
A Numerical Study of the Effects of
the Parameterization of the Gaussian

Process
by

Jodie Lynn Foster

B.Sc., The University of British Columbia, 2013

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

in

The College of Graduate Studies

(Computer Science)

THE UNIVERSITY OF BRITISH COLUMBIA

(Okanagan)

July 2017

© Jodie Lynn Foster, 2017

The undersigned certify that they have read, and recommend to the
College of Graduate Studies for acceptance, a thesis entitled: A Numerical
Study of the Effects of the Parameterization of the Gaussian
Process submitted by Jodie Lynn Foster in partial fulfilment of the
requirements of the degree of Master of Science

Jason Loeppky, Irving K. Barber School of Arts and Sciences

Supervisor, Professor

John Braun, Irving K. Barber School of Arts and Sciences

Supervisory Committee Member, Professor

Paramjit Gill, Irving K. Barber School of Arts and Sciences

Supervisory Committee Member, Professor

Julian Cheng, School of Engineering

University Examiner, Professor

July 28, 2017

(Date Submitted to Grad Studies)

ii

Abstract

Mathematical models implemented as computer code are gaining widespread
use across the sciences and engineering. In some cases these model are
even replacing physical experiments. The computational complexity of the
models typically limits the number of runs that can be performed. In such
cases, the Gaussian process is used to emulate the true computer model
so that experiments are performed on the emulator. The applicability of
the emulator is closely related to the quality of the fitted Gaussian process
model. A key step in fitting the Gaussian process is estimating the unknown
correlation parameters using a numerical optimizer. It is well known that
maximum likelihood estimation is invariant to the parameterization of the
model. When the mapping from one parametrization to another is injective
this leads to an equivalence of the likelihood and in a Bayesian context an
equivalence of the posterior for carefully chosen prior distributions. In the
context of a Gaussian process model, we show that the parameterization
of the model is in fact critical to achieving meaningful results and ensuring
convergence of the optimizer. This thesis is aimed at providing practical
advice on the best parameterization for the Gaussian process model. The
approach presented here implements a simulation study on a wide range of
test problems and a large number of parameterizations. We illustrate that
the parameterization can have a huge effect on the fitted model and show
that many of the commonly used parameterizations are in fact sub-optimal
for fitting the Gaussian process.

iii

Table of Contents

Abstract . iii

List of Tables . vi

List of Figures . viii

Acknowledgements . ix

Dedication . x

Chapter 1: Introduction . 1

Chapter 2: The Gaussian Process 4
2.1 Computer Models . 4
2.2 The Gaussian Process . 4
2.3 Gaussian Process Emulation 5
2.4 Estimating Theta . 7
2.5 Modelling . 8

2.5.1 Correlation Function 8
2.5.2 Prediction . 9

2.6 Optimization . 10
2.6.1 Gradient . 11

Chapter 3: Implementation . 13
3.1 Design . 13
3.2 Correlation Functions . 15

3.2.1 Invariance . 18
3.3 Optimizing in R . 19
3.4 Assessing Fit . 20

Chapter 4: Borehole Example 22

iv

TABLE OF CONTENTS

Chapter 5: Numerical Testing 29
5.1 Full Simulation Study . 29
5.2 Numerical Results . 29
5.3 Error Analysis . 30
5.4 Performance Analysis . 32
5.5 Results and Discussion . 38

Chapter 6: Conclusions . 43

Bibliography . 45

Appendix . 48
Appendix A: Test Functions . 48

v

List of Tables

Table 3.1 Summary table specifying: parameterization, optimiza-
tion method, and type of gradient used in the Gaussian
process. 18

Table 4.1 Log-likelihood values for the 10 optimizations for one
fitting. 24

vi

List of Figures

Figure 1.1 Root mean squared errors for 5 separate Gaussian
process fittings for 11 different methods. 2

Figure 3.1 Three different samples for the initial input points for
n = 5 input points with d = 2. 14

Figure 4.1 Log-likelihood values for the 5 different fittings of the
Borehole test function with 11 parameter-optimizer
combinations. 25

Figure 4.2 Standardized root mean squared errors for the 5 dif-
ferent fittings of the Borehole test function with 11
parameter-optimizer combinations. 26

Figure 4.3 A closer examination of the log-likelihood values of
the two φ2 parameterizations using upper bounds of
5 (left) and 100 (right). 28

Figure 5.1 A boxplot of the log-likelihood values across all pa-
rameterizations for the full test. 31

Figure 5.2 Box plots of the logarithm (base ten) of both of the
RMSE and AME values 33

Figure 5.3 Empirical cumulative distribution functions for the
logarithm (base ten) of the RMSE and AME values. 35

Figure 5.4 Empirical cumulative distribution functions for the
performance of each parameterization. 36

Figure 5.5 Empirical cumulative distribution functions for the
top three parameterizations with respect to perfor-
mance. 37

Figure 5.6 Empirical cumulative distribution functions of RMSE
and AME for the top four parameterizations with re-
spect to errors. 39

vii

LIST OF FIGURES

Figure 5.7 Empirical cumulative distribution functions of RMSE
and AME for the top thee parameterizations (with
respect to performance) where performance is greater
than -8. 41

viii

Acknowledgements

First and foremost I would like to thank to my supervisor, Dr. Jason
Loeppky. Your inspiration, guidance, encouragement, and support have
been invaluable for my success during this project.

I would also like to thank my supervisory committee: Dr. Paramjit Gill
and Dr. John Braun. I sincerely appreciate your support, and thank you
for dedicating your time to my work.

My gratitude goes to Dr. Patricia Lasserre for her constant support and
suggestions, as well as to Dr. Shirin Golchi for her invaluable insight and
help in the work presented here.

I wish to say thank you to the many students and friends I have had
the pleasure of knowing or working with during my studies. My lab mates
especially, provided me with encouragement, kind words, and coffee breaks
to ensure that I would be able to power through debugging. Words cannot
express how thankful I am to have had you by my side during this experience.

Finally, a special thanks to Spencer Hunt, Trent Jensen, and Rachel
Stone who were the first to encourage me to peruse graduate studies; without
you, this thesis would never have been started. For this, I would like to say
“Thank you.”

ix

Dedication

For my friends and especially my family; thank you for your uncondi-
tional love, encouragement, and support though my, at times tumultuous,
journey.

x

Chapter 1

Introduction

Mathematical models are used across the statistical, mathematical, and
engineering sciences. Mathematical models are implemented as computer
code when physical experiments are costly or impossible to implement, re-
placing the physical experiments. The science being modeled by the mathe-
matical code is often complex, requires a large number of variables and they
can be slow to run. Statistical models, such as a Gaussian process can be
used to approximate the code [5, 20–22] when the code is expensive to run.

Successfully implementing a Gaussian process surrogate model involves
three major steps: choosing a design, specifying the form of the Gaussian
process and then estimating the parameters in the Gaussian process. To
choose a design that is appropriate for fitting a Gaussian process involves
selecting an appropriate sample size as well as the design itself.

The exact choice of the form of the Gaussian process depends on the
choice of the regression function as well as the choice of the correlation
function. This thesis focuses on different selections for the correlation func-
tions and the resultant effect on the fittings of the Gaussian process. Figure
1.1 shows error values from five separate runs of fitting the Gaussian process
model (denoted as five separate lines) for eleven different Gaussian process
correlation functions. In the figure, the correlation functions used for fitting
the Gaussian process produced different final results (shown by the different
error values on the y-axis. These different results suggest a problem of in-
variance; the different correlation functions should produce the same results,
however, as shown in Figure 1.1, this is not the case. [3] consider efficiently
numerically optimizing the Gaussian process. They implement several al-
gorithms for choosing the starting values and optimize the GP using one
parametrization and illustrate this on a few examples. In this thesis we
greatly extend this work to consider several parameterizations and a much
larger class of test functions.

This thesis focuses on determining which parameterization of the cor-
relation function performs the best over a set of test functions and can
be denoted as the ‘go-to’ parameterization to fit a Gaussian process. The
remainder of the thesis is organized as follows, in Chapter 2 we formally

1

Chapter 1. Introduction

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

−4.0

−3.5

−3.0

−2.5

−2.0

Bt Bt_ng Lam Ph1 Ph2 Rh Rh_ng Th Th_un Th1 ThB

S
ta

nd
ar

di
ze

d
R

M
S

E

Figure 1.1: Root mean squared errors for 5 separate Gaussian process fittings
for 11 different methods.

2

Chapter 1. Introduction

introduce the Gaussian process and outline the method of fitting a Gaus-
sian process model. In Chapter 3 we delve into the three steps outlined
above, choosing a design, discussing various parameterization options, and
estimating the parameter values, while hinting at the problem of invariance.
Chapter 4 introduces an example test function (the Borehole function) and
the testing strategies used for the full simulation study. Chapter 5 performs
the full test simulations and discusses the analysis and results. Finally, we
conclude in Chapter 6 with recommendations.

3

Chapter 2

The Gaussian Process

2.1 Computer Models

Computer models are mathematical representations of physical experi-
mentations that are implemented using computer code. These techniques are
used commonly throughout the physical sciences when physical experimen-
tation is expensive or time-consuming. Observations are made by running
a computer model at a set of input points. This is typically referred to
as a computer experiment. The computer code is deterministic - producing
identical output for different runs of a given input - though the output is un-
known before running the model. Consider a black-box function η(x) with
input x = (x1, . . . , xd), where (for simplicity) x ∈ [0, 1]d. The black-box
function, η(x), is known in the way that we know the code takes an input
x and produces an output y(x), however, the complexity of the code essen-
tially makes it an unknown function that requires modelling. Thus, we treat
the function η(x) as unknown. From a Bayesian standpoint, the uncertainty
of the output can be expressed using a stochastic process which is known
as a statistical emulator. We can use a Gaussian process (GP) to represent
the unknown function [15]. After building a GP emulator using runs of the
computer code, analyses can be made without making more computer code
runs. One such analysis is to predict output for a new set of locations not
run.

