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Abstract

In this thesis, we present new developments of hierarchical clustering in high-

dimensional data. We consider different use cases of hierarchical clustering, namely,

clustering observations for exploratory analysis and clustering high-dimensional

features for adaptive feature grouping and ensembling.

We first focus on the clustering of observations. In high-dimensional data,

the existence of potential noise features and outliers poses unique challenges to

the existing hierarchical clustering techniques. We propose the Robust Sparse Hi-

erarchical Clustering (RSHC) and the Multi-rank Sparse Hierarchical Clustering

(MrSHC) to address these challenges. We show that via robust feature selection

techniques, both RSHC and MrSHC can handle the potential existence of noise

features and outliers in high-dimensional data and result in better clustering accu-

racy and interpretation comparing to the existing hierarchical clustering methods.

We then consider clustering of features in high-dimensional data. We propose

a new hierarchical clustering technique to adaptively divide the large number of

features into subgroups called Regression Phalanxes. Features in the same Regres-

sion Phalanx work well together as predictors in a pre-defined regression model.

Then models built on different Regression Phalanxes are considered for further en-

sembling. We show that the ensemble of Regression Phalanxes resulting from the

hierarchical clustering produces further gains in prediction accuracy when applied

to an effective method like Lasso or Random Forests.
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Lay Summary

There has been a surge in the number of high-dimensional data sets – data sets

containing a large number of features and a relatively small number of observations

– due to the rapidly growing ability to collect and store information. For example,

in microarray studies, expression levels of thousands of genes are measured on only

a few samples; X-ray experiments are typically conducted on a limited number

of samples but the spectra over thousands of wavelengths are measured on each

sample. Mining such high-dimensional or large-flat data is an urgent problem of

great practical importance. In this thesis, we concentrate on the applications of

hierarchical clustering, a widely used data mining technique, on high-dimensional

data. We introduce several novel techniques that successfully extract and combine

key information from the usually noisy high-dimensional data using hierarchical

clustering. The proposed methods have well-established performance and broad

applications in exploratory analysis and prediction.
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Chapter 1

Introduction

There has been a surge in the number of high-dimensional data sets – data sets con-

taining a large number of features and a relatively small number of observations –

due to the rapidly growing ability to collect and store information in medical re-

search and other fields. For example, in microarray studies, expression levels of

thousands of genes (features) are measured on only a few samples; X-ray exper-

iments are typically conducted on a limited number of samples (e.g. less than a

hundred) but the spectra over thousands of wavelengths (features) are measured on

each sample. Mining such high-dimensional or large-flat data is an urgent problem

of great practical importance.

Clustering is an important data mining technique widely used in various fields.

We mainly focus on the hierarchical clustering, one of the most widely used clus-

tering algorithms with a lot of unique advantages for exploratory data analysis. In

this thesis, we use hierarchical clustering for the following two tasks.

• Exploratory analysis – Hierarchical clustering of observations in high-dimensional

data.

Hierarchical clustering is a well established method for exploratory data

analysis. However, in high-dimensional settings, the performance of tra-

ditional hierarchical clustering algorithms can be distorted due to the possi-

ble existence of noise features and data contaminations. Surprisingly, there

exist only limited attempts to improve the performance of hierarchical clus-
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tering in high-dimensional settings. In Chapter 2 and Chapter 3, we pro-

pose two novel hierarchical clustering frameworks which yield better perfor-

mance than the existing hierarchical clustering methods in high-dimensional

data.

• Regression – Hierarchical clustering of features in high-dimensional data.

Ensemble methods prove to be useful in various regression tasks by produc-

ing superior prediction accuracies. In Chapter 4, we propose a novel ensem-

ble method via hierarchical clustering of features. The goal is to discover

subsets of features so that the features in each subset work well together as

predictors in a pre-specified regression procedure. By defining a proper dis-

similarity measure of the features, the hierarchical clustering is able to group

the features together according to their combined predictive power. Then we

propose to ensemble all the regression models built on different subsets of

features to build a final ensemble model.

The rest of the chapter is organized as follows. In Section 1.1, we briefly

describe the hierarchical clustering. Section 1.2 presents an introduction of hi-

erarchical clustering of observations and existing proposals for high-dimensional

data. Section 1.3 presents an introduction of hierarchical clustering of features and

briefly describes some of the regression methods we use in the following chapters.

Finally, Section 1.4 presents the organization of the remainder of the thesis.

1.1 Hierarchical Clustering
In data mining and statistics, hierarchical clustering is a method of clustering anal-

ysis which aims to categorize observations into a hierarchical set of groups. There

are two general strategies for hierarchical clustering:

• Agglomerative or “bottom up” approach.

In the agglomerative approach, each observation forms its own cluster at the

beginning of the process. Then the pairs of clusters are iteratively merged to

form clusters of higher hierarchy.

• Divisive or “top down” approach.

2



In the divisive approach, a single cluster containing all the observations gets

initialized, which further splits into sub-clusters. Splits are performed recur-

sively to generate the hierarchy of clusters.

Unless stated otherwise, we take agglomerative approach as the default ap-

proach for hierarchical clustering throughout this thesis. This is not only because

the agglomerative approach is usually considered as the default approach for hier-

archical clustering but also because it is less computational burdensome comparing

to the divisive approach. The merges in hierarchical clustering are performed in a

greedy manner. In each iteration, only one pair of clusters are merged. In order

to choose the pair of clusters being merged, a measure of dissimilarity between

clusters of observations needs to be specified. This is usually achieved by making

appropriate choices of the dissimilarity measure (a measure of distance between

pairs of observations), and the linkage criterion which defines the dissimilarity of

clusters as a function of the pairwise distances of observations (defined by the cho-

sen dissimilarity measure) in the clusters. The results of hierarchical clustering are

usually presented in a tree structure called dendrogram. In the following sections,

we present some common choices of both the dissimilarity measures and the link-

age criteria, some sample dendrograms and a brief discussion on the advantages

and disadvantages of the hierarchical clustering methods.

1.1.1 Dissimilarity Measures

Suppose we have a pair of observations represented as p-dimensional vectors xxx =

(x1,x2, . . . ,xp)
T and yyy= (y1,y2, . . . ,yp), a selection of commonly used dissimilarity

measures as follows.

• Euclidean distance: ||xxx− yyy||2 =
√

∑i(xi− yi)2.

• Squared Euclidean distance: ||xxx− yyy||22 = ∑i(xi− yi)
2.

• Manhattan distance: ||xxx− yyy||1 = ∑i |xi− yi|.

• Maximum distance: ||xxx− yyy||∞ = maxi |xi− yi|.

• Mahalanobis distance:
√

(xxx− yyy)T SSS−1(xxx− yyy), where SSS is the covariance ma-

trix of the data set.

3



It is apparent that different choices of the dissimilarity measure will affect,

sometimes significantly, on the resulting distance of the observations. A pair of

observations may be considered close by using certain dissimilarity measures but

farther away by others. For example, suppose there are two cluster centres (2,2,2)

and (3,0,0). Then (0,0,0) is considered to be closer to (3,0,0) with squared Eu-

clidean distance. However, with maximum distance, it is considered to be closer to

(2,2,2). Therefore, the choice of the dissimilarity measure can consequently affect

the clustering results, especially the shape of the resulting clusters.

1.1.2 Linkage Criteria

Suppose we have two clusters X and Y each containing several observations and

the chosen dissimilarity measure is d(xxx,yyy). Some commonly choices of linkage

criteria and their corresponding calculations of distance between X and Y are pre-

sented as follows.

• Complete linkage: max{d(xxx,yyy) : xxx ∈ X ,yyy ∈ Y}.

• Single linkage: min{d(xxx,yyy) : xxx ∈ X ,yyy ∈ Y}.

• Average linkage: 1
|X ||Y | ∑xxx∈X ∑yyy∈Y d(xxx,yyy).

• Ward’s linkage: the distance is measured by the decrease in variance for

the clusters being merged. At each merging step, a pair of clusters A =

{aaa1, . . . ,aaanA} and B = {bbb1, . . . ,bbbnB} are merged if the following criterion is

minimized.

nAnB

nA +nB

(
2

nAnB

nA

∑
i=1

nB

∑
j=1

d(aaai,bbb j)−
1
n2

A

nA

∑
i=1

nA

∑
j=1

d(aaai,aaa j)−
1
n2

B

nB

∑
i=1

nB

∑
j=1

d(bbbi,bbb j)

)

If squared Euclidean distance is used for d(·, ·), the above criterion is equiv-

alent to Ward’s minimum variance criterion [30]. Other distance measures

such as Manhattan or Mahalanobis distance are also used as d(·, ·) in practice

[2].

The linkage criterion defines the dissimilarity of clusters as a function of the pair-

wise distances of observations (defined by the chosen dissimilarity measure) in the
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clusters. Given a chosen dissimilarity measure, difference choices of the linkage

criterion will yield sometimes significantly different clusters.

1.1.3 Advantages and Disadvantages

Hierarchical clustering has a broad range of applications such as microarray data

analysis, digital imaging, stock prediction, text mining, etc. This is because it has

a unique set of advantages over some other clustering techniques such as K-means,

model-based clustering, etc. Some of the advantages are listed as follows.

• No need to specify the number of clusters.

Clustering techniques such as K-means require to specify the target number

of clusters in advance. However, the target number of clusters is usually

unknown. On the contrary, hierarchical clustering results in a hierarchy of

clusters visualized as a dendrogram, so there is no need to specify the num-

ber of clusters in advance. After visualizing the dendrogram, one can then

get the desired number of clusters by cutting the dendrogram accordingly.

Moreover, dendrograms will reveal any intrinsic nested cluster structures in

the data that are otherwise hard to discover.

• Flexibility

– Flexibility on the choice of linkage criteria.

There are numerous choices of linkage criteria available, which adapts

to different types of data and clustering goals.

– Versatility due to numerous combinations of dissimilarity measures

and linkage criteria.

Due to the flexibility on both the choice of dissimilarity measures and

the choice of linkage criteria, hierarchical clustering is very versatile in

discovering clusters of different shapes and it is usually possible to find

a certain combination of dissimilarity measure and linkage criteria that

satisfy your need. In practice, the combination of dissimilarity measure

and linkage criteria can be chosen based on the perceived usefulness of

the resulting dendrograms.
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A known disadvantage of agglomerative hierarchical clustering is the high compu-

tational cost. The complexity of the agglomerative approach is O(n2 log(n)) with n

denoting the number of observations, which does not scale well for a large number

of observations. However, in our applications, either the data set contains a lim-

ited number of observations (high-dimensional flat data sets) or we conduct smart

filtering to control the computational time of hierarchical clustering.

1.2 Hierarchical Clustering of Observations in
High-dimensional Data

Classical hierarchical clustering, likewise most of the traditional clustering tech-

niques, is challenged by high-dimensional data sets. Although a large number of

features may allow for a better coverage of clustering features (i.e. features that

help explain the true underlying clusters), a large proportion of the features may

contain no information about the cluster structures. That is, clusters can usually

be well separated from a relatively small number of features, but not if all the

features are used to compute the distance between objects due to the perturbation

introduced by noise or non-informative features. Furthermore, interpretability can

be impeded when the clustering procedure uses an unnecessarily large number of

variables.

Therefore, feature selection becomes a key feature of clustering methods when

applying them to high-dimensional data sets. The goal of feature selection is to

keep only the important features for clustering while discarding the noise features.

Clustering methods with feature selection capabilities are often referred to as sparse

clustering methods. In comparison with the classical clustering methods where all

the features are used, sparse clustering has the following advantages:

• If the clusters differ only with respect to a small number of features, then

sparse clustering is likely to identify the clusters more accurately than non-

sparse clustering methods.

• The results of sparse clustering are more interpretable because the clusters

are determined by a smaller number of features.

Multiple feature selection approaches have been proposed for clustering meth-
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ods such as K-means (e.g. Witten and Tibshirani [38], Sun et al. [31]) and model-

based clustering (e.g. Raftery and Dean [25], Pan and Shen [23], Wang and Zhu

[37], Xie et al. [40]). However, there has been less research for hierarchical clus-

tering. A brief survey of such proposals is given below.

Let XXX be an n× p data matrix, with n observations and p features. Let di,i′ =

d(xxxi,xxxi′) be a measure of dissimilarity between observations xxxi and xxxi′ (1≤ i, i′≤ n),

which are the rows i and i′ of the data matrix XXX . We will assume that d is addi-

tive in the features: d(xxxi,xxxi′) = di,i′ = ∑
p
j=1 di,i′, j, where di,i′, j indicates the dis-

similarity between observations i and i′ along feature j. Unless specified other-

wise, our examples and simulations take d equal to the squared Euclidean distance,

di,i′, j = (Xi j−Xi′ j)
2. However, other dissimilarity measures are possible, such as

the absolute difference di,i′, j = |Xi j −Xi′ j|. A nice property of hierarchical clus-

tering is that the potential outliers are clearly exposed in the dendrogram. The

absolute difference is more robust than the squared Euclidean distance in the pres-

ence of outliers, however, a robust dissimilarity measure such as trimmed absolute

distance may not be desirable in the context of hierarchical clustering. For exam-

ple, we generate a sample data set containing 60 observations and 20 features. The

observations are well separated into 3 clusters of equal size. A value in the data set

is replaced with a large outlier. As we can see from Figure 1.1, the contaminated

observation is exposed in its standalone cluster with squared Euclidean distance.

On the contrary, it is missed from the dendrogram under the trimmed absolute dis-

tance since the robust measure down-weights or ignores its distances from the rest

of the samples.

Friedman and Meulman [17] proposed clustering objects on subsets of at-

tributes (COSA). COSA employs a criterion, related to a weighted version of K-

means clustering, to automatically detect subgroups of objects that preferentially

cluster on subsets of the attribute variables rather than on all of them simultane-

ously. An extension of COSA for hierarchical clustering was also proposed. The

algorithm is quite complex and requires multiple tuning parameters. Moreover, as

noted by Witten and Tibshirani [38], this proposal does not truly result in a sparse

clustering because all the variables have nonzero weights.

Witten and Tibshirani [38] proposed a new framework for sparse clustering that

7



Figure 1.1: Dendrograms with squared Euclidean distance and trimmed ab-
solute distance (10% largest distances are trimmed) on a data set with a
outlier. Colors are used to indicate the true underlying cluster.

can be applied to procedures that optimize a criterion of the form

max
Θ∈G

{
p

∑
j=1

f j(X j,Θ)

}
, (1.1)

where X j = (X1 j,X2 j, ...,Xn j)
T ∈ Rn denotes the observed j-th feature.

Each f j(X j,Θ) is a function that solely depends on the j-th feature and Θ is a

set of unknown parameters taking values on G. For example, in K-means, it can be

shown that for a fixed number K of clusters,

f j(X j,Θ) =
1
n

n

∑
i=1

n

∑
i′=1

di,i′, j−
K

∑
k=1

1
nk

∑
i,i′∈Ck

di,i′, j,

where nk is the number of observations in cluster k, Ck is the set of indices of

observations in cluster k and di,i′, j is the squared Euclidean distance between ob-

servation i and i′ on the j-th feature. In this chapter, we only consider squared

Euclidean measure for di,i′, j.

The optimizing criterion in (1.1) is not sparse because the criterion involves all

the features. To introduce sparsity Witten and Tibshirani [38] modified criterion
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(1.1) as follows:

max
www,Θ∈G

{
p

∑
j=1

w j f j(X j,Θ)

}
subject to ||www||22 ≤ 1, ||www||1 ≤ sand w j ≥ 0. (1.2)

Here www = (w1,w2, . . . ,wp) is a vector of weights for each feature, ||www||22 is squared

L2-norm on www, and ||www||1 is L1-norm on www. A feature with zero-weight is clearly

not used in the criterion.

Hierarchical clustering does not optimize a criterion like (1.1) and, therefore,

does not directly fit into Witten and Tibshirani [38] sparse clustering framework

(1.2). To overcome this difficulty they casted the dissimilarity matrix
{

di,i′
}

n×n as

the solution of an optimization problem as follows:

max
U∈Rn×n

{
p

∑
j=1

n

∑
i,i′=1

di,i′, jUi,i′

}
subject to

n

∑
i,i′=1

U2
i,i′ ≤ 1. (1.3)

It can be shown that the solution Ûi,i′ to (1.3) is proportional to the dissimilarity

matrix, that is, Ûi,i′ ∝ di,i′ . The criterion in (1.3) is a special case of (1.1) when we

let f j(X j,Θ) =∑
n
i,i′=1 di,i′, jUi,i′ . Now sparse hierarchical clustering can be achieved

by obtaining a sparse dissimilarity matrix. Now the sparse hierarchical clustering

criterion (note that this is a preprocessing step of the hierarchical clustering) can

be defined as follows:

max
www,U∈Rn×n

{
p

∑
j=1

w j

n

∑
i,i′=1

di,i′, jUi,i′

}
subject to

n

∑
i,i′=1

U2
i,i′ ≤ 1, ||www||22 ≤ 1, ||www||1 ≤ s.

