
Accelerating In-System Debug of
High-Level Synthesis Generated

Circuits on Field-Programmable Gate
Arrays using Incremental Compilation

Techniques
by

Pavan Kumar Bussa

B.Tech Electrical Engineering, Indian Institute of Technology Jodhpur, 2015

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF APPLIED SCIENCE

in

The Faculty of Graduate and Postdoctoral Studies

(Electrical and Computer Engineering)

THE UNIVERSITY OF BRITISH COLUMBIA

(Vancouver)

August 2017

c© Pavan Kumar Bussa, 2017

Abstract

High-Level Synthesis (HLS) has emerged as a promising technology that

allows designers to create a digital hardware circuit using a high-level lan-

guage like C, allowing even software developers to obtain the benefits of

hardware implementation. HLS will only be successful if it is accompanied

by a suitable debug ecosystem. There are existing debugging methodologies

based on software simulation, however, these are not suitable for finding

bugs which occur only during the actual execution of the circuit. Recent

efforts have presented in-system debug techniques which allow a designer

to debug an implementation, running on a Field-Programmable Gate Ar-

ray (FPGA) at its actual speed, in the context of the original source code.

These techniques typically add instrumentation to store a history of all user

variables in a design on-chip. To maximize the effectiveness of the limited

on-chip memory and to simplify the debug instrumentation logic, it is de-

sirable to store only selected user variables. Unfortunately, this may lead

to multiple debug runs. In existing frameworks, changing the variables to

be stored between runs changes the debug instrumentation circuitry. This

requires a complete recompilation of the design before reprogramming it on

an FPGA.

In this thesis, we quantify the benefits of recording fewer variables and

solve the problem of lengthy full compilations in each debug run using incre-

mental compilation techniques present in the commercial FPGA CAD tools.

We propose two promising debug flows that use this technology to reduce

the debug turn-around time for an in-system debug framework. The first

flow, in which the user circuit and instrumentation are co-optimized during

compilation, gives the fastest debug clock speeds but suffers in user circuit

performance once the debug instrumentation is removed. In the second flow,

ii

Abstract

the optimization of the user circuit is sacrosanct. It is placed and routed

first without having any constraints and the debug instrumentation is added

later leading to the fastest user circuit clock speeds, but performance suffers

slightly during debug. Using either flow, we achieve 40% reduction in debug

turn-around times, on average.

iii

Lay Summary

Designing modern digital electronic systems can be expensive and time con-

suming. Ensuring a design does not contain errors is especially challenging.

This task, known as debugging, is often hampered by the fact that there

is limited visibility into the internal operation of a circuit. Recent work

has proposed methods to enhance this visibility. These methodologies often

involve running the circuit many times; each run requires significant setup

(compilation) time in which the design is automatically instrumented with

different observation circuitry. In this thesis, we show how this compilation

time can be dramatically reduced. The key insight is that the vast major-

ity of the circuit does not change between runs; we present techniques that

allow the compilation tool to focus only on the parts of the circuit that do

change. This leads to significantly faster debug, potentially lowering the

cost of producing working digital systems.

iv

Preface

This thesis is related to the PhD dissertation of Dr. Jeffrey Goeders, a recent

graduate from UBC who is now an Assistant Professor at Brigham Young

University, Utah. He helped me in setting up the framework, answered all

my technical questions and pointed me to the right place to start.

This work has been accepted as a poster paper titled ”Accelerating In-

System FPGA Debug of High-Level Synthesis Circuits using Incremental

Compilation Techniques” at the International Conference on Field-Programmable

Logic and Applications 2017 (FPL’17) and will be published in the confer-

ence proceedings. I was primarily responsible for conducting the research,

performing the experiments and summarizing the results. This was done

under the guidance of my advisor Dr. Steve Wilton. Dr. Wilton and Dr.

Goeders also provided editorial support for all of my submitted works.

v

Table of Contents

Abstract . ii

Lay Summary . iv

Preface . v

Table of Contents . vi

List of Tables . ix

List of Figures . x

Acknowledgements . xi

1 Introduction . 1

1.1 Motivation . 1

1.2 High Level Synthesis . 2

1.3 HLS Debug . 3

1.3.1 Software-like Debug 3

1.3.2 RTL Simulation . 4

1.3.3 In-system Debugging 4

1.4 Selective Variable Tracing . 6

1.5 Incremental HLS Debug . 7

1.6 Contributions . 8

1.7 Thesis Outline . 10

2 Background . 12

2.1 Overview . 12

vi

Table of Contents

2.2 HLS Flow . 12

2.3 HLS Debugging Techniques 15

2.3.1 In-system Debugging Approaches 16

2.3.2 Source Level In-system Debugging Approaches 19

2.4 Incremental debugging Approaches 24

2.5 Summary . 32

3 The Debugging Framework . 34

3.1 Overview . 34

3.2 Framework . 34

3.2.1 Debug Instrumentation 35

3.3 Trace Buffer Optimizations 37

3.3.1 Control Flow Optimization 38

3.3.2 Dynamic Tracing of Datapath Register Signals 39

3.4 Debug Flow . 41

3.5 Selective Variable Tracing . 42

3.6 Summary . 43

4 Incremental Debug Flows . 46

4.1 Overview . 46

4.2 Incremental Flows . 47

4.2.1 A Naive Incremental Flow 47

4.2.2 Incremental Flow with Permanent Taps 48

4.2.3 Incremental Flow with Permanent Taps and Late Bind-

ing . 49

4.3 Automated GUI . 55

4.4 Summary . 55

5 Results . 57

5.1 Overview . 57

5.2 Methodology . 58

5.3 Impact on the Trace Window Size 60

5.3.1 Variation in the Trace Window Size 61

5.4 Impact on Debug Instrumentation Area 62

vii

Table of Contents

5.5 Impact on the Compile time 67

5.6 Impact on the Frequency of User Circuit 69

5.7 Summary . 75

6 Conclusions and Future Work 76

6.1 Overview . 76

6.2 Summary . 76

6.3 Future Work . 78

Bibliography . 80

Appendix . 90

A A Guide to our GUI Framework 91

viii

List of Tables

5.1 Trace Window Size(For Flow 3) 59

5.2 Trace Scheduler Area (For Flow 3) 63

5.3 Total Compile Time for Flow 3 in Seconds 65

5.4 Total Compile Time for Flow 4 in Seconds 66

5.5 Area Breakdown (For Flow 3) 69

5.6 Incremental Compile Overhead for Flow 3 in Seconds 70

5.7 Frequency Results: Flow 3 vs Flow 1 73

5.8 Frequency Results: Flow 4 vs Flow 1 74

ix

List of Figures

2.1 HLS Flow . 14

3.1 Debug Instrumentation . 35

3.2 Control Flow Optimization 37

3.3 Dynamic Signal Tracing Optimizations 44

3.4 Original Debug Flow . 45

4.1 A Naive Incremental Flow (Flow 2) 51

4.2 Incremental Flow with Permanent Taps(Flow 3) 52

4.3 Incremental Flow with Permanent Taps and Late Binding

(Flow 4) . 53

4.4 Modified GUI to support Selective Variable Recording 54

5.1 Trace Window Size Variation [Tracesubset
Tracefull

] 61

5.2 Frequency Variation with the number of taps 72

x

Acknowledgements

I would like to thank my advisor Dr. Steve Wilton for his constant motiva-

tion and support throughout my master’s journey. This research would not

have been possible without his guidance.

Special thanks to Jeff Goeders for helping me understand his work and

providing the backbone of the framework for me to build upon. I would also

like to thank other graduate students in Wilton’s group for their suggestions

and feedback especially during our weekly group meetings. My friends have

played an important role in helping me maintain a good work life balance

which was much needed at some times.

Financial support for this work has been provided by the National Sci-

ences and Engineering Research Council of Canada, as well as from Intel

Corporation.

Last but not the least, I would like to thank my parents for believing in

me and providing everything I needed to reach this point.

xi

Chapter 1

Introduction

1.1 Motivation

Recent years have seen a tremendous demand for faster computation as ap-

plications become larger and more complex. However, the performance of

a processor has not been increasing fast enough to meet such computation

demands mainly because of the difficulty in reducing the transistor sizes

and because of the increased power dissipation. This has triggered the com-

munity to move towards parallel multi-core processing architectures where

several processors/cores of same kind (Homogeneous computing) or different

kinds (Heterogeneous computing) are used to gain performance or energy ef-

ficiency. Heterogeneous computing has shown promising results in situations

where only a specific part of the application is to be accelerated. One way

to accelerate algorithms using these heterogeneous systems is using a cus-

tomized application specific processor. This is different than a homogeneous

system where a general purpose processor would have to be used irrespective

of the computing workload. However, manufacturing and designing an Ap-

plication Specific Integrated Circuit (ASIC) like a custom processor is very

time consuming and also the associated non-recurring engineering costs are

high.

An alternative to using ASIC’s is to use devices which are more flexible

and easy to design while providing similar benefits to those of an ASIC.

Field Programmable Gate Arrays (FPGAs) have emerged as reconfigurable

devices with the capability of emulating any custom circuit, leading to per-

formance gains over a wide range of applications. For every new application,

an ASIC has to be manufactured from scratch while an FPGA could be

transformed into any custom circuit just by reprogramming it. This makes

1

1.2. High Level Synthesis

the FPGAs very ideal for frequently changing applications.

Because of it’s shorter time-to-market[72] and reasonable performance

gains, many companies/academia have already started using FPGA’s to

accelerate their complex applications. Microsoft[64], Intel[39], IBM[27] and

Qualcomm[65] have started using FPGA’s to accelerate their mainstream

computing. Recently, Amazon has started providing FPGA instances[2] in

their cloud services which could be used on per-hour basis, making FPGA’s

accessible to everyone.

However, implementing a design on an FPGA is not as easy as imple-

menting it on a processor. As with an ASIC, the design is specified in

a hardware description language (HDL) like VHDL or Verilog/SystemVer-

ilog which usually contain circuit descriptions at a much lower level (flip-

flops/registers, logic blocks and the interconnections between them) known

as Register-Transfer Level (RTL). This representation is later compiled and

programmed to FPGA’s by vendor specific Computer-Aided Design (CAD)

tools. Doing this is a much more challenging and time consuming task than

developing a software program for a given problem since it requires the de-

signers to take care of the memory interfaces and the detailed scheduling

of operations. As the designs become complex these approaches become

tedious and are prone to errors if extreme care is not taken.

1.2 High Level Synthesis

High Level Synthesis (HLS) is an automated design process which converts a

software-like program (usually written in C, C++ or Java) to a hardware/F-

PGA implementation. HLS raises the abstraction of the design specification

to a much higher level eliminating the need for the designer to take care of

the finer details like the scheduling, binding and memory interfacing which

are now performed by the HLS compiler itself. A higher level of abstraction

reduces the design time considerably and also makes it feasible for software

developers to create a hardware implementation for their complete design

or a part of their design. As software designers outnumber the hardware

designers[60], in order to attract them towards FPGA’s and increase their

2

1.3. HLS Debug

market sizes, leading FPGA companies like Xilinx and Intel have invested

heavily in the HLS technology and developed commercial HLS packages like

Vivado HLS[76] and SDK for OpenCL[41]. HLS not only makes it possible

for software designers to use the FPGA’s but also makes it easy for hardware

developers to specify complex designs, improving design productivity.

Most existing HLS tools including the one considered in this work (LegUp[12])

use C as the means for design entry[57] and LLVM[47] as the C compiler.

The front-end of the compiler converts the C design to an Intermediate Rep-

resentation (IR) and the back-end produces an implementation specific to

the target architecture. For this thesis, the target architecture is an FPGA

and in this case the back-end performs allocation, scheduling and binding

automatically in order to generate the HDL representation.

However, as the user is unaware of the HDL generated, he/she should

have some means to verify the correctness of their implementation. In order

for a HLS tool to gain widespread adoption it may need to provide a com-

plete ecosystem like that of any software/hardware Integrated Development

Environments (IDE) including the support for efficient debug.

1.3 HLS Debug

Bugs might arise at different stages of a HLS design process. Finding the root

cause of a bug could be difficult without an effective debugging framework.

HLS debugging techniques such as software based debug, RTL simulation

and in-system debug could be used to help find the root cause of bugs that

become visible at different levels of abstraction (from software program to

a hardware implementation).

1.3.1 Software-like Debug

Most existing HLS tools offer the ability to debug a design by running the

software code on a workstation. Standard debuggers like GDB[17] can be

used to debug the software program. Logic bugs could be found easily

through this method. However, in the final operating environment of the

3

1.3. HLS Debug

hardware circuit generated by the HLS tool, there may be other IP cores,

processors or I/O devices interacting with each other and the HLS generated

circuit. Many bugs related to the interfaces with these blocks that are not

produced by the HLS may not be visible in a software based debug flow.

Also, as this type of debugging is performed before the HLS process, it would

not help the user to find any bugs arising from the HLS tool itself.

1.3.2 RTL Simulation

Some HLS tools offer debugging through RTL simulation [41][76]. This

is very similar to the software-like debug technique except for the control

and the dataflow which is now obtained from the simulation of the RTL

generated by the HLS tool instead of the normal execution of the software

code. This allows the designer to verify that the RTL circuit generated by

the HLS tool matches the behavior of the original software code. However,

hardware simulation is much slower than the actual hardware execution and

would take a long time to simulate the design to that point where some

bugs might occur. Also, as the RTL simulation is cycle-accurate, some of

the transient/asynchronous events which might happen in between the cycle

transitions cannot be determined.

1.3.3 In-system Debugging

For these bugs which cannot be found using the software debug or RTL

simulation the only solution is to debug the circuit in the actual operating

environment where it interacts with other blocks present in the system - also

known as in-system debugging.

In-system FPGA debugging involves running the circuit at speed on the

FPGA. At such speeds, the control and the dataflow information of the

circuit are updated rapidly. Considering the throughput of these updates,

it is almost impossible to show them to the user directly because of the

limited I/O resources on the FPGA and also unlike the software debugging

approaches it is not practical to run the circuit step by step, pausing in be-

tween to analyze the updated values. Even, if this was possible, reading the

4

1.3. HLS Debug

values from the FPGA each time the circuit is paused would be time con-

suming [68], which is not desirable. Because of these issues most in-system

debugging tools adopt an alternative approach of trace-based debugging

where additional circuitry (also known as debug instrumentation) is added

to store the values of the signals until a set breakpoint is reached and then

the circuit behavior is replayed with the help of the captured data. This

instrumentation is built using the resources of the same FPGA on which the

user circuit would be executing.

Embedded logic Analyzers (ELAs) such as SignalTap II [40] and Vivado’s

Integrated Logic Analyzer (ILA) [75] provide visibility into a hardware de-

sign by recording the circuit’s execution in on-chip memories (also known as

trace buffers) when a predefined trigger condition is met and then present-

ing the captured data in the form of waveforms. However this visibility is

provided at the RTL abstraction level which makes sense only to those who

can understand the underlying hardware thus not making a feasible debug

option for software designers who may want to use the HLS tools.

Source-Level In-System Debugging for HLS

A software designer views the design as a set of sequential statements, while

the generated hardware consists of several concurrently operating compo-

nents. This mismatch between the software designer’s view and the actual

hardware running on the FPGA makes in-system debugging at the RTL

level impractical. This becomes even worse if the HLS tool performs opti-

mizations such as moving operations across cycle boundaries, leading to a

schedule which might be unfamiliar to the user. To avoid these mismatches

it is preferable to have an in-system debugging flow at the same abstraction

level in which the design is implemented. This would also eliminate the need

to understand the detailed implementation of their software in RTL, thus

maintaining the productivity promised by HLS.

Recent work has presented debugging tools and instrumentation that al-

lows designers to debug their hardware implementation as if it were software

[10, 20, 29, 52, 55, 62]. These systems allow the user to debug code in an

5

1.4. Selective Variable Tracing

environment in which they are familiar, allowing them to single-step, set

breakpoints, and examine variables. Critically, they allow the hardware to

run at-speed, recording behavior in on-chip memory for later replay. The

implementation described in [10, 23] was incorporated in the recent release

of LegUp HLS which inserts custom debug instrumentation at the RTL level

and maintains a database to relate the source code variables to the LLVM’s

IR signals to the hardware signals in the final Verilog generated in order to

make the source-level in-system debugging possible.

To achieve a software-like debug experience, frameworks such as those

in [20] record the history of all user-visible variables (or enough information

that all user-visible variables can be reconstructed off-line). This provides

the visibility that software designers expect, but it comes at a cost; since

on-chip memory is restricted in size, only a limited portion of the circuit

execution (the trace window) can be stored. In [21], the follow up work

of [20], the authors focused on optimizing the on-chip memory utilization

in order to store longer execution histories. The goal was to have longer

execution histories which allows the user to find bugs easily without having

to run the design multiple times (also known as debug iterations), recording

a limited circuit execution each time.

1.4 Selective Variable Tracing

In this thesis we focus on a technique known as Selective Variable Tracing

to achieve longer trace window sizes. Rather than storing a history for all

user-visible variables, it is possible to only store the history of a subset of

variables – perhaps variables in a function of interest or variables that the

designer deems to be important. This could lead to much more efficient use

of on-chip memory space, providing longer trace histories, possibly making

it easier to determine the cause of observed incorrect behavior. In addition,

recording fewer variables reduces the routing complexity and simplifies the

compression logic which connects signals to trace memories, thus reducing

the area of the debug instrumentation. Various automated signal selection

techniques like those described in [46, 49] could be used to connect fewer in-

6

1.5. Incremental HLS Debug

teresting signals to debug instrumentation as implemented in [31]. However,

in this thesis, signals were selected manually as the focus of this work is to

show the impact of incremental compilation techniques in reducing the com-

pilation time between the debug iterations and not about efficient ways of

signal selection. Future work would be to incorporate these automated sig-

nal selection techniques and perform incremental debug using our proposed

flows.

As debugging proceeds and the user refines his or her understanding

of how the circuit is operating, the user may wish to change the subset of

variables observed. In frameworks like [10, 21, 23] where the debug instru-

mentation is added at the RTL level, this would require a recompilation of

the design (in order to reconfigure the FPGA on which the design was run-

ning) as the RTL generated would change each time the user changes the

subset of variables to be observed. Recompilation is often slow, and may

even lead to different place and route results, causing timing differences, pos-

sibly hiding an elusive bug (like those related to asynchronous interfaces).

To be practical, we need a faster and less intrusive compilation path. To

avoid the recompilation process, we propose using incremental compilation

techniques.