2.2 The Gaussian Process

As stated above, we can use a Gaussian Process to represent the un-
known function η(x). The Gaussian process can be formally defined as
a collection of random variables, any finite number of which have a joint
Gaussian Distribution [17]. Given two vectors of data x and x∗, the mean
function m(x) and the covariance function V (x,x∗) are defined as

m(x) = E[f(x)], (2.1)

4

2.3. Gaussian Process Emulation

and
V (x,x∗) = E[(f(x)−m(x))(f(x∗)−m(x∗))] (2.2)

respectively.

2.3 Gaussian Process Emulation

In this section, we will discuss the idea of the Gaussian process emula-
tor. Given the unknown function η(x) with input x = (x1/ldots, xd) where
x ∈ [0, 1]d and corresponding output y = (y(x1), . . . , y(xd))

T . The uncer-
tainty of the function η(x) is described as a Gaussian process with mean
function m(x) and covariance function V (x,x∗). Formally, if η(x) has a
Gaussian process distribution, then for every n = 1, 2, . . ., the joint distri-
bution of η(x(1)), . . . , η(x(n)) is multivariate normal for all x(1), . . . ,x(n).
The choice of m(x) can be any function of x, but the choice of V (x,x∗)
must produce a covariance matrix with elements {x(i),x(j))} that satisfies
the property of being nonnegative definite. Prior information of η(x) is rep-
resented by a Gaussian process with mean and covariance functions, m(x)
and V (y(x), y(x∗)) respectively. The distribution of η(x) is

η(x)|β, σ2, θ ∼ GP (m(x), V (y(x), y(x∗))), (2.3)

where the mean function m(x) is given by

m(x) = F T (x)β, (2.4)

where F T (x) = (F 1(x), . . . ,F p(x))T is a set of known basis functions rep-
resenting the mean and β is a set of unknown regression coefficients. Con-
sidering that η(x(i)) is unknown, it is feasible to assume that F (x) = 1 with
1 being a vector of ones as it allows the covariance function to model all of
the signal [4]. The covariance function V (y(x), y(x∗)) is given by

V (y(x), y(x∗)) = σ2R (x,x∗|θ) , (2.5)

where σ2 is an unknown scale parameter and R is a known correlation func-
tion with a vector of unknown correlation parameters θ. The choice of
R(x,x∗|θ) should ensure that the covariance matrix is nonnegative definite
for any set of input points. The choice for the exact form of R will be dis-
cussed in Section 2.5.1 and Section 3.2. At this point, we will consider the
general function R. Suppose that we have a set of n inputs x(1), . . . ,x(n),

5

2.3. Gaussian Process Emulation

and the corresponding outputs y = (η(x(1)), . . . , η(x(n)))T . These are de-
noted as the training data. According to Equation 2.3, the distribution of
the outputs y is multivariate normal,

y|β, σ2, θ ∼ N(F Tβ, σ2R), (2.6)

where R is the correlation matrix comprised of elements

Rij = R(x(i),x(j), |θ). (2.7)

Using multivariate normal distribution conditioning techniques [7], it can be
shown that

η(x)|β, σ2, θ,y ∼ GP(m∗(x), V ∗(y(x), y(x∗))), (2.8)

where
m∗(x) = F Tβ +

(
rT (x)R−1(y − Fβ)

)
(2.9)

and
V ∗(x,x∗) = σ2

(
R(x,x∗|θ) + rT (x)R−1r(x∗)

)
(2.10)

where r(x) =
(
R(x,x(1)), . . . , R(x,x(n))

)T
. Using a weak prior for (β, σ2),

p(β, σ2) ∝ σ−2, and combining with Equation 2.6 using Bayes’ Theorem,
the posterior for (β, σ2) is a normal inverse-gamma distribution,

β|y, σ2,θ ∼ N(β̂, σ2(F TR−1F)−1), (2.11)

where
β̂ = (F TR−1F)−1F TR−1y, (2.12)

and

σ2|y,θ ∝ InvGam

(
n− q

2
,
(n− q − 2)σ̂2

2

)
, (2.13)

where

σ̂2 =
yT (R−1 −R−1F (F TR−1F)−1F TR−1)y

n− q − 2
. (2.14)

Again, following [7], we can then integrate β our of the product of Equation
2.8 and Equation 2.11 to achieve

η(x)|y, σ2 ∝ GP (m′(x), V ′(x,x∗)), (2.15)

where
m′(x) = F T (x)β̂ + rT (x)R−1(y − F β̂), (2.16)

6

2.4. Estimating Theta

and

V ′(x,x) =σ2
(
R(x,x∗|θ)− rT (x)R−1r(x∗)

+ (F (x)− rT (x)R−1F)(F TR−1F)−1(F ∗T − rT (x∗)R−1F)T .

(2.17)

We can now integrate σ2 out of the product of Equation 2.13 and Equa-
tion 2.15 to obtain

η(x)|y,θ ∝ StudentProcess(n− q,m′(x), V ′′(x,x∗)), (2.18)

where

V ′′(x,x∗) =
σ̂2

σ2
V ′(x,x∗). (2.19)

2.4 Estimating Theta

Following [5], we use an empirical Bayesian approach to find values for
θ by maximizing the likelihood. The likelihood for the GP is

L(β, σ2,θ|y) =(2π)−n/2(σ2)−n/2|R|−1/2

· exp

{
− 1

2σ2
(y − Fβ)TR−1/2(y − Fβ)

}
.

Taking the natural logarithm yields the log-Likelihood function [28], which
is,

l(β, σ2,θ|y) =− n

2
log(2π)− n

2
log(σ2)− 1

2
log(|R|)

− 1

2σ2
(y − Fβ)TR−1/2(y − Fβ).

Maximizing with respect to each of the parameters β and σ2 results in the
estimates of

β̂ = (F TR−1F)−1F TR−1y (2.20)

and

σ̂2 =
1

n

(
y − F β̂

)T
R−1

(
y − F β̂

)
. (2.21)

We can use the above two substitutions for β and σ2 to provide the profile
likelihood function [28] that relies only on θ, which is contained within R

l(θ|y) = −n
2

log(2π)− n

2
log(σ̂2)− 1

2
log(|R|)− n

2
. (2.22)

Finding the maximum of the likelihood function with respect to the param-
eter, θ, requires numerically optimizing Equation 2.22.

7

2.5. Modelling

2.5 Modelling

2.5.1 Correlation Function

The successfulness of the Gaussian process is dependent upon the choice
of the correlation function R. There are some general properties that we
would like to see characterized by the function. They are as follows:

− Replicate observations should be perfectly correlated, so x(i) = x(j)

then R(x(i),x(j)) = 1.

− Points that are close to one another should have function values that
are highly correlated. That is, if ||x(i) − x(j)||2 =

∑d
k=1(x

(i)
k − x

(j)
k)2

is small, then R(x(i),x(j)) should be close to one.

− Points that are far away from one another should have function values
that are basically unrelated (not correlated). That is, if ||x(i)−x(j)||2
is large then R(x(i),x(j)) should be close to zero.

There are many different correlation functions available for use. The most
common are the Matérn, power exponential, and the Gaussian correlation
functions. The Gaussian correlation function is widely used as the correla-
tion function of choice [18, 25, 27] and we choose to use it due to its char-
acteristic of being indefinitely differentiable, and therefore is a very smooth
function. The Gaussian correlation function for a d-dimensional function
has the general form of

R
(
x(i),x(j)|θ

)
=

d∏
k=1

exp

{
−θk

(
x
(i)
k − x

(j)
k

)2}
, (2.23)

where θk ∈ [0,∞) for all k = 1, . . . , d. The values of the parameter θ control
the activity of the function being modelled. A value of θk = 0 removes
the kth dimension from the correlation completely. Specifically, a value of
θk = 0 in the kth dimension corresponds to an overall value of 1 in the
product for that dimension. This value of 1 results in no change, or effect,
on the final value of R due to the kth dimension. This means that the kth
dimension does not explain any of the variability of the function output,
y. Oppositely, large values of θk correspond to a more active or fluctuating
function in the kth dimension. Some implementations of a GP use varying
forms of the parameter θ [19] and [21]. These various parameterizations will
be explored further in Section 3.2.

8

2.5. Modelling

2.5.2 Prediction

Consider the case of predicting the output, m′(x) for a single point
x∗, where x∗ = x(i) for some i = 1, . . . , n. In this case, F ∗ = fT (x(i)),
and rT =

(
R(xi,x(1), . . . , R(xi,x(n))

)
, which is the ith row of the original

variance-covariance matrix R. That is,

r = R (0, . . . , 0, 1, 0, . . . , 0) ,

where the 1 is in the ith position. We will denote this vector as ui as it
is the ith unit vector, or ith row of the identity matrix I. r can then be
denotd as:

r = Rui.

Multiplying both sides of the above equation by the inverse of R we obtain,

R−1r = ui.

Take the transpose of each side to obtain

rTR−1 = uTi .