(1.4)

The constraint w j ≥ 0 has been removed because di,i′, j ≥ 0 for all 1≤ i, i′ ≤ n and

1≤ j ≤ p. The solution to (1.4) can be obtained using sparse principal component

(SPC) proposed in Witten et al. [39] as follows: Let uuu be a vector of length n2

that contains all elements in (Ui,i′)n×n and DDD be a n2× p matrix whose j-th column

contains the n2 elements of
{

di,i′, j
}

n×n – the dissimilarity matrix calculated from

the j-th feature alone. Now the criterion in (4) is equivalent to the following:

max
www,uuu

{
uuuT DDDwww

}
subject to ||uuu||22 ≤ 1, ||www||22 ≤ 1, ||www||1 ≤ s. (1.5)
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This reduces to applying SPC on the transformed dissimilarity matrix, DDD. It can

also be shown that the solution to (1.5) satisfies: ûuuT
∝ DDDŵww. As ŵww is sparse, so

is ûuu. Thus, by re-arranging the elements in ûuu into a n× n dissimilarity matrix

ÛUU , we obtain a sparse dissimilarity matrix which only contains the information

from a subset of selected features. Finally, sparse hierarchical clustering can be

obtained by applying classical hierarchical clustering on the sparse dissimilarity

matrix Û. Witten and Tibshirani [38] showed, using a simulated dataset and a

genomic dataset, that their proposed sparse hierarchical clustering results in more

accurate identification of the underlying clusters and more interpretable results than

standard hierarchical clustering and COSA when applied on datasets with noise

features.

Witten and Tibshirani [38] demonstrated on a simulated and a real data set that

SHC results in accurate identification of the underlying clusters. Moreover, SHC

gives far more interpretable results than classical hierarchical clustering when the

data set contains noise features. However, there are some limitations of the SHC

framework that jeopardize its performance in real applications. We present these

limitations below.

1. Unable to discover features with complex structures.

The structures of features in high-dimensional data are usually complex. We

show that when features contain complex structures, SHC has its limitation

in discovering the important features from the noise.

2. Vulnerable to data contaminations.

Given the large number of features in high-dimensional data sets, the pres-

ence of data contaminations becomes more likely. The SHC framework is

sensitive to the outliers and its clustering performance deteriorates severely

under data contamination.

3. Non-scalable to even medium-sized data. SHC operates on the transformed

dissimilarity matrix DDD (a n2× p matrix). Therefore, it won’t scale to medium-

sized data sets with relatively big n.

In Chapter 2 and Chapter 3, we propose two novel sparse hierarchical cluster-
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ing methods to remedy the three limitations of the existing SHC method simulta-

neouly.

1.3 Hierarchical Clustering of Features in
High-dimensional Data

Ensemble methods prove to be useful in various regression tasks by producing su-

perior prediction accuracies. In Chapter 4, we propose a novel ensemble method

via hierarchical clustering of features. The goal is to discover subsets of features so

that the features in each subset work well together as predictors in a pre-specified

regression procedure called “base regression model”. By defining a proper dis-

similarity measure of the clusters of features, the hierarchical clustering is able to

group the features together according to their combined predictive power. Then we

propose to ensemble all the regression models built on different subsets of features

to build a final ensemble model.

This ensemble approach is very different from the existing ensemble approaches.

It separates the feature space into distinct clusters on which different base regres-

sion models are trained for further ensemble. This approach is very flexible since

in principle, any regression methods, even the existing ensemble methods, can be

used as base regression models. We briefly review the candidate base regression

models we considered in this thesis, namely Lasso and Random Forests.

1.3.1 Lasso

Lasso (least absolute shrinkage and selection operator), proposed by Tibshirani

[32], is a regularized linear regression method method that performs feature se-

lection in linear models via regularization. It constrains the size of the regression

coefficients by forcing the sum of the absolute values of their values to be less than

a chosen value, which shrinks the coefficients and forces certain coefficients to ex-

actly zero. As a result, the model fitting process automatically select only a subset

of the features (the ones with non-zero coefficients) in the final Lasso model. It is

shown that via regularization and shrinkage, Lasso is able to enhance the prediction

accuracy and interpretability of the model at the same time.

Consider a data set XXX containing n observations and p features, each obser-
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vation corresponding to a single response in yyy. Denote the i-th observation as

xxxi = (x1,x2, . . . ,xp)
T and its corresponding response as yi. Lasso solves the follow-

ing L1-regularized least square problem.

min
β0,βββ

{
1
N

N

∑
i=1

(yi−β0− xxxT
i βββ )2

}
subject to

p

∑
j=1
|β j| ≤ t, (1.6)

where t is a prespecified tuning parameter that controls the amount of regularization

and shrinkage.

Equation 1.6 can re-written in a more compact fashion.

min
β0,βββ

{
1
N
‖yyy−β0−XXXβββ‖2

2

}
subject to ‖βββ‖1 ≤ t, (1.7)

where ‖Z‖p =
(
∑

N
i=1 |Zi|p

)1/p represents the Lp norm.

Since

β̂0 = ȳyy− x̄xxT
βββ , (1.8)

therefore,

yi− β̂0− xxxT
i βββ = yi− (ȳyy− x̄xxT

βββ )− xxxT
i βββ = (yi− ȳyy)− (xxxi− x̄xx)T

βββ , (1.9)

it is a standard procedure to normalize the features – subtract feature means and

then standardize features
(

∑
N
i=1 x2

i j = 1
)

. As a result, the Lasso solution does not

depend on the measurement scale of the features.

Suppose the features in XXX are normalized, we can further rewrite the optimiza-

tion problem as follows.

min
βββ∈Rp

{
1
N
‖yyy−XXXβββ‖2

2

}
subject to ‖βββ‖1 ≤ t. (1.10)

This is equivalent to the following problem according to the Lagrangian form.

min
βββ∈Rp

{
1
N
‖yyy−XXXβββ‖2

2 +λ‖βββ‖1

}
. (1.11)

There is a one-to-one relationship between t and λ but the exact relationship varies
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and it’s data dependent.

By solving Equation (1.11), which is a convex optimization problem, the Lasso

coefficients can be obtained.

1.3.2 Random Forests

To better understand Random Forests, we first presents two closely related prelim-

inary methods: Regression Tree and Bagging.

Regression Tree
A regression tree is a binary decision tree. The root node of the tree contains all

the training sample, which gets split into two child nodes. The the two child nodes

split into their own child nodes recursively. Each split is determined by choosing

a feature and its corresponding best split value. The goal of the split is to maxi-

mizing the gain in homogeneity in a greed matter. In the context of regression tree,

the gain in homogeneity is usually represented by the decrease in sample variances

of responses, i.e., sample response variance of the parent node subtracting the sum

of sample response variances of the two child nodes. Therefore, among all the

features, the feature and its split value that allow the maximum amount of gain for

the current node are chosen. More specifically, at a particular node, the tree grow-

ing/splitting process chooses a split from all possible splits so that the resulting

left and right child nodes are as homogeneous as possible. This is done by first

finding each feature’s best split value and then searching for the split that achieves

the maximum gain. Since different features and split values may be chosen for dif-

ferent splits, a regression tree essentially partitions the feature space successively

into smaller hyper-rectangles (represented by nodes) and each hyper-rectangle is

as homogeneous as possible.

The tree splitting process stops according to the “stopping rules”. A node will

not be split and becomes a terminal node if:

• the node contains observations with identical responses (no more gain in

homogeneity can be achieved),

• all the observations in the node have identical values for each feature,

• the tree size reaches the user-specified maximum tree size,
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• the size of the node is smaller than the user-specified minimum node size,

• the child node size is smaller than the user-specified minimum child node

size, and

• the amount of gain from the best split is smaller than the user-specified min-

imum amount.

For further reference, please see Breiman et al. [7] and Chapter 9 of Venables and

Ripley [36].

Once the tree splitting process finishes, each branch of the tree ends in a termi-

nal node. Each observation falls into one and exactly one terminal node, and each

terminal node corresponds to a unique set of splits.

Bootstrap Aggregating (Bagging)
Bootstrap Aggregating, or bagging, is a general ensemble framework proposed

by Breiman [5]. Bagging fits different regression or classification models on sev-

eral bootstrap samples for further aggregation. A bootstrap sample is obtained by

selecting a random sample with replacement of equal size of the training observa-

tions [14]. More specifically, given a training data set XXX = (xxxT
1 , . . . ,xxx

T
n )

T with the

corresponding response yyy = (y1, . . . ,yn)
T , bagging has the followings steps.

• For b = 1, . . . ,B:

– Sample, with replacement, n training observations from XXX and yyy ac-

cordingly. Denote the sample as XXXb and yyyb.

– Fit a regression or classification model Mb on XXXb and yyyb.

• The prediction of a new observation xxx′ can be calculated by averaging the

predictions from all the B models M1, . . . ,MB as ŷ′ = 1
B ∑

B
b=1 Mb(xxx′), or for

classification applications, a majority vote can be applied.

Bagging often results in better prediction performance since it decreases the

variance of the model by averaging, without increasing the bias. This benefits the

methods that are not stable, namely, methods with high variance (perturbation of

a training set leads to significant changes in predictions) and low bias (the fitting

accuracy is high despite changes in training sets). In the case of a regression trees,
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its predictions are highly sensitive to noise in the training sets, and the average of

many regression trees becomes less sensitive, as long as the trees are not correlated.

In order to reduce the correlation among trees, bootstrap sampling is an effective

method as it de-correlate the trees by showing them different training sets.

The tuning parameter B in bagging represents the number of models (e.g. re-

gression trees). Building a few hundred models is a common practice, and the

number varies according to the size of the training set. In practice, B can be chosen

via cross-validation, or according to the out-of-bag (OOB) error. The OOB error is

calculated as follows. For each training observation xxxi, the mean prediction error is

calculated using only the models that did not include xxxi in their bootstrap sample.

Random Forests
Random Forests, a tree-based ensemble method proposed by Breiman [6], can

be considered as an extension of bagging. Random Forests differ from bagging

of trees mainly in the following way. In bagging, each tree is built on a bootstrap

sample and each split is chosen from all candidate splits from all the features. How-

ever, in Random Forests, each split is chosen from only a random sample of mtry

features instead of all the features. This extra source of randomness in tree splits

further de-correlate the trees in Random Forests on top of the bootstrap samples

and leads to better ensemble performance by further reducing the average correla-

tion/variance. Given a training data set XXX = (xxxT
1 , . . . ,xxx

T
n )

T with the corresponding

response yyy = (y1, . . . ,yn)
T , the steps of Random Forests are presented as follows.

• For b = 1, . . . ,B:

– Sample, with replacement, n training observations from XXX and yyy ac-

cordingly. Denote the sample as XXXb and yyyb.

– Build a fully grown, unpruned tree on XXXb and yyyb.

– At each node of the tree, randomly select mtry features from which the

best split-point of that node is chosen.

• The prediction of a new observation xxx′ can be calculated by averaging the

predictions from all the B models M1, . . . ,MB as ŷ′ = 1
B ∑

B
b=1 Mb(xxx′), or for

classification applications, a majority vote can be applied.
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Fully grown trees in Random Forests lead to high prediction variability, how-

ever, the ensemble over many trees reduces the average variance and avoid overfit-

ting.

The prediction accuracy of Random Forests can be assessed using the OOB

errors. Random Forests also offers evaluation of importance of feature: Each fea-

ture is randomly permuted in the OOB samples and its impact on prediction error

is measured; features corresponding to larger impact on the prediction error are

considered more important. Other than the number of trees B, Random Forests has

another important tuning parameter mtry which may impact its performance signif-

icantly. Breiman [6] suggests to use mtry =
⌊√

p
⌋

for classification problems with

p features, and mtry = bp/3c for regression problems with a minimum node size of

5. In practice, it is common to build a few hundred trees in Random Forests.

1.4 Thesis Organization
The rest of the thesis is organized as follows:

• Chapter 2. Robust Sparse Hierarchical Clustering.

We first show how the existing SHC framework can be severely affected

by outliers. Then we propose a novel approach called Robust Sparse Hi-

erarchical Clustering which is robust to outliers in high-dimensional data.

Based on this Chapter, a paper entitled “Robust sparse hierarchical cluster-

ing”, co-authored by Leung, Zhang and Zamar, and myself will be submitted

for publication.

• Chapter 3. Multi-rank Sparse Hierarchical Clustering.

We first show the limitation of the SHC framework when clustering features

have a complex structure. Then we propose a new framework called MrSHC

which is more powerful when dealing with more complex structures. Based

on this Chapter, a paper entitled “Multi-rank sparse hierarchical clustering”,

co-authored by Zhang and Zamar, is available in ArXiv, and will be soon

submitted for publication.

• Chapter 4. Regression Phalanxes.
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We focus on building an ensemble method for regression tasks via hierar-

chical clustering of features in high-dimensional data. We call the general

ensemble framework Regression Phalanxes. We show that via simulation

studies and several real data examples, Regression Phalanxes can further

boost the performance of a good performing regression procedure such as

Lasso or Random Forests. Based on this Chapter, a paper entitled ”Regres-

sion Phalanxes”, co-authored by Zhang, Welch and Zamar, will be submitted

for publication.
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Chapter 2

Robust Sparse Hierarchical
Clustering

2.1 Introduction
In Section 1.2, we provide a brief review of the existing research on sparse hier-

archical clustering. We mainly focus on the SHC approach proposed by Witten

and Tibshirani [38]. It is demonstrated on a simulated and a real data set that SHC

results in more accurate identification of the underlying clusters as well as more

interpretable results than classical hierarchical clustering when the data set is high-

dimensional and contains potentially a large portion of noise features. However,

as we noted in Section 1.2, there are some limitations of the SHC framework. In

this chapter, we focus on its vulnerability to data contaminations. Sparse cluster-

ing methods tend to suffer from data contaminations. Kondo et al. [19] pointed

out that sparse K-means can be severely affected by a single outlying observation

and proposed robust sparse K-means clustering (RSKC) to remedy this problem.

Although classical hierarchical clustering methods themselves are fairly robust to

outliers, we will show that a very small fraction of outliers can severely upset the

results of SHC. In order to address this issue, we propose robust sparse hierarchical

clustering (RSHC) with respect to outlying observations.

The rest of this chapter is organized as follows. We first provide some discus-

sion and illustration of the effect of outliers on SHC. Then we propose two RSHC
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methods based on L1-penalty and τ-estimators. Finally, we compare the RSHC

approaches with other alternatives using simulation studies and two real data sets.

2.2 Effect of Outliers on Sparse Hierarchical Clustering
The performance of SHC may be negatively affected by a small fraction of outliers,

which often happens in large and flat data sets. We demonstrate this using the

following simulated example.

Consider a data set with 120 observations and 100 features. The observations

are generated from 3 underlying clusters defined by the first two features:

Xi j =

µi + εi j j = 1,2

εi j j = 3, . . . ,100

where εi j ∼i.i.d N(0,1) and

µi =


−µ 1≤ i≤ 40

0 41≤ i≤ 80

µ 81≤ i≤ 120

We choose µ = 3.

We then consider the same data set but with outliers. The outliers are generated

by replacing a total of 10 randomly selected entries in the noise features by values

from N(0,20).

Figure 2.1 shows the dendrograms from classical hierarchical clustering (HC)

and SHC applied to the simulated data sets without and with outliers. An ideal

clustering method would separate the three clusters labelled with red, green and

blue respectively. In the case of no outliers, SHC outperforms HC and separates

the underlying 3 clusters well. In the presence of outliers (labelled by black), both

methods fail to identify the underlying clusters and generate mixed clusters.

To understand this behavior, we examine the expression for the feature weights

which are found by solving the subgradient equation of (1.5) with respect to w j
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Figure 2.1: Dendrograms (with Ward’s linkage) from HC and SHC applied
to data sets without and with outliers. Colors are used to indicate the
true underlying cluster.

(fixing uuu):

w j =
S(DDDT

j uuu,∆)

||SSS(DDDT uuu,∆)||2
, ∆ > 0, j = 1, ..., p,

where DDD j is the j-th column of DDD, S denotes the soft thresholding operator (S(a,∆)=

sgn(a)(|a|−∆)+, where ∆ > 0 is a constant, and x+ = max(x,0)). See Witten et al.

[39] for details. Notice that if some components in feature j, DDD j, are unusually
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large, most of the weights will be assigned to that feature by the soft thresholding

operator, that is, the corresponding weight w j will be large. As an extreme case,

all weights may be assigned to the contaminated features, breaking down SHC.

2.3 Robust Sparse Hierarchical Clustering
An key building block of SHC is sparse principal component (SPC) analysis, which

needs to be robustified to achieve robust SHC.