1.5 Incremental HLS Debug

Using incremental compilation, the placement and routing of the user’s de-

sign can be frozen between debug iterations, and only the instrumentation

circuitry (which is added to gain observability and which depends on the set

of variables to be observed) changes. This leads to faster debug iterations

while at the same time maintaining the timing of the user design between

debug iterations.

Incremental compilation techniques are well-supported in commercial

FPGA CAD tools, and have even been applied to hardware-oriented debug

infrastructures such as SignalTapII [37, 40]. However, there are at least

four unique characteristics of the debugging framework considered in this

thesis [23] that make a straightforward application of existing techniques

7

1.6. Contributions

sub-optimal:

1. Compared to hardware-oriented debug infrastructures such as Signal-

TapII [40], this framework contains much more instrumentation that

needs to be recompiled in each debug iteration. When applying incre-

mental compilation to SignalTapII, the incremental portion primarily

consists of routing connections, while in this framework, the incremen-

tal portion primarily consists of a debug instrumentation which is a

large design-specific custom compression circuit.

2. Although changing the set of variables to be recorded primarily im-

pacts the instrumentation, it is also extremely intrusive to the user

circuit, since a large number of “taps” are needed. Without careful

consideration, this could dramatically increase the amount of logic that

needs to be recompiled between iterations, limiting the effectiveness

of the incremental techniques.

3. For many applications, it would be desirable to have the user circuit

run as fast as possible, and not be slowed down by the presence of

the instrumentation. This implies that it would be advantageous to

compile the user circuit first, and only use “left over” resources to

implement the instrumentation.

4. After debugging has been completed, it may be desirable to remove

the instrumentation. Although it is possible to ship the design with

instrumentation still present (but disabled) some security-conscious

designers may worry that this creates a “back door” into the design.

Therefore, our incremental flow has to support removing instrumenta-

tion without performing a complete recompilation, which would affect

the timing of the circuit possibly exposing new bugs.

1.6 Contributions

In this thesis we adopt a source level in-system FPGA debug framework

for HLS generated circuits [23], briefly described in Chapter 3 to implement

8

1.6. Contributions

our ideas. The following contributions have been made in this thesis to

accelerate the HLS debugging flow for the considered framework.

1. We first quantify the impact of selective instrumentation on trace win-

dow size and debug instrumentation area by recording different 50%

and 25% subsets of the variables present in the user’s source code.

This was done to get an idea of how much benefit could be achieved

by using the selective variable tracing approach as this is complicated

by the fact that a single user variable may correspond to multiple IR

signals. If such variables are selected/unselected then all of it’s IR sig-

nals would be recorded/ignored making the instrumentation insertion

algorithm difficult to realize.

2. To avoid the recompilation process when doing selective signal tracing

during each debug iteration, we propose using incremental compilation

techniques. However, based on the unique characteristics of the frame-

work considered [23] and the limitations of the incremental techniques

present in commercial FPGA CAD tools as described in Section 1.5

several modifications had to be made to the RTL generated by the

HLS including adding permanent taps to the user design and creat-

ing the design partitions to effectively use the incremental compilation

flow.

3. We present two promising debug flows using commercial incremental

compilation techniques which balance the compile time, design perfor-

mance and area overhead while maximizing the amount of user data

that can be stored in the on-chip trace buffer memories.

(a) In the first flow, after the design partitions are created, the place

and route for both the user and the instrumented debug partitions

is performed simultaneously. This leads to the co-optimization of

the user and the debug partitions resulting in the fastest clock

speeds during debug. Once the debugging is done and the user

decides to remove the debug instrumentation, it can be removed

without performing a full compilation. However, the remaining

9

1.7. Thesis Outline

user circuit would now run at a lower speed (when compared to

the speed of the user circuit with no debug instrumentation) as

it was not well optimized during the initial compilation because

of the presence of the debug instrumentation circuitry.

(b) In the other promising flow, the design is first compiled with

an empty debug partition which allows the user partition to be

placed and routed without any restrictions, optimizing as much

as possible to get better performance. Later, the debug partition

is added incrementally preserving the placement and routing for

the user partition from the previous compilation. This might lead

to slower debug clock speeds as the debug instrumentation now

uses spare resources which might be spread around the FPGA.

However, when the debug instrumentation is removed after the

debug is done, we could get back the actual speed for the user

circuit which was obtained during the first compilation.

Using either flows, we are able to obtain an improvement of 40% in

compile time per debug iteration as we now perform an incremental

compilation for each iteration rather than a full compilation. We also

achieve an increase of 1.6x and 2.6x in trace buffer window size when

recording 50% and 25% variables respectively instead of recording all

the variables. Together, this may lead to faster and more effective

debug turns, resulting in higher productivity for designers creating

complex FPGA applications.

1.7 Thesis Outline

The rest of the thesis is organized as follows. In Chapter 2, the background

required to understand HLS, the need for in-system debug (main focus on

source level debug), the way incremental compilation works and how to use

it effectively for debugging is presented. It is followed by a summary of

recent research related to in-system debug, techniques to improve the trace

buffer utilization in order to record longer execution histories and the use of

10

1.7. Thesis Outline

overlays/incremental compilation in debug.

In Chapter 3, the source level in-system debugging framework used in

this research is briefly explained. Different optimizations aimed at improving

the trace buffer utilization are presented. Next, the advantages of selective

signal tracing and the problems associated with it’s practical implementa-

tion are discussed along with the proposed solution for using incremental

compilation techniques.

Chapter 4 describes different incremental HLS debug flows proposed in

this thesis to accelerate the debugging process by having faster and effec-

tive debug iterations. It also explains how the GUI from [23] is modified in

order to automate the proposed incremental debug flows. Chapter 5 pro-

vides extensive results, comparing the different incremental flows proposed

in terms of trace window size, area overhead, compile time and the user

design performance both during and after debugging.

Chapter 6 concludes this thesis and suggests possible ideas for future

work.

11

Chapter 2

Background

2.1 Overview

This thesis relies upon three major concepts: high level synthesis (HLS), in-

system debug and incremental debug. In this chapter each of these is briefly

discussed to provide the background required to understand this work. Also,

the previous works related to these areas are presented.

This chapter is organized as follows. Section 2.2 describes the steps

involved in an HLS flow followed by description of the LegUp [12] HLS

framework which is used in the research described in this thesis. Section

2.3 emphasizes the need for in-system debug and summarizes some of the

previous research in this field. Section 2.4 describes the incremental compi-

lation features present in FPGA CAD/EDA tools along with their support

for incremental debug and it also describes the debugging frameworks which

make use of overlays/incremental compilation techniques to accelerate the

debug flow. Section 2.5 describes how this thesis differs from the related

works and concludes this chapter.

2.2 HLS Flow

HLS has simplified the design process of a digital system by allowing the

designers to specify the design requirements at a higher abstraction level.

The CAD tools associated with this process automatically converts this rep-

resentation to a RTL level specification optimized for performance, area and

power requirements, which could later be used as a reference for manufac-

turing an ASIC or configuring an FPGA to emulate the required design.

Because of an FPGA’s shorter time to market and other benefits when com-

12

2.2. HLS Flow

pared to an ASIC [72], several companies have either started using FPGA’s

to accelerate their complex workloads or started providing FPGA services

for the customers to meet their needs. Amazon has recently announced their

EC2 F1 instances [2] which allows the users to pay for the instances by the

hour without the need for buying an FPGA. Microsoft’s Catapult project

to accelerate their cloud services [64] using FPGAs, Intel’s acquisition of

a leading FPGA manufacturer, Altera [39], IBM and Qualcomm’s interest

in using FPGA’s to accelerate their cloud services [27, 65] hint towards the

increasing demand for FPGA’s in near future. A recent survey on HLS tools

[57] presents and evaluates different tools that have emerged from both in-

dustry and academia [12, 36, 50, 56, 58, 61, 76] to allow both hardware and

software designers (who outnumber hardware developers [60]) to use FPGA’s

for accelerating their workloads and also to improve the user productivity by

eliminating the need to focus on timing and other interface-related details.

A typical HLS flow is shown in Figure 2.1. As discussed in Section

1.2, the majority of HLS frameworks use synthesizable subsets of C for

specifying a design at an algorithmic level mainly because of its simplicity

and widespread adoption, with LLVM as a C compiler. Any HLS framework

can be functionally categorized into a frontend, optimizer and a backend.

The frontend compiles the high level behavioral representation of a design

(C source code) and converts it to an Intermediate Representation code

(IR) or a Control and Data flow graph (CDFG) [13]. The optimizer then

performs several code optimizations such as dead code elimination, false

data dependency elimination, function in-lining and loop transformations.

Typically, the tool goes through multiple passes, primarily to reduce the

number of resources required on the target architecture and increase the

speed of the design.

The backend consists of a series of steps: allocation, scheduling, binding

and RTL generation. Together these steps convert the optimized intermedi-

ate representation code into a HDL specification. During Allocation, the tool

determines the type and number of hardware resources (such as functional

units or memory components) required to satisfy the design constraints.

In Scheduling, the operations assigned to each of the functional units are

13

2.2. HLS Flow

scheduled into cycles based on dependency analysis. Each operation could

be scheduled for one or several cycles depending on the functional unit to

which it is mapped and also based on the complexity of the operation. Bind-

ing assigns the operations present in the IR code to specific functional units

and also optimizes the resource utilization by allowing non-conflicting oper-

ations to share the same functional units by multiplexing them.

The order in which allocation, scheduling and binding are performed

may vary depending on the algorithms used by the HLS tool and the given

design constraints– area minimization or latency minimization [13]. All of

these steps are highly inter-dependent and some of them may be performed

simultaneously based on the tool’s objectives. For example, scheduling tries

to reduce the number of control steps required, subject to the number of

available hardware resources which depend on the result of allocation. Once

these steps are performed and the optimizations are applied, the final step

is to generate RTL from the intermediate data structures which were used

to store the decisions made in the previous steps.

Scheduling

Allocation

Binding

RTL

Generation

Frontend Optimizer

B
a
c
k
e
n
d

Source

Code (C)
IR Code

Optimized

IR

Code

RTL Code

(Verilog)

Figure 2.1: HLS Flow

14

2.3. HLS Debugging Techniques

LegUp HLS

LegUp is an open source HLS framework developed by the University of

Toronto [12] for research/academic purposes. It takes standard C as in-

put (without recursive functions or dynamic memory allocations) and auto-

matically generates an RTL level implementation (Verilog) which could be

synthesized for some of the Intel and Xilinx FPGA’s. LegUp is not only

capable of generating a pure hardware but can also generate a hybrid hard-

ware/software system by first running the design on a FPGA based MIPS

processor (Tiger MIPS [59]) and profiling the execution to determine the

program segments that need to be accelerated on a hardware while running

the rest of the code on processor itself.

LegUp uses the low level virtual machine (LLVM) [47] as the frontend

compiler to convert the C code to IR, which is then modified by a series

of optimization passes. This modified IR, with the help of newly created

backend passes schedules the IR instructions into specific cycles and finally

generates the RTL based on these descriptions.

LegUp uses a System of Difference Constraints (SDC) [11] approach

for scheduling and the Bipartite Weighted Matching [30] technique for the

binding step by default. However, the user could implement his/her own

algorithms for each of these passes.

The latest release, LegUp 4.0 also includes a source level in-system de-

bugging framework which allows the users to experience a software-like de-

bug experience for a hardware implementation [21]. In this thesis we use

the same debugging framework to prototype our ideas, which are described

in Chapter 4. Some minor modifications had to be made to LegUp which

are described in Appendix A.

2.3 HLS Debugging Techniques

To verify the correctness of the generated RTL, HLS tools should be able

to provide a debugging platform. Only then will HLS be widely adopted.

There are different types of debugging approaches for a HLS design flow:

15

2.3. HLS Debugging Techniques

software-like debug, RTL simulation and in-system debugging. Each of these

are capable of detecting bugs arising at different level of abstractions and

were discussed briefly in Section 1.3. In software-like debugging and RTL

simulation techniques, it is difficult to provide the exact system inputs and

replicate the final operating environment of the circuit, making some elusive

bugs invisible. The most accurate and natural method of debugging would

be to run the circuit generated at speed on an FPGA and then analyze it’s

execution with respect to the source code. Several works have been pub-

lished which leverage the advantages of in-system debugging using different

techniques. They can be mostly classified into scan-based or trace-based

approaches. In a scan-based approach the circuit execution is paused and

the circuit state is retrieved. In the trace-based approach the circuit execu-

tion is recorded in a on-chip trace buffer and the execution is replayed later

for debugging purposes. The following subsections describe several of these

approaches which are relevant to this thesis.

2.3.1 In-system Debugging Approaches

Using External Probes

With the help of a simple debug code, selected RTL signals in a circuit could

be connected to the FPGA I/O pins and then using an external analyzer

it would be possible to collect the signals from these pins and display them

as waveforms for the user to analyze. However, because of the limited I/O

resources on an FPGA, it is not feasible to collect the data generated by the

circuit in each cycle (especially when wide signal busses are to be observed)

[51], limiting the in-system debugging capabilities of such approaches. Even

if it was possible to collect the required data it would not make much sense

to a HLS user as the design is being developed in C and they may or may

not have the knowledge of the circuit implemented on the FPGA. Therefore

debugging at RTL level without being aware of the correspondence between

the source code variables and the RTL signals is not practical for an HLS

user.

16

2.3. HLS Debugging Techniques

Scan Based Debugging

In this approach, a scan chain is created by connecting the internal flip flops

in a user design sequentially to a JTAG interface, allowing the user to observe

the values stored in the flip flops. This is very commonly used for ASIC’s

where using a scan input pin, test inputs are applied and the flip flop values

could be scanned out through the scan out pin, providing observability into

the circuit. Some FPGA’s also provide scan chains and enable reading the

state of the internal flip-flops through their readback feature [38, 74].

Several works have used scan chains for debugging purposes [3, 43, 68–

71]. The benefit of this approach is that no additional on-chip memory

is required to record the circuit state. If the scan chains are not present

then implementing them would take up some resources [71]. In order to

read the state of the flip flops in the scan chain, the circuit must be paused

which might affect the interactions among some of the blocks, potentially

altering the circuit state when it is resumed. In addition, as the debugging

is performed at the RTL level, it would not be beneficial to use this with a

HLS design flow unless there is a way of mapping these signals back to the

source code variables.

Embedded Logic Analyzers

A logic analyzer is a customized hardware unit which has the capability to

capture and store selected signals from a user circuit based on predefined

trigger conditions. These signals are stored continuously cycle-by-cycle in a

ring-type trace buffer as long as the trigger conditions are satisfied. Later,

the recorded signal values are retrieved from the buffers for further analysis.

Advanced logic analyzers can store the signals using segmented buffers and

multiple trigger conditions, where the signals are recorded until one trigger

condition is met, the recording stops when another trigger condition is ac-

tivated and is resumed again when a different trigger condition is met and

so on. Trigger conditions are used to start/stop the recording of signals in

order to use the trace buffers effectively.

Many commercial logic analyzers have been released by FPGA compa-

17

2.3. HLS Debugging Techniques

nies for their devices including SignalTap II [40] from Intel, Integrated Logic

Analyzer (ILA) [75] from Xilinx and also by some third parties like Synopsys

(Identify RTL Debugger [67]) which provides support for Intel, Xilinx and

Microsemi devices. These logic analyzers are added automatically by the

corresponding FPGA Electronic Design Automation (EDA) tools and are

implemented on the same FPGA fabric as that of the user circuit. Most of

the EDA tools interact with the logic analyzers through the JTAG port, in

order to simplify the interface protocol. Usually, the signals are recorded

cycle-by-cycle in a circular trace buffers, overwriting the previous values un-

til a trigger condition is met. The EDA tool then reads the captured data

and displays the signals in a waveform representation. As these logic ana-

lyzers have to be compatible with any circuit, the instrumentation added is

simple and would record all the selected signals in each cycle, even though

some of the signal values do not change.

Even in these trace-based approaches, the signals displayed would cor-

respond to those at the RTL level; this requires the user to have an under-

standing of the mapping between the source code and the generated RTL in

order to get the most from these waveforms. Also, as the signals are being

recorded in every cycle, the on-chip trace buffers would be able to record a

limited circuit execution making it difficult to find those bugs whose effects

are only noticeable after some time lapse.

All of the above described in-system debugging approaches provide suffi-

cient observability into a circuit’s execution at the RTL level. However, as

described in Section 1.3.3, for an HLS user it would only be meaningful if

the debugging was performed at the same abstraction level where the de-

sign is specified, i.e. at the source (C code) level. The following subsections

describe the related works which focus on providing source level in-system

debugging opportunities for a HLS generated circuit.

18

2.3. HLS Debugging Techniques

2.3.2 Source Level In-system Debugging Approaches

Sea Cucumber Debugger

Sea Cucumber (SC) [34], is a circuit synthesizer which takes an input be-

havioral description written in its own programming model (based on Java

threads) and generate a circuit implementation (JHDL [8]) that could be

executed on an FPGA. The JHDL representation could be converted into a

netlist that could be programmed to an FPGA through JHDL frameworks.

These frameworks provide in-system debugging facilities at the JHDL level

by using the readback features available in some FPGA’s.

Hemmert et al. proposed a source level debugger for the SC framework

in [29]. This debugger used the scan based approach as described in Section

2.3.1 for communicating with the FPGA. To be specific, it used the readback

feature of an FPGA to capture a snapshot of the circuit state by freezing

the clock or in other words, pausing the circuit execution. However, this

information was remapped to the source code with the help of a database

containing the mapping information between the source code variables, IR

values and the circuit level signals. This database was created during the

synthesis of the circuit and also had the information about the optimizations

performed by the compiler. This allowed the user to have a software-like de-

bug experience while having a well-optimized circuit running on an FPGA.

It also provided support for single-stepping, breakpointing, watching and

setting the values for variables- providing both observability and controlla-

bility. The major drawback is that the circuit had to be paused after every

instruction to allow effective debugging, which is the same problem with that

of any other scan based debugging approaches described in Section 2.3.1.

Event Observability Ports

In [53], Monson and Hutchings describe a trace based debugging approach

and a new technique to improve the trace memory utilization in order to have

longer traces of the circuit execution, which is a major concern for any of the

trace-based in-system debugging approaches [10, 20, 40]. In this method top

19

2.3. HLS Debugging Techniques

level ports were manually added to the RTL generated to obtain information

about what and when the signals should be recorded unlike an ELA where

the signals are recorded every cycle. These were called Event Observability

Ports (EOP) and they consisted of a data and an enable signal. The enable

was set high only when the corresponding signal value was updated. These

ports were added to the relevant signals which were intended to be traced

by the user and were connected to the trace buffer memories, thus recording

the data signal only when the enable is high. This work also suggests the

use of multiple trace buffers instead of a single buffer to have more flexibility

and more possible optimizations.