We can then substitute the above result (as well as the simplification of
F ∗ = fT (x(i)) into Equation 2.16:

m∗ = F ∗β + (rTR−1(y − Fβ))

= fT (x(i))β + (uTi (y − Fβ))

= fT (x(i))β + y(i) − fT (x(i))β

= y(i)

obtaining the original output value y(i) as the prediction of the point x(i).
Now let us consider the case of predicting m′ for the full set of n training

points; x∗ = x. In this case, our original dataset x = x∗ which means
that r = R. Recalling that R is the correlation matrix and is therefore
symmetric, we have RT = R. Finally, seeing as there are the same number
of points in x and x∗ then F ∗ = F . We can then calculate m′:

m∗ = F ∗β + (rTR−1(y − Fβ))

= Fβ + (RTR−1(y − Fβ))

= Fβ + (RR−1(y − Fβ))

= Fβ + (I(y − Fβ))

= Fβ + y − Fβ
= y

9

2.6. Optimization

2.6 Optimization

Finding the maximum likelihood estimates requires maximizing Equa-
tion 2.22 with respect to the unknown vector θ. There are several optimiza-
tion methods that could be used to find the maximum likelihood estimated.
These include genetic algorithms [14], mesh adaptive seeded algorithms [2],
simplex algorithms (such as the Nelder-Mead simplex algorithm [6]), and
gradient based methods [24]. Genetic algorithms will converge to the global
maximum if enough iterations are performed, which means they can be very
slow. Both the mesh adaptive seeded algorithms and simplex algorithm do
not require the gradient in order to perform the optimization. Typically,
gradient-based algorithms are faster than non-gradient based algorithms,
providing the gradient is easy to compute. In the case of the GP, the com-
putation of the gradient is straightforward and the computational cost is less
than computing the likelihood meaning that gradient based methods should
be ideal in this situation. In order to deal with the possibly bounded search
space on θ we suggest using the bounded Limited memory Broyden-Fletcher-
Goldfarb-Shanno (L-BFGS-B) method or its unbounded counterpart, the
Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm. The purpose of the
L-BFGS-B algorithm is to minimize a d dimensional nonlinear function, f(x)
where

l ≤ x ≤ u

where l and u are vectors containing the lower and upper bounds on the
variable x respectively. Some, or all of the variables may not have bounds
resulting in unconstrained optimization. At each iteration of the algorithm
an approximation to the Hessian matrix is updated. This matrix is used
to define a quadratic model of the function. Using a two-stage approach, a
search direction is then calculated; first the gradient projection method is
used to identify active variables and then the quadratic model is approxi-
mately minimized with respect to the remaining free variables. This search
direction is defined as the vector leading from the currently position to the
approximate minimizing location. Finally, a line search is performed along
the search direction [30]. The Broyden-Fletcher-Goldfarb-Shanno method is
implemented using the gradient, but will require a method to choose starting
values for the parameter with which we are optimizing in respect to. It is
possible to implement BFGS without a gradient as the optim function will
compute a finite-difference approximation. [16] shows that fitting the Gaus-
sian process without using the gradient works well, but we could make use
the knowledge of the gradient function which we compute below in Equation

10

2.6. Optimization

2.26 for our optimization.

2.6.1 Gradient

The exact form of the analytical gradient will depend on the correlation
function used, but the general form of the gradient can be calculated without
it. To calculate the gradient we use the profile log-likelihood function from
Equation 2.22

l(θ|β̂, σ̂2,y) = −n
2

log(2π)− n

2
log(σ̂2)− 1

2
log(|R|)− n

2

(2.25)

The gradient is then the derivative of this function with respect to the
parameter of interest. In this derivation we will use the parameter θ` for
illustrative purposes. The `th entry of the gradient vector, G, taken with
respect to θ` is calculated as

G`,θ` =
∂

∂θ`

[
l(θ|β̂, σ̂2,y)

]
=

∂

∂θ`

[
−n

2
log(2π)− n

2
log(σ̂2)− 1

2
log(|R|)− n

2

]
= −n

2

1

σ̂2
∂

∂θ`
[σ̂2]− 1

2

1

|R|
∂

∂θ`
[|R|]

= −n
2

1

σ̂2
∂

∂θ`

[
1

n
(y − F β̂)TR−1(y − F β̂)

]
− 1

2

1

|R|
∂

∂θ`
[|R|]

G`,θ` =
1

2σ̂2
(y − F β̂)TR−1

∂

∂θ`
[R]R−1(y − F β̂)

− 1

2

1

|R|
|R|tr

(
R−1

∂

∂θ`
[R]

)
.

(2.26)

The gradient is now solely in terms of ∂
∂θ`

[R]. For the case of the Gaussian

correlation function introduced in Section 2.5.1, we can calculate ∂
∂θ`
R
(
x(i),x(j)|θ

)
by taking the derivative of Equation 2.23 with respect to θ`.

∂

∂θ`
R
(
x(i),x(j)|θ

)
= exp

{
d∑

k=1

−θk
(
x
(i)
k − x

(j)
k

)2}(
−
(
x
(i)
` − x

(j)
`

)2)
.

(2.27)

11

2.6. Optimization

Substituting the above into Equation 2.26 and repeating for each of the
dimensions, ` = 1, . . . , d, we can achieve the full analytical gradient for use
in optimization. In the next chapter we discuss the full implementation of
the GP model which involves selecting an initial design, specifying the exact
parameterization of the correlation matrix, maximizing the likelihood and
predicting a set of new observations.

12

Chapter 3

Implementation

In practice, fitting a Gaussian process requires selecting the initial design,
optimizing the log-likelihood function in Equation 2.22 with respect to the
parameter of choice by estimating the parameter values, and then predicting
values for a new set of input points.

3.1 Design

The problem of selecting the initial input values, x, is a common topic in
computer modelling. The approach we will take is to treat the input values
themselves as random variables. This method models the uncertainty of the
input values themselves.

We will refer to the initial input data as the design of the experiment.
Due to our predicting functions defined in Equations 2.16 and 2.17, it is
important to create a design that is space-filling.

The prediction equations are interpolators, as discussed in Section 2.5.2,
which results in the prediction error at a given input site being a function
of its location (relative to the design points x). If we were to select a non-
space-filling design, it may yield predictors that perform poorly in the areas
that are sparsely observed.

There are many different approaches that we could use in the design
process; we could select points using a line, a simple random sample, or a
latin hypercube sample, just to name a few. The random latin hypercube
sampling method has been used by many as the approach in designing ex-
periments, [13, 20, 23, 28] and it is the method that we will use to create
the initial design for our study. First introduced by [12], the latin hyper-
cube sampling method allows all portions of the sample space for a single
dimension, S, to be represented. The method starts by dividing the sam-
ple space into n equal-width intervals, Si ∈ S, where n is the sample size,
and i = 1 . . . n. For simplicity, we will continue with a sample space of
S = [0, 1]. To form the latin hypercube sample, we will select points from

v, where v =
{
Ri+εi
n−1 |Ri = i− 1, i = 1 . . . n

}
. Using the points in v, we will

13

3.1. Design

give them a random ordering forming a vector. We continue this method
for each of the d dimensions we can then match the vectors as columns in
a matrix to form the final design. This results in an n-by-d matrix where
each column is some permutation of the elements contained in v.

There are different methods to set the values of εi. We could set a
specific value such as εi = 0, or εi = 1/2, or we could use a distribution
such as εi ∼ UNIF (0, 1). Selecting a value of εi = 0 forces the points to
the boundary of the space, whereas ε = 1/2 places them at the midpoint of
each space.

●

●

●

●

●

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
(a)

●

●

●

●

●

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
(b)

●

●

●

●

●

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
(c)

Figure 3.1: Three different samples for the initial input points for n = 5
input points with d = 2.

14

3.2. Correlation Functions

Three different realizations of a random latin hypercube sample, with
d = 2 and n = 5, are contained in Figure 3.1. All of Figure 3.1 (a), (b),
and (c) are valid latin hypercube samples with each subsection Si (each
visual ‘row’ or ‘column’ division of the graph) containing a point. Figure
3.1 (a) and (b) are two different realizations of the latin hypercube sampling
method using εi = 1/2 and (c) uses εi = 0.

In terms of being a space filling design, the first graph, (a), would be
considered a poor design as it leaves two large areas of the sample space not
sampled and the same argument can be made for (b) and the area along the
diagonal. As well, the use of εi = 1/2 in (a) and (b) does not allow for the
boundary points to be sampled which can allow for boundary effects to not
be caught when fitting the GP. Graph (c) uses εi = 0 and forces points to
be along the outer boundaries (0 and 1) which will allow boundary effects
to be captured in the model created by the Gaussian process. For the this
thesis we place points on the boundary by choosing ε = 0.

The maximin latin hypercube sample [9], maximizes the distance be-
tween the points in the design, can be used to ensure that the resulting latin
hypercube design is space filling. However, in order to make the problem of
solving the Gaussian process for an experiment more difficult, we limit our
design to a random latin hypercube sample. This will ensure that results
generalize to designs that are space filling.

3.2 Correlation Functions

The major focus of this thesis is efficiently optimizing the likelihood,
which we will show is highly dependent on the choice of the parameterization
of the likelihood. Revisiting the correlation function R introduced in Section
2.5.1 we will explore some other forms (parameterizations) found in the
literature. We will denote these different methods listed below as different
parameterizations of the correlation function. We wish to investigate these
different parameterizations to evaluate if a best all around parameterization
can be found to fit a Gaussian process.

Recall the correlation function (parameterization) in Equation 2.23 pre-
sented in Section 2.5.1. We will denote this parameterization as theta, or
θ.

The next parameterization will be called theta2, or θ2, and is a variation

15

3.2. Correlation Functions

of the theta parameterization. The correlation function is

R
(
x(i),x(j)|θ

)
=

d∏
k=1

exp

{
−θ2k

(
x
(i)
k − x

(j)
k

)2}
. (3.1)

The domain of θ2 is the same as for the θ case, θk ∈ [0,∞),∀k.The θ2 case
spreads out the small values close to zero. The main difference between the
two comes to light in the derivative ∂

∂θ`
[R]:

∂

∂θ`
R
(
x(i),x(j)|θ

)
= exp

{
d∑

k=1

−θ2k
(
x
(i)
k − x

(j)
k

)2}(
−2
(
x
(i)
` − x

(j)
`

)2
θ`

)
.

