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Abstract 

Observing landscape patterns at various temporal and spatial scales is central to mapping 

ecosystems. Traditionally, ecosystem mapping uses a combination of fieldwork and aerial 

photography interpretation. These methods, however, are time-consuming, prone to subjectivity, 

and difficult to update. Airborne Laser Scanning (ALS) is an advanced remote sensing technology 

that has increased in application in the past decade and has the potential to significantly increase and 

refine information content of ecosystem mapping, especially in the vertical dimension. ALS 

technology provides detailed information on topography and vegetation structure and has 

considerable potential to be used for terrestrial ecosystem classification and mapping. In this thesis, 

the potential to use ALS data to advance ecosystem mapping is examined. The current state of the 

science for using ALS data to classify and map key ecosystem attributes within an existing ecosystem 

mapping scheme is discussed by focusing on British Columbia’s Terrestrial Ecosystem Mapping 

(TEM) and its associated Predictive Ecosystem Mapping (PEM).  

 

Based on a detailed literature review, a site-specific case study was also developed with the goal of 

mapping TEM polygons for a forested landscape on Vancouver Island, British Columbia. To do so 

an object-based image analysis approach was used. The analysis examined which were the best suite 

of ALS-based terrain and vegetation metrics to define and distinguish individual site series. It 

established a workflow for the classification of site series within the study site and examined the 

capacity to map site series based on ALS derived values. Best segmentation parameters were first 

established and then the study area was classified for slope position-wetness and finally into the 

specific site series. In the classification of site series two approaches were used. One approach used 

only terrain metrics and the other incorporated vegetation metrics. Overall accuracies were 59% and 



iii 

 

56% respectively. While this workflow requires refinement, it shows potential for improved 

accuracies by applying suggestions discussed. 

 

The thesis concludes with a discussion summarizing the findings of this research and highlighting 

future refinement to the methods applied in the case study, while also providing recommendations 

for the current application of ALS technology to TEM.   
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Lay Summary 

The primary goals of this research was to establish if it was possible to use the remote sensing 

technology, Airborne Laser Scanning (ALS) to map ecosystems at the site level scale. British 

Columbia’s Terrestrial Ecosystem Mapping (TEM) scheme was used as the basis for determining 

key ecosystem attributes and outcomes. A literature review was conducted to establish the current 

state of science for using ALS to classify the ecosystem attributes that are used in the TEM process. 

From this, best methods were established for the next steps, which would be a case study. The case 

study used an area on Vancouver Island. It attempted to map the TEM ecosystem units by using 

ALS data in a computer program that grouped similar pixels together to create objects, and then 

classified these objects based on statistic information that related to the various ecosystem attributes.  
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Chapter 1: Introduction 

1.1 An introduction to ecosystems 

Ecosystems are the result of complex interactions between biotic and abiotic dynamics, which 

manifest as wide-ranging spatial patterns across the landscape (Bailey 1985; Rowe 1996; Gustafson 

1998; McMahon et al. 2004). Ecosystems are recognized as distinct, comparatively homogeneous 

units that have multiple connections and dependencies with adjoining units from which they have a 

relatively abrupt transition (Bailey 1985). Environmental attributes, primarily climate, physiography, 

soil, and vegetation (Barnes et al. 1982; Rowe 1996), are often defined as the most influential factors 

driving ecosystem formation across a range of scales. Variations in landscape ecosystems, assuming 

equal time and access to biota, result from landforms and their modification of local  climates (Rowe 

1996). These various landforms interact with climate and directly influence hydraulic and soil -

forming processes (Bailey 1987). At the site scale, local moisture influences the type of vegetation 

present, with minor differences in slope and aspect markedly influencing vegetation patterns (Bailey 

1987).  

 

1.2 Mapping ecosystems 

Classifying ecosystems and mapping their arrangements is central to understanding and observing 

ecological landscape patterns at various temporal and spatial scales (McMahon et al. 2004). The 

ability to observe ecosystems at varying scales and discern how their distribution varies across a 

landscape provides insight about why particular sites exist and how they are maintained. Improving 

the ability to understand ecosystem attributes spatially and monitor them temporally will facilitate 

our capacity to anticipate downstream effects and gain insight about why changes take place and 
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how management might mitigate any harmful effects (McMahon et al. 2004). Classification and 

mapping ecosystems therefore, are critical preliminary steps for land management and biodiversity 

conservation, and are important components to evaluating how a landscape might respond to both 

direct and indirect influences (Bailey 1987).  

 

Mapping ecosystems at the land management scale involves multi-level nested classification (Allen 

and Starr 1982; Bailey 1987). At the broadest scale, the primary influence on ecosystems is climate, 

followed by landform, which influences landscape level macroclimates (Bailey 1987). These various 

landforms interact with climate to directly influence hydraulic and soil-forming process (Bailey 

1987). Finer still, at the site scale, local moisture and nutrient availability influence the type of 

vegetation present with minor differences in slope and aspect markedly influencing vegetation 

patterns (Bailey 1987). Ecological mapping requires reference to these scale-specific attributes to 

best assist managers in understanding how individual ecosystems interact with adjacent landscapes 

(Bailey 2009). Having access to practical tools that can be used for management purposes, such as 

high quality maps with the appropriate spatial and temporal scale, is critical to furthering our 

understanding of underlying connections and how these may alter ecosystem health. Yet the process 

of classifying and mapping ecosystems remains highly complex.  