First we introduce a new robust sparse principal component method based on

τ-estimators (RSPC-τ). Then we propose two approaches for robust sparse hier-

archical clustering (RSHC) based on RSPC-τ . Finally we provide a permutation

method to choose the sparsity tuning parameters.

2.3.1 Robust Sparse Principal Component Based on τ-estimators

Consider a data set Z with n observations and p features. Let aaa = (a1, . . . ,an)
T ,

bbb = (b1, . . . ,bp)
T , and µµµ = (µ1, . . . ,µp)

T . In the context of principal component

analysis, ai (i = 1, . . . ,n) are the scores of the first principal component, b j ( j =

1, . . . , p) are the loadings or weights for each feature, and µµµ is the center of the

data. Then the rank-1 approximation to Z is

ZZZ(1)(aaa,bbb,µµµ) = 111nµµµ
T +aaabbbT ,

where 111n is a n×1 vector of 1’s. The parameters, aaa, bbb, and µµµ , can be estimated by

solving the following minimization problem:

min
aaa,bbb,µµµ

p

∑
j=1

s2
j , subject to ||bbb||22 = 1, (2.1)

where s2
j is the sample variance of the residuals {r1 j, ...,rn j}, where ri j = ri j(aaa,bbb,µµµ)=

Zi j−Z(1)
i j (aaa,bbb,µµµ) and Z(1)

i j = µ j +aib j.

Boente and Salibian-Barrera [3] introduced robust principal component by us-

ing robust scale estimator instead of sample variance in (2.1) as follows:

min
aaa,bbb,µµµ

p

∑
j=1

σ̂
2
j , subject to ||bbb||22 = 1, (2.2)
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where σ̂ j is a robust scale estimator for the residuals (see also Maronna [22]).

We propose robust sparse principal component by introducing an L1 penalty

on the feature weights, bbb, in (2.2):

min
aaa,bbb,µµµ

{
p

∑
j=1

σ̂
2
j +λ ||bbb||1

}
, subject to ||bbb||22 = 1, (2.3)

where λ is a tuning parameter that controls the sparseness of the feature weights,

bbb.

We use τ-estimators of scale for σ̂ j, j = 1, ..., p, because the estimator achieves

robustness when there is contamination in the data and otherwise, it will produce

similar results compared to the standard deviation [41].

To solve (2.3), we propose an iterative approximation approach, which is de-

scribed in detail in the Appendix.

2.3.2 Robust Sparse Hierarchical Clustering

SHC uses SPC to handle noise variables. Likewise, our robust sparse hierarchical

clustering uses RSPC-τ to handle both noise variables and outliers. We propose

two approaches to perform RSHC. The first approach is a direct robustification of

SHC, which we call Direct Robust Sparse Hierarchical Clustering (DRSHC). The

second approach introduces a faster procedure which we call Fast Robust Sparse

Hierarchical Clustering (FRSHC). We include DRSHC only for completion and

comparison purposes, but we shall show that FRSHC outperforms DRSHC in both

computational efficiency and clustering accuracy.

Direct Robust Sparse Hierarchical Clustering
DRSHC is a direct robustification of SHC, where we apply RSPC-τ on the n2× p

tranformed dissimilarity matrix DDD instead of SPC. Details of DRSHC are presented

in Algorithm 1.

Fast Robust Sparse Hierarchical Clustering
We propose another approach, FRSHC, which differs from DRSHC mainly in

two aspects.
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Algorithm 1 DRSHC

1: Input: A data matrix XXXn×p, tuning parameter λ .
2: Compute the n2× p matrix DDD.
3: Apply RSPC-τ using λ to DDD to obtain âaaD, b̂bbD and µ̂µµD. The number of non-zero

weights in b̂bbD is denoted qD.
4: Set ûuu = DDDb̂bbD, which is a vector of length n2.
5: Re-arrange the elements in ûuu into a n×n sparse dissimilarity matrix ÛUU .
6: Apply classical hierarchical clustering (with any linkage of choice) to ÛUU ,

which only involves qD features.
7: Output: A dendrogram H C , sparse weights for the p features ŵww = b̂bbD.

In FRSHC, RSPC-τ is directly applied to the original data XXX (a n× p matrix)

instead of the transformed dissimilarity matrix DDD (a n2× p matrix). The intuitive

for using DDD is rather unclear. The reason why XXX is used is because of the following

reasons. A single feature is considered to be important if it contains enough vari-

ability so that it can potentially separate the clusters (in the extreme case, a feature

with constant values will have no effect in separating clusters). Our goal is to find

a subset of variables that separate the underlying clusters, therefore, we look for

the sparse principal components that represent most of the variance in the original

data. Since DDD is just a transformation of XXX , if we can discover enough variance in

DDD, we would be able to discover the same variations in XXX . Hence, FRSHC copes

better with larger values of n due to the considerable difference in size between XXX

and DDD.

The sparse weights obtained from FRSHC can be negative because unlike DDD,

XXX may contain negative entries. The non-zero negative weights indicate that the

corresponding variables have some influence for constructing the sparse PC. For

our purposes, this could be recognized by assigning these variables weights pro-

portional to the absolute value of the original negative weights. An alternative

simpler approach would be to assign weight 1 to all the features with non-zero

weights. This is essentially distinguishing important and unimportant variables.

This will give a simpler interpretation for the clustering results. To distinguish

between the procedures resulting from these two weighting schemes, we refer to

them as FRSHC-AW (FRSHC with Absolute Weights) and FRSHC-IW (FRSHC

with Indicator Weights) respectively.
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Details of FRSHC are presented in Algorithm 2.

Algorithm 2 FRSHC

1: Input: A data matrix XXXn×p, tuning parameter λ .
2: Apply RSPC-τ using λ to XXX to obtain âaaX , b̂bbX and µ̂µµX . The number of non-zero

weights in b̂bbX is denoted qX .
3: Calculate the sparse dissimilarity matrix ÛUU as follows:
4: For FRSHC-AW:

• Calculate DDD.

• Let |b̂bbX | be the vector of absolute values of the elements in b̂bbX .

• Set ûuu = DDD|b̂bbX |, a vector of length n2.

• Re-arrange the elements in ûuu into a n×n sparse dissimilarity matrix ÛUU .

For FRSHC-IW:

• Calculate ÛUU directly using the features with non-zero weights in b̂bbX .

5: Apply classical hierarchical clustering (with any linkage of choice) to ÛUU ,
which only involves qX features.

6: Output: A dendrogram H C , sparse weights for the p features ŵww = b̂bbX .

Remark 2.3.1. In principle, other robust sparse principal component methods

could be used in place of RSPC-τ . For comparison, we consider the method pro-

posed in Croux et al. [11], which we call RSPC-Croux. The corresponding di-

rect and fast robust sparse hierarchical clustering procedures are referred to as

DRSHC-Croux and FRSHC-Croux.

Choice of Tuning Parameters

In this section, we propose a permutation approach for choosing the tuning param-

eter λ of DRSHC and FRSHC. The procedure is described as follows:

1. Obtain B permuted data sets XXX1, . . . ,XXXB by independently permuting the ob-

servations within each feature of XXX .

2. For each candidate λ :
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(a) Compute J(λ ) = ∑
p
j=1 τ̂2

j + λ ||bbb||1, the objective obtained from opti-

mizing RSPC-τ criterion (2.3) with λ on data XXX (for FRSHC) or trans-

formed dissimilarity matrix DDD (for DRSHC).

(b) For b = 1, . . . ,B, compute Jb(λ ), the objective obtained by performing

RSPC-τ with λ on the data XXXb (for FRSHC) or the corresponding DDDb

(for DRSHC).

(c) Calculate Gap(λ ) = 1
B ∑

B
b=1 log(Jb(λ ))− log(J(λ )).

3. Among a set of candidates 0 < λ1 < .. . < λk (e.g. k = 20), calculate the

second order differences of Gap(λi), i = 1, . . . ,k, and choose λ ∗ that min-

imizes the differences λ ∗ = argmin{Gap(λi+1)−2Gap(λi)+Gap(λi−1)}.
This corresponds to either the most prominent local maximum or a sud-

den increase in the Gap values. The behavior of this step is illustrated in

Figure 2.2. The Gap(λi), i = 1, . . . ,k, obtained from a simulated example is

plotted against the corresponding λi, and the red point corresponds to the

chosen λ i. We can see that this point is both the most prominent local maxi-

mum and also the point after a sudden increase. Extensive simulation results

and real data applications confirm that this criterion works well in practice.

Figure 2.2: An illustration of choosing tuning parameter λ based on second
order differences of Gap(λi), i = 1, . . . ,k

The resulting DRSHC and FRSHC with automatically selected λ are denoted

as DRSHC-Gap and FRSHC-Gap respectively.

25



For cases where target numbers of important features are suggested by subject-

area knowledge (as in the real data examples in Section 2.5), we propose using a

backward approach to determine λ that will result in the target number of features

qX (for FRSHC) or qD (for DRSHC).

Given qX (or qD), we choose λ by the following bisection procedure:

1. Choose λ = λ (Mid), where λ (Mid)=(λ (UB)+λ (LB))/2, λ (LB)= 0 and λ (UB)=

c. We use c = 20, but other choices can be considered.

2. Apply FRSHC (or DRSHC) using λ from Step 1.

3. If the resulting number of features for clustering from Step 2 is less than qX

(or qD) then we update λ (UB) = λ , else update λ (LB) = λ .

4. Repeat Step 1–3 until we obtain qX ±2 (or qD±2) features for clustering.

We have seen in our simulation studies that the above procedure converges quickly

in a few iterations.

2.4 Simulation Study
We conduct simulation studies to compare the quality of dendrograms and the ac-

curacy of feature selection of the following methods: classical hierarchical cluster-

ing (HC), SHC, DRSHC, FRSHC-AW, FRSHC-IW, FRSHC-Croux-AW, FRSHC-

Croux-IW, FRSHC-Gap-AW and FRSHC-Gap-IW. We do not include DRSHC-

Croux and DRSHC-Gap in the simulation studies due to their high computational

burden. We show the results for all the methods with Ward’s linkage. Similar

results (not shown here) are obtained with other linkages.

We generate data sets X with n = 60 observations and p = 1000 features as

follows. The observations are generated from 3 main underlying clusters C1, C2

and C3. Moreover, C1 and C2 have two nested sub-clusters labeled as C1a and

C1b, and C2a and C2b. See Figure 2.3 for a graphical illustration.

More precisely, the clusters are determined by q = 100 features as follows:

Xi j =

µi + εi j j = 1, ...,100

εi j j = 101, ...,1000
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Figure 2.3: A graphical illustration of the hierarchical structure of the simu-
lated clusters

where εi j ∼i.i.d N(0,1) and

µi =



0 i = 1, . . . ,12 (i ∈C1a)

µ i = 13, . . . ,24 (i ∈C1b)

µ +1 i = 25, . . . ,36 (i ∈C2a)

2µ +1 i = 37, . . . ,48 (i ∈C2b)

2µ +2 i = 49, . . . ,60 (i ∈C3)

We show the results for µ = 0.5. Similar conclusions are obtained for other choices

of µ .

We contaminate the data sets using outliers generated from the following mod-

els:

M0. No outliers.

M1. One large-mean outlier in one noise feature. A randomly selected obser-

vation of a noise feature is replaced by a value from N(25,1).

M2. One large-mean outlier in one clustering feature. A randomly selected

observation of a clustering feature is replaced by a value from N(25,1).

M3. Large-variance outliers in noise features. For each of the five clusters,

randomly select two entries in the noise features to be replaced by values
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from N(0,152).

M4. Large-variance outliers in clustering features. For each of the five clusters,

randomly select two entries in the clustering features to be replaced by values

from N(0,152).

M5. Large-variance outliers in noise and clustering features. For each of the

five clusters, randomly select two entries in the noise features and two entries

in the clustering features to be replaced by values from N(0,152).

M6. Mild-mean outliers in noise features. Randomly select 50 noise features,

and replace five random entries from each by values from N(5,1).

M7. Overall variance increase in some noise features. Fifty randomly selected

noise features are generated from N(0,22).

We generate 100 data sets for each contamination model.

The quality of the resulting dendrograms is evaluated as follows. The dendro-

grams are cut at a high and a low level which are chosen to obtain exactly three

and five clusters, respectively. Clusters with two or less observations are discarded.

The classification error rate (CER) is then used to assess clustering accuracy [see

10]. We do this by first comparing the resulting labels from the three main clusters

against the underlying true labels (C1, C2, C3). Next, we compare the resulting la-

bels from the five clusters against the underlying true labels (C1a, C1b, C2a, C2b,

C3).

The accuracy of feature selection is evaluated by the recall rate (RR). Let J

be the set of indices corresponding to all the clustering features, and |J |= q. The

recall rate (RR) is calculated as follows:

RR(J ) =
∑ j∈J I(ŵ j 6= 0)

q
,

where I(·) is an indicator function.

For SHC, DRSHC, FRSHC-AW, FRSHC-IW, FRSHC-Croux-AW, and FRSHC-

Croux-IW, the target number of clustering features is given and equal to 100. For

FRSHC-Gap-AW and FRSHC-Gap-AW, the number of clustering features is cho-

sen automatically. The FRSHC-Gap methods generally identify the correct number

28



HC SHC DRSHC
FRSHC FRSHC-Gap FRSHC-Croux

AW IW AW IW AW IW

M0
K=3 0.024 0.000 0.006 0.000 0.000 0.001 0.000 0.170 0.046
K=5 0.147 0.061 0.095 0.056 0.055 0.059 0.054 0.180 0.142

M1
K=3 0.024 0.393 0.006 0.000 0.000 0.001 0.000 0.172 0.049
K=5 0.147 0.263 0.089 0.055 0.055 0.059 0.054 0.184 0.145

M2
K=3 0.024 0.313 0.006 0.000 0.000 0.000 0.001 0.178 0.049
K=5 0.147 0.249 0.095 0.055 0.057 0.057 0.054 0.177 0.141

M3
K=3 0.025 0.408 0.005 0.000 0.000 0.001 0.000 0.166 0.033
K=5 0.146 0.276 0.092 0.054 0.056 0.060 0.052 0.179 0.134

M4
K=3 0.025 0.299 0.009 0.003 0.002 0.006 0.002 0.144 0.054
K=5 0.146 0.242 0.089 0.056 0.055 0.061 0.053 0.173 0.139

M5
K=3 0.029 0.375 0.012 0.002 0.001 0.006 0.002 0.143 0.059
K=5 0.151 0.270 0.099 0.058 0.058 0.062 0.057 0.174 0.135

M6
K=3 0.035 0.234 0.006 0.001 0.001 0.001 0.000 0.184 0.064
K=5 0.153 0.228 0.096 0.059 0.079 0.069 0.067 0.191 0.155

M7
K=3 0.035 0.338 0.018 0.000 0.000 0.000 0.000 0.460 0.309
K=5 0.156 0.282 0.111 0.062 0.071 0.058 0.061 0.321 0.261

Table 2.1: Average CER for different clustering methods. The maximum SE
of CER in this table is 0.01, while the maximum SE of CER for FRSHC
methods is 0.003

of features used for clustering with the average numbers in M0–M7 are 100.05,

100.22, 101.21, 100.87, 100.37, 99.94, 98.380, and 100.152, respectively.

Table 2.1 presents the average CER. When data sets are not contaminated,

sparse methods in general produce more accurate clustering results than the clas-

sical HC; SHC and the FRSHC methods yield the smallest average CER, and DR-

SHC gives slightly higher CER. Under M1–M7, SHC gives poor clustering results.

On the other hand, HC is robust against outliers but clearly affected by the large

number of noise features. Finally, DRSHC and the FRSHC methods are highly

robust against outliers and noise features. There is not much difference in perfor-

mance between the FRSHC methods with absolute and indicator weights.

All the methods except for SHC show better clustering accuracy when dendro-

grams are cut into three rather than five clusters, as expected.

Table 2.2 presents the average RR. When data sets are not contaminated, SHC

identifies most of the clustering features with the highest RR. DRSHC, the FRSHC

methods, and the FRSHC-Gap methods give slightly smaller RR. Under M1–M7,

SHC gives the lowest RR because it gives most of the weights to the contaminated
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SHC DRSHC FRSHC FRSHC-Gap FRSHC-Croux
M0 0.993 0.807 0.972 0.990 0.393
M1 0.487 0.802 0.972 0.989 0.401
M2 0.545 0.800 0.972 0.980 0.397
M3 0.429 0.815 0.971 0.980 0.404
M4 0.543 0.830 0.964 0.984 0.409
M5 0.441 0.810 0.962 0.984 0.398
M6 0.544 0.834 0.933 0.969 0.388
M7 0.529 0.790 0.949 0.972 0.099

Table 2.2: Average RR for different clustering methods. RR for AW and IW
methods are the same due to the use of indicator function for non-zero
weights. The maximum SE of RR in this table is 0.017, while the maxi-
mum SE of RR for FRSHC methods is 0.008.