(3.2)
The next parameterization is a form of the Gaussian correlation function

that is used in the DiceKriging package in the program R [19]. We will
denote it as phi2, or φ2. It varies from the previous parameterizations
by introducing the parameter in the denominator of the exponent. The
correlation function for phi2 is

R
(
x(i),x(j)|φ

)
=

d∏
k=1

exp

−
(
x
(i)
k − x

(j)
k√

2φk

)2
 . (3.3)

Due to the parameter being in the denominator, the domain is now φk ∈
(0,∞), ∀k. The partial derivative for the gradient is calculated to be

∂

∂φ`
R
(
x(i),x(j)|φ

)
= exp

{
d∑

k=1

−1

2φ2k

(
x
(i)
k − x

(j)
k

)2}(
φ−3`

(
x
(i)
` − x

(j)
`

)2)
.

(3.4)
The next parameter beta (β) was introduced by [16] and is the parame-

terization used in the study done by [3].It takes a different approach to the
Gaussian correlation form raising the parameter as an exponent:

R
(
x(i),x(j)|β

)
=

d∏
k=1

exp

{
−10βk

(
x
(i)
k − x

(j)
k

)2}
. (3.5)

The domain for β is βk ∈ (−∞,∞),∀k, and the derivative can be calculated
as

∂

∂β`
R
(
x(i),x(j)|β

)
= exp

{
d∑

k=1

−10βk

}(
− ln(10)

(
x
(i)
` − x

(j)
`

)2
10β`

)
.

(3.6)

16

3.2. Correlation Functions

The next parameterization was suggested by [8] and [10] and it places
the parameter in the base of the equation rather than the exponent. The
domain of this parameter, labeled rho (ρ), is restricted to ρk ∈ (0, 1], ∀k and
the correlation function is

R
(
x(i),x(j)|ρ

)
=

d∏
k=1

ρ
4
(
x
(i)
k −x

(j)
k

)2

k . (3.7)

The derivative can be shown to be

∂

∂ρ`
R
(
x(i),x(j)|ρ

)
=

∏
k 6=`

ρ
4
(
x
(i)
k −x

(j)
k

)2

k


·

(
4
(
x
(i)
` − x

(j)
`

)2
ρ
4
(
x
(i)
` −x

(j)
`

)2
−1

`

)
,

(3.8)

which can be simplified to

∂

∂ρ`
R
(
x(i),x(j)|ρ

)
=

(
d∏

k=1

ρ
4
(
x
(i)
k −x

(j)
k

)2

k

)

·

4
(
x
(i)
` − x

(j)
`

)2
ρ`

 .

(3.9)

The final parameterization will be labeled as lambda (λ). It is a rear-
rangement of the ρ parameterization with relation

λk = log(ρk)− log(1− ρk),

or

ρk =
exp{λk}

1 + exp{λk}
.

Using the above relation, the correlation function is

R
(
x(i),x(j)|λ

)
=

d∏
k=1

(
exp{λk}

1 + exp{λk}

)4
(
x
(i)
k −x

(j)
k

)2

, (3.10)

with corresponding derivative

d

dλ`
R
(
x(i),x(j)|λ

)
=

 d∏
k=1

(
exp{λk}

1 + exp{λk}

)4
(
x
(i)
k −x

(j)
k

)2
· 4
(
x
(i)
` − x

(j)
`

)2 1− 2 exp{λ`}
1 + exp{λ`}

.

(3.11)

17

3.2. Correlation Functions

The five parameterizations presented above as well as the one first intro-
duced in Section 2.5.1 will be used in fitting the model for the Gaussian pro-
cess. As specified in Section 2.6, two methods of optimization (L-BFGS-B
and BFGS) along with two versions of the gradient (analytical and numer-
ical) will be used. Table 3.1 is a summary table specifying the parameter-
ization for the correlation function, label used to differentiate between fits,
the optimization method used, the bounds used (in the case of the bounded
optimizer), and the gradient used in fitting the model through the Gaussian
process.

Table 3.1: Summary table specifying: parameterization, optimization
method, and type of gradient used in the Gaussian process.

Parameter Label Optimizer Bounds Gradient

β Bt BFGS analytical
β Bt ng BFGS numerical
λ Lam BFGS analytical
φ2 Ph1 L-BFGS-B (0, 5] analytical
φ2 Ph2 L-BFGS-B (0, 100] analytical
ρ Rh L-BFGS-B (0, 1] analytical
ρ Rh ng L-BFGS-B (0, 1] numerical
θ Th1 L-BFGS-B [0,∞) analytical
θ2 Th L-BFGS-B [0,∞) analytical
θ2 Th un BFGS analytical

3.2.1 Invariance

Likelihood theory shows that maximum likelihood estimates are invari-
ant for one-to-one transformations of the parameters [29]. That is to say, if
θ̂ is the maximum likelihood estimator (MLE) of θ, for any function τ(θ),
the MLE of τ(θ) is τ(θ̂). To show this, consider η = τ(θ) and the defined
induced likelihood function, L∗, as

L∗(η|x) = sup
{θ:τ(θ)=η}

L(θ|x).

Let η̂ denote the value that maximizes L∗(η|x). We want to show that
L∗(η̂|x) = L∗[τ(θ̂)|x]. As previously stated, the maxima of L and L∗ coin-

18

3.3. Optimizing in R

cide, and we have

L∗(η̂|x) = sup
η

sup
{θ:τ(θ)=η}

L(θ|x)

= sup
θ
L(θ|x)

= L(θ̂|x)

where the second equality follows because the iterated maximization is equal
to the unconditional maximization over θ which is attained at θ̂, by defini-
tion. Further we can show

L(θ̂|x) = sup {θ : τ(θ) = τ(θ̂)}L(θ|x)

= L∗[τ(θ̂)|x].

Using the two above equalities we can show that L∗(η̂|x) = L∗(τ(θ̂)|x), and
that τ(θ̂) is the maximum likelihood estimator of τ(θ).

A problem arises, with respect to invariance, within the φ2 parameteri-
zation. Consider the case in the θ parameterization when θk = 0; a value of
θk = 0 corresponds to a value of φk =∞ which is numerically unattainable
and results in a lack of invariance. Numerically optimizing φ requires a limit
to be placed for the upper bound which renders the situation non-invariant.
Forcing φk away from ∞ brings the parameter from non-active to active
status and can result in overfitting. Different limits on the upper bound can
result not only in different maximum likelihood estimates for φ̂, but also
differing values for the corresponding log-likelihood (i.e. differing results).
The remainder of this thesis is focused on effectively numerically optimizing
the likelihood function L(θ) and in turn investigating the effects due to the
boundary.

3.3 Optimizing in R

Using the parameterization, optimization, and gradient pairings pro-
vided in Table 3.1, we use the statistical programming language R to per-
form the optimization. The initial input points for x, or the design of the
experiment, are created using the random latin hypercube method as de-
scribed in Section 3.1. As mentioned earlier, the latin hypercube sample
allows for a space filling sample to be chosen. We require the design to be
space filling so that any effects or trends due to a point being a boundary
point will be captured in the model fit by the Gaussian process.

19

3.4. Assessing Fit

To numerically optimize the likelihood function itself, the R function
optim() is used. The optim() function will minimize a provided function
rather than maximize it, so the log-likelihood and gradient functions are
modified to reflect this. For the remainder of this thesis, we will talk of
minimizing the log-likelihood function where a minimal value translates to
the optimal value.

The optimization function requires a set of starting values for the pa-
rameters. We use a warm start method in order to provide these values.
A total of 15 · d points are generated for each of θ2 and φ2 using the ran-
dom latin hypercube method used to generate the input points x. For θ2,
the points were generated to be within [0,min(0.4 · d, 1.6)], and for φ2 the
points were within [10× 10−10,min(0.4 · d, 1.9)]. We then calculate the log-
likelihood value for each of the 30 · d points. The twenty points that yield
the smallest log-likelihood values, regardless of initial parameterization (θ2

or φ2), are then used as the twenty starting values for the optim() function
for all parameterization fittings.

Running the optim() function twenty times will result in the output of
the optimal log-likelihood values and their corresponding optimal parame-
ters. The best (minimum) log-likelihood value out of these twenty is denoted
as the winner of this run and it, along with its corresponding parameter val-
ues, are returned as the final result of this run.

3.4 Assessing Fit

Since this thesis is devoted to assessing the ‘best’ parametrization of the
likelihood it is important to determine how we define the term best. The
one obvious choice of best is simply based on the finding the largest value
of the likelihood. However, one could also considered measures based on
the predictive performance of the fitted model. Since all of the example are
based on toy problems which mimic real problems we can obtain a large set
of points for validation. Given a set of m new locations not used for fitting
we can run the code and obtain outputs y(x(j)). The two obvious methods
for validation are the Root mean squared error and the maximum error. In
order to compare different function we consider the standardized values of
the measures.

The standardized root mean squared error is given as

RMSE =

√∑m
i=1(y(x(j))− ŷ(x(j))2∑m
i=1(y(x(j))− ȳt)2

,

20

3.4. Assessing Fit

where ȳt is the mean of the training data. The standardized max error is
defined as

AME =
maxi=1,...,m

∣∣y(x(j))− ŷ(x(j))
∣∣

maxi=1,...,m

∣∣y(x(j))− ȳt
∣∣ .

If each of the methods is equivalent then each of these measures should all
be the same. If the methods are not different then smaller values of the
likelihood are worse and larger values of the AME and RMSE are worse.
We will use each of these three measures together to assess the ‘best’ pa-
rameterization.