 

1.3 Mapping ecosystems in British Columbia 

Conventionally, the task of mapping ecological units comprises fieldwork and aerial photography 

(Bailey et al. 1994; Rowe 1996; Wulder et al. 2012). While these processes have been effective, they 

are not without shortcomings. Installation of plots and their subsequent measurement can be time-

consuming and expensive, and often can be neglected in difficult-to-access areas. Temporal 
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monitoring is additionally challenging and costly (Lucas et al. 2008; Jones et al. 2012) because plots 

must be relocated and remeasured. Moreover, manual interpretation of aerial photography 

introduces biases and requires specialized interpreters (Morgan et al. 2010).  

 

In British Columbia, Terrestrial Ecosystem Mapping (TEM) or Predictive Ecosystem Mapping 

(PEM) data provide ecosystem-based information, which is used for environmental/resource 

management and various mapping projects.  Both the TEM/PEM approaches integrate biotic and 

abiotic attributes. The delineation of a landscape into ecosystem units is based on a combination of 

ecological features, primarily climate, physiography, surficial material, bedrock geology, soil, and 

vegetation (Ecosystems Working Group 1998).  Both TEM and PEM employ a nested classification 

order: at the broadest scale, there are both ecoregion and biogeoclimatic classifications, which 

represent broad level regional and climatic landscape units, and through to the site level with more 

detail.  

 

Within these units there are site units termed "ecosystem units", which describe terrestrial 

ecosystems at a more detailed level. Ecosystem units are generally derived from site series 

classification, site modifiers and structural stage and these are then mapped as relatively 

homogeneous polygons. Each polygon may encompass as many as three site series, annotated as 

“deciles” (Ecosystems Working Group 1998). Site series accounts for the variation in site conditions 

across a topographic sequences encountered within a biogeoclimatic unit; it describes all land areas 

capable of supporting specific late successional vegetation. Site modifiers encompass site-specific 

conditions that fall outside of typical conditions for a site series. Structural stage defines the current 

stand physiognomy for the ecosystem unit being described. Ecological units are interconnected and 
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therefore polygons are delineated with consideration to the existing classifications for the area 

(ecoregion, biogeoclimatic and site). As a result, for each polygon, the various influences of 

topography, terrain, soil characteristics and developmental patterns on the landscape are taken into 

account.  

 

Terrestrial Ecosystem Mapping 

Terrestrial Ecosystem Mapping is the typical approach used for mapping when detailed ecological 

information is required. The TEM approach relies on using attributes (Table 1) that are 

distinguishable from aerial photography; units are delineated, classified, and pre-typed on photos by 

local experts from various ecological fields. A portion of units and polygons are subsequently 

checked in the field to refine understanding of the relationships between photo attributes and 

ground conditions; pre-typed attributes are then updated as necessary (Resources Inventory 

Committee 1998). Field sampling additionally provides the information required to confirm 

biogeoclimatic unit boundaries, describe the individual site series, classify new ecosystems and 

describe structural and vegetation characteristics of younger structural stages.  For all mapped 

polygons, 'core attributes' are those that are primarily interpreted attributes. While some, such as 

structural stage and a few site modifiers, can be modeled or derived from other sources, the majority 

are directly interpreted from the base photography. While the ecological information provided by 

TEM is critical for planners and managers, the data and the interpretation process is principally 

subjective, cannot be easily updated and can lack sufficient detail for some of the desired 

applications. 
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Table 1 Criteria required to classify attributes in ecosystem mapping, using Terrestrial Ecosystem 
Mapping as an example. 

Mapped attribute Example of a feature type for 
the mapped attribute 

Criteria for classification 

Geomorphic 
process 

Snow avalanches 
Gully erosion 
Permafrost process 

Geomorphic process 
Topographya 

Terrain attributes Sandy gravelly (texture) 
Fluvial (surficial material) 
Terrace (surface expression) 

Texture 
Parent material 
Surface expression 
Qualifiers 

Soil drainage Poorly drained  
Very rapidly drained 
Imperfectly drained 

Topographya 
Soil depth 
Terrain attributes 
Drainage pattern 

Site series CWHvm1/HwBa Blueberryb 

CWHvm1/HwPl  Cladina 

CWHvm1/BaCw  Salmonberry 

Stand height 
Canopy characteristics 
Understory or non-forested vegetation 
composition 
Tree species composition 
Geomorphic process 
Topographya 
Soil depth 
Terrain attributes 
Drainage pattern 
Forest floor 

a Includes landscape position and shape, aspect, slope, and drainage pattern. 

b CWH = Coastal Western Hemlock biogeoclimatic zone; vm = Very Wet Maritime subzone; 1= 
submontane variant; Hw = western hemlock; Ba = amabilis fir; Pl = lodgepole pine; Cw = western 
redcedar. 

 

Predictive Ecosystem Mapping 

Alternatively, the Predictive Ecosystem Mapping approach is a newer inventory approach which 

automates the process using spatial data and ecosystem knowledge. As with TEM, the primary PEM 

mapping unit is the Biogeoclimatic Ecosystem Classification (BEC) site series. Rather than photo 

interpretation and field checking as in the TEM process, PEM uses computer modelling, which 

incorporates existing knowledge of ecosystem attributes and relationships, to predict ecosystem 

occurrence in the landscape. Information for polygon delineation is usually derived from data 

sources such as forest inventory, soils, or bioterrain mapping. Ecologists with local experience may 
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still provide some interpretation. While in the TEM process, the rules of interpretation may be 

biased, in the PEM process the rules relating ecological characteristics to ecosystem classification are 

formally structured in the knowledge base. PEM has attempted to solve some of the weaknesses 

presented by the TEM process but particular case studies have shown it does not always provide the 

level of accuracy required (Walton & Meidinger 2006). 