HC SHC DRSHC FRSHC FRSHC-Gap FRSHC-Croux
M0 0.014 0.161 45.940 0.315 163.115 14.038
M1 0.013 0.190 45.811 0.316 164.811 14.118
M2 0.013 0.197 45.382 0.315 164.989 13.885
M3 0.013 0.271 45.980 0.314 165.623 14.182
M4 0.014 0.264 46.886 0.332 167.977 13.927
M5 0.014 0.272 46.730 0.338 170.452 14.036
M6 0.015 0.301 46.017 0.384 134.041 13.950
M7 0.015 0.158 42.166 0.311 119.865 12.880

Table 2.3: Average CPU times in seconds of a 2.8 GHz Intel Xeon for differ-
ent clustering methods

features. On the other hand, DRSHC, the FRSHC methods, and the FRSHC-Gap

methods are only mildly affected by the contamination and give most of the weights

to the clustering features.

Table 2.3 presents the average computing times. The computing times for the

FRSHC methods are comparable to HC and SHC. For larger n, say 120, the FRSHC

methods become faster than SHC. DRSHC is more computationally intensive. The

FRSHC-Gap methods give the longest computing time because of the computa-

tionally intensive permutation approach used to automatically select the number of

clustering features.
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2.5 Application to Microarray Data Sets
We consider two breast cancer microarray data sets [24, 35]. For each data set,

we apply the following hierarchical clustering methods: HC, SHC, SHC-Gap,

FRSHC-AW, FRSHC-IW, FRSHC-Gap-AW, and FRSHC-Gap-IW, where SHC-

Gap represents the SHC with the number of clustering features chosen automati-

cally by the permutation approach [see 38]. Dendrograms are created using Ward’s

linkage so that the results are comparable with those in the original papers.

2.5.1 Breast Cancer Data Set in Perou et al. [24]

The data set was first published in Perou et al. [24] and later analyzed in Witten and

Tibshirani [38]. It contains 1753 gene expression levels (features) for 62 samples

(observations) to profile surgical specimens of human breast tumors. Perou et al.

[24] categorized the 62 samples into four groups (clusters): basal-like, Erb-B2,

normal breast-like, and ER+. Perou et al. [24] suggested that the four underlying

clusters could be explained by only 496 of the 1753 features, which was confirmed

by Witten and Tibshirani [38]. Two misclassified samples were identified by Witten

and Tibshirani [38]. The data set was pre-processed before being published. As

such, there are no outliers in the data set.

Figure 2.4 shows the dendrograms resulting from HC, SHC, FRSHC-AW, and

FRSHC-IW, with the number of clustering features manually fixed at 496 for SHC

and the FRSHC methods as suggested. Colors are used to indicate the suggested

four tumor groups.

The dendrogram generated from SHC found four main clusters, as expected.

Two red samples were misclassified as orange. This is surprising because the red

and orange clusters are otherwise very well separated in the SHC dendrogram. The

FRSHC methods identify the blue and green clusters, however, the dendrograms

further suggest that the red cluster may be further split into two sub-clusters, one

of which is close to the orange cluster. This is more consistent with the misclassi-

fication of the two red samples.

To assess the performance of the different methods in the presence of outliers,

we randomly select four observations, and for each of them, the value of a sin-

gle random feature is replaced by a value from N(0,15). Figure 2.5 shows the

31



Figure 2.4: Dendrograms generated by HC, SHC, FRSHC-AW and FRSHC-
IW with 496 clustering features for the clean Perou et al. [24] data

resulting dendrograms from HC, SHC, FRSHC-AW, and FRSHC-IW applied on

the contaminated data set, with the number of clustering features manually fixed at

496 for SHC and the FRSHC methods. HC is mildly affected by the outliers, as ex-

pected. On the other hand, SHC produces mixed clusters. The FRSHC methods are

robust against the outliers and give very similar clustering patterns and hierarchical

structures as in the original data set.

Assuming that the number of clustering features is unknown, we repeat the

analysis by applying SHC-Gap and the FRSHC-Gap methods on the original and
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Figure 2.5: Dendrograms generated by HC, SHC, FRSHC-AW and FRSHC-
IW with 496 clustering features for the contaminated Perou et al. [24]
data

contaminated data sets. Notice that there is no difference in feature selection

between FRSHC-Gap-AW and FRSHC-Gap-IW. For the original data set, SHC-

Gap selects 112 clustering features, while the FRSHC-Gap methods select 396.

For the contaminated data set, SHC-Gap selects 49 clustering features while the

FRSHC-Gap methods select 418. The resulting dendrograms from SHC-Gap and

the FRSHC-Gap methods give similar clustering patterns and hierarchical struc-

tures, compared to those from their manual counterparts, respectively (results not
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shown).

2.5.2 Breast Cancer Data Set in van’t Veer et al. [35]

The data set was presented and analyzed in van’t Veer et al. [35]. It consists of 4751

gene expression levels for 77 primary breast tumor samples. A supervised classi-

fication technique was used in van’t Veer et al. [35], revealing that only a subset

of 70 out of the 4751 genes may help discriminating patients that have developed

distant metastasis within five years.

Figure 2.6 shows the resulting dendrograms generated from HC, SHC, FRSHC-

AW, and FRSHC-IW, with the number of clustering features fixed at 70, as sug-

gested. The FRSHC methods give slightly more accurate clustering results than

HC and SHC, which may be explained by a mild outlier identified from all the

dendrograms. When the number of clustering features is assumed to be unknown,

SHC-Gap selects 1046 features, while the FRSHC-Gap methods select 111. The

dendrograms from SHC-Gap and the FRSHC-Gap methods are similar to their

manual counterparts, as in the previous example (result not shown).

2.6 Discussion
Classical hierarchical clustering method is moderately robust against outlying ob-

servations, but it has been shown to be non-robust against noise features. On the

other hand, sparse hierarchical clustering in Witten and Tibshirani [38] is designed

to be robust against noise features. However, we show by simulation studies and

real data examples that it is non-robust against outlying observations. Based on

these considerations, we propose FRSHC, to achieve robust sparse hierarchical

clustering that are robust against outliers and noise features. Moreover, FRSHC

scales better than SHC for larger n. We investigate two possible ways of apply-

ing weights to the clustering features found in FRSHC, namely, absolute weight

(FRSHC-AW) and indicator weights (FRSHC-IW). Simulation studies show that

both variants of FRSHC deliver better clustering and feature selection accuracy

with less computational time comparing to DRSHC. A permutation approach is

proposed to automatically choose the tuning parameter λ , which determines the

number of clustering features. Another aspect of our implementation is to allow

34



the user to choose the number of features to be selected.
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Figure 2.6: Dendrograms generated by HC, SHC, FRSHC-AW and FRSHC-
IW with 70 clustering features for van’t Veer et al. [35]’s data. The mild
outlier is pointed by the arrow.
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Chapter 3

Multi-rank Sparse Hierarchical
Clustering

3.1 Introduction
In this chapter, we continue the study of sparse hierarchical clustering. In Sec-

tion 1.2, two main disadvantages of the existing SHC framework are presented. In

Chapter 2, we propose a novel robust framework to address the robustness issue. In

this chapter, we mainly focus on the other issue mentioned in Section 1.2, namely,

incapability of discovering features with complex structures. In high-dimensional

data sets, the structures of the features, especially the important features, are usu-

ally complex. If the total variance within the important features cannot be mostly

projected onto a single dimension, then we call the structure of the important fea-

tures complex. For example, Figure 3.1 shows examples of simple and complex

structures within two important features. We show that when features contain com-

plex structures, SHC has its limitation in discovering the important features from

the noise. Then we propose an improved sparse hierarchical clustering framework

called the multi-rank sparse hierarchical clustering (MrSHC) framework. Through

extensive simulation studies and real data examples, we show that MrSHC is a

more flexible framework, and is able to discover the important features more effi-

ciently while producing better clustering results comparing to the SHC framework.
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Figure 3.1: Examples of simple and complex structures within two important
features. In simple structure, the variance in important features can be
mostly projected to a single dimension. The variance of the complex
structure can be discovered if projected to more than one dimension.

3.2 Limitations of Witten and Tibshirani [38]’s Sparse
Hierarchical Clustering

SHC essentially applies SPC criterion to DDD∗ and obtains the best rank-1 sparse ap-

proximation of DDD∗ given a sparsity constraint, i.e. criterion (1.5). The clustering

features are chosen according to the non-zero loadings in the first sparse princi-

pal component resulted from the rank-1 sparse approximation. This approach and

consequently our RSHC approaches share the same limitations when the cluster-

ing features may not be fully identified by a single sparse principal component (see

Figure 3.1). In other words, the clustering features may not be properly recovered

by only rank-1 approximation. The following simulated example illustrates this

situation.

We generate a data set XXX as follows: XXX contains n = 20 observations with

p = 15 features, i.e. XXXn×p = (xxx1,xxx2, . . . ,xxxn)
T , where xxxi = (xi,1,xi,2, . . . ,xi,p)

T , 1 ≤
i ≤ n. The observations are organized in four clusters of size 5. Let Yi, (i =

1, . . . ,n) denote the cluster memberships. Then xi j (i = 1, . . . ,n) is generated from

N(µ j(Yi),0.1) for j = 1, . . . ,4, and N(µ j(Yi),1) for j = 5, . . . , p.

A sketch of µµµ j(Yi) is presented in the table below:
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Yi µ1(Yi) µ2(Yi) µ3(Yi) µ4(Yi) µ5(Yi) . . .µP(Yi)

1 1 1 1 1 0 . . . 0
2 -1 -1 1 1 0 . . . 0
3 -1 -1 -1 -1 0 . . . 0
4 1 1 -1 -1 0 . . . 0

We apply SHC to XXX . By gradually increasing the sparsity constraint, we obtain

the sequence of the first 9 chosen variables {V13,V11,V6, V1, V2, V14, V8, V4, V3}.
The first three chosen features are noise features. As a result, the dendrogram

generated from the first four chosen features (which is suggested by Witten and

Tibshirani [38]’s auto-selection method) gives mixed clusters (See Figure 3.2). The

clustering result is still unsatisfactory even if seven variables are chosen (results not

show here). Moreover, five noise features are selected before all the four clustering

features are chosen.

Figure 3.2: Dendrogram generated with the first four chosen features
{V13,V11,V6, V1} from Witten and Tibshirani’s sparse hierarchical clus-
tering framework

3.3 Multi-rank Sparse Hierarchical Clustering
To remedy this limitation of SHC, we propose the multi-rank sparse hierarchical

clustering (MrSHC). Similar to SHC, MrSHC uses SPC as an important building

block for feature selection, but MrSHC is different in the following aspects.

• As motivated by the good performance of FRSHC, MrSHC applies SPC di-
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rectly to the original data XXX .

• Indicator weights for the non-zero loadings in sparse PCs are used for a

simpler interpretation for the clustering results. Indicator weights also allow

MrSHC to match classical hierarchical clustering if no sparsity constraint is

applied.

• MrSHC identifies and recovers the clustering features using multi-rank sparse

approximation through SPC. In other words, the clustering features are cho-

sen according to the non-zero loadings in multiple sparse PCs.

MrSHC is very different from the traditional approach where high-dimensional

data are clustered based on the first few principal components. First, MrSHC ap-

plies SPC instead of traditional PCA to the data, also, MrSHC chooses the original

features for clustering. The chosen features can be closely approximated by sparse

low-rank approximations, in other words, they should have similar patterns of vari-

ations (e.g. if the features can be closely approximated by rank-1 approximation,

then each of the features should have similar variation as the first PC). In clus-

tering, similar patterns of variations usually represent information of clusters, and

thus, the features chosen from MrSHC should contain key informations of clusters.

This is confirmed by the simulated and real data examples in later sections.

We outline the MrSHC framework under the cases in Table 3.1.

Case q r
1 Known Known
2 Known Unknown
3 Unknown Unknown

Table 3.1: Different cases for MrSHC; q is the target number of selected fea-
tures and r is the rank of the SPC approximation

.

3.3.1 Case 1: Known q and r

Suppose the target number of clustering features q and the appropriate rank r of

the SPC approximation are known. MrSHC applies SPC to XXX and obtain the first r
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sparse PCs. In MrSHC, a feature is considered selected if it has a non-zero loading

in any of the r sparse PCs. With an appropriately chosen sparsity constraint λ , we

can get q or approximately q±d (say d = 1) chosen features from the r sparse PCs.

MrSHC chooses λ using a bi-section approach presented in Algorithm 3.

Algorithm 3 Feature set selection
1: Input: XXXn×p, q, r, d (default d = 0).
2: Assign λ− = 1 and λ+ =

√
n (λ+ can be set smaller in practice).

3: Repeat Step 4-8.
4: Apply SPC to XXX with λ = (λ−k +λ

+
k )/2; obtain the first r sparse PCs.

5: q∗ := the number of variables with non-zero loadings in any of the r sparse
PCs.

6: Cr := the set of q∗ chosen variables.
7: Break if q−d ≤ q∗ ≤ q+d.
8: If q∗ > q+d, λ+ = λ ∗; if q∗ < q−d, λ− = λ ∗.
9: Output: Cr, q∗.

We have seen in the simulations and real data examples that Algorithm 3 will

finish in a few iterations.

Given q and r, a set of chosen features Cr can be obtained from Algorithm 3.

Then MrSHC simply generates a dendrogram (with any linkage of choice) based

on the features in Cr.

3.3.2 Case 2: Known q, Unknown r

Suppose q is known, but not r. To choose r, MrSHC first applies Algorithm 3

with increasing ranks ri, i = 1, . . . ,R (different R can be chosen; we choose R = 8

here). Given rank ri, let Cri denote the candidate feature set obtained from Al-

gorithm 3. Different ranks ri will be compared through their corresponding Cri .

MrSHC assesses the quality of a feature set Cri through the dendrogram generated

from its features. To be more specific, a feature set Cri is evaluated according to

the following aspects.

• The number of well-separated clusters discovered from the dendrogram gen-

erated from Cri . MrSHC uses a multi-layer pruning approach to obtain the

well-separated clusters from a dendrogram. We introduce a “reference num-
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ber of clusters” in the multi-layer pruning to facilitate later comparisons (de-

scribed below).

• The degree of separation of the discovered clusters, which is evaluated by

silhouette values [27].

Given the number of discovered clusters and the silhouette values, an iterative se-

lection approach is proposed to choose the final rank r.

Multi-layer pruning (MLP) prunes the dendrogram from the top to the bottom,

with each split evaluated by the Gap statistics [33]. We introduce a “reference num-

ber of clusters” K in MLP, which is both an “upper bound” and a “lower bound”. It

is an upper bound of the number of clusters discovered in MLP. When K is chosen

properly, MLP will produce labels for K clusters for most of the input dendrograms

generated from Cri , i= 1, . . . ,R. This facilitates later comparisons since labels with

different number of clusters are in general difficult to compare. It is also a lower

bound of the number of clusters that are expected to be discovered. If less than K

clusters are discovered from a dendrogram according to MLP, such a dendrogram

and its corresponding feature set are considered to be of low quality since key clus-

ters may be missing. Therefore, such feature sets and their corresponding ranks

are screened out and excluded from the later comparisons. Details of MLP are pre-

sented in Algorithm 4. The reference number of clusters K can be chosen based

on subject area knowledge. If not specified, we set the default reference number

of clusters to be max{2,K0}, where K0 is set as follows: apply MLP with K =+∞

to the dendrograms generated from Ci, i = 1, . . . ,R, then K0 is the largest output

number of leaf nodes from MLP. We have seen that in practice, a reliable K0 can

usually be found by applying MLP to Ci, i = 1,2,3.

Suppose there are M (M ≤ R) left over dendrograms after screening out the

ones with less than K clusters. Let r j, Cr j and Lr j ( j = 1, . . . ,M) denote their cor-

responding ranks, feature sets and labels (for K clusters from MLP), respectively.

Given Cr j and Lr j , the degree of separation of the corresponding K clusters can be

evaluated by the average silhouette value Sr j . High average silhouette values indi-

cate well-separated clusters, and thus, are preferred. If two ranks lead to similar

average silhouette values, the lower one is preferred since the feature set associated

with the higher rank is more likely to contain noise variables. Therefore, among
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Algorithm 4 Multi-layer pruning (MLP)

1: Input: A dendrogram D , number of bootstrap samples B for the Gap statistics,
and reference number of clusters K.

2: Assign the root node of D as the current node; mark current node as active.
3: Repeat Step 4-7.
4: Split the current node sequentially according to D ; obtain increasing number

of clusters.
5: Evaluate different numbers of clusters from Step 4 using the Gap statistics.

• If the chosen number of clusters is 1, set the current node as inactive;

• Otherwise, split the current node into two active leaf nodes.

6: Break if either of the following applies:

• Number of leaf nodes (both active and inactive) is equal to K.

• All the leaf nodes are inactive.

