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Abstract

This thesis contains two essays in Structural Corporate Finance. The first essay studies the effect of

asset redeployability on the cross-section of firms’ financial leverage and credit spreads. Particularly,

I show that in the data firms’ ability to sell assets —captured by a novel measure of asset redeploya-

bility —correlates positively with financial leverage, and negatively with credit spreads. At odds with

traditional notions of asset redeployability, I show that these predictions remain even after controlling

for proxies of creditors’ recovery rates. To understand these empirical findings, I build a quantita-

tive model where firms’ asset redeployability decreases the degree of investment irreversibility and

deadweight cost of bankruptcy. According to the model, while higher overall asset redeployability

predicts larger financial leverage and lower credit spread; these relations are mainly driven by differ-

ences in the degree of investment irreversibility across firms. Also, within the model, differences in

recovery rates are mainly explained by differences in deadweight costs of bankruptcy. Based on these

results, I conclude that the link between firms’ asset redeployability and disinvestment flexibilities is

key to understand the empirical ability of asset redeployability to predict financial leverage and credit

spreads.

The second essay provides new evidence about the cross-sectional distribution of debt issuance:

its dispersion is highly procyclical. Furthermore, I show that this dynamic feature is mainly driven

by large adjustments of the stock of debt and capital observed in good times. Previous research has

highlighted the role of non-convex rigidities on inducing large adjustments on firms decisions. Then,

to quantify the contribution of real and financial non-convex frictions on shaping the dynamic of the

debt issuance cross-sectional distribution, I build a quantitative model where firms take investment

and financing decisions. According to the model, both real and financial non-convex frictions are

required to reproduce the dynamic of the cross-sectional dispersion of debt issuance. Indeed, the

presence of these frictions makes firms’ decisions less responsive during recessions. Yet, in booms,

both non-convex costs induce large adjustment on the capital and debt stock of high-growth firms.
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Lay Summary

This thesis contains two essays in Structural Corporate Finance. The first essay shows that an asset

redeployability measure —capturing firms’ ability to sell assets —predicts higher leverage and lower

credit spreads. At odds with traditional notions of asset redeployability, these predictions remain after

controlling for proxies of recovery rates. A model where asset redeployability reduces disinvestment

and bankruptcy costs shows that while disinvestment costs affect significantly leverage and credit

spreads, they exhibit offsetting effects on recovery rates. These results are used to explain motivating

empirical findings.

The second essay provides new evidence about the cross-sectional debt issuance distribution: its

dispersion is highly procyclical. I show empirically that major investment and debt issuance ad-

justments observed during booms can explain this procyclical behavior. I rationalize these findings

through a quantitative model that highlights real and financial non-convex rigidities as necessary in-

gredients for rendering the cross-sectional debt issuance dispersion procyclical.
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Chapter 1

Introduction

Understanding the dynamic of firms’ investment and financing decisions is relevant for investors and

policymakers. While firms’ investment is a key component of aggregate activity; the firms’ financing

behavior conveys information regarding the economy’s exposure to aggregate cyclical fluctuations.

Accounting for their importance, the finance literature has devoted increasing attention to studying

the economic mechanisms that affect these decisions at the micro-level. The general consensus is that

frictions associated to capital adjustment and external financing costs are necessary to explain most

of the time-series properties of the cross-sectional distribution of investment and financing decisions.

Indeed, frictionless models fail dramatically even in the restricted analysis of aggregate moments.

The implications of capital adjustment costs have been extensively studied by the literature on

investment. Although there has not been clear agreement about the degree of the cost associated

to additions to an individual firm’s capital stock, the common view is that disinvestment carries a

significant cost. Indeed, in reality, firms face installation costs of new capital and/or costs of removing

used capital that will be not possible to recover entirely. More broadly, firms use specialized capital

that may be difficult to redeploy and therefore difficult to sell given its low liquidation value.

In this regards, in the first essay of this thesis, I examine the effects of asset redeployability on the

cross-section of financial leverage (debt-to-asset ratio) and credit spreads. In the data, a measure of

asset redeployability correlates positively with financial leverage and negatively with credit spreads.

Furthermore, the asset redeployability measure used contains information about financial leverage and

credit spreads that goes over and above expected recovery rates. Then, using a quantitative model,

I assess the effect on financial leverage and credit spreads of two components of asset redeployabil-

ity affecting the riskiness of a firm simultaneously. That is, a component related to disinvestment

costs and a second component associated to bankruptcy costs incurred upon corporate default. To

accomplish this goal, I add varying degrees of investment irreversibility and deadweight costs to a

standard production-based asset-pricing model featuring firms that make optimal production, financ-

ing and default decisions. As a main result of this chapter, I highlight the link between a firm’s asset

redeployability and the degree of investment irreversibility that the firm faces as a key mechanism to

explain the ability of asset redeployability to predict financial leverage and credit spreads in the data.
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Nevertheless, in reality, firms maneuver adverse economic conditions not only by reducing un-

productive capital. Indeed, firms also use external financing to keep the operating company solvent.

Experience from past financial crisis suggests the presence of important frictions on raising external

financing; given the severity and persistence of the economic contractions suffered on those periods.

Effectively, influential works have not only confirmed the existence of financing frictions but also

quantified their aggregate effects. As a consequence, operating firms have to balance capital adjust-

ment and financial costs in order to maximize their value over time. Recently, this interaction has

been proven to be key to explain the wide heterogeneity observed in debt issuances at the firm-level.

In the data, on average, few firms experience large and infrequent adjustments of their stock of debt;

whereas the majority of firms show small adjustments on their debt stock from quarter to quarter.

Although the literature on corporate finance has studied the importance of financing friction on the

time-series properties of the aggregate debt issuance; little is known about their role on inducing busi-

ness cycle dynamics on the entire firm-level distribution. Studying the dynamics of entire firm-level

distribution of debt issuance is crucial as it can guide our understanding about the wide range of re-

sponses exhibited by firms in terms of their use of debt over the business cycle. As a response to this

concern, in the second essay of this thesis I contribute to this research area.

In the second essay, I start documenting that the cross-sectional dispersion of debt issuance is

significantly procyclical. Next, I show evidence that suggests that periods of both positive debt-

issuance and investment lumpiness are responsible of this procyclical pattern exhibited by the debt

issuance cross-sectional dispersion. Then, to further investigate the economic determinants of this

behavior, I construct a structural general equilibrium model of heterogeneous firms featuring both

lumpy investment and debt financing decisions. The model shows that neither non-convex cost of

investment nor non-convex cost of issuing debt alone can reproduce the empirical behavior of the

debt issuance distribution. In fact, I show that the model needs a careful calibration of both types of

frictions to account for the motivating empirical results.

Finally, because each essay intends to answer a different research question, chapters are designed

to be self-contained. Indeed, I provide a detailed discussion of the research question and contribution

of each essay in the introductory section specific to each chapter.
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Chapter 2

Asset Redeployability, Capital Structure
and Credit Spreads

2.1 Introduction
A seminal idea in economics is that assets which are redeployable - that is, have alternative uses -

also have high liquidation values.1 While assets with high liquidation values can be sold at prices

that are close to their value in best use, firms selling assets with low liquidation values can experience

significant discounts. Early literature on corporate finance has claimed that costly liquidation of assets

is an important determinant of the partial irreversibility of investment faced by an operating firm (Abel

and Eberly (1995)). This link arises since costly liquidation of assets drives a wedge between the

purchase and selling price of a firm’s capital stock.2 Furthermore, costly liquidation of assets has also

been identified as a source of the indirect deadweight costs incurred upon corporate defaults (Acharya

et al. (2007)). Indeed, indirect deadweight costs can be substantial in the case the shocks that cause a

firm’s default also have the potential to force it to liquidate assets at abnormal discounts.3 Recently,

a growing literature on corporate finance has used different proxies of firms’ asset redeployability

to examine its positive effect on the terms for debt. Yet, to the extent that low asset redeployability

increases real frictions faced by a firm at several stages of its life, existing studies are silent about the

relative effect of these frictions on the firms’ capital structure decisions. The goal of this chapter is

to examine whether firms’ capital structure and credit spreads are affected by asset redeployability

purely through the investment-irreversibility channel and/or through the deadweight-cost channel. I

1Riordan and Williamson (1985), and Williamson (1988) represent early papers articulating this relation.
2Bertola (1988) and Abel and Eberly (1995, 1996) study firms’ investment in the presence of asymmetric capital adjust-

ment costs. Barnett and Sakellaris (1998) presents empirical evidence that supports these theories.
3Shleifer and Vishny (1992) proposes a theory of fire sales where assets’ selling prices of a distressed firm depend on

its peers financial condition. Pfunder (2008) argues that even if a firm’s peers could raise funds, antitrust regulations can
prevent them from purchasing the liquidated assets. In the data, Schuermann (2004) show that recovery rates are 19% and
15% points lower in recessions and in periods of industrial distress, respectively.
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do so by studying comprehensively the determinants of firms’ leverage and credit spreads in the data

and through the lens of a quantitative model.

This chapter makes three contributions. First, I complement existing studies linking firms’ as-

set liquidity to capital structure outcomes, by showing that a novel measure of asset redeployability

proposed by Kim and Kung (2016) is able to predict not only leverage ratios but also credit spreads.

Second, I show that the information captured by the asset redeployability measure that is not explained

by expected recovery rates also predicts leverage ratios and credit spreads. Specifically, in the data,

I show that both expected recovery rates as well as the component of the asset redeployability mea-

sure that is not explained by expected recovery rates contribute to predict leverage ratios and credit

spreads.4 Motivated by this result and previous literature linking creditors’ recovery rates to indirect

deadweight costs caused by costly liquidation of assets (Acharya et al. (2007)), the last contribution

of this chapter is to quantify the relative importance of both the investment-irreversibility and the

deadweight-cost channels to determine leverage ratios decisions and credit spreads. I do so by adding

varying degrees of deadweight costs and investment irreversibility to a standard production-based

asset-pricing model in order to assess the contribution on leverage ratios and credit spreads of these

two dimensions.

In line with the notion that indirect deadweight costs affect negatively creditors’ recovery values

at default (Acharya et al. (2007)), I find that a high level of deadweight costs implies higher credit

spreads in the data and in the model. Intuitively, since shareholders declare bankruptcy when the

levered equity value becomes negative, which is more likely to happen in recessions when the price

of risk is high, assets associated to high deadweight costs will be less desirable to firms’ investors.

Bondholders will anticipate higher costs upon default translating them to lower debt prices. Conse-

quently, asset redeployability will decrease equilibrium credit spreads through the deadweight-cost

channel. Importantly, I find in the data and in the model that the increase in credit spreads caused by

the deadweight-cost channel does not lead to lower firms’ leverage ratios. Within the model, firms’

investment decisions do not change significantly when deadweight costs increase. Then, in the pres-

ence of more expensive debt, firms facing higher deadweight costs increase debt issuances to continue

covering their financial needs. Lastly, despite the direction of the effect of the deadweight-cost chan-

nel on credit spreads being clear, its magnitude is less obvious. Within the model, I show that the

importance of this channel on credit spreads depend on the degree of the investment irreversibility. In

particular, the deadweight-cost channel becomes relevant for firms facing significant real frictions.

Within the model, the low levels of investment irreversibility will have two reinforcing effects on

credit spreads. First, since increasing investment irreversibility increases the value of the option of

delaying investment, the firms’ unlevered value upon default will tend to be lower. Second, in the

presence of fixed operating costs in the production function of the firm, larger disinvestment adjust-

ment costs will make it harder for firms to deploy their excess capital when the economy experiences

4Expected recovery rates are built by implementing a KMV-like model in the data (Bohn and Crosbie (2003)). Section
2.6 provides more descriptions of the KMV model implemented. Appendix A shows technical details.

4



bad shocks, which will end up increasing the aggregate probability of default. Within the model,

bondholders anticipate the reduction of the expected value of their claims by decreasing debt prices

and therefore increasing credit spreads. Regarding the effect of the investment-irreversible channel

on leverage ratio, note that the lower value of investment options will impact negatively firms’ finan-

cial needs which will allow them to decrease their debt issuance and therefore their leverage ratios.

Overall, the effect of low asset redeployability throughout the investment irreversibility channel will

have a positive effect on credit spreads and a negative effect on leverage. I expect these effects to be

non-linear.

To assess the quantitative importance of these two channels affected by asset redeployability, I

calibrate the quantitative model to match a broad set of aggregate moments and moments associated

to portfolios formed based on the asset redeployability dimensions. In the model, differences along

indirect deadweight costs, partial irreversibility of investment and idiosyncratic technology shocks are

the only differences across firms. The degree of cross sectional heterogeneity in indirect deadweight

cost is set to match the cross sectional dispersions of recovery rates reported by Altman et al. (2004).

Similarly, the degree of cross sectional heterogeneity in partial irreversibility of investment is chosen

to match the cross sectional difference in excess return exhibited in the data by firms in the lowest

and highest asset redeployability quintile.

In line with recent empirical studies, I find that both the deadweight - cost and investment - irre-

versibility channels increase credit spreads. The benchmark calibration produces a large difference

in credit spreads between the low- and high-asset redeployability portfolios, about 46bps. This pre-

diction of the model is validated in the data using a panel of publicly corporate bond transactions. In

the data, firms with low levels of asset redeployability pay about 20bps more on their debt. These

results are statistically significant and are robust to various controls. Notably, in economic terms,

this difference in credit spreads represents $0.8 millions of additional annual interest payments for

firms with less redeployable assets.5 In the model, as in the data, the higher cost of debt leads firms

with low redeployable assets to use less financial (book) leverage. The difference in book leverage

between the high- and low-asset redeployability quintile is 5.6%. This last result accords with Kim

and Kung (2016) who reports that average book leverage increases in firms’ ability to redeploy their

assets. In short, the model’s prediction that the degree of asset redeployability leads firms to use more

and less expensive debt is supported in the data, both qualitatively and quantitatively.

The dynamic model also allows us to quantitatively assess to what extent asset redeployability af-

fects credit spreads and leverage purely through the investment-irreversibility channel and/or through

the deadweight-cost channel. By performing multiple simulations and averaging firms within differ-

ent combinations of deadweight cost and degree of investment irreversibility, I compute the average

elasticity of credit spreads with respect to changes in the degree of investment irreversibility and

deadweight cost. On average, the elasticity of credit spreads with respect to changes in investment

5These values are obtained assuming a debt face value of $392 millions (the average face value in the sample).
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irreversibility is about twice as large as the elasticity of credit spreads with respect to changes in

deadweight cost. Particularly, a 1% decrease in deadweight cost implies a 0.17% increases in average

credit spreads. The larger effect of investment irreversibility is explained by two reinforcing effects.

First, for a given deadweight cost, a firm facing a higher degree of investment irreversibility will op-

timally reduce its investment which leads to a lower capital stock in equilibrium. The lower capital

stock occurs at the same time the firm faces low flexibility to restructure its assets, which will affect

the claim of firm’s creditors upon a likely default. Indeed, in the presence of operating costs, higher

degree of investment irreversibility will impact firms’ ability to adapt operations in response to poor

economic conditions.

It is worth mentioning that although the investment-irreversibility channel seems to play a more

important role than the deadweight-cost channel in determining credit spreads, the effects of these

two dimensions are not enough quantitatively to explain the empirical average credit spreads in a

model that only considers one-period debt. The average credit spreads in the data is about 90bps

whereas the one-period debt version of the model can only generate an average credit spreads of

53bps. This drawback of short-term debt has been pointed out in the recent literature (e.g. Michaux

and Gourio (2012)). Intuitively, when only short-term debt is considered, firms can easily change

their total leverage which lowers default probabilities and leads to low credit spreads in equilibrium.

Furthermore, long-term debt plays a role generating the difference in credit spreads exhibited by

low- and high-asset redeployability firms. A version of the model that only considers one-period debt

only generates a difference of 12bps between credit spreads exhibited by firms with low and high

redeployable assets; which is significantly lower to the same difference generated by the benchmark

model (46bps). To understand the intuition of the results, it is useful to compare the choice of debt

maturity structure of firms with high redeployable assets versus the one chosen by firms with low

asset redeployability. Relative to the one-period debt model, in the benchmark model both high- and

low-asset redeployability firms increase their debt maturity structure on average. Yet, firms with less

redeployable assets tend to keep a longer debt maturity structure than firms with high redeployable

assets. This occurs because these firms face large financial needs in bad times due to the presence of

operating cost and the impossibility of scaling down their unproductive capital. Within the model, the

term structure of credit spreads is upward sloping in bad times; making long-term debt more expensive

than short-term debt. Ultimately, firms with less redeployable assets end up combining costly equity

issuances and debt issuance at high credit spreads in order to fund their financial needs. In contrast,

firms with highly redeployable assets pay their financial needs in bad times mainly using short-term

debt which is cheaper than long-term debt in recessions. These optimal debt maturity strategies lead

to a more procyclical debt maturity structure of firms with high redeployable assets relative to the one

exhibited by firms with low redeployable assets. Particularly, in the data, the correlation between the

output growth and the average maturity exhibited by firms in the highest asset redeployability quintile

is 0.25 higher than the correlation between the output growth and the average maturity exhibited by

firms in the lowest asset redeployability quintile. The model is able to generate similar results.
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2.1.1 Literature review

This chapter contributes to the literature which studies the effect of a firm’s ability to redeploy and

sell its assets on determining its risk and capital structure outcomes.

Early works by Riordan and Williamson (1985) and Williamson (1988) argue that a firm’s asset

redeployability is an important determinant of liquidation value of the firm’s assets. Theoretical

works by Hart and Moore (1991), Shleifer and Vishny (1992), and Holmstrom and Tirole (1997),

have suggested that high liquidation value of assets allows managers to alleviate firms’ financial

constraints. Intuitively, these works claim that high liquidation values allow firms to reduce indirect

deadweight costs of corporate bankruptcy which increases the amount recovered by firm’s creditors

upon default. In contrast, Myers and Rajan (1995), Weiss and Wruck (1998) and Morellec (2001)

reach opposite conclusions by arguing that lower asset liquidity makes it more costly for distressed

managers to expropriate value from bondholders and thus, under this notion high asset redeployability

does not alleviate firms’ financial constraints. Kim and Kung (2016) show empirically that low asset

redeployability, by decreasing liquidation values of assets, is also an important source of investment

irreversibility that can impair firms’ operating flexibility over their entire life and particularly during

economic downturn. In fact, Mauer and Triantis (1994) and Aivazian and Berkowitz (1998) use a

theoretical framework to show that real flexibilities create value by lowering firms’ default risk and

increasing their debt capacity. My work intends to fill a gap in this literature by analyzing to what

extent corporate decisions as well as credit spreads can be explained by asset redeployability through

two distinct channels, namely the investment-irreversibility and the deadweight-cost channels.

Based on measures that capture creditors’ recovery upon default, recent empirical work finds a

positive link between assets’ liquidation values and a wide set of capital structure outcomes. Ben-

melech (2008), using a novel data set of nineteenth-century American railroads, shows that high

liquidation values of assets allow firms to increase the debt maturity as well as the amount of debt

issued.6 Benmelech and Bergman (2009) finds that debt tranches of airlines secured with more rede-

ployable collateral exhibit lower credit spreads. Using a broader sample of industries, Ortiz-Molina

and Phillips (2010) also find that firms in industries with more liquid assets, and during periods of

high asset liquidity, face a lower cost of capital.7 Campello and Hackbarth (2012) uses a theoret-

ical model to show a positive effect of liquidation value at default on corporate financing, among

financially constrained firms. Recent literature studies to what extent a firm’s ability to adjust assets

enhances its operating and financial flexibility. Schlingemann et al. (2002), using Compustat Full-

Coverage Industry Segment File (CISF) database, examines how asset liquidity can explain firms’

internal restructuring process; which, as showed by Almeida et al. (2011), is especially valuable to

firms facing economic hardship.

6In a related paper, Liu and Liu (2011) use real estate firms, i.e. the real estate investment trusts (REITs), to examine
how asset liquidation values influences a firm’s debt capacity.

7Campello and Giambona (2013) validates these results using Compustat-based measure that entails breaking down
tangible assets into their identifiable parts, which include land and buildings, machinery and equipment.
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In the asset pricing literature, Kogan (2004), Gomes et al. (2003a), Carlson et al. (2004), Zhang

(2005) and Cooper (2006) argue that since firms facing difficulties in scaling down their unproduc-

tive capital due to adjustment costs will be unable to cut fixed costs in economic downturn, they

will offer less protection against aggregate negative shocks and therefore their investors will require

higher returns in exchange of capital.8 Gala (2010) provides a general equilibrium argument to ex-

plain why investors require a higher return for investing in firms facing important real frictions to

(dis)investment. More broadly, this chapter relates to the growing production-based asset-pricing

literature that studies firms’ optimal real and financial decisions in the context of multiple market

frictions to explain the relationship between corporate decisions and asset prices. In economic terms,

firms become safer as they are able to respond to negative shocks by using efficiently both their oper-

ational and financial flexibilities. Bloom (2009) and Belo et al. (2014) are recent papers that belong

to the investment and labor demand literature that investigates the importance of capital and labor

adjustment costs in explaining corporate decisions’ dynamics. Gomes (2001), Hennessy and Whited

(2005, 2007), Carlson et al. (2006), and Belo et al. (2016) are a subsample of papers that examine the

impact of financial frictions on corporate investment and asset prices. Among these papers, firms’ in-

ability to adapt operations and/or substitute between different marginal sources of financing (internal

or external) during bad economic times plays an important role in determining firms’ risk premiums

at the equilibrium. I contribute to this literature by studying capital structure’s implications of dis-

investment and bankruptcy deadweight costs affecting firms’ ability to liquidate their assets over the

business cycle. Interestingly, I find that the degree of the disinvestment rigidity amplifies the effect of

deadweight costs on firms’ credit spreads.

By studying the effect of debt maturity decisions on credit spreads, this chapter also relates to

a growing strand of literature studying debt maturity decisions. In terms of theoretical research, a

widely used framework for debt maturity structure is based on Leland (1994, 1998) and Leland and

Toft (1996) who, for the sake of tractability, take the frequency of debt refinancing as a fixed param-

eter. Chen et al. (2012), and Brunnermeier (2009) develop a calibrated model to match procyclicality

of aggregate debt maturity structure. Unlike recent papers studying debt maturity structure and credit

spreads (e.g. Brunnermeier and Oehmke (2013) and He and Milbradt (2015)), my work incorporates

dynamic investment decisions. As mentioned by Michaux and Gourio (2012), adding this layer to the

model is key to match credit spreads.

Credit spreads and debt maturity decisions has also been studied in the context of models with

asymmetric information (e.g. Flannery (1986), and Diamond (1991)). These models price debt con-

tracts assuming the existence of a pooling equilibrium. In contrast to this class of models, the model

proposed in this chapter features complete information and produces equilibrium where firms with

highly redeployable assets use their operating flexibility and low (indirect) deadweight costs to issue

the cheapest type of debt leading to low credit spreads and high leverage. In contrast, in models with

8In constrast, Ozdagli (2012) proposes a model without operating leverage where partial irreversibility of investment
makes firms less risky since the value of the disinvestment option provides insurance in bad times.
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asymmetric information, good type firms will prefer to issue short-term debt to differentiate them-

selves from the bad type firms that prefer long-term debt to minimize their probability of default.

The rest of the chapter is organized as follows. Section 2.2 develops a simple two-period model

where I describe how the two channels proposed in this chapter, that relate to asset redeployability,

affect a firm’s leverage and credit spreads. Section 2.3 extends the simple model into a quantitative

model. Section 2.4 discusses the baseline calibration. Section 2.5 investigates some of the model’s

quantitative implications for the cross-section of capital structure and credit spreads. Section 2.6

presents several empirical tests and it is followed by a few concluding remarks in section 2.7.

2.2 A simple model
This section develops a two-period model to highlight how the two economic channels studied in this

chapter that relate to asset redeployability can affect firms’ leverage and credit spreads.

Economic environment I assume agents are risk neutral and the gross interest rate is set to 1. The

simple model incorporates a capital adjustment cost function that is general enough to consider both

symmetric-convexity and irreversibility as special cases. The firm’s indirect deadweight cost at de-

fault is modeled as a proportional cost. Thus, at default, creditors take over the firm and incur a

bankruptcy cost when liquidating the capital stock.

Technology A firm is in place for two periods t ∈ {1,2} and faces a technology shock represented

by the stochastic term Xt which is described by a lognormal random-walk process, Xt = Xt−1eεt with

εt ∼ i.i.d N(µ,σ2). Technology is described by a decreasing return to scale Cobb-Douglas production

function Y (Xt ,Kt) = XtKα
t with α ∈ (0,1).

Capital adjustment cost Φ(Kt , It) denotes the cost of changing the stock of capital by It units when

the capital stock is Kt . As in Zhang (2005), the functions Φ(Kt , It) writes,9

Φ(Kt , It) = Kt

(
It
Kt
−δ

)2 [
I{It≥0}θ1 + I{It<0}θ2

]
= φ(Kt , It)

[
I{It≥0}θ1 + I{It<0}θ2

]
(2.1)

where θ1,θ2 > 0 and I{x} represents an indicator function that takes value 1 if x is true and zero

otherwise. The partial-irreversible-investment case corresponds to θ1 < θ2.

Deadweight cost of bankruptcy It is denoted by χ ∈ [0,1], where χ is a proportional bankruptcy cost

—proportional to creditors’ recovery at default, i.e. the unlevered firm value —that creditors incur

when the firm’s capital stock is liquidated upon default.

Timeline In period 1 the firm starts with a capital stock K1 and decides its investment I after ob-

serving the technology shock X1. Investment allows the firm to change its capital stock to K2 =

9 This expression is similar to the one used in the benchmark model. This functional form guarantees that it becomes
zero at the steady state of the dynamic problem. As discussed by Cooper and Haltiwanger (2006) this functional form also
guarantees that, in the firm’s problem, the (expected) marginal productivity of capital depends on investment rate values.
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K1(1− δ )+ I at period 2. Due to the presence of equity issuance costs, Ψ(·), the firm also finances

I by issuing one-period debt which is priced by competitive creditors. To decide the amount of debt

issued, i.e. face value B, the firm balances equity issuance and bankruptcy costs. In period 2, after

observing the shock X2, shareholders decide whether or not to declare bankruptcy. If default does

not occur, the firm pays the promised debt B, liquidates its assets and distributes all residual claim as

dividend. Importantly, if the firm declares bankruptcy, creditors take over the unlevered firm incurring

the additional bankruptcy cost χ .

Firm’s value At period 2, the firm’s value conditional on the initial capital stock K2 and technology

shock X2 writes as a call option granted by creditors to shareholders on the company’s operating assets

with a strike price that is equal to the debt face value. Shareholders will continue operating the firm

as long as its operating assets are enough to honor debt payments,

V2(X2,B) = max
{

0 , Π(X2,K2)+L(K2)−B
}

subject to: Π(X2,K2)≡ Y (X2,K2)− f0

L(K2) ≡ K2−φ(K2,−K2)θ2 = K2(1−θ2)

(2.2)

where V2 represents the firm’s value at period 2, and f0 denotes a fixed cost that is necessary to pay in

order to operate the firm’s assets. The value of the option of equity considers the benefit shareholders

can obtain from selling the firm’s assets at the end of period 2, i.e. L(K2). When liquidating its assets,

the firm incurs the cost φ(K2,−K2)θ2 = K2θ2. Default occurs if the shock at period 2 is below the

threshold X?
2 (K2,B) that makes V2 equal to zero. Formally,

Π(X?
2 (K2,B),K2)+L(K2)−B = 0 (2.3)

From equation (2.3), an increase of the investment irreversibility (high θ2) does not only affect the

liquidation value of the capital stock K2 but it also reduces the firm’s value. This, since the firm will

optimally decrease investment at period 1 due to a lower expected marginal productivity of capital.

Note that because of the lower financial needs at period 1, the firm will also reduce the amount of debt

issued at this period. The final effect of an increase of θ2 on the probability of default will depend on

the relative change of K2 and B, that is the firm’s leverage ratio. The effect of θ2 on credit spreads will

be a function of the change in the expected default probability and expected recovery rates (defined

below). If the firm decides to default, i.e. X2 < X?
2 (K2,B), bondholders will take over the unlevered

firm and keep operating it for values of the technology shock X2 larger than the threshold X?
2 (K2,0),

which satisfies Π(X?
2 (K2,0),K2)+L(K2) = χK2. An increase of χ will decrease liquidation value of

the firm’s assets as an increase of θ2 will do. Yet, an increase in θ2 will have stronger effects due to

its large negative link with investment. In period 1, after observing X1 and the capital stock K1, the

firm’s problem reduces to,
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V1(X1,K1) = max
{

0,max
I,B

{
D(X1,K1, I,B)+E

(
V2(X2,K2,B)I{X2>X?

