconditioned matrix
with only two distinct eigenvalues equal to 1. Choosing the plus sign yields a pre-
conditioned matrix with all the eigenvalues equal to 1. For either choice of the sign,
GMRES is guaranteed to converge in at most two steps in exact arithmetic [102]. In

practice, A and S are replaced by some appropriate approximations.

e Constraint preconditioners (28, 79]) They have the general form

G BT
Pconsr: 2.69
e o

where G € R™ ", Their structure is also of saddle point form with the same constraints
as the original problem. The constraint preconditioner projects the problem onto the
null space of the constraint matrix B which explains why this preconditioning technique
is closely related to the null space method. Using an iterative method with constraint
preconditioning or using the nullspace method are, in fact, mathematically equivalent
[58].

Keller et al. [28] investigated the use of the constraint preconditioner on saddle point
problems without (2, 2) block, while Dollar [42] extended the constraint preconditioner
to regularized symmetric saddle-point problems. We shall adapt these results to suit

our case in section 4.2.

For a more extensive survey of these and other techniques, see [17].

2.3.5. Segregated solvers

Both direct solvers based on triangular factorizations of the global matrix, and iterative
algorithms like Krylov subspace methods applied to the entire system, typically with some
form of preconditioning, are entitled coupled methods. These solvers deal with the system
(2.16) as a whole, computing {QZ} and {¢} simultaneously and without making explicit use

of reduced systems. Besides coupled solvers, there are segregated ones. We present here the
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2. Large-scale identification problems

Schur complement reduction. We recall again the linear system

@ iT) <;) B @ (2.70)

where E € R jg symmetric positive definite and C € R¥™<2m ig of full row rank 2m,

f € R?". This saddle point system can also be written as

{ Ex—I—CN'Tw:f (2.71)

5ZE:0

The idea is to multiply the first equation in (2.71) by CE~' and to subtract the second

relation to deduce the equation satisfied by w
CE'CTx =CE'f (2.72)

The matrix S = —CE~'CT is known as the Schur complement of the saddle point system.

Once the solution w* has been computed, x will finally satisfy the equation
Ex=f—CTw* (2.73)

There is an other well known segregated solver which is the nullspace method. Considering
the fundamental basis 2.52 by taking Y = 6’T, we transform the initial system (2.71) to a

new one o e e .
CECT CEZ CCT\ [zy Cf
ZTECT ZTEZ 0 ay | = 27f (2.74)
cCT 0 0 w 0

It is obvious that xy is determined by the following 2m x 2m system
CCry =0 (2.75)

As recalled above, it is clear here that xy = 0 since C is of full row rank so that CCT is
symmetric and positive definite. In case if the right hand side of (2.75) is not null, we could
solve the 2m x 2m system by Cholesky factorization if 2m is small enough otherwise by using
an effective iterative method the conjugate gradient (CG).

Since zy = 0, we could find xz by solving the following 2(n — m) x 2(n — m) system

ZTEZxy =7 f (2.76)
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2.4. Conclusion

It is possible to solve the system by computing a factorization when 2(n — m) is small. For
problems wher