7: Assign the active leaf node with the highest height in D as the current node.
8: Output: Number of leaf nodes (less than or equal to K), and the correspond-

ing cluster labels L .

local minimums in Sr j ( j = 1, . . . ,M), the one with the highest rank is the least

favourite, and thus, we remove such local minimums iteratively until the left-over

Sr j are monotonically increasing or decreasing. Given monotonically increasing

average silhouette values, the smallest rank after the largest increase in average sil-

houette value will be selected, since smaller ranks are preferred unless the increase

in average silhouette value is large. On the other hand, if the average silhouette

values are decreasing as rank increases, the smallest left-over rank will be selected.

Details of this iterative selection approach are presented in Algorithm 5.

Once the chosen rank r is obtained from Algorithm 5, MrSHC generates a

dendrogram (with any linkage of choice) based on the features in Cr.

We revisit the example in Section 3.2. Suppose q = 4 is known, and we apply

MrSHC with default reference number of clusters K = 2. The resulting Cr with

its corresponding rank r = 2 contains the four true clustering features: V1, V2, V3

and V4. The resulting dendrogram is presented in Figure 3.3. The four clusters are

separated correctly.
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Algorithm 5 Iterative selection of rank
1: Input: XXXn×p, Cr j and Lr j , j = 1, . . . ,M.
2: For j = 1, . . . ,M; Sr j := the average silhouette value calculated from Cr j , Lr j

and XXX .
3: Repeat Step 4-5.
4: Among the local minimums in Sr j ( j = 1, . . . ,M), remove the one with the

highest rank.
5: Break if the left-over Sr j , as r j increases, are monotonically:

• increasing: r := the smallest rank r j after the biggest increase in the left-
over Sr j .

• decreasing: r := the smallest left-over rank r j.

6: Output: The chosen rank r.

Figure 3.3: Dendrogram generated from MrSHC with known q

3.3.3 Case 3: Unknown q and r

Suppose q and r are both unknown. MrSHC considers a list of target numbers of

chosen features qt , t = 1, . . . ,T . For each of the candidate qt , MrSHC chooses its

corresponding feature set Cqt (|Cqt | = qt) and average silhouette value Sqt as de-

scribed in Section 3.3.2. Higher silhouette values are preferred, and at the mean

time, smaller target numbers of features are preferred for the sake of interpreta-

tion and exclusion of noise features. Therefore, MrSHC uses a similar iterative

approach as in Algorithm 5 to choose q among qt (t = 1, . . . ,T ). Details of this

iterative approach are presented in Algorithm 6.
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Algorithm 6 Iterative selection of number of features
1: Input: qt and Sqt , t = 1, . . . ,T .
2: Repeat Step 3-4.
3: Among the local minimums in Sqt (t = 1, . . . ,T ), remove the one with the

highest qt .
4: Break if the left-over Sqt , as qt increases, are monotonically:

• increasing: q := the smallest qt after the biggest increase in the left-over
Sqt .

• decreasing: q := the smallest left-over rank qt .

5: Output: The chosen target number of chosen features q.

Once the chosen q is obtained from Algorithm 6, MrSHC generates a dendro-

gram (with any linkage of choice) based on the features in its corresponding Cq.

Again, we revisit the example in Section 3.2. Suppose q and r are unknown,

and we apply MrSHC with default reference number of clusters K = 2 and the list

of qt {2,3, . . . ,8}. MrSHC suggests q = 3 and its corresponding feature set {V 1,

V 3, V 4}. Although q = 3 is smaller than the true value 4, the four clusters can still

be separated correctly (see Figure 3.4).

Figure 3.4: Dendrogram generated from MrSHC with unknown q
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3.4 Simulation Study
We conduct simulation studies to compare the quality of dendrograms and the ac-

curacy of feature selection of the following methods: HC, SHC (with known/un-

known q) and MrSHC (with known/unknown q). We show the results for all the

methods with complete linkage. Similar results (not shown here) are obtained with

other linkages.

3.4.1 Simulation I

We generate data sets X with n = 60 observations and p = 500 features as follows.

The observations are generated from three main underlying clusters C1, C2 and

C3.

To be more specific, the clusters are determined by q = 50 features as follows:

Xi j =

µi + εi j j = 1, ...,50

εi j j = 51, ...,500

where εi j ∼i.i.d N(0,1) and

µi =


0 i = 1, . . . ,20 (i ∈C1)

µ i = 21, . . . ,40 (i ∈C2)

−µ i = 41, . . . ,60 (i ∈C3)

We show the results for µ = 1. Similar conclusions are obtained for µ = 0.8.

We generate 100 data sets and apply HC, SHC (with known/unknown q) and

MrSHC (with known/unknown q) to each.

The quality of the resulting dendrograms is evaluated as follows. The dendro-

grams are cut at a level to obtain three clusters. CER is then used to assess clus-

tering accuracy by comparing the resulting labels from three clusters against the

underlying true labels (C1, C2, C3). The accuracy of feature selection is evaluated

by RR.

Table 3.2 presents the average CER, average RR, and the corresponding aver-

age q. For SHC and MrSHC, the unknown q is chosen automatically. HC gives the
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highest CER, while SHC achieves better accuracy due to the sparseness. MrSHC

achieves the best accuracy among the three methods. When q = 50 is known, SHC

and MrSHC give very similar average RR. When q is unknown, both methods give

almost perfect RR, while MrSHC selects less features on average.

HC SHC MrSHC
CER q CER RR q CER RR q

Known (q = 50) 0.202 500 0.047 0.926 50 0.009 0.995 50
Unknown q 0.202 500 0.127 0.997 30.6 0.064 1.000 19.7

Table 3.2: Average CER, RR, and q for different clustering methods.

3.4.2 Simulation II

We generate data sets X with n= 80 observations and p= 500 features, i.e. XXXn×p =

(xxx1,xxx2, . . . ,xxxn)
T , where xxxi = (xi,1,xi,2, . . . ,xi,p)

T , 1 ≤ i ≤ n. The observations are

generated from four main underlying clusters C1, C2, C3 and C4. Let Yi, (i =

1, . . . ,n) denote the cluster memberships. Then xi j (i = 1, . . . ,n) is generated from

N(µ j(Yi),0.1) for j = 1, . . . ,50, and N(µ j(Yi),1) for j = 51, . . . , p.

A sketch of µµµ j(Yi) is presented in the table below:

Yi µ1(Yi) . . . µ25(Yi) µ26(Yi) . . . µ50(Yi) µ51(Yi) . . .µp(Yi)

1 µ . . . µ µ . . . µ 0 . . . 0
2 −1.5µ . . . −1.5µ 0 . . . 0 0 . . . 0
3 0 . . . 0 −µ . . . −µ 0 . . . 0
4 0 . . . 0 0 . . . 0 0 . . . 0

We show the results for µ = 1. Similar conclusions are obtained for other

choices of µ .

Again, we generate 100 data sets and apply HC, SHC (with known/unknown q)

and MrSHC (with known/unknown q) to each. Table 3.3 presents the average CER,

average RR, and the corresponding average q. When q = 50 is known, HC and Mr-

SHC produce the highest and lowest average CER, respectively. MrSHC produces

more accurate feature selection and clustering than SHC due to the smaller aver-

age CER and larger average RR. When q is unknown, SHC produces the highest

average CER with on average 19.5 chosen features, while MrSHC achieves the
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smallest average CER with on average 31.5 chosen features.

HC SHC MrSHC
CER q CER RR q CER RR q

Known (q = 50) 0.172 500 0.129 0.875 50 0.041 0.977 50
Unknown q 0.172 500 0.202 1.000 19.5 0.057 0.992 31.5

Table 3.3: Average CER, RR, and q for different clustering methods.

3.4.3 Computational Times and Complexity

We investigate the computational times of MrSHC and SHC.

The HierarchicalSparseCluster function from the R-package sparcl

is used to conduct SHC. MrSHC is implemented in R, where the SPC function from

the R-package PMA is used to conduct the sparse PCA algorithm. We use default

input parameters in MrSHC: the number of bootstrap samples B = 50, maximum

rank R = 5, and default selection of the reference number of clusters K. The aver-

age computing times for Simulation I & II are presented in Table 3.4.

HC SHC MrSHC
Simulation I II I II I II

Known (q = 50) 0.006 0.012 0.746 1.075 7.754 11.276
Unknown q 0.006 0.012 10.496 15.518 73.254 103.752

Table 3.4: Average computing times (in seconds) for different clustering
methods.

When n and p are relatively small, SHC takes less time to compute. How-

ever, since the framework of MrSHC is embarrassingly parallel, parallel comput-

ing functions such as mcapply from the R-package multicore can be easily

used to speed up the computation. Moreover, when n and p get larger, MrSHC

will become less time consuming (observed with n = 320 and p = 2000, results

not shown). This is because the computational complexities of MrSHC and SHC

are O(n3qB+ np) and O(n3q+ n2 p), respectively, and as a result, SHC will be-

come more computationally demanding due to the n2 p term as n and p increase

and p >> n.
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3.5 Application to Microarray Data Sets
Three microarray data sets [1, 24, 35] are considered. We apply HC, SHC, MrSHC,

and HC using features with the highest marginal variance (HC-HMV) to each data

set. Dendrograms are created using the complete linkage. The default reference

number of clusters is used in MrSHC, and the default list of candidate q (for both

SHC and MrSHC) is {20,40,60, . . . ,400}.

3.5.1 Lymphoma Data Set in Dettling [12]

The data set is provided by Dettling [12]. It contains 4026 gene expression lev-

els (features) for 62 samples (observations). Three types of most prevalent adult

lymphoid malignancies were studied: 42 cases of diffuse large B-cell lymphoma

(DLBCL), 9 samples of follicular lymphoma (FL), and 11 observations of B-cell

chronic lymphocytic leukemia (CLL). A specialized cDNA microarray was used

to measure the gene expression levels. Following the pre-processing steps in Du-

doit et al. [13], the data set is pre-processed by first setting a thresholding window

[100,16000] and then excluding genes with max/min≤ 5 or (max−min)≤ 500.

A logarithmic transformation and standardization are applied. Finally, a simple 5

nearest neighbor algorithm is employed to impute the missing values.

The dendrograms generated from HC, SHC, MrSHC and HC-HMV are shown

in Figure 3.5. Colors are used to indicate the three tumor types. HC only mis-

classifies two red samples, while SHC gives mixed clusters with the automatically

chosen q = 20. MrSHC chooses q = 140 and uses rank r = 2, with only two blue

samples misclassified into the green cluster (notice that the blue and green clusters

are closer to each other). HC-HMV with q = 140 mixes the blue and green clus-

ters. Therefore, MrSHC achieves better clustering accuracy with a better chosen

q = 140 features using rank r = 2.

We further investigate the effect of the rank selection by the dendrograms in

Figure 3.6. Figure 3.6(a) shows the dendrogram generated from MrSHC with q =

140, but r = 1. Figure 3.6(b) shows the dendrogram generated from SHC with

q = 140. Both dendrograms suggest mixed clusters. This confirms that the rank

selection can be crucial for better feature selection and clustering accuracy.
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Figure 3.5: Dendrograms generated by HC, SHC, MrSHC and HC-HMV for
Dettling [12] data (n = 62, p = 4026)

3.5.2 Breast Cancer Data Set in Perou et al. [24]

The data set was first published in Perou et al. [24] and later analyzed in Witten and

Tibshirani [38]. It contains 1753 gene expression levels (features) for 62 samples

(observations) to profile surgical specimens of human breast tumors. Perou et al.

[24] categorized the 62 samples into four groups (clusters): basal-like, Erb-B2,

normal breast-like, and ER+. Perou et al. [24] suggested that the four underlying

clusters could be explained by only 496 of the 1753 features, which was confirmed

by Witten and Tibshirani [38]. Two misclassified samples were identified by Witten
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Figure 3.6: Dendrograms generated by MrSHC (rank 1) and SHC with q =
140 for Dettling [12] data (n = 62, p = 4026)

and Tibshirani [38]. The data set was pre-processed before being published. As

such, there are no outliers in the data set.

Figure 3.7 shows the dendrograms generated from HC, SHC, MrSHC and HC-

HMV. Colors are used to indicate the suggested four tumor groups. HC gives

mixed clusters. SHC achieves better clustering – 5 misclassified samples, with the

automatically chosen q = 100 (similar results – q = 93 features were automatically

chosen and 5 samples are misclassfied – were obtained in Witten and Tibshirani

[38]). MrSHC misclassifies only 2 samples by using the automatically selected

q = 60 and rank r = 1. HC-HMV with q = 60 gives mixed clusters. Although

MrSHC chooses r = 1 over higher ranks, it still provides better feature selection

and more accurate clustering comparing to the other three methods.

3.5.3 Breast Cancer Data Set in van’t Veer et al. [35]

The data set was presented and analyzed in van’t Veer et al. [35]. It consists of 4751

gene expression levels for 77 primary breast tumor samples. A supervised classi-

fication technique was used in van’t Veer et al. [35], revealing that only a subset

of 70 out of the 4751 genes may help discriminating patients that have developed

distant metastasis within five years.
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Figure 3.7: Dendrograms generated by HC, SHC, MrSHC and HC-HMV for
Perou et al. [24] data (n = 62, p = 1753)

Figure 3.8 shows the resulting dendrograms generated from HC, SHC, MrSHC

and HC-HMV. HC misclassifies 6 samples. SHC achieves slightly better accuracy

– 5 misclassified samples, with the automatically chosen q = 340. MrSHC with

r = 2 achieves the same accuracy with less (q = 100) features. HC-HMV with

q = 100 features gives similar accuracy as MrSHC and SHC.
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Figure 3.8: Dendrograms generated by HC, SHC, MrSHC and HC-HMV for
van’t Veer et al. [35]’s data. (n = 77, p = 4751)

3.6 Robustification of MrSHC
In this section, we focus on improving the robustness of MrSHC. We consider

MrSHC to be relatively robust to outliers due to the use of indicator weights for the

selected features – the effect of distortions on the feature weights generated from

SPC is minimized. However, since SPC is not robust to outliers (see Chapter 2 for

more details), we propose to further improve the robustness of MrSHC by using

RSPC-τ instead of SPC in Algorithm 3. The robust version of Algorithm 3 is

presented in Algorithm 7.
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Algorithm 7 Robust feature set selection
1: Input: XXXn×p, q, r, d (default d = 0).
2: Assign λ− = 1 and λ+ =

√
n (λ+ can be set smaller in practice).

3: Repeat Step 4-8.
4: Apply RSPC-τ to XXX with λ = (λ−k + λ

+
k )/2; obtain the first r robust sparse

PCs.
5: q∗ := the number of variables with non-zero loadings in any of the r robust

sparse PCs.
6: Cr := the set of q∗ chosen variables.
7: Break if q−d ≤ q∗ ≤ q+d.
8: If q∗ > q+d, λ+ = λ ∗; if q∗ < q−d, λ− = λ ∗.
9: Output: Cr, q∗.

Replacing Algorithm 3 in place with Algorithm 7 results in a robust version of

MrSHC – Robust-MrSHC. To compare the performance of Robust-MrSHC, Mr-

SHC and SHC, we first revisit the simulation studies in Section 3.4.

We first generate data sets as described in Section 3.4.1. To illustrate the ro-

bustness of Robust-MrSHC, we add outliers in the simulated data set as follows.

For each clusters, randomly select two entries in the noise features and two en-

tries in the clustering features to be replaced by values from N(0,152). The results

obtained from 100 simulation runs are presented in Table 3.5. We can see that

Robust-MrSHC achieves the smallest CER and better RR than SHC.

HC SHC MrSHC
CER q CER RR q CER RR q

Known (q = 50) 0.176 500 0.425 0.299 50 0.021 0.839 50
Unknown q 0.176 500 0.437 0.364 28.1 0.060 0.812 39

Table 3.5: Average CER, RR, and q for different clustering methods.

We then generate data sets as described in Section 3.4.2. Again, for each clus-

ters, we randomly select two entries in the noise features and two entries in the

clustering features and replace them with values drawn from N(0,152). The re-

sults obtained from 100 simulation runs are presented in Table 3.6. We can see that

Robust-MrSHC achieves the smallest CER and better RR than SHC.

Finally, we revisit the microarray examples in Section 3.5 and compare the

performance of HC, SHC, MrSHC and Robust-MrSHC.
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HC SHC MrSHC
CER q CER RR q CER RR q

Known (q = 50) 0.175 500 0.382 0.285 50 0.101 0.737 50
Unknown q 0.175 500 0.385 0.327 41.7 0.123 0.756 44.5

Table 3.6: Average CER, RR, and q for different clustering methods.

The default list of candidate q for SHC, MrSHC and Robust-MrSHC is reduced

to {25,50,75, . . . ,400} from {20,40,60, . . . ,400} to accommodate the increased

computational cost of Robust-MrSHC.

3.6.1 Lymphoma Data Set in Dettling [12]

We revisit the lymphoma data set to show the performance of Robust-MrSHC.