2 (K2,B)}

)}}
subject to: K2 ≡ K1 + I

D(X1,K1, I,B)≡ E(X1,K1, I,B)−Ψ(E(X1,K1, I,B))

E(X1,K1, I,B)≡Π(X1,K1)− I−Φ(K1, I)+P(B,K2)

(2.4)

where δ has been set to zero in the first constraint. The second constraint shows that distributions to

shareholders, D(·), are given as equity payout E(·) net of equity issuance costs Ψ(E(·)). As in the

benchmark model, equity issuance costs are modeled as the sum of a fixed ψ0, and a proportional ψ1

component. Lastly, P(B,K2) denotes the debt price associated to the face value B and conditional on

the firm’s optimal decisions.

Price of debt In a competitive market, P(B,K2) equals the discounted future bond payoffs obtained

when the firm is operating and in the case shareholders decide to default,

P(K2,B) = E
(

B · I{X2>X?
2 (K2,B)}

)
+E
(
(Π(X2,K2)+L(K2)−χK2)I{X?

2 (K2,0)<X2<X?
2 (K2,B)}

) (2.5)

In words, the first term in equation (2.5) represents the debt payment in the case shareholders con-

tinue operating the firm, whereas the second term denotes payments at default. Finally, given the

assumptions of the model, the firm’s credit spreads CS(B,K2) can be written as,

CS(B,K2) =
B

P(B,K2)
−1 =

1−RR(B,K2)

1−PD(B,K2)
−1 (2.6)

The first equality in equation (2.6) implies that adding the credit spreads to the (gross) risk free

rate allows agents to recover the risky debt price by discounting the debt face value as if default never

occurs. The second equality in equation (2.6) shows that the credit spreads can be written in term of

the expected default probability PD(B,K2) and recovery rate RR(B,K2).10

Results The remainder of this section discusses the role of the degree of partial irreversibility of

investment θ2 and deadweight cost χ in determining the firm’s credit spreads and leverage. At period

1, the firm balances equity issuance and bankruptcy costs to determine the optimal debt level B.

Indeed, a low level of debt forces the firm to use a combination of internal earnings and costly equity

issuance to finance capital expenditures. Yet, by decreasing the probability of default at period 2, a

10Where the expected default probability PD≡ PD(B,K2) and recovery rate RR≡ RR(B,K2) are defined as,

PD = E
(
I{X?

2 (K2,0)<X2<X?
2 (K2,B)}

)
and, RR =

1
P(B,K2)

E
(
(Π(X2,K2)+K2(1−χ−θ2))I{X?

2 (K2,0)<X2<X?
2 (K2,B)}

)
for more details refer to Appendix B that shows how to compute PD(·) and RR(·) for the more general case.
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low level of debt reduces the exposure to bankruptcy costs. To determine the relative importance of

partial irreversibility of investment and deadweight cost on the firm’s decisions, the model is solved

for multiple values of θ2 and χ . Next, I compute marginal effects of θ2 and χ on different firm’s

decisions. In Figure 2.3, red (black) lines show the average marginal effect of increasing the degree

of partial irreversibility of investment, θ2, (deadweight cost, χ) on multiple firm’s variables; keeping

the deadweight cost, χ , (partial irreversibility of investment, θ2) unchanged.

The top-left graph shows that investment, I, decreases more after an increase of investment ir-

reversibility (high θ2) than after increasing of deadweight cost (high χ). A decline in investment

reduces the firm’s financial needs which translates to a reduction of the amount of debt issued (top-

center graph). Note that the reduction of debt issuance is more pronounced after an increase of

investment irreversibility than after a decline in deadweight cost. Ultimately, the top-left graph shows

the effect on leverage of changes in the two parameters studied.

When investment becomes more irreversible, the optimal capital stock of the firm decreases due to

a lower value of the option to invest; this, at the same time, decreases significantly the firm’s financial

needs which leads to a lower leverage ratio. In contrast, even when the deadweight cost increases,

the firm does not adjust its investment significantly and thus its financial needs continue being high.

However, due to higher deadweight costs, the firm’s creditors provide less funds per unit of face value.

Consequently, the firm needs to increase its leverage ratio in order to be able to fund its investment.

Note that in this numerical example, changes in credit spreads only come from change in the

expected recovery rate of the debt issued. Due to the discrete nature of Xt in the numerical exercise,

the range of values for θ2 and χ guarantees that the probability of default remains unaltered (bottom-

left graph). It is worth mentioning that for reasonable values of the level of investment irreversibility

and deadweight cost, both channels studied in this chapter that relate to asset redeployability exhibit

similar effects on credit spreads but their effects on leverage ratios differ. To summarize, the simple

model shows that there is a positive relationship between investment irreversibility and credit spread,

and a negative one with financial leverage. On the other hand, there is a positive link between higher

deadweight costs, and both credit spread, and financial leverage.

The distinct effects of the channels of asset redeployability studied highlight the importance of

considering different aspects of a firm affected by its ability to redeploy its assets. Furthermore, de-

spite that the simple model allows us to understand the main mechanisms, a rigorous quantification

of the contribution of each channel must consider that in practice partial irreversibility of investment

will not necessary be an important constraint for all firms; which may end up weakening the marginal

effects found in this section. Indeed, the importance of partial irreversibility of investment will de-

pend on —among other factors —the firm’s current stock of capital and the degree of its financial

constrains. Additionally, and as it is shown in the dynamic model, the importance of the deadweight

channel will depend on how close the firm is to distress. Intuitively, when a firm is far from defaulting

its creditors will not be concerned with factors affecting their recovery upon default. The next section

intends to address these issues that at first are difficult to be captured by a simple two-period model.
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2.3 Benchmark model
This section extends the simple model into a dynamic stochastic partial equilibrium model. It consid-

ers infinitely lived firms in discrete time. Firms issue debt and equity and are owned by risk-averse

investors. I study whether the channels highlighted previously are quantitatively sufficient to explain

the cross-sectional differences in the data showed by firms sorted on asset redeployability. The rela-

tive importance of each channel is assessed based on its contribution to leverage and credit spreads.

2.3.1 Firms

The core of the model consists of a stochastic discount factor and a cross-section of heterogenous

firms that make optimal investment and financing decisions by balancing real and financing costs. The

stochastic discount factor is derived from a representative household who has recursive preferences

and an exogenous consumption process as in Kuehn and Schmid (2014).

At period t, the firm’s chooses its new factor demand, kt+1 and how to finance these purchases

in order to maximize the present value of shareholders’ after-tax cashflows. To finance its capital

demand and distributions, the firm can use either internal earnings available at the beginning of the

period or new debt issues. If the funding raised through these two sources is not enough, the firm can

also choose to issue new costly equity. Regarding debt contracts, firms issue a combination of short-

and long-term debt.11 Specifically, at each period t the firm can control the total face value of debt

outstanding bt+1 and the speed at which its debt matures over time by adjusting its average maturity.

The firm’s average maturity of its bonds is determined by the variable λt+1 ∈ [0,1] which implies that

at time t + 1 only a fraction λt+1 of the total face-value of the debt outstanding bt+1 is paid back to

bondholders.12 In addition to the fraction of principal repaid, borrowers pay a coupon per period that

corresponds to a proportion of the total debt face value determined by a fixed coupon rate c ∈ (0,1).

Production Technology

At period t, output is given by the production function yt = y(kt ,xt ,zt); where xt denotes a persistent

aggregate productivity shock which follows a random walk with time-varying drift and volatility; and

zt denotes an idiosyncratic shock affecting the firm’s cash flows through its operating leverage which

follows a mean-reverting process. Particularly, xt and zt follow,

ln(xt+1/xt) = g+µx(st)+σx(st)ε
x
t (2.7)

ln(zt) = (1−ρz)z̄+ρz ln(zt−1)+σzε
z
t (2.8)

where εx
t and ε

z
t ∼ i.i.d N(0,1). The low-frequency component in the aggregate productivity equation,

µx(st) is used to generate sizeable risk premia as in Bansal and Yaron (2004) whereas the time-varying

11Following a similar framework as in Brunnermeier (2009), Michaux and Gourio (2012), Chen et al. (2012), Brunner-
meier and Oehmke (2013) and He and Milbradt (2015).

12Ignoring the coupon, the average debt maturity is computed as, λt+1 ∑
∞
j=1 j× (1−λt+1)

j−1 = 1/λt+1.
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volatility is useful to generate realistic credit spreads. Each firm produces according to the decreasing

return to scale Cobb-Douglas production function,

y(kt ,xt ,zt) = x1−α
t kα

t − f zt −φkt (2.9)

where f and φ represent a fixed and a proportional cost, respectively. In the calibration, φ is set to

match the average book-to-market ratio and f is used to calibrate default rates.13

Investment

Firms are allowed to scale operations by choosing the level of capital kt+1 which is accomplished

through investment, it . Firms’ capital accumulation is such that, it ≡ kt+1− (1− δ )kt , where the

depreciation rate of capital is denoted by δ ∈ (0,1). I model real options by assuming that firms face

a cost of adjusting capital Φ(kt , it ,ωt) where the stochastic variable ωt controls one of the dimensions

of asset redeployability studied, i.e. the investment-irreversibility channel, described in Section 2.4.

Equity value

Shareholders have the right to firms’ dividends as long as they are operating. Distributions to share-

holders, dt are given by equity payout et net of issuance costs Ψ(·). Equity payouts are equal to firms’

free cash-flow; that is, the operating profit, net of cash flows from financing and investment activities,

e(kt ,bt ,λt ,Γt) = (1− τ)y(kt ,xt ,zt)− it −Φ(kt , it ,ωt)− (λt + c(1− τ))bt + τδkt

+P(kt+1,bt+1,λt+1,Γt)(bt+1− (1−λt)bt)
(2.10)

where τ denotes the effective tax rate and Γt summarizes the vector of aggregate and idiosyncratic

stochastic variables (xt ,zt ,ωt ,χt), where χt is the stochastic variable related to the deadweight-cost

channel (described in Section 2.3.1). The first term captures the firm’s operating profit, from which the

required investment expenses, it +Φ(kt , it ,ωt), and debt repayments, (λt + c(1− τ))bt are deducted.

Note that capital depreciation and debt interest payment generate tax shields. The debt price function

P(kt+1,bt+1,λt+1,Γt) will be a function of stochastic variables Γt and optimal decisions at time t. It

follows that the value of the firm to its shareholders, denoted J(·), is the present value of distributions

dt ≡ et−Ψ(et) plus the expected firm’s continuation value. Following Gomes et al. (2014), it writes,

J(kt ,bt ,λt ,Γt) = max
{

0, max
kt+1,bt+1,λt+1

{
dt +Et(Mt,t+1J(kt+1,bt+1,λt+1,Γt+1))

}}
(2.11)

where Mt,t+1 is the equilibrium stochastic discount factor derived from the representative household’s

preferences (described in Section 2.3.2). The first max operator captures the limited liability of share-

holders. The second max operator relates to the determination of optimal decisions of firms’ manager.
13Since the economy is persistently growing, g> 0, in the solution of the model the fixed cost f is multiplied by aggregate

technology shock xt to keep it economically sizable along the balance growth path of the firm.
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Default

Several observations about the value of equity will be useful later. First, limited liability implies

that equity value, J(·), is bounded and will never fall below zero. This implies that equity holders

will default on their credit obligations whenever their idiosyncratic shock zt is above a cutoff level

z?(kt ,bt ,λt ,xt ,ωt ,χt) determined by the threshold default condition,

J(kt ,bt ,λt ,Γ
?
t ) = 0 with, Γ

?
t ≡ (xt ,z?(kt ,bt ,λt ,xt ,ωt ,χt),ωt ,χt) (2.12)

To simplify notation, I define z?t ≡ z?(kt ,bt ,λt ,xt ,ωt ,χt) and z0
t = z?(kt ,0,0,xt ,ωt ,χt). The last defi-

nition, z0
t , represents the idiosyncratic shock realization that makes the unlevered firm’s value equal

to zero, i.e. the highest value of zt at which the unlevered firm keeps operating.

Deadweight Cost

Upon default, bondholders can seize a fraction (1−χt)∈ [0,1] of a firm’s value. That is, the higher the

stochastic variable χt , the lower the bondholders’ recovery. At this point χt and ωt are independent

although in the data, they may be correlated. As it is described in Section 2.4.2, the points of the grid

for χt are equally spaced and belong to the interval [χ,1]; where χ and the number of points in the

grid are set to match the mean and volatility of recovery rates upon default as in Chen (2010).

To explain the differences in credit spreads and leverage observed empirically between the highest

and lowest asset redeployability quintiles (see Table 2.6) as well as the relative importance of ωt and

χt , I will look at portfolios that vary by ωt and χt .14

Debt Contracts

The firm’s creditors buy corporate debt at price P(kt+1,bt+1,λt+1,Γt) and collect coupon and principal

payments until the firm defaults. If default occurs at period t, shareholders walk away from the firm,

while creditors take over and restructure the unlevered firm incurring proportional deadweight losses

χt . With these assumptions, period-t per unit market price of debt P(kt+1,bt+1,λt+1,Γt), is pinned

down by an arbitrage condition such that the amount of money creditors are willing to pay for the

contract must equal the expected value of future payments. Formally, this condition implies the

following identity,

bt+1×P(kt+1,bt+1,λt+1,Γt) = a︸︷︷︸a

Et

(
Mt,t+1bt+1(λt+1 + c+(1−λt+1) ·P(kt+2,bt+2,λt+2,Γt+1))I{zt+1<z?t+1}︸ ︷︷ ︸

solvent states

)
+Et

(
Mt,t+1(1−χt+1)J(kt+1,0,0,Γt+1)I{z?t+1<zt+1<z0

t+1}︸ ︷︷ ︸
default states

) (2.13)

14I provide more details about the portfolio construction from the model simulation in Section 2.5.
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Importantly, corporate bonds are held by the representative household and are thus valued using the

household equilibrium pricing kernel Mt,t+1. The first term on the right-hand-side of equation (3.6)

contains the cash flows received by bondholders if no default takes place at period t +1; whereas the

second term reflects the payments upon default net of deadweight costs.

2.3.2 Households

The model is completed by specifying the household stochastic discount factor of a representative

household who features recursive preferences and consumes according to an exogenous consumption

process, Ct . Following Epstein and Zin (1991), the household utility is given by,

Ut =

(1−β )C
1− 1

ψ

t +βEt

(
U1−γ

t+1

) 1− 1
ψ

1−γ

 1
1− 1

ψ

(2.14)

where the preference parameters are the rate of time preference, β ∈ (0,1), the elasticity of intertem-

poral substitution, ψ , and the coefficient of relative risk aversion, γ . Further, as in Bhamra et al.

(2010) and Kuehn and Schmid (2014), aggregate consumption growth is assumed to follow a random

walk process with time-varying drift and volatility,

ln (Ct+1/Ct) = g+µc(st)+σc(st) ηt+1 (2.15)

where µc(st) and σc(st) depend on the aggregate state of the economy denoted by st . The standard

normal innovations ηt+1 are independent of the other stochastic variables of the model. In the nu-

merical solution, the aggregate state st is modeled as a persistent Markov chain. The representative

household’s stochastic discount factor will be computed as,

Mt,t+1 = β
θ

(
Ct+1

Ct

)−γ(Wt+1 +1
Wt

)−(1−κ)

(2.16)

where Wt denotes the wealth-to-consumption ratio and κ ≡ (1− γ)/(1− 1/ψ). Importantly, the

wealth-to-consumption ratio will be a function of the state of the economy, st . In fact, it is not

difficult to show that W (st) solves the system,

W (st) = Et

(
β

κ

(
Ct+1

Ct

)1−γ

(W (st+1)+1)κ

∣∣∣st

)1/κ

(2.17)

which is solved through a value-function-iteration procedure conditional on the Markov chain for the

aggregate of the economy st and the stochastic processes of the remaining model’s variables.
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2.4 Model parametrization
This section describes the benchmark model calibration and provides details on the functional forms

for the adjustment costs Φ(·) and equity issuances costs Ψ(·). The model is solved using a global

method after normalizing all non stationary variables by the aggregate technology shock. Details

about the numerical solution and the normalized problem are shown in the Appendix.

2.4.1 Functional forms

Capital adjustment cost

The capital adjustment cost function Φ(·) is modeled as in Zhang (2005), but adding a degree of

risk in the level of partial irreversibility of investment given by ωt > 1. The capital adjustment cost

function is quadratic in the firm’s investment rate, and its convexity is determined by θ > 0 and θωt

when the firm chooses to invest and disinvest, respectively. Formally, Φ(·) writes,

Φ(kt , it ,ωt) = kt

(
it
kt
−δ

)2 [
I{it≥0}θ + I{it<0}θωt

]
(2.18)

In the numerical solution of the model, the stochastic variable ωt is modeled as a Markov chain with

persistence denoted by ρω . Then, a low (high) ωt implies that the firm’s capital investment is highly

reversible (irreversible). As is described in Section 2.4.2, the points of the ωt grid are equally spaced

(in logs) and belong to the interval [1, ω̄]; where ω̄ is set to match differences in excess returns showed

by the highest and lowest asset redeployability quintiles in the data.

Equity issuance cost

Lastly, I consider a fixed and a proportional equity issuance costs, which are denoted by e0 and e1,

respectively. Then, the total equity issuance cost is given by the function, Ψ(et) = (e0+e1|et |)I{et<0},

where the indicator function I{et<0} implies that these costs apply only when the firm is raising new

equity finance, that is, when the net payout, et , is negative.

2.4.2 Calibration

Standard real business cycles parameters and preference parameters of the benchmark model are set

to values taken from the existing literature. The remaining set of parameters are chosen to match ag-

gregate moments and moments derived from sorting firms based on the asset redeployability measure

in the data. All parameters values of the monthly calibration implemented are reported in Table 2.1.

Preference parameters are standard in the long-run risk literature (Bansal and Yaron (2004)). The

elasticity of intertemporal substitution ψ is set to 2 and the coefficient of relative risk aversion γ is set

to 10, as in Kung (2015); and the subjective discount factor β is set to 0.994.
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In term of the technology parameters, the productivity process is calibrated following Kuehn and

Schmid (2014). Indeed, I model the aggregate Markov chain, st , to jointly affect the drift and volatility

of the aggregate productivity shock xt and consumption growth ln(Ct/Ct−1). Specifically st consists

of five states. To calibrate the Markov chain, I set the persistence of the Markov chain (ρ) to 0.95, the

mean and volatility of the consumption drift states are set to zero and 8.69e−4/
√

2, respectively; and

the mean and volatility of the consumption variance states are set to 1.51e−4/
√

2 and 1.05e−5/
√

2,

respectively. Following Kuehn and Schmid (2014), the drift and volatility of aggregate productivity xt

scale with the respective moments of consumption growth by a factor of 1.7. This calibration allows

me to match annualized consumption growth moments and obtain a sizable aggregate stock returns

volatility. I set g to yield an annual average growth of 1.8%.

At the firm level, the capital share α is set to 0.35, and the depreciation rate of capital δ is set

to 1.0%. These values are close to those used in Kung (2015). Firms face proportional costs of

production, φ , of 0.07 and a fixed cost, f , of 0.05, similar to Kuehn and Schmid (2014) and Gomes

et al. (2003a) respectively. As in Zhang (2005) we set the capital adjustment parameter θ to 15. I

calibrate the volatility and persistence of the idiosyncratic productivity process to match the annual

default rate.

The effective corporate tax rate τ is set to 14%, consistent with the evidence (Binsbergen et al.

(2010)). The annual coupon payment, c, is set to 3.0%. Equity issuance cost parameters are set to

match the frequency of equity and debt issuance. Lastly, the persistences of the underlying investment

irreversibility and deadweight cost processes are set to be high, that is, ρω and ρχ are set to 0.9. The

remaining parameters controlling the grids of the deadweight cost χt and the degree of investment

irreversibility ωt are set as follows. The points of the grid for χt are equally spaced in the interval

[χ,1]; where χ and the number of points in the grid are set to match the mean recovery rate of 45%,

and the volatility of recovery rates of 10% (Chen (2010)). Finally, the points of the grid for ωt are

equally spaced (in logs) and belong to the interval [1, ω̄]; where ω̄ is set to match the difference in

excess returns exhibited by the highest and lowest asset redeployability quintiles (see Table 2.6).

2.5 Quantitative results
In this section, I quantitatively assess the importance of both the investment-irreversibility and the

deadweight-cost channel as determinants of the cross-sectional credit spreads and leverage. Given

that most of the parameters of the model are set to match empirical aggregate moments, I start this

section by assessing how the benchmark model performs by comparing the aggregate moments ob-

tained from simulating the model to their empirical counterparts.

To complement the analysis, I report moments of portfolios formed based on asset redeployability

from simulated data. The objective of this exercise is to assess whether differences in firms’ asset

redeployability can generate substantial cross-sectional differences observed in the data.

Next, I decompose credit spreads and leverage of portfolios formed based on asset redeployability
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from simulated data. Specifically, the goal is to quantify the contribution of each asset redeployability

dimension considered in this chapter, i.e. the investment-irreversibility and deadweight-cost channels.

2.5.1 Aggregate moments

Table 2.2 reports the business cycle moments generated from the simulation of the benchmark cali-

bration of the model and compares them with their empirical counterparts. The benchmark calibration

generates an average investment-output ratio of 26% which is in line with its 20% obtained from the

data. Furthermore, the output volatility σ∆y and relative macro volatilities are close to the data. The

benchmark calibration of the model also replicates correlations across some business cycle variables

such as the procyclicality of consumption, and stock returns. The implied persistence of output and

investment are also quite close to the ones in the data.

Impulse response functions in Figure 2.1 describe the model dynamics in response to a positive

productivity shock. An increase in aggregate productivity ∆x leads to positive growth of firms’ invest-

ment. As showed by Croce (2014), in the context of a model with elasticity of substitution greater

than one, a positive shock of the long-run component generates an increases in investment growth

which leads to an increase in firm valuation proxies such as the market-to-book ratio as showed by

Figure 2.1. The increase in firms’ valuation translates to an important increase of the aggregate excess

return (re− r f ). An increase of the long-run component of the aggregate productivity ∆x also raises

firms’ continuation values so that the number of firms declaring bankruptcy decreases leading to a

lower aggregate probability of default. Consistently, credit spreads (cs) also suffer a contraction. As

discussed by Chen et al. (2012), after this positive aggregate shock, firms will choose longer debt

maturity in order to mitigate costs associated with deadweight losses of default that are more likely

to occur in economic downturns when firms are not able to honor their maturing debt.

Table 2.2 also shows key asset pricing moments from the benchmark model’s simulations. In par-

ticular, the model is able to generate a sizable annual equity risk premium (4.25%), and an important

excess returns volatility (7.58%). The strong demand for precautionary savings drives the risk-free

rate down to 1.4%, which is below the data, as well as the risk free rate volatility (1.4%). The model

generates a sizable credit spreads of 106bps with a volatility of 57bps, both values slightly above their

empirical counterparts.

As showed by Table 2.2, and as in the data, credit spreads are counter-cyclical showing a correla-

tion with the output growth of -0.19 which is somewhat below the empirical correlation (-0.36). Table

2.2 also reports several key aggregate corporate financing moments. Specifically, the model gener-

ates an annual book leverage of 0.30 and a frequency of equity issuance of 0.15. The unconditional

probability of default derived from the model is 1.66%. Overall, the model performs well matching

unconditional moments and key dynamics of both macro aggregates and asset prices.
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2.5.2 Asset redeployability moments

In this section, I assess the ability of firms’ asset redeployability to explain some significant dif-

ferences in capital structure outcomes. The analysis is conducted by disaggregating moments and

impulse response functions by distinct levels of asset redeployability. To understand the strategy fol-

lowed in this section, let us recall that ωt and χt are modeled independently. Then, in order to assess

the importance of the asset redeployability measure through the lens of the quantitative model de-

scribed in this chapter, I construct three portfolios that are intended to represent a portfolio formed by

firms with high, moderate and low degree of asset redeployability. Specifically, from the simulated

panel of firms resulted from the model, each period, the high- (low-) asset redeployability portfolio is

comprised of firms featuring an investment irreversibility level ωt and deadweight cost χt belonging

to the three lowest (highest) set of points of the variable’s grids. All the remaining firms are allocated

to the portfolio representing firms with a moderate level of asset redeployability.

Table 2.3 reports various moments of the high- and low- asset redeployability portfolios con-

structed in the model and compared to their empirical counterpart. Both in the model and the data,

high asset redeployability firms have higher book leverage, a lower default rate, a lower credit spread,

a more procyclical debt maturity structure, and a lower equity return. I will now explain each of these

in turn.

Table 2.3 shows that firms with more redeployable assets have larger book leverage ratios than

those exhibited by firms with less redeployable assets. Intuitively, firms’ enjoying more redeployable

assets have higher operating flexibilities which translates to lower probabilities of defaults. Fur-

thermore, in case of default, firms with highly redeployable assets provide more protection to their

bondholders since they experience higher recovery rates. Overall, these effects increase firms’ debt

capacity leading to larger debt-to-asset ratios. The last two columns compare the difference between

the high- and low- asset redeployability portfolios in the model and in the data. The cross-sectional

difference in the book leverage ratio is 0.056, similar to its empirical counterpart of 0.023. This result

is consistent with previous studies (e.g. Benmelech (2008)).

As in the data, the low-asset redeployability portfolio exhibits a more stable debt maturity struc-

ture than the high-asset redeployability portfolio does. Low asset redeployability exposes firms to

systematic shocks which makes them more concerned with rollover risk associated to short-term debt

and thus, these firms prefer to issue long-term debt even when implementing this strategy could be

costly. Indeed, firms with less redeployable assets face higher credit spreads. The equilibrium credit

spreads of the high-asset redeployability portfolio is lower (85bps) than the credit spreads faced by

the low-asset redeployability portfolio (130bps). Note that the magnitude of the difference in the

model, -46bps, is larger than its empirical counterpart, i.e. -19bps. This difference can be explained

by noticing that the data used is biased towards larger firms.15 As pointed out by Corhay (2015) credit

15As is described in Section 2.6, I compute corporate bond credit spreads from the National Association of Insurance
Commissioners (NAIC) bond transaction file which records all public corporate bond transactions by life insurance com-
panies, property and casualty indurance companies, and Health Maintenance Organizations.
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spreads on bank loans for small firms is twice as high as the credit spreads of large firms. Moreover,

besides the bias of the sample data toward large firms, firms in the sample varies across many more

dimensions than those captured in the model and it is likely that these dimensions are not captured

by a univariate analysis. To address this concern, in Section 2.6, I run a set of panel regressions that

include various controls.

The model also generates substantial differences in equity risk across asset redeployability port-

folios. The average excess return is about 3.5% withing high-asset redeployability firms compared

to 5.02% within low-asset redeployability firms; which leads to a difference of -1.55%. Notably, in

the data, this premium is -0.85%. To understand why the risk premium on equity is lower in firms

with more redeployable assets, note that low asset redeployability implies less flexibilities for firms

to deploy their excess capital over their lives and in particular when the economy faces bad shocks.

In contrast, firms with more redeployable assets do not face the same problem, since they do not have

too much excess capital. This lower flexibility is exacerbated in the model since firms also face fixed

operating costs in the profit function (as in Carlson et al. (2004)).

In short, the model predicts that firms with highly redeployable assets exhibit higher leverage ra-

tios, and lower credit spreads. These predictions are in line with earlier studies and more importantly,

match the data quantitatively.

2.5.3 Assessing asset redeployability channels

In what follows, I use the simulated panels from the model to assess the relative importance of the

two aspects of asset redeployability studied in this chapter.

To measure the importance of ωt and χt in shaping debt credit spreads, Table 2.4 Panel A shows

the average credit spreads exhibited by firms for each combination of partial irreversibility of invest-

ment (ωt) and deadweight cost (χt). As described in the previous section, bold numbers represent

the portfolios used to construct the high- and low-asset redeployability portfolios. The last row and

column of the table reports the elasticity of credit spreads with respect to changes of ωt and χt , re-

spectively. Elasticities of credit spreads with respect to each variable are intended to capture the per-

centage change of the portfolio’s average credit spreads after a one percentage change of the variable

examined, keeping everything else constant. Overall, the larger the degree of investment irreversibil-

ity or deadweight costs, the higher the credit spreads of the firm. Furthermore, the sensitivity of credit

spreads to changes in ωt and χt increases with the magnitude of each variable. These results capture

the notion discussed by Kuehn and Schmid (2014) regarding the convexity of the value of the invest-

ment and default option which are convex functions of the state variables. Panel A reveals that both

channels reinforce each other by increasing the sensitivity of credit spreads with respect to the other

channel. These results show that changes in asset redeployability can be substantial if we consider all

possible aspects of firms that can be affected by changes of the assets’ liquidity value.