They used Vivado HLS [76] to generate the RTL from the user specified

C code, then manually instrumented the RTL and finally programmed it to

a Xilinx FPGA to run the circuit at speed. They also maintained a mapping

between the C code and the RTL to provide a source level debugging expe-

rience for a user. Clearly, to do selective signal tracing with this approach,

the RTL would have to be modified accordingly to add new ports. This

would lead to a full recompilation of the RTL code, in order to reprogram

the FPGA with the modified design, which is very time consuming. Our

work investigates incremental solutions to avoid these lengthy compilations.

LegUp Debugger

As mentioned in Section 2.2, the latest release of LegUp includes a trace/in-

strumentation based source level in-system debugger which was developed

combining the ideas from the following two similar works:

Inspect Debugger In this work [10], a source level debugger with the

capabilities of any other software debugger (gdb [17]) such as single stepping,

breakpointing and variable inspection was proposed for the LegUp C-to-RTL

synthesizer. There was no controllability provided i.e., a user could only

view the values of the variables and does not have an option to update the

variable values using this framework. Like the SC debugger [29], a debug

database was maintained to relate the mapping of a source code variable all

20

2.3. HLS Debugging Techniques

the way to the optimized RTL level signals.

It provided two different modes of circuit execution. First, it allowed

debugging at the source level using RTL simulation (using ModelSim sim-

ulator). In this mode, single stepping through a line in the source code

corresponded to simulation of the circuit for a specific number of cycles

(this information is obtained from the debug database). In the other mode,

it added SignalTap II [40] logic analyzer to the RTL generated from the user

design to record the selected signals in on-chip memories while running the

circuit at speed. Once the trigger condition is satisfied, this data is read

by the GUI and displayed to the user in the context of the source code.

It also provided support for SW/HW discrepancy detection by running the

software or RTL simulations in tandem with the hardware execution and

comparing the variable values in both the cases as they execute.

The major limitation of this approach is the use of an ELA to record a

trace of the circuit’s execution. As described in Section 2.3.1, this approach

records selected signals in every cycle leading to poor utilization of the on-

chip memories restricting the debugging ability in any given debug iteration.

Moreover, in order to do selective signal tracing to have better trace lengths

as described in Section 1.4, it requires a recompilation of the circuit as

the RTL generated would be different for different subset of signals being

recorded. This is time consuming. The major goal of this thesis is to target

this problem.

Goeders’s Debugger This work [20] is very much related to Inspect [10].

The major difference is that instead of using an ELA it uses its own cus-

tomized debug instrumentation. This circuitry records the signals only in

those cycles when they are updated (using similar techniques from [53]) and

reduces the amount of control and information to be recorded by performing

several optimizations. Follow-up works [21, 23] show how it leverages the

scheduling information from the HLS compiler to perform dynamic signal

tracing and how it uses the signal restoration techniques to improve the on-

chip memory (trace buffer) utilization by a significant factor when compared

to a standard ELA. However, similar to Inspect [10], changing the variables

21

2.3. HLS Debugging Techniques

to be observed between debug iterations require a recompilation of the full

design as the RTL generated would now be different– taps into the user

circuit change and also the debug instrumentation is changed as it is highly

customized based on the variables being recorded.

In this thesis, it is this framework which was modified to implement our

proposed ideas. The optimizations used and its limitations are described in

more detail in Chapter 3.

Using Source Level Instrumentations

In this approach, the debug instrumentation is added at the source level

by modifying the C code. This is different than the previously described

works [10, 20, 21, 29, 53] which insert the debug instrumentation after the

RTL is generated by the HLS tool. Monson and Hutchings, in their recent

work [55] use this approach to produce the EOP’s [53] (also described in a

previous subsection) automatically in the RTL generated which could later

be connected to a trace buffer. This was possible by assigning the required

variables/expressions in the source code to newly created top level pointers

which would finally be converted into top level ports by the HLS tool. In

their follow up work [54], they add support for adding EOP’s for pointer

variables using shadow pointers. Pinilla and Wilton’s work [62] was built

upon [55] and described a way to instrument even the trace buffer and

the associated circuitry at the source level which might allow for better

optimizations. It also proposed an Array Duplicate Minimization (ADM)

technique which improves the trace buffer utilization by using the values of

an array variable from the user circuit memories itself (whenever possible)

while reading back the trace data removing the necessity to record them in

the trace buffers.

These works provided in-system debugging capabilities for an HLS user

at the source level by adding instrumentations at the source level. However,

to leverage the use of selective variable tracing as described in Section 1.4,

the source code had to be changed. This means that the HLS tool must

compile the code after instrumentation. This requires a full compilation by

22

2.3. HLS Debugging Techniques

the EDA tool to generate the bitstream for configuring the FPGA. If the

instrumentation was added at the RTL level, then the RTL corresponding to

the user circuit would never change and only the RTL for the debug instru-

mentation might be changed in each debug iteration. This could be compiled

incrementally by some existing EDA tools by following proper techniques,

which we describe in the following subsections. If the instrumentation was

added at the source level, however, this would not be possible as the source

code itself is changed and there is no guarantee that the RTL corresponding

to the user circuit is the same as before.

In-System Assertion Based Verification

A common approach for debugging a software application is to use asser-

tions. These assertion checks could be used for C code which is to be con-

verted into a RTL implementation by the HLS tool, however it would not

be helpful for finding those bugs which occur only during the actual execu-

tion of the circuit. Works like [14, 26] make the assertion based verification

practical for an HLS application by actually synthesizing these assertion

statements into assertion checker circuits (which are implemented on the

same FPGA as the user circuit) and notifying the user of assertion failures

by verifying them with the actual execution of the circuit running at its

speed on an FPGA. Clearly, as the number of assertions increase, the area

utilized by the assertion checkers would also increase which is usually not

desirable. Also, if the assertions had to be changed, it would require run-

ning the HLS flow again along with a full compilation in order to reprogram

the FPGA. Our work focuses on avoiding such full recompilations between

successive debug iterations using incremental compilation techniques.

The majority of the in-system HLS debugging approaches described in the

previous subsections [10, 20, 21, 53, 55, 62] were trace-based, i.e. they use on-

chip trace buffers to store the circuit execution and later replay it to the user,

providing the same debugging environment as that of a software simulation.

Some of the works [21, 53] also tried to improve the trace buffer utilization

23

2.4. Incremental debugging Approaches

by proposing different optimization techniques. However, by using selective

variable tracing, the trace length could be much higher since fewer variables

are recorded. This approach may require running the design several times,

recording a different subset of variables each time. Doing this requires a

recompilation of the RTL. A few approaches have been recently published

and are described in Section 2.4 which try to reduce the recompilation time

between successive debug turns.

2.4 Incremental debugging Approaches

Incremental debugging Using Commercial EDA Tools

Commercial EDA tools like Intel Quartus Prime and Xilinx Vivado have

incremental compilation features [42, 73] which allow the user to preserve

placement and routing for the unchanged portion of a design from previous

compilation. With the help of these features, SignalTap II [40] and the

Vivado ILA ELA’s [75] can be used to perform incremental debugging. The

following paragraphs describe the steps to be followed to achieve this.

Using Intel’s SignalTap II: Incremental Debug can be performed by

using SignalTap II with the help of Quartus Prime’s Incremental Compi-

lation techniques. In general, to perform an incremental compilation in

Quartus Prime, the project has to be divided into design partitions [40] (by

default it has one top partition which encompasses the whole design) and

the preservation level for these partitions must be set to POST FIT; this

directs the tool to use the place and route results for this partition from

the previous compilation. If it doesn’t exist, then the tool performs a full

compilation for that partition. The idea is to place and route each design

partition separately in the first compilation, avoiding any cross partition

optimizations. This makes it possible to make changes in one or more de-

sign partitions and just compile those partitions while preserving the details

for other unchanged partitions, leading to a significant reduction in compile

times. We use this incremental compilation technique in our debug flows

24

2.4. Incremental debugging Approaches

(refer to Chapter 4) to allow in-system source level incremental debugging

for HLS generated circuits. Quartus Prime also provides Rapid Recompile,

in which creating the design partitions is not mandatory and the tool au-

tomatically tries to preserve the placement and routing from the previous

compilation, as much as possible. However, through a series of experiments

we determined that this option is optimized for minor changes and was not

effective for the amount of changes that occur when we modify our debug

instrumentation. Hence, we do not consider it for our work.

In a normal debugging flow using SignalTap II, the user has to first

determine the signals to be observed (which are visible after running an

Analysis and Elaboration step or a full compilation of the user design), define

trigger conditions and other configuration details in a SignalTap file (.stp

file in Quartus Prime) and add it to the project. Then, a full compilation

must be done in order to insert the SignalTap II IP core into the design.

The user circuit and the SignalTap II logic are treated as a single design

partition and placed and routed simultaneously without any restrictions.

Therefore, if the signals to be recorded are changed, the SignalTap II logic

and hence the whole design partition is considered changed, requiring a full

recompilation.

To perform incremental debugging using SignalTap II, Incremental Com-

pilation for the design should be enabled by changing the preservation level

to POST FIT for the default top partition or by creating other partitions if

required and changing the preservation settings accordingly. Next, the same

steps are to be followed as described in the earlier paragraph to create and

add a .stp file to the project. When a first compilation is run the tool now

considers the SignalTap II logic as a separate design partition and isolates it

from the user design partitions. If the signals to be observed are changed or

the trigger conditions are changed, then the tool would try to incrementally

route the new signals to the SignalTap II logic. If this routing was somehow

not possible then it would had to recompile the user partition too. This

causes only the SignalTap II partition to change while preserving the user

design partitions, thus reducing the compilation time significantly.

However, when we inserted a customized debug instrumentation instead

25

2.4. Incremental debugging Approaches

of the SignalTap II ELA core and performed an incremental compilation

(using Quartus Prime) changing the signals to be observed, the user design

partitions were also considered changed as the debug taps into the user

circuit were changing each time. This is described in Chapter 4 along with

our proposed solution to avoid such situations. When SignalTap II is used,

the taps are added/changed automatically by the tool and it does this after

preserving the placement and routing for the user design partitions from

previous compilation, however when customized debug instrumentation is

added the taps need to be changed at the RTL level itself by modifying the

ports of certain design partitions (since we can’t modify the internals of the

tool). Moreover, the debugging would be at the RTL level as the information

gathered by the EDA tool (Quartus Prime) would correspond to the RTL

signals (as described in Section 2.3.1). In this thesis, these techniques are

applied to a source level debugging flow [20] to make the debug process

easier, efficient and faster for an HLS user.

Using Xilinx’s Vivado ILA: Xilinx’s Vivado design suite also provides

support for incremental compilation. It does not have the concept of design

partitions, but instead uses a design checkpoint file (DCP) as a reference to

preserve the data for placement and routing from any of the previous com-

pilations. After a full implementation is run for a design, a new incremental

implementation can be started after making any changes to the design and

providing the routed design from the previous implementation as the DCP

file. This uses the placement and routing for the unchanged logic from the

DCP file and incrementally places and routes the changed portion of the

design.

This feature can be used along with the ILA [75] to perform incremental

in-system debugging. In the first implementation, an ILA debug core can be

added to the design and interesting signals can be selected for observation.

In the subsequent implementations, if the set of signals selected is changed

then an incremental implementation can be run by preserving the placement

and routing from previous compilations using a checkpoint file. Once the

implementations are run, the recorded RTL signals can be read from the

26

2.4. Incremental debugging Approaches

debug core and interpreted as waveforms using Vivado’s interface. If this

is to be used with the RTL generated by the HLS tool then the debugging

would be at the RTL level and additional mapping information would be

required to relate these signals to the source code variables in order to make

it more meaningful for an HLS user.

Using RapidSmith

RapidSmith [48] is an open-source set of tools and API’s that could be used

to perform any stage of a CAD flow such as placement or routing for Xilinx

FPGA’s. This is possible by reading the intermediate results from the Xilinx

Vivado design suite after a particular stage (using XDL [7]), performing

the required tasks using RapidSmith and then communicating the results

back to the Xilinx Vivado design suite, which could complete the rest of

the stages in a CAD flow and finally generate the bitstream for an FPGA.

Using RapidSmith, an incremental place and route tool could be created

based on the user requirements instead of using the commercial incremental

flow from Vivado, in order to have fine-grain control over the incremental

algorithms. However, implementing this is very time consuming and lacks

proper documentation/support as this is known to a smaller community

when compared to that of a commercial tool.

The work by Hutchings and Keeley [35] is closely related to this thesis.

They use RapidSmith to incrementally add or modify the debug instru-

mentation after performing the place and route for user circuit using the

left over resources. Their instrumentation is simple and consists of a small

number of trace buffers with a small trigger circuit. When inserting this in-

strumentation, the required RTL signals are connected (routed) to the trace

buffer and the trigger circuit inputs. The trace buffers would record the

value of the signals connected to them in each cycle as there is no additional

compression/scheduling logic inserted, resulting in a poor utilization of the

memories. In the subsequent incremental compilations when the set of sig-

nals to be traced is changed, only a few signals have to be re-routed. If the

trigger circuitry needs to be changed then a small amount of logic had to

27

2.4. Incremental debugging Approaches

be re-placed and re-routed, leading to a significant reduction in the compile

times.

In this thesis, we implement the idea of adding the instrumentation after

the place and route of user circuit in one of our debug flows (in order not

to disturb the user circuit) but our work is different from their’s [35] in

the following aspects: 1) This thesis focuses on source-level incremental

debug for the HLS generated circuits rather than RTL level. 2) We use

a commercial incremental flow available in Intel Quartus Prime which is

mature when compared to that of an open-source tool (Rapidsmith). 3) Our

instrumentation that needs to be changed during an incremental recompile

is much more than just adding a few routes and the work in [35] does not

quantify how effective their incremental algorithms are for recompiling such

significant amount of changes incrementally.

Using Debug Overlays

A debug overlay is a virtual customized fabric which can be implemented on

the same FPGA along with the user circuit during debugging. This overlay

could be compiled simultaneously with the user circuit or could be compiled

to the FPGA after the place and route of the user circuit (in which case

the presence of the overlay would not perturb the user circuit). The idea

is to create an overlay architecture which could be quickly configured to

implement the required debug instrumentation circuitry during each debug

iteration. This avoids recompilation of the whole design and could be faster

than incremental debugging using ELA’s as the amount of logic that has to

be reconfigured/recompiled in case of overlays is usually much smaller when

compared to recompiling the whole debug partition as in the ELA approach.

Hung and Wilton proposed an virtual overlay network for trace buffers

[33] in which they used the leftover routing resources to create an over-

lay where all the user signals were connected to the inputs of at least one

trace buffer. After compiling this overlay to an FPGA, during debugging

the user can select a subset of signals for tracing (limited to number of the

trace buffer inputs). In the subsequent iterations the user can change the

28

2.4. Incremental debugging Approaches

signals he/she wishes to observe and this would just require the reconfigu-

ration of routing multiplexers internal to the overlay. Such reconfiguration

can be done using partial reconfiguration or bitstream modifications (as in

[24]) within a few seconds. This work does not implement any trigger cir-

cuitry or other compression logic, which leads to poor utilization of the trace

buffers. The follow up works by Eslami and Wilton [15, 16] presented an

overlay architecture for inserting trigger circuits incrementally. They used

the leftover logic blocks and routing resources to create this overlay which

was compiled to the FPGA after the routing of the user circuit. While de-

bugging, a trigger function is mapped to this overlay using their own routing

aware placement algorithm (because of the limited routing flexibility in the

overlay). If the trigger function has to be changed then it is remapped to

the overlay. This is faster than the incremental recompilation of the whole

debug partition directly to an FPGA without an overlay. In all of these

overlay works [15, 16, 32], the debugging is done for the circuits described

at RTL level and its feasibility has not yet been investigated for debugging

HLS generated circuits.

However, creating an overlay architecture supporting a wide range of

trigger circuits and trace signal connections would be expensive in terms of

area and sometimes there may not be enough leftover resources to build the

overlay. Moreover, as the size of the overlay architecture grows, the time

taken to incrementally map the debug instrumentation to it would also grow.

Considering the complexity and uniqueness of our debug instrumentation

(customized for each subset of signals to be observed), building an overlay

architecture with such flexibilities to support incremental flow would be very

difficult without having significant area/performance overheads and reduced

compile time benefits. To our knowledge, overlays have not been targeted

for debugging HLS generated circuits at the source level.

Other Techniques

Other works used different approaches to increase the size of the circuit’s

execution trace stored in the trace buffers to accelerate the in-system debug-

29

2.4. Incremental debugging Approaches

ging process. Most of them focus on debugging at the RTL level, but could

be extended for debugging at source-level for an HLS user by maintaining

additional mapping information to relate the RTL signals back to the source

code variables.

Bitstream Modifications: In [24], Graham et al. modify the bitstream

(which is used to configure the FPGA to implement the desired circuit) itself

to instrument the debugging hardware. The debugging circuit, essentially

an embedded logic analyzer was added to the design before compiling the

user circuit only, however, there were no connections made between the user

and the debug logic. During debugging, when the user selects/changes the

signals to be traced (to gain benefits from selective signal tracing), JRoute- a

run-time routing API [45] was used to determine the routing for the selected

signals and the JBits API interface [25] was used to modify the bitstream

accordingly. In [63], the authors use a similar approach and pre-connect

(before the first compilation of the user circuit) the signals of interest to

routing muxes which forward the signals to FPGA I/O pins instead of on-

chip trace buffers. Then an external analyzer was used to analyze the signals

coming from the FPGA.

These approaches for routing a small number of signals incrementally are

very fast when compared to an incremental compilation, but if the entire

debug instrumentation has to be changed then the runtime advantages are

not clear. Moreover, bitstream modifications are supported by only few of

the commercial FPGA’s which limits the use of such approaches.

Lossy/Lossless Compression Techniques: Generic data compression

techniques could be used to compress the debug data before writing it to

the trace buffers in order to pack more information. However, the amount of

compression achieved would vary significantly depending on the debug data

as these techniques are not customized. In [5] the authors investigate the

use of Bentley-Sleator-Tarjan-Wei (BSTW) [9] and a modified Lempel-Ziv

based [44] lossless data compression algorithms for embedded logic analysis

of a circuit running on an FPGA and propose architectures for doing so

30

2.4. Incremental debugging Approaches

efficiently. In [4], the authors make use of lossy compression techniques in

the first debug iteration to record the intervals of circuit execution in the

form of a signature. Then the failing signatures were detected and only the

signals from these intervals were recorded in the next debug iterations ignor-

ing the signals from other error free intervals, increasing the observability

into the circuit. These compression techniques can be used along with our

incremental flows with selected tracing to further accelerate the debugging

process.