 

1.4 Current limitations and the potential of ALS 

A hybrid TEM/PEM pilot project was conducted in the Draney Landscape Unit (LU) of the Central 

Coast Forest District, British Columbia (Ecora Resource Group Ltd. 2012). The project utilized 

PEM methods for mapping the matrix ecosystems of the landbase, where it performs with reliability 

and has advantages to the TEM system. TEM methods are applied for mapping ecological 

exceptions and extremes (which includes fluvial benches, alluvial fans, erosional gullies-which are 

necessary to natural resource management and the correct delineation of their boundaries is 

indispensable). Exception classes generally have distinctive photo signatures and the TEM method is 

able to map this portion of the landbase with acceptable accuracy and requiring limited field 

sampling. Overall, across the landbase, 11% was mapped as ecological exceptions, totaling 5,005 ha. 

Depending on the terrain being mapped, ecological exceptions and extremes typically account for up 

to 10-20% of a given landscape. Results of the analysis highlight that the nature of a particular 

landscape and limited availability and low spatial resolution of existing input data make it di fficult for 

predictions to be made with consistency and a high level of accuracy with the PEM process. 

 

While the TEM and PEM approaches have become an important component of ecological mapping 

in the Province, because of the limitations already discussed, opportunities exist to assess the 
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capacity of new technologies to be used in the derivation process. Advanced remote sensing tools 

are a likely candidate. Remotely sensed data are becoming increasingly available, less expensive and 

the application of the data is becoming more diverse.  Airborne Laser Scanning (ALS), particularly, 

is an example of a new technology whose use has rapidly increased in the last decade and is currently 

utilized globally to quantify forest structure, vegetation classes, tree or stand metrics, and topography 

metrics such as slope, elevation and aspect (Wulder et al. 2013). Due to its suitability for developing 

high spatial resolution Digital Elevation Models (DEMs), as well as providing detailed information 

on vegetation structure, its use as a data input into the TEM or PEM processes is worth 

investigating.  

 

Many studies have used ALS data to classify various ecosystem attributes, but few have attempted to 

classify ecosystem units, such as site series, specifically. To examine this potential, British Columbia’s 

TEM (with some consideration for PEM) criteria were used as the focus for this literature review to 

examine the current state of science for ALS and how it could be applied to advance ecological 

understanding and mapping.  

 

1.5 Research objectives 

The overall research objective of this thesis was to explore the feasibility to use ALS data for 

mapping ecosystems to site series scale. To achieve this, a literature review was conducted to assess 

the current state of science for using ALS data to delineate and classify key ecosystem attributes. To 

integrate and test selected methods from the literature, a case study was conducted for a 25-km2 area 

on Vancouver Island (aka. Oyster River) for which both TEM and ALS data were available. The 

outcomes of this thesis were to propose state of the art approaches for using ALS data to map 
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ecosystems according to TEM methods and the development of a workflow for mapping TEM 

based site series on a specific landscape. 

 

To meet these goals the following sub-objectives are outlined: 

1. By completing a literature review, summarise current research on the application of ALS data 

for mapping ecosystem attributes (using BC’s TEM structure as a guide), highlighting the 

most promising methods which could be applied to a BC specific case study. For each 

attribute integral to the TEM process, suggest the feasibility (low, med, high) of using ALS 

data for its classification and mapping. 

2. Using the Oyster River study site as a case study, determine the most appropriate ALS 

derived terrain and/or vegetation metrics to segment and classify site series using an Object 

Based Image Analysis process; and establish a validated workflow that could be applied to 

other BC locations. 

 

The structure of the thesis is as followed. Chapter 2 focuses on the literature review, introducing 

ALS technology and its strengths for capturing vegetation and terrain information and describes 

how it might benefit ecosystem mapping. This chapter breaks down each attribute used in the TEM 

methods and provides the feasibility for mapping it using ALS data based on current research.  

Chapter 3 contains the case study. It describes the methods used and the outcomes. It further 

expands on the feasibility for mapping ecosystems to site series and provides an example workflow.  

Chapter 4 discusses key findings, conclusions and imitations of the research. Recommendations for 

future research are also discussed. 
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Chapter 2: ALS as an advanced remote sensing technology to augment 
ecosystem classification and mapping 

2.1 ALS technology 

Airborne Laser Scanning (ALS) is an active remote sensing technology that accurately measures the 

distance between the sensor and the target (Jelalian 1992); it does so by emitting intense, focused 

beams of light and measures the time it takes for the reflections to be detected by the sensor. ALS is 

a multi-sensor measurement system that identifies three-dimensional coordinates (latitude, longitude 

and elevation) of the target objects.  An ALS systems typically consists of a laser scanner unit, a 

Global Positioning System (GPS) and an Inertial Measurement Unit (IMU) from which the system 

records the time difference between the laser pulse being emitted and returned, the angle at which 

the pulse was sent and the precise location of the sensor on or above the surface of the Earth 

(Carter et al. 2012). In doing so, ALS instruments can quickly measure the height of the Earth’s 

surface.  Sampling rates can be as high as 240 kHz (Höfle & Rutzinger 2011) giving a densely spaced 

network of highly accurate georeferenced elevation points (point clouds). ALS data specifically are 

acquired by a system mounted on an aircraft and flying over targeted areas. Laser scanning can also 

be performed from ground-based stationary and mobile platforms or from satellites, but these 

methods are less common; this thesis will focuses on the applications of airborne laser scanning.   