Panel B shows that an increase in investment irreversibility reduces a firm’s leverage ratio. As
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showed in the simple model, this relation is mainly explained by the fact that firms’ optimal capital

stock decreases substantially when future disinvestment is costly (see Panel C). Unlike the simple

model, lower capital stock and higher levels of investment irreversibility also lead to a higher proba-

bility of default (Panel D) since the likelihood of reaching the idiosyncratic-shock default threshold

increases. Then, an increase of ωt will not only lower financial needs but also will tend to increase

debt credit spreads since default is more likely to occur; this will motivate the firm to decrease the

amount of debt issued leading to lower leverage ratios. In contrast, the effect of larger deadweight

costs on leverage varies depending on the level of the investment irreversibility faced by the firm. For

low levels of ωt , higher deadweight costs upon default do not have a sizable negative impact on credit

spreads and thus, the firm continue to issue debt in order to finance its investment plans. In this case,

the low impact of deadweight costs on credit spreads is explained by the small probability of default

faced by firms. However, when defaults become more likely after an increase in the investment ir-

reversibility, credit spreads increase importantly in the level of the deadweight cost. Overall, in this

case, firms’ desire to increase their debt issuances reduces significantly.

Note that unlike the simple model, Panel E shows that the value of recovery rates is not impor-

tantly affected by changes in investment irreversibility. However, deadweight costs relate negatively

with the value of recovery rates. Two opposite effects explain the apparent independency of the value

of recovery rates to investment irreversibility. In fact, despite that the probability of default increases

in ωt , in the model, the unlevered value of the firm upon default decreases in ωt since the optimal

capital stock decreases.

Lastly, Panel H shows that the effect of both channels on excess returns is mixed; however, as is

discussed in the previous section, on average the low-asset redeployability portfolio exhibits larger

excess returns than the high-asset redeployability portfolio does.

2.6 Panel regressions
In this section, I test in the data the implications of the asset redeployability measure (Kim and Kung

(2016)) on credit spreads and leverage ratios predicted by the quantitative model. Also, motivated by

the results of the quantitative model that link changes in the value of recovery rates to changes in the

deadweight cost, I test the importance of the two channels of asset redeployability documented in the

previous section. The strategy is to use a data set of publicly traded bonds to compute firms’ credit

spreads; while firms’ leverage ratios are computed from standard accounting data. To compute the

asset redeployability measure, I follow closely Kim and Kung (2016); whereas, expected recovery

rates are computed using the KMV model.

2.6.1 Bond sample construction

I obtain corporate bond prices from the National Association of Insurance Commissioners (NAIC)

bond transaction file. The NAIC file records all public corporate bond transactions by life insur-
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ance companies, property and casualty insurance companies, and Health Maintenance Organizations

(HMOs).16 The database covers from 1994 to 2012.

The first step is to link the NAIC bond transactions table to the Mergent Fixed Income Securities

Database (FISD) to obtain bond specific information. The criteria defined to form the final sample

is such that it only includes bonds issued by U.S. firms and paying a fixed coupon. As in Campbell

and Taksler (2003), bonds with special features such as put, call, exchangeable, asset backed, and

convertible are eliminated from the sample. Furthermore, I only keep bonds with an investment grade

rating.17 Following a common practice, I also remove from the sample firms that belongs to the

regulated utilities industry and financial institutions. Furthermore, as in Bessembinder et al. (2009),

I eliminate transactions smaller than $100,000, sell transactions that involved the bond issuer, and

those with the terms called, cancelled, conversion, direct, exchanged, issuer, matured, put, redeemed,

sinking fund, tax-free exchange, and tendered in the transaction name field. To eliminate potential

data-entry errors contained by the database, I decide to remove observations that show return rever-

sals.18 Finally, I exclude observations with obvious data errors such as negative price or transaction

dates occurring after maturity. Importantly, in cases where there are several bond transactions in a

day, the daily bond price is obtained by weighting each transaction price by its volume.

In terms of constructing the credit spreads associated with each transaction, note that the reported

prices in the NAIC file are clean bond prices, then accrued interests are added in order to obtain the

full settlement price (i.e. the bond dirty price). Transactions’ yields are computed by equating the

dirty price to the present value of cash-flows.19 Then, credit spreads are defined in excess of the

benchmark treasury at the date of transaction. To obtain the benchmark treasury for each transaction,

I match the bond duration to the zero-coupon Treasury yields curve provided by Gürkaynak et al.

(2007) - linearly interpolating if necessary. I complement Gürkaynak et al. (2007) database with

Treasury yields with maturity shorter than one year by appending the CRSP risk-free series for one

and three months. Following Gilchrist and Zakrajšek (2011), I truncate the credit spreads in the

sample to be between 5bps and 3,500bps.

Issuers’ accounting information are from Compustat and are matched using the six-digit issuer

CUSIP. Stock price information is obtained in a similar way from the CRSP file. To ensure that

16The NAIC database represents a substantial portion of the corporate bond market. Insurance companies hold between
one-third and 40% of issued corporate bonds (Campbell and Taksler (2003)). Bessembinder et al. (2006) estimates that
Insurance companies represent a substantial proportion (12.5%) of total bond trading volume. While if the database used is
representative can be debatable, I would like to point out that there are other (complementary) sources of bond data; such
as Trace US corporate bond database.

17Unlike some papers working with the NAIC data base, my results do not depend on whether AAA bonds are excluded
or not from the analysis (Campbell and Taksler (2003))

18I define return reversal as a return of more than 15% in magnitude immediately followed by a more than 15% return in
the opposite direction.

19To reconstruct the stream of a bond’s cashflows I use either the information about the date of the last coupon payment
or the date at which the principal is repaid. To decide which date determines the bond cashflow’s timing more precisely I
compute accrued interests under both assumptions and compare them to the accrued interest reported by NAIC. The date
that reproduces more closely the accrued interests reported by NAIC is used.
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all information is included in asset prices, stock returns and bond credit spreads from July of year t

to June of year t + 1 are matched with accounting information for fiscal year ending in year t − 1.

Monthly credit spreads observations are constructed using the last transaction of the month. The

sample consists of an unbalanced panel of 16,587 bond-month transactions. Appendix A.1 presents

descriptive statistics of the bond sample data used.

2.6.2 Asset redeployability measure

To construct the asset redeployability measure of a firm in a year, I employ the value-weighted aver-

age of industry-level redeployability indices obtained from Kim and Kung (2016)20 across business

segments in which the firm operates over the year. To generate this measure every year, I use annual

sales information obtained from the Compustat Segment files as weights. Then, the redeployability

of assets of firm i at year t, (Redeployabilityi,t) is computed as,

Redeployabilityi,t =
ni,t

∑
j=1

wi, j,t ×Redeployability j,t (2.19)

where ni,t is the number of industry segments, and wi, j,t is industry segment j’s sales divided by the

total sales for firm i in year t.21 Following Kim and Kung (2016), when information is missing in

Compustat Segment files for a firm-year, I use Redeployabilityi,t from previous year, and when this

information is also missing I impute the asset redeployability measure corresponding to the firm i’s

industry classification in year t.

2.6.3 Asset redeployability and the cross section of credit spreads

In this section I investigate empirically the effect of the firm’s asset redeployability on credit spreads

and leverage ratios. The objective is to test the results from the model that relate the degree of asset

redeployability negatively to credit spreads and positively to leverage ratios.

To accomplish this objective, I define the variable Redepi,t−1 as a dummy equal to one if the asset

redeployability measure of firm i is in the highest quintile of the sample distribution of the variable at

the previous year to which the observation (i, t) belongs to; and zero otherwise. This specification will

facilitate the economic interpretation of the coefficient associated to this variable and also mitigate

potential measurement errors on the construction of the asset redeployability measure. Using the

monthly panel data, I investigate whether the asset redeployability measure has any predictive power

on corporate credit spreads csi,t for public debt. To implement this plan, I test the following regression

model,
20To construct the data on industry-level asset redeployability, Kim and Kung (2016) use the 1997 Bureau of Economic

Analysis (BEA) capital flow table. I thank Hyunseob Kim and Howard Kung for making the data available.
21This measure of asset redeployability is similar to asset liquidity measures used in Ortiz-Molina and Phillips (2010).

Furthermore, Benmelech and Bergman (2009), and Gavazza (2011) implement similar measures for the airline industry.
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csi,t = α +δ ×Redepi,t−1 +βXi,t−1 + εi,t (2.20)

where (i, t) denotes a specific firm-month observation, Redepi,t−1 is the asset redeployability measure

described above, and Xi,t−1 is a vector of controls that will include time, and/or industry fixed effects.

The parameter of interest is δ and it will capture the difference in credit spreads, csi,t , for firms

exhibiting high levels of asset redeployability. Additionally, I test a similar regression where book

leverage ratio is set as the dependent variable.

In the regressions, controls variables Xi,t−1 are grouped into three categories: (i) equity charac-

teristics; (ii) bond characteristics; and (iii) macroeconomic variables.22 Particularly, in the equity

controls category I include the mean of the firm excess returns (net of the risk-free rate) computed

using the past 12 months of equity returns prior to the month when the transaction occurs. Also, in

this category, I include the equity beta; which is computed using the past 36 months of equity returns

and value-weighted market returns prior to the month when the transaction occurs. Note that previ-

ous literature has shown a positive effect of exposure to systematic risk on credit spreads (Chen et al.

(2012)). I also control for well-known determinants of the cross-section of credit spreads including

leverage (total debt to capitalization), asset tangibility, book-to-market ratio, the firm size (log-asset),

return on assets (ROA), and Tobin’s Q. I complement this set of controls with the fitted SIC-based

Industry concentration index (Hoberg and Phillips (2010)). Corhay (2015) shows that measures of

industry competition affect positively credit spreads.

Bond specific variables include the Altman Z-Score and bond ratings to take into account the

overall risk of the firm.23 Maturity and coupon are also included. Leland and Toft (1996) shows that

longer maturity bonds are likely to be risker; whereas Elton et al. (2001) claims that bonds with high

coupon payments suffers from higher taxation which should be translated as higher credit spreads.

To control for bond-specific illiquidity which can generate an illiquidity premium in my data (Dick-

Nielsen et al. (2012)), I include a measure of trading turnover defined as the average of trading volume

over the past 12 months as a proportion of total amount outstanding. The log amount outstanding of

the bond is also added since a small issue will likely be less liquid.

Finally, I include a series of macroeconomic variables such as three-month Treasury Bill yield.

I also include the 36-month moving average and standard deviation of the aggregate market return.

Lastly, I also control for the aggregate labor share obtained from Bureau of Labor Statistics (Fav-

ilukis et al. (2015)). Further, equity and macroeconomic data are lagged one month to ensure that

information is included in credit spreads at the time the bond transaction takes place. All t-statistics

are calculated using standard errors clustered at the firm level.

Table 2.7 Columns (4) presents coefficients from estimating the specification of equation (2.20)

22It is important to control for all these characteristics because, in contrast to the model, the bond data set exhibits vast
heterogeneity in both bond and firm characteristics.

23Moody’s ratings are converted to numerical values by creating an index starting at 12 (Baa3) and linearly increasing
by one for each credit rating notch.
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when credit spreads are the dependent variable. The coefficient of interest, δ , reveals that a firm with

assets exhibiting a degree of redeployability in the highest asset redeployability quintile is expected

to have credit spreads about 30bps lower than others firms, compared to 46bps in the model.

Note that the estimates presented in this section are in line with findings in previous empirical

literature that finds that firms with more liquid assets face a lower cost of debt (Ortiz-Molina and

Phillips (2010)).

2.6.4 Asset redeployability and the cross section of leverage

Similarly to the previous section, I run the following regression model using annual balance sheet

data from Compustat,

book leveragei,t = α +δ ×Redepi,t−1 +βXi,t−1 + εi,t (2.21)

as before, the parameter of interest is δ and it will capture the difference in book leverage, for firms

exhibiting high levels of asset redeployability. The independent variables used in this specification

are similar to the one already described in the previous section.

Table 2.7 reports the main regression results of this section estimated from the NAIC bond trans-

action panel. The first column presents coefficients from estimating the specification of equation

(2.21). The coefficient of interest, δ , is estimated to be around 2.2% and is statistically significant.

That is, a firm with assets exhibiting a degree of redeployability in the highest asset redeployability

quintile is expected to have a leverage ratio, on average, 2.2 percentage points higher than other firms.

Table 2.3 shows that the calibrated model reflects a similar effect of asset redeployability on leverage.

Indeed, the difference between the leverage ratio of the high- and low-asset redeployability portfolio

in the simulated data is, on average, 5.6 percentage points.

Importantly, the estimates presented are in line with findings in previous empirical literature that

finds that firms with more liquid assets exhibit larger leverage ratios.

2.6.5 Asset redeployability decomposition

In the model, the value of recovery rate relates importantly to deadweight costs, χt . In this section,

I use this result to motivate a decomposition of the asset redeployability measure, Redeployabilityi,t ,

in two components: (i) a component that contains information about expected recovery rates and (ii)

a component that is not able to predict expected recovery rates, Redeployability(residual)i,t .

Specifically, I start running a specification similar to the those described by equations (2.20)

and (2.21), but now the coefficient δ is separated in two based on the estimation of an intermediate

regression. This intermediate regression allows me to find the component of asset redeployability that
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does not explain expected recovery rates; and thus to test the following specification,

Yi,t = α +δ0×Redep(residual)i,t−1 +δ1×E(recovery rate)i,t−1 +βXi,t−1 + εi,t

Redeployabilityi,t−1 = γ×E(recovery rate)i,t−1 +Redeployability(residual)i,t−1

(2.22)

where the independent variable Yi,t is either the credit spreads or the book leverage ratio; furthermore,

Redep(residual)i,t−1 is defined as a dummy equal to one if the component of asset redeployability that

is not explained by recovery rates is in the highest quintile of the sample distribution of the variable

at the previous year to which the observation (i, t) belongs to; and zero otherwise. The final goal

is to test empirically whether or not credit spreads and book leverage are explained by other firms’

characteristics linked to asset redeployability apart from deadweight cost at default; such as, operating

flexibilities related to the firms’ ability to adapt their operations. To accomplish this goal, first I start

describing how expected recovery rates were computed.

Expected recovery rates

Following Altman et al. (2004) and Bohn and Crosbie (2003), a measure of expected recovery rates

is derived from adjusting a Merton-like default model to firms’ observations in the data. Specifically,

the method applied estimates the parameters of the KMV model by solving a system of equations

for each observation of the database used. Appendix A.1 provides technical details of the model

implemented.

Intuitively, the system of equations corresponds to two identities derived from a set of assump-

tions regarding the dynamic of a firm’s assets, debt structure, and market perfection. The system of

equations uses a set of observable variables, i.e. the value and volatility of equity in conjunction with

total debt, to estimate the value and volatility of the firm’s assets (unobservable). The general idea

is based on the notion that firm’s equity is a call option on the the firm’s assets. Once the value and

volatility of the firm’s assets are estimated, expected recovery rates are computed as the expected ratio

of the asset value to the total debt conditional on default.

Asset redeployability decomposition and credit spreads

Table 2.8, column (4), presents coefficients from estimating the specification in equation (2.22) when

the dependent variable Yi,t represents credit spreads. The coefficient δ1 reveals that a higher expected

recovery rate allows firms to reduce their credit spreads. Moreover, the coefficient δ0 shows that

the asset redeployability measure contains information that is not related to recovery rates but still

correlates negatively with credit spreads. Specifically, the coefficients δ0 shows that firms in the

highest quintile of the asset redeployability component that does not relate to recovery rates exhibits

lower credit spreads.

Despite that both coefficients δ0 and δ1 are statistically significant, the expected recovery rates

variable seems to affect less credit spreads. Indeed, reducing credit spreads in δ0 basis points requires
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a two-SD increase in expected recovery rates; whereas to have a similar effect, the asset redeployabil-

ity component of a firm that does not relate to recovery rates must show less than a one-SD increase

so that the dummy Redep(residual)i,t−1 becomes equal to one. Importantly, in the data, these re-

sults stays economically and statistically significant, even after controlling for many variables used to

predict credit spreads and leverage.

In the model, Table 2.4 Panel A shows a similar effect. The elasticities of credit spreads to changes

in investment irreversibility are larger than elasticities of credit spreads to the deadweight costs.

Asset redeployability decomposition and book leverage

The first column of Table 2.8 reports the main regression results from estimating the specification

(2.22) when the dependent variable Yi,t represents the book leverage ratio. The coefficients of interest,

δ0 and δ1, are estimated to be around 2.2% and -0.2%, and are statistically significant. That is, a firm

with assets exhibiting a degree of redeployability in the highest quintile is not only expected to have

a book leverage ratio on average 2.2 percentage points larger than other firms (see Table 2.7); Table

2.8 also shows that this positive effect comes mainly from aspects of the firm that relate to its asset

redeployability but are different from expected recovery rates.

To the extent that within the model expected recovery rates are primarily related to the deadweight

cost χt , Table 2.4 shows that the calibrated model generates implications for leverage ratios that are in

line with the one presented in this section. Table 2.4 Panel B shows that in the model firms’ leverage

ratios vary mainly due to changes in investment irreversibility. In contrast, in the model, deadweight

costs shows mixed effects on explaining firms’ leverage ratios.

2.7 Conclusion
By affecting the liquidation value of a firm’s assets, low asset redeployability increases both the cost

of disinvesting of an operating firm, as well as the cost of corporate default by decreasing the value

at which a distressed firm can liquidate its assets. Motivated by these two aspects of a firm affected

by the redeployability of its assets, this chapter studies the importance of asset redeployability on

determining leverage ratios and credit spreads through two main channels; that is, the investment-

irreversibility and the deadweight-cost channel.

Using a production-based asset-pricing model that incorporates varying degrees of investment

irreversibility and deadweight costs, this chapter shows that even though both channels affect credit

spreads positively, the importance of the deadweight-cost channel depends on the degree of invest-

ment irreversibility. Credit spreads are affected by deadweight costs as long as the level of investment

irreversibility imposes significant real frictions to the firm over its life, increasing its probability of

default. Further, the model reveals that the positive link between leverage ratios and asset redeploya-

bility is mainly driven by the investment-irreversibility channel. In most of the cases, an increase in

deadweight costs is not enough to affect significantly a firm’s investment decisions and thus, the firm
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continues issuing debt to fund its financial needs.

Despite that the model is calibrated to match a set of aggregate moments and to replicate cross-

sectional differences in excess returns exhibited by the highest and lowest asset redeployability quin-

tiles,24 the resulted magnitudes across portfolios formed based on the degree of asset redeployabil-

ity for leverage ratios and credit spreads accord with the existing empirical literature. I verify the

model’s predictions using a panel of publicly corporate bond transactions in conjunction with stan-

dard accounting data. In the data, I find that asset redeployability decreases credit spreads by 30bps

and increases leverage ratios by 2.2 percentage points. Also, credit spreads and leverage ratios show

to be more sensitive to the asset redeployability’s component that is not related to expected recovery

rates. These results are robust to various controls.

24As is described in Section 2.4.2, the deadweight-cost channel is modeled as a Markov chain where the number of points
in the grid is set to match the mean and volatility of recovery rates as in Chen (2010).

29



Table 2.1: Benchmark monthly calibration

Parameter Description Value

A. Preferences
β discount factor 0.994
γ relative risk aversion 10.0
ψ elasticity of intertemporal substitution 2.0

B. Production
α capital share 0.35
δ capital depreciation rate 0.01
f operational (fixed) cost 0.05
φ operational (linear) cost 0.07
θ capital adjustment cost parameter 15
ρω persistence of the asset redeployability state ωt 0.90
ρχ persistence of the recovery rate state χt 0.90

C. Productivity
g growth rate of consumption 0.018/12
ρ persistence of aggregate state st 0.95
σz conditional volatility of the idiosyncratic shock 0.13
ρz persistence of idiosyncratic shock 0.90

D. Finance
τ tax rate 0.14
c coupon rate 3.0%/12
e0 equity issuance cost: fixed component 0.06
e1 equity issuance cost: linear component 0.03

Benchmark monthly calibration. This table reports the parameter values used in the
benchmark monthly calibration of the model. Section 2.4 describes the moments targeted
to set each parameter.
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Table 2.2: Aggregate business cycle, asset pricing and financing moments

Moment Data Model Moment Data Model
A. Business cycle
E(∆y)(%) 1.80 1.55 corr(∆c,∆y) 0.39 0.49
σ∆y(%) 3.56 3.69 corr(∆c,re− r f ) 0.25 0.43
E(I/Y ) 0.20 0.26
σ∆c/σ∆y 0.71 0.79 ACF1(∆y) 0.35 0.33
σ∆i/σ∆y 4.50 4.30 ACF1(∆i) 0.85 0.80
E(maturity)(yrs) 7.6 4.7 σ(maturity)(yrs) 11.3 9.4

B. Asset prices
E(re− r f )(%) 7.22 4.25 σ(re− r f )(%) 16.5 7.58
E(r f )(%) 1.51 1.40 σ(r f )(%) 2.2 1.4
E(cs)(bps) 90 106 σ(cs)(bps) 44 57

C. Financing
Book leverage 0.26 0.30 corr(equity payout,∆y) 0.45 0.35
Freq. of equity issuance 0.09 0.15 corr(debt repurchase,∆y) -0.70 -0.37
Default rate (%) 0.84† 0.85 corr(cs,∆y) -0.36 -0.19

Aggregate business cycle, asset pricing and financing moments. I/Y denotes the investment-
output ratio. ∆y, ∆c, ∆i denote output, consumption, and investment growth respectively. Aver-
age and standard deviation of debt maturity exhibited by the data is computed directly from the
Mergent’s Fixed Income Security Database (FISD). re− r f is the aggregate stock market excess
return, r f is the one-period real risk-free rate, and cs is the aggregate credit spreads. Debt repay-
ment and equity payout are normalized by total assets. Data moments are obtained from Jermann
and Quadrini (2009) and Chen (2010). Model moments are calculated by simulating the model
for 3,000 firms and 6,000 months, with a 1,000 months burning period. Aggregate returns and
credit spreads are equally-weighted. Growth rates, and returns moments are annualized percent-
age, credit spreads are in annualized basis point units.
† The average default rate reported correspond to average expected default rates resulted from im-
plementing the KMV model in the panel data described in Section 3.2.1. Appendix A elaborates
on the technical details of the KMV model used.
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Table 2.3: Asset redeployability moments

Simulated Moments High minus Low
High AR Low AR Data Model

Book Leverage 0.308 0.252 0.023 0.056
Market Leverage 0.240 0.234 -0.008 0.006
Default rate (%) 0.788 0.978 -0.310† - 0.190
Recovery rates (%) 0.534 0.407 -0.182† -0.127
corr(maturity,∆y) 0.710 0.350 0.250 0.360
E(cs)(bps) 85 130 -19 -46
E(ri− r f )(%) 3.465 5.015 -0.850 -1.550

Asset redeployability moments. This table reports key moments of ex-
treme asset redeployability portfolios. Model moments are calculated by
simulating the model for 3,000 firms and 6,000 months, with a 1,000
months burning period. From the simulated data, each period the high-
(low-) asset redeployability portfolio is comprised of firms with an invest-
ment irreversibility level ωt and deadweight cost χt belonging to the three
lowest (highest) values of ωt and χt , respectively. Market leverage is ob-
tained as the ratio of the debt market value and the sum of the equity and
debt market values. The market value of debt is defined as total debt times
the market value of 1$ of debt obtained from my data sample. The remain-
ing variables are described in Table 2.2.
† The default and recovery rates used to compute the difference reported
correspond to expected default and recovery rates resulted from implement-
ing the KMV model in the panel data described in Section 3.2.1. Appendix
A elaborates on the technical details of the KMV model.
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Table 2.4: Portfolios sorted by investment irreversibility and deadweight cost

Panel A: CREDIT SPREADS (cs)

ω χ1 = χ = 0.18 χ2 χ3 χ4 χ5 χ6 χ7 = 1 %∆cs/%∆χ

ω1 = 1 77.0 79.5 80.5 81.6 83.3 86.0 90.7 0.11
ω2 82.5 84.8 85.6 86.7 88.3 90.4 95.3 0.10
ω3 88.0 90.3 92.4 94.9 98.4 104.3 116.1 0.19
ω4 93.5 95.8 98.2 101.1 105.2 112.0 125.7 0.20
ω5 99.5 101.8 104.1 107.0 111.8 119 133.2 0.20
ω6 105.5 107.5 110.5 113.9 119.5 127.7 144.1 0.22
ω7 = ω̄ =3.8 111.5 113.5 116.7 120.4 126.3 136.3 153.8 0.22
%∆cs/%∆ω 0.25 0.24 0.26 0.27 0.29 0.32 0.37

Panel B: BOOK LEVERAGE RATIO (b/k)

ω χ1 = χ = 0.18 χ2 χ3 χ4 χ5 χ6 χ7 = 1 %∆(b/k)/%∆χ

ω1 = 1 0.32 0.32 0.32 0.33 0.34 0.34 0.35 0.06
ω2 0.31 0.31 0.31 0.31 0.32 0.32 0.32 0.01
ω3 0.29 0.29 0.29 0.29 0.29 0.29 0.28 -0.03
ω4 0.27 0.27 0.27 0.27 0.26 0.26 0.26 -0.05
ω5 0.26 0.26 0.26 0.26 0.26 0.25 0.25 -0.03
ω6 0.26 0.25 0.25 0.25 0.25 0.25 0.25 -0.02
ω7 = ω̄ =3.8 0.25 0.25 0.25 0.25 0.25 0.25 0.25 -0.01
%∆(b/k)/%∆ω -0.16 -0.17 -0.17 -0.18 -0.2 -0.21 -0.22

Panel C: INVESTMENT RATE (i/k)

ω χ1 = χ χ2 χ3 χ4 χ5 χ6 χ7 =1 %∆(i/k)/%∆χ

ω1 = 1 0.055 0.058 0.054 0.055 0.048 0.052 0.045 -0.12
ω2 0.038 0.039 0.038 0.038 0.035 0.029 0.027 -0.23
ω3 0.030 0.025 0.026 0.028 0.021 0.026 0.023 -0.13
ω4 0.019 0.021 0.021 0.014 0.018 0.018 0.010 -0.27
ω5 0.009 0.010 0.011 0.006 0.007 0.008 0.011 0.33
ω6 0.004 0.008 0.008 0.004 0.005 -0.001 0.000 -0.80
ω7 = ω̄ =3.8 0.003 -0.001 0.002 0.001 0.002 0.001 0.002 -2.89
%∆(i/k)/%∆ω -1.46 -1.81 -1.52 -1.82 -1.55 -3.41 -6.93

(continues)
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Panel D: DEFAULT PROBABILITY (CONDITIONAL ON DEFAULT) IN BPS (PD)

ω χ1 = χ = 0.18 χ2 χ3 χ4 χ5 χ6 χ7 = 1 %∆PD/%∆χ

ω1 = 1 77.1 73 73.9 76.7 77.6 65.3 61.4 -0.12
ω2 79.2 77.7 76.7 70.6 75.0 71.5 64.9 -0.08
ω3 82.1 85.6 84.0 78.6 84.8 81.8 69.9 00
ω4 87.6 84.6 87.1 82.9 90.4 89.8 76.5 0.02
ω5 92.8 92.2 91.1 85.9 98.2 88.7 77.6 -0.02
ω6 95.9 93.7 93.1 88.5 98.2 98.1 80.9 0.02
ω7 = ω̄ =3.8 97.4 95.2 92.1 97.7 101.5 101.9 80.9 0.04
%∆PD/%∆ω 0.16 0.19 0.15 0.17 0.19 0.31 0.19

Panel E: VALUE OF THE RECOVERY RATE (CONDITIONAL ON DEFAULT) IN BPS (RR)

ω χ1 = χ = 0.18 χ2 χ3 χ4 χ5 χ6 χ7 = 1 %∆RR/%∆χ

ω1 = 1 55.4 54.6 50.7 46.2 45.6 36.0 0.0 -0.32
ω2 55.1 53.4 51.3 47.6 45.6 36.0 0.0 -0.32
ω3 55.2 53.7 51.3 47.3 45.6 36.0 0.0 -0.32
ω4 55.1 53.3 51.0 47.1 45.6 36.0 0.0 -0.32
ω5 55.1 53.5 51.4 47.5 45.6 36.0 0.0 -0.32
ω6 55.1 53.3 51.3 47.2 45.6 36.0 0.0 -0.32
ω7 = ω̄ =3.8 54.0 51.8 51.0 48.0 45.0 36.0 0.0 -0.30
%∆RR/%∆ω -0.02 -0.03 0.0 0.03 -0.01 0.0 -

Panel F: CREDIT RISK IN BPS (CR)

ω χ1 = χ = 0.18 χ2 χ3 χ4 χ5 χ6 χ7 =1 %∆CR/%∆χ

ω1 = 1 55.3 61.1 57.3 51.1 51.3 56.7 29.3 0.03
ω2 58.4 60.4 60.2 63.7 58.9 55 30.4 -0.04
ω3 61.1 58.3 59.7 63.6 59.2 58.5 46.2 -0.03
ω4 60.9 64.4 62.2 65.3 60.3 58.2 49.2 -0.03
ω5 61.8 63.0 64.3 68.6 59.2 66.3 55.7 0.07
ω6 64.7 67.1 68.7 72.7 66.9 65.6 63.2 0.02
ω7 = ω̄ =3.8 68.1 70.1 75.6 70.7 69.7 70.4 72.9 0.03
%∆CR/%∆ω 0.14 0.1 0.19 0.24 0.22 0.15 0.7