Using Off-Chip Memories: External storage devices can be used to

store the debug data instead of the limited on-chip memories. The debug-

ging time would then be reduced by a greater extent since the size of the

execution traces stored would be much higher. However, the amount of the

debugging data generated in each cycle (bandwidth) by a circuit running

at-speed is much higher compared to the bandwidth of these external mem-

ories [6], meaning fewer signals have to be traced in each debug iteration.

Alternatively, it is possible to use an on-chip buffer to hold the data until it

is written to the off-chip memory [1].

Recent work by Jeff Goeders [18] focused on optimization techniques

to reduce bandwidth of the data generated in order to use off-chip storage

devices to achieve long debug traces for HLS generated circuits.

The most common method of reducing bandwidth requirements is to

observe fewer selected variables (selective variable tracing). Combining the

use of off-chip memories with selective variable tracing would further ease

and accelerate the debug process. However, as described in Section 1.4,

this may require several debug iterations with a different subset of variables

being observed each time to find a bug. This requires full recompilations

between each debug iteration. This thesis focuses on solving this issue and

our proposed incremental debug flows as described in Chapter 4 eliminate

these full recompilations.

31

2.5. Summary

2.5 Summary

This chapter described previous work which focused on in-system debugging

of circuits running on an FPGA. The majority of these works used a trace-

based approach where debug instrumentation is added to record the circuit

execution and replay it later. This has numerous advantages over other scan-

based approaches. Some of these previous works were specific to circuits

described at the RTL level and required the user to have an understanding

of the underlying hardware to get the most out of the debug data while

others were targeted for HLS generated circuits and allowed for debugging

at the source level by mapping the RTL signals back to the source code

variables making it more appropriate for an HLS user.

The goal of any trace-based approach is to record as much data as pos-

sible in order to provide greater visibility into a circuit’s execution to speed

up the debugging process. To achieve this, some of the works described in

this chapter used customized instrumentation to compress the debug data

that must be recorded in order to store longer circuit traces. This makes

it easier to find the root cause of a bug by providing observability into a

significant portion of the circuit execution. On the other hand some works

made use of incremental techniques or overlays to observe a different subset

of signals (selective signal tracing) in each debug iteration without the need

for full recompilations. When fewer signals are recorded in an debug itera-

tion, the trace buffers would be updated less frequently resulting in longer

circuit execution traces which would help pin-point the bug. If the selected

signals do not provide sufficient information to identify the bug, the selected

signals can be changed and another iteration is performed. However, using

incremental compilation, the turn-around time between the iterations is sig-

nificantly reduced. In addition, these incremental techniques could also be

used to add the debug instrumentation after the place and route of the user

circuit, thus not affecting the timing for the user circuit.

In this thesis, we accelerate a source level in-system debugging approach

for HLS generated circuits [23] by combining both of these approaches. Cus-

tomized compression logic is added to the instrumentation to pack the de-

32

2.5. Summary

bug data efficiently and the incremental compilation techniques are used

to record selected variables in each debug iteration, leading to much better

utilization of the trace buffers.

33

Chapter 3

The Debugging Framework

3.1 Overview

This chapter describes the debugging framework used to illustrate our ideas.

Section 3.2 gives a brief overview of the debugging framework. Section 3.3

describes the optimizations used by the framework to improve the trace

buffer utilization in order to have a larger trace window. Section 3.5 focuses

on the limitations of the framework to perform selective variable tracing and

our proposed methodology to overcome them. Finally Section 3.6 concludes

this chapter.

3.2 Framework

The adopted debugging framework was developed by Jeffrey Goeders dur-

ing his Ph.D at UBC and is referred to as Goeders’s framework hereafter.

References [19–23] provide the details about the framework and the opti-

mizations used. Although it has been introduced in Section 2.3.2, in this

and the following sections, we briefly describe the debugging flow and the

trace buffer optimizations, which are most relevant to this thesis.

Goeders’s framework has been designed to work with the LegUp [12] HLS

tool; however, it could be easily extended to support other HLS tools. This

framework uses a trace-based approach along with a debug database (which

contains a mapping between the source code variables and the RTL signals)

to provide a source level in-system debugging facility. It can be operated in

two modes: live interactive mode and replay mode. In live mode, the user

can single-step through the circuit execution and retrieve the state of the

circuit from the FPGA by pausing the circuit and reading the latest entries

34

3.2. Framework

FPGA

Datapath

Variables in
on-chip
memory

Control FSMs

Stepping
and

Breakpoint
Unit

Debug Manager and Communications

State
Encoder

One Hot State

Enable

Control
Signal

Datapath
Signals

Memory
Signals

Trace
Scheduler

Control/Data
Trace Buffer

Trace Recorder

User Circuit

Figure 3.1: Debug Instrumentation

from the trace buffers. However, interrupting the circuit’s execution may

introduce additional bugs and is not always practical. In this thesis, we

focus on replay mode in which the circuit is executed at-speed until a set

breakpoint while recording the circuit’s state in trace buffers. The circuit’s

execution is then replayed to the user using the information from these

trace buffers. The debug instrumentation required to support the replay

mode including the trace buffers are added at the RTL level. This is done

by modifying the LegUp tool to automatically insert the required debug

circuitry into the generated RTL.

3.2.1 Debug Instrumentation

Figure 3.1 shows the instrumentation added by the HLS tool. It consists of

the following components:

Debug Manager: It acts as a communication bridge between the debug-

ger application (which can be launched as a GUI on the user’s workstation)

35

3.2. Framework

and the instrumented debug modules. It receives all the message requests

from the GUI through a serial interface and forwards them to the respective

module and vice-versa. It is this module which is responsible for reading

the trace buffers and sending the information to the GUI in order to display

the variable values while replaying the circuit’s execution.

Stepping and Breakpoint Unit: This unit controls the execution of the

circuit by starting or stopping it whenever the set breakpoints are reached.

The debug manager forwards the information about the added breakpoints

and this module then generates an enable/disable signal to start/pause the

circuit running on the FPGA when the circuit reaches the corresponding

state.

State Encoder: It is necessary to record the control flow information

(sequence of circuit states) in addition to the dataflow information(variable

values) to replay the circuit behavior accurately. The circuit generated by

LegUp uses one-hot encoding for its FSM’s (Finite State Machines). These

one-hot state signals are very wide and are therefore encoded/compressed

by a state encoder module before recording them in order to improve the

trace buffer utilization.

Trace Recorder: The heart of the instrumentation is an on-chip memory,

known as a trace buffer. It is used to record the necessary information to

replay the circuit execution for debugging purposes. Typically, it stores three

types of data: (1) a history of variables that have been mapped to registers

and logic in the datapath of the user circuit, (2) a history of variables that

have been mapped to a global memory in the user circuit, and (3) a history of

control flow information that describes the sequence of basic blocks executed.

Each of these could be stored in a single buffer or separate buffers.

The Trace Recorder shown in Figure 3.1 encompasses this trace buffer

along with the associated logic to improve its utilization. The following

sections describe the architecture of the trace recorder along with the opti-

mizations used to pack the trace buffer efficiently.

36

3.3. Trace Buffer Optimizations

S1

S2

S3 S4

S5

S6

Figure 3.2: Control Flow Optimization

3.3 Trace Buffer Optimizations

Since the trace buffer is of a limited size (100Kb in [23]), we cannot store the

entire run-time history of all variables and control flow information. Instead,

the buffer is configured as a circular memory, so that new entries evict the

oldest entries. This means that, when debugging, the user can only view

the behavior of variables and control for a sliding portion of the execution

(called the “trace window”). Clearly, the more efficiently data can be stored

in the trace buffer, the longer the trace window, and the fewer debug turns

that will typically be required.

We used a combined buffer to record the required control signals, mem-

ory and the datapath register signals in each cycle of the circuit execution.

However, each of these signals are compressed using different optimization

techniques [23] and are then packed together into a single word, which is

written to the trace buffer. The effect of these optimizations are recorded in

37

3.3. Trace Buffer Optimizations

the database in order to accurately link the information back to the source

code variables.

3.3.1 Control Flow Optimization

In order to trace the control flow of a circuit’s execution, frameworks like

[10, 40] record the FSM state value each cycle. The number of bits required

to trace this information is proportional to the total number of states present

in the control flow graph of the design. However, we find that instead of

recording every state transition, it is enough to record in only those states

previous to a state with multiple predecessors (for the rest of the states,

it is obvious as it could only be reached from a single predecessor). With

the help of this information and the control flow graph (which is available

from the HLS compilation), the full control flow of the circuit execution

can be reconstructed off-line. Therefore, as we are only recording in certain

states, we can essentially number these states with a new numbering, which

will require fewer bits than that required for numbering all the states. Our

framework identifies the possible states that may need to be recorded and

re-numbers them. We achieve a significant improvement using this opti-

mization as we only have to record the state information (reduced number

of bits) in these fewer states which are followed by a state with multiple

predecessors.

Figure 3.2 shows an example control flow graph (CFG). Frameworks like

[10, 40] would require 3 bits (in order to distinguish 6 possible states) of

control flow information to be recorded in each cycle. However, if we look

at the CFG, there are only two possible executions (S1-S2-S3-S5-S6 or S1-

S2-S4-S5-S6) and therefore it is enough if we record only when the circuit is

in S3 or S4 (shown in red color in the Figure 3.2), which would require only

1 bit. This significantly reduces the amount of control flow information to

be recorded.

38

3.3. Trace Buffer Optimizations

3.3.2 Dynamic Tracing of Datapath Register Signals

Unlike commercial ELA’s [40, 75] which record all the datapath registers in

each cycle, our framework adds custom circuitry known as a trace scheduler

which dynamically selects what signals should be recorded in each cycle.

The trace scheduler block uses the HLS scheduling information to record

only the active datapath registers (only those which are updated) similar to

the approach used in [53]. However, there are several other optimizations

proposed by Goeders and Wilton in [23], to further improve the trace buffer

utilization in order to have longer trace window.

Delay-Worst Signal-Trace Scheduling: Instead of recording the sig-

nals in the same cycle as they are generated, they could be delayed and

recorded in any of the following cycles. Any such rescheduling of the signals

is stored in the database, which allows for the perfect reconstruction of the

trace information. Delayed recording of some signals in a worst-case state

could reduce the width of the trace buffers and improve the trace window

size significantly, especially when there are few entries with the worst case

width and the rest of the entries are partially filled. Our framework recur-

sively identifies the worst-case state and tries to delay some signals to achieve

the best possible width. Figure 3.3(a) shows an example of the delay-worst

scheduling. As seen, by delaying r10 and recording it in S6 instead of S2,

the trace buffer width could be reduced.

Delay-All Signal-Trace Scheduling: Unlike the delay-worst scheduling,

this optimization tries to delay the entry of all the signals that are updated

in a state to a later state without increasing the width of the buffer. The

algorithm iterates through the entries of all the states, combining them

whenever possible. As a result, the rate at which the number of entries

recorded in the trace buffer is reduced leading to a much larger trace window.

Figure 3.3(b) shows an example of this optimization where the entry for S1

is removed by moving those signal updates to S7, providing space for more

updates to be recorded.

39

3.3. Trace Buffer Optimizations

In addition to the datapath registers, LegUp HLS tool stores certain vari-

ables (like arrays or global variables) in on-chip memories driven by a mem-

ory controller logic. In order to replay the circuit execution, it is also nec-

essary to record updates to these memory variables. There may be several

on-chip memories and different memory controller signals could be driving

them. It is enough to store only those memory controller signals which are

updated in each cycle instead of recording all of them. This is identical

to the datapath register signal tracing problem and hence the same signal-

trace scheduling optimizations are used for memory updates. In fact the

same trace scheduler block is used for both the datapath register and the

memory signals to output the active signals in the form of a single word

(can be seen in Figure 3.1).

As mentioned earlier in this section, we use a single trace buffer to record

the control, memory and datapath register updates. Therefore, in a given

cycle the output of the combined datapath register and memory signal-trace

scheduler plus the control state signal (if it needs to be recorded in that cycle)

are combined into a single entry which is written to the trace buffer.

Dual-Ported Memory Signal-Trace Scheduling: In addition to the

above described signal-trace scheduling optimizations, the dual ported mem-

ory architecture offered by FPGA’s can be leveraged to further improve trace

buffer utilization. The single word which is to be written to the trace buffer

can now be split into half and written in two entries on the same clock cycle

using the available dual ports for the memory buffer. The improvements

from this optimization occurs in entries where less than half of the trace

buffer width is required as this corresponds to a single entry now instead

of two entries. Figure 3.3(c) shows an example where S5 requires a single

entry instead of two entries.

With all these dynamic signal-tracing optimizations, the length of the

circuit execution that could be traced is improved by more than 127X when

compared to commercial ELAs such as [40, 75].

40

3.4. Debug Flow

Linking the Control and Data flow Information

During the HLS compilation process, the information related to the mapping

of the source code variables to the RTL signals, which FSM states have an

entry in the trace buffer and which signals are updated in those states are

saved in a debug database. While debugging, the information from the

trace buffer is retrieved and the control/data flow of the circuit’s execution

is reconstructed off-line. When filling the last entry in the trace scheduler,

it is ensured that the control state information is also recorded even though

the control flow optimization may decide not to record it. With the help

of this state information and the HLS scheduling information we can read

the trace buffer backwards and link the signal update information to the

corresponding states, which is later mapped back to the source code variable

using the mapping information stored in the debug database.

3.4 Debug Flow

Figure 3.4 shows the overall debug flow for this framework. The user first

compiles C code to HDL using LegUp, an open-source HLS tool (LegUp [12]).

The HLS tool automatically adds instrumentation to the RTL circuit to

record the behavior of all user-visible variables. The circuit is then com-

piled using a vendor-specific tool-chain and implemented on an FPGA. As

the FPGA runs, the instrumentation records a history of variables and con-

trol flow information in an on-chip memory. After the run is complete or

when a breakpoint is reached, the user launches a debug GUI on a work-

station which connects to the FPGA and downloads the trace history. The

GUI uses this history to provide a software-like debug experience. The user

is able to step through the recorded execution in an attempt to understand

the operation of the design and deduce the root cause of any unexpected

behavior. As the user refines his or her view of the operation of the circuit,

he or she may run the circuit again possibly with a different breakpoint,

providing visibility into a different part of the circuit execution. Re-running

this circuit in this way is called a “debug turn”; often many debug turns are

41

3.5. Selective Variable Tracing

required to pin-point a bug.

3.5 Selective Variable Tracing

Even though different parts of the circuit execution can be observed using

the original debug flow, the size of the trace window is fixed in each debug

turn. This is because of the fact that all user visible variables are being

recorded in each debug turn. Being able to examine the value of any variable

mimics the software debug experience. For some debug scenarios, however,

it may be sufficient to record fewer variables. As an example, if the user

has narrowed down the cause of a bug to a particular function, it may be

sufficient to only trace variables within that function. Alternatively, if the

user knows that certain variables are unimportant to a particular bug, they

can be excluded from tracing. Recording a smaller number of variables can

increase the size of the trace window in two ways. First, fewer variables may

mean the trace memory can be narrower. Given a fixed trace buffer size,

this means a deeper trace buffer, meaning a longer history for each variable

can be recorded. Second, recording fewer variables may mean that there

are more cycles in which no value is recorded, meaning the trace buffer is

filled more slowly. Increasing the trace window will provide more visibility

into the execution of the hardware, hopefully reducing the number of debug

turns required to uncover the root cause of unexpected behavior.

A second advantage of recording only a subset of variables is that the

instrumentation logic itself will be smaller. For designs that are area con-

strained, there may not be sufficient unused resources to implement and

route the debug logic which captures all variables. For these cases, selecting

a subset of variables to observe may be the only possible way of providing

the user with debugging capabilities.

For recording only a subset of user-visible variables, the original flow from

Figure 3.4 can be used directly. However, as debugging proceeds and the

user narrows down the cause of a bug, he or she may wish to change which

variables are instrumented. In our considered framework [23], changing the

instrumentation in this way requires a rerun of the HLS flow to generate

42

3.6. Summary

the new required connections between the user and debug modules and also

a different trace-scheduling logic to efficiently pack the signals to be traced

in each cycle using different optimizations described in the previous section,

resulting in a different RTL. This would require a complete recompile of the

design, including a lengthy place-and-route to re-implement the circuit on

an FPGA. This significantly impacts debug productivity.

In this thesis, we address the problem of length recompilations using

incremental design techniques offered by a commercial FPGA vendor tool-

Intel Quartus II and reduce the turn-around time between the successive

debug turns significantly. Chapter 4 describes our incremental debug flows.

3.6 Summary

In this chapter, the debugging framework used to prototype our ideas was

described along with different signal-trace optimizations used to improve

the utilization of the trace buffer (trace window). In addition to these op-

timizations, how the selective variable tracing improves the trace window

size leading to fewer debug turns is elaborated in the context of our adopted

framework. Finally, the problems associated with selective variable tracing

and our proposed approach to overcome them are presented.

43

3.6. Summary

r1r4

r6r8r9

r12r14r10

a) Delay-Worst Scheduling

r1

r9 r6

r4

r8r10

r12r14

S1

S2

S6

S1

S2

S6

r1

r9

r6

r4

r10 r12r14

S1

S7

S8

r1

r9

r6r4

r10 r12r14

S7

S8

b) Delay-All Scheduling

r1

r9 r6

r4

r8r10

r12r14

S1

S3

S5

r1

r4

r6r8

r9r10

r12r14

S1

S1

S3

S3

S5

c) Dual-Port Scheduling

Figure 3.3: Dynamic Signal Tracing Optimizations

’Si’ indicates the state and ’ri’ indicates the datapath/memory signals that
are being recorded.

44

3.6. Summary

Compile C to RTL

and add

instrumentation

Place and Route

and Configure

FPGA

Run

View and Analyze

Captured Data
Root Cause

Determined?

Optional: remove

instrumentation

Design

Yes

No. Change Breakpoint

Figure 3.4: Original Debug Flow

45

Chapter 4

Incremental Debug Flows

4.1 Overview

In this chapter we compare different incremental debug flows for the adopted

HLS debug framework [23]. As described in Section 1.6, unlike the incre-

mental debug flows associated with the commercial ELA’s, the amount of

logic that needs to be recompiled in each debug iteration for our case is

significant.