21

Chapter 4

Borehole Example

Consider the Borehole function which calculates the flow rate through a
borehole using eight input variables (d = 8). The function is

f(x) =
2πx3(x4 − x6)

ln(x2/x1)
(

1 + 2x7x3
ln(x2/x1)x21x8

)
+ x3

x5

.

The variables and their appropriate ranges are given below:

− radius of the borehole (m) – x1 ∈ [0.05, 0.15]

− radius of influence (m) – x2 ∈ [100, 50 000]

− transmissivity of upper aquifer (m2/yr) – x3 ∈ [63 070, 115 600]

− potentiometric head of upper aquifer (m) – x4 ∈ [990, 1 110]

− transmissivity of lower aquifer (m2/yr) – x5 ∈ [63.1, 116]

− potentiometric head of lower aquifer (m) – x6 ∈ [700, 820]

− length of borehole (m) – x7 ∈ [1 120, 1 680]

− hydraulic conductivity of borehole (m/yr) – x8 ∈ [9 855, 12 045].

This function is considered easy to fit using a Gaussian process. Using
the procedure outlined in Chapter 3, we will fit the model for the borehole
function using the Gaussian process. We start by selecting the design of
the initial points by using the random latin-hypercube sampling design of
size 7 · d = 56 points. Now that we have the initial input points, we can fit
the model using the Gaussian process. We will use the Gaussian correlation
function parameterizations as outlined in Sections 2.5.1 and 3.2. A total
of eleven different models are to be created with the parameter-optimizer-
gradient pairs outlined in Table 3.1. These different methods all used the
same starting design, of the 7 · d initial points.

The starting values of the parameters are chosen using a warm start
method. Initially, 15 · d starting values for the θ2 parameterization are

22

Chapter 4. Borehole Example

generated using a random latin hypercube sample in [0,min(0.4 · d, 1.6)].
Another 15 · d starting points are generated for the φ2 parameterization on
the interval [10−10,min(0.4 ·d, 1.9)]. The log-likelihood values are calculated
for both sets of 15 · d points. These 30 · d log-likelihood values are sorted
and the twenty smallest values are chosen to be the starting values of the
warm start. The parameter values corresponding to the winning fits are
then translated to be in terms of both θ2 and φ2 using the relations:

θ =
1√
2φ2

,

and

φ =
1√
2θ2

.

Now we can use the following relations to translate the initial starting
points to be in terms of all other parameterizations

θ =
√
θ2,

β = log10(θ
2),

ρ = exp

{
−θ2

4

}
,

λ =
−θ2

4
− log

(
1− exp

{
−θ2

4

})
.

Each parameterization will then start on even ground by starting with
equivalent parameter values. The warm start method allows us to use the
computationally cheaper method (compared to optimization) of calculating
the log-likelihood values to find parameter locations of lower log-likelihood
values from which to start our optimization. The warm start saves in terms
of the number of function calls during the optimization as well as compu-
tational time. The twenty sets of parameter points are used as the starting
parameter values for a run though the optimizer. The output will consist of
twenty sets of optimal parameter points and the corresponding optimal log-
likelihood values. The final result of the run, deemed the optimal solution
for this fitting, is the minimum log-likelihood value of the twenty values and
its corresponding parameter values.

Table 4.1 contains the optimal log-likelihood values for a single run of
fitting the model. Multiple methods (β, β(no gradient), θ2, θ2(unbounded),
and θ2(β starting points)), were able to achieve the same result (to three
decimal places). Others (specifically λ, φ2(upper bound = 5), ρ, and θ)

23

Chapter 4. Borehole Example

Table 4.1: Log-likelihood values for the 10 optimizations for one fitting.
Fit Method Log-likelihood RMSE Max error

1 Bt 125.016 0.393 6.514
2 Bt ng 125.016 0.393 6.514
3 Lam 164.347 2.866 15.858
4 Ph1 161.518 3.458 20.967
5 Ph2 130.226 0.500 7.787
6 Rh 214.874 36.496 67.146
7 Rh ng 125.984 0.486 6.669
8 Th 125.016 0.393 6.514
9 Th un 125.016 0.393 6.514

10 Th1 136.746 1.019 10.144
11 ThB 125.016 0.393 6.514

performed poorly, achieving log-likelihood values greater much greater than
optimal value achieved, 125.016. In this small example we will repeated the
above process four more times to get a total of five different results.

We repeated the process by starting with generating a new set of input
points, x, for each of the replicates as well as a new set of starting points
for the parameters before running them through the optimization process
and getting the outputs. Figure 4.1 shows the log-likelihood value results
for each of the five simulations. The eleven parameterizations are along the
x-axis with labels corresponding to Method column in Table 4.1. Each of
the simulations is represented by a line. The first simulation ran, the one
where the values are shown in Table 4.1, is shown as the red line along with
the four replicates. Figure 4.2 shows the standardized root mean squared
errors from fitting the five simulations (the individual root mean squared
errors divided by the root mean squared error from the trivial predictor,
y. Looking at both Figure 4.1 and Figure 4.2 we can start to see a pat-
tern across the parameterizations. The parameterizations that performed
well on the first simulation (smaller log-likelihood and root mean squared
error values) as seen by the red line, also performed well on the other four
replicates. Similarly, the parameterizations that performed poorly with high
log-likelihood and root mean square error values on the first simulation also
performed poorly on the following replicates.

The drastic differences in the final log-likelihood values achieved by the
different parameterizations hint at the problem of invariance outlined in
Section 3.2.1. As stated, likelihood theory shows that maximum likelihood

24

Chapter 4. Borehole Example

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

125

150

175

200

225

Bt Bt_ng Lam Ph1 Ph2 Rh Rh_ng Th Th_un Th1 ThB

Lo
g−

lik
el

ih
oo

d

Figure 4.1: Log-likelihood values for the 5 different fittings of the Borehole
test function with 11 parameter-optimizer combinations.

25

Chapter 4. Borehole Example

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

−4.0

−3.5

−3.0

−2.5

−2.0

Bt Bt_ng Lam Ph1 Ph2 Rh Rh_ng Th Th_un Th1 ThB

S
ta

nd
ar

di
ze

d
R

M
S

E

Figure 4.2: Standardized root mean squared errors for the 5 different fittings
of the Borehole test function with 11 parameter-optimizer combinations.

26

Chapter 4. Borehole Example

estimates are invariant for one-to-one transformations. This would mean
that for the transformations of the theta parameter, we expect to see the
same optimal log-likelihood values produced from optimizing the different
parameterizations. As can be seen in Figure 4.1, this is not the case. For
the two fits using the phi parameterization there is a difference due to the
bounds imposed. In the original parameterization, theta, the bounds were
θ ∈ [0,∞). Looking back at the translation between the φ and θ2 parame-
terizations we have

θ =
1√
2φ2

.

The lower bound value of θ = 0 corresponds to a value of ∞ for φ, and the
upper bound value of ∞ for θ to a value of 0 for φ. A value of φ = 0 is not
possible due to the parameter being in the denominator of the exponent and
therefore a restriction is imposed upon the domain of φ resulting in a domain
of (0,∞). This non-equivalence in the domains results in the violation of
the assumptions of invariance.

Taking a closer look at the two φ parameterizations, the only difference
in their implementation is the value of the upper bounds used. Figure 4.3
shows the log-likelihood values for the five different fits for just the two φ
parameterizations. The fit using upper bound equal to 5 is denoted as a
value of 1 on the x-axis and upper bound equal to 100 is denoted as 2.
We can see that there is clearly a difference between the two log-likelihood
results. Looking closer at the values of the upper bounds, consider the case
of φ = 5. In the θ2 parameterization, this is equivalent to θ = 1√

2·25 as

a lower bound. The case of θk 6= 0, ∀k = 1, . . . , d forces activity in each
of the d dimensions. Even using the larger value of φ = 100 results in a
lower bound to nearly 0. This allows for inactive dimensions to become
less active than the upper bound value of 5, but there would still be forced
activity. Comparing these two cases to the default upper bound used by the
R package DiceKriging, φ = 2, and we can use the same relation to show
that the DiceKriging scenario leads to a higher lower bound in the θ2 case
and therefore results in more activity than the two bounds that we use here.

27

Chapter 4. Borehole Example

●

●

●

●

●

●

●

●

●

●

130

140

150

160

170

Ph1 Ph2

Lo
g−

lik
el

ih
oo

d

Figure 4.3: A closer examination of the log-likelihood values of the two φ2

parameterizations using upper bounds of 5 (left) and 100 (right).

28

Chapter 5

Numerical Testing

5.1 Full Simulation Study

The goal of this thesis is to determine which parameterization works
the best across a set of various test problems. It is our wish to provide
one parameterization to be deemed the ‘go to’ parameterization for anyone
wishing to fit a Gaussian process. In order to determine which method
performs the best we will need to test the different parameterizations on a
wide range of test problems. We use fourteen different functions of varying
dimensions (d = 2 to d = 10) for the full simulation. The full list of test
functions can be found in Appendix A.

A total of eight hundred and forty tests are performed. A single test con-
sists of fitting the model for each of the parameterizations using the method
outlined in Chapter 3. Three different sample sizes are used for the creation
of the initial design, x: 7·d, 10·d, and 15·d. [11] provide evidence supporting
the initial design choice of 10 · d as being an effective design. Overall, there
are a total of forty-two different sample size and function combinations. We
repeat each of these forty-two tests using the replication procedure used to
get the four additional replicates done in Chapter 4. We repeat to get a
total of twenty replicates of each sample size-function combination. For a
total of eight hundred and forty tests. We treat each of the simulations
and replicates as separate problems with each needing analysis to determine
which parameterization yields the best results for that problem.