(continues)
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Panel G: DEBT AVERAGE MATURITY (m) IN YEARS

ω χ1 = χ = 0.18 χ2 χ3 χ4 χ5 χ6 χ7 =1 %∆m/%∆χ

ω1 = 1 2.40 3.05 3.51 3.43 3.32 3.75 5.54 0.65
ω2 2.89 3.31 3.54 3.42 3.25 3.89 7.57 0.85
ω3 3.56 3.78 3.85 3.82 3.79 4.02 4.74 0.20
ω4 4.64 4.40 4.36 4.40 4.46 4.42 4.32 -0.05
ω5 4.52 4.70 4.72 4.76 4.83 4.79 4.70 0.03
ω6 4.47 4.87 4.88 4.89 4.92 4.90 4.87 0.06
ω7 = ω̄ =3.8 4.42 5.05 5.05 5.06 5.06 5.06 5.05 0.1
%∆m/%∆ω 0.46 0.36 0.25 0.27 0.3 0.21 0.04

Panel H: EXPECTED EXCESS RETURNS (E(ri− r f ))

ω χ1 = χ = 0.18 χ2 χ3 χ4 χ5 χ6 χ7 =1 %∆E(ri− r f )/%∆χ

ω1 = 1 3.10 3.57 3.60 2.93 3.81 3.63 3.74 0.17
ω2 3.33 3.79 3.34 3.93 3.38 3.46 4.09 0.17
ω3 3.69 3.99 4.01 3.54 4.43 3.85 4.31 0.14
ω4 4.01 3.91 4.10 4.68 4.11 4.93 5.49 0.24
ω5 4.61 4.72 4.20 4.16 4.46 4.82 4.85 0.04
ω6 4.57 4.37 4.76 4.82 4.91 4.73 5.90 0.19
ω7 = ω̄ =3.8 5.23 4.59 4.85 5.01 4.86 5.71 5.56 0.06
%∆E(ri−r f )

%∆ω
0.37 0.19 0.22 0.43 0.2 0.34 0.31

Portfolios sorted by investment irreversibility and deadweight cost. This table reports average credit
spreads, book leverage, investment rate, default probability, value of recovery rate, credit risk, average
maturity and excess returns for portfolios formed by grouping simulated firms based on their partial
irreversibility of investment, ωt , and deadweight cost, χ . The model is simulated for 3000 firms and
6,000 months, with a 1,000 months burning period. The Markov chain of χt includes seven equally-
spaced points. The Markov chains of ωt includes seven equally-spaced points in logs. Bold numbers
represent the portfolios used to construct the high- and low-asset redeployability portfolios in Table 2.3.
The last row (column) in each table shows the elasticity of the moment reported respect to changes on ωt
(χt ).
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Table 2.5: Credit spreads by investment irreversibility and recovery rates (short-term debt)

χ

ω χ1 = χ = 0.18 χ2 χ3 χ4 χ5 χ6 χ7 =1 %∆cs/%∆χ

ω1 = 1 41.0 43.5 44.5 48.0 48.3 48.4 48.4 -0.11
ω2 43.5 45.8 46.7 50.1 50.4 50.5 50.5 -0.10
ω3 44.8 47.1 47.6 45 45.1 45.2 45.2 -0.01
ω4 47.0 49.3 49.9 50.3 47.6 45.1 42.8 0.06
ω5 56.3 58.5 59.2 59.6 56.1 52.7 49.7 0.08
ω6 62.4 64.4 65.2 65.6 61.5 57.6 54.1 0.09
ω7 = ω̄ =3.8 70.6 72.6 73.4 73.9 70.5 67.2 64.1 0.06
%∆cs/%∆ω 0.38 0.36 0.35 0.31 0.28 0.24 0.21

Credit spreads by investment irreversibility and recovery rates (short-term debt). This table
reports information described in Table 2.4 for the case where the parameter controlling firms’ debt
maturity is set to λ = 1. That is, firms are forced to issue short-term debt. Model moments are
calculated by simulating the model for 3000 firms and 6,000 months, with a 1,000 months burning
period.
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Table 2.6: Univariate analysis

High Redeployability Low Redeployability Test of differences
Mean Median Mean Median t-test Wilcoxon test

Redeployability 0.42 0.39 0.21 0.23
Yield Spread 118 bps 108 bps 137 bps 126 bps 5.41*** 9.48***
Book Leverage 0.265 0.247 0.242 0.269 -7.06*** -3.96***
E(ri− r f ) 8.49 % 6.86 % 9.34 % 11.27 % 1.16 3.65***

Univariate analysis. Panel A reports the means and medians of asset redeployability measure, yield spreads
and excess returns aggregated across all firms/months of the NAIC data is from 1994 and 2012. High Re-
deployability corresponds to the highest asset redeployability quintile and Low Redeployability to the lowest
asset redeployability quintile. The yield spreads is defined as the bond yield in excess of a government bond
with equal duration and ri− r f is the annualized realized stock return over the following year in excess of the
monthly bill. The last two columns of the table present test statistics of the t-test and the Wilcoxon test of
the differences in mean and median across the two samples. Panel B documents the correlations between the
annual (seasonally adjusted) percentage change of gross value added of nonfinancial corporate business and
five variable of the highest and lowest redeployability quintiles: cash-to-asset, investment-to-asset, total debt-
to-asset, equity-to-asset and long-term debt share. ***, **, and * denote statistical significance at the 1%, 5%,
and 10% levels, respectively.
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Table 2.7: Asset redeployability and the cross-section of capital structure outcomes

Leverage Yield spreads (bps)
(1) (2) (3) (4)

Asset Redeployability 0.022*** -10.18** -28.74** -29.3*** -28.84***
(3.65) (-2.28) (-2.29) (-2.65) (-2.64)

Mean excess return (%) 0.001** -5.47*** -4.4*** -5.46*** -5.53***
(-2.13) (-13.64) (-5.35) (-6.86) (-6.92)

Market Beta -0.005*** -8.6*** 20.49*** 13.06** 12.61*
(-3.36) (-4.14) (2.75) (2.01) (1.95)

Leverage 140.01*** 82.68* 38.76 37.71
(9.11) (1.85) (1.23) (1.2)

Tangibility 0.234*** -36.15*** -21.86 -4.32 -4.05
(22.14) (-3.11) (-0.93) (-0.2) (-0.19)

Book-to-Market (log) -0.053*** 4.67 8.29 10.65 10.43
(-15.18) (1.4) (0.8) (1.06) (1.03)

Asset Size (log) 0.023*** -0.34 -10.45*** 8.29** 8.13**
(19.98) (-0.21) (-2.73) (2.29) (2.25)

ROA (%) 0 -2.14*** -1.26 -0.39 -0.38
(-0.35) (-6.34) (-1.42) (-0.48) (-0.47)

Tobin’s Q -0.039*** -4.33*** -5.13 -1.49 -1.45
(-27.33) (-2.6) (-1.02) (-0.3) (-0.29)

Concentration 0.001*** 0.03 0.16 0.18 0.17
(9.15) (0.47) (0.78) (1.15) (1.1)

Bond characteristics
Z-Score -0.009*** 17.79*** 12.45 15.31** 15.12**

(-8.58) (5.66) (1.38) (2.07) (2.04)
Credit rating -17.12*** -17.19***

(-8.96) (-8.97)
Years to maturity 1.03*** 1.02***

(6.67) (6.71)
Coupon rate (%) 10.95*** 10.81***

(8.97) (8.83)
Issue size (log) -4.92* -4.86*

(-1.9) (-1.9)
Trading turnover (log) 1.06* 1.02*

(1.79) (1.71)
Macroeconomic variables
Three-month T-Bill yield (%) 0.004* -0.99 1.08 1.17

(1.75) (-0.46) (0.69) (0.75)
Vol. of daily index ret (%) 0.064** 15.59*** 17.11*** 17.24***

(2.29) (6.92) (7.41) (7.4)
Mean of daily index ret (%) 0.045 -15.18*** -13.33*** -13.01***

(1.19) (-5.22) (-4.76) (-4.73)
Labor Share (%) -0.168*** 8.53*** 8.06*** 7.53***

(-2.7) (9.78) (9.67) (9.33)
Constant -0.249* 278.7*** 298.45*** 343.44*** 341.75***

(-1.91) (9.68) (6.05) (4.83) (4.8)
Observations 40534 14418 14418 14418 14418
R2 0.26 0.27 0.35 0.41 0.42
Time FE Yes No No No Yes
Industry FE No Yes Yes Yes Yes

Asset redeployability and cross-section of capital structure outcomes. The controls variables are
grouped into three categories: (i) equity characteristics; (ii) bond characteristics; and (iii) macroeco-
nomic variables. Variable descriptions are given in Section 3.2.1 and Appendix A.
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Table 2.8: Asset redeployability channels and the cross-section of capital structure outcomes

Leverage Yield spreads (bps)
(1) (2) (3) (4)

Asset Redeployability (residual) 0.022*** -21.17*** -21.75* -21.49** -22.6**
(3.6) (-4.14) (-1.88) (-2) (-2.14)

Expected recovery rate -0.002*** -4.86*** -3.61** -3.29** -3.36**
(-9.01) (-14.17) (-2.32) (-2.26) (-2.29)

Mean excess return (%) -0.003*** -4.84*** -4.21*** -5.2*** -5.28***
(-9.76) (-12.49) (-5.7) (-6.95) (-7.01)

Market Beta 0.001 -11.69*** 15.83** 8.43 7.8
(-1.12) (-6.03) (2.17) (1.29) (1.2)

Leverage 87.19*** 81.14 42.53 40.56
(5.35) (1.54) (1.13) (1.07)

Tangibility 0.079*** -46.41*** -31.58 -16.77 -16.73
(7.28) (-4.2) (-1.19) (-0.88) (-0.88)

Book-to-Market (log) -0.06*** 6.43* 8.59 11.51 11.29
(-14.85) (1.91) (0.84) (1.11) (1.09)

Asset Size (log) 0.008*** 0.68 -9.22*** 7.49** 7.34**
(6.47) (0.44) (-2.61) (2.41) (2.37)

ROA (%) 0.001*** -1.68*** -0.93 -0.15 -0.14
(3.75) (-5.23) (-1.08) (-0.18) (-0.16)

Tobin’s Q -0.05*** -5.76*** -3.91 1.98 1.96
(-16.86) (-3.25) (-0.67) (0.33) (0.33)

Concentration 0 0.05 0.17 0.16 0.14
(1.53) (0.68) (0.74) (0.85) (0.78)

Bond characteristics
Z-Score -0.022*** 16.4*** 13.1 15.95** 15.72**

(-10.53) (5.1) (1.41) (2.02) (1.98)
Credit rating -17.17*** -17.26***

(-7.61) (-7.61)
Years to maturity 1.06*** 1.05***

(6.45) (6.51)
Coupon rate (%) 10.58*** 10.44***

(8.48) (8.36)
Issue size (log) -3.77 -3.71

(-1.55) (-1.53)
Trading turnover (log) 1.25** 1.2*

(2.06) (1.97)
Macroeconomic variables
Three-month T-Bill yield (%) -0.007*** -2.02 0.16 0.2

(-3.31) (-0.81) (0.08) (0.11)
Vol. of daily index ret (%) 0.048** 11.27*** 13.37*** 13.4***

(2.31) (4.58) (6) (5.94)
Mean of daily index ret (%) 0.058* -15.31*** -13.3*** -12.85***

(1.68) (-4.54) (-4.33) (-4.29)
Labor Share (%) -0.129*** 7.84*** 7.62*** 6.82***

(-2.81) (9.05) (9.38) (8.42)
Constant 0.247** 734.38*** 646.06*** 657.39*** 663.39***

(2.34) (17.8) (4.03) (3.69) (3.69)
Observations 21996 13436 13436 13436 13436
R2 0.16 0.29 0.36 0.42 0.43
Time FE Yes No No No Yes
Industry FE No Yes Yes Yes Yes

AR channels and the cross-section of capital structure outcomes. First two control variables are
described in Section 2.6. Refer to Table 2.7 for remaining variables.
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Figure 2.1: Aggregate impulse-response functions
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Aggregate impulse-response functions. This figure plots the impulse-response function to a positive long-
run (black solid) and short-run (red dashed) productivity shock for productivity growth (∆x), investment
growth (∆i), the aggregate debt and equity payout, the aggregate Market to Book ratio, the aggregate stock
market excess return (re− r f ), the aggregate default probability (Default), the aggregate credit spreads (cs),
and the inverse of aggregate maturity. The plots are calculated as deviation from the steady state. Units, when
applicable, are specified next to the plot title.
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Figure 2.2: Asset redeployability impulse-response functions
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Asset redeployability impulse-response functions. This figure plots the impulse-response functions to a
positive long-run productivity shock for industries that differ in their degree of asset redeployability. The
responses in the low asset redeployability are plotted in red solid while those in the high asset redeployability
are plotted in black solid. Each variable is described in Figure 2.1. The plots are calculated as deviation from
the steady state. Units, when applicable, are specified next to the plot title.
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Figure 2.3: Simple model’s solutions
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Simple model’s solutions. The graph shows investment (I1), leverage ratio (B/K1), expected recovery rates (χ), and credit spreads (cs = B/P(K1,B)−1)
resulted from solving the simple model for different values of investment irreversibility γ2 and bankruptcy losses ξ . The grid of γ2 and ξ are identical. The
black line represents the difference between the variable obtained with the highest value of ξ and the lowest ξ keeping γ2 constant. The red line represents
the difference between the variable obtained with the highest value of γ2 and the lowest γ2 keeping ξ constant. To construct the graphs we set, X1 = 0.5,
µ = 0, σ = 0.6, α = 0.4, φ = 0.1, ψ f = 0.1, f = 0.25, K0 = 1e−3, γ1 = 0.02, and ε is modeled as a discrete-state space with three states. In most of the
solutions, the firm chooses to invest at the highest value of ε2; whereas the firm prefers to disinvest at the mid and lowest value of ε2.
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Figure 2.4: Time-series of baa spreads
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Time-series of Baa spreads from NAIC sample and Moody’s. This figure compares the quarterly
time series of average Baa bond spreads reported by Moody’s and the same series constructed from
the NAIC bond transaction file between 1994 and 2012. Yield spreads are in basis points. Bonds from
NAIC are in U.S. dollars and have no special features (call, put, convertibility, etc.).
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Chapter 3

Cyclical Distribution of Debt Financing

3.1 Introduction
Recent research has documented that the cross-sectional dispersion of investment rate comoves with

the business cycle (Bachmann and Bayer (2014)). The authors argue that this procyclical behavior is

a result of lumpy investment at the micro level.1 Intuitively, a non-convex real cost that induces large

and infrequent adjustments of the capital stock on a significant fraction of firms in good times can

have a stronger effect on shaping the cross-sectional investment rate distribution than a countercyclical

uncertainty shock.2 In this chapter, I extend the result of Bachmann and Bayer (2014) to the cross-

sectional debt issuance distribution. Specifically, I show that —as the cross-sectional dispersion of

investment rate —the cross-sectional dispersion of debt issuance is also significantly procyclical.3

Moreover, I build a DSGE model featuring heterogenous firms that show investment and debt issuance

lumpiness to investigate the economic contribution of non-convex real and financing frictions.

To understand the sources of the procyclicality exhibited by the cross-sectional dispersion of the

debt issuance distribution, I start documenting its significant positive correlation with measures of the

extensive margin of firms’ debt issuance and investment; namely, the fraction of firms undertaking

large positive adjustments to either their stock of debt, capital or both.4 To the extent that these groups

of firms are potentially affected by different non-convex rigidities, I claim that the sources inducing

lumpiness on firms’ debt issuance and investment decisions have also the ability to shape the time-

series dynamic of the cross-sectional dispersion of the debt issuance distribution. Then, to further

investigate the economic determinants of the firm-level procyclical dispersion of debt issuance, I

1Gourio and Kashyap (2007) show that part of the aggregate investment can also be explained by investment lumpiness.
2The role of non-convex costs on shaping the distribution of investment rates has also been studied by Doms and Dunne

(1998), Caballero et al. (1995), Cooper and Haltiwanger (2006), Bachmann et al. (2013) and Bachmann and Bayer (2014).
3As described in details in Section 3.2, debt issuance is defined as the change of total debt (sum of short- and long-term)

scaled by total assets as in Salomao et al. (2014) and Covas and Den Haan (2011, 2012).
4As Bachmann and Bayer (2014), large positive (negative) adjustment of the capital stock —i.e. investment spikes —are

defined as investment rates higher (lower) than 5% (-5%) of total assets. Large positive (negative) adjustments of the debt
stock —i.e. debt issuance spikes —are defined as debt issuance higher (lower) than 5% (-5%) of total assets.
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build a structural model of heterogeneous firms facing non-convex real and financing costs.

The model shows that a non-convex real rigidity is not sufficient to cause a procyclical dispersion

of the cross-sectional distribution of debt issuance. In short, within the model, investment lumpiness

does not produce enough debt issuance lumpiness. Consequently, investment lumpiness by itself can-

not reproduce the time-series dynamic showed by the firm-level debt issuance distribution in the data.

Intuitively, even if capital adjustments are large and infrequent, in the absence of a non-convex debt

adjustment cost firms will tend to adjust their debt stock too smoothly; only responding to changes

of the tax-benefit of debt and/or the risk of bankruptcy cost. In the model, the tax-benefit of debt and

the risk of bankruptcy cost are mainly driven by a firm’s profitability which in the simulations does

not exhibit extreme adjustments. Thus, after calibrating the model to a series of aggregate and cross-

sectional moments, I discuss and quantify the contribution of both non-convex cost of capital and

debt adjustment on shaping the business cycle properties of firm-level investment and debt issuance

decisions.

This chapter makes three contributions. First, I complement existing works studying the time-

series properties of aggregate debt financing (Jermann and Quadrini (2009)) by showing that in the

cross-section, the dispersion of the firm-level distribution of debt issuance also shows a significant

positive correlation with the business cycle. This finding highlights the fact that looking at aggregate

variables can mislead our comprehension of firms decisions. Second, I add to the analysis undertaken

by Bachmann and Bayer (2014) of the cross-sectional distribution of investment rate by investigating

the economic mechanism leading to a procyclical dispersion of the cross-sectional distribution of debt

issuance. The analysis conducted in this chapter provides evidence regarding an important implication

of micro-decisions that a model featuring heterogenous firms undertaking investment and financial

decision should consider to account for. Lastly, I complement the study conducted by Bazdresch

(2005) regarding the role played by large and infrequent changes of firms’ debt stock on shaping

the cross-sectional distribution of debt issuance. Bazdresch (2005) focus on studying the average

asymmetry of the firm-level debt issuance distribution. In this chapter, I use Bazdresch (2005)’s

premise to show that non-convex rigidities affecting both capital and debt adjustments in addition to

a countercyclical price of risk induce a cyclical dynamic not only on the cross-sectional average of

the debt issuance distribution but also on its second moment.

In the empirical motivating section of this chapter, I start showing that the cross-sectional distribu-

tion of debt issuance is indeed positive skewed on average; i.e. reproducing Bazdresch (2005) results.

The average coefficient of the asymmetry of the distribution—quantified by a skewness coefficient

of about 3.4 —, appears to be shaped by large and positive adjustments of the debt stock.5 Indeed,

the average fraction of firms exhibiting positive large debt issuance spikes from 1984 and 2016 is

about 8.1%; whereas the average fraction of firms exhibiting negative large debt issuance spikes in

5Refer to footnote 4 in this chapter for a detailed definition of —positive and negative —investment and debt issuance
spikes used throughout tables.
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the period studied is lower in magnitude, i.e. 5.9%.6

Next, I proceed to explore further these periods of large adjustments of the debt stock in the data

by studying their relation to aggregate variables. In particular, I continue showing that both positive

and negative large adjustment of debt stock correlates positively (0.61) and negatively (-0.42) with the

business cycle,7 respectively. That is, despite that there are some firms adjusting strongly their debt

stock in response to various shocks, these large responses seem to be stronger in good times of the

economy. Furthermore, I show that the strong link with the business cycle exhibited by the fraction of

firms showing positive debt issuance spikes induces a cyclical time-series dynamic on the dispersion

of the cross-sectional distribution of debt issuance; which is quantified by a correlation with the

business cycle of about 0.43. Indeed, the cross-sectional dispersion of debt issuance appears to be

closely related to positive debt issuance spikes. The time-series correlation between both variables in

the sample is positive and significant (0.85).8

Interestingly, the data also suggests that the procyclicality of the dispersion of the debt issuance

distribution does depend on both real and financial frictions. From the first quarter of 1984 to the

last quarter of 2016, the correlations of the cross-sectional dispersion of the debt issuance distribution

with the fraction of firms showing either positive debt issuance spikes, positive investment spikes or

both simultaneously, result significant and positive. Then, to the extent that these different groups of

firms undertaking large adjustments of capital and/or debt are affected differently on the margin by

real and financial rigidities, these findings reveal that the features of the cross-sectional dispersion of

debt issuance distribution do depend on a combination of real and financial frictions.9

I use this result to further explore the economic mechanisms behind the procyclicality of the firm-

level debt issuance in terms of its cross-sectional dispersion. The second building block of this chapter

is based on a quantitative model of heterogenous firms that allows me to study the importance of non-

convex costs of capital and debt adjustment on shaping the firm-level distributions. To accomplish

this goal, I conduct several comparative statics in terms of the real and financial non-convex costs.

The main objective is to quantify the contribution of both rigidities on determining the distribution of

debt issuance and investment rate in terms of their (i) coefficient of asymmetry (skewness), (ii) time-

series correlation with the business cycle exhibited by the fraction of firms showing large positive

adjustments (spikes), and; (iii) time-series correlation with the business cycle exhibited by the both

cross-sectional dispersion. Broadly, the model predicts that a combination of both real and debt

issuance rigidities are required to reproduce the empirical behavior of the firm-level distribution of

debt issuance described before.
6Refer to Table 3.1, Panel A for more details regarding these results.
7Real output is measured by real GDP (in local currency at constant prices) and its cyclical component is obtained by

detrending the time-series using the band-pass (BP) filter due to Baxter and King (1999).
8In contrast, the correlation of the cross-sectional dispersion of debt issuance with the fraction of firms exhibiting

negative debt issuance spikes in the sample is slightly significant (-0.22). Note that, as discussed by Bachmann and Bayer
(2014) for the investment rate distribution, the correlation of the cross-sectional dispersion of investment rate with the
fraction of firms exhibiting positive investment spikes in the sample is highly significant (0.94).

9Table 3.1 provides more details about these results. Footnote 4 gives definitions of investment and debt issuance spikes.
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Indeed, in the model, low values of the non-convex cost of capital adjustment reduces not only

the asymmetry on the cross-sectional investment rate but also makes the cross-sectional debt issuance

distribution more symmetric. Intuitively, in the context of countercyclical aggregate uncertainty and

more flexible (dis)investment, positive adjustments of capital stock in good times are as frequent

as negative adjustments of capital stock in bad times; that is, the overall asymmetry of the cross-

sectional distribution of investment rates decreases in this context. Within the model, aspects of

the firms investment decisions are also reflected on firms’ financial needs. Then, in the presence of

difficulties for obtaining equity financing,10 debt issuance distribution becomes more symmetric since

patterns of investment decisions will also affect debt issuance decisions. Effectively, when firms do

not show large financial needs, adjustment of the stock of debt will tend to be frequent and small

balancing both the tax-benefit of debt and the risk of bankruptcy cost. As discussed by Bazdresch

(2005), in this case debt adjustments are mainly determined by changes in firms’ profitability; which,

under careful modeling of the idiosyncratic productivity shocks,11 will not show extreme variations

from period to period. Consequently, when real non-convex cost are small, the drivers of the time-

series dynamic of the cross-sectional dispersion of investment rate and debt issuance will not be

strong enough to induce procyclicality on both dispersions. In fact, in this case, the cross-sectional

dispersion of both firms’ variables will end up reflecting more the business cycle properties of the

underlying idiosyncratic productivity shock which in the model follows an heteroskedastic process

with countercyclical volatility (as in Bloom (2009), and Bachmann and Bayer (2014); among others).

In contrast, a high non-convex real cost renders large adjustment of the capital and debt stock not

only more likely but concentrated in booms. This behavior of positive investment and debt issuance

spikes induces a more procyclical behavior on the cross-sectional dispersion of both distributions

investment rate and debt issuance. Within the model, a high non-convex real friction reduces the

firms’ incentive to scale down capital in response to a higher dispersion of the idiosyncratic shocks

at recessions when the price of risk is sizable. Intuitively, in the presence of high non-convex real

friction, in recession the value of the option to disinvest is not high enough to offset the fixed cost

associated to this decision. On the other hand, in the model, large adjustment of the capital stock

becomes relatively more frequent in good times due to a real option effect. Indeed, in good times,

firms decide to adjust their capital stock by paying the fixed adjustment cost since their risk become

lower due to both lower dispersion of the idiosyncratic technology shock in conjunction with a lower

price of risk. Then, in this case, due to large financial needs faced in booms and in the presence

of rigidities on issuing equity, firms will also tend to exhibit large debt adjustments in good times.

As a consequence, an increase on the non-convex real cost in the model leads to an increase of the

procyclicality of the cross-sectional dispersion of both debt issuance and investment rates.

10In the model, firms also face difficulties for obtaining equity financing which are calibrated to match the aggregate
frequency of equity issuance, as described in Section 3.4.

11As described in Section 3.3, idiosyncratic productivity shocks are modeled as a persistent process implemented using
a grid containing enough points to avoid dramatic changes in firms’ profitability.
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Simulations from the quantitative model reveals that some degree of the non-convex debt is-

suance cost is required to reproduce the business cycle dynamics of the cross-sectional dispersion of

debt issuance. When the fixed cost of issuing debt is low, firms tend to adjust their debt position too

frequently. Indeed, as mentioned above even in the presence of non-convex costs of capital adjust-

ment, firms adjust optimally their debt stock every period in order to balance the tax benefit of debt

and the costs associated to bankruptcy risks. In the context of countercyclical aggregate uncertainty,

a low value of the non-convex real cost will not only reduce large adjustment of the stock of debt;

but also negative adjustments will be as frequent as positive adjustments. This behavior will lead to a

less procyclical cross-sectional dispersion of the debt issuance distribution. Furthermore, when debt

financing does not involve important additional costs, changes in capital will become more frequent

and thus large investment lumps will be less likely to observe and will also resemble the evolution of

the aggregate uncertainty. Overall, low fixed cost of issuing debt will lead to a more symmetric distri-

bution of investment rate and debt issuance. And, it will also imply a less procyclical cross-sectional

dispersion of the debt issuance distribution.

In contrast, increasing the fixed cost of issuing debt makes debt adjustment less frequent, large

and significantly linked to firms’ financial needs. Consequently, in the presence of countercyclical

price of risk and countercyclical dispersion of idiosyncratic shocks, high levels of non-convex debt

issuance and investment cost render debt adjustment spikes more likely to be observed in good times

and therefore; the cross-sectional dispersion of debt issuance distribution in this case becomes more

correlated with the business cycle.

Specifically, to quantitatively assess the importance of non-convex costs of capital and debt ad-

justments on shaping the firm-level distributions of debt issuance and investment, I start calibrating

the quantitative model to match a broad set of aggregate and cross-sectional moments. Importantly, in

the model, differences along idiosyncratic technology shocks are the only difference across firms.12

Using the model, I find that both non-convex rigidities linked to debt issuance and investment lumpi-

ness are key to match procyclical behavior of the cross-sectional dispersion of debt issuance and

investment rate. The benchmark calibration produces a large significant correlation of these cross-

sectional moments with the aggregate output (0.49 and 0.45, respectively). Note that these values

are in line with their empirical counterparts I obtained from the CRSP/Compustat Merged (CCM)

Fundamentals Quarterly file (0.56 and 0.43, respectively).13

In the next section, I provide a discussion about how this chapter fits and contributes to the existing

literature on corporate finance that studies the link of firms’ decisions to aggregate economic shocks.

12As in Bloom (2009), Bachmann and Bayer (2014), idiosyncratic technology shocks are modeled as a heteroskedastic
process with time-varying transition matrices between idiosyncratic productivity states, where the matrices correspond to
different values of the technology shock dispersion.

13Refer to Table 3.1, Panel A for more details regarding these results.
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3.1.1 Literature review

I contribute to the literature on corporate finance that studies the response of firms’ investment and

financing decisions to changing economic conditions by studying higher-order moments of the firm-

level debt issuance distribution.

Influential works by Kiyotaki and Moore (1997), Bernanke et al. (1999), Caballero (1999), Gourio

and Kashyap (2007), Jermann and Quadrini (2009), Khan and Thomas (2011), and Khan et al. (2014)

use structural models of default with financial frictions to study cyclical fluctuations of aggregate

financing in response to aggregate shocks. The general consensus is that financial frictions exacerbate

the negative effect of economic recessions. I add to this discussion by pointing out that, despite that

on average debt issuance increases in good times, firms respond differently to good aggregate shocks.