FPGA vendors provide the ability to guide the place and route tools

to recompile only the parts of a circuit that have changed since a previous

compilation rather than recompiling the whole circuit. This promises to not

only decrease debug turn-around time, but also maintain timing in the user

circuit between debug iterations. However, a direct use of such incremental

features does not work well; Section 4.2.1 describes this approach.

Using incremental compilation, however, requires a careful selection of

the flow to balance the impact on area and delay of the user circuit, the area

and delay of the instrumentation, and the compilation run-time. Further,

we desire a flow which allows the instrumentation logic to be removed after

debugging has completed, with as little impact on circuit timing as possible.

We developed two promising flows that try to balance these metrics.

Section 4.2.2 presents an incremental debug flow in which we modify

the user partition to add permanent taps to facilitate efficient incremental

recompilation. Section 4.2.3 describes another incremental debug flow which

is non-intrusive to the user circuit as the debug instrumentation is added

after the compilation of the user partition. In Section 4.3, we introduce the

GUI framework developed to automate these incremental flows. Section 4.4

concludes this chapter.

46

Baseline Flow

Baseline Flow

The baseline flow (Flow 1) is as described in Section 3.4 and shown in

Figure 3.4. All user-visible variables are recorded and the circuit is compiled

only once. However, using various breakpoints different time periods within

the circuit execution can be observed. This flow does not use incremental

compilation.

4.2 Incremental Flows

Commercial ELA’s like SignalTap II [40] offer support for incremental RTL

debug. As described in Section 2.4, since these IP blocks have to support

wide range of circuits, they are very simple and consist of a generic trigger

circuitry and trace buffers. While doing incremental debug, as the signals to

be recorded are changed, the tool just needs to perform incremental routing

in order to change the necessary connections. However, our case is more

complicated because the debug instrumentation is customized based on the

signals that are being recorded mainly due to the trace buffer optimizations

described in Section 3.3. In addition, as the debug instrumentation is added

at the RTL level, the design partitions are modified each time the variables

recorded are changed.

4.2.1 A Naive Incremental Flow

In this incremental debug flow (Flow 2), we allow the user to select a subset

of the user-visible variables to record. The source code is then compiled us-

ing the LegUp [12] HLS tool which is modified to insert the required debug

instrumentation as in the original framework [23]. However, as shown in

Figure 4.1, separate design partitions (to enable incremental compilation)

for the user circuit and the instrumentation are constructed without restrict-

ing them to a specific physical region on the FPGA using fully automated

scripts and the GUI interface (modified version of that from [23] and is de-

scribed in Section 4.3). Based on the variables selected, the user circuit and

instrumentation partitions are modified; the user circuit partition is mod-

47

4.2. Incremental Flows

ified to insert “taps” and the debug partition is modified to compress and

record those signals in trace buffers. To obtain this debug logic, the LegUp

HLS tool is run again with the selected signals. The design is then compiled

using incremental techniques (from Intel’s Quartus Prime 16.0). The circuit

is run, and the history of selected variables are stored in the trace buffer;

after the run is complete, the trace information is extracted and used with

our modified debug GUI which allows the user to replay the execution in the

context of the original software. The user may then choose to instrument a

different set of variables, in which case the instrumentation is modified and

the incremental compilation is repeated where the tool tries to incrementally

place and route the changed partitions while preserving the partitions which

have not been changed, as described in Section 2.4.

Intuitively, compared to Flow 1, this should result in better utilization of

the trace buffer as fewer variables are being recorded, leading to longer trace

windows and also reduced debug instrumentation area. However, because

both the user circuit (taps) and the debug instrumentation (Trace Scheduler)

change every iteration, the ability of the incremental algorithm to reduce

compile time is limited and may also result in a recompilation of the user

circuit which is not desirable as the timing paths in the circuit could be

altered. As a result, even if the user wants to remove the instrumentation

after the debugging, the user partition may have to be recompiled. In the

next section, we describe another incremental flow which tries to preserve

the place-and-route results for the user partition and only recompile the

debug partition when the variables to be recorded are changed.

4.2.2 Incremental Flow with Permanent Taps

In this incremental flow (Flow 3), changes are localized to the instrumented

circuit. The key idea is to ensure that all taps in the user circuit are main-

tained, even if the corresponding variables are not observed. In this flow,

as shown in Figure 4.2, we once again use separate user circuit and debug

instrumentation partitions. Unlike Flow 2, taps for all user-visible variables

are added within the user partition, and these taps do not change during the

48

4.2. Incremental Flows

entire debugging process. The taps (ports) which are not being used in the

current debug turn are not optimized away as the EDA tool (Quartus Prime)

treats the unused ports across the partitions as virtual pins that are tem-

porarily mapped to logic elements (Look Up Table–LUT) which can later

be connected to require ports in the subsequent debug turns without the

need for full recompilation. In order to add these taps, the RTL generated

by the framework in [23] was restructured and modified accordingly. We

developed fully automated scripts and a GUI to perform these steps, hiding

everything from the user’s point of view, which we think is very important

for user productivity. The GUI is briefly described in Section 4.3.

Because of these permanent taps, as the user changes which variables are

observed, only the debug partition is modified and the user partition is not

changed. Intuitively, this will achieve the same trace buffer utilization as

Flow 2, however, it will be able to take better advantage of the incremental

compilation features in the place and route tool, leading to faster debug

iterations. However, the fact that taps are added within the user circuit for

all variables means that the instrumented user circuit may run somewhat

slower than the uninstrumented design.

As the debug instrumentation partition and the user circuit partition

are compiled at the same time, the performance of the user circuit may be

affected as it is not able to use all the available FPGA resources. In this flow,

if the user chooses to remove the debug instrumentation after the debugging

has been completed, it could be removed incrementally without the need for

full compilation, however, since the first compilation is not fully optimized

for the user circuit, he/she would need to be satisfied with the obtained

performance.

4.2.3 Incremental Flow with Permanent Taps and Late

Binding

In Flows 2 and 3, the presence of the instrumentation may negatively impact

the performance obtained for the user circuit (for example, by “inflating” the

user circuit if some of the instrumentation logic is placed within the bound-

49

4.2. Incremental Flows

aries of the user circuit). This is undesirable for two reasons: (1) adding the

instrumentation during the first compilation changes timing paths within

the user circuit, possibly hiding bugs that are being sought or exposing new

ones, and (2) after debug is complete, and the instrumentation is removed,

either a full recompile of the user circuit is required, possibly leading to new

timing behaviors, or the designer must be satisfied with the lower perfor-

mance of the design.

In Flow 4, as shown in Figure 4.3, we maintain user and debug in-

strumentation partitions along with the permanent taps added to the user

partition as in Flow 3. However, unlike Flows 2 and 3, we perform an initial

compilation with an empty debug partition (no logic). No physical region

on the FPGA is reserved for this empty debug partition initially. This al-

lows the user partition to be well optimized as it is not interfered by the

debug instrumentation partition. During debugging, we then replace the

empty debug partition with a partial trace scheduler corresponding to the

variables that are being recorded, and debug as before. This debug partition

would now be placed and routed using the leftover FPGA resources.

Intuitively, compared to Flow 3, this flow will lead to the fastest perfor-

mance of the user circuit. However, when the instrumentation is added, we

would expect the performance of the instrumented circuit to be lower than

that in Flow 3, since the instrumentation is optimized separately from the

user circuit and may now contain the timing critical paths. This means that,

during debugging, it may be necessary to slow the clock slightly; whether

this is acceptable depends on the design and system in which the design is

being used. Once debugging has been completed, the user may choose to

remove the instrumentation incrementally without the need for full recom-

pilation and the circuit can now be run at the original (uninstrumented)

clock frequency that was obtained during the first compilation.

50

4.2. Incremental Flows

Add instrumentation to record
select signals

Root Cause

Determined?

User
Circuit

Partition

Debug Partition

T
ra

c
e

S
c
h

e
d

u
le

r

O
th

e
r

D
e
b

u
g

C
ir
c
u

it
ry

top

Run chip, download trace, examine
execution with GUI

Compilation:
First iteration: complete compilation
Subsequent iterations: incremental

Optional: Remove Instrumentation

User
Circuit

Partition

Debug Partition

(empty)

top

Yes

N
o
.

C
h
a

n
g

e
 i
n

s
tr

u
m

e
n

te
d
 v

a
ri
a
b
le

s

Figure 4.1: A Naive Incremental Flow (Flow 2)

51

4.2. Incremental Flows

Add Instrumentation to record
select signals

Root Cause

Determined?

User
Circuit

Partition

Debug Partition

T
ra

c
e

S
c
h

e
d

u
le

r

O
th

e
r

D
e
b

u
g

C
ir
c
u

it
ry

top

Run chip, download trace, examine
execution with GUI

Compilation:
First Iteration: complete compilation
Subsequent iterations: incremental

Optional: Remove Instrumentation

User
Circuit

Partition

Debug Partition

(empty)

top

Yes

N
o
.

C
h
a

n
g

e
 i
n

s
tr

u
m

e
n

te
d
 v

a
ri
a
b

le
s

Figure 4.2: Incremental Flow with Permanent Taps(Flow 3)

52

4.2. Incremental Flows

Modify Instrumentation to record
select signals

Root Cause

Determined?

User
Circuit

Partition

Debug Partition

T
ra

c
e

S
c
h
e
d
u
le

r

O
th

e
r

D
e
b
u
g

C
ir
c
u
it
ry

top

User
Circuit

Partition

Debug Partition

(empty)

top

Create partitions with empty debug partition

Complete Compilation: User Circuit with
taps only

Run chip, download trace, examine
execution with GUI

Incremental Compilation: debug partition
only

Optional: Remove Instrumentation

User
Circuit

Partition

Debug Partition

(empty)

top

Yes

N
o

.
C

h
a

n
g

e
 i
n

s
tr

u
m

e
n

te
d

 v
a

ri
a

b
le

s

Figure 4.3: Incremental Flow with Permanent Taps and Late Binding (Flow
4)

53

4
.2.

In
crem

en
tal

F
low

s

Figure 4.4: Modified GUI to support Selective Variable Recording

54

4.3. Automated GUI

4.3 Automated GUI

In order for Quartus Prime to support incremental compilation features,

the overall design has to be divided into partitions. Moreover, for Flow

3 and Flow 4, the user partition had to be modified to insert permanent

taps into it. We have developed a GUI framework (modified from that

in [23]) to do all these things automatically in the background. It has

been made available on-line as an open source debugging framework at

https://bitbucket.org/pavankumarbussa/.

Figure 4.4 shows a screen-shot of our GUI. A brief tutorial has been

created on how to use this GUI effectively and is described later in the

Appendix A. From a user’s point of view, he/she just needs to open a design,

optionally set the breakpoints, select the source code variables which they

are interested in observing, select Flow 3 or Flow 4, click the compile button

and finally program the bitstream to the FPGA once the compilation is

successful. Under the hood, our GUI runs LegUp HLS to generate the

RTL and create a debug database, restructures the RTL code as required

(such as making the partitions and adding taps), reruns LegUp HLS to get

the necessary debug instrumentation whenever the variables selected are

changed and finally determines whether a full or incremental compilation

has to be performed. Once the circuit has been run completely or the

breakpoints have been reached, the user can enter the replay mode where

the GUI reads the data serially from the trace buffer (and performs off-

line analysis to reconstruct and link the control flow information with the

variable updates) and replays the circuit execution by showing the updates

for the selected variables as the circuit execution progresses. The user can

then select a different subset of variables and repeat the same steps until

he/she is satisfied with the design.

4.4 Summary

In this chapter, different incremental flows developed for the framework

in [23] were described. These incremental flows enable ’Selective Variable

55

4.4. Summary

Tracing’ without the need for full recompilation. With the help of the trace

buffer optimizations (those described in Section 3.3) and the selective vari-

able tracing, the trace buffer could be packed much more efficiently leading

to larger trace window sizes. As a result, fewer debug turns might be enough

for pin-pointing a bug and also the turn-around time between the successive

turns is now reduced significantly as there is no need for full recompilations.

Each of the proposed flows have their own advantages and disadvantages.

If the user circuit is timing critical then Flow 4 would be a better option

but if one desires to debug at a relatively higher clock speeds then Flow 3

would be a good option. Lastly, we introduced our GUI framework which

abstracts away complexities from the user and provides a faster and efficient

debug environment.

56

Chapter 5

Results

5.1 Overview

In this chapter, we present the results obtained for different sets of ex-

periments conducted to evaluate our proposal. Section 5.2 describes our

methodology and the benchmarks used to evaluate our flows. In Section

5.3 and Section 5.4 , we quantify the impact of reducing the number of

variables that are recorded (Selective Variable Tracing) on the trace window

size and the debug instrumentation area respectively. Intuitively, reducing

the number of traced variables will increase the trace window size, but the

amount of increase is not clear, since there is the possibility of a one-to-many

relationship between the source code variables and the RTL signals.

In Section 5.5, we illustrate the impact of incremental compile on debug

turn-around time for the flows described in Chapter 4. We show that by

using our flows, a 40% reduction in compile times can be achieved when

doing selective variable tracing when compared to the original flow proposed

in [23].

The presence of debug instrumentation and permanent taps may affect

the performance of the user design. The variation in the frequency of the

design is described in Section 5.6 and we show how the use of an empty

debug partition in the first compilation reduces this performance loss, once

the debug instrumentation is removed. Finally, Section 5.7 concludes this

chapter.

57

5.2. Methodology

5.2 Methodology

As described in Chapter 3, we assume the architecture from [23]. A total

trace buffer size of 100 Kilobytes is assumed. We do not split this buffer,

but rather use a single buffer to store the updates to variables that are

in both the user circuit’s datapath and memories as well as the control

flow information. We chose this configuration as it provided better trace

buffer utilization by improving the packing efficiency. It should be noted

that, even for any other trace buffer configuration our flows would work

without any modifications. For our experiments, we used the circuits from

CHStone benchmark suite [28] and compiled them using our HLS debug

framework. The generated RTL was synthesized to a Stratix IV FPGA

(EP4SGX530NF45C3) using Intel’s Quartus Prime 16.0 on a workstation

having a Quad core Intel Xeon CPU E3-1225 V2 processor.

In addition to the CHStone benchmarks that come with LegUp HLS tool,

we used the largest circuit (FFT Transpose) from another benchmark suite,

Machsuite[66], to demonstrate the scalability of our approach. All other

benchmarks from Machsuite were of similar size to those in the CHStone

suite and hence were not considered. Moreover, these benchmarks (which

are not provided by LegUp) were not able to compile successfully because

they used an unsupported fixed point representation. We had to replace

these datatypes with those that are supported by LegUp, which was time

consuming.

Also in order to do ’Selective Variable Tracing’ in each debug turn, we do

not incorporate any special signal selection algorithms like that of [46, 49],

as the focus of this thesis is on improving the debug turn-around time when

a different set of variables are recorded and not on how these variables are

selected. Therefore, for the purpose of our experiments, we select an unique

subset of variables for each debug turn by shuffling the the list of variables

(using a deterministic seed) and then selecting a required proportion.

58

5.2.
M

eth
o
d

ology

Table 5.1: Trace Window Size(For Flow 3)

Benchmark
100% variables traced 50% variables traced 25% variables traced

Window Window Window
size size size

(cycles) (cycles) (cycles)

adpcm 2755 3628 5460
aes 4849 10171 22834
blowfish 6586 9961 15546
dfadd 1265 1650 2342
dfdiv 4159 5640 7078
dfmul 1126 1361 1944
dfsin 2869 3547 4509
gsm 732 1413 3401
jpeg 3521 5832 7567
mips 1103 1968 3559
motion 6232 10691 15160
sha 4370 8248 13376
FFT 1127 1976 2471

Average 3130 5083 (1.6x) 8096 (2.6x)

The values in the parenthesis indicate the improvement over the trace window size corresponding to 100% variables recorded (Column
2)

59

5.3. Impact on the Trace Window Size

5.3 Impact on the Trace Window Size

The following set of experiments were performed to analyze the advantages

of ’Selective Variable Tracing’. Although reducing the number of variables

to be recorded will increase the trace window size, the degree to which this

occurs is not clear because of the Static Single Assignment (SSA) represen-

tation used for the IR code by the LLVM compiler, which is the front end

of our HLS (LegUp [12]) debug framework. In SSA, each update of a source

code variable is represented by an unique IR signal. A frequently updated

variable would therefore result in many more IR signals than a variable that

is updated less frequently. Thus, a single source code variable may corre-

spond to multiple IR signals which may finally be converted to multiple

RTL signals by the LLVM compiler. Hence, if a user chooses not to record

a variable, this might result in ignoring several RTL signals. The mapping

information between a source code variable and the RTL signals are stored

in the database created by our framework and is used for linking the infor-

mation stored in the trace buffer back to the corresponding variable. As a

result, there is no direct linear relationship between the number of variables

being recorded and the improvement in the trace buffer utilization (Trace

Window size).

Table 5.1 shows the impact on trace window size as we vary the propor-

tion of user-visible variables that are traced using our incremental flow with

the permanent taps (Flow 3). Flow 2 and Flow 4 (incremental flow with

permanent taps and late binding) would give similar trace window sizes as

this quantity primarily depends on the number of variables being recorded.

Column 2 shows the number of execution cycles for which the history of all

the user-visible variables are stored in the trace buffer at the end of the run.

To obtain this information, we used the same approach from [23] where the

circuit is simulated using Modelsim to extract the required execution trace

and the filling of the trace buffer cycle-by-cycle. With the help of this data,

the trace buffer size in terms of number of execution cycles was obtained.

Column 3 shows the same quantity assuming 50% of the user-visible

variables are recorded and Column 4 shows the same assuming 25% of the

60

5.3. Impact on the Trace Window Size

50% 25%

aes

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

T
ra

ce
 W

in
d
o
w

 S
iz

e
 I
m

p
ro

v
e
m

e
n
t

50% 25%

gsm

Figure 5.1: Trace Window Size Variation [Tracesubset
Tracefull

]

user-visible variables are recorded. To gather these results, we ran six ex-

periments with a different subset of the variables selected and average the

results.

As the table shows, reducing the number of variables recorded increases

the amount of execution history that can be stored in the trace buffers by

1.6x for the 50% case and 2.6x for the 25% case. Intuitively, the increase de-

pends on the relative update frequencies of variables that are being recorded.

If variables that are rarely updated during the execution of the program are

selected, we would expect the improvement to be large because the trace

buffer would now be filled slowly and thus a large portion of the circuit

execution could be traced.