5.2 Numerical Results

As we to answer the question of which optimizer is the best using our
large set of test problems, the hope is that the best solver on our set of
test problems will also be the best solver on a set of currently untested
problems. Performing the full simulation outlined in Section 5.1 results in
solutions for each of the eight hundred and forty tests. The solutions con-
sist of the optimal log-likelihood values for each of the parameterizations

29

5.3. Error Analysis

as well as their corresponding parameter values. The obvious choice is to
benchmark using the log-likelihood value itself to determine which solution
is the optimal solution. The minimum log-likelihood value out of the eleven
different parameterization options is the optimal solution for that run. How-
ever, using the log-likelihood values for all of the eight hundred and forty
tests to determine which parameterization performs the best is not feasible
as there is no way to make direct comparisons between the parameteriza-
tions. Figure 5.1 shows the distributions of the log-likelihood values for
each of the parameterizations. The solutions come from the runs of fitting a
Gaussian process for different functions. These different functions’ optimal
log-likelihood values may be drastically different from one another rendering
a between-parameterization comparison uninformative. The graph does not
allow us to link the log-likelihood values to the functions and test cases that
they belong to, so it is not possible to determine if the log-likelihood value
achieved was good or not.

5.3 Error Analysis

There are many different tools that are available for analysis of statistical
models. Briefly mentioned in Chapter 4 two of the techniques that we will
use are the root mean squared error, and the absolute maximum error.
Recall the RMSE for a set of m prediction points

RMSE =

m∑
i=1

√
(yi − ŷi)2,

where yi is the true value of the test function at input xi and ŷi is the
predicted value calculated using the model produced from the Gaussian
process calculated using xi. Similarly the absolute maximum error AME is
calculated for the prediction points as

AME = max
i=1,...,m

|yi − ŷi|,

with the same definitions of yi and ŷi as above. We standardize the errors
by dividing by the errors obtained by the trivial predictor of ŷi = ȳ, where ȳ
is the mean of the responses originally used in fitting the Gaussian process.
Using these standardized measure of errors, any value greater than 1 is
considered to be extremely ill fitting as they perform worse than the trivial
predictor. As well, any predictors with a value greater than 0.5 are deemed
poor fitting. Finally, we take the logarithm (base 10) to spread the data

30

5.3. Error Analysis

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−1500

−1000

−500

0

500

Bt Bt_ng Lm Ph1 Ph2 Rh Rh_ng Th Th_un Th1 ThB
fit

lo
g−

lik
el

ih
oo

d

Figure 5.1: A boxplot of the log-likelihood values across all parameteriza-
tions for the full test.

31

5.4. Performance Analysis

outwards because the original values are small and close to zero. Now, an
extremely ill fitting model is one that produces an error value above 0, and
an poor fit is any fit with an error above log10(0.5) = −0.301 .

Both the RMSE and AME create one single measure of error using all of
the predicted values from the fitting as well as the true function values. For
both measures, a smaller value represents a better solution; the smaller the
value the smaller the difference between the predicted value and true func-
tion value and therefore the better the fit. Figure 5.2 shows two side-by-side
box plots for the RMSE and AME values for the full set of simulation test
cases. Looking at the RMSE box plot, the majority of the values are below
zero, and there is no distinct difference between the various fits. The AME
box plot is similar with a smaller spread, and some values greater than zero,
but no real difference between the distributions of the parameterizations.
Using the box plots, it is difficult to determine a difference between the dis-
tributions of the different parameterizations and therefore determine which
method yields the best results.

5.4 Performance Analysis

The log-likelihood is the most important tool to be used in evaluating the
performance of a model, but the error terms are also an important approach
in looking for discrepancies. One of the main purposes of fitting a Gaussian
process is to gain a model from which we can predict for new points. The
discrepancies occur when we have a fit-produced model that has the best
log-likelihood value, but it might produce predictions that yield large errors
and therefore be a bad fit prediction-wise.[1] argue for the use of a simple
graphical method for analyzing statistical methods. The graph they sug-
gest, the Empirical-Cumulative-Distribution-Function (ECDF), yields some
advantages in assessing the performance of the different methods presented.
The main advantage of the ECDF (when comparing to other commonly
used methods such as the box plot) is that it displays every data point while
also allowing for easy interpretation. As well, the ECDF allows for multiple
methods to be displayed simultaneously and for direct comparisons between
the methods to be made easily. Figure 5.3 shows the ECDF’s of both the
RMSE’s and the AME’s for each of the parameterizations.

Compared to the boxplot representation in Figure 5.2, in the ECDF
we can see distinct differences in the distributions of the parameterizations.
There is a set of parameterizations that are clearly set away from the others
concentrated on the left side of the graph. The ECDF highlight the func-

32

5.4. Performance Analysis

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−10

−5

0

Bt Bt_ng Lm Ph1 Ph2 Rh Rh_ng Th Th_un Th1 ThB
fit

lo
g1

0(
R

M
S

E
)

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●
●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●
●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●●

●
●

●
●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−6

−4

−2

0

Bt Bt_ng Lm Ph1 Ph2 Rh Rh_ng Th Th_un Th1 ThB
fit

lo
g1

0(
A

M
E

)

Figure 5.2: Box plots of the logarithm (base ten) of both of the RMSE and
AME values .

33

5.4. Performance Analysis

tions that appear on the left side of the graphs, and which have the largest
concentration of small error values and therefore the largest concentration
of models (or fits) that perform well. The same evaluation can be performed
on the AME graph.

As well as using the different error values, we can create a metric from
the log-likelihood values, Lp, to assess the performance of the fits of the
Gaussian process. We define the performance using the following definition
of Lp:

Lp =
(`p − `∗)
|`∗|

,

where `p is the log-likelihood solution found by the solver, and `∗ is the
known, optimal, log-likelihood value. The problem with the statistic Lp is
that the true solution value, `∗ , is not known and instead we are required
to use the best (minimum) log-likelihood value found by all of the possible
solvers for that run of the problem. We will denote this new measure as
the performance of the parameterization. This performance metric allows
us to use information from the log-likelihood values without the problem of
different optimal values for the different test functions. Small values of Lp
indicate that the parameterization achieved the optimal log-likelihood value
for that run or a value close to the optimal value found.

Allowing visualization of each of the eleven parameterizations on one
graph, the ECDF allows for a quick and reliable decision to be made regard-
ing which method(s) may be outperforming others on the large set of test
problems. Figure 5.4 shows the ECDF for the performance of the eleven
parameterizations across all test problems. As with the error ECDF’s,
the methods performing well are those that are concentrated on the left
side of the graph. Figure 5.4 shows that there are three methods that
have an ECDF curve outperforming the others. These methods are β,
θ2(unbounded), and θ2β. Figure 5.5 ignores the remaining parameteriza-
tions and focuses on just the top three just listed. Looking at the line for
θ2(unbounded) in Figure 5.5, we can see that it starts at a value of ap-
proximately 0.38 on the y-axis. This means that in (roughly) 38% of the
test cases, the θ2(unbounded) parameterization achieved the optimal (the
minimum) log-likelihood value. Acknowledging that multiple parameteriza-
tions can achieve the optimal log-likelihood value, we can also note that θ2β
achieved the optimal value approximately 35% of the test cases, and β, 25%.

34

5.4. Performance Analysis

0.00

0.25

0.50

0.75

1.00

−10 −5 0
log10(RMSE)

0.00

0.25

0.50

0.75

1.00

−6 −4 −2 0
log10(AME)

fit

Bt

Bt_ng

Lm

Ph1

Ph2

Rh

Rh_ng

Th

Th_un

Th1

ThB

Figure 5.3: Empirical cumulative distribution functions for the logarithm
(base ten) of the RMSE and AME values.

35

5.4. Performance Analysis

0.00

0.25

0.50

0.75

1.00

−15 −10 −5 0
log10(performance)

fit

Bt

Bt_ng

Lm

Ph1

Ph2

Rh

Rh_ng

Th

Th_un

Th1

ThB

Figure 5.4: Empirical cumulative distribution functions for the performance
of each parameterization.

36

5.4. Performance Analysis

0.00

0.25

0.50

0.75

1.00

−15 −10 −5 0
log10(performance)

fit

Bt

Th_un

ThB

Figure 5.5: Empirical cumulative distribution functions for the top three
parameterizations with respect to performance.

37

5.5. Results and Discussion

5.5 Results and Discussion

We have explored three different ways to analyze the large set of data pro-
duced by the full test simulation: the root mean squared error, absolute max-
imum error, and performance metric (calculated using the log-likelihood).
Looking back at the empirical cumulative distribution function graphs of the
RMSE and AME values in Figure 5.3, there are four parameterizations that
fall to the left of the other seven and therefore have the highest proportion
of small error values. These four are β, β(no gradient), θ2(unbounded), and
θ2β. The parameterizations that perform the worst, by falling on the right
side of the graph, are ρ, φ(upper bound 5), and λ. These poor performing
parameterizations are the parameterizations with the highest concentrations
of large RMSE and AME values when compared with the rest.

In Markov chain Monte Carlo settings, [8] and [10] have had much success
with the rho parameterization. However this is not true when numerically
optimizing the likelihood. Rho performs quite poorly with the smallest (and
best) error values being greater than a large portion of the error values in the
four best parameterizations. It is interesting to revisit the φ parameteriza-
tions and note that the only difference between the two φ parameterizations
is the upper bound values of 5 and 100, but the curves in the error ECDF’s,
and thus the solutions achieved, are not the same.

Figure 5.6 shows the ECDF’s of just the top four parameterizations: β,
β(no gradient), θ2(unbounded), and θ2β. With the exception of the first
initial increase from 0 to 0.125, the graphs are identical to one another.
There is no apparent difference between the distributions of the errors for
the four parameterizations.