To assess the robustness and performance of different methods in the presence of

outliers, we randomly select five observations and ten features that were not cho-

sen by any of the sparse clustering methods when applied to the clean data. For

each chosen observation, the values of the ten noise features are replaced by val-

ues generated from N(15,1). Since the contaminations are in the noise features,

a robust feature selection procedure will remain unchanged and avoid selecting

those noise features, while a non-robust procedure tends to select those noise fea-

tures due to contamination. We apply HC, SHC, MrSHC and Robust-MrSHC to

the contaminated data set. The dendrograms generated from HC, SHC, MrSHC

and Robust-MrSHC are shown in Figure 3.9. Colors are used to indicate the three

tumor types.

HC only misclassifies two red samples, however, it is affected by outliers in

the noise features and groups the outliers into a standalone cluster. SHC is also

severely affected by the outliers and gives mixed clusters with the automatically

chosen q = 25. The chosen 25 features include almost all the contaminated noise

features which explains the cluster consisting of the outliers. MrSHC chooses

q = 175 and uses rank r = 4, and it generates a cluster of outliers since some con-

taminated noise features are chosen by mistake and as a consequence, the green and

blue clusters are not clearly separated. On the other hand, Robust-MrSHC chooses

q = 250 features with rank r = 4 and it is not affected by the contaminations (the

contaminated noise features are not chosen) while successfully separating the three
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underlying clusters. It is clear that Robust-MrSHC is more robust and outperforms

HC, SHC and MrSHC in this case.

Figure 3.9: Dendrograms generated by HC, MrSHC, Robust-MrSHC and
SHC for contaminated Dettling [12] data (n = 62, p = 4026)

3.6.2 Breast Cancer Data Set in Perou et al. [24]

We revisit the breast cancer data set in Perou et al. [24]. As mentioned in previous

sections, this data set was pre-processed before being published. As such, there are

no outliers in the data set. Again, we contaminate this data set with a few outliers.
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We randomly select five observations and ten features that were not chosen by any

of the sparse clustering methods on the clean data. For each chosen observation,

the values of the ten noise features are replaced by values generated from N(5,1).

Figure 3.10 shows the dendrograms generated from HC, SHC, MrSHC and

Robust-MrSHC. Colors are used to indicate the suggested four tumor groups. HC

gives mixed clusters. SHC automatically chooses q = 50 features, including some

contaminated noise features. Therefore, the outliers form a single cluster and SHC

also has trouble separating the green and blue clusters. MrSHC also chooses q= 50

with rank r = 1. Although it is affected less by the outliers, it still gives mixed clus-

ters in general. Robust-MrSHC automatically chooses q = 300 features with rank

r = 1. It separates the green and blue clusters successfully while group the orange

and red clusters closely together. This is coherent with the findings in Section 2.5.

The dendrogram generated from SHC on the clean data found four main clusters

with two red samples were misclassified as orange. This is counter-intuitive be-

cause the red and orange clusters are otherwise very well separated. The results

from Robust-MrSHC is consistent with those from the FRSHC methods (see Sec-

tion 2.5), which suggests that the red cluster may be further split into two sub-

clusters, one of which is close to the orange cluster. In general, Robust-MrSHC is

affected the least by the outliers comparing to the other three methods.

3.6.3 Breast Cancer Data Set in van’t Veer et al. [35]

As pointed out in Section 2.5, this data set is suspected to contain a mild outlier.

Therefore, we directly apply Robust-MrSHC and present its dendrogram in Fig-

ure 3.11.

Robust-MrSHC only misclassifies 4 samples with q = 25 features and rank

r = 4. As presented in Section 3.5, the numbers of misclassified samples from HC,

SHC and MrSHC are 6, 5 and 5 respectively. Therefore, Robust-MrSHC achieves

better clustering accuracy with a smaller number of features on this data set with a

mild outlier.
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Figure 3.10: Dendrograms generated by HC, MrSHC, Robust-MrSHC and
SHC for contaminated Perou et al. [24] data (n = 62, p = 1753)

3.7 Discussion
In this section, we propose the multi-rank sparse hierarchical clustering (MrSHC),

which automatically selects clustering features with higher rank considerations and

produces the corresponding sparse hierarchical clustering. As demonstrated in sim-

ulation studies and real data examples, MrSHC gives superior feature selection and

clustering performance comparing with the classical hierarchical clustering and the
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Figure 3.11: Dendrograms generated by Robust-MrSHC for van’t Veer et al.
[35]’s data. (n = 77, p = 4751)

sparse hierarchical clustering proposed by Witten and Tibshirani [38]. We also en-

dow MrSHC with the capability of dealing with data contamination and show the

robustness and performance of the resulting Robust-MrSHC with several real data

examples.
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Chapter 4

Regression Phalanxes

4.1 Introduction
Tomal et al. [34] introduced a novel approach for building diverse classification

models, for the ensembling of classification models in the context of rare-class de-

tection in two-class classification problems. They proposed an algorithm to divide

the often large number of features (or explanatory variables) into subsets adaptively

and build a base classifier (e.g. Random Forests) on each subset. The various clas-

sification models are then ensembled to produce one model, which ranks the new

samples by their probabilities of belonging to the rare class of interest. The essence

of the algorithm is to automatically choose the subset groups such that variables in

the same group work well together for classification tasks; such groups are called

phalanxes.

In this chapter, we propose a different class of phalanxes for application in

general regression tasks. We define a “Regression Phalanx” – a subset of features

that work well together for regression (or prediction). We then propose a novel

algorithm, with hierarchical clustering of features at its core, that automatically

builds Regression Phalanxes from high-dimensional data sets and builds a regres-

sion model for each phalanx for further ensembling.

In principle, any given regression method can be used as the base regression

model. The goal is to improve the prediction accuracy of the base method. In

this chapter, we mainly focus on two well-established regression models: Lasso
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[32] and Random Forests [6]. These two methods are known to have superior per-

formance in various regression and prediction applications. For each application

in this chapter, we first compare the performances of Lasso and Random Forests

(RF). The better performing method between the two is then chosen as the base

regression model for building Regression Phalanxes.

The idea of ensembling Regression Phalanxes is promising because each Re-

gression Phalanx is relatively low-dimensional. Thus, each variable makes a more

significant contribution in the fitted model. Compared to training a full model

where variables compete with each other in contributing to the final fit, more use-

ful variables are likely to contribute to the ensembled regression model.

Our proposed phalanx-forming procedure resembles a hierarchical clustering

of features (instead of samples), where “similarity” between a pair of features (or

subsets of features) is defined by how well they work together in the same regres-

sion or prediction model. With properly defined similarity measures, features can

be then hierarchically merged into different phalanxes.

The rest of chapter is organized as follows. Section 2 presents the details of

our proposed algorithm for building Regression Phalanxes. Section 3 presents a

simple illustrative example, which forms the basis for simulation studies in Section

4. In Section 5, we demonstrate the performance of Regression Phalanxes on four

additional real data sets. Finally, we conclude with some remarks and discussion

of future work.

4.2 Phalanx Formation Algorithm
In this section, the details of the Regression Phalanx formation algorithm are pre-

sented. The procedure is an agglomerative approach to build Regression Phalanxes,

which is, in essence, a hierarchical clustering of variables. There are four key steps:

1. Initial grouping. Form d initial groups from the original D variables (d ≤D).

2. Screening of initial groups. Screen out the underperforming initial groups to

obtain s≤ d groups.

3. Hierarchical merging into phalanxes. Hierarchically merge the s screened

groups into e≤ s candidate phalanxes.
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4. Screening of candidate phalanxes. Screen out the underperforming candidate

phalanxes to obtain h≤ e final phalanxes.

A sketch of the procedure is presented in Figure 4.1. Each step of the phalanx-

forming procedure is explained in more details in the following sections.

Figure 4.1: A sketch of the phalanx-formation procedure. D variables are
partitioned into d initial groups, screened down to s groups, combined
into e candidate phalanxes, and then screened down to h phalanxes in
the final ensemble (D≥ d ≥ s≥ e≥ h).

4.2.1 Initial Grouping

This is an optional step. If this step is omitted, each initial group contains a single

individual feature and the number of initial groups equals the number of features.

As a result, the following steps in the phalanx-formation steps become more com-

putational intensive since the time complexity is quadratic in the number of groups.

Thus, it is recommended that the features be grouped into fewer initial groups if

they lend themselves to natural grouping (e.g. initial groups can be identified by

62



features with similar names). Also, if an initial group only contains a binary fea-

ture, its corresponding model is likely to be weak since it can only predict two

possible values. On the other hand, an initial group with k binary features can pro-

duce up to 2k different predictions. Thus, we recommend the grouping of the binary

features into initial groups. If the data set contains a large number of features but

no obvious hints for natural grouping, we can still use hierarchical clustering to

obtain the initial groups. For binary features, Tomal et al. [34] proposed to use the

Jaccard dissimilarity index, defined between binary features xxxi and xxx j as

dJ(xxxi,xxx j) = 1−
xxxi∩ xxx j

xxxi∪ xxx j
.

Here xxxi∩ xxx j is the number of observations where the corresponding pair of entries

of xxxi and xxx j both take the value 1, and xxxi∪ xxx j is the number of observations where

at least one of the corresponding entries of xxxi or xxx j take the value 1. It is easy to see

that 0≤ dJ(xxxi,xxx j)≤ 1. For continuous features (or a mix of binary and continuous

features), we propose to use the “1-Abs(Correlation)” dissimilarity measure. That

is, the dissimilarity between variable xi and x j is calculated as

dC(xxxi,xxx j) = 1−|corr(xxxi,xxx j)|.

Notice that the data set needs to be transposed before clustering so that the

features are clustered instead of the observations.

This step partitions the original D features into d≤D initial groups g1,g2, . . . ,gd .

4.2.2 Screening of Initial Groups

High-dimensional data are likely to contain noise features which contribute little

or even negatively to the prediction task. In such cases, initial groups need to be

screened so that noisy initial groups do not participate in the following steps. We

first introduce some notation and then we present two tests for the screening of the

initial groups.
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Notation

We first define some notations to be used in the screening procedure. Denote by

c the assessment criterion of a given regression task. Typically c is defined as the

mean squared error (MSE) of prediction

c =
1
N

N

∑
i=1

(yi− ŷi)
2, (4.1)

where yyy = (y1, . . . ,yN)
T and ŷyy = (ŷ1, . . . , ŷN)

T are the observed values and their

predictions, respectively, of the response at N test points. The data available for

the application in Section 4.5.2 allow separate test data, but usually the test points

will be generated by cross validation or related methods using the training data.

To assess accuracy based on training data only, different strategies are used for

the two candidate regression methods, Lasso and RF.

• Lasso.

In Lasso, the predictions are produced by K-fold Cross-Validation (we choose

K = 5 through out the chapter). More specifically, the data set XXX and the cor-

responding yyy are randomly grouped into K folds (XXX (1),yyy(1)), . . ., (XXX (K),yyy(K))

with n(1), . . . ,n(K) observations respectively (∑K
i=1 n(i) = n). Then the predic-

tions for yyy(i), namely ŷyy(i) = (ŷ(i)1 , . . . , ŷ(i)n(i))
T is obtained by

ŷ(i)j = f̂ff
(−i)

(xxx(i)j ), j = 1, . . . ,n(i)

where f̂ff
(−i)

(·) is the Lasso model fit from the (K− 1) folds other than the

i-th fold, and xxx(i)j is the corresponding feature vector of y(i)j . We denote the

assessment criterion c for Lasso as the Cross-Validation MSE (CV-MSE).

• Random Forests (RF).

In RF, ŷyy can be obtained from the out-of-bag (OOB) predictions. The pre-

diction ŷOOB
i is obtained from only the trained trees that do not have yi in

their bootstrapped sample, hence, the prediction is called the out-of-bag pre-

diction. We denote the assessment criterion c for RF as the out-of-bag MSE

(OOB-MSE).
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We further denote ŷyy(gi) as the vector of predictions from the base regression

model (e.g. Lasso or RF) using only the variables in gi. Let ci = c(ŷyy(gi)) denote

the assessment measure. Denote by ŷyy(gi∪g j) the predictions when the model is fit

using the variables in gi and g j (i 6= j), and denote

ci j = c(ŷyy(gi∪g j)) (4.2)

as the resulting performance. Similarly, let

c̄i j = c((ŷyy(gi)+ ŷyy(g j))/2) (4.3)

be the performance of the ensemble of the predictions from gi and g j.

Tests for Screening Initial Groups

A group survives the screening if it passes the two tests described as follows. A

group gi passes the first test if its own performance is “strong”, i.e. high prediction

accuracy. A group survives the second test if it produces “significant combin-

ing improvement”, i.e., after combining with another group g j, the model trained

on the combined variables (from gi and g j) produces significantly better accuracy

comparing to that from g j.

We use a null permutation distribution to establish the baseline for strong indi-

vidual performance and significant combining improvement. Denote ỹyy as the vec-

tor of permuted response values in which the original vector of response variable

values yyy is randomly permuted relative to the features. Then the counterparts of ci

and ci j are calculated with ỹyy as the response and denoted as c̃i and c̃i j respectively.

Denote the α quantile of c̃i (i = 1, . . . ,d) as p̃α and the 1−α/(d− 1) quantile

of c̃i− c̃i j (i = 1, . . . ,d; j = 1, . . . ,d) by q̃1−α/(d−1). Then a group gi survives the

screening if it passes both the following two tests:

1. gi is strong itself:

ci ≤ p̃α . (4.4)

The rationale is that the strength of an individual initial group should be com-

petitive with the α quantile of the strengths of initial groups with a randomly
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permuted response.

2. gi improves the strength of any other group g j when gi and g j are combined

to build a regressor:

q̃1−α/(d−1) ≤ c j− ci j (4.5)

The rationale is that the improvement from combining gi and g j should be

competitive with the 1− α/(d − 1) quantile of combining improvements

of initial groups with a randomly permuted response. The quantile is 1−
α/(d−1) to adjust for the (d−1) tests for each initial group.

After the screening of initial groups, a list of surviving groups is relabeled as

{G1,G2, . . . ,Gs} for the next step.

4.2.3 Hierarchical Formation of Candidate Phalanxes

We use simple greedy hierarchical clustering techniques to merge Groups {G1,G2,

. . ., Gs} into phalanxes, which proves to be effective in all of our applications. Each

iteration merges the pair of groups Gi and G j that minimizes

mi j = ci j/c̄i j. (4.6)

Here mi j < 1 indicates that combining Gi and G j to build a single model provides

more strength than ensembling two models built separately on Gi and G j. The

number of groups, s, decreases by 1 after each merge. The merging process stops

when mi j ≥ 1 for all i, j, indicating that further merging damages the performance

and the resulting groups, i.e. e candidate phalanxes PX1,PX2, . . . ,PXe, should be

now considered for ensembling.

4.2.4 Screening of Candidate Phalanxes

Searching for the best subset of candidate phalanxes for further ensembling is a

combinatorial problem. In order to reduce the computational cost, we establish the

search path P in a forward selection fashion. We initialize P with the candidate

phalanx with the smallest value of the criterion c. At each stage all the remaining

candidate phalanxes will be considered for ensembling with phalanxes in P one at
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a time, and the one with the best ensembling performance with P will be added

to P. The ensembling performance c̄(1,2,...,h) is calculated as follows. The predic-

tions of yi from PX1, . . . ,PXh are denoted by ŷi;(PX1), . . . , ŷi;(PXh), and the ensembled

prediction for yi is calculated as

ŷi;(1,...,h) =
h

∑
j=1

ŷi;(PX j)/h (4.7)

The ensemble’s performance is then calculated from the ensembled predictions.

For ease of description, we assume the order of entry to be PX1,PX2, . . . ,PXk,

and the corresponding ensembling performance as each candidate is added to be

cPX{1} ,cPX{1,2} , . . . , cPX{1,...,k} respectively. Then the set of candidate phalanxes cor-

responding to the best ensembling performance, say cPX1,...,h , will be selected, and

the remaining candidates are screened out.

After the screening of weak phalanxes, the surviving h phalanxes are the final

phalanxes, and they will be ensembled in the last step.

4.2.5 Ensembling of Regression Phalanxes

We fit a model for each of the h phalanxes of variables, and obtain predictions

from them. (For RF, we can increase the number of trees and get better OOB pre-

dictions as final predictions.) For a test point, the h predictions from the ensemble

of regression phalanxes (ERPX) are averaged to give the final prediction.

4.3 A Simple Illustrative Example: Octane
The octane data set [15] consists of NIR absorbance spectra over 226 wavelengths

ranging from 1102 nm to 1552 nm with measurements every two nanometers. For

each of the 39 production gasoline samples the octane number was measured.

It is known that the octane data set contains six outliers (cases 25, 26, 36–39)

to which alcohol was added. We omit those outliers to obtain 33 clean samples.

We apply Lasso and RF separately on the data set, then we choose Lasso as the

base regression model since it produces better results: the MSE of Lasso is about

0.085 compared with about 0.27 for RF.