5.3.1 Variation in the Trace Window Size

There are two benchmarks (aes and gsm) for which the trace window size

is improved by more than 4x when the number of variables recorded were

reduced from 100% to 25%. In these experiments, the variables that were

selected tended to be updated very infrequently. To better understand how

61

5.4. Impact on Debug Instrumentation Area

this variability in the variable access rate affects trace window size, we took

these two benchmarks and ran 100 experiments with different variable se-

lections (unique subsets) for each of the 50% and 25% case. For each ex-

periment, we measured the trace window size, and created the whisker plot

shown in Figure 5.1. In this diagram, the box shows the second and third

quartile of trace window size. The first quartile (highest trace window size)

is shown as a dotted line above the box, and the fourth quartile (lowest

trace window size) is shown as a dotted line below the box. The median

is represented by a red line, and the average by a small red square. In all

cases, these trace window sizes (Tracesubset) are normalized to that of the

trace window size obtained when all the user-visible variables are recorded

(Tracefull). Even though the average trace window size improvement for

these benchmarks are nearly 2x for the 50% case and 4x for the 25% case

(the small red dots in the Figure 5.1), there are some cases where the trace

window size could go as high as 17x (for the gsm benchmark) if we choose a

subset in which the variables are not updated frequently. However, it should

be noted that in any case the trace window size when a partial subset of

variables are recorded (Tracesubset) is almost the same or more than that

when all the user-visible variables are recorded (Tracefull).

5.4 Impact on Debug Instrumentation Area

As stated in Section 3.5, a second advantage of ’Selective Variable Tracing’

is the reduction in the debug instrumentation area as the number of vari-

ables recorded are reduced. The debug instrumentation logic in our case is

the same as that of [23] which consists of a fixed-cost logic namely: com-

munication and debug manager, trace recorder, stepping and breakpoint

unit which are independent of the considered benchmark and the number

of variables recorded. In addition, it also consists of a state encoder (which

was described in Chapter 3 and is used for recording control information)

and a trace scheduler block (for compressing and recording appropriate sig-

nals) which are dependent on the benchmark circuit as the number of states

and the variables vary across the different benchmarks. However, for a given

62

5.4. Impact on Debug Instrumentation Area

Table 5.2: Trace Scheduler Area (For Flow 3)

Benchmark
100% variables 50% variables 25% variables

Area Area Area

adpcm 2064 1231 684
aes 883 343 170
blowfish 965 577 271
dfadd 1628 1079 625
dfdiv 1441 1021 573
dfmul 1023 622 378
dfsin 4016 2837 1718
gsm 1029 539 293
jpeg 3478 2168 1315
mips 991 339 169
motion 900 501 328
sha 500 204 88
FFT 13095 7757 4759

Average 2463 1478 (1.7x) 875 (2.8x)

The values reported are the number of Stratix IV ALMs obtained after compiling the circuit
using Quartus Prime 16.0. The values in the parenthesis indicate the reduction in the area
when compared to the area corresponding to 100% variables recorded (Column 2)

benchmark, the number of states that are required to be encoded remain the

same even if different number of variables are recorded. Therefore, it is the

trace scheduler logic which changes when the number of variables recorded

are changed. This is because of the change in the number of corresponding

RTL signals that must be multiplexed by the trace scheduler block.

Table 5.2 shows the area of the trace scheduler block in number of Stratix

IV ALMs as the number of variables recorded are reduced from 100% to 25%

for Flow 3 (once again, the area reduction would be by the same factor for

Flow 2 and Flow 4 as this primarily depends on the number of variables

recorded). The trace scheduler area is reduced, on average, 1.7x for the

50% case and 2.8x for the 25% case. This is because fewer signals need to

be time-multiplexed into the trace buffers, leading to much simpler trace

scheduling logic.

63

5.4. Impact on Debug Instrumentation Area

Clearly, incorporating this selective variable tracing into a debug flow

would have a significant impact on debug efficiency, by providing the user

with an option for not recording the redundant/unimportant variables. It

also reduces the amount of debug instrumentation that has to be added

which is especially helpful when the user circuit itself is very large and

consumes most of the resources on the FPGA. However, as described in

Chapter 3, performing selective variable tracing using the framework from

[23] requires a full recompilation. We have developed different incremental

flows (described in Chapter 4) to address this issue. In one of these flows,

Flow 2, even after making design partitions the whole design was recompiled

when the variables to record were changed, as both the user partition and

the debug circuit partition were changed (as described in Chapter 4). That

is, the results were virtually the same as that of Flow 1 (Baseline Flow) and

hence we do not include the results for Flow 2 separately. The following

sections evaluate our flows (Flow 3/Flow 4 vs Flow 1) in terms of savings

in the compile times between successive debug turns and the variation in

frequency for the overall debug flow.

64

5
.4

.
Im

p
act

on
D

eb
u

g
In

stru
m

en
tation

A
rea

Table 5.3: Total Compile Time for Flow 3 in Seconds

Benchmark
Flow 1 Analysis Flow 3 Flow 3 Flow 3
100% overhead Variables Recorded Reduction Reduction
Obs.* 50%* 50% 25%* 25% 0% (for 25%) (for 50%)

adpcm 351 31 323 176 305 179 165 49.0% 49.8%
aes 283 25 282 158 273 172 136 39.2% 44.0%
blowfish 168 19 179 110 158 108 100 35.6% 34.5%
dfadd 165 17 157 121 141 120 104 27.0% 26.5%
dfdiv 243 27 239 156 221 158 126 34.8% 36.0%
dfmul 135 14 141 106 132 105 90 22.2% 21.3%
dfsin 438 34 407 244 368 227 196 48.1% 44.4%
gsm 210 24 196 133 181 135 102 35.8% 36.9%
jpeg 939 47 897 368 848 365 317 61.1% 61.0%
mips 138 16 138 100 129 100 89 27.7% 27.4%
motion 287 24 268 140 252 136 130 52.5% 51.1%
sha 150 16 120 102 117 92 89 38.7% 32.1%
FFT 2398 231 2503 1088 2335 958 809 60.0% 54.6%

Average 454 40 450 231 420 220 189 40.9% 40.0%

* indicates that it is a full compilation and not incremental. 0% means that the debug instrumentation is removed.

65

5
.4

.
Im

p
act

on
D

eb
u

g
In

stru
m

en
tation

A
rea

Table 5.4: Total Compile Time for Flow 4 in Seconds

Benchmark
Flow 1 Analysis Flow 4 Flow 4 Flow 4
100% overhead Variables Recorded Reduction Reduction
Obs.* 0%* 50% 25% 0% (for 25%) (for 50%)

adpcm 351 31 314 177 174 158 50.5% 49.6%
aes 283 25 266 157 165 129 41.6% 44.7%
blowfish 168 19 153 112 111 96 34.2% 33.3%
dfadd 165 17 137 126 120 99 27.6% 23.5%
dfdiv 243 27 224 160 155 126 36.1% 34.1%
dfmul 135 14 118 110 106 89 21.5% 18.4%
dfsin 438 34 368 254 230 186 47.5% 42.0%
gsm 210 24 185 135 135 105 35.9% 35.8%
jpeg 939 47 950 369 359 309 61.8% 60.7%
mips 138 16 123 102 102 87 26.4% 25.9%
motion 287 24 247 146 143 128 50.1% 49.1%
sha 150 16 108 105 96 88 36.1% 30.3%
FFT 2398 231 2865 1258 996 767 58.5% 47.6%

Average 454 40 466 247 222 182 40.6% 38.1%

* indicates that it is a full compilation and not incremental. 0% means that the debug instrumentation is not present (removed).

66

5.5. Impact on the Compile time

5.5 Impact on the Compile time

The following experiments were performed to demonstrate the reduction in

the time taken for recompilation when an user wishes to change the debug

scenario (recording different variables in our case) using our debug flows.

Table 5.3 shows the impact on total compile time of each circuit for

Flow 1 (original flow) and Flow 3 (incremental flow with permanent taps).

It includes the total time starting from the Analysis and Synthesis until the

generation of the FPGA bitstream. Column 2 shows the overall compile

time of each circuit in seconds for the baseline flow (Flow 1) which does not

use incremental techniques (as in [23]). In order to create design partitions

for Flow 3, we had to first run the Analysis and the Elaboration step to get

the hierarchy of the design. This overhead time is shown in Column 3.

Columns 4-8 show the compile time for Flow 3 (incremental flow with

permanent taps), in which the permanent taps are added to the user circuit

and the changes to the RTL are localized to the debug partition. After

partitioning the design, the circuit is compiled from scratch with the in-

strumentation added for 50% observability (we anticipate that the Flows 3

and 4 would be mostly used with reduced observability to gain faster debug

turn around times). This is the first compilation and the user circuit is co-

optimized along with the debug instrumentation. This is not incremental

(the compile time is shown in Column 4). Then, the variables are changed

to a different 50% subset and the circuit is recompiled (Incremental). Six

different subsets of the variables were used for these experiments and the

averaged results are shown in Column 5. Next we repeat the same experi-

ment by starting with the instrumentation required for tracing 25% of the

variables (Column 6-7). At any point the designer could decide to remove

the instrumentation; this would not need a full recompile as the user par-

tition is not modified (Column 8 shows the time taken for this step). The

last two columns show the improvement in compile time for Flow 3 (25%

and 50% observability) compared to the baseline flow (Flow 1).

Table 5.4 shows the same quantities for Flow 4 (incremental flow with

permanent taps and late binding), in which the user circuit is placed and

67

5.5. Impact on the Compile time

routed first and then the debug instrumentation is added incrementally.

Column 2-3 are same as that of Table 5.3 which are the compile time for

baseline flow (Flow1) and the analysis overhead respectively. Columns 4-7

show the compile time for this flow. Column 4 shows the time taken for

the first compilation with no debug instrumentation. Columns 5-6 show the

averaged results for six different subsets of 50% and 25% variables recorded,

which are incremental compilations. Column 7 shows the time taken to re-

move the debug instrumentation for this flow and the last two columns show

the improvement in compile time for Flow 4 (25% and 50% observability)

compared to the baseline flow (Flow 1).

The overall compile time for Flow 3 (incremental flow with permanent

taps) reduces by 40.9% for the 25% case and 40.0% for the 50% case. For

Flow 4 (incremental flow with permanent taps and late binding) it reduces

by 40.6% for the 25% case and 38.1% for the 50% case. This means that,

although the initial run is somewhat longer (due to the analysis overhead)

for Flows 3 and 4, each additional debug turn, in which the subset of user

variables to be recorded is changed, is 38–40% faster. It should be noted

that for the largest designs (jpeg and FFT), which have the largest compile

times, the run-time was reduced the most (61.8%, 60.0% respectively). This

suggests that this technique is scalable and will be especially helpful for large

designs where users are most affected by running a full recompile with each

debug iteration.

To better understand these results, we measured the size of debug in-

strumentation as a fraction of the overall instrumented circuit size for each

circuit using our Flow 3 (incremental flow with permanent taps) implemen-

tation (would be almost the same if Flow 4 implementation was considered);

these results are shown in Table 5.5. The last column indicates the percent-

age of the debug instrumentation in the overall circuit (column 3/(column

2 + column 3)). The ratio varied from 17% to 49%. For benchmarks such

as dfmul where the debug instrumentation (49.1%) is as large as the user

circuit, the compile time benefits observed were the least (21%) because the

tool had to recompile a major portion of the design in these cases.

We also estimated the overhead in an incremental compile by running an

68

5.6. Impact on the Frequency of User Circuit

Table 5.5: Area Breakdown (For Flow 3)

Benchmark
User Instrumentation (100%) Debug

Circuit Trace Sched. Other Partition

adpcm 7881 2064 700 26%
aes 7700 883 734 17.3%
blowfish 3410 965 685 32.6%
dfadd 3528 1628 654 39.2%
dfdiv 5950 1441 706 26.5%
dfmul 1702 1023 619 49.1%
dfsin 12066 4016 851 28.74%
gsm 4224 1029 946 31.8%
jpeg 21095 3478 1124 17.9%
mips 1826 991 712 48.3%
motion 7092 900 730 18.7%
sha 2167 500 622 34.1%
FFT 51703 13095 1750 22.3%

Average 10026 2463 833 30.2%

All area values are provided in number of Stratix IV ALMs. The other column represents
the rest of the instrumentation logic like the Communication & Debug Manager, Trace
recorder, State Encoder and Stepping & Breakpoint Unit which were described in Chapter
3.

incremental compilation twice in a row with no changes in between (Table

5.6); this run-time of the second compile averaged 160 seconds which we

think is because of the analysis performed by the tool to determine changes

in the design, if any. This overhead limits the benefits that are obtained

using our current setup for the smaller circuits whose compile time is closer

to this average overhead; clearly, as circuits grow or changes are better

localized, impact of this overhead can be reduced.

5.6 Impact on the Frequency of User Circuit

The presence of debug instrumentation, design partitions and permanent

taps in our flows might affect the performance of the user circuit. Because of

these factors, there might still be a loss in the performance of the user circuit

even after removing the debug instrumentation, once the debugging has been

69

5.6. Impact on the Frequency of User Circuit

Table 5.6: Incremental Compile Overhead for Flow 3 in Seconds

Benchmark
Incremental

Compile Overhead

adpcm 146
aes 135
blowfish 108
dfadd 97
dfdiv 128
dfmul 86
dfsin 179
gsm 115
jpeg 287
mips 85
motion 128
sha 88
FFT 502

Average 160

finished. The following experiments quantify this loss in the frequency, if

any, for our incremental debug flows (Flow 3 and Flow 4).

Table 5.7 shows the variation in the frequency of the design for Flow

3 (incremental flow with permanent taps) when compared to that of the

original uninstrumented user circuit. Columns 2-3 show the fmax values

of the design without and with the debug instrumentation (corresponding

to 100% Observability) respectively for Flow 1. These fmax values were

obtained from Quartus Prime 16.0 after compiling the design. On average

there is a loss of 4.5% for the instrumented design when compared to the

fmax of the original user circuit. This clearly shows that the instrumentation

circuitry may perturb the user design, changing some of its timing paths.

Columns 4-6 show the fmax results for Flow 3 (incremental flow with

permanent taps). First, a full compilation is run after instrumenting the

logic required to trace a subset of 25% user variables (Column 4). Then we

run six compilations using different subsets of 25% variables and average

the results (Column 5). There is a loss of 9% in fmax when compared to the

original circuit. When the instrumentation is removed, we get some of the

70

5.6. Impact on the Frequency of User Circuit

performance back; Column 6 shows that there is a loss of 4.5% when com-

pared to the original circuit. The reasons for this may be attributed to the

creation of partitions, addition of permanent taps and the co-optimization

of the user and the debug partitions in the initial compilation.

Similarly, Table 5.8 shows the variation in the frequency of the design for

our Flow 4 (incremental flow with permanent taps and late binding) when

compared to that of the original uninstrumented user circuit. Columns 2-3

show the fmax values of the design without and with the debug instrumen-

tation for Flow 1 (same as that in Table 5.7). Columns 4-6 show the fmax

results for Flow 4. In Flow 4, we start with an empty debug partition to

ensure the user partition is optimized as much as possible. As the Column 4

shows, fmax for this initial compilation is roughly the same as the origi-

nal uninstrumented user circuit (Column 2). We then replace the empty

debug partition with instrumentation (required for 25% observability) us-

ing an incremental compilation. As the results in Column 5 show, this has

a negative impact on the performance of the overall instrumented circuit;

compared to the original circuit, adding the instrumentation lowers fmax by

15.7%. In some cases, the drop is larger; in jpeg, the overall instrumented

circuit runs 41% slower than the uninstrumented version. We have observed

that, in some cases, routing between the user circuit and the instrumen-

tation becomes difficult due to congestion, causing nets to take circuitous

routes. This does not occur to the same extent in Flow 3, since in that case,

the user circuit and instrumentation are optimized simultaneously, meaning

the user circuit can be adjusted to allow for connections within the instru-

mentation if necessary. Finally, when we remove the instrumentation, the

value of fmax returns to a frequency very close to that of the original unin-

strumented circuit; Column 6 shows that the frequency of the circuit after

instrumentation has been removed is 1.3% slower than the uninstrumented

circuit. The 1.3% loss is primarily due to the taps that are added and left

in the user circuit once the instrumentation has been removed. However,

it should be noted that the frequency which was obtained for the user cir-

cuit in the first compilation (with empty debug partition) is maintained

throughout the debugging process and could be recovered even after the

71

5.6. Impact on the Frequency of User Circuit

100% 75% 50% 25% No Taps

% of Taps

160

180

200

220

240

260

fm
a
x

dfmul_org

sha_org

sha_instrumented

sha_org

dfmul_instrumented

dfmul_org

Figure 5.2: Frequency Variation with the number of taps

debug instrumentation is removed (can be seen from Columns 4 and 7 of

Table 5.8).

To better understand this, we took the two benchmark circuits, namely

dfmul and sha, for which the loss was very high and obtained the frequencies

for these designs as the number of taps were reduced. Figure 5.2 shows

how the fmax changes as these taps into the user partition were reduced.

We randomly deleted the required number of taps for the purpose of these

experiments. For both circuits, as the number of taps are reduced, fmax of

the designs (sha instrumented and dfmul instrumented) reached the value

of the corresponding original user circuits (sha org and dfmul org). This

shows that the presence of such taps might slightly affect the frequency of

the user circuit but however, it enables the possibility of efficient incremental

recompilations. As seen from the Figure 5.2, the fmax values are not exactly

the same as that of the original circuits when all the taps were removed. This

slight variation may be attributed to the presence of partitions (even when

we have no taps, we have an empty debug partition) in our design.