 

ALS elevation data are extremely accurate with absolute accuracies between 15 - 30 centimeters for 

older systems and 10 - 20 centimeters for more recent systems (Carter et al. 2012). The accuracy of 

ALS data is contingent on various influencing factors such as the system being used, flight 

conditions and characteristics of the area being scanned, such as slope or vegetation cover (Höfle & 

Rutzinger 2011). Even in forested areas however, ALS is able to detect the ground in enough 
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locations to provide highly detailed information. ALS reflections are often referred to as 

“reflection”, “return” or “pulse”. In forested areas, an emitted laser pulse can result in a first return 

coming from the tree canopy and a last return from the ground surface beneath (Höfle & Rutzinger 

2011) (Figure 1). 

 

 

Figure 1 Airborne Laser Scanning and its emitted pulse and returns 

  

The illuminated area from the ALS beam is known as the footprint; footprint size is directly related 

to flight height. The area of small-footprint ALS is typically 0.25 to 1 m in diameter (Höfle & 

Rutzinger 2011) and two types of ALS data are commonly acquired, discrete echo recording systems 

and more recently full waveform systems (Höfle & Rutzinger 2011). Discrete return systems record 

single or multiple returns from a given laser pulse. As the laser pulse is reflected back to the sensor, 
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large peaks are recorded as clouds of points representing intercepted features (Wulder et al. 2012). 

Full waveform systems digitize the entire reflected energy from a return with point clouds providing 

complete vertical vegetation profiles (Wulder et al. 2012). Full waveform also has the added benefit 

that each laser pulse can provide additional qualities such as signal amplitude and reflection width 

(Höfle & Rutzinger 2011). 

 

The increased use and development of airborne ALS systems has led to increased automation for 

many of the steps involved to use and apply ALS, from data acquisition through to DEM generation 

(Höfle & Rutzinger 2011). The analysis of ALS data begins with the 3D point cloud.  For most ALS 

applications the separation of terrain returns (i.e. bare earth/DEM) and returns from objects (i.e. 

buildings and trees) needs to take place. This process is called filtering and is accomplished by either 

working directly on the point cloud or on an already rasterized Digital Surface Model (DSM).  

Canopy height models (CHMs) are produced from the difference between the DEM and DSM.  

Elevation models (terrain) and canopy models (vegetation) can be used for greater ecological 

understanding and interpretation. However, interpretation is often scale dependent making the 

classification a multi-resolution problem (Höfle & Rutzinger 2011). 

 

2.2 ALS application in ecosystem mapping 

Digital, remotely sensed data are increasingly being applied to ecosystem mapping because, in 

general, they are becoming more diverse, readily available, and inexpensive (Dube et al. 2016; 

Gilvear & Bryant 2016; Reif & Theel 2016). Digital data allow for automated or semi-automated 

mapping methods to be used, thereby reducing bias and ideally increasing cost-efficiency, in part 

through the increased ability for map updating and data collection for expansive or difficult-to-
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access locations (van Asselen & Seijmonsbergen 2006; Thompson et al. 2016). Multispectral imagery 

is used to measure tree structure, differentiate among tree age classes, and distinguish tree species (Li 

et al. 2013; Yang et al. 2014). Indices such as the Normalized Difference Vegetation Index (NDVI) 

increase our ability to monitor net primary production, and have been used for wetland delineation, 

land cover classification, and identification of various ecological responses (e.g., green-up timing, 

treeline change, fire recovery).  

 

Conventional passive airborne and satellite sensors, however, are limited in their capacity to 

discriminate and map ecosystems, primarily because they lack the ability to denote spatial patterns in 

three-dimensions; thus, they produce only two-dimensional images (Lefsky et al. 2002). As a result, 

fine-scale topographic and vegetation structural observations are neglected or simply inferred. ALS 

is an example of a recent active remote sensing technology that has rapidly advanced and increased 

in application and use over the last decade. It can extend spatial analysis into the third dimension, is 

well-suited to developing high spatial resolution DEMs, and can provide detailed information on 

vegetation structure.  

 

Ecosystems are influenced by abiotic attributes, such as geomorphology, drainage patterns, and soil, 

which in turn, largely determine the vegetative community in a location (Barnes et al. 1982). ALS-

based DEMs provide a strong basis from which predictive physiographic classifications can be 

performed. They have helped improve the identification of drainage patterns (including within 

peatlands), stream channel delineation, and floodplain mapping (Demarchi et al. 2016; Gaspa et al. 

2016; Hamada et al. 20016). By applying filters to DEMs, anomalous pits and peaks can be removed, 



13 

 

which provides a smoothed surface that allows discontinuities in the data (drainages) to be extracted 

and classified (Heung et al. 2014; Luscombe et al. 2014).  

 

ALS data are also used successfully to accurately describe a variety of vegetation metrics such as 

height, crown cover, volume, and diameter (Leiterer et al. 2012; Wulder et al. 2012). The data are 

capable of providing detailed information to describe three-dimensional texture, foliage-clustering 

characteristics, and gap distribution in an individual tree crown (Jones et al. 2012; Li et al. 2013). 

Additionally, there has been marked success in classifying forest structural classes (Jones et al. 2012; 

Reese et al. 2014; Valbuena et al. 2016), differentiating between coniferous and deciduous trees 

(Leiterer et al. 2012; Tiede et al. 2012; Alberti et al. 2013), and estimating the position of alpine  

treelines (Coops et al. 2013).  

 

2.3 Mapping TEM specific attributes 

Discrete-return Airborne Laser Scanning (ALS) is the most likely form of laser scanning data to be 

used for ecosystem mapping due to its availability and practicality for gathering data on large and 

hard to reach locations. The following review will address research using ALS data specifically. 