The R package “glmnet” [16] is used for fitting Lasso models and the penalty
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parameter λ is chosen by using “cv.glmnet” with method “lambda.1se”. Since

cross validation is used for choosing the tuning parameter λ for Lasso, the Phalanx

formation procedure has inherited randomness. Therefore, we apply both ERPX

and the original Lasso to the Octane data set three times each. For ERPX, we

skip the initial grouping step since the number of features is relatively small and

the features are all continuous. Different numbers of surviving groups and final

phalanxes are obtained. The accuracies of both methods are assessed by CV-MSE.

For each run, results for mean CV-MSE over 20 CV repetitions are presented in

Table 4.1.

Number of
Groups Phalanxes CV-MSE

Run Variables Initial Screened Candidate Screened ERPX Lasso
1 226 226 190 7 2 0.051 0.084
2 226 226 195 8 5 0.049 0.086
3 226 226 192 9 2 0.044 0.083

Table 4.1: Number of variables, initial groups, screened groups, candidate
phalanxes, screened phalanxes and prediction accuracies for the octane
data set.

We can see that the CV-MSE values from ERPX are much smaller than those

obtained from the original Lasso models, which confirms that ERPX can boost the

performance of the base regression model.

In the following section, we generate synthetic data sets based on the octane

data. We simulate data favoring Lasso and RF respectively as the base regression

model and show that we are able to improve the performance over the base regres-

sion model using the proposed ERPX.

4.4 Simulation Studies
In this section, we present several numerical experiments to demonstrate the per-

formance of the proposed ERPX. We simulate data by first emulating the feature

structure of the octane data. Then we generate response data as a function of the

features in two different ways, to represent linear and nonlinear relationships with

the features, respectively.
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The data sets XXX (n×p) are generated based on the octane data as follows.

• XXX = (xxx1, . . . ,xxxp), xxx j = (x1 j,x2 j, . . . ,xn j)
T ( j = 1, . . . , p), where n = 33, p =

226 as in the octane data set.

• XXX is sampled from multivariate normal distribution N(µµµ,ΣΣΣ), where µµµ con-

sists of p column means of the octane data.

• The covariance matrix ΣΣΣ is equal to the sample covariance matrix as observed

or from a perturbation of the data. Specifically, we add different levels of

noise into the octane data, and for each noise level we take the resulting

sample covariance matrix for ΣΣΣ. We consider three noise levels:

– No noise: ΣΣΣ is the sample covariance matrix of the octane data.

– Medium noise: Random samples from N(0,3σ) are added to each el-

ement of the octane data, where σ is the minimum feature standard

deviation among all the 226 features of the octane data. ΣΣΣ is then the

sample covariance matrix of the modified octane data.

– High noise: Random samples from N(0,5σ) are added to each ele-

ment of the octane data. ΣΣΣ is then the sample covariance matrix of the

modified octane data.

For each noise level we simulate the feature set XXX 100 times. The strategy for

generating yyy depends on the choice of the base regression model.

4.4.1 Lasso as Base Regression Model

To favor Lasso, for each of the 100 simulated XXX , we generate the response variable

yyy in a linear pattern as follows.

• Randomly select 10 features xxxk1 , . . . ,xxxk10 from the columns of XXX .

• For each feature xxxk j ( j = 1, . . . ,10), generate the corresponding coefficient

β j from a Uniform distribution U(0,1).

• Generate yyyinit as yyyinit = ∑
10
j=1 β jxxxk j .
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• Generate yyy as yyy=min(yyyoct)+a ·yyyinit +εεε , where a is a scale constant (max(yyyoct)−
min(yyyoct))/(max(yyyinit)−min(yyyinit)), yyyoct is the original response variable

from the octane data set, and εεε contains noises generated from N(0,1).

For each set of simulated data (XXX ,yyy), we apply ERPX with base regression models

Lasso and RF respectively. Since the response variable is generated as a linear

combination of the predictors, Lasso is expected to perform at least as good as RF.

The performance is measured by 5-fold CV-MSE and OOB-MSE for Lasso and

RF respectively.

Average number of
Groups MSE

Base Noise Variables Initial Screened Phalanxes ERPX Base

Lasso
No 226 226 172.32 6.01 0.96 1.43

Medium 226 226 138.32 3.56 0.95 1.58
High 226 226 88.75 2.78 1.07 1.71

RF
No 226 226 99.58 2.59 0.98 1.32

Medium 226 226 62.93 2.67 0.96 1.40
High 226 226 33.35 2.65 1.02 1.56

Table 4.2: Number of variables, initial groups, screened groups, candidate
phalanxes, screened phalanxes and prediction accuracies of base regres-
sion models and ERPX for different noise levels when calculating sample
covariance matrix ΣΣΣ.

We can see from Table 4.2, for all the simulation settings, regardless of the

choice of the base regression model, ERPX produces more accurate predictions

than the corresponding base regression model with large relative margins. Some-

what surprisingly, RF slightly outperforms Lasso in around 70% of the 300 simu-

lated data sets (and also on average). This could be caused by the use of different

metrics, OOB-MSE versus CV-MSE, when the sample size is small.

4.4.2 Random Forests as Base Regression Model

To generate the response variable yyy from highly nonlinear relationships favoring

RF, we deploy the following strategy.

• Randomly select 10 features xxxk1 , . . . ,xxxk10 from the columns of XXX .
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• Generate two sets of coefficients βββ 1 =(β11, . . . ,β1,10)
T and βββ 2 =(β21, . . . ,β2,10)

T

from a Uniform distribution U(0,1).

• Generate

yyyinit
i =

∑
10
j=1 β1 jxxxk j xik1 < median(xxxk1)

∑
10
j=1 β2 jxxxk j xik1 ≥median(xxxk1)

Since the initial values in yyyinit are generated from a mixture of two linear

patterns, they cannot be easily modelled by linear methods such as Lasso.

• Generate yyy = min(yyyoct)+ a · yyyinit + εεε , where a = (max(yyyoct)−min(yyyoct))/

(max(yyyinit)−min(yyyinit)), a scale constant, and εεε contains noises generated

from N(0,1).

For each set of simulated data (XXX ,yyy), we again apply ERPX with either Lasso or

RF as the base regression model. In this case, we expect RF to outperform Lasso.

We can see from Table 4.2, for all the simulation settings, RF outperforms Lasso

as anticipated given the simulation set up, and ERPX improves upon both base

regression models by large relative margins.

Average number of
Groups MSE

Base Noise Variables Initial Screened Phalanxes ERPX Base

Lasso
No 226 226 150.10 5.29 2.75 3.83

Medium 226 226 92.79 2.65 2.67 3.80
High 226 226 48.83 2.48 2.52 3.71

RF
No 226 226 72.83 1.90 1.59 2.15

Medium 226 226 37.52 2.04 1.66 2.49
High 226 226 16.43 1.86 1.57 2.51

Table 4.3: Number of variables, initial groups, screened groups, candidate
phalanxes, screened phalanxes and prediction accuracies of base regres-
sion models and ERPX for different noise levels when calculating sample
covariance matrix ΣΣΣ.

4.5 Additional Real Data Examples
The prediction performance of ERPX is illustrated on the following data sets.
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4.5.1 AID364 Data Set

Assay AID364 is a cytotoxicity assay conducted by the Scripps Research Insti-

tute Molecular Screening Center. There are 3,286 compounds used in our study,

with their inhibition percentages recorded. Visit http://pubchem.ncbi.nlm.nih.gov/

assay/assay.cgi?aid=364 for details. Because toxic reactions can occur in many

different ways, this assay is expected to present modelling challenges. We con-

sider five sets of descriptors for the assay, to make 5 data sets. The descriptor

sets are the following: atom pairs (AP), with 380 variables; Burden numbers [BN,

8], with 24 variables; Carhart atom pairs [CAP, 9], with 1585 variables; fragment

pairs (FP), with 580 variables; and pharmacophores fingerprints (PH), with 120

variables. The Burden numbers are continuous descriptors, and the other four are

bit strings where each bit is set to “1” when a certain feature is present and “0”

when it is not. See Liu et al. [21] and Hughes-Oliver et al. [18] for further expla-

nation of the molecular properties captured by the descriptor sets.

The initial groups for the descriptor sets are determined by their features names.

For example, related features for FP present similar names such as AR 01 AR,

AR 02 AR, . . ., AR 07 AR, and such features will form the initial groups. We

perform our proposed ERPX on each of the five descriptor sets. The base regression

model is chosen to be RF due to its superior performance over Lasso in this case

(see Table A.1 in Appendix).

ERPX and the original RF are run on each of the five descriptor sets as well as

the five descriptor sets combined as a whole set, three times each. The results are

presented in Table 4.4. As we can see, ERPX provides superior prediction accuracy

over the original RF, and the margin gets bigger with all five descriptor sets merged

together. This is because ERPX can exploit the “richness” of features to improve

prediction accuracy.

Due to the naming schema of the features, the descriptor sets lend themselves

well to obtaining initial groups. However, we show that ERPX still produces com-

parable prediction accuracies with initial groups obtained from the hierarchical

clustering approach described in Section 2.1. We choose the same number of ini-

tial groups as shown in Table 4.4 to facilitate comparison. Table 4.5 presents the

new results for descriptor sets other than BN (since no initial grouping is needed).
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Set
Number of

Groups Phalanxes OOB MSE
Run Variables Initial Screened Candidate Screened ERPX RF

BN
1 24 24 15 4 4 122.41 126.70
2 24 24 14 5 5 123.81 126.97
3 24 24 15 5 5 121.64 127.33

PH
1 120 21 15 3 2 131.59 135.70
2 120 21 16 2 2 131.50 134.62
3 120 21 17 2 2 131.67 135.57

FP
1 580 105 64 9 2 120.03 125.53
2 580 105 52 9 3 120.26 126.15
3 580 105 44 6 2 121.80 127.09

AP
1 380 78 35 4 3 124.40 132.07
2 380 78 33 4 2 124.31 131.73
3 380 78 31 5 3 124.92 131.69

CAP
1 1585 666 93 11 2 116.04 131.12
2 1585 666 73 9 2 118.86 130.74
3 1585 666 95 10 3 116.40 131.25

ALL5
1 2689 895 159 21 6 112.51 125.87
2 2689 895 208 20 5 113.69 124.78
3 2689 895 204 18 4 112.80 125.13

Table 4.4: Number of variables, initial groups, screened groups, candidate
phalanxes, screened phalanxes and prediction accuracies for the AID 364
assay and five descriptor sets. Three runs of ERPX are presented.

As we can see, the prediction accuracies are comparable to those in Table 4.4 where

the initial grouping is done according to feature names.

4.5.2 CLM Data Set

The community land model with carbon/nitrogen biogeochemistry (CLM-CN) is

a state-of-the-art land surface model to make future climate projections. Sargsyan

et al. [28] performed simulations using CLM-CN for a single plant functional type:

temperate evergreen needleleaf forest. The outputs were 100-year-later projected

values of several quantities of interest (QoIs). The simulator was run 10,000 times

for different settings of 79 input parameters, out of which 9983 runs succeeded.

We make predictions for two QoIs, leaf area index (LAI) and total vegetation

carbon (TOTVEGC), from the 79 input variables. The two QoIs are log scaled

since their sample distributions are highly right-skewed. The 9983 runs contain

38% and 0.07% of zeros, respectively. Therefore, we add constants 10−10 and

10−13 to the two QoIs respectively before we apply the log scaling (these values

are roughly equal to the minima of the respective non-zero values). Since the cli-
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Set
Number of

Groups Phalanxes OOB MSE
Run Variables Initial Screened Candidate Screened ERPX RF

PH
1 120 21 14 3 2 132.06 135.01
2 120 21 15 3 2 130.68 134.21
3 120 21 15 3 2 131.47 134.78

FP
1 580 105 47 6 3 120.85 125.73
2 580 105 44 9 2 122.85 125.53
3 580 105 44 10 3 123.87 126.48

AP
1 380 78 20 4 2 125.23 132.35
2 380 78 27 5 2 124.02 131.27
3 380 78 20 5 2 123.95 132.77

CAP
1 1585 666 57 7 3 120.76 129.82
2 1585 666 74 10 3 118.26 131.84
3 1585 666 58 7 5 121.35 131.16

ALL5
1 2689 895 143 12 4 114.15 125.00
2 2689 895 89 11 6 115.46 123.67
3 2689 895 74 12 5 116.44 125.35

Table 4.5: Number of variables, initial groups, screened groups, candidate
phalanxes, screened phalanxes and prediction accuracies for the AID 364
assay and four descriptor sets, with initial groups obtained from the hier-
archical clustering. Three runs of ERPX are presented.

mate projections are affected by a number of uncertainties in CLM-CN, predicting

the LAI and TOTVEGC is a challenging task. We choose RF as the base regression

model due to its superior performance versus Lasso in this example (see Table A.2

in Appendix). We apply both ERPX and the original RF to demonstrate their per-

formance. For ERPX, we skip the initial grouping step since there are only 79

variables.

The 9983 observations are randomly split into training and testing sets with

5000 and 4983 observations respectively. We repeat the random splitting 20 times

to obtain 20 different pairs of training and testing sets. For each random split,

both ERPX and RF are trained on the randomly sampled training set and applied

to the corresponding test set. Therefore, we can generate boxplots of both the 20

OOB-MSEs from the training sets and the 20 test MSEs from the testing sets. The

boxplots are shown in Figure 4.2. It is clear that ERPX provides more accurate

predictions than RF, for both TOTVECG and LAI as response variables.

We also present the detailed results from the first three splits in Table 4.6. Since

the number of phalanxes is always one in all the runs, the mainly difference be-

tween ERPX and RF is the screening of initial groups. By screening out most of
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Figure 4.2: Boxplots of OOB MSE (from 5000 randomly selected training
samples) and test errors (from 4983 corresponding testing samples) ob-
tained from 20 random splits of the data into training and testing sets

the less important initial groups, ERPX is able to produce more accurate prediction

than RF with only a small number of “strong” initial groups.

QoI
Number of

Groups Phalanxes OOB MSE
Run Variables Initial Screened Candidate Screened ERPX RF

TOTVEGC
1 79 79 16 1 1 3.47 3.66
2 79 79 14 1 1 3.57 3.67
3 79 79 14 1 1 3.10 3.62

LAI
1 79 79 18 1 1 10.34 12.63
2 79 79 20 1 1 11.02 12.94
3 79 79 14 1 1 11.40 12.89

Table 4.6: Number of variables, initial groups, screened groups, candidate
phalanxes, screened phalanxes and prediction accuracies for TOTVEGC
and LAI from CLM-CN simulations. Three experiments based on ran-
dom splitting of training and testing sets are presents.

4.5.3 Gene Expression Data Set

Scheetz et al. [29] conducted a study of mammalian eye diseases where the gene ex-
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pressions of the eye tissues from 120 twelve-week-old male F2 rats were recorded.

A gene coded as TRIM32 is of particular interest here since it is responsible for

causing Bardet-Biedl syndrome.

According to Scheetz et al. [29], only 18976 probe sets exhibited sufficient sig-

nal for reliable analysis and at least 2-fold variation in expressions. The intensity

values of these genes are evaluated on the logarithm scale and normalized using

the method in Bolstad et al. [4]. It is believed from previous studies that TRIM32

is only linked to a small number of genes, so following Scheetz et al. [29] we con-

centrate mainly on the top 5000 genes with the highest marginal sample variance.

Again, we choose RF (MSE around 0.0128) as the base regression model over

lasso (MSE around 0.0131). We apply ERPX and the original RF to this data set

three times each. The results are presented in Table 4.7. For ERPX, we skip the

initial grouping step.

Number of
Groups Phalanxes OOB MSE

Run Variables Initial Screened Candidate Screened ERPX RF
1 5000 5000 659 4 2 0.0112 0.0130
2 5000 5000 578 4 3 0.0114 0.0125
3 5000 5000 513 5 4 0.0110 0.0128

Table 4.7: Number of variables, initial groups, screened groups, candidate
phalanxes, screened phalanxes and prediction accuracies for the gene ex-
pression data set.

It is clear that ERPX is providing more accurate predictions than RF for this

data set.

4.5.4 Glass Data Set

The glass data set [20] was obtained from an electron probe X-ray microanalysis

(EPXMA) of archaeological glass samples. A total of 180 glass samples were

analyzed and each glass sample has a spectrum with 640 wavelengths. The goal is

to predict the concentrations of several major constituents of glass, namely, Na2O,

SiO2, K2O and CaO, from the spectrum. For different responses, the choice of

the base regression model varies, since neither RF nor Lasso performs uniformly

better accross the response variables. We apply ERPX and the corresponding base
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regression model to each of the six responses three times each. The results are

presented in Table 4.8. As we can see, ERPX improves the prediction accuracy of

the corresponding base regression method.