72

5
.6

.
Im

p
act

on
th

e
F

req
u

en
cy

of
U

ser
C

ircu
it

Table 5.7: Frequency Results: Flow 3 vs Flow 1

Benchmark

Flow 1 Flow 3
Original With First Incremental Instrumentation

User Instrumentation Compilation Compilations Removed
Circuit 100% Obs. 25% Obs. 25% Obs. 0% Obs.
(MHz) (MHz) (MHz) (MHz) (MHz)

adpcm 134 134 (-0.6%) 129 129 129 (-4.1%)
aes 133 134 (0.6%) 126 125 126 (-5.3%)
blowfish 207 191 (-7.9%) 197 173 197 (-5.0%)
dfadd 190 196 (3.0%) 201 201 201 (5.6%)
dfdiv 196 184 (-6.5%) 190 190 179 (-9.1%)
dfmul 177 158 (-10.8%) 158 158 158 (-10.5%)
dfsin 179 168 (-6.4%) 173 164 173 (-3.3%)
gsm 162 171 (5.6%) 158 158 158 (-2.6%)
jpeg 98 94 (-3.4%) 95 84 98 (0.6%)
mips 173 172 (-0.6%) 154 158 163 (-5.8%)
motion 160 138 (-14.2%) 156 126 156 (-2.5%)
sha 222 205 (-7.9%) 222 200 230 (3.3%)
FFT 112 100 (-9.9%) 99 92 90 (-19.2%)

Average 165 157 (-4.5%) 158 151 158 (-4.5%)

For Columns 3 and 6 the values in the parenthesis indicates the % variation of the frequency with respect to that of the original user
circuit (Column 2)

73

5
.6

.
Im

p
act

on
th

e
F

req
u

en
cy

of
U

ser
C

ircu
it

Table 5.8: Frequency Results: Flow 4 vs Flow 1

Benchmark

Flow 1 Flow 4
Original With First Incremental Instrumentation

User Instrumentation Compilation Compilations Removed
Circuit 100% Obs. 0% Obs. 25% Obs. 0% Obs.
(MHz) (MHz) (MHz) (MHz) (MHz)

adpcm 134 134 (-0.6%) 135 134 135 (0.3%)
aes 133 134 (0.6%) 128 115 128 (-3.6%)
blowfish 207 191 (-7.9%) 215 173 215 (3.9%)
dfadd 190 196 (3.0%) 188 188 188 (-1.1%)
dfdiv 196 184 (-6.5%) 193 163 193 (-1.8%)
dfmul 177 158 (-10.8%) 154 154 154 (-12.9%)
dfsin 179 168 (-6.4%) 176 151 176 (-1.9%)
gsm 162 171 (5.6%) 166 166 166 (2.8%)
jpeg 98 94 (-3.4%) 100 59 100 (1.9%)
mips 173 172 (-0.6%) 172 163 170 (-1.7%)
motion 160 138 (-14.2%) 165 116 165 (3.2%)
sha 222 205 (-7.9%) 214 191 214 (-3.8%)
FFT 112 100 (-9.9%) 108 65 110 (-1.5%)

Average 165 157 (-4.5%) 163 141 163 (-1.3%)

For Columns 3 and 6 the values in the parenthesis indicates the % variation of the frequency with respect to that of the original user
circuit (Column 2)

74

5.7. Summary

5.7 Summary

This chapter provided a detailed analysis of the results obtained for various

experiments which were conducted to quantify the impact of selective vari-

able tracing and also the impact of our incremental debug flows on compile

time and the frequency of the user circuit.

As shown in Section 5.3, Selective Variable Tracing could achieve sig-

nificant improvements in the trace window size and also a reduced debug

instrumentation area. Our flows enable selective variable tracing to reduce

the number of debug turns and also leverage the incremental compilation

techniques to accelerate the debug turn around times by almost 40%, on

average.

Like any other debug flow, our flows may also potentially interfere with

the user circuit partition, reducing its maximum possible operating fre-

quency. Section 5.6 shows that for Flow 3, the performance of the user

circuit degrades to a much greater extent (loss of 4.5%) when compared to

our Flow 4 (loss of 1.3%). However, the performance of the overall instru-

mented circuit is better for Flow 3 as the user and the debug partitions

are co-optimized, when compared to Flow 4 where the debug partition uses

the left over FPGA resources, possibly creating more critical paths. Clearly

there is a trade-off between each of our flows and one has to choose them

according to the application’s requirements.

75

Chapter 6

Conclusions and Future

Work

6.1 Overview

This chapter summarizes the significance of the work done in this thesis

along with the contributions made and the important research findings (Sec-

tion 6.2). In Section 6.3, we also present possible ideas to further explore in

the direction of this work.

6.2 Summary

High Level Synthesis (HLS) simplifies the design process of a digital hard-

ware system and makes it possible for software developers to make use of

the hardware accelerators for their complex applications. However, for it to

become successful, there is a need for an efficient debug infrastructure. In-

system debug is becoming an important part of the HLS ecosystem because

of its advantages over the usual simulation based approaches. Existing HLS

debug techniques allow the user to debug a circuit at the source level as it

runs on an FPGA, providing visibility into the run-time operation of the

circuit. In order to do this, most such flows contain tools that automati-

cally add additional circuitry (debug instrumentation) to record the circuit

execution and then replay this information to provide a software-like debug

experience. Typically, these tools record the updates to all the user visible

variables and the control flow information.

In this thesis, we improved an existing in-system HLS debug framework

by allowing the ability to selectively record only some user-visible variables

76

6.2. Summary

in on-chip trace buffers. This leads to reduced instrumentation logic (by

1.7x when 50% variables are recorded and 2.8x when 25% variables are

recorded) and a longer trace window (1.6x for 50% case and 2.6x for 25%

case), meaning fewer debug turns may be required when searching for an elu-

sive bug. In our original framework, if the user needs to change the variables

to be recorded, it would require a full recompilation of the design, which is

generally not desirable. To make this practical, incremental compilation

techniques are essential to reduce the debug turn around time.

Although commercial FPGA tools contain extensive support for incre-

mental compilation, we found that, due to several unique characteristics of

the considered debug instrumentation (like the customized trace scheduler

logic), careful application of these techniques is required. We outlined sev-

eral flows to perform incremental compilation for our problem. Of the flows

we examined, two were deemed promising: the first, in which the user circuit

and instrumentation are co-optimized during compilation, gives the fastest

debug clock speeds, but suffers in user circuit performance once the debug in-

strumentation is removed (a frequency loss of 4.5%). In the other promising

flow, the user circuit is first placed and routed without the instrumenta-

tion logic, giving the best possible performance of the user circuit. Then,

the instrumentation is added incrementally without changing the user cir-

cuit. This flow suffers somewhat in terms of debug performance, however,

when the instrumentation is removed, the circuit runs almost as fast as the

original uninstrumented user circuit (only a 1.3% loss in frequency). Using

either flow, we achieve a significant reduction (40%, on average) in debug

turn-around times, leading to more effective debug and higher productivity.

To our knowledge, ours is the first work to incorporate the incremental

compilation techniques into an in-system HLS debug flow. There are many

works which focus on incremental debug for the circuits implemented at the

RTL level, however, the debug of HLS generated circuits is different as the

instrumentation inserted is highly customized based on the variables selected

(to achieve better trace window size). As a result, the amount of logic that

needs to be recompiled when a user wants to record different variables is

much larger.

77

6.3. Future Work

6.3 Future Work

Short Term Goals

In order to incrementally place-and-route the changed logic between succes-

sive debug turns, we used the incremental techniques from a commercial tool

(Quartus Prime 16.0) and modified our design accordingly (creating design

partitions and adding taps) to get the most out of this tool.

Similar to Quartus Prime, there are several other FPGA CAD tools like

Vivado which also provide support for incremental recompilations. One of

our future works would be to understand the incremental flow offered by

these tools and use them in the proposed debug flows to see if we could

achieve any higher reductions in the compile time when compared to our

current results.

Another possible work is to investigate the use of generic/customized

lossless data compression schemes to compress the data generated by the

trace scheduler block before writing it to the trace buffer (in order to increase

the trace window size) and then evaluate the benefits obtained using our

incremental flows. We anticipate that the results might slightly vary based

on the amount of area overhead and also the amount of logic that would

change with the change in the variables being recorded.

In this thesis we do not use any special variable selection algorithms to

guide the user to select important variables for recording. We randomly

select the variables in each debug turn to evaluate the effectiveness of our

incremental debug flows. It would be interesting to evaluate our flows with

proper variable selections in each debug turn, as a user would actually do

while debugging (something like selecting variables function-by-function).

As most of the available HLS benchmarks are very small and have a

compile time of less than few minutes (except one or two) we feel that

our results might be suppressed. We also anticipate that the compile time

reductions offered by our incremental debug flows would go up if they are

used with bigger benchmarks. In future, we expect the availability of bigger

HLS benchmarks or some open source practical HLS applications to evaluate

our flows and get more insight.

78

6.3. Future Work

Long Term Goals

The use of commercial incremental techniques in this work was just the first

step towards our ultimate long term goal of developing a fully accelerated

HLS debug framework, allowing the users to debug quickly and efficiently.

The benefits achieved by using these commercial frameworks cannot be im-

proved further as we do not have access to the internal of the tools and

hence we cannot modify the algorithms used in their incremental flows. An

obvious solution would be to develop a customized incremental place-and-

route tool with our own requirements using open source FPGA CAD tools

like RapidSmith [48].

Another possible orthogonal approach to our work is to investigate the

feasibility of an overlay for HLS debug, similar to those used for incremental

RTL based debug [15, 16, 32]. However, as described in Section 2.4, we feel

that this is not so easy given the uniqueness of our debug instrumentation

for each subset of variables that are being recorded.

Lastly, we feel that there is another direction to explore in which there

could be no need for recompilation at all. For this purpose, it is neces-

sary to develop a generic trace scheduler and a compression circuit which

achieves compression ratio as close as that of a customized trace scheduler

for each subset of variables being recorded. Then by using a scan regis-

ter, we could mask off the respective signals that are not being recorded

in the current debug turn with out any recompilation. Clearly, there is a

trade-off between recompilation and the trace buffer utilization or the trace

window size (which depends on the compression achieved by the trace sched-

uler block). This trade-off would not be clear until the generic compression

circuit is developed, which we leave as future work.

79

Bibliography

[1] Christopher M. Abernathy, Lydia M. Do, Ronald P. Hall, and

Michael L. Karm. System and Method for Streaming High Frequency

Trace Data Off-Chip. http://www.freepatentsonline.com/y2008/

0016408.html, Jan 2008. (visited on August 8, 2017).

[2] Amazon. Amazon EC2 F1 Instances with Custom FPGAs. https://

aws.amazon.com/ec2/instance-types/f1/, 2016. (visited on August

8, 2017).

[3] Hari Angepat, Gage Eads, Christopher Craik, and Derek Chiou. Nifd:

Non-intrusive fpga debugger – debugging fpga ’threads’ for rapid hw/sw

systems prototyping. In FPL, pages 356–359. IEEE Computer Society,

2010.

[4] E. Anis and N. Nicolici. Low cost debug architecture using lossy com-

pression for silicon debug. In Design, Automation Test in Europe Con-

ference Exhibition, pages 1–6, April 2007.

[5] E. Anis and N. Nicolici. On using lossless compression of debug data in

embedded logic analysis. In IEEE International Test Conference, pages

1–10, Oct 2007.

[6] ARM. Differences between On-chip and Off-chip Stor-

age. http://infocenter.arm.com/help/index.jsp?topic=

/com.arm.doc.dgi0012d/Babhaifj.html. (visited on August 8,

2017).

[7] Christian Beckhoff, Dirk Koch, and Jim Trresen. The xilinx design

80

http://www.freepatentsonline.com/y2008/0016408.html
http://www.freepatentsonline.com/y2008/0016408.html
https://aws.amazon.com/ec2/instance-types/f1/
https://aws.amazon.com/ec2/instance-types/f1/
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dgi0012d/Babhaifj.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dgi0012d/Babhaifj.html

Bibliography

language (xdl): Tutorial and use cases. In ReCoSoC, pages 1–8. IEEE,

2011.

[8] P. Bellows and B. Hutchings. JHDL-an HDL for reconfigurable systems.

pages 175–184, 1998.

[9] Jon Louis Bentley, Daniel D. Sleator, Robert E. Tarjan, and Victor K.

Wei. A locally adaptive data compression scheme. Commun. ACM,

29(4):320–330, April 1986.

[10] N. Calagar, S.D. Brown, and J.H. Anderson. Source-level Debugging

for FPGA High-Level Synthesis. In International Conference on Field

Programmable Logic and Applications, Sept 2014.

[11] A. Canis, S.D. Brown, and J.H. Anderson. Modulo SDC scheduling with

recurrence minimization in high-level synthesis. In Field Programmable

Logic and Applications (FPL), 2014 24th International Conference on,

Sept 2014.

[12] Andrew Canis, Jongsok Choi, et al. LegUp: An Open-source High-level

Synthesis Tool for FPGA-based Processor/Accelerator Systems. ACM

Trans. Embed. Comput. Syst., 13(2):24:1–24:27, September 2013.

[13] Philippe Coussy, Daniel D. Gajski, Michael Meredith, and Andrs

Takach. An introduction to high-level synthesis. IEEE Design & Test

of Computers, 26(4):8–17, 2009.

[14] John Curreri, Greg Stitt, and Alan D. George. High-level Synthesis of

In-circuit Assertions for Verification, Debugging, and Timing Analysis.

Int. J. Reconfig. Comput., 2011:1:1–1:17, January 2011.

[15] F. Eslami and S. J. E. Wilton. Incremental distributed trigger in-

sertion for efficient fpga debug. In International Conference on Field

Programmable Logic and Applications (FPL), pages 1–4, Sept 2014.

[16] F. Eslami and S. J. E. Wilton. An adaptive virtual overlay for fast

trigger insertion for FPGA debug. In Field Programmable Technology

(FPT), 2015 International Conference on, pages 32–39, Dec 2015.

81

Bibliography

[17] GDB: The GNU Project Debugger. https://www.gnu.org/software/

gdb/. (visited on August 8, 2017).

[18] J. Goeders. Enabling Long Debug Traces of HLS Circuits Using

Bandwidth-Limited Off-Chip Storage Devices. In 2017 IEEE 25th An-

nual International Symposium on Field-Programmable Custom Com-

puting Machines (FCCM), pages 136–143, April 2017.

[19] J. Goeders and S. J. E. Wilton. Using round-robin tracepoints to debug

multithreaded hls circuits on fpgas. In Field Programmable Technology

(FPT), 2015 International Conference on, pages 40–47, Dec 2015.

[20] J. Goeders and S.J.E. Wilton. Effective FPGA debug for high-level syn-

thesis generated circuits. In Field Programmable Logic and Applications

(FPL), 2014 24th International Conference on, Sept 2014.

[21] J. Goeders and S.J.E. Wilton. Using Dynamic Signal-Tracing to Debug

Compiler-Optimized HLS Circuits on FPGAs. In International Sympo-

sium on Field-Programmable Custom Computing Machines, pages 127–

134, May 2015.

[22] Jeffrey Goeders. Techniques for In-System Observation-based Debug of

High-Level Synthesis Generated Circuits on FPGAs. PhD thesis, The

University of British Columbia (Vancouver), September 2016.

[23] Jeffrey Goeders and Steven J. E. Wilton. Signal-tracing techniques

for in-system FPGA debugging of high-level synthesis circuits. IEEE

Trans. on Computer-Aided Design of Integrated Circuits and Systems,

36(1):83–96, January 2017.

[24] Paul Graham, Brent Nelson, and Brad Hutchings. Instrumenting Bit-

streams for Debugging FPGA Circuits. In Proceedings of the the 9th

Annual IEEE Symposium on Field-Programmable Custom Computing

Machines, FCCM ’01, pages 41–50, 2001.

[25] Steve Guccione, Delon Levi, and Prasanna Sundararajan. Jbits: Java

based interface for reconfigurable computing. In Second Annual Military

82

https://www.gnu.org/software/gdb/
https://www.gnu.org/software/gdb/

Bibliography

and Aerospace Applications of Programmable Devices and Technologies

(MAPLD), Sep.

[26] M. Ben Hammouda, P. Coussy, and L. Lagadec. A Design Approach to

Automatically Synthesize ANSI-C Assertions During High-Level Syn-

thesis of Hardware Accelerators. In 2014 IEEE International Sympo-

sium on Circuits and Systems (ISCAS), pages 165–168, June 2014.

[27] Julien Happich. Cognitive Computing Platform Unites Xilinx and

IBM. http://www.eetimes.com/document.asp?doc id=1329377, Apr

2016. (visited on August 8, 2017).

[28] Yuko Hara, Hiroyuki Tomiyama, Shinya Honda, and Hiroaki Takada.

Proposal and Quantitative Analysis of the CHStone Benchmark Pro-

gram Suite for Practical C-based High-level Synthesis. Journal of In-

formation Processing, 17:242–254, 2009.

[29] K.S. Hemmert, J.L. Tripp, B.L. Hutchings, and P.A. Jackson. Source

level debugger for the Sea Cucumber synthesizing compiler. In Sym-

posium on Field-Programmable Custom Computing Machines., pages

228–237, April 2003.

[30] Chu-Yi Huang, Yen-Shen Chen, Youn-Long Lin, and Yu-Chin Hsu.

Data path allocation based on bipartite weighted matching. In Pro-

ceedings of the 27th ACM/IEEE Design Automation Conference, DAC

’90, pages 499–504, New York, NY, USA, 1990. ACM.

[31] E. Hung and S. J. E. Wilton. Speculative Debug Insertion for FPGAs.

In 2011 21st International Conference on Field Programmable Logic

and Applications, pages 524–531, Sept 2011.

[32] Eddie Hung and Steven J. E. Wilton. Accelerating FPGA De-

bug: Increasing Visibility Using a Runtime Reconfigurable Observation

and Triggering Network. ACM Trans. Des. Autom. Electron. Syst.,

19(2):14:1–14:23, March 2014.

83

http://www.eetimes.com/document.asp?doc_id=1329377

Bibliography

[33] Eddie Hung and Steven J.E. Wilton. Towards simulator-like observabil-

ity for fpgas: A virtual overlay network for trace-buffers. In Proceedings

of the ACM/SIGDA International Symposium on Field Programmable

Gate Arrays, pages 19–28, 2013.

[34] B. Hutchings, P. Bellows, J. Hawkins, S. Hemmert, B. Nelson, and

M. Rytting. A cad suite for high-performance fpga design. In Field-

Programmable Custom Computing Machines, 1999. FCCM ’99. Pro-

ceedings. Seventh Annual IEEE Symposium on, pages 12–24, 1999.

[35] B. L. Hutchings and J. Keeley. Rapid post-map insertion of embedded

logic analyzers for xilinx fpgas. In IEEE Annual International Sympo-

sium on Field-Programmable Custom Computing Machines, pages 72–

79, May 2014.

[36] Impulse Accelerated Technologies. CoDeveloper from Impulse

Accelerated Technologies. http://www.impulseaccelerated.com/

ReleaseFiles/Help/iAppMan.pdf, 2015. (visited on August 8, 2017).

[37] Intel. Increasing Productivity With Quartus II Incremental Compi-

lation, month=May, year=2008, version=1.0, howpublished = White

Paper WP-01062-1.0.

[38] Intel. Protecting the FPGA Design From Common Threats,

month=June, year=2009, version=1.0, howpublished = White Paper

WP-01111-1.0.

[39] Intel. Intel Completes Acquisition of Altera. https://

newsroom.intel.com/press-kits/intel-acquisition-of-altera/,

December 2015. (visited on August 8, 2017).

[40] Intel. Quartus Prime Pro Edition Handbook, volume 3, chapter 9: De-

sign Debugging Using the SignalTap II Logic Analyzer. November 2015.