Additionally, to best assess the feasibility for applying ALS data to ecosystem mapping, it is helpful 

to use an already existing system as a baseline. As explained in the introduction, the provincially 

mandated mapping system for British Columbia is TEM, with some areas mapped using the PEM 

methods. There are four principal sets of ecosystem attributes (geomorphic process, terrain 

attributes, soil drainage and site series) used in the classification and subsequent mapping of 

ecosystem units (Table 1). 
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Below, each attribute is defined and the current state of science for mapping the attribute is 

discussed; additionally this is summarized in Table 2. The feasibility for using ALS data for 

classifying and incorporating each attribute into a process for mapping is highlighted and ranked . 

 

Geomorphic Process 

Geomorphological processes are the natural mechanisms of weathering, erosion and deposition that 

result in the modification of the surficial materials and landforms at the earth’s surface (Ecosystems 

Working Group 1998). These processes can be erosional, fluvial, or glacial based; they can be mass 

movements that happen slowly or very quickly (landslide). Geomorphological process play an 

important role in influencing the type of vegetative community found at a particular location. 

Classifying the type of geomorphological process affecting a particular location is not directly 

identifiable from ALS data but requires some interpretation.  However, as geomorphological 

processes are largely a result of topography, high-resolution ALS-based DEMs can increase the 

capacity for reliable predictive geomorphological mapping. 

 

The topographic detail and accuracy ALS data affords can improve classification models and has the 

potential to increase the ability to identify features that may be otherwise difficult to predict. In BC 

for example, complex mountainous terrain often makes mapping features such as alluvial fans, 

incised channels and talus slopes difficult using predictive methods and as a result requires manual 

classification methods. ALS data can enhance the interpretive capabilities of geomorphic 

classification given the recent work in this field, which has produced reasonably high accuracies 

(Anders et al. 2011a, 2011b, 2013; van Asselen & Seijmonsbergen 2006). Research by Greve et al. 

(2012). Many metrics for topology can be obtained from high-quality DEMs and can be used to 
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improve models (e.g., elevation, slope gradient, slope aspect, curvature, and topographic openness) 

(Anders et al. 2011a; Greve et al. 2012; Maynard & Johnson 2014; Akumu et al. 2015; Thompson et 

al. 2016). 

 

Ecosystems are subject to dynamics, disturbance, and change (Huston 1979; Gustafson 1998). 

Terrestrial Ecosystem Mapping classifies geological processes as active or inactive. Mapping active 

processes temporally would allow dynamic landscape change to be detected, quantified, and 

reclassified where applicable. Anders et al. (2013) compared delineation results for two years of data 

and showed that identifying geomorphological change is possible by quantifying volumetric change 

for each landform class. Compared to current change detection methods that primarily subtract 

multi-temporal DEMs from each other to detect change, the Anders et al. (2013) methods allow 

changes in landforms due to geomorphological processes to be determined. The authors believe that 

their methods provide a reproducible framework to repeat landform classifications and analyze 

change detection. 

 

Terrain 

Terrain attributes are characteristics relating to terrain, whether it is surficial material or bedrock 

(Ecosystems Working Group 1998). TEM includes several categories of terrain attributes, (terrain 

texture, parent material, surface expression and qualifiers); the characteristics of these categories are 

used as criteria for delineating ecosystems with experts being able to use them for photo 

interpretation purposes.  Like geomorphological process, terrain attributes cannot be directly 

attained from ALS data and indirect, interpretive methods must be applied.  Research specifically 

addressing the use of ALS to map terrain attributes, as defined by TEM, is sparse.  The following 
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terrain attributes all contribute to the ecology of a location and are therefore an integral part of the 

TEM process: 

 

1. Terrain Texture describes the size, roundness and sorting of particles in unconsolidated 

clastic sediments (i.e. boulders, pebbles, mud, shells, sand, silt, and clay), and the proportion 

and degree of decomposition of plant fibre in unconsolidated organic sediments (i.e. fibric, 

mesic, or humic). 

2. Parent material is the non-lithified, unconsolidated sediment occurring on the earth’s 

surface. They are materials produced by weathering, biological accumulation, human, and 

volcanic activity. They weathered from rock in situ or transported materials deposited by 

water, wind, ice, gravity, or any combination of these agents. 

3. Surface expression is the form and patterns of forms expressed by surficial material at the 

land surface. The three-dimensional shape of the material is equivalent to “landform” used 

in a non-genetic sense (e.g., ridges, plain).  Surface expression also describes the manner in 

which unconsolidated surficial materials relate to the underlying unit (e.g., veneer, blanket, 

hummock and terrace). 

4. Qualifiers provide additional information about the mode of geologic formation and/or the 

depositional environment of surficial materials and about the status of activity of geological 

processes (i.e. glacial qualifying descriptors and activity-qualifying descriptors).  

 

The terrain attributes described are somewhat specific to TEM in their categorization and/or 

definition. However, the basis for describing terrain is in part, linked with defining slope gradient 

and slope position. As well, the process for mapping geomorphology is very much associated with 

processes required for classifying terrain attributes. Terrain texture was the only criterion for which 

research incorporating ALS data for classification purposes was not found. Terrestrial Laser 

Scanning (TLS) was used to identify terrain texture in several studies; for example, Brasington et al. 

(2012) were able to map the spatial pattern of particle size, grain roughness, and sedimentary facies 
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at the reach scale for streambeds. However, applying TLS on a large scale (i.e. provincially) is not 

practically feasible. There is, however, sufficient research indicating that ALS based data could be 

very useful for describing the remaining terrain criteria.   