With no obvious difference between the top four parameterizations in
terms of errors, we need to delve deeper into the performance results based
on the log-likelihood values in order to pick the top parameterization. Look-
ing back at the best parameterizations (β, β(no gradient), θ2(unbounded),
and θ2β), we can see that out of the top four, three are the same as the top

parameterizations found by analyzing Figure 5.5. The θ2(unbounded) and
θ2β parameterizations have very similar curves and perform better than the
β parameterization until roughly the 0.87 and 0.93 marks on the y-axis re-
spectively. The problematic area is the points where the β parameterization
performs better than the theta(unbounded) and θ2β parameterizations (per-
formance > -8). With the β curve being to the left of both of the other two,
this means that the θ2(unbounded) and θ2β parameterizations have a larger
concentration of points at the higher end of performance values. Recall that

38

5.5. Results and Discussion

0.00

0.25

0.50

0.75

1.00

−10 −5 0
log10(RMSE)

0.00

0.25

0.50

0.75

1.00

−6 −4 −2 0
log10(AME)

fit

Bt

Bt_ng

Th_un

ThB

Figure 5.6: Empirical cumulative distribution functions of RMSE and AME
for the top four parameterizations with respect to errors.

39

5.5. Results and Discussion

performance is defined as

Lp =
(`p − `∗)
|`∗|

,

and the larger the value, the further away the solution is from the best
solution found. That is to say that the θ2(unbounded) and θ2β parameteri-
zations have a higher concentration of problems where they found solutions
that were further away from the best solution found. In order to explore
these values more we will look at only the observations from the three best
parameterizations (β, θ2(unbounded), and θ2β) where performance is greater
than -8. Figure 5.7 shows the empirical cumulative distribution functions
for the RMSE and AME values of the three parameterizations for the sub-
set of data that fit the criterion listed above. Looking at the ECDF’s for
the errors, we can see that the β curve falls to the right (with higher val-
ues) of the other two. The θ2(unbounded) and θ2β parameterizations have
similar curves with the exception of the area between 0.5 and 0.75 on the
y-axis. In that section θ2(unbounded) has the upper hand. Overall, the two
parameterizations have a similar performance, error wise.

The β parameterization is out of contention for the title of best parame-
terization because in this section of problematic performance values, it may
have a better performance value than the other two parameterizations, but
the errors produced are much larger than the other two parameterizations.
This shows that the log-likelihood value might have been smaller, but the
model itself performs poorly and produces estimates that are far from the
true function values. Overall, we can say that the θ2(unbounded) and θ2β pa-
rameterizations have the best performance, error wise, for the problematic
section of high performance values.

We are aiming to pick the parameterization that performs the best over
all of the problems presented in the full simulation. Currently, we are able
to narrow down the list of contenders to two parameterizations whose per-
formances are relatively similar in terms of both the log-likelihood values
(performance) as well as the errors (root-mean-squared-error and absolute
maximum error). These parameterizations are the θ2(unbounded) and the
θ2β parameterizations. The main differences (and downside) of the θ2β param-
eterization is the way in which the starting points of the parameter values
are generated. The optimization was started at points equivalent to the
parameter outputs of the finished optimization of the β run. Time wise
the θ2β run requires that the β parameterization run first and then we can

perform the θ2β parameterization, where as, the θ2(unbounded) parameter-
ization only requires one run in order to perform the optimization and fit

40

5.5. Results and Discussion

0.00

0.25

0.50

0.75

1.00

−15 −10 −5 0
log10(RMSE)

0.00

0.25

0.50

0.75

1.00

−6 −4 −2 0
log10(AME)

fit

Bt

Th_un

ThB

Figure 5.7: Empirical cumulative distribution functions of RMSE and AME
for the top thee parameterizations (with respect to performance) where per-
formance is greater than -8.

41

5.5. Results and Discussion

the full Gaussian process and achieve similar results. Combining what we
know with the performance analysis and error analysis, with the amount of
time required to run the parameterizations, the parameterization of choice
for the best parameterization is the θ2(unbounded) parameterization.

42

Chapter 6

Conclusions

In this study, we used the numerical procedure of fitting a Gaussian pro-
cess for a large set of test problems. In fitting the Gaussian process, we
used eleven different parameterization-optimization pairings in order to de-
termine which parameterization performs the best so that it may be deemed
the go-to parameterization.

Despite the likelihood function having the property of being invariant,
numerically we have seen that this is not the case. Optimization produces
different results even though the optimizer started with equivalent values.

We started by picking an appropriate design using the random latin hy-
percube design using n = 7 · d, 10 · d, and 15 · d. We provided six different
parameterizations that have all been discussed in literature. We then used
the statistical programming language R to optimize the log-likelihood func-
tion in order to produce estimates for the parameter values for fitting the
model.

The results of each of the eight hundred and forty tests performed pro-
vided us with optimal log-likelihood values, and the parameter values used
to achieve the log-likelihood. We looked at three different tools in order
to evaluate which of the parameterizations performed the best: root mean
squared error, absolute maximum error, and performance as defined in Sec-
tion 5.4.

We first visualized the distributions of the root mean squared errors and
absolute maximum errors. Four parameterizations performed better than
the rest in terms of errors produced in predicting: beta, beta (no gradient),
theta2, and theta (beta). We further investigated the performance metric
also using an empirical cumulative distribution function. From the ECDF’s
we outlined three parameterizations that outperformed the other seven: beta
(no gradient), theta2, and theta (beta). Between the errors and performance
we can see that the top three performing parametrizations are beta (no
gradient), theta2 and theta (beta) as they achieve desirable log-likelihood
values and produce estimates that have low errors. We analyzed these three
further in order to determine which is the best.

The parameterizations had virtually identical error ECDF’s and there-

43

Chapter 6. Conclusions

fore the performance of the three was further analyzed. The three parame-
terizations have similar performance curves up until -8. The area of differ-
ence is in the right hand side of the graph where the solutions are far away
from the best solution found. We further analyzed this problematic area by
looking at the error values associated with the observations with larger per-
formance values (greater than -8). The beta parameterization may perform
better than the other two performance wise, but the models achieved in the
Gaussian process produce poor estimates. The theta2 and theta (beta) pa-
rameterizations have similar problematic area error curves. The tie-breaker
between the theta2 and theta (beta) curves is time, specifically the time
required to fit Gaussian process and obtain a model. The theta2 param-
eterization requires only one run through the optimization process to fit
and form the model whereas the theta (beta) parameterization requires one
run through the process first for the beta parameterization and then again
through the theta2 parameterization.

This thesis set out to find which parameterization of the correlation
function in the Gaussian process performs the best. It was our wish to
determine which parameterization should be the recommended parameter-
ization for those wanting to fit a Gaussian process. Based on the evidence
provided in this thesis the parameterization denoted as being the best is
the parameterization in terms of θ2 using the analytical gradient and the
unbounded optimizer.

The performance of the parameterization rho is surprising. The rho pa-
rameterization has had much success in Markov chain Monte Carlo settings
and further investigation into the parameter and why it performs poorly
should be considered in the future.

44

Bibliography

[1] Arnold, A. and Loeppky, J. L. (2015), “The Problem with Assessing
Statistical Methods,” arXiv preprint arXiv:1510.01417, Submitted to
The American Statistician. → pages 32

[2] Audet, C. and Dennis Jr, J. E. (2006), “Mesh adaptive direct search al-
gorithms for constrained optimization,” SIAM Journal on optimization,
17, 188–217. → pages 10

[3] Butler, A., Haynes, R., Humphries, T., and Ranjan, P. (2014), “Effi-
cient optimization of the likelihood function in Gaussian process mod-
elling,” Computational Statistics & Data Analysis, 73, 40–52. → pages
1, 16

[4] Chen, H., Loeppky, J. L., Sacks, J., and Welch, W. J. (2016), “Anal-
ysis Methods for Computer Experiments: How to Assess and What
Counts?” Statistical Science, 31, 40–60. → pages 5

[5] Currin, C., Mitchell, T., Morris, M., and Ylvisaker, D. (1991),
“Bayesian Prediction of Deterministic Functions, With Applications
to the Design and Analysis of Computer Experiments,” Journal of the
American Statistical Association, 86, 953–963. → pages 1, 7

[6] Dennis, J. and Woods, D. J. (1987), “Optimization on microcomputers:
The Nelder-Mead simplex Algorithm,” New computing environments:
microcomputers in large-Scale computing, 116–122. → pages 10

[7] Handcock, M. S. and Stein, M. L. (1993), “A Bayesian Analysis of
Kriging,” Technometrics, 35, 403–410. → pages 6

[8] Higdon, D., Gattiker, J., Williams, B., and Rightley, M. (2008), “Com-
puter Model Calibration Using High-Dimensional Output,” Journal of
the American Statistical Association, 103, 570–583. → pages 17, 38

[9] Johnson, M. E., Moore, L. M., and Ylvisaker, D. (1990), “Minimax
and Maximin Distance Designs,” Journal of Statistical Planning and
Inference, 26, 131–148. → pages 15

45

Bibliography

[10] Linkletter, C., Bingham, D., Hengartner, N., Higdon, D., and Ye, K. Q.
(2006), “Variable Selection for Gaussian Process Models in Computer
Experiments,” Technometrics, 48, 478–490. → pages 17, 38

[11] Loeppky, J. L., Sacks, J., and Welch, W. J. (2009), “Choosing the
Sample Size of a Computer Experiment: A Practical Guide,” Techno-
metrics, 51, 366–376. → pages 29

[12] McKay, M. D., Beckman, R. J., and Conover, W. J. (1979), “A Com-
parison of Three Methods for Selecting Values of Input Variables in
the Analysis of Output from a Computer Code,” Technometrics, 21,
239–245. → pages 13