Specifically, I claim that these distinct behaviors ultimately affect other (higher-order) moments of

the cross-sectional distribution of debt issuance.

At the firm-level, the corporate finance literature has showed that firms’ response to aggregate

shocks in terms of their financing decisions depend on other firms’ characteristics. For instance,

Covas and Den Haan (2011, 2012), and Salomao et al. (2014) show that, unlike large firms, small firms

do not substitute equity by debt financing over the business cycle. They argue that since the cost of

debt of small firms increases importantly in bad times, small firms’ ability to fund their financial needs

by issuing debt is importantly reduced in recessions. Similarly, Korajczyk and Levy (2003) discuss

to what extent negative macroeconomic conditions affect the capital structure decision of financially

unconstrained firms, but have little impact on financially constrained firms. In this chapter, I build on

this literature by showing empirically that the distinct response of firms to aggregate shocks —in terms

of their debt issuance decision —induces business cycle dynamics not only on the aggregate debt

issuances, but also on the dispersion of its cross-sectional distribution. Indeed, using a quantitative

model, I claim that this dynamic of the cross-sectional dispersion of debt issuance depends mainly on

the underlying firms’ ability to costlessly adjust their debt stock over time.

Previous research has also studied the effect of firms’ financial rigidities on their investment de-

cisions. In a model where firms face fixed debt issuance costs, Cummins and Nyman (2004) argue

that financial non-convexities help to understand why firms in the data hold external finance and idle

cash simultaneously. Gomes (2001) construct a general equilibrium model of investment and financ-

ing and show that even in the presence of financial constraints, Tobin’s Q is a sufficient statistic to

explain firms’ investment. Cooper and Ejarque (2001) show that firms’ financial constraints are not

necessary to obtain a strong relationship between investment and profits. In contrast to some of these

works, in this chapter I show that non-convex financial cost are key to match the empirical business

cycle dynamic of the firm-level debt issuance and investment rate distribution. Particularly, in this

chapter, I propose large infrequent change in debt and investment stock as an important source of

these time-series properties.

The investment literature has extensively highlighted the role played by non-convex costs of cap-
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ital adjustment on shaping the firm-level investment rate distribution (Abel and Eberly (1996), Ca-

ballero and Engel (1999), Bachmann and Bayer (2014), among others). As in Bazdresch (2005), in

this chapter I also emphasize the importance of non-convex costs of debt adjustment to shape the

business cycle dynamic exhibited by the entire cross-sectional distribution of debt issuance. Further-

more, I discuss the interaction between real and financial non-convexities which I use to rationalize

the empirical motivating results presented in the introductory section and discussed in details in Sec-

tion 3.2. Recent empirical work points out that firms’ capital adjustment decisions are importantly

affected by the corporate bond market. In addition to the tight link between credit spreads and ag-

gregate investment growth suggested by Lettau and Ludvigson (2002), Philippon (2009) shows that

a bond-market-based Q can explain an important part of the variation of aggregate investments.14

The aim of this chapter is to contribute to this discussion by showing that both investment as well as

debt issuance lumpiness are required to reproduce empirical correlations of different moments of the

firm-level distribution of debt issuance with the business cycle.

More broadly, in this chapter I exploit the high degree of heterogeneity that firms’ debt issuance

decisions exhibit in the cross-section (Bazdresch (2005)) in conjunction with their link to the business

cycle to assess the importance of commonly financial frictions used in the literature to understand

firms’ financing decisions. Specifically, I target the asymmetry exhibited by firms’ debt issuance

and investment decisions in the cross-section to discipline an otherwise standard DSGE model with

heterogenous firms facing investment and financing decisions in order to reproduce the business cycle

dynamic exhibited by the cross-sectional dispersion of debt issuance and investment rate distribution.

The rest of the chapter is organized as follows. Section 3.2 presents several empirical results

that motivate this work. Section 3.3 develops a DSGE model featuring heterogenous firms that I use

to study the importance of non-convex costs of capital and debt adjustment on shaping the cross-

sectional distributions of debt issuance and investment. Section 3.4 discusses the baseline calibration.

Section 3.5 investigates some of the model’s quantitative implications for the cross-section of invest-

ment rate and debt issuance that is followed by a few concluding remarks in Section 3.6.

3.2 Empirical analysis
In this section, I start describing the database used to compute the results that motivate this chapter.

Next, I provide empirical evidence showing that large positive adjustments of firms’ debt stock not

only explain the average asymmetry exhibited by the cross-sectional distribution debt issuance, but

also induce its dispersion to comove with the business cycle. Business cycle is defined as the cyclical

component of real GDP growth obtained by detrending real GDP growth time-series using a band-

pass (BP) filter (Baxter and King (1999)). Lastly, I complement the previous finding by documenting

that large positive adjustments of capital stock also contribute to the cyclical pattern of the cross-
14Recently, Yamarthy et al. (2015) examine the role of financial frictions in determining firms’ investment decisions.

Yamarthy et al. (2015) argue that the effect of contracting friction on firms’ real decisions is much weaker relative to a
standard convex adjustment cost.
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sectional dispersion of the debt issuance distribution. Using these findings, I conclude motivating the

study of the effect of debt issuance and investment lumpiness on the cross-sectional debt issuance

distribution conducted in Section 3.3.

3.2.1 Data and variable description

The empirical part of this chapter is based on the CRSP/Compustat Merged (CCM) Fundamentals

Quarterly file. In order to be consistent with the quantitative business cycle literature, I work with

data from the first quarter of 1984 to the last quarter of 2016. In the empirical analysis, I also use data

on real quarterly GDP and the price level from NIPA tables.

Next, I describe the data treatment applied to the original CCM Fundamentals Quarterly database.

As standard in the corporate finance literature, I start dropping financing firms (SIC codes 6000-6999),

regulated utilities (SIC codes 4800-4999), and non-profit firms (SIC code 9000-9999). For the results

of this section, I do not consider the information of the first year a firm appears in the database to

eliminate any IPO effect. Following Salomao et al. (2014), I also drop firms where total assets are

zero or missing. Firms where the accounting identity is violated by more than 10% of total assets

are discarded. Observations where leverage ratio is larger than the unity are eliminated as well as

observations of those firms that where recorded in the database less than one year.15 These filters

leave a sample of 363,512 firm-quarter observations from 11,236 different firms. On average, a firm

is observed in the sample for 32 quarters. The average number of firms in the cross-section of any

given year is 3,195. The resulting sample covers roughly 43 percent of the original sample.16

In what follows, I describe the definitions of the variables used in the empirical analysis; which

follow closely Salomao et al. (2014). In the analysis, debt issuance are defined as the change of

total debt stock; where total debt stock is defined as the sum of long- and short-term debt. From

the definitions of the CCM database, long-term debt comprises debt obligations that are due more

than one year from the company’s balance sheet date; where debt obligations include long-term lease

obligations, industrial revenue bonds, advances to finance construction, loans on insurance policies,

and all obligations that require interest payments. Short-term debt is defined as the sum of long-term

debt due in one year and short-term borrowings. In the analysis conducted, I work with debt issuance

scaled by total assets. I compute total assets as the average of last three years assets adjusted by the

price level. I choose this definition of total assets to obtain most of the variation of the ratio from debt

issuances.17 In terms of the investment rate, I follow the literature on investment and define a firm’s

investment rates as the firm’s capital expenditures scale by total assets.

In the next section, I start studying the average properties of the cross-sectional distribution of

15Filters applied to the CCM Fundamentals Quarterly database are very similar to those applied in Colla et al. (2013).
16In the Appendix B.1, I show that the empirical results presented in this section also remain robust to the exclusion of

small firms. To assess the importance of small firms in the results, I conduct the same analysis by excluding firms with total
asset lower than $10,000. Table B.1 shows that business cycle dynamics of the cross-sectional distribution of debt issuance
and investment reported in Table 3.1 remain quantitatively unchanged.

17Similarly, Salomao et al. (2014) scale debt issuance by the firm’s total asset trend.
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debt issuance following the analysis conducted for the firm-level investment rate by Caballero et al.

(1995), Bazdresch (2005), and Bachmann and Bayer (2014). The main goal is to show that the debt

issuance cross-sectional distribution is affected importantly by large positive adjustments determining

its average asymmetry. After this analysis, in the following section, I proceed to link the cyclical

features of large positive adjustments of the debt stock to the cyclical pattern showed by the dispersion

of the debt issuance firm-level distribution.

3.2.2 Debt issuance lumpiness

The purpose of this section is to study some features of the debt issuance cross-sectional distribution.

While I show that the debt issuance cross-sectional distribution is importantly affected by large ad-

justments of the debt stock (as in Bazdresch (2005));18 I add to these findings by showing that the

positive large adjustments of the debt stock have a stronger effect on the cross-sectional debt issuance

distribution which is reflected not only on its average asymmetry but also its business cycle properties.

As a starting point, I proceed to compare the observed firm-level debt issuance distribution to

its normally simulated counterpart. As in Bazdresch (2005), for each firm that exhibits continuous

quarterly observations over the sample period 1984Q1-2016Q4, I proceed following the next steps.

First, I rank the firm’s quarterly debt issuance from the highest to the lowest debt issuance into bins.19

Next, I compute the simulated debt-issuance counterparts of the firm for each bin. Specifically, I

assume the simulated variable comes from a normal distribution with mean and standard deviation

given by the sample mean and standard deviation of the firm’s quarterly debt issuance ratios. Then, the

simulated debt issuance ratio (x j,i) of firm j-th associated to bin i ∈ [1,Nb] corresponds to the solution

of the equation Φ j(x j,i) =
i/Nb ; where Φ j represents the cumulative density function of a normal

distribution with mean and standard deviation equal to the sample mean and standard deviation of

firm j-th quarterly debt issuance. After repeating the exercise for each firm, I construct the averages

over all firms by bin.

Figure 3.1 shows, in red bars, the sample average debt issuance over all firms by bins. Note that

by construction bars are decreasing (on average). Figure 3.1 also presents, in blue line, the average

by bin that resulted from the simulated debt issuance ratios (x j,i). As can be observed in Figure 3.1,

a small number of periods account for most of the debt issuance action across firms. Unlike to the

simulated debt issuance (blue line), extreme values of the observed debt issuance (red bars) are much

larger compared to the values in the middle of the distribution. In fact, on average, while 85% of

the firm-quarter observations shows a debt issuance lower than 3% of the firm’s total assets; only 5%

of the firm-quarter observations accounts for 52% of the firm’s total (positive) debt issuance in the

18The importance of large adjustments on shaping the distribution of firm-level decisions has also been documented for
investment rates (Doms and Dunne (1998), Caballero et al. (1995), Cooper and Haltiwanger (2006), Bachmann et al. (2013)
and Bachmann and Bayer (2014)).

19Since this exercise uses firms that exhibit continuous quarterly observations from the first quarter of 1984 to the last
quarter of 2016, the total number of bins used is 4× (2016−1984+1).
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data. The corresponding numbers for the simulated debt issuances (blue line) are 66% of the firm-

quarter observations being below 3% of the firm’s total assets; and 5% of the firm-quarter observations

accounting for only 24% of the firm’s total (positive).

Following Bazdresch (2005) definition of a debt-issuance inaction period, I proceed to define a

large positive (negative) debt issuance spike as a change in debt issuance higher (lower) than 5%

(-5%) of the firm’s total assets.20 Table 3.1 Panel A first columns reports the average fraction of

firms with positive (+) and negative (−) debt issuance spikes per period. While the average fraction

of firms with positive debt issuance spike is 8.1%, the average fraction of firms with negative debt

issuance spike is only 5.9%. This difference between positive and negative large adjustments of

debt issuance induces asymmetry on the debt issuance distribution as can be observed in its average

positive skewness (3.4) exhibited on Figure 3.1. Note that the simulated debt issuance distribution in

Figure 3.1 —which does not present important differences between positive and negative spikes by

construction —shows a coefficient of asymmetry of only 0.14.

Furthermore, as evidenced by Figure 3.4,21 the difference between the fraction of firms with pos-

itive debt issuance spike and the fraction of firms with negative debt issuance spike seems to increase

in good time and decrease in recessions. Indeed, as reported in Table 3.1 Panel A second column,

while the fraction of firms with positive debt issuance spike correlates positively with the business

cycle (0.61); the fraction of firms with negative debt issuance spike shows a negative correlation with

the business cycle (-0.42). As illustrated by Figure 3.4, during recessions large positive debt issuance

spikes decreases dramatically. For instance, during the last two financial crisis the fraction of firms

exhibiting positive debt issuance spikes falls by almost half. It is noteworthy to mention that the rela-

tive importance and procyclicality of large positive spikes can also be observed in the cross-sectional

distribution of investment rates as reported by Table 3.1 Panel A last two columns.22

In the next section, I describe the implications of the behavior of positive debt issuance spikes

as well as investment spikes on the time-series dynamic of the cross-sectional distribution of debt

issuance.

3.2.3 Implication of debt issuance lumpiness

In this section I start showing that the relative importance and procyclicality exhibited by the posi-

tive debt issuance spikes induce a procyclical behavior on the cross-sectional dispersion of the debt

20For annual investment rates, Cooper and Haltiwanger (2006), Gourio and Kashyap (2007) and Bachmann and Bayer
(2014) define spikes as cases where investment relative to the beginning of period capital is greater than 20 percent. Since
I base my results on quarterly data I choose 5%. Moreover, in the CCM quarterly database, firms with debt issuance larger
than 5% (lower than -5%) correspond to firms in the top (bottom) decile of the average debt issuance distribution.

21In this section, while seasonally smoothed variables are used to construct time-series pictures; correlation statistics are
computed using variables resulted from applying a band-pass filter to the deflated original variable. In this aspect of the
analysis, I followed closely Salomao et al. (2014).

22The correlation of the fraction of firms exhibiting positive investment spikes with the business cycle is positive and
significant (0.59). Whereas, the correlation of the fraction of firms exhibiting negative investment spikes with the business
cycle is not statistically significantly different from zero.
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issuance distribution. Next, I document a similar result for the cross-sectional dispersion of the invest-

ment rates distribution; i.e. highlighting the role of high and procyclical positive investment spikes on

shaping the dynamic of the investment rate cross-sectional distribution.23 Finally, I show suggestive

evidence regarding the importance of the interaction between positive debt issuance and investment

spikes on the business cycle dynamics of the cross-sectional distribution of debt issuance.

I start describing the positive correlation of the cross-sectional dispersion of the debt issuance

distribution with the business cycle.24 Table 3.1 Panel A reports that this correlation is significant and

equal to 0.43. Figure 3.3, blue line, illustrate the procyclicality of the cross-sectional dispersion of

the debt issuance distribution. To my knowledge, this property has not been previously documented

and explored in the literature. Table 3.1 Panel B shows suggestive evidence about the importance

of positive debt issuance spikes on shaping the cross-sectional dispersion of the debt issuance distri-

bution. In fact, the correlation between the fraction of firms with positive debt issuance spikes and

the cross-sectional dispersion of the debt issuance distribution is significant and equal to 0.85. Note

that the importance of positive large adjustments on shaping the cross-sectional distribution is also

present in the investment rate distribution. Table 3.1 shows that the cross-sectional dispersion of the

investment rate distribution is highly procyclical; and furthermore, its correlation with the fraction of

firms with positive investment spikes is significant and equal to 0.94.

Intuitively, these findings suggest that the procyclicality showed by the cross-sectional dispersion

of debt issuance as well as investment rates is driven by an important increase of the right tail of the

distribution in good times. Knowing this feature of the cross-sectional distribution of firms’ decisions

can be important for understanding the procyclical behavior of aggregate variables. In fact, as pointed

out by Gourio and Kashyap (2007) for aggregate investment, the results in Table 3.1 Panel B suggest

that the variation in aggregate debt issuance depends mainly on a small fraction of firms undergoing

debt issuance spikes in good times. It is noteworthy that although recent works in corporate finance

have focused on analyzing the implicit information in other moments of the debt issuance distributions

(e.g. Bazdresch (2005)), still we know little about its time-series properties. This chapter intends to

add to this area.

Table 3.1 Panel B shows that a potential driver of the procyclical dispersion of debt issuance

distribution is a set of firms showing a dramatic increase of their debt stock —i.e. debt issuance

lumpiness. In reality, debt issuance lumpiness can occur in response of either in response to finan-

cial non-convex frictions that hamper the adjustment of the debt stock or/and investment lumpiness.

Recent literature on corporate finance highlights the role played by real and financial non-convexities

on shaping the average asymmetry of the debt issuance cross-sectional distribution. More broadly,

frictions of different types will be affecting simultaneously multiple firms’ decisions. Table 3.1 Panel

23Bachmann and Bayer (2014) present a similar results using a panel of German firms with annual observation from
1973 to 1998. The authors’ primary data source is the Deutsche Bundesbank balance-sheet database, USTAN.

24Business cycle corresponds to a band-pass (BP) filter of real GDP (in local currency at constant prices) using the
methodology proposed by Baxter and King (1999).
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C intends to provide evidence about this interaction.

To understand the economic mechanism behind the procyclicality of the cross-sectional disper-

sion of the debt issuance distribution, Table 3.1 Panel C (second column) reports its correlation with

various types of firms potentially affected by non-convex rigidities; that is, firms likely experiencing

debt issuance and/or investment lumpiness. For instance, since firms showing positive debt issuance

spikes (Panel C, first row) can be facing both real and financial non-convex costs simultaneously, I

also present correlations with the group firms experiencing debt issuance lumpiness but not invest-

ment lumpiness (Panel C, third row). In fact, within this last group, while firms are increasing the

debt stock importantly; they adjust their capital stock marginally. Similarly, I study the correlations

of the cross-sectional dispersion with those firms showing investment lumpiness (Panel C, second

row) as well as with those firms experiencing investment lumpiness but not important changes in the

stock of debt (Panel C, fourth row). Results reported in Table 3.1 Panel C show that the evolution of

the number of firms in each group exhibits a positive significant correlation with the cross-sectional

dispersion of both debt issuance and investment distribution. Furthermore, as evidenced in Figure 3.5,

the fraction of firms within these groups experiencing either debt issuance lumpiness or investment

lumpiness varies importantly over time.

In the next section, I use these findings to argue that both real and financial non-convex rigidities

can affect the cross-sectional dynamics of the debt issuance as well as investment rate distribution

and therefore, the cross-sectional dispersion of debt issuance is not just a reflection of the properties

showed by the cross-sectional dispersion of investment rate (Bachmann and Bayer (2014)). Thus,

the objective of pursuing a quantitative model in this chapter is to quantify the contribution of these

two type of non-convex rigidities on driving the dynamic of the cross-sectional dispersion of the debt

issuance distribution. Specifically, to accomplish this quantitative analysis in Section 3.3, I develop

a structural general equilibrium model of heterogeneous firms featuring both lumpy investment and

debt financing decisions.

3.3 Benchmark model
In this section, I describe the dynamic stochastic general equilibrium model used in this chapter to

explain the empirical motivating facts regarding the cross-sectional distribution of debt issuance. In

the model, time is discrete and firms’ horizon is infinite. The economy consists of a distribution of

value-maximizing, each able to produce a homogeneous good and owned by risk-averse investors.

Firms make investment, hiring and financing decisions given the stochastic discount factor derived

from the representative household’s problem in a general equilibrium setting. Firms’ external financ-

ing sources consist of equity and non-contingent long-term debt. As, in Khan et al. (2014), Firms

issue non-contingent long-term debt to a perfectly competitive representative financial intermediary
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at loan rates determined by their individual characteristics.25 Importantly, firms adjust capital and

debt stock facing non-convex costs of capital and debt stock adjustment.

3.3.1 Firms

A cross-section of heterogenous firms make optimal investment and financing decisions by taking

as given real and financing costs as well as the representative household stochastic discount factor

that is derived from a representative household who has recursive preferences. Each period, a firm

chooses its new capital stock (kt+1) and how to finance these purchases with the goal of maximizing

the present value of after-tax cash flows to shareholders. To finance its investment and shareholders’

distributions at period t, a firm uses internal earnings, new debt issues and/or new equity issuance. In

the model debt is long-term. As in Kuehn and Schmid (2014), at each period t, a firm can controls

the book face value of debt outstanding bt+1; and corporate bonds have a fixed coupon rate c ∈ (0,1)

and repay a constant fraction λ ∈ (0,1) of the bond’s face-value each period.

Production Technology

There is one homogenous commodity in the economy which can be consumed or invested. The j-

th firm produces the homogenous commodity using capital k j,t and labor l j,t and subject to both an

aggregate shock xt and an idiosyncratic shock z j,t ; according to a Cobb-Douglas production function,

y j,t = ext(1−α) ez j,t (k j,t)
α (l j,t)

1−α̂ , with α, α̂ > 0 and α + α̂ < 1 (3.1)

where xt and z j,t are log aggregate and log idiosyncratic productivity shocks, respectively. The growth

rate of the aggregate shock is modeled as a random walk with time-varying drift and volatility,

∆xt+1 = g+µx(st)+σx(st)ε
x
t (3.2)

where the low-frequency component in the aggregate productivity equation, µx(st) is used to gen-

erate sizeable risk premia whereas the time-varying volatility is useful to generate realistic credit

spreads. The variable st is an aggregate variable taken as given by all firms each period to solve their

maximization problem. The exogenous aggregate state (st) will be modeled as a persistent process

through a Markov chain described in Section 3.2. The idiosyncratic log productivity process is mod-

eled as a Markov process with autocorrelation ρz and time-varying conditional standard deviation,

σ(st) ≡ st + σ̄ > 0. That is, firms can observe their idiosyncratic technology shock once the aggre-

gate state of the economy st is revealed. In the solution used, I assume that shocks to the exogenous

aggregate states, and idiosyncratic productivity shocks are independent. Further, idiosyncratic pro-

25Having the assumption of the existence of a financial intermediary participating in a competitive market facilitates
the market clearing conditions in the definition of the recursive equilibrium. A complete characterization of the recursive
equilibrium is provided in the Appendix B.2.3.
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ductivity shocks are independent across productive firms. Using these definitions and assumptions,

the flow of operating profits Π j,t of firm j at period t is given by,

Π j,t = y j,t −wt × l j,t − f × k j,t (3.3)

where the aggregate wage is denoted by wt , and f > 0 represents a proportional cost of production. I

use f to match the book leverage. In the economy, capital stock depreciates at the rate δ ∈ (0,1); but

firms possess the option to adjust their capital stock by pursuing investment decisions.

Investment

The investment of firm j at period t, (i j,t), required to change the capital stock to k j,t+1 is defined

by, i j,t ≡ k j,t+1− (1− δ )k j,t . Yet, each period, the firm j-th faces a non-convex cost Ωk(i j,t) if its

investment differs from zero. I model this cost as a deduction from firms’ profits. Specifically,

Ω
k(i j,t) =

 0 if i j,t = 0

ωk > 0 if i j,t 6= 0

The parameter ωk > 0 will be one of the key parameters of the model which I use along the compar-

ative static exercises to measure the contribution of the investment lumpiness induced by non-convex

real rigidities on shaping the properties of the cross-sectional distribution of debt issuance.

Debt Financing

Corporate investment, as well as any distribution, can be financed with internal funds generated by

operating profits, new issues of equity or new issues of long-term debt. Firm j-th incurs a cost

Ωb(a j,t) each time it decides to change the amount of debt outstanding from b j,t to b j,t+1; where

a j,t ≡ b j,t+1− (1−λ )b j,t represents the firm’s new bond issuance. Note that in the context of long-

term debt, each period only a fraction λ ∈ (0,1) of the face-value is paid back to bondholders. Then,

similar to the non-convex real cost function, Ωb(a j,t) corresponds to a fixed cost incurred when new

debt is issued, i.e.,

Ω
b(a j,t) =

 0 if a j,t = 0

ωb > 0 if a j,t 6= 0

where ωb represents the second key parameters of the model used in the comparative static exercises

performed in Section 3.5. Note that this type of debt issuance cost function has also been implemented

by other works (e.g. Kuehn and Schmid (2014)).
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Equity value

The firm j-th’s shareholders receive dividends as long as the firm is operating. Distributions to share-

holders, d j,t are given by equity payout e j,t net of issuance costs. In the model, equity payouts of a

firm j-th are equal to the firm’s operating profit net of cash flows from its financing and investment

activities,

e j,t ≡ e(k j,t ,b j,t ,z j,t ,Γt) = (1− τ)Π j,t + τδk j,t −
(

i j,t +Ω
k(i j,t)

)
− (c(1− τ)+λ )b j,t

+
(

P(k j,t+1,b j,t+1,z j,t ,Γt)(b j,t+1− (1−λ )b j,t) − Ω
b(a j,t)

) (3.4)

with τ ∈ (0,1) as the firm’s effective tax rate and Γt the vector of aggregate states of the economy

(∆xt ,st ,µt).26 The first term of equity payouts captures the firm’s operating profit, from which the

required investment expenses, i j,t +Ω(i j,t), and debt repayments, (λ + c(1− τ))b j,t are deducted.

Note that capital depreciation and debt interest payment generate tax shields. The debt price function

P(k j,t+1,b j,t+1,z j,t ,Γt) is such that it will be a function of the current vector of stochastic variables

(z j,t ,Γt) and optimal decisions at time t. The value of the firm to its shareholders denoted by J j,t

considers the present value of distributions d j,t plus the expected firm’s continuation value.

J j,t ≡ J(k j,t ,b j,t ,z j,t ,Γt) = max
{

0, max
k j,t+1,b j,t+1

{
d(k j,t ,b j,t ,z j,t ,Γt)+Et(Mt,t+1× J j,t+1)

}}
(3.5)

where Mt,t+1 is the equilibrium stochastic discount factor derived from the representative household’s

preferences.27 Furthermore, in the model, the equity issuance cost is modeled as a fixed cost ψe > 0

that is paid if equity payouts turn out to be negative. Then, the firm’s distributions are computed as

d j,t ≡ e j,t −ψe× I{e j,t<0}, where I{e j,t<0} denotes an indicator function that takes value of one when

e j,t is negative and zero otherwise. Lastly, note that the first max operator in equation (3.5) captures

the limited liability of shareholders, whereas the second max operator relates to the determination of

the optimal decisions of the firm’s manager regarding next-period capital and debt outstanding.

Default

Shareholders’ limited liability implies that equity value, J j,t , is bounded and will never fall below zero.

This implies that equity holders will default on their credit obligations whenever their idiosyncratic

shock z j,t is below a cutoff level z?j,t ≡ z?(k j,t ,b j,t ,Γt) determined by the threshold default condition,

J(k j,t ,b j,t ,z?j,t ,Γt) = 0. To simplify the notation below, I define z0
j,t = z?(k j,t ,0,Γt) which represents

the idiosyncratic shock realization that makes the unlevered firm’s value equal to zero; i.e. the lowest

26The normalized version of the model, which is described in the Appendix B.2.1, depends on the growth rate of the
aggregate technology shock ∆xt instead of the level of the aggregate technology shock xt . The aggregate state µt denotes
a measure over the distribution of capital stocks (k j,t ), debt outstanding (b j,t ), and idiosyncratic shocks (z j,t ); which is
characterized in the definition of the recursive equilibrium in the Appendix B.2.3.

27The stochastic discount factor derived from the household’s maximization problem is described in Appendix B.2.3.
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value of z j,t at which the unlevered firm keeps operating.

Debt Contracts

At period t, the representative financial intermediary allows a firm j-th to change its debt outstanding

to b j,t+1 by buying corporate debt at price Pj,t ≡ P(k j,t+1,b j,t+1,z j,t ,Γt) and collect coupon and prin-

cipal payments until the firm’s manager decides to default. If default occurs at period t, shareholders

walk away from the firm, while the financial intermediary recovers a fraction (1− χ) ∈ (0,1) of the

unlevered firm’s value. As in Khan et al. (2014), I assume the remainder of any defaulting firm’s value

is lump-sum rebated to households so that default implies no direct loss of resources. Under these

assumptions, period-t per unit market price of debt Pj,t , is pinned down by an arbitrage condition such

that the amount of money creditors are willing to pay for the contract must equal the expected value

of future payments. Formally, this condition implies,

b j,t+1×Pj,t = Et

(
Mt,t+1b j,t+1(λ + c+(1−λ ) ·Pj,t+1)I{z?j,t+1<z j,t+1}︸ ︷︷ ︸

solvent states

)
+Et

(
Mt,t+1(1−χ)J(k j,t+1,0,z j,t+1,Γt+1)I{z0

j,t+1<z j,t+1<z?j,t+1}︸ ︷︷ ︸
default states

) (3.6)

The first term on the right-hand-side of equation (3.6) contains the cash flows received by bondholders

if no default takes place at period t +1; whereas the second term reflects the payments upon default

net of deadweight costs.