 

The high accuracy of ALS based DEMs provide an excellent platform from which terrain attribute 

classification can take place as demonstrated above for geomorphological mapping. High quality, 

detailed DEMs help quantify the relationships between topography and a specific criterion that 

changes with topography such as geomorphology and surface expression, which are both influenced 

by slope angle and position.  

 

The classification of parent material (i.e., genetic material) is particularly difficult because ALS 

cannot penetrate the ground to provide below-surface metrics; therefore, its classification process 

completely relies on predictive methods. However, using a Random Forest classifier, Heung et al. 

(2014) predicted relationships between soil parent material and topography. They were successful at 

delineating major parent material classes but less so for minority classes. They used single-

component soil polygons from conventional soil survey maps to generate randomized training 

points for nine parent material classes. Each point was intersected with values from 27 topographic 

and hydrologic indices derived from a 100 m DEM. Predictions made by a non-optimized Random 

Forest classifier resulted in a kappa index of 89.6% when validated with legacy soil survey data from 

single-component polygons and a kappa index of 79.5% when validated with field data.  
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Soil Drainage 

How water moves through the landscape has a profound effect on ecosystem characteristics of a 

particular area. Soil drainage is defined as how quickly and how much water passes through the soil 

relative to additional inputs (Ecosystems Working Group 1998). Drainage can be either surface 

runoff or water infiltrating through the soil. It is important that the contextual catchment  that an 

area is situated within must be considered when evaluating soil drainage since water inputs, as rain or 

snow, can vary significantly between topographic and climatic regions.  For example, high elevation 

bogs on steep slopes are common within coastal areas of BC and being able to identify them 

accurately is an important part of TEM ecosystem delineation.  The criteria used for TEM air photo 

interpretation for classifying soil drainages are landscape position and shape, slope, drainage pattern, 

soil drainage and soil depth.   

 

The incorporation of high-quality DEMs is integral to mapping topographic depressions and 

drainages, and it enhances the delineation of slope classes by providing detailed differentiation, even 

in areas with only subtle local relief changes (Aspinall & Sweeny 2012; Luscombe et al. 2014). Such 

detailed metrics allowed Luscombe et al. (2014) to highlight drainage patterns across a peatland and 

identify sinks as drainage features or flushes. They identified microtopographic sinks in the 

landscape by selecting pixels with a height threshold of 0.11 m from the DSM data. Their results 

showed that ALS classification had similar results to maps created from aerial photography. 

Drainage scale however, is much finer than ALS captures and the microtopographic depressions 

were not captured consistently. Luscombe et al. (2014) also found that ALS data were able to 

identify drainage ditches but unable to quantify if they were continuous features. 
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Aspinall & Sweeny (2012) renewed existing soil maps using high-resolution ALS-based DEMs and 

were able to differentiate drainage patterns in subtle relief areas that had previously gone undetected. 

High-resolution DEMs also provide soil landscape feature definition that allows for subtle 

differentiation of morphometric elements to be used as diagnostic elements (Aspinall & Sweeny 

2012). Soil depth is a criterion used in the TEM process to help map drainages; however, because 

ALS does not penetrate the ground, using it as a tool for measuring soil depth is not possible, and 

no studies were found that used ALS topography metrics to predict soil depth. 

 

Site Series 

Site series is one of the most important attributes in the British Columbia ecosystem mapping 

approach. It accounts for the variation in site conditions encountered within a biogeoclimatic unit 

(Ecological Data Committee 2000). Site series describe all land areas within a biogeoclimatic 

subzone or variant that are capable of supporting mature communities of the same plant association 

or subassociation (Pojar et al. 1987). This can usually be related to a specified range of soil moisture 

and nutrient regimes, but sometimes other factors, such as aspect, air flow (e.g., cold air ponding), or 

disturbance regime (e.g., flooding), are also important determinants. The criteria used for TEM air 

photo interpretation for classifying site series includes all of the terrain attributes discussed in the 

above sections and also the vegetation attributes of stand height, canopy characteristics, understory 

or non-forested vegetation composition or characteristics, tree species composition and forest floor, 

which will be discussed here. 

 

Stand height and forest canopy characteristics offer insight about the particular site series, and ALS 

is a well-demonstrated tool used to gather height metrics and canopy variables, such as canopy 
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closure, stem count, and tree diameter and volume (Næsset & Økland 2002; Lim et al. 2003). ALS 

estimates of individual tree height have been shown to be more consistent than manual, field-based 

measurements (Næsset & Økland 2002). Canopy height descriptors, height percentiles, and canopy 

volume profiles are some of the most widely used metrics for determining structural or seral stages 

(Jones et al. 2012). Canopy structure is necessary for differentiating coniferous and deciduous trees 

(Alberti et al. 2013; Kumar et al. 2015), detecting residual trees (García-Feced et al. 2011), and 

quantifying canopy height ranges (Latifi et al. 2015; Lopatin et al. 2015).  

 

Describing the vegetative community of a specific location is integral to site series classification. 

However, it is not always crucial for grasses and shrubs to be identified to the species level; rather, 

defining the structural class (i.e., herb, grassland, shrub) could be sufficient for classifying site series 

when combined with other biotic and abiotic attributes (e.g., differentiating between bog woodland 

and bog forest). In British Columbia's southern Gulf Islands, Jones et al. (2012) were able to 

differentiate among TEM-defined structural classes using three common metrics derived from ALS 

data. All ALS variables significantly distinguished among certain TEM structural classes. The 

importance of each metric used varied with the stage differentiation under consideration. All 

structural classes were differentiable, however the number and types of ALS metrics that were able 

to distinguish among particular combinations decreased with stand age and structural complexity 

(Jones et al. 2012).  