Number of
Groups Phalanxes MSE

Base Run Variables Initial Screened Candidate Screened ERPX Base

Na2O RF
1 640 640 224 3 3 0.78 0.94
2 640 640 247 2 2 0.86 0.92
3 640 640 245 2 2 0.85 0.96

SiO2 RF
1 640 640 86 1 1 0.98 1.23
2 640 640 86 2 2 0.98 1.26
3 640 640 89 1 1 0.97 1.22

K2O Lasso
1 640 640 309 1 1 0.094 0.100
2 640 640 425 1 1 0.093 0.093
3 640 640 257 1 1 0.096 0.096

CaO Lasso
1 640 640 302 1 1 0.109 0.111
2 640 640 201 1 1 0.109 0.111
3 640 640 265 1 1 0.111 0.112

Table 4.8: Number of variables, base regression model, initial groups,
screened groups, candidate phalanxes, screened phalanxes and prediction
accuracies (OOB-MSE for RF as base regression model, 5-fold CV-MSE
for Lasso as base regression model) for four responses of the glass data
set.

4.6 Conclusion
In this chapter, we propose a novel framework called ensemble of Regression Pha-

lanxes (ERPX). We propose to divide a often large number of features into subsets

called Regression Phalanxes. Separate predictive models are built using features in

each Regression Phalanx and they are further ensembled.

The proposed approach is widely applicable. We have demonstrated it on a va-

riety of applications spanning chemistry, drug discovery, climate-change ecology,

and gene expression. The simulated examples and real applications demonstrate

that ERPX can take advantage of the richness of the features and produce gains in

prediction accuracy over effective base regression model such as Lasso and RF.
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Chapter 5

Conclusion and Future Work

5.1 Summary
In this thesis, we focus on two use cases of hierarchical clustering – clustering

observations for exploratory analysis and clustering features for adaptive feature

grouping and ensembling.

Hierarchical clustering is widely used to cluster observations for exploratory

analysis. Although hierarchical clustering is a well-established technique for this

task, it may yield unsatisfactory clustering accuracy and interpretation in high-

dimensional settings. We point out two main issues that may jeopardize the perfor-

mance of the traditional hierarchical clustering – noise features and data contami-

nations. Noise features in high-dimensional data may introduce undesired pertur-

bations that cover the true underlying clusters, while data contaminations such as

outliers may deteriorate the feature selection quality.

Witten and Tibshirani [38] proposed a hierarchical clustering framework called

Sparse Hierarchical Clustering (SHC) which adaptively chooses the important fea-

tures for clustering from the noise features. However, its performance deteriorates

significantly under data contaminations. Therefore, we propose a novel frame-

work called Robust Sparse Hierarchical Clustering (RSHC) which handles noise

features and data contaminations simultaneously. In RSHC, the important features

are chosen using a novel sparse principal component analysis called Robust Sparse

Principal Component with τ estimator (RSPC-τ). Using τ-estimator in place of the
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non-robust cost function in the PCA optimization problem leads to a robust feature

selection procedure. The features are selected if they correspond to non-zero load-

ings in the Robust Sparse PC obtained from applying RSPC-τ to the original data.

We show that using the unweighted features, we can build desirable dendrograms

even under data contaminations in both noise and important features. We also pro-

pose a way of automatically choosing the number of important features to select.

Through extensive simulations and real data examples, we show that the proposed

RSHC outperforms both the traditional hierarchical clustering as well as SHC in

both clustering accuracy and interpretability.

However, as we further study the performance of RSHC, we notice that there

are still room for improvements. In high-dimensional data, the important features

that separate the underlying clusters may exhibit a complex structure. We show that

RSHC and SHC are sometimes inefficient when selecting features with complex

structures. Therefore, we propose another framework called Multi-rank Sparse Hi-

erarchical Clustering (MrSHC) that conducts robust feature selection for hierarchi-

cal clustering, even if the features have complex structures. MrSHC incorporates

different rank considerations in the feature selection process. Instead of choos-

ing features based on one SPC, MrSHC considers features with non-zero loadings

in multiple SPC generated from Sparse Principal Component (or RSPC-τ for bet-

ter robustness). We also propose algorithms to automatically choose the number

of rank and the number of important features. Using simulated and real data ex-

amples, we show that MrSHC and its robust version Robust-MrSHC yield better

clustering accuracy and interpretability in high-dimensional settings even when the

data is contaminated and of complex structure.

Using hierarchical clustering to cluster features for adaptive feature grouping

and ensembling is a relatively new concept. It is first introduced in the context of

rare-class classification problems by Tomal et al. [34]. We focus on regression tasks

and propose a general ensemble framework called Regression Phalanxes. We form

Regression Phalanxes by adaptively selecting subsets of features. Features in one

Regression Phalanx work well together as predictors in a pre-defined regression

procedure. Models built on different Regression Phalanxes are then ensembled to

form a final regression model. We show that via simulation studies and real data

examples, Regression Phalanxes can further boost the performance of a reasonable
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regression model such as Lasso or Random Forests.

5.2 Future Work

5.2.1 Clustering Observations

For the purpose of clustering observations, the proposed RSHC and MrSHC can

handle noise features and outliers simultaneously. Future work is still needed to

address the following issues.

Missing Values
It is likely that there are missing values in the high-dimensional data. Neither

RSHC nor MrSHC is able to handle missing values. We would like to endow

our proposed frameworks with automatic imputation mechanisms. A potential ap-

proach would be replacing the τ estimator with a robust estimator that can handle

missing values in RSPC-τ . The new RSPC method will be able to handle both

outliers and missing values in the feature selection procedure. After we obtain the

robust sparse PCs, we can then impute the missing values according to the low-rank

approximations. The imputed data will be further used for hierarchical clustering.

Parallel Computing
The computational cost of MrSHC is relatively high. Fortunately, the feature and

rank selection procedure is embarrassingly parallel. Therefore, we can make Mr-

SHC scalable by paralleling computing. MrSHC is currently implemented in R,

therefore, we plan to investigate packages such as snow or foreach. With a suf-

ficient parallel computing package, the computational time needed for MrSHC

would be reduced significantly.

Normalization of High-dimensional Data
All the real data examples used in this thesis are pre-normalized using subject-

area knowledge before published publicly. However, we would like to extend our

frameworks to data sets without pre-normalization. A natural way of normalizing

the data is to standardize the features with their corresponding mean and standard

deviation. Although this approach can eliminate the effect of measurement units

(e.g. meters, milli-meters, etc), it may result in significantly deteriorated cluster-

ing accuracy since it may potentially downscale the effect (i.e. variance) of the
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important features that contribute significantly to the separation of clusters. There-

fore, we would like to explore other ways of normalization such that the resulting

clustering accuracy and interpretability are satisfactory.

5.2.2 Regression Phalanxes

The proposed Regression Phalanxes are ensembled through unweighted average of

their predictions. We can potentially increase the prediction accuracy of Regres-

sion Phalanxes by using weighted ensembling methods, where the weights for the

phalanxes are chosen in an adaptive fashion according to their prediction accura-

cies. Instead of just considering the overall prediction accuracy, we may change

the goal of Regression Phalanxes to ranking the predictions. For example, chemists

may be interested in ranking the activity of the compounds. We will need to use

objective functions such as hit rate instead of mean squared errors. We may also

consider other types of base regression models other than Lasso and Random For-

est to explore whether the boost in performance is model-dependent, e.g. tree-based

methods tend to enjoy a larger boost in performance than linear methods. We also

plan to investigate a parallel computing paradigm for the hierarchical clustering

phase of Regression Phalanxes. There are very few developments around parallel

computing strategy for hierarchical clustering, which I think could be an important

topic to work on.
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Appendix A

Supporting Materials

Algorithm to Compute RSPC-τ
Following the notations introduced in Section 2.3.1, we present an iterative

approximation approach for computing RSPC-τ . Recall that the objective function

for RSPC-τ is (2.3):

min
aaa,bbb,µµµ

{
p

∑
j=1

σ̂
2
j +λ ||bbb||1

}
, subject to ||bbb||22 = 1,

where λ is a tuning parameter that controls the sparseness of the feature weights,

bbb.

Since τ-estimator of scale is used for σ̂ j for j = 1, ..., p, we replace the notation

σ̂ j by τ̂ j and re-write (2.3) as

min
aaa,bbb,µµµ

{
p

∑
j=1

τ̂
2
j +λ ||bbb||1

}
, subject to ||bbb||22 = 1, (A.1)

Given aaa,bbb and µµµ , let σ̂2
j be the M-estimate of scale [26] based on loss function

ρc1 , which satisfies
1
n

n

∑
i=1

ρc1

(
ri j(aaa,bbb,µµµ)

σ̂ j

)
= b1. (A.2)
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Then the τ-scale τ̂ j = τ̂ j(aaa,bbb,µµµ) is defined by

τ̂
2
j =

σ̂2
j

b2
· 1

n

n

∑
i=1

ρc2

(
ri j(aaa,bbb,µµµ)

σ̂ j

)
, (A.3)

with where ρc1(t) = ρ(t/c1), ρc2(t) = ρ(t/c2) are assumed to be symmetric, con-

tinuously differentiable, bounded, strictly increasing on [0,c j] and constant on

[c j,∞), with 0 < c j < ∞, j = 1,2. Here we consider Yohai-Zamar loss function

ρ(t) =


1.38

( t
c

)2 ∣∣ t
c

∣∣≤ 2
3

0.55−2.69
( t

c

)2
+10.76

( t
c

)4−11.66
( t

c

)6
+4.04

( t
c

)8 2
3 <

∣∣ t
c

∣∣≤ 1

1
∣∣ t

c

∣∣> 1.
(A.4)

To obtain consistency and 50% breakdown point, we choose the tuning parame-

ters c1 = 1.214 and b1 = 0.5 for ρc1 . The choices c2 = 3.270 and b2 = 0.128 for ρc2

yield a τ-estimator with 95% efficiency when the errors are normally distributed

(see Yohai and Zamar [41]).

Given bbb, the estimating equations for ai and µ j are given by the following

formulas which are obtained by fixing bbb and solving the subgradient equations in

(A.1) with respect to ai and µ j:

ai =
∑

p
j=1 wi j(Zi j−µ j)b j

∑
p
j=1 wi jb2

j
, 1≤ i≤ n, (A.5)

µ j =
∑

n
i=1 wi j(Zi j−aib j)

∑
n
i=1 wi j

, 1≤ j ≤ p, (A.6)

with

wi j =

[
d jh−1

j ρ
′
c1

(
ri j

τ̂ j

)
+ρ

′
c2

(
ri j

τ̂ j

)
τ̂ j

]
r−1

i j , (A.7)

h j =
n

∑
i=1

ρ
′
c1

(
ri j

τ̂ j

)
ri j

τ̂ j
,

and

d j = 2τ̂ j

[
n

∑
i=1

ρc2

(
ri j

τ̂k

)]
−

n

∑
i=1

ρ
′
c2

(
ri j

τ̂k

)
ri j.
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The minimization over bbb for fixed aaa and µµµ is more involved due to the L1-

penalty. As such we use the following fast and approximated iterative approach to

obtain an estimating equation for bbb. First we re-write (A.1) as

min
aaa,bbb,µµµ

{
p

∑
j=1

τ̂
2
j +λ

p

∑
j=1

g(b j)

}
, subject to ||bbb||22 = 1. (A.8)

where

g(t) =

{
t2

|t| if t 6= 0

0 otherwise

At this point, we make the following approximation to simplify the optimiza-

tion procedure. If |b j|( j = 1, . . . , p) in the denominator of g(b j) are non-zero, then

we consider them constants b(const)
j ( j = 1, . . . , p), and Equation A.8 is approxi-

mated as follows.

min
bbb

{
p

∑
j=1

τ̂
2
j +λ

p

∑
j=1

b2
j

|b(const)
j |

}
, subject to ||bbb||22 = 1. (A.9)

By taking the derivative of the above objective function with respect to b j (ignoring

the side constraints ||bbb||22 = 1 since it is just for ensuring the uniqueness of the

solution) and setting it to 0, we have the closed form solution for b j:

b j =
∑

n
i=1 wi j(Zi j−µ j)ai

∑
n
i=1 wi j(ai)2 +2λ/|b(const)

j |
. (A.10)

Since b(const)
j is unknown, we initialize it with an non-zero value and obtain b j

using the following iteration:

b(k+1)
j =

∑
n
i=1 wi j(Zi j−µ j)ai

∑
n
i=1 wi j(ai)2 +2λ/|b(k)j |

. (A.11)

The iteration steps in Equation A.11 will continue until convergence or the value

of b(k+1)
j is smaller than a pre-defined threshold, say 10−20, in which case the value

of b j is set to 0.

Note that the constraint on bbb (i.e. ||bbb||22 = 1) is just to ensure the uniqueness of
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the solution, we normalize bbb after the iteration terminates for all the b j( j = 1, . . . , p)

in bbb.

We use the L1-median of the input matrix as the initial values of µµµ . For the

vector bbb, we generate R random starts by assigning bbb(0) either by one of the R−1

randomly selected rows of the original matrix or the SVD solution obtained from

the original matrix, i.e. bbbsvd . The columns of the matrix A are the sparse scores

of each observation given bbb(0). For each set of the initial values we run max iter

iterations, or until a tolerance level is achieved.

Algorithm 8 gives a detailed description of the algorithm used for computing

RSPCA-τ . We observe that, in Algorithm 8, for set of initial values, the value of

the objective function does not always decrease during the iterations. Therefore,

we cache the smallest value of the objective function and its corresponding aaa, bbb

and µµµ among all the runs with different initial values to be returned as the final

solution. Although we do not provide theoretical guarantee on the convergence

of the iteration process, we observe convergence within a pre-specified number of

max iter (say 500) in all of our simulations and real examples.
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Set MSE
Lasso RF

BN 152.53 127.39
PH 145.29 135.01
FP 143.56 125.98
AP 148.45 131.76

CAP 146.57 131.67

Table A.1: MSEs of Lasso (5-fold CV-MSEs) and RF (OOB-MSEs) for five
descriptor sets of the AID 364 assay

Response MSE
Lasso RF

LAI 12.37 11.58
TOTVEGC 3.47 3.29

Table A.2: MSEs of Lasso (CV-MSEs) and RF (OOB-MSEs) for two re-
sponses of the CLM data
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Algorithm 8 RSPCA-τ

1: Let LS(aaa,bbb,µµµ) = ∑
p
j=1 τ̂2

j +λ ||bbb||1 subject to ||bbb||2 = 1
2: Input: Z = (Z1, · · · ,Zp) ∈ Rn×p, M ∈ N, tuning parameter λ > 0, convergence

threshold ω , default 10−10, max number of iteration max iter, default 500, number of
initial value set R

3: L∗S =+∞

4: Generate BBB including R random starts for bbb by randomly selection R−1 rows from Z,
and bbbSV D.

5: for bbb(0) in BBB
6: aaa(0)← Zbbb(0), µµµ(0)← (median(Z1), ...,median(Zp))

T .
7: N iter = 1
8: while N iter < max iter
9: compute wi j, i = 1, ...,n, j = 1, ..., p in (A.7) using aaa(0),bbb(0),µµµ(0).

10: a(1)i ← (∑
p
j=1 wi j(Zi j−µ

(0)
j )b(0)j )/(∑

p
j=1 wi j(b

(0)
j )2), i = 1, ...,n

11: for j = 1, · · · , p:
12: if b(0)j = 0

13: b(1)j ← 0
14: else
15: b(0∗)j ← b(0)j
16: n iter = 1
17: while n iter < max iter
18: b(1∗)j ←

(
∑

n
i=1 wi j(Zi j−µ

(0)
j )a(0)i

)
/
(

∑
n
i=1 wi j(a

(0)
i )2 +2λ/|b(0∗)j |

)
19: if |b(1∗)j −b(0∗)j |< ω or |b(1∗)j |< ω2

20: break
21: b(0∗)j ← b(1∗)j
22: n iter++
23: end while
24: b(1)j ← b(1∗)j if |b(1∗)|> ω2, otherwise b(1)j ← 0
25: end for
26: Normalize b(1)j ( j = 1, . . . , p) so that ∑ j(b

(1)
j )2 = 1

27: µ
(1)
j ← (∑n

i=1 wi j(Zi j−a(1)i b(1)j ))/(∑n
i=1 wi j)

28: if LS(aaa(1),bbb(1),µµµ(1))< L∗S
29: L∗S = LS(aaa(1),bbb(1),µµµ(1)), aaa∗ = aaa(1), bbb∗ = bbb(1), µµµ∗ = µµµ(1)

30: if |LS(aaa(1),bbb(1),µµµ(1))−LS(aaa(0),bbb(0),µµµ(0))|< ε , say 10−5

31: break
32: aaa(0)← aaa(1),bbb(0)← bbb(1),µµµ(0)← µµµ(1)

33: N iter++
34: end while
35: end for
36: Output: aaa∗, bbb∗, µµµ∗ with L∗S.
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