3.3.2 Aggregate state of the economy

As standard in DGSE models with heterogeneous agents (Krusell and Smith (1998)), the aggregate

state of the economy will be described by the vector Γt ≡ (∆xt ,st ,µt), where (∆xt ,st) represents the

vector of aggregate shocks and µt denotes a measure over the distribution of capital stocks (k j,t), debt

outstanding (b j,t), and idiosyncratic shocks (z j,t). To close the economy, I specify the law of motion

of µt as the mapping Γt that satisfies µt+1 = Γ(∆xt+1,st+1,µt). Γt is characterized in the definition of

the recursive equilibrium that I describe in the Appendix B.2.3.

Following Krusell and Smith (1998), I do not model the measure µt completely. Instead, I proxy

it by using only some moments of the aggregate distribution that I include as aggregate variables.

Then, for each element of the aggregate state space, I allow firms to form expectation about other

aggregate variables (such as consumption, and wages) that allow them to solve their maximization

problem each period.28

28As described in Appendix B.2.4, the belief formation process adds an extra layer of iteration in the numerical solution.
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3.3.3 Household problem

I close the model with a unit measure of identical households. Representative household’s has Epstein

and Zin preferences and holds her wealth invested in (i) one-period noncontingent bonds issued by

the perfectly-competitive financial intermediary; and, (ii) firms’ shares. The investment in one-period

bonds and shares are represented by mb
t and the measure {ms

j,t}, respectively.

Then, given prices (dividend-inclusive) the representative household receives for their current

shares
(

p0(k j,t ,b j,t ,z j,t ,Γt)
)
, the risk-free bond price (Pf (Γt)), and the real wage (w(Γt)); she chooses

paths of consumption Ct , hours worked Nt , new bond holdings mb
t+1, and the numbers of news shares

{ms
j,t+1} to purchase at ex-dividend prices

(
p1(k j,t+1,b j,t+1,z j,t+1,Γt)

)
in order to maximize her life-

time utility flows.29,30 The representative household receives as a lump-sum rebate, (T (Γt)), both the

net proceeds of corporate income taxes as well as the remainder of any defaulting firms’ value not

recovered by the financial intermediary.31 The lifetime household’s utility maximization problem is,

Ht ≡ H({ms
j,t},mb

t ,Γt) = Max
{Ct ,Nt ,{ms

j,t+1},mb
t+1}

(1−β )Ĉ(Ct ,Nt)
1− 1

ψ +β Et

(
H1−γ

t+1 | Γt

) 1− 1
ψ

1−γ


1

1− 1
ψ

subject to : Ct +Pf (Γt)×mb
t+1 +

∫
S

p1(k j,t+1,b j,t+1,z j,t+1,Γt)ms(d(k j,t+1×b j,t+1× z j,t+1))

≤ w(Γt)×Nt +mb
t +

∫
S∗

p0(k j,t ,b j,t ,z j,t ,Γt)ms(d(k j,t ×b j,t × z j,t))+T (Γt)

where γ is the coefficient of relative risk aversion, ψ is the elasticity of intertemporal substitution,

and β is the household’s subjective discount factor. The contemporaneous component of the utility

function is represented by Ĉ(C,N)≡C1−ν
t (1−Nt)

ν , where ν ∈ (0,1) controls the relative preference

for labor. The space S represents the product space R+×R+×Z ; where Z denotes the space of the

idiosyncratic technology shock zi, j. Whereas, the space S∗ denotes the product space that includes

solvent firms. The recursive equilibrium of this economy is characterized in the Appendix B.2.3.

3.4 Model parametrization
In this section, I describe the benchmark calibration of the model. I cite related works that I use as

references to guide part of this calibration. I also provide details on the moments targeted to set some

of the parameters. As described in Appendix B.2.4, the model is solved using a global method.

29Households have access to state-contingent claims. But, since there is no heterogeneity across households, these
securities are in zero net-supply at the equilibrium. So, I do not explicitly model them.

30Although, z j,t+1, is drawn by individual firms at the start of the next period, the household can choose its ownership
of type (k j,t+1,b j,t+1,z j,t+1) firms as well as its long-term bonds in the current period, since she knows the transition
probabilities of z j,t and the law of large numbers applies.

31As in Khan et al. (2014), I assume that corporate default implies no direct loss of resources. This assumption, in
conjunction with the presence of a perfectly competitive representative financial intermediary, allows to define the model’s
recursive equilibrium described in the Appendix B.2.3.
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3.4.1 Calibration

Preference and standard real business cycles parameters of the model are set to values taken from the

existing literature. The remaining set of parameters are chosen in order to match aggregate moments

and moments derived from the cross-sectional distribution of debt issuance as well as investment rate

in the data. All parameters values of the quarterly calibration implemented are reported in Table 3.2.

Preference parameters are standard in the long-run risk literature (Bansal and Yaron (2004)). The

elasticity of intertemporal substitution ψ is set to 2 and the coefficient of relative risk aversion γ is

set to 10, as in Kung (2015). The subjective discount factor β is set to 0.994 in order to match the

average risk-free rate. The relative preference for labor, ν , is set such that the household works 1/3

of her time endowment in the steady state.

On the technology side, I follow Bachmann and Bayer (2014) to set production function. Firms’

capital share α is set to 0.20 and the parameter controlling the labor share α̂ is set to 0.50. The

depreciation rate of capital δ is set to 9.4%/4 to match the average aggregate investment rate in

the data. The productivity process is calibrated following Kuehn and Schmid (2014). Within the

model, the aggregate Markov chain (st) jointly affects the drift and volatility of the growth rate of the

aggregate productivity shock xt and the dispersion of the idiosyncratic technology shock. Specifically

st consists of five states. To calibrate the Markov chain, I set the persistence of the Markov chain (ρ) to

0.95. Following Kuehn and Schmid (2014), the mean and volatility of the drift states of the aggregate

growth rate (µx(st)) are set to zero and 1.48e−3, respectively. Whereas, the mean and volatility of

the variance of the aggregate growth rate (σx(st)) are set to 2.6e−4 and 1.8e−5, respectively. This

calibration allows to match the annualized output and consumption growth moments and also obtain

a sizable aggregate stock returns volatility. I set g to yield an annual average growth of about 1.8%.

Following Bachmann and Bayer (2014), I set the volatility σ̄ and persistence of the idiosyncratic

productivity process ρz to 0.091/2 and 0.90 respectively; which allows me to match the aggregate

default rate. Firms face proportional costs of production, f , of 0.05, similar to Gomes et al. (2003b)

which I use to match the average book leverage ratio and the aggregate investment-to-output ratio.

The effective corporate tax rate τ is set to 14%, consistent with Binsbergen et al. (2010). The annual

coupon payment, c, is set to 3.0%. The bankruptcy deadweight cost χ is set as in Bazdresch (2005),

whereas the parameter controlling the average debt maturity, λ , is set to match observed average

maturity in corporate bonds traded in the NAIC database. Lastly, the equity issuance fixed cost

parameter ψe is set to match the frequency of equity issuance. The remaining parameters controlling

the non-convex costs hampering capital and debt stocks adjustment, (ωk,ωb), are set to match average

moments of the cross-sectional investment and debt issuance distribution. Specifically, I choose to

target average skewness of the cross-section distributions; that is, 3.4 and 1.9 respectively.
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3.5 Quantitative results
In this section, I assess quantitatively the contribution of the non-convex costs affecting the adjustment

of the stock of debt and capital, (ωk,ωb), on determining the time-series dynamics of the cross-

sectional dispersions of debt issuance and investment rates. Since most of the parameters of the

model are set to match empirical aggregate moments, I start in Section 3.5.1 evaluating the ability

of the benchmark model to produce simulated data supporting aggregate moments similar to their

empirical counterparts (Table 3.3).

Furthermore, to completely assess the performance of the benchmark calibration, in Section 3.5.2

I report multiple moments of the cross-sectional debt issuance and investment rate distribution ob-

tained from the model’s simulated data. Specifically, I conduct several comparative statics in terms of

the investment (ωk) and debt issuance (ωb) non-convex costs. The main objective is to quantify the

contribution of both rigidities on determining the distribution of debt issuance and investment rate in

terms of their: (i) coefficient of asymmetry (skewness), (ii) time-series correlation with the aggregate

output of the fraction of firms showing positive debt issuance as well as investment spikes, and; (iii)

time-series correlation with the business cycle of the cross-sectional dispersion of the distributions.

3.5.1 Aggregate moments

Table 3.3 shows the aggregate moments produced by simulating the model under the benchmark

calibration and compares them with their empirical counterparts.

Panel A shows that the benchmark calibration generates an average investment-to-output ratio of

18% in line with the 20% obtained from the data. Furthermore, the output volatility σ∆y and relative

macro volatilities of consumption and investment are close to the data. Particularly, the annual output

volatility σ∆y in the model is about 3.4%. The consumption annual volatility is about 0.64 of the out-

put volatility; whereas the aggregate investment volatility resulted from the simulations is about 5.4

times the output volatility. The benchmark calibration of the model also replicates correlations across

some business cycle variables such as the procyclicality of consumption. The implied persistence of

output and investment are also quite close to the ones in the data.

In terms of the aggregate capital structure, Panel B shows that the model produces a book lever-

age which seems to be in line with its empirical counterpart (0.28). The frequency of equity issuance

produced by the model (7%) shows that the equity issuance friction (ψe) in the model is reason-

able. Default rates, which are importantly affected by the calibration of the idiosyncratic technology

dispersion in the model, resulted in line with their empirical counterpart. Also, Panel B shows the

importance of having in the model both, a countercyclical price of risk in conjunction and coun-

tercyclical uncertainty. Indeed, since these two ingredients together render corporate bonds’ credit

spread countercyclical (Chen (2010), Kuehn and Schmid (2014)), firms’ financing decisions becomes

importantly influenced by aggregate economy shocks. In particular, within the model, firms tend to

substitute equity for debt financing during recessions. Panel B shows that on average debt issuance

62



correlates positively with the business cycle whereas aggregate equity issuance shows a slightly coun-

tercyclical pattern.

Table 3.3 Panel C reports some asset pricing moments from the model’s simulations. The model

generates a large equity risk premium of about 6.8% per year, and produces substantial variations in

excess returns. The annualized standard deviation of excess stock returns is about 8.0%. The strong

demand for precautionary savings to alleviate aggregate uncertainty shocks drives the risk-free rate

down to 1.64%. The volatility of the risk free rate is also low (1.71%). The model generates a sizable

credit spreads of 83bps which exhibits substantial time-series variation. The standard deviation in the

model is 69bps and about 44bps in the data.

In the following section of the chapter, I focus on assessing the performance of the model in terms

of its cross-sectional implications. In particular, I report multiple moments of the cross-sectional debt

issuance and investment rate distribution obtained from the model’s simulations and compare them to

the main findings exhibited in Table 3.1.

3.5.2 Assessing contribution of real and financial non-convexities

In this section, I assess the cross-sectional implications of the model. In particular, I use the model’s

simulations to quantify the contribution of the real and financing non-convex rigidities on determining

the cross-sectional distribution of both debt issuance and investment rates. To conduct this analysis,

I report in Table 3.4 and 3.5 the result of multiple comparative statics in terms of the variables of the

model represented by ωk and ωb.

Effect on average cross-sectional asymmetry: Panels A in Table 3.4 and 3.5 show the model’s

predictions about the asymmetry (skewness) of the cross-sectional distribution of debt issuance and

investment rate respectively, for different values of (i) the non-convex capital adjustment cost (in-

creasing along rows) and; (ii) the non-convex debt issuance cost of (increasing along columns). As

showed in Panels A, the model’s simulations indicate that a combination of both non-convex costs

are required to reproduce the sample skewness of the firm-level distribution of debt issuance and

investment rate.

Within the model, a low non-convex cost of capital adjustment
(
ωk
)

reduces not only the asym-

metry on the cross-sectional investment rate (Table 3.5 Panel A); but also makes the cross-sectional

debt issuance distribution less asymmetric (Table 3.4 Panel A). In the context of more flexible invest-

ment, firms react more frequently adjusting their capital in good and bad times. Within the model,

aggregate uncertainty is countercyclical. And at the equilibrium of the model with low adjustment

real costs, positive adjustments of capital stock in good times are as frequent as negative adjustments

of capital stock in bad times.32 This ends up reducing the overall asymmetry of the cross-sectional

distribution of investment rates (Table 3.5 Panel A, along the rows). Within the model, aspects of the

32In the model, a modest level of the non-convex real friction (the lowest level used in the comparative static exercises is
0.5×ωk) supports a slightly positive skewed distribution of investment even in the presence of countercyclical uncertainty.
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firms investment decisions are also reflected on firms’ financial needs. Furthermore, in the presence

of equity financing rigidities (ψe > 0), patterns of investment decisions will also affect debt issuance

decisions. Then, in this context of a low value of the real non-convex cost, adjustments of the debt

and capital stock will be on average more symmetric and thus show a low average skewness coeffi-

cient (Table 3.4 Panel A, along the rows). In contrast, a high non-convex real cost makes not only

large adjustment of the capital stock more likely; but also in this context, negative large adjustments

in bad times will become less likely. In response to high uncertainty in bad times most firms facing

important non-convex real rigidities will choose to postpone their decisions and wait, holding their

capital stock unchanged. On the other hand, in good times, low uncertainty and a positive economic

environment will motivate firms to readjust their capital stock. This will ends up increasing the av-

erage uncertainty of the investment rate distribution reflected on a high skewness coefficient. In the

context of equity financing rigidities, large positive debt issuance will also increase importantly in

good times. In general, despite that firms will tend to maintain a stable level of debt stock in order

to balance tax-benefits of debt and the risk of bankruptcy cost by adjusting it frequently, firms fac-

ing large financial needs in good times due to high capital expenses will increase importantly debt

issuance at these periods. Thus, when non-convex real costs are high, the debt issuance distribution

will also become on average positive skewed.

Table 3.4 and 3.5 in Panel A show that the non-convex financial cost
(
ωb
)

also increases both

the asymmetry of the cross-sectional debt issuance and investment rate distributions. A larger non-

convex financial cost will hamper the frequent adjustment of the debt stock intended to balance the

tax-benefit of debt and costs associated to bankruptcy risk. In fact, in the model, when the non-

convex of issuing debt increases firms tend to adjust their debt stock more importantly in periods

where investors value corporate bonds the most (periods of low credit spreads); i.e. in good times.

Furthermore, in the presence of non-convex real rigidities, periods where credit spread are low will

also coincide with periods of large financial needs to fund large positive investment decisions; which

will render the debt issuance distribution more positive skewed. The effect of a larger non-convex

debt issuance cost on the asymmetry of the investment rate distribution is twofold. First, while a

larger debt issuance cost will make more difficult the funding of large positive investment in good

times which will lowers its asymmetry; a larger debt issuance cost will also reduce the possibility of

financing small positive changes of the capital stock which will contribute to the positive skewness

of the distribution. Note that the contribution of a higher debt issuance cost
(
ωb
)

to an increase of

the average skewness of investment rate distribution is lower, the higher is the real rigidity faced by

firms. Intuitively, when the non-convex real cost is high enough, an increase on the debt issuance cost

will mainly affect the investment decisions of those firms planning to adjust importantly its capital

stock in good times. Overall, a higher non-convex debt issuance cost
(
ωb
)

increases the asymmetry

of both the cross-sectional debt issuance and investment rate distributions.
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Effect on time-series dynamics of spikes: As showed in Panels B, the model’s simulations indicate

that a combination of both non-convex costs are required to reproduce the strong business cycle

dynamic exhibit by the fraction of firms exhibiting both positive debt issuance and investment spikes.

A high non-convex real cost makes large adjustment of the capital and debt stock not only more

likely but concentrated in booms. In fact, a high non-convex real friction reduces the firms’ incentive

to scale down capital in response to a higher dispersion of the idiosyncratic shocks in bad times. That

is, the value of the option to disinvest in bad times will not be high enough to offset the real fixed cost

associated to this decision. On the other hand, even in context of non-convex real costs, in good times

some firms will be willing to increase their capital stock in response to good aggregate productivity

shocks and low uncertainty. As pointed out by Bachmann and Bayer (2014), this real option effect

induced on firms’ investment decisions by non-convex real cost makes positive investment spikes

more procyclical. In terms of the firms’ debt issuance decisions, in the absence of strong financial

needs as well as high credit spreads in bad times, firms will not have enough incentives to move

away from their desired level of debt in bad times which in general can be accomplished by small

adjustment of their debt stock. In contrast, in good times, some of the firms facing large non-convex

real costs will also show high financial needs; which in the presence of equity issuance rigidities will

also create high debt issuance needs. This will render debt issuance positive spikes more procyclical.

Simulations from the quantitative model reveal that the presence of a non-convex debt issuance

cost is also required to reproduce the business cycle dynamics reported in Panel B. When the debt

issuance non-convex cost is low, firms will tend to adjust their debt position too frequently and in

small changes in order to balance the tax-benefit of debt and the cost of bankruptcy risk. Then, a

low non-convex debt issuance cost will lower the importance of large adjustment since many firms

are performing marginal adjustments of their debt stock and thus, the procyclicality of positive debt

issuance spikes decreases. Furthermore, low non-convex debt issuance costs will also allow firms to

finance capital adjustment costs so that they can adjust their capital stock more often; specially in

good times when credit spreads are low. Overall, a low non-convex debt issuance cost will reduce the

relative importance of large adjustments of capital in good time and thus will reduce their comovement

with the business cycle.

Effect on time-series dynamics of the cross-sectional distribution: As it is showed in Table 3.4

and 3.5 Panels C, the ability of non-convex real and financing costs to increase positive spikes of debt

issuance and investment in good times makes the cross-sectional dispersion of debt issuance and in-

vestment rates also larger in those periods; inducing procyclicality on the cross-sectional dispersions.

As I mentioned before, on average, low levels of non-convex rigidities make large infrequent

adjustment of the capital as well as debt stock less likely to occur. This effect should lower the overall

dispersion of the distributions. However, in the presence of countercyclical aggregate uncertainty

risk, large adjustment will become more infrequent in good times than in bad times. In fact, the

countercyclical feature of the dispersion of the idiosyncratic productivity shock will dominate the
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effect that large positive adjustments of debt and capital stock have in good times on increasing the

cross-sectional dispersion of debt issuance and investment rates distributions. Effectively, when non-

convex rigidities are low, some firms facing extreme negative shocks in bad times (i.e. in periods when

uncertainty is high) will find optimal to apply large adjustments on their capital stock which will be

reflected in part on their debt stock which will also experience a negative adjustment in response to

the negative prospect of those firms. Consequently, in this case, the cross-sectional dispersion of both

debt issuance and investment rate will tend to reflect the business cycle properties of the dispersion of

the idiosyncratic productivity shock; which in the benchmark calibration follows an heteroskedastic

process with countercyclical volatility (as in Bloom (2009), Bachmann and Bayer (2014)).

More broadly, as indicated in Tables 3.4 and 3.5, the model’s simulations predict that a com-

bination of both investment and debt issuance non-convex rigidities —once calibrated to average

cross-sectional asymmetry of the debt issuance and investment rate distributions —are required to re-

produce the time-series dynamics of the entire cross-sectional distribution of both debt issuance and

investment rates.

3.6 Conclusion
In this chapter, I add to the study of the cross-sectional implications of firms decisions by investigating

the properties of the firm-level distribution of debt issuance. Interestingly, previous results reported

for the firm-level distribution of investment rate also manifest in the distribution of debt issuance. In

particular, the cross-sectional dispersion of the firm-level debt issuance is robustly and significantly

procyclical. The empirical analysis conducted suggests that this result is driven by large adjustments

of the debt stock at the firm level (debt issuance lumpiness).

In order to explore to what extent these findings are not just a reflection of the behavior of the

cross-sectional distribution of investment rate, I build a general equilibrium model featuring heteroge-

nous firms that face investment and financing decisions in the context of non-convex real and financial

frictions. The literature on investment has succeeded explaining the role that non-convex real frictions

(fixed physical cost) played on shaping the investment distribution. The calibrated model indicates

that although frictions affecting investment decisions directly contribute to the time-series properties

of the cross-sectional debt issuance distribution, they are not sufficient to explain moments computed

in the data. Particularly, the model’s simulations show that non-convex costs of issuing debt are

necessary to explain the procyclicality of the dispersion of the firm-level debt issuance distribution

and link this behavior to time-series dynamic of extreme adjustment of the debt stock. In contrast,

non-convexities affecting investment decision alone are not enough to reproduce these links.
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Table 3.1: Statistics of the cross-sectional distribution of debt issuance and investment rates

Panel A debt issuance investment rate
moments of firm-level distr.: average corr(·,BP-Y) average corr(·,BP-Y)

mean 0.005 0.54 ∗∗∗ 0.017 0.63 ∗∗∗

(0.005) (0.004)
standard deviation 0.062 0.43 ∗∗∗ 0.022 0.56 ∗∗∗

(0.011) (0.004)
fraction of firms with (−) spikes 0.059 −0.42 ∗∗∗ 0.015 −0.13

(0.021) (0.018)
fraction of firms with (+) spikes 0.081 0.61 ∗∗∗ 0.051 0.59 ∗∗∗

(0.021) (0.017)

test of differences between the average fraction of firms with:
t-test W-test t-test W-test

(+) debt issuance spike (+) inv. spike
and (−) debt issuance spike −8.64∗∗∗ −7.97∗∗∗ and (−) inv. spike −16.62∗∗∗ −12.15∗∗∗

Panel B corr(·,C-S st.dev.) corr(·,C-S st.dev.)

fraction of firms with (−) spikes −0.20∗ −0.04
fraction of firms with (+) spikes 0.85∗∗∗ 0.94∗∗∗

(continues)
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Panel C average corr(·,C-S st.dev.) corr(·,C-S st.dev.)
fraction of firms with:

(+) debt issuance spikes, 0.015 0.75 ∗∗∗ 0.91 ∗∗∗

and (+) investment spikes (0.007)

(+) debt issuance spikes, 0.066 0.81 ∗∗∗ 0.62 ∗∗∗

and no-(+) investment spikes (0.015)

no-(+) debt issuance spikes, 0.036 0.51 ∗∗∗ 0.87 ∗∗∗

and (+) investment spikes (0.011)

(−) debt issuance spikes, 0.003 0.21 ∗ 0.32 ∗∗

and (−) investment spikes (0.003)

(−) debt issuance spikes, 0.055 −0.22 ∗ −0.21 ∗

and no-(−) investment spikes (0.017)

no-(−) debt issuance spikes, 0.012 0.03 0.03
and (−) investment spikes (0.015)

Statistics of the cross-sectional distribution of debt issuance and investment ratio. This table shows some
empirical facts of the cross-sectional distribution of debt issuance and investment rates. The table is built using
the CRSP/Compustat Merged Fundamentals Quarterly from 1984Q1 to 2016Q4. Financing firms (SIC 6000-
6999), regulated utilities (SIC 4800-4999), and non-profit firms (SIC 9000-9999) are excluded. Data treatment is
explained in Appendix B.1. Data treatment leaves a sample of 363,512 firm-quarterly observations from 11,236
different firms which represents roughly 43 percent of the original database. Balance-sheet data is adjusted
by the price level from NIPA. Y denotes the cyclical component of real GDP growth obtained by detrending
the time-series using a band-pass (BP) filter. Debt issuance is defined as the change of total debt where total
debt is defined as the sum of long- and short-term debt; scaled by total assets. Investment rates are defined as
capital expenditures; scaled by total assets. Total assets are computed as the average of last three years assets.
Correlation statistics, ρ(·, ·) are constructed by applying a band-pass filter to the deflated variable. Positive
(negative) investment spikes are defined as investment rate higher (lower) than 5% (-5%) of total assets; as
in Doms and Dunne (1998), Gourio and Kashyap (2007) and Bachmann and Bayer (2014) for quarterly data.
Positive (negative) debt issuance spikes are defined as debt issuance higher (lower) than 5% (-5%) of total assets.
Panel A shows on the second (fourth) column the sample average of the mean, standard deviation, fraction of firms
with negative debt issuance (investment) spikes, and fraction of firms with positive debt issuance (investment)
spikes. Standard errors are reported in parenthesis. Panel A shows in the third (fifth) column the correlation
with the band-passed GDP growth exhibited by the mean, standard deviation, fraction of firms with negative debt
issuance (investment) spikes, and fraction of firms with positive debt issuance (investment) spikes. ***, **, and
* denote statistical significance at the 1%, 5%, and 10% levels, respectively. Panel A also shows the results of
two tests of differences applied to the average fraction of firms exhibiting positive spikes and the average fraction
of firms exhibiting negative spikes. “W-test” denotes the statistic obtained from Wilcoxon test. These test are
applied to both the debt issuance and investment rate cross-sectional distribution. Panel B shows in the second
(third) column the correlation between the fraction of firms exhibiting debt issuance (investment) spikes and the
cross-sectional dispersion of the firm-level debt issuance (investment rate) distribution. Panel C shows in the
third (fourth) the correlation between the sample average of the fraction of firms exhibiting debt issuance and/or
investment spikes and the cross-sectional dispersion of the firm-level debt issuance (investment rate) distribution.
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Table 3.2: Benchmark quarterly calibration

Parameter Description Value

A. Preferences
β discount factor 0.994
γ relative risk aversion 10.0
ψ elasticity of intertemporal substitution 2.0

B. Production
α capital share parameter 0.20
α̂ labor share parameter 0.50
δ capital depreciation rate 0.094/4
f operational (proportional) cost 0.05
ωk non-convex real capital adjustment cost 0.22

C. Productivity
g growth rate of consumption 0.018/4
ρ persistence of aggregate state st 0.95
σ̄ conditional volatility of the idiosyncratic shock 0.091/2
ρz persistence of idiosyncratic shock 0.90

D. Finance
τ tax rate 0.14
λ parameter controlling average debt maturity 0.10
c coupon rate 3.0%/4
ωb non-convex debt issuance cost 0.04
ψe equity issuance cost: fixed component 0.06
χ bankruptcy deadweight cost 0.70

Benchmark quarterly calibration. This table reports the parameter values used in
the benchmark quarterly calibration of the model. Section 3.4 describes the moments
targeted to set each parameter.
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Table 3.3: Aggregate business cycle, and financing moments

Moment Data Model

A. Business cycle
E(∆y)(%) 1.80 1.97
E(I/Y ) 0.20 0.18

σ∆y(%) 3.56 3.37
σ∆c/σ∆y 0.71 0.64
σ∆i/σ∆y 4.50 5.38

ACF1(∆y) 0.35 0.29
ACF1(∆i) 0.85 0.71
corr(∆c,∆y) 0.39 0.43

B. Financing
Book leverage 0.26 0.28
Freq. of equity issuance 0.09 0.07
Default rate (%) 0.84 1.79

corr(debt issuance,∆y) 0.54 0.62
corr(equity issuance,∆y) -0.45 -0.19

C. Asset prices
E(re− r f )(%) 7.22 6.79
σ(re− r f )(%) 16.5 8.07
E(r f )(%) 1.51 1.64
σ(r f )(%) 2.2 1.71
E(cs)(bps) 90 83
σ(cs)(bps) 44 69

Aggregate business cycle and financing moments. I/Y de-
notes the investment-output ratio. ∆y, ∆c, ∆i denote output, con-
sumption, and investment growth respectively. re− r f is the ag-
gregate stock market excess return, r f is the one-period real risk-
free rate, and cs is the aggregate credit spreads. The model;s
moments are calculated by simulating the model for 5,000 firms
and 10,000 quarters, with a 1,000-quarters burning period. Ag-
gregate returns and credit spreads are equally-weighted. Growth
rates, and returns moments are annualized percentage. credit
spreads are in annualized basis point units. Average default
rates for the data corresponds to average expected default rates
resulted from implementing the KMV model in the panel data
described in previous chapter. Refer to Table 2.2 in previous
chapter for the definition of most variables of the data.
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Table 3.4: Effect of non-convex costs on the moments of the cross-sectional distribution of debt
issuance

Panel A
Skewness of debt issuance distribution

0.50×ωb 0.75×ωb 1.00×ωb 1.25×ωb 1.50×ωb

0.50×ωk 0.29 1.21 2.09 2.72 3.31
0.75×ωk 0.56 1.81 2.81 3.86 4.46
1.00×ωk 0.83 2.17 3.53 4.53 5.04
1.25×ωk 0.95 2.53 3.78 4.57 5.34
1.50×ωk 1.07 2.57 3.95 4.86 5.62

Panel B
Corr(Fraction of (+) debt spike adjusters, BP-Y )

0.50×ωb 0.75×ωb 1.00×ωb 1.25×ωb 1.50×ωb

0.50×ωk 0.21 0.35 0.49 0.63 0.76
0.75×ωk 0.25 0.42 0.57 0.71 0.8
1.00×ωk 0.28 0.48 0.65 0.76 0.83
1.25×ωk 0.33 0.52 0.71 0.79 0.84
1.50×ωk 0.36 0.56 0.72 0.8 0.8

Panel C
Corr(Standard deviation of debt issuance, BP-Y )