[13] Morris, M. D. and Mitchell, T. J. (1995), “Exploratory Designs for
Computational Experiments,” Journal of Statistical Planning and In-
ference, 43, 381–402. → pages 13

[14] Mühlenbein, H., Schomisch, M., and Born, J. (1991), “The parallel
genetic algorithm as function optimizer,” Parallel computing, 17, 619–
632. → pages 10

[15] O’Hagan, A. (1978), “Curve Fitting and Optimal Design for Predic-
tion,” JRSSB, 40, 1–42. → pages 4

[16] Ranjan, P., Haynes, R., and Karsten, R. (2011), “A Computationally
Stable Approach to Gaussian Process Interpolation of Deterministic
Computer Simulation Data,” Technometrics, 53, 366–378. → pages 10,
16

[17] Rasmussen, C. E. and Williams, C. K. (2006), Gaussian processes for
machine learning, vol. 1, MIT press Cambridge. → pages 4

[18] Rasmussen, C. E. and Williams, C. K. I. (2006), Gaussian Processes
for Machine Learning, Cambridge, MA: The MIT Press. → pages 8

[19] Roustant, O., Ginsbourger, D., and Deville, Y. (2012), “DiceKriging,
DiceOptim: Two R packages for the analysis of computer experimen-
tRouGinDev2012s by kriging-based metamodeling and optimization,”
. → pages 8, 16

[20] Sacks, J., Schiller, S. B., and Welch, W. J. (1989), “Designs for Com-
puter Experiments,” Technometrics, 31, 41–47. → pages 1, 13

46

Bibliography

[21] Sacks, J., Welch, W. J., Mitchell, T. J., and Wynn, H. P. (1989), “De-
sign and Analysis of Computer Experiments (with Discussion),” Sta-
tistical Science, 4, 409–435. → pages 8

[22] Santner, T. J. ., Williams, B. J. ., and Notz, W. I. (2003), The Design
and Analysis of Computer Experiments, New York: Springer. → pages
1

[23] Santner, T. J., Williams, B. J., and Notz, W. I. (2013), The design and
analysis of computer experiments, Springer Science & Business Media.
→ pages 13

[24] Shanno, D. F. and Kettler, P. C. (1970), “Optimal Conditioning of
Quasi-Newton Methods,” Mathematics of Computation, 24, 657–664.
→ pages 10

[25] Stein, M. L. (1999), Interpolation of Spatial Data, Some Theory for
Kriging, New York: Springer. → pages 8

[26] Surjanovic, S. and Bingham, D. (2015), “Virtual Library of Simulation
Experiments:,” . → pages 48

[27] Wang, J. M., Fleet, D. J., and Hertzmann, A. (2008), “Gaussian process
dynamical models for human motion,” IEEE transactions on pattern
analysis and machine intelligence, 30, 283–298. → pages 8

[28] Welch, W. J., Buck, R. J., Sacks, J., Wynn, H. P., Mitchell, T. J., and
Morris, M. D. (1992), “Screening, Predicting, and Computer Experi-
ments,” Technometrics, 34, 15–25. → pages 7, 13

[29] Zehna, P. W. et al. (1966), “Invariance of maximum likelihood estima-
tors,” Annals of Mathematical Statistics, 37, 744. → pages 18

[30] Zhu, C., Byrd, R. H., Lu, P., and Nocedal, J. (1997), “Algorithm 778:
L-BFGS-B: Fortran subroutines for large-scale bound-constrained opti-
mization,” ACM Transactions on Mathematical Software (TOMS), 23,
550–560. → pages 10

47

Appendix

Appendix A

Test Functions
The fourteen functions used for the simulation study are from [26]. The

functions are as follows:

Borehole function (d = 8)

f(x) =
2πx3(x4 − x6)

ln(x2/x1)
(

1 + 2x7x3
ln(x2/x1)x21x8

)
+ x3

x5

x1 ∈ [0.05, 0.15]

x2 ∈ [100, 50 000]

x3 ∈ [63 070, 115 600]

x4 ∈ [990, 1 110]

x5 ∈ [63.1, 116]

x6 ∈ [700, 820]

x7 ∈ [1 120, 1 680]

x8 ∈ [9 855, 12 045]

Branin function (d = 2)

f(x) =

(
x2 −

5.1

4π2
x21 +

5

π
x1 − 6

)2

+ 10

(
1− 1

8π

)
cos(x1) + 10

x1 ∈ [−5, 10]

x2 ∈ [0, 15]

48

Appendix A. Test Functions

Currin et al. (1988) Exponential function (d = 2)

f(x) =

(
1− exp

{
− 1

2x2

})
2300x31 + 1900x21 + 2092x1 + 60

100x31 + 500x21 + 4x1 + 20

xi ∈ [0, 1] ∀i = 1, 2

Dette and Pepelyshev (2010) 8-Dimensional function (d = 8)

f(x) = 4(x1−2+8x2−8x22)
2+(3−4x2)

2+16
√
x3 + 1(2x3−1)2+

8∑
i=4

i ln

1 +

i∑
j=3

j


xi ∈ [0, 1] ∀i = 1, . . . , 8

Dette and Pepelyshev (2010) Curved function (d = 3)

f(x) = 4(x1 − 2 + 8x2 − 8x22)
2 + (3− 4x2)

2 + 16
√
x3 + 1(2x3 − 1)2

xi ∈ [0, 1] ∀i = 1, 2, 3

Dette and Pepelyshev (2010) Exponential function (d = 3)

f(x) = 100

(
exp

{
−1

x1.751

}
+ exp

{
−2

x1.52

}
+ exp

{
−2

x1.253

})

xi ∈ [0, 1] ∀i = 1, 2, 3

Friedman function (d = 5)

f(x) = 10 sin(πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5

xi ∈ [0, 1] ∀i = 1, . . . , 5

Gramacy and Lee (2009) (d = 6)

f(x) = exp
{

sin
(
(0.9(x1 + 0.48))10

)}
+ x2x3 + x4

x5 and x6 are inactive.A small error term ε(0, 0.052) is added.

xi ∈ [0, 1] ∀i = 1, . . . , 6

49

Appendix A. Test Functions

Lim et al. (2002) Nonpolynomial function (d = 2)

f(x) =
1

6
[(30 + 5x1 sin(5x1))(4 + exp{−5x2})− 100]

xi ∈ [0, 1] ∀i = 1, 2

Linkletter et al. (2006) Decreasing Coefficients function (d = 10)

f(x) = 0.2x1 +
0.2

2
x2 +

0.2

4
x3 +

0.2

8
x4 +

0.2

16
x5 +

0.2

32
x6 +

0.2

64
x7 +

0.2

128
x8

x9 and x10 are inactive. A small error term ε(0, 0.052) is added.

xi ∈ [0, 1] ∀i = 1, . . . , 10

Linkletter et al. (2006) Sinusoidal function (d = 10)

f(x) = sin(x1) + sin(5x2)

x3, . . . , x10 are inactive. A small error term ε(0, 0.052) is added.

xi ∈ [0, 1] ∀i = 1, . . . , 10

OTL Circuit function (d = 6)

f(x) =

(
12x2
x1+x2

+ 0.74
)
x6(x5 + 9)

x6(x5 + 9) + x3
+

11.35x3
x6(x5 + 9) + x3

+
0.74x3x6(x5 + 9)

(x6(x5 + 9) + x3)x4

x1 ∈ [50, 150]

x2 ∈ [25, 70]

x3 ∈ [0.5, 3]

x4 ∈ [1.2, 2.5]

x5 ∈ [0.25, 1.2]

x6 ∈ [50, 300]

Piston Simulation function (d = 7)

f(x) = 2π

√
x1

x4 + x22
x5x3
x7

x6
V 2

,

50

Appendix A. Test Functions

where

V =
x2
2x4

(√
A2 + 4x4

x5x3
x7

x6 −A
)

and
A = x5x2 + 19.62x1 −

x4x3
x2

x1 ∈ [30, 60]

x2 ∈ [0.005, 0.020]

x3 ∈ [0.002, 0.010]

x4 ∈ [1 000, 5 000]

x5 ∈ [90 000, 110 000]

x6 ∈ [290, 296]

x7 ∈ [340, 360]

Wing Weight function (d = 10)

f(x) = 0.036x0.7581 x0.00352

(
x3

cos2(x4)

)0.6

x0.0065 x0.046

(
100x7

cos(x4)

)−0.3
(x8x9)

0.49+x1x10

x1 ∈ [150, 200]

x2 ∈ [220, 300]

x3 ∈ [6, 10]

x4 ∈ [−10, 10]

x5 ∈ [16, 45]

x6 ∈ [0.5, 1]

x7 ∈ [0.08, 0.18]

x8 ∈ [2.5, 6]

x9 ∈ [1 700, 2 500]

x10 ∈ [0.025, 0.08]

51

	Abstract
	List of Tables
	List of Figures
	Acknowledgements
	Dedication
	1 Introduction
	2 The Gaussian Process
	2.1 Computer Models
	2.2 The Gaussian Process
	2.3 Gaussian Process Emulation
	2.4 Estimating Theta
	2.5 Modelling
	2.5.1 Correlation Function
	2.5.2 Prediction

	2.6 Optimization
	2.6.1 Gradient

	3 Implementation
	3.1 Design
	3.2 Correlation Functions
	3.2.1 Invariance

	3.3 Optimizing in R
	3.4 Assessing Fit

	4 Borehole Example
	5 Numerical Testing
	5.1 Full Simulation Study
	5.2 Numerical Results
	5.3 Error Analysis
	5.4 Performance Analysis
	5.5 Results and Discussion

	6 Conclusions
	Bibliography
	Appendix
	A Test Functions