[41] Intel. SDK for OpenCL. https://www.altera.com/products/design-

software/embedded-software-developers/opencl/overview.html,

2016. (visited on August 8, 2017).

84

http://www.impulseaccelerated.com/ReleaseFiles/Help/iAppMan.pdf
http://www.impulseaccelerated.com/ReleaseFiles/Help/iAppMan.pdf
https://newsroom.intel.com/press-kits/intel-acquisition-of-altera/
https://newsroom.intel.com/press-kits/intel-acquisition-of-altera/
https://www.altera.com/products/design-software/embedded-software-developers/opencl/overview.html
https://www.altera.com/products/design-software/embedded-software-developers/opencl/overview.html

Bibliography

[42] Intel. Quartus prime standard edition handbook: Design and synthe-

sis. https://www.altera.com/en US/pdfs/literature/hb/qts/qts-

qps-handbook.pdf, May 2017. (visited on August 8, 2017).

[43] Yousef Iskander, Cameron Patterson, and Stephen Craven. High-level

abstractions and modular debugging for fpga design validation. ACM

Trans. Reconfigurable Technol. Syst., 7(1):2:1–2:22, Feb 2014.

[44] J. Jiang and S. Jones. Word-based dynamic algorithms for data com-

pression. IEE Proceedings I - Communications, Speech and Vision,

139(6):582–586, Dec 1992.

[45] Eric Keller. Jroute: A run-time routing api for fpga hardware. In

Proceedings of the IPDPS Workshops on Parallel and Distributed Pro-

cessing, pages 874–881, 2000.

[46] H. F. Ko and N. Nicolici. Algorithms for state restoration and trace-

signal selection for data acquisition in silicon debug. IEEE Transac-

tions on Computer-Aided Design of Integrated Circuits and Systems,

28(2):285–297, Feb 2009.

[47] Chris Lattner and Vikram Adve. LLVM: A Compilation Framework

for Lifelong Program Analysis & Transformation. In Proceedings of

the International Symposium on Code Generation and Optimization:

Feedback-directed and Runtime Optimization, CGO ’04, pages 75–86,

2004.

[48] C. Lavin, M. Padilla, J. Lamprecht, P. Lundrigan, B. Nelson, and

B. Hutchings. Rapidsmith: Do-it-yourself cad tools for xilinx fpgas.

In International Conference on Field Programmable Logic and Applica-

tions, pages 349–355, Sept 2011.

[49] X. Liu and Q. Xu. On signal selection for visibility enhancement in

trace-based post-silicon validation. IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, 31(8):1263–1274, Aug

2012.

85

https://www.altera.com/en_US/pdfs/literature/hb/qts/qts-qps-handbook.pdf
https://www.altera.com/en_US/pdfs/literature/hb/qts/qts-qps-handbook.pdf

Bibliography

[50] Mentor. Catapult high-level synthesis. https://www.mentor.com/hls-

lp/catapult-high-level-synthesis/, 2016. (visited on August 8,

2017).

[51] Microsemi. In-Circuit FPGA Debug: Challenges and So-

lutions. https://www.microsemi.com/document-portal/doc view/

133662-in-circuit-fpga-debug-challenges-and-solutions. (vis-

ited on August 8, 2017).

[52] J. S. Monson and B. Hutchings. New approaches for in-system debug

of behaviorally-synthesized FPGA circuits. In Int’l Conf. on Field-

Programmable Logic and Applications, pages 1–6, Sept 2014.

[53] J. S. Monson and B. Hutchings. New approaches for in-system debug

of behaviorally-synthesized FPGA circuits. In International Conference

on Field Programmable Logic and Applications, Sept 2014.

[54] J. S. Monson and B. Hutchings. Using shadow pointers to trace c

pointer values in fpga circuits. In International Conference on ReCon-

Figurable Computing and FPGAs (ReConFig), pages 1–6, Dec 2015.

[55] J. S. Monson and Brad L. Hutchings. Using Source-Level Transforma-

tions to Improve High-Level Synthesis Debug and Validation on FP-

GAs. In International Symposium on Field-Programmable Gate Arrays,

pages 5–8, 2015.

[56] R. Nane, V. M. Sima, B. Olivier, R. Meeuws, Y. Yankova, and K. Ber-

tels. Dwarv 2.0: A cosy-based c-to-vhdl hardware compiler. In 22nd

International Conference on Field Programmable Logic and Applica-

tions (FPL), pages 619–622, Aug 2012.

[57] R. Nane, V. M. Sima, C. Pilato, J. Choi, B. Fort, A. Canis, Y. T. Chen,

H. Hsiao, S. Brown, F. Ferrandi, J. Anderson, and K. Bertels. A Survey

and Evaluation of FPGA High-Level Synthesis Tools. IEEE Transac-

tions on Computer-Aided Design of Integrated Circuits and Systems,

PP(99), 2016.

86

https://www.mentor.com/hls-lp/catapult-high-level-synthesis/
https://www.mentor.com/hls-lp/catapult-high-level-synthesis/
https://www.microsemi.com/document-portal/doc_view/133662-in-circuit-fpga-debug-challenges-and-solutions
https://www.microsemi.com/document-portal/doc_view/133662-in-circuit-fpga-debug-challenges-and-solutions

Bibliography

[58] R. Nikhil. Bluespec System Verilog: efficient, correct RTL from high

level specifications. In Formal Methods and Models for Co-Design,

2004. MEMOCODE ’04. Proceedings. Second ACM and IEEE Inter-

national Conference on, pages 69–70, June 2004.

[59] University of Cambridge. The Tiger MIPS processor. https://

www.cl.cam.ac.uk/teaching/0910/ECAD+Arch/mips.html, 2010. (vis-

ited on August 8, 2017).

[60] United States Bureau of Labor Statistics. Occupational Outlook Hand-

book, 2012.

[61] C. Pilato and F. Ferrandi. Bambu: A modular framework for the high

level synthesis of memory-intensive applications. In 2013 23rd Interna-

tional Conference on Field programmable Logic and Applications, Sept

2013.

[62] J. P. Pinilla and S. J. E. Wilton. Enhanced source-level instrumentation

for fpga in-system debug of high-level synthesis designs. In International

Conference on Field-Programmable Technology (FPT), pages 109–116,

Dec 2016.

[63] Z. Poulos, Y. S. Yang, J. Anderson, A. Veneris, and B. Le. Leveraging

reconfigurability to raise productivity in fpga functional debug. In 2012

Design, Automation Test in Europe Conference Exhibition (DATE),

pages 292–295, March 2012.

[64] A. Putnam, A.M. Caulfield, E.S. Chung, D. Chiou, K. Constantinides,

J. Demme, et al. A reconfigurable fabric for accelerating large-scale dat-

acenter services. In Computer Architecture (ISCA), 2014 ACM/IEEE

41st International Symposium on, pages 13–24, June 2014.

[65] Qualcomm. Qualcomm & Xilinx Collaborate to Deliver Industry-

Leading Heterogeneous Computing Solutions for Data Cen-

ters with New Levels of Efficiency and Performance. https:

//www.qualcomm.com/news/releases/2015/10/08/qualcomm-and-

87

https://www.cl.cam.ac.uk/teaching/0910/ECAD+Arch/mips.html
https://www.cl.cam.ac.uk/teaching/0910/ECAD+Arch/mips.html
https://www.qualcomm.com/news/releases/2015/10/08/qualcomm-and-xilinx-collaborate-deliver-industry-leading-heterogeneous
https://www.qualcomm.com/news/releases/2015/10/08/qualcomm-and-xilinx-collaborate-deliver-industry-leading-heterogeneous
https://www.qualcomm.com/news/releases/2015/10/08/qualcomm-and-xilinx-collaborate-deliver-industry-leading-heterogeneous

Bibliography

xilinx-collaborate-deliver-industry-leading-heterogeneous,

2015. (visited on August 8, 2017).

[66] B. Reagen, R. Adolf, Y.S. Shao, Gu-Yeon Wai, and David Brooks.

Machsuite: Benchmarks for accelerator design and customized archi-

tectures. In Int’l Symposium on Workload Characterization, pages 110–

119, Oct 2014.

[67] Synopsys. Identify: Simulator-like Visibility into FPGA Hardware Op-

eration. https://www.synopsys.com/implementation-and-signoff/

fpga-based-design/identify-rtl-debugger.html. (visited on Au-

gust 8, 2017).

[68] Anurag Tiwari and Karen A. Tomko. Scan-chain based watch-points

for efficient run-time debugging and verification of fpga designs. In

Proceedings of the 2003 Asia and South Pacific Design Automation

Conference, Jan.

[69] K. A. Tomko and A. Tiwari. Hardware/software co-debugging for re-

configurable computing. In Proceedings of the IEEE International High-

Level Validation and Test Workshop (HLDVT’00), HLDVT ’00, Wash-

ington, DC, USA, 2000. IEEE Computer Society.

[70] Bart Vermeulen and Sandeep Kumar Goel. Design for debug: Catching

design errors in digital chips. IEEE Des. Test, 19(3):37–45, May 2002.

[71] Timothy Wheeler, Paul S. Graham, Brent E. Nelson, and Brad L.

Hutchings. Using design-level scan to improve FPGA design observabil-

ity and controllability for functional verification. In Field-Programmable

Logic and Applications, 11th International Conference, FPL, pages

483–492, Aug 2001.

[72] Xilinx. FPGA vs. ASIC. https://www.xilinx.com/fpga/asic.htm.

(visited on August 8, 2017).

[73] Xilinx. Vivado Design Suite User Guide: Implementation.

https://www.xilinx.com/support/documentation/sw manuals/

88

https://www.qualcomm.com/news/releases/2015/10/08/qualcomm-and-xilinx-collaborate-deliver-industry-leading-heterogeneous
https://www.qualcomm.com/news/releases/2015/10/08/qualcomm-and-xilinx-collaborate-deliver-industry-leading-heterogeneous
https://www.synopsys.com/implementation-and-signoff/fpga-based-design/identify-rtl-debugger.html
https://www.synopsys.com/implementation-and-signoff/fpga-based-design/identify-rtl-debugger.html
https://www.xilinx.com/fpga/asic.htm
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2012_4/ug904-vivado-implementation.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2012_4/ug904-vivado-implementation.pdf

Bibliography

xilinx2012 4/ug904-vivado-implementation.pdf, Dec 2012. (vis-

ited on August 8, 2017).

[74] Xilinx. Virtex-6 FPGA Configuration: User Guide. https://

www.xilinx.com/support/documentation/user guides/ug360.pdf,

Nov 2013. (visited on August 8, 2017).

[75] Xilinx. Integrated Logic Analyzer v6.1: LogiCORE IP Prod-

uct Guide. http://www.xilinx.com/support/documentation/

ip documentation/ila/v6 1/pg172-ila.pdf, April 2016. (visited on

August 8, 2017).

[76] Xilinx. Vivado Design Suite User Guide: High-Level Synthesis.

http://www.xilinx.com/support/documentation/sw manuals/

xilinx2016 2/ug902-vivado-high-level-synthesis.pdf, June

2016. (visited on August 8, 2017).

89

https://www.xilinx.com/support/documentation/sw_manuals/xilinx2012_4/ug904-vivado-implementation.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2012_4/ug904-vivado-implementation.pdf
https://www.xilinx.com/support/documentation/user_guides/ug360.pdf
https://www.xilinx.com/support/documentation/user_guides/ug360.pdf
http://www.xilinx.com/support/documentation/ip_documentation/ila/v6_1/pg172-ila.pdf
http://www.xilinx.com/support/documentation/ip_documentation/ila/v6_1/pg172-ila.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2016_2/ug902-vivado-high-level-synthesis.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2016_2/ug902-vivado-high-level-synthesis.pdf

Appendix

90

Appendix A

A Guide to our GUI

Framework

Steps to use Our Proposed Debug Flows:

1. Open a Design:

– Once the GUI is loaded, click on the open file icon and select the

design folder which consists of the .c, make and the config files.

– After selecting the folder and clicking the ”Open” button, LegUp

is run in the background (assuming all variables are being traced) to

create the database and also to have an initial design with all the

taps present in the user module. This is an RTL generation step and

no (Quartus Prime) compilation is necessary at this moment. At the

same time, all the debug modules present in the design are isolated into

separate Verilog files as it is required to have the partitions in separate

files for the tool to perform the incremental compilation effectively. All

these (main) files are stored in a new sub-folder ”quartus proj”, so as

to avoid any overwriting/deletion when LegUp is rerun for the current

design.

– Next, the information from the database is read and populated into

the ”Vars” tab (shown in Figure A.1). A list of all the variables present

in the source code can be seen under this tab.

2. Select the variables which are to be recorded:

– In the ”Vars” tab, a list of all the variables are displayed along with

a corresponding checkbox.

91

Appendix A. A Guide to our GUI Framework

– Once the required variables are selected, click on the ”Trace Selected

Vars” button. In background, this triggers the creation of a file named

”selectedVars.txt” and also reruns LegUp, which has been modified to

make use of the information from this file and generate the RTL (Ver-

ilog file) with the instrumentation for recording the selected variables.

The .v file generated by LegUp is in the design folder and has not been

moved into our main ”quartus proj” sub-folder. We only need partial

contents from this file, which would be copied to our main files when

a Quartus Prime compilation is to be run.

– Next, as LegUp is rerun, a new database is created. Therefore, the

connection to the database is refreshed and all the relevant information

is populated again from the database.

3. Creating a new Quartus Prime project (if it does not exist in the ”quar-

tus proj” folder):

– After selecting the variables, go to the ”FPGA” tab (shown in Figure

A.2). Click on the ”Create Quartus Project” button. If a project

already exists, a pop up indicating this will be displayed. If not, a

new project is created. Presently, the target device is Intel’s CycloneV

DE1-SoC.

– After the project is created, an ”Analysis and Elaboration step” is

run in order to create design partitions using appropriate Tcl files.

4. Running a full compilation (if this is the first compilation):

– Before running the compilation, the user has the option to start

with empty debug partitions which allow the user design to be place

and routed efficiently (Flow 4). If this is selected, then the partition

preservation settings for the debug partitions are set to EMPTY and

the user partition is set to SOURCE as this is the first compilation. If

the option is not selected then all the partitions including the debug

modules are set to SOURCE. If a partition is set to SOURCE, the tool

recompiles it from scratch.

92

Appendix A. A Guide to our GUI Framework

– Next we copy the traceScheduler logic and some other parameters

which change with every run of LegUp from the .v file present in the

design folder into the .v files (present in our ”quartus proj” folder)

which need them. This is done to ensure that we are running the

compilation for the design with instrumentation added for only the

selected variables.

– After this, a full compilation for the design is run.

5. Program the bitstream to the FPGA:

– After compiling the design click ”Program Bitstream” button to

program the DE1-SoC FPGA.

6. Connect to the FPGA through the RS232 interface.

7. Run the design on FPGA and analyze the variables:

– Once connected to the FPGA, the design can be run (until a break-

point or until it is completed) by clicking the ”run” icon.

– After running the design, go to ”FPGA Replay Execution” mode to

see how the variable values were changed as the design was running.

You can use the slider present to go back and forth or use the single

step/step back icons to move one step at a time.

8. Changing the variables to be recorded and performing an incremental

compilation:

– During debugging, if you feel some variables are not necessary then

you may not want to record them (thus saving the trace memory/in-

creasing the trace window length).

– You can select which variables you want to record (follow the same

procedure as in Step 2).

– Next DON’T create a new Quartus Prime project, as we already

have a project. Also, DON’T run a full compilation, if you want to

speed up your compilation. You can use incremental compilation as

you already have a previous compilation results.

93

Appendix A. A Guide to our GUI Framework

9. Incremental Compilation:

– When you click this button, the partition preservation settings are

changed to POST FIT using Tcl files, which directs the tool to reuse

the results for the partitions which did not change from the previous

compilations. In our case the user partition would not change as only

the debug instrumentation is changed when the variables to be traced

are changed. This preserves the results for the user partition. This

saves, up to, on average, 40% of the runtime.

– Before running the compilation, we again copy (from the design

folder to our ”quartus proj” folder as in Step 4) the traceScheduler

logic and other parameters which might have changed, as the LegUp

would have been rerun when the variables to be recorded are changed.

– Now a compilation is run, which would be incremental as the parti-

tion preservation settings were changed to POST FIT.

– Follow Steps 5,6 to program and connect to FPGA. Then (as in Step

7) we can analyze the updates to the variable values during the design

execution.

10. If the bug is not found, repeat the steps starting from Step 8 until the

root cause of the bug is identified.

Note:

– For some variables, even if they are not selected for recording, you could

see the values showing up for them while debugging. This is because of the

pointer aliasing happening with that variable and we are being conservative

in such cases and recording these variables anyway.

– For now, we are using split buffer architecture (one each for datapath

registers, memory and control signals). The GUI support for single trace

buffer configuration is still under development.

94

A
p

p
en

d
ix

A
.

A
G

u
id

e
to

ou
r

G
U

I
F

ram
ew

ork

Figure A.1: ’Vars’ Tab

95

A
p

p
en

d
ix

A
.

A
G

u
id

e
to

ou
r

G
U

I
F

ram
ew

ork

Figure A.2: ’FPGA’ Tab

96

	Abstract
	Lay Summary
	Preface
	Table of Contents
	List of Tables
	List of Figures
	Acknowledgements
	Introduction
	Motivation
	High Level Synthesis
	HLS Debug
	Software-like Debug
	RTL Simulation
	In-system Debugging

	Selective Variable Tracing
	Incremental HLS Debug
	Contributions
	Thesis Outline

	Background
	Overview
	HLS Flow
	HLS Debugging Techniques
	In-system Debugging Approaches
	Source Level In-system Debugging Approaches

	Incremental debugging Approaches
	Summary

	The Debugging Framework
	Overview
	Framework
	Debug Instrumentation

	Trace Buffer Optimizations
	Control Flow Optimization
	Dynamic Tracing of Datapath Register Signals

	Debug Flow
	Selective Variable Tracing
	Summary

	Incremental Debug Flows
	Overview
	Incremental Flows
	A Naive Incremental Flow
	Incremental Flow with Permanent Taps
	Incremental Flow with Permanent Taps and Late Binding

	Automated GUI
	Summary

	Results
	Overview
	Methodology
	Impact on the Trace Window Size
	Variation in the Trace Window Size

	Impact on Debug Instrumentation Area
	Impact on the Compile time
	Impact on the Frequency of User Circuit
	Summary

	 Conclusions and Future Work
	Overview
	Summary
	Future Work

	Bibliography
	Appendix
	A Guide to our GUI Framework