0.50×ωb 0.75×ωb 1.00×ωb 1.25×ωb 1.50×ωb

0.50×ωk -0.18 0.08 0.33 0.55 0.71
0.75×ωk -0.08 0.08 0.23 0.39 0.53
1.00×ωk -0.05 0.21 0.45 0.62 0.77
1.25×ωk -0.05 0.11 0.25 0.41 0.54
1.50×ωk 0.04 0.29 0.49 0.65 0.76

Effect of non-convex costs on the moments of the cross-sectional dis-
tribution of debt issuance. This table shows the effect that both debt and
capital adjustment non-convex costs (ωk,ωb) exhibit in the model on the
cross-sectional and time-series properties of the firm-level debt issuance
distribution. Model variables and statistics are calculated by simulating
the model for 5,000 firms and 10,000 quarters, with a 1,000-quarters
burning period. Panel A shows the effect of both non-convex rigidities
on the skewness of the debt issuance distribution. Panel B shows the im-
pact of both non-convex costs on the correlation with the business cycle
of the fraction of firms exhibiting large infrequent positive adjustment in
the debt stock. Panel C shows the impact of both non-convex costs on the
correlation with the business cycle of the dispersion of the firm-level debt
issuance ratio distribution. Refer to Table 3.1 for details about variables’
definitions.
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Table 3.5: Effect of non-convex costs on the moments of the cross-sectional distribution of in-
vestment rate

Panel A
Skewness Investment rate

0.50×ωb 0.75×ωb 1.00×ωb 1.25×ωb 1.50×ωb

0.50×ωk 0.13 0.43 0.71 0.85 0.97
0.75×ωk 1.18 1.43 1.51 1.81 1.92
1.00×ωk 2.17 2.25 2.27 2.43 2.49
1.25×ωk 2.61 2.67 2.74 2.85 2.89
1.50×ωk 2.96 3.08 3.09 3.21 3.20

Panel B
Corr(Fraction of investment spike adjusters, BP-Y )

0.50×ωb 0.75×ωb 1.00×ωb 1.25×ωb 1.50×ωb

0.50×ωk 0.05 0.1 0.13 0.14 0.14
0.75×ωk 0.24 0.29 0.34 0.35 0.34
1.00×ωk 0.42 0.47 0.51 0.52 0.53
1.25×ωk 0.52 0.52 0.61 0.64 0.65
1.50×ωk 0.49 0.56 0.63 0.66 0.68

Panel C
Corr(Standard deviation of investment rate, BP-Y )

0.50×ωb 0.75×ωb 1.00×ωb 1.25×ωb 1.50×ωb

0.50×ωk -0.31 -0.19 -0.05 0.02 0.08
0.75×ωk -0.15 0.04 0.23 0.31 0.39
1.00×ωk 0.03 0.26 0.49 0.58 0.67
1.25×ωk 0.25 0.44 0.59 0.65 0.69
1.50×ωk 0.45 0.58 0.66 0.67 0.68

Effect of non-convex costs on the moments of the cross-sectional dis-
tribution of investment rate. This table shows the effect that both debt
and capital adjustment non-convex costs (ωk,ωb) exhibit in the model on
the cross-sectional and time-series properties of the firm-level investment
rate distribution. Model variables and statistics are calculated by simulat-
ing the model for 5,000 firms and 10,000 quarters, with a 1,000-quarters
burning period. Panel A shows the effect of both non-convex rigidities on
the skewness of the investment rate distribution. Panel B shows the im-
pact of both non-convex costs on the correlation with the business cycle
of the fraction of firms exhibiting large infrequent positive adjustment in
the capital stock. Panel C shows the impact of both non-convex costs on
the correlation with the business cycle of the dispersion of the firm-level
investment rate distribution. Refer to Table 3.1 for details about variables’
definitions.
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Figure 3.1: Average debt issuance cross-sectional distribution

mean            =   0.005                       mean            =   0.004
median         =  -0.002                       median         =   0.006
sd                 =   0.056                       sd                 =   0.060
skewness     =   3.359                       skewness     =    0.137
kurtosis         =  23.763                      kurtosis        =    3.014
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Average debt issuance cross-sectional distribution. This figure is used to compare the average
of the observed firm-level debt issuance distribution (red bars) to a normally simulated counterpart
(blue line). The figure is constructed using the following steps. First, for each firm, quarterly debt
issuance are ranked from the highest to the lowest debt issuance into bins. Next, the simulated
debt-issuance counterparts (x j,t ) of the firm j for each bin i by solving the equation Φ j(x j,i) =

i/Nb ;
where Φ j represents the cumulative density function of a normal distribution with mean and standard
deviation equal to the sample mean and standard deviation of firm j-th quarterly debt issuance. Nb
denotes the total number of bins i.e. 4× (2016− 1984+ 1). After repeating the exercise for each
firm, I construct the averages over all firms by bin. Refer to Table 3.1 for details of the variables’
definition.
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Figure 3.2: First moment of firm-level debt issuance and investment rate distribution
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First moment of firm-level debt issuance and investment rate distribution. This figure shows
the average of the first moment of the debt issuance (blue line) and investment rate (red line) cross-
sectional distribution from 1984Q1 to 2016Q4. The time-series are constructed from the CRSP/-
Compustat Merged Fundamentals Quarterly. Debt issuance is defined as the change of total debt
scaled by total assets. Total debt is computed as the sum of long- and short-term debt. Total assets
are computed as a weighted-average of last-year quarterly assets. The investment rate, is defined as
capital expenditures to total assets. For means and pictures, I use the seasonally smoothed variables.
Refer to Table 3.1 for details of the variables’ definition.
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Figure 3.3: Dispersion of firm-level debt issuance and investment rate distribution
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Dispersion of firm-level debt issuance and investment rate distribution. Refer to Table 3.1 for
details of the variables’ definition.
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Figure 3.4: Fraction of firms exhibiting positive and negative debt issuance spikes
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Fraction of firms exhibiting positive and negative debt issuance spikes. Refer to Table 3.1 for
details of the variables’ definition. Positive (negative) investment spikes are defined as investment
rate higher (lower) than 5% (-5%) of total assets; as in Doms and Dunne (1998), Gourio and Kashyap
(2007) and Bachmann and Bayer (2014) for quarterly data. Positive (negative) debt issuance spikes
are defined as debt issuance higher (lower) than 5% (-5%) of total assets.
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Figure 3.5: Fraction of firms exhibiting positive investment and debt issuance spikes
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Fraction of firms exhibiting positive investment and debt issuance spikes. Refer to Table 3.1 for
details of the variables’ definition. Positive (negative) investment spikes are defined as investment
rate higher (lower) than 5% (-5%) of total assets; as in Doms and Dunne (1998), Gourio and Kashyap
(2007) and Bachmann and Bayer (2014) for quarterly data. Positive (negative) debt issuance spikes
are defined as debt issuance higher (lower) than 5% (-5%) of total assets.
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Chapter 4

Conclusion

This thesis is comprised of two essays on Structural Corporate Finance. In chapter 2, the first essay

examines how asset redeployability —through its positive effect on disinvestment flexibilities and

negative effect on bankruptcy deadweight cost —affects the cross-section of financial leverage and

credit spreads. In the data, firms exhibiting more asset redeployability also show higher leverage ratios

and lower credit spreads. Moreover, in the data, the asset redeployability measure contains informa-

tion that goes over and above information provided by expected recovery rates and a tangibility-based

measure. I investigate the economic mechanisms behind these findings by using a structural model

that includes varying degrees of disinvestment flexibilities and bankruptcy costs. Importantly, these

two ingredients of the model are set to match the differences in expected returns and recovery rate

showed by extreme portfolios of firms formed based on a novel measure of asset redeployability.

From the model’s simulations, I find that portfolios of firms formed based on the degree of the dis-

investment flexibility and the bankruptcy costs show significant variation in terms of leverage ratios

and credit spreads along the disinvestment-flexibility dimension. Effectively, in the model, firms fac-

ing high disinvestment flexibility are able to not only default less but more importantly they default

less often in bad times; which, in the presence of a countercyclical price, allows these firms to more

and cheaper debt on average. Furthermore, within the model, differences in expected recovery rates

between firms are mainly explained by differences in bankruptcy costs. Then, I use this evidence to

conclude that the link between asset redeployability and disinvestment flexibility can be a plausible

explanation of why in the data, even after accounting for expected recovery rates (and a wide range

of controls), asset redeployability still predicts higher financial leverage and lower credit spreads.

More generally, this essay provides new evidence to explain the positive effect of asset redeploya-

bility on the credit terms of debt. In particular, I add to the literature studying asset redeployability

by highlighting its positive effect on firms’ value through allowing them to maneuver business cycle

fluctuations more effectively. In contrast, traditional economic literature studies the asset redeploy-

ability’s positive features through mainly focusing on its relation with creditors’ recovery values at

corporate default.
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In chapter 3, the second essay explores time-series dynamics of the entire cross-sectional distribu-

tion of debt issuance. Specifically, I add to current macroeconomic works studying debt issuances at

the aggregate level by showing that —as the cross-sectional average —, the cross-sectional dispersion

of the debt issuance distribution also comoves with the business cycle. Further, I present evidence that

suggests that the procyclical pattern of the cross-sectional dispersion of the debt issuance distribution

is mainly driven by periods where firms exhibit large and positive investment and debt issuances;

that is, periods of aggregate macroeconomic growth. To the extent that investment and debt issuance

lumpiness result from the interaction of non-convex real and financial costs, in this essay I focus on

understanding the contribution of both frictions on shaping the patterns of the cross-sectional disper-

sion of debt issuance. To accomplish this goal, I build a DSGE model with lumpy investment and

debt financing. I use the model’s simulations to conclude that neither a non-convex real cost nor a

non-convex financial cost alone can reproduce the pattern exhibited by the cross-sectional dispersion

of debt issuance. In a model with countercyclical uncertainty shocks, both non-convex frictions are

required to induce a region of inaction in bad times, while allowing high-growth firms to scale up

their capital stock in good times through a real option effect. Interestingly, I conclude that the pro-

cyclical behavior exhibited by the cross-sectional dispersion of debt issuance is not just a reflection

of the properties of the cross-sectional dispersion of investment rates.

4.1 Future work
Both essays presented in this thesis could be extended along several dimensions. For instance, in

the model of the first essay, asset redeployability is modeled as an exogenous characteristic of firms’

assets. While this assumption simplifies the analysis as well as the numerical solution, I believe it

would be interesting to allow firms to choose their degree of asset redeployability by either intro-

ducing a second type of capital or; by differentiating new from used capital. This analysis would

provide a better understanding about the nature of firms’ asset redeployability and therefore, about

its implications. Furthermore, the model predicts that differences in disinvestment flexibilities do not

produce important differences in expected recovery rates. This prediction could be tested as long as

disinvestment flexibility can be properly measured.

Lastly, in the second essay, long-term bonds are assumed to have a constant average maturity.

While this assumption allows the model to stay tractable, it would be interesting to explore the im-

plications of the model when debt maturity decisions are also allowed. Indeed, in reality, firms issue

debt at multiple maturities. This will certainly have implications for the entire cross-sectional debt

issuance distribution; in particular, for the higher-order moments of the distribution. In this context,

it would be interesting to study how active debt-maturity managing could affect the features of the

cross-sectional distribution of debt issuance as well as investment rates.
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Appendix A

Appendix to Chapter 2

A.1 Data appendix
In this appendix, I describe the construction of firm-level credit spreads and other variables used in the

empirical analysis. Section A.1 describes the bond transaction data set used to construct firm-specific

credit spreads. Section A.2 provides the details about the construction of the variables used in the

estimation of panel regressions and descriptive statistics of these variables. Section A.3 describes the

KMV model implemented in the data to construct the expected recovery rates and ultimately used to

decompose the asset redeployability measure.

A.1.1 Bond-level data

This chapter uses a sample of U.S. non-financial and non-public-utility firms covered by the S&P

Compustat and the Center for Research in Security Prices (CRSP). I obtained secondary market trans-

action prices of corporate bonds from the National Association of Insurance Commissioners (NAIC).

The NAIC Financial Data Repository Database for Corporate Bonds collects all holdings and transac-

tions for insurance companies based on their mandatory quarterly Schedule D filings. The transaction

data includes price, date, and quantity. The data covers a specific group of investors, i.e. insurance

companies. According to Veronesi (2016), insurances companies make up a very large fraction of the

market participants based on their holdings. To be part of the final sample, bonds must be issued by a

U.S. firm and pay a fixed coupon. I also eliminate bonds with special bond features such as put, call,

exchangeable, asset backed, and convertible (Campbell and Taksler (2003)).

Using security-level daily transaction data, I reconstruct for each individual bond in my sample

the promised cash-flows of the corresponding corporate debt instrument. The idea is to construct the

promised sequence of cashflows {C(s) : s = 1,2, ...,S} at time t.A bond’s cashflows will consist of

the regular coupon payments and the repayment of the principle at maturity. Importantly, the timing

of the stream of cash flows is determined using information about accrued interests reported in the
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NAIC database. Particularly, the next coupon date is set to replicate the reported accrued interests.

Then, given the stream of cashflows determined, the (dirty) price in period t of bond k issued by firm

i will satisfy the following relation,

Pi,t,k =
S

∑
s=1

C(s)e−rss (A.1)

where rs is the spot rate used to discount a cashflow paid at period t + s. Transactions’ yields are

computed by equating the dirty price to the present value of cash-flows, as in equation (A.1). Then,

the bond credit spreads is Si,t,k = yi,t,k−y f ,t,k, where yi,t,k denotes the benchmark treasury at the date t.

To obtain the benchmark treasury for each transaction, I match the bond duration to the zero-coupon

Treasury yields curve provided by Gürkaynak et al. (2007) - linearly interpolating if necessary.

To ensure results are not driven by a small number of extreme observations, all observations with

credit spreads below 5 basis points and greater than 3,500 basis points are eliminated. Very small

corporate issues (par value of less than $0.1 million) as well as observations with a remaining term-

to-maturity of less than one year are also discarded. I also eliminate transactions that involve the

the bond issuer and those that show return reversals. These corporate securities were then matched

with their issuer’s annual balance sheet data from Compustat and daily data on equity valuations

from CRSP. This procedure yielded a sample of 16,587 individual transactions over the 1995:M1-

2012:M12 period.

A.1.2 Variables description

While our micro-level data on credit spreads reflect month-end values1, the requisite firm-level bal-

ance sheet items from are available annually whereas stock returns are obtained from CRSP file.

Issuers’ accounting information are matched using the 6-digits issuer Cusip as well as stock prices

information. To ensure that all information is included in asset prices, stock returns and bond credit

spreads from July of year t to June of year t + 1 are matched with accounting information for fiscal

year ending in year t − 1. From the annual Compustat data, I construct the following explanatory

variables,

− Market Leverage : total liabilities / book assets (at)

− Total Liabilities : long-term debt (dltt)+ short-term debt (dlc)− cash (che)

− Tangibility : property, plant and equipment / book assets = (ppent)/at

− Book-to-Market : book value equity/market value equity

− Book Equity : common/ordinary equity (ceq)

+ deferred tax and inv. tax credit (txditc)

− purchase of common and preferred stock (pstk)

− Market Equity : shares outstanding (shrout)× market value stock price (prc)

1Monthly credit spreads observations are constructing using the last transaction of the month taking into account the
time-value of money.
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− ROA : (operating income after depreciation oibdp)/at

− Tobin’s Q : (market equity+ at - ceq−deferred taxes (txdb))/at

− Z-Score : 3.3×ROA+ 1.0× ( sale
at ) + 1.4× ( re

at) + 1.2× ( act-lct
at )

where re, act, and lct denotes retained earnings, current assets, and liabilities, respectively.

All the remaining variables’ definitions are given in Section 3.2.1.

A.1.3 Variables descriptive statistics

Table A.1 reports the average yield and credit spreads from the NAIC benchmark bond transactions

sample described in the previous section, sorted on credit rating. In the sample, 67% of bond trans-

actions lies in the A-BBB categories. Campbell and Taksler (2003) documents a similar pattern. The

average monthly spreads between Baa and Aaa bonds is about 144bps, which is consistent to close

the average spreads reported by Moody’s over the same period. To validate the database used, Figure

2.4, I plot the time series of the average Baa yield spreads obtained from my NAIC sample along with

the spreads reported by Moody’s over the same period. Note that the two time-series show a similar

pattern spiking during the 2000’s and the financial crisis. The time series correlation between the two

aggregate series is about 0.9.

Table A.2 shows that the term structure of interest rate implicit in the bond sample is, in general,

upward-sloping. The term structure of credit spreads shows an increasing pattern for bonds with

duration larger than one year.

Table A.3 Panel A reports summary statistics for the bond transaction sample used in the re-

gressions. The size of issue is positively skewed, with an average (median) debt issue of 328 (250)

millions. The time-to-maturity of the bonds is long, about 11 years. In general, bond characteristics

of my sample are similar to those of previous studies using public debt (see Gilchrist and Zakrajšek

(2011)).

Table A.3 Panel B shows individual firm summary statistics. The average firm size in the sample

is consistent with previous empirical works’ finding regarding the size of firms issuing public debt

(Denis and Mihov (2003)). Lastly, Table A.4 reports the average asset redeployability by SIC code

which shows similar patterns to that in Table 1 of Kim and Kung (2016).

A.1.4 KMV model

To decompose the asset redeployability measure in two components, I regress this measure on ex-

pected recovery rates. Then, the first component was the one explained by expected recovery rates;

whereas the residual of this regression corresponded to the second component. Importantly, expected

recovery rates were computed based on the KMV model as explained by Bohn and Crosbie (2003),

and Altman et al. (2004). In this model, the asset value of the firm VA is assumed to follow a geometric

Brownian motion dVA/VA = µ dt+σA dz, where µ and σA are the firm’s asset value drift and volatility

rate and dz is a Wiener process. If the total debt at period t is denoted by Xt , default happens if at time
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t the value of the firm’s assets VA,t , is lower than Xt . When default occurs, the recovery rate is given

by the ratio of the asset value to the debt, i.e. VA,t/Xt . The expected recovery rate is computed as,

E
(

VA,t

Xt
I{VA,t<Xt}

)
=

(
VA,0ert

Xt

)(
Φ(−d1)

Φ(−d2)

)
(A.2)

where r is the risk-free interest rate, Φ(·) is the standard normal cumulative distribution function, and

d1 and d2 have similar interpretation as in the standard Black-Scholes formula.

The model is implemented by estimating the unobservable parameters of the model regarding the

firm’s assets at time 0, i.e. VA and σA, through link them to the observable value and volatility of the

firm’s equity at time 0 denoted as VE and σE , respectively. Specifically, based on the idea that (i) the

firm’s equity can be seen as a call option on the underlying asset, (ii) debt is homogenous with time

of maturity, and (iii) debt coupon rate is zero are zero and dividends are reinvested, standard results

show that the value of the equity is,

VE =VAΦ(d1)− e−rXtΦ(d2) (A.3)

Furthermore, it is possible to show that the firm’s asset and equity volatility are related by the identity,

σE = σA
VA

VE
Φ(d1) (A.4)

Given VE and σE - which are approximated by Market Equity and the annualized standard devi-

ation of the last twelve monthly excess returns - this system comprised of equation (A.3) and (A.4)

has a unique solution. The system is completed by using total liabilities (dltt + dlc - che)

and the annualized one-month T-Bill as Xt and r, respectively.

A.2 Numerical procedure appendix
This appendix provides details regarding the key elements of the quantitative model and its solution

method. Section B.1 describes the stationary version of the model. Section B.2 describes details of the

numerical solution method implemented. Section B.3 describes the Euler equations that characterized

the optimal firm’s decisions. Lastly, Section B.4 provides details of the relation between debt prices

and probabilities of default as well as recovery rates used in the model’s quantitative analysis.

A.2.1 Shareholders’ stationary problem

Assuming that the firm does not default in the current period, and defining the following stationary

variables: k̂t+1 = kt+1/xt , ît = it/xt , and b̂t+1 = bt+1/xt ; the stationary value function J(kt ,bt ,λt ,Γt)/xt ≡
j(k̂t , b̂t ,λt ,Γt) can be written as,
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j(k̂t , b̂t ,λt ,Γt) = max
kt+1,bt+1,λt+1

{
d̂t +Et(Mt,t+1e∆ln(xt+1) j(k̂t+1, b̂t+1,λt+1,Γt+1))

}
(A.5)

where ∆ln(xt+1) = ln(xt+1/xt) and the stationary functions relevant to solve the program are,

d̂t ≡ êt −Ψ(êt)

êt ≡ (1− τ)ŷt − ît − Φ̂(̂it , k̂t ,ωt)− (λt + c(1− τ)) b̂te−∆ln(xt)+ τδ k̂te−∆ln(xt)

+ P̂(k̂t+1, b̂t+1,λt+1,Γt)
(

b̂t+1− (1−λt)b̂te−∆ln(xt)
)

ŷt ≡ e−α∆ln(xt)k̂α
t − f zt −φ k̂te−∆ln(xt)

ît ≡ k̂t+1− (1−δ )kte−∆ln(xt)

Φ̂(̂it , k̂t ,ωt) ≡
(

e∆ln(xt)it/kt −δ

)2
k̂te−∆ln(xt)θ ×

 1 if it > 0

ωt if it ≤ 0

Note that the debt pricing function can also be normalized,

b̂t+1× P̂(k̂t+1, b̂t+1,λt+1,Γt) = a︸︷︷︸a

Et

(
Mt,t+1b̂t+1(λt+1 + c+(1−λt+1) · P̂(k̂t+2, b̂t+2,λt+2,Γt+1))I{zt+1<z?t+1}

)
+Et

(
Mt,t+1(1−χt+1)e∆ln(xt+1) j(k̂t+1,0,0,Γt+1)I{z?t+1<zt+1<z0

t+1}

) (A.6)

A.2.2 Numerical solution details

The numerical dynamic programming approach considers the joint determination of the stationary

equity value function (A.5) and the stationary bond pricing function (A.6). I use an iterative proce-

dure to jointly approximate these two functions on discrete grids. Throughout the procedure, I create

grids for the shocks and the endogenous state variables, k̂t , b̂t , and λt . Given their persistent nature,

we use the Rouwenhorst (1995) procedure to discretize the aggregate state and the firm-level tech-

nology shocks. The aggregate Markov chain has three states and changes in the technology shock

are approximated with 11 elements. I create grids for capital, the debt face value outstanding and

debt maturity parameter, with 50, 10 and 10 points respectively. The choice for tomorrow’s control

variables is based on a dynamic searching in the original grids that consists of zooming in multiple

times around local optimal values. This methodology allows the code to spend most of the processing

time in a grid around the optimal value. Importantly, the procedure to find the maximum equity value

function takes as given the stochastic discount factor as well as the debt pricing function. After the

equity value function converges, I solve for the bond pricing function using a value function iteration

procedure that takes the equity value function as given. Once this algorithm converges, I obtain the

equity and bond value functions for each element on the state space.
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A.2.3 Derivation of first-order conditions

Under the assumption that the firm does not need to issue equity, i.e Ψ(êt) = 0, the set of first order

necessary conditions of the original firm’s problem are,

[b̂t+1] :
∂ P̂t

∂ b̂t+1

(
b̂t+1− (1−λt)b̂te−∆ln(xt)

)
+ P̂t +Et

Mt,t+1e∆ln(xt+1)

z?t+1∫
z

∂ jt+1

∂ b̂t+1
dZ (zt+1|zt)

= 0

[λt+1] :
∂ P̂t

∂λt+1

(
b̂t+1− (1−λt)b̂te−∆ln(xt)

)
+Et

Mt,t+1e∆ln(xt+1)

z?t+1∫
z

∂ jt+1

∂λt+1
dZ (zt+1|zt)

= 0

[̂it ] : −1− ∂ Φ̂t

∂ ît
+ γt = 0

[̂kt+1] :
∂ P̂t

∂ k̂t+1

(
b̂t+1− (1−λt)b̂te−∆ln(xt)

)
− γt +Et

Mt,t+1e∆ln(xt+1)

z?t+1∫
z

∂ jt+1

∂ k̂t+1
dZ (zt+1|zt)

= 0

where γt represents the Lagrange multiplier of the capital accumulation condition, z?t+1 denotes the

default threshold (the highest value of zt at which it is optimal to keep operating the firm), and Z (·)
represents the conditional density distribution of zt+1. The derivatives of the function j(·) can be

obtained by applying the envelope theorem multiple times,

[b̂t ] :
∂ jt
∂ b̂t

=−(λt + c(1− τ))e−∆ln(xt)− P̂t(1−λt)e−∆ln(xt)

[λt ] :
∂ jt
∂λt

=−b̂te−∆ln(xt)+ P̂t b̂te−∆ln(xt) =−b̂te−∆ln(xt)(1− P̂t)

[̂kt ] :
∂ jt
∂ k̂t

= (1− τ)
∂ ŷt

∂kt
+ τδe−∆ln(xt)− ∂ Φ̂t

∂ k̂t
+(1−δ )e−∆ln(xt)λt

(A.7)

Note that the derivative of the debt price function can also be obtained from equation,

b̂t+1× P̂(k̂t+1, b̂t+1,λt+1,Γt) = a︸︷︷︸a

Et

(
Mt,t+1b̂t+1(λt+1 + c+(1−λt+1) · P̂(k̂t+2, b̂t+2,λt+2,Γt+1))I{zt+1<z?t+1}

)
+Et

(
Mt,t+1(1−χt+1)e∆ln(xt+1) j(k̂t+1,0,0,Γt+1)I{z?t+1<zt+1<z0

t+1}

)
Indeed, differentiating the debt pricing function with respect to each control variable we can

completely determined the system of equations resulted from the first-order conditions of the firm’s
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problem,

[b̂t+1] : P̂t + b̂t+1
∂ P̂t

∂ b̂t+1
= Et

(
Mt,t+1(1−χt+1)e∆ln(xt+1) j(k̂t+1,0,0,Γ?

t+1)[−dZ (z?t+1|zt)
∂ z?t+1

∂ b̂t+1
]
)

+Et

(
Mt,t+1b̂t+1(λt+1 + c+(1−λt+1) · P̂(k̂t+2, b̂t+2,λt+2,Γ

?
t+1))[dZ (z?t+1|zt)

∂ z?t+1

∂ b̂t+1
]
)

+Et

(
Mt,t+1(λt+1 + c+(1−λt+1) · P̂(k̂t+2, b̂t+2,λt+2,Γt+1))I{zt+1<z?t+1}

)
+Et

(
Mt,t+1b̂t+1(1−λt+1) ·∇P̂b̂t+1(k̂t+2, b̂t+2,λt+2,Γt+1)I{zt+1<z?t+1}

)

[λt+1] : b̂t+1
∂ P̂t

∂λt+1
= Et

(
Mt,t+1(1−χt+1)e∆ln(xt+1) j(k̂t+1,0,0,Γ?

t+1)[−dZ (z?t+1|zt)
∂ z?t+1

∂λt+1
]
)

+Et

(
Mt,t+1b̂t+1(λt+1 + c+(1−λt+1) · P̂(k̂t+2, b̂t+2,λt+2,Γ

?
t+1))[dZ (z?t+1|zt)

∂ z?t+1

∂λt+1
]
)

+Et

(
Mt,t+1b̂t+1(1− P̂(k̂t+2, b̂t+2,λt+2,Γt+1))I{zt+1<z?t+1}

)
+Et

(
Mt,t+1b̂t+1(1−λt+1) ·∇P̂λt+1(k̂t+2, b̂t+2,λt+2,Γt+1)I{zt+1<z?t+1}

)

[̂kt+1] : b̂t+1
∂ P̂t

∂ k̂t+1
= Et

(
Mt,t+1(1−χt+1)e∆ln(xt+1) j(k̂t+1,0,0,Γ?

t+1)[−dZ (z?t+1|zt)
∂ z?t+1

∂ k̂t+1
]
)

+Et

(
Mt,t+1b̂t+1(λt+1 + c+(1−λt+1) · P̂(k̂t+2, b̂t+2,λt+2,Γ

?
t+1))[dZ (z?t+1|zt)

∂ z?t+1

∂ k̂t+1
]
)

+Et

(
Mt,t+1b̂t+1(1−λt+1) ·∇P̂k̂t+1(k̂t+2, b̂t+2,λt+2,Γt+1)I{zt+1<z?t+1}

)
where for any variable qt+1, the total derivative of the debt pricing function with respect to qt+1

is denoted by,

∇P̂qt+1
t+1 ≡

∂ P̂t+1

∂ k̂t+2

∂ k̂t+2

∂qt+1
+

∂ P̂t+1

∂ b̂t+2

∂ b̂t+2

∂qt+1
+

∂ P̂t+1

∂λt+2

∂λt+2

∂qt+1

A.2.4 Derivation of debt credit spreads as a function of pd and rr

The firm’s creditors buy corporate debt at price Pt ≡ P(kt+1,bt+1,λt+1,Γt) in exchange of collecting

coupon and principal payments until the firm defaults. If default does not occur, the bond repayment

at period t + j is CFt+ j ≡ (1−λt+1)
j−1(c+λt+1). As a consequence, if the yield of the defautable

bond is Yt , then Yt will relate to Pt according to the expression,

Pt =
∞

∑
j=1

CFt+ j

(1+Yt) j =
λt+1 + c
λt+1 +Yt

(A.8)
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Similarly, if the price of a default-free debt with payments CFt+ j is Pr f
t , then the yield of the default-

free bond will be computed as Y r f
t = (λt+1+c)/Pr f

t −λt+1. Credit spreads (cst) is defined as the yield

difference between defaultable and default-free debt,

cst ≡ Yt −Y r f
t =

λt+1 + c
Pt

− λt+1 + c

Pr f
t

(A.9)