 

Spectral data, particularly hyperspectral data, can provide important information about ecological 

conditions (Lawley et al. 2016), tree health (Michez et al. 2016), above-ground biomass (Greaves et 

al. 2016), and tree species classification (Dalponte et al. 2012, Zhang et al. 2016). Site series define 
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the potential vegetation for a site. The most promising advances in determining tree species using 

ALS occur when other optical remote sensing imagery are incorporated. The dense sampling and 

narrow band measures of the tree species’ spectral signatures allow each portion of the spectrum to 

be related to specific characteristics of the trees, which can then be interpreted for classification 

purposes (Dalponte et al. 2012). As a result, a number of studies have mapped species using a 

combination of spectral- and ALS-derived structural information (Colgan et al. 2012; Dalponte et al. 

2012). Yang et al. (2014) combined satellite multispectral imagery (RapidEye) and ALS data for 

species identification within the Canadian boreal forest. Their best result combined ALS and 

RapidEye using the Random Forest classifier. Yang et al. (2014) concluded that the most significant 

ALS metrics and RapidEye bands for tree species mapping were DEM, slope, canopy height, red-

edge NDVI, and red-edge and near-infrared spectroscopy bands. Without the fusion of spectral and 

ALS data, full waveform data provide the most likely candidate for species classification. Li et al. 

(2013) were able to classify four species, sugar maple (Acer saccharum), trembling aspen (Populus 

tremuloides), jack pine (Pinus banksiana), and eastern white pine (Pinus strobus), with an overall accuracy 

of 77.5% using only full waveform data. 

 

Finally, characterizing the forest floor is used to help classify site series. The forest floor is made up 

of organic matter that has fallen from the vegetation above (i.e., leaves, twigs, bark); it exists in 

various decompositional states, and organic matter can be macro sized (upper litter layers) or 

indistinguishable (lower humic layers). No studies were found that used ALS to specifically describe 

these characteristics. The primary studies that use ALS to measure or describe a forest floor 

characteristic are associated with forest fuel loads and are not directly applicable to TEM 

classification methods. 
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Table 2 Primary papers used in the literature review to assess the capability of ALS to classify TEM 
based attributes. DTM=digital terrain model; DEM=digital elevation model; NDVI=normalized 
difference vegetation index; SD=standard deviation; CHM=canopy height model 

Authors Remote 
Sensing 
Technology 

Primary Metrics Classes 

Akumu et al. 
2015 

ALS Elevation, slope, surface 
curvature, wetness index, 

slope position 

Soil texture: clay, coarse loamy, coarse sand, 
fine sand, organic, silt 

Alberti et al. 
2013 

ALS Stem density, tree height, 
crown depth 

Deciduous/coniferous classes;  

forest structural class (scrubland, regeneration 
phase, thicket, pole wood, adult forest, mature 
forest, multilayer forest) 

Anders et al. 
2011a 

ALS Elevation percentile, 
slope angle, topographic 
openness, hydrologically 
conditioned DEM, 
Upstream area 

Glacially eroded bedrock, ablation till, fluvial 
incision, river terrace or recent streambed, 
deep-seated mass movement, shallow mass 
movement, fall deposits, flow and/or slide 
deposits and gypsum karst 

Anders et al. 

2011b 
ALS Slope angle, topographical 

openness, elevation 
percentile, hydrologically 
conditioned DTM, 

upstream area, 

River terrace, gypsum sink holes and fluvial 

incision 

Anders et al. 
2013 

ALS Slope angle, shaded relief, 
and two relative elevation 
and topographic openness 
layers, upstream area 

Glacially eroded bedrock, fluvial incisions, 
recent fluvial deposits, fluvial terraces, alluvial 
fans, slopes subject to shallow mass 
movement processes, and flow/slide deposits 

Aspinall & 
Sweeney 

2012 

ALS Slope, hydrologically 
conditioned DEM, 
hillsheds, peaksheds and 
pitsheds 

Soil series/slope classes 

Brasington 
et al. 2012 

TLS Rugosity, local slope, 
surface relief, elevation 

NA-spatial pattern of particle size, grain 
roughness, and sedimentary facies 

Colgan et al. 

2012 
Hyperspectral  

ALS 

NDVI, various crown and 

height metrics 
15 tree species 

Dalponte et 
al. 2012 

Hyperspectral  

ALS 

Max height, interquartile 
range of all heights, 50th, 
75th, 90th and 95th 
percentiles 

Macro-classes (forest/non forest, 
coniferous/broadleaf); Forest types Maple-
Ash, Fir-Beech, Pine, Spruce replacement, 
Mugo Pine shrubbery; Seven tree species 
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Authors Remote 
Sensing 
Technology 

Primary Metrics Classes 

Farrell et 
al. 2013 

ALS 

Aerial 
photographs  

Tree height, canopy density NA-used to improve bird 
species distribution models 

Garcia-
Feced et 

al. 2011 

ALS Crown radius, tree height NA-detecting residual trees for 
owl habitat 

Greaves et 
al. 2016 

ALS, 
multispectral 

Canopy volume, veg density, max height, 
SD max height, topographic position 
index, hillshade, wetness index, openness, 

NDVI, 2GRBi (excess greenness) 

NA-shrub biomass 

Greve et 
al. 2016 

ALS Elevation, slope gradient, slope aspect, 
plan curvature, profile curvature, flow 
direction, flow accumulation, topographic 
wetness index 