To write credit spreads in terms of the probability of default PDt and the value of the recovery rate RRt

note that Pt is defined by an arbitrage condition such that the amount of money creditors are willing

to pay for the contract must equal the expected value of future payments. Formally, this condition

implies the following identity,

Pt = Et

(
Mt,t+1(λt+1 + c+(1−λt+1)Pt+1)I{zt+1<z?t+1}

)
+Et

(
Mt,t+1(1−χt+1)

J0
t+1

bt+1
I{z?t+1<zt+1<z0

t+1}

) (A.10)

where J0
t+1 denotes the value of the unlevered firm after default, i.e. J0

t+1 ≡ J(kt+1,0,0,Γt+1). Impor-

tantly, corporate bonds are held by the representative household and are thus valued using the house-

hold equilibrium pricing kernel Mt,t+1. To gain some intuition about the drivers of credit spreads, for

simplicity I now consider the one-period debt case, i.e. λt+1 is set to 1. For this special case, note

that,

1+ c
Pt

=
1

Et(Mt,t+1)

1−Et

(
Mt,t+1(1−χt+1)

J0
t+1

Pt bt+1
I{z?t+1<zt+1<z0

t+1}

)
1−Et

(
Mt,t+1

Et(Mt,t+1)
I{z?t+1<zt+1<z0

t+1}

)
 (A.11)

similarly for the default-free bond in this special case, we have, (1+ c)/Pt = 1/Et(Mt,t+1). Con-

sequently, defining the risk-neutral default probability PDt and the value of the recovery rate RRt ,

as

PDt ≡ Et

( Mt,t+1

Et(Mt,t+1)
I{z?t+1<zt+1<z0

t+1}

)
RRt ≡ Et

(
Mt,t+1(1−χt+1)

J0
t+1

Ptbt+1
I{z?t+1<zt+1<z0

t+1}

) (A.12)

we conclude that credit spreads can be written in terms of PDt and RRt according,

cst(λt+1 = 1) =
1+ c

Pt
− 1+ c

Pr f
t

=
1

Et(Mt,t+1)

(
1−RRt

1−PDt
−1
)

(A.13)
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Note that in the general case, i.e. λt+1 ∈ [0,1], the credit spreads will contain an additional term

related to the difference between the defaultable and default-free debt price growth. Specifically,

cst =
1

Et(Mt,t+1)

(
1−RRt −∆Pt

1−PDt
− (1−∆Pr f

t )

)
(A.14)

where ∆Pt ≡ Et

(
Mt,t+1(1−λt+1)Pt+1/PtI{zt+1<z?t+1}

)
and ∆Pr f

t ≡ Et

(
Mt,t+1(1−λt+1)P

r f
t+1/Pr f

t

)
.
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Table A.1: Yield data per rating category

Rating Yield (%) Yield Spread (bps) N
AAA 5.01 67 477
AA+ 5.04 72 274
AA 5.93 89 774
AA- 5.71 79 1581
A+ 5.79 111 2333
A 5.88 118 2847
A- 6.61 133 2485
BBB+ 6.46 144 2749
BBB 6.45 171 3067
Total 16587

Yield data per rating category. This table shows the sam-
ple average of corporate yields and yield spreads by credit
rating. The yield spreads is obtained by subtracting from the
corporate spreads, a Treasury yield with equal duration. The
NAIC data’s sample period is from 1995 and 2012. Yields
are in percent and yield spreads are in basis points. All bonds
are in U.S. dollars and have no special features (call, put,
convertibility, etc.).
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Table A.2: Yield data per duration category

Yield (%) Yield Spread (bps) N
duration < 1yr 4.47 133 19

1yr ≤ duration < 2yr 4.49 113 1486
2yr ≤ duration < 4yr 5.26 116 3338
4yr ≤ duration < 6yr 6.23 119 3650
6yr ≤ duration < 8yr 6.5 110 2852
8yr ≤ duration < 10yr 6.83 154 1425

10yr ≤ duration < 12yr 7.07 160 2505
12yr ≤ duration < 6.52 126 1312

16587

Yield data per duration category. For a detailed description of the variables, refer
to Table A.1.

97



Table A.3: Summary statistics

Variable Mean Median Sd Min Max
A. Bond Characteristics
Yield (%) 6.13 6.44 1.67 0.29 19.23
Yield spreads (bps) 126 106 86 5 1489
Coupon (%) 7.23 7.2 1.33 2 11.13
Time to maturity (years) 11.02 7.39 10.64 1 100.07
Issue size (millions) 328 250 268 0.01 3250
Credit rating A A- - BBB AAA
Z-score 2.05 1.98 0.8 -0.1 7.16

B. Firm Characteristics
Asset Redeployability 0.32 0.34 0.09 0.09 0.58
Asset size (log millions) 9.59 9.69 1.09 6.18 12.4
Market leverage 0.23 0.24 0.14 0.01 0.68
Long-term debt to asset 0.24 0.23 0.1 0.01 0.66
Book-to-Market 0.46 0.36 0.37 0.01 5.04
Tangibility 0.4 0.34 0.22 0.03 0.93
ROA 0.16 0.15 0.06 -0.06 0.43
Tobin Q 1.99 1.66 1.14 0.69 13.01

Summary statistics. This table reports summary statistics for the benchmark
sample. Panel A reports bond characteristics. Yield spreads are defined as the
bond yield in excess a government bond with equal duration, coupon is the
annualized coupon rate, Time to maturity is the difference between the matu-
rity of the bond and the transaction date, the issue size is the total principal
issued for a bond. Panel B reports firm characteristics, Asset redeployability
computed as in Kim and Kung (2016), Asset size is defined as total assets in
Compustat, Long-term debt to asset is obtained from Compustat, the Book-
to-Market ratio is defined as the ratio of book equity to the market value of
equity. The variable units are detailed in the first column.
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Table A.4: Asset redeployability by two-digit sic

SIC AR Industry description
10 0.233 Metal, Mining
13 0.1346 Oil & Gas Extraction
14 0.2898 Nonmetallic Minerals
20 0.3378 Food & Kindred Products
21 0.3751 Tobacco Products
23 0.2756 Apparel & Other Textile Prod.
25 0.3463 Furniture & Fixtures
26 0.2735 Paper & Allied Products
27 0.4297 Printing & Publishing
28 0.3556 Chemical & Allied Products
29 0.3188 Petroleum & Coal Products
30 0.3526 Miscellaneous Plastics Prod.
32 0.3697 Stone, Clay, & Glass Products
33 0.3617 Primary Metal Industries
34 0.3641 Fabricated Metal Products
35 0.3637 Industrial Machinery & Equip.
36 0.3551 Electronic & Other Electric Equip.
37 0.3064 Transportation Equipment
38 0.3262 Instruments & Related Products

SIC AR Industry description
39 0.3574 Miscellaneous Manufacturing Ind.
40 0.1425 Railroad Transportation
42 0.3717 Trucking & Warehousing
45 0.2435 Transportation by Air
48 0.3465 Communications
50 0.4007 Wholesale Trade - Durable
51 0.4063 Wholesale Trade - Nondurable
52 0.3925 Building Materials & Gardening
54 0.3925 Food Stores
55 0.3925 Automative dealers & Serv. Stations
56 0.3922 Apparel & Accessory Stores
57 0.3925 Furniture & Homefurnishings Stores
58 0.3694 Eating & Drinking Places
59 0.392 Miscellaneous Retail
72 0.4986 Personal Services
73 0.3387 Business Services
75 0.4296 Auto Repair, Services, & Parking
78 0.4087 Motion Pictures
80 0.1289 Health Services

Asset redeployability by two-digit SIC. This table reports the average values of asset redeployability
for 2-digit SIC industry. Firm-year asset redeployability are calculated as the value-weighted average of
industry-level redeployability indices as in Kim and Kung (2016).
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Appendix B

Appendix to Chapter 3

B.1 Data appendix
The empirical section of this chapter is based on the Compustat/CRSP merged data file. To be consis-

tent with existing literature the sample used considers information from the first quarter in 1984 until

the last quarter in 2016 from WRDS. I keep U.S incorporated firms and discard financial (SIC codes

6000-6999), utility (SIC codes 4800-4999), and quasi- government (SIC codes 9000-9999) firms. I

also drop observations with missing or negative values of assets (atq), sales (saleq), and cash and

short term investment securities (cheq). Observations that with missing liabilities (ltq) and obser-

vations where cash holdings are larger than assets are also eliminated. I discard firms that violate the

accounting identity by more than 10%. Observations where leverage ratio is larger than the unity are

eliminated as well as observations of those firms that where recorded in the database less than one

year. Firms must have at least 5 observations (5 quarters) to be included into the sample. Year-to-

date variables of the sale and purchase of common and preferred stock, cash dividends, and capital

expenditures on the company’s property, plant and equipment are converted into quarterly values.

B.1.1 Variables description

I provide the definitions of the variables used in the analysis which are conducted from the Compus-

tat/CRSP merged data file,

− Book Assets : total assets (at)

− Book Equity : common/ordinary equity (ceq)

+ deferred tax and inv. tax credit (txditc)

− purchase of common and preferred stock (pstk)

− Total Debt : long-term debt (dltt)+ short-term debt (dlc)

− Book Leverage : total debt / book assets (at)
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− Average Book Assets : average of last-three years book assets

− Debt Issuance : ∆ total debt / average book assets

− Investment rate : capital expenditures (capex) / average book assets

B.1.2 Robustness test

In this section, I reproduce Table B.1 for multiple variations of the original database used in the

empirical analysis in order to verify that the results are not driven a specific subsample of the data.

As a robustness test, Table B.1 reproduces the main results of this chapter (presented in Table 3.1)

including the observations from the first year a firm appears on the data base. This in order to verify if

the results are robust to any IPO effect. As an additional robustness test, in Table B.2, I reproduce the

analysis of this chapter from a sample where I exclude small firms, i.e. firms with total assets lower

than $10,000. Lastly, Table B.3 reproduces the main results of the chapter by redefining firms’ total

assets as the last-year total assets observed in the database. The main results of the chapter are robust

to any of these tests.

B.2 Numerical procedure appendix
This appendix provides details regarding the solution method used to solve the quantitative model

proposed in this chapter. Section B.2.1 describes the stationary version of the firm’s problem. Section

B.2.2 describes the Euler equations that characterized the optimal firm’s decisions. Section B.2.3

describes the recursive equilibrium that characterizes the general equilibrium. Lastly, Section B.2.4

describes details of the numerical solution method implemented.

B.2.1 Shareholders’ stationary problem

Defining the stationary variables: k̂ j,t+1 ≡ k j,t+1/ext , î j,t ≡ i j,t/ext−1 , and b̂ j,t+1 ≡ b j,t+1/ext ; the sta-

tionary value function J(k j,t ,b j,t ,z j,t ,Γt)/ext−1 ≡ Ĵ(k̂ j,t , b̂ j,t ,z j,t ,Γt) can be written as,

Ĵ(k̂ j,t , b̂ j,t ,z j,t ,Γt) = max
k̂ j,t+1,b̂ j,t+1

{
d̂ j,t +Et(Mt,t+1e∆xt Ĵ(k̂ j,t+1, b̂ j,t+1,z j,t+1,Γt+1))

}
(B.1)

where the stationary functions used to solve the program are,

d̂ j,t ≡ ê j,t −ψ1I{ê j,t<0}

ê j,t ≡ (1− τ)Π̂ j,t − î j,t − Ω̂
k(̂i j,t)− (λ + c(1− τ)) b̂ j,t + τδ k̂ j,t − Ω̂

b(â j,t)

+P(k̂ j,t+1, b̂ j,t+1,z j,t ,Γt)
(

b̂ j,t+1e∆xt − (1−λ )b̂ j,t

)
ŷ j,t ≡ e∆xt ez j,t k̂α

j,t l
α̂
j,t − ŵt l j,t − f k̂ j,t

î j,t ≡ k̂t+1e∆xt − (1−δ )kt
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Note that the debt pricing function can also be normalized,

b̂ j,t+1× P̂j,t = Et

(
Mt,t+1b̂ j,t+1(λ + c+(1−λ ) · P̂j,t+1)I{z j,t+1<z?j,t+1}

)
+Et

(
Mt,t+1(1−χ)Ĵ(k̂ j,t+1,0,z j,t+1,Γt+1)I{z?j,t+1<z j,t+1<z0

j,t+1}

) (B.2)

B.2.2 Derivation of first-order conditions

Assuming that the firm does not need to issue equity, i.e ψe × I{e j,t<0} = 0, the set of first order

conditions that determines the optimal firms’ decisions are,

[b j,t+1] :
∂Pj,t

∂b j,t+1
(b j,t+1− (1−λ )b j,t)+Pj,t +Et

Mt,t+1

z̄∫
z?j,t+1

∂J j,t+1

∂b j,t+1
dZ (z j,t+1|z j,t)

=
∂Ωb(a j,t)

∂a j,t

[i j,t ] : −1−
∂Ωk(i j,t)

∂ i j,t
+ γ j,t = 0

[k j,t+1] :
∂Pj,t

∂k j,t+1
(b j,t+1− (1−λ )b j,t)− γ j,t +Et

Mt,t+1

z̄∫
z?j,t+1

∂J j,t+1

∂k j,t+1
dZ (z j,t+1|z j,t)

= 0

where γ j,t represents the Lagrange multiplier of the capital accumulation condition, z?j,t+1 denotes the

default threshold (the lowest value of z j,t+1 at which it is optimal to keep operating the firm), and

Z (·) represents the conditional density distribution of z j,t+1. The derivatives of the function J(·) can

be obtained by applying the envelope theorem multiple times,

[b j,t ] :
∂J j,t

∂b j,t
=−(λ + c(1− τ))−Pj,t(1−λ )+

∂Ωb(a j,t)

∂b j,t
(1−λ )

[k j,t ] :
∂J j,t

∂k j,t
= (1− τ)

∂y j,t

∂k j,t
+ τδ −

∂Ωk(i j,t)

∂k j,t
+(1−δ )γ j,t

(B.3)

Note that the derivative of the debt price function can also be obtained from equation,

b j,t+1×P(k j,t+1,b j,t+1,z j,t ,Γt) = a︸︷︷︸a

Et

(
Mt,t+1b j,t+1(λ + c+(1−λ ) ·P(k j,t+2,b j,t+2,z j,t+1,Γt+1))I{z?j,t+1<z j,t+1}

)
+Et

(
Mt,t+1(1−χ)J(k j,t+1,0,z j,t+1,Γt+1)I{z0

j,t+1<z j,t+1<z?j,t+1}

)
Finally, by differentiating the debt pricing function with respect to each control variable, the
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system of equations resulted from the first-order conditions is completely determined,

[b j,t+1] : Pj,t +b j,t+1
∂Pj,t

∂b j,t+1
= Et

(
Mt,t+1(1−χ)J(k j,t+1,0,z?j,t+1,Γt+1)[dZ (z?j,t+1|z j,t)

∂ z?j,t+1

∂b j,t+1
]
)

+Et

(
Mt,t+1b j,t+1(λ + c+(1−λ ) ·P(k j,t+2,b j,t+2,z?j,t+1,Γt+1))[−dZ (z?j,t+1|z j,t)

∂ z?j,t+1

∂b j,t+1
]
)

+Et

(
Mt,t+1(λ + c+(1−λ ) ·P(k j,t+2,b j,t+2,z j,t+1,Γt+1))I{z?j,t+1<z j,t+1}

)
+Et

(
Mt,t+1b j,t+1(1−λ ) ·∇Pb j,t+1(k j,t+2,b j,t+2,z j,t+1,Γt+1)I{z?j,t+1<z j,t+1}

)
[k j,t+1] : b j,t+1

∂Pj,t

∂k j,t+1
= Et

(
Mt,t+1(1−χ)J(k j,t+1,0,z?j,t+1,Γt+1)[dZ (z?j,t+1|z j,t)

∂ z?j,t+1

∂k j,t+1
]
)

+Et

(
Mt,t+1b j,t+1(λ + c+(1−λ ) ·P(k j,t+2,b j,t+2,z?j,t+1,Γt+1))[−dZ (z?j,t+1|z j,t)

∂ z?j,t+1

∂k j,t+1
]
)

+Et

(
Mt,t+1b j,t+1(1−λ ) ·∇Pk j,t+1(k j,t+2,b j,t+2,z j,t+1,Γt+1)I{z?j,t+1<z j,t+1}

)
where for any variable qt+1, the total derivative of the debt pricing function with respect to qt+1

represents the expression,

∇Pq j,t+1
t+1 ≡

∂Pj,t+1

∂k j,t+2
×

∂k j,t+2

∂qt+1
+

∂Pj,t+1

∂b j,t+2
×

∂b j,t+2

∂qt+1

B.2.3 Recursive equilibrium

The recursive equilibrium consists of a set of value functions, prices, household’ and firms’ optimal

decisions, aggregate quantities and the law of motion of the economy’s aggregate state satisfying the

following set of conditions.

Policy and Value Functions

1. Firm j-th’s policy functions {k∗j,t+1, l
∗
j,t ,b

∗
j,t+1} maximize its value function J(k j,t ,b j,t ,z j,t ,Γt).

2. Household’s optimal decisions C∗({ms
j,t},mb

t ,Γt), N∗({ms
j,t},mb

t ;Γt), ms∗({ms
j,t},mb

t ,Γt), and

mb∗({ms
j,t},mb

t ,Γt) maximize H({ms
j,t},mb

t ,Γt).

3. ms∗
j,t+1 ≡ ms∗(k j,t+1,b j,t+1,z j,t ,Γt) = µt+1(k j,t+1,b j,t+1z j,t ,Γt) ∀(k j,t+1,b j,t+1z j,t) ∈ S.

Market Clearing Conditions

1. Commodity market clearing, C(Γt) = Y (Γt)−Θ(Γt); where,

(a) Y (Γt) =
∫

S e(1−α)xt ez j,t (k j,t)
α(l∗j,t)

1−α̂ µt [d(k j,t ×b j,t × z j,t)].
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(b) Θ(Γt) =
∫

S

[
f × k j,t + i∗j,t +Ωk(i∗j,t)+Ωb(a∗j,t)+ψeI{e j,t<0}

]
µt [d(k j,t ×b j,t × z j,t)].

where i∗j,t ≡ k∗j,t+1− (1−δ )k j,t , and a∗j,t ≡ b∗j,t+1− (1−λ )b j,t .

2. Labor market clearing, N∗(Γt) =
∫

S l∗(k j,t ,b j,t ,z j,t ,Γt) µt [d(k j,t ×b j,t × z j,t)].

3. The bond market clearing condition, is satisfied by Walras’ Law and the assumption that the

representative financial intermediary participates in a competitive market.1

Model’s consistent dynamic

1. Law of motion for aggregate state variables Γt = µt+1 is consistent with agents’ decisions.

Formally, µt+1(K ,B,Z ) =
∫
(k j,t ,b j,t ,z j,t)∈S

[
∑z j,t+1∈Z Π

(z)
(z j,t ,z j,t+1)

]
µt [d(k j,t × b j,t × z j,t)]; for

all (K ,B,Z )⊂S ≡ {(k j,t ,b j,t ,z j,t) | k′∗(k j,t ,b j,t ,z j,t ,Γt)∈K and b∗j,t+1(k j,t ,b j,t ,z j,t ,Γt)∈
B}; and where Π(z) denotes the transition probability of z j,t .

Aggregate Prices

1. The stochastic discount factor satisfies, Mt,t+1 = β

(
H1−γ

t+1

Et

(
H1−γ

t+1

)
) 1/ψ−γ

1−γ (
Ĉt+1

Ĉt

)− 1
ψ ∂Ĉt+1/∂Ct+1

∂Ĉt/∂Ct
; where

Ht+1 ≡ H(C(Γt+1),N(Γt+1)) and Ĉt+1 ≡ Ĉ(C(Γt+1),N(Γt+1)).

2. The aggregate wage equals the household marginal rate of substitution between leisure and

consumption, i.e. wt(Γt) =−
(

∂Ĉt/∂Nt

)(
∂Ĉt/∂Ct

)−1
.

B.2.4 Numerical solution details

The numerical dynamic programming approach considers the joint determination of (i) the stationary

equity value function (B.1), (ii) the stationary bond pricing function (B.2), and (iii) the functions for

aggregate consumption and aggregate wages (aggregate beliefs) that firms use to solve their max-

imization problem. I use an iterative procedure to jointly approximate these functions on discrete

1Indeed, the assumption that the representative financial intermediary participates in a competitive market implies the
following zero-profit condition that is satisfied at each period,

0≡ Pf (Γt)×mb
t+1−

∫
S

b j,t+1(k j,t ,b j,t ,z j,t ,Γt)×P(k j,t+1,b j,t+1,z j,t ,Γt)µt(d(k j,t ×b j,t × z j,t))

+
∫

S∗

[
b j,t(1−λ )×P(k j,t+1,b j,t+1,z j,t ,Γt)+b j,t(λ + c)

]
µt(d(k j,t ×b j,t × z j,t))

+
∫

SD
(1−χ)J(k j,t ,0,z j,t ,Γt)µt(d(k j,t ×b j,t × z j,t))−mb

t

where the space S represents the product space R+×R+×Z ; where Z denotes the space of the idiosyncratic technology
shock zi, j. The space S∗ and SD denote the product space that includes solvent and defaulting firms, respectively. Formally,
SD ≡= S−S∗ = S∩ (S∗)′.
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grids. Throughout the procedure, I create grids for the variables representing shocks and the endoge-

nous state variables such as capital, and debt outstanding.

For the aggregate shocks, (∆xt ,st), I use a Rouwenhorst (1995) procedure to discretize the firm-

level technology shocks. The aggregate Markov chain considers five states for ∆xt and five states for

st . Whereas the idiosyncratic technology shock is approximated with 19 points in the grid. I create

grids for capital and the debt face value outstanding, with 50 and 30 points respectively. The choice

for next-period control variables is based on a dynamic searching over the original grids. Specifically,

in each iteration of the value function procedure, I zoom in multiple times around local optimal values

of capital and debt. This methodology allows the code to spend most of the processing time in a grid

around the optimal value.

The procedure to find the maximum equity value function takes as given the stochastic discount

factor, the debt pricing function as well as aggregate beliefs. After the equity value function con-

verges, I solve for the bond pricing function using a value function iteration procedure that takes the

equity value function as given. Having the firms’ decisions determined, firms’ beliefs about aggre-

gate variables (e.g. aggregate consumption and wage) are updated using the model’s simulations.

These beliefs are used by firms to compute the stochastic discount factor used to solve their maxi-

mization problem. Importantly, in this procedure instead of assuming specific functional forms for

these beliefs, I follow a non-parametric approach where beliefs are estimated for each element of

the aggregate state space. Finally, I use the change of the estimation of these beliefs as a metric to

determine the convergence of the entire numerical solution.
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Table B.1: Moments and statistics of the cross-sectional distribution of debt issuance and in-
vestment rate (excluding small firms)

Panel A debt issuance investment rate
moments of firm-level distr.: average ρ(·,hp-Y) average ρ(·,hp-Y)

mean 0.004 0.54 ∗∗ 0.017 0.63 ∗∗∗

fraction of firms with (−) spikes 0.058 −0.42 ∗∗ 0.001 0.02
fraction of firms with (+) spikes 0.079 0.61 ∗∗∗ 0.051 0.59 ∗∗∗

standard deviation 0.059 0.48 ∗∗ 0.021 0.56 ∗∗

Panel B ρ(·,C-S st.dev.) ρ(·,C-S st.dev.)

fraction of firms with (−) spikes −0.31 ∗∗ 0.03
fraction of firms with (+) spikes 0.86 ∗∗∗ 0.95 ∗∗∗

Panel C average ρ(·,C-S st.dev.) ρ(·,C-S st.dev.)
fraction of firms with:

(+) debt issuance spikes 0.079 0.86 ∗∗∗ 0.73 ∗∗∗

(+) investment spikes 0.051 0.68 ∗∗∗ 0.95 ∗∗∗

(+) debt issuance spikes,
and no-(+) investment spikes 0.064 0.81 ∗∗∗ 0.61 ∗∗∗

no-(+) debt issuance spikes,
and (+) investment spikes 0.036 0.56 ∗∗ 0.89 ∗∗∗

(+) debt issuance spikes,
and (+) investment spikes 0.014 0.77 ∗∗∗ 0.89 ∗∗∗

Moments and statistics of the cross-sectional distribution of debt issuance and investment rate (excluding
small firms). This table shows some empirical facts about the business dynamic of the cross-sectional distribution
of debt issuance and investment rates when firms with total asset lower than $10,000 are excluded from the
sample. Refer to Table 3.1 for details about variables’ definitions.
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Table B.2: Moments and statistics of the cross-sectional distribution of debt issuance and in-
vestment ratio (ipo firms)

Panel A debt issuance investment rate
moments of firm-level distr.: average ρ(·,hp-Y) average ρ(·,hp-Y)

mean 0.003 0.59 ∗∗∗ 0.017 0.63 ∗∗∗

fraction of firms with (−) spikes 0.062 −0.46 ∗∗ 0.001 0.02
fraction of firms with (+) spikes 0.078 0.63 ∗∗∗ 0.046 0.61 ∗∗∗

standard deviation 0.062 0.48 ∗∗ 0.022 0.56 ∗∗

Panel B ρ(·,C-S st.dev.) ρ(·,C-S st.dev.)

fraction of firms with (−) spikes −0.21 ∗ 0.03
fraction of firms with (+) spikes 0.86 ∗∗∗ 0.95 ∗∗∗

Panel C average ρ(·,C-S st.dev.) ρ(·,C-S st.dev.)
fraction of firms with:

(+) debt issuance spikes 0.078 0.83 ∗∗∗ 0.71 ∗∗∗

(+) investment spikes 0.046 0.65 ∗∗∗ 0.95 ∗∗∗

(+) debt issuance spikes,
and no-(+) investment spikes 0.061 0.79 ∗∗∗ 0.58 ∗∗∗

no-(+) debt issuance spikes,
and (+) investment spikes 0.033 0.52 ∗∗ 0.87 ∗∗∗

(+) debt issuance spikes,
and (+) investment spikes 0.013 0.75 ∗∗∗ 0.89 ∗∗∗

Moments and statistics of the cross-sectional distribution of debt issuance and investment rate (IPO
firms). This table shows some empirical facts about the business dynamic of the cross-sectional distribu-
tion of debt issuance and investment rates when the first year from each firm’s time series is included in
the sample. Refer to Table 3.1 for details about variables’ definitions.
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Table B.3: Moments and statistics of the cross-sectional distribution of debt issuance and in-
vestment ratio (total assets redefined)

Panel A debt issuance investment rate
moments of firm-level distr.: average ρ(·,hp-Y) average ρ(·,hp-Y)

mean 0.004 0.56 ∗∗ 0.016 0.64 ∗∗∗

fraction of firms with (−) spikes 0.076 −0.54 ∗∗ 0.001 0.02
fraction of firms with (+) spikes 0.105 0.52 ∗∗ 0.059 0.61 ∗∗∗

standard deviation 0.059 0.31 ∗∗ 0.021 0.58 ∗∗∗

Panel B ρ(·,C-S st.dev.) ρ(·,C-S st.dev.)

fraction of firms with (−) spikes −0.32 ∗∗ 0.03
fraction of firms with (+) spikes 0.81 ∗∗∗ 0.97 ∗∗∗

Panel C average ρ(·,C-S st.dev.) ρ(·,C-S st.dev.)
fraction of firms with:

(+) debt issuance spikes 0.105 0.81 ∗∗∗ 0.73 ∗∗∗

(+) investment spikes 0.059 0.59 ∗∗∗ 0.97 ∗∗∗

(+) debt issuance spikes,
and no-(+) investment spikes 0.088 0.81 ∗∗∗ 0.66 ∗∗∗

no-(+) debt issuance spikes,
and (+) investment spikes 0.042 0.47 ∗∗ 0.93 ∗∗∗

(+) debt issuance spikes,
and (+) investment spikes 0.017 0.71 ∗∗∗ 0.87 ∗∗∗

Moments and statistics of the cross-sectional distribution of debt issuance and investment rate (total
assets redefined). This table shows some empirical facts about the business dynamic of the cross-sectional
distribution of debt issuance and investment rates for the case where total assets are computed as last-year
assets. Refer to Table 3.1 for details about variables’ definitions.
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