Clay, silt, fine sand, coarse sand 

Heung et 
al. 2014 

ALS Elevation, slope, aspect, and curvature, 
wetness index, convergence index, relative 
hydrologic slope position, normalized 
height, slope height, sky view, terrain view, 
distance to nearest stream and river  

Parent material: colluvial, eolian, 
fluvial, glaciofluvial, lacustrine, 
glaciolacustrine, morainal, 
marine, glaciomarine 

Jones et 

al. 2012 
ALS Height percentiles (10, 20, 30, 40, 50, 60, 

70, 90, 95 and 99th), mean standard 
deviation, variance, coefficient of 
variation, max height, kurtosis, skewness, 
harmonic mean, closed gap, oligophotic, 
euphotic, open gap, total cover 

Structural stages (sparse/bryoid, 
herbaceous, shrub/herbaceous, 
pole/sapling, young forest, 

mature forest and old forest) 

Kumar et 

al. 2015 
ALS NA: Point cloud used-horizontal and 

vertical cluster patterns analyzed 

30 different canopy structure 

classes 

Latifi et al. 
2015 

Full waveform 
ALS 

Various height and density metrics NA-density described for 5 
canopy layers 

Leiterer et 
al. 2012 

Full waveform 
ALS 

Amplitude, width and intensity of 
vegetation echos, height metrics 

Understory 0.5 – 3 m, < 0.5 m, 
litter, non-vegetated 
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Authors Remote 
Sensing 
Technology 

Primary Metrics Classes 

Li et al. 2013 ALS Angular second moment, contrast, correlation, 
sum of squares, inverse difference moment, sum 
average, sum variance, sum entropy, entropy, 
difference variance, difference entropy, 
information measure of correlation 1, 
information measure of correlation 2, and 
maximal correlation coefficient 

Trembling aspen, sugar 
maple, jack pine, and 

white pine trees 

Lopatin et 

al. 2015 
ALS CHM split into height ranges: >16 m, 8-16 m, 2-

8 m, 0-2 m 
NA-species richness 

Luscombe et 
al. 2014 

TLS, ALS Hillshade, pixel density, canopy height metrics, 
aspect 

ALS classes: surface-
drainage networks 
(natural or artificial and 
rush dominated); 
stream order  

Maynard & 
Johnson 

2014 

ALS Elevation, slope gradient, aspect, profile 
curvature, plan curvature, longitudinal curvature, 
cross-sectional curvature, minimum curvature, 
and maximum curvature 

Clay, sum of bases, and 
total carbon 

Reese et al. 
2014 

ALS, optical 
satellite data 

(SPOT) 

Elevation, slope, aspect, wetness index, 95th and 
99th height percentiles, vertical canopy density 
metrics, mean and SD of height, veg ratio, SD of 
veg ratios, NDVI and NDII (normalized 

difference infrared index) 

9 vegetation classes 

Simonson et 
al. 2014 

ALS 95th quantile height, standard deviation, skew, 
foliage projected cover, veg permeability, mean 
veg height, mean understory height, foliage 

height diversity 

6 vegetation 
communities 

Thompson 
et al. 2016 

ALS  

Multispectral 

Elevation, mean height, max height, coefficient 
of variation, NDVI, Slope, topographic position 
index, topographic radiation aspect, topographic 

wetness index 

18 ecosystem clusters, 
river, pond 
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Authors Remote 
Sensing 
Technology 

Primary Metrics Classes 

Tiede et al. 2012 ALS Pixel statistics: min, max, 
median, SD, sum etc. of the 
intensity value, point height 
value and number of points per 
object 

Tree crown objects. 
Deciduous/coniferous 

Van Aardt et al. 

2011 
ALS Height metrics NA: Coarse woody debris modelling 

Van Asselen and 
Seijmonsbergen 

2006 

ALS Elevation, slope angle Fluvial terrace, Alluvial Fan, Slope 
with mass movement, Talus slope, 
Rock cliff, Glacial landform, 
Shallow incised channel and Deep 
incised channel 

Yang et al. 2014 Rapideye, ALS canopy height, percentile 
heights (50, 75, 80 and 95), 
percentage of returns above a 
pre-defined set of height break 
values ranging from 1.4 to 21.4 
m using a 2-m step, average 
intensity, slope, aspect, NDVI 

Species: trembling aspen, Balsam 
popular, white spruce, black spruce, 
tamarack, and jack pine 

Zhang et al. 2016 ALS, 

hyperspectral 

CHM, NDVI, 118 spectral 

bands 
Seven tree species 

 

2.4 The road to mapping ecosystems with ALS data 

Considerations 

The most practical form of ALS for ecosystem mapping is likely to be discrete return ALS because it 

is more available than full waveform and it can cover areas that are not practical for terrestrial laser 

scanning. Point densities can vary between 1 and 15 points/m2. Increasing point density will likely 

improve feature identification, classification, and subsequent ecosystem mapping. For example, Wu 

et al. (2016) compared five data sets of varying point densities from 0.5 to 8.0 points/m2 and found 

that for aboveground biomass, estimate errors decreased alongside increasing point density. With 

regard to terrain features, Anders et al. (2013) classified geomorphic features using data sets with 

point densities of 0.8 and 7.5 points/m2; these produced an average accuracy of 0.66 and 0.79, 
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respectively.  Increased point density has subsequently larger storage and increased processing time 

and power requirements. Depending on the application or even the terrain features, lower point 

densities could be sufficient. Coarse landforms or open forests do not require the same detail to 

identify features or understory shrubs. Subtle, micro-terrain or closed canopies may require higher 

point densities for accurate interpretation of features.  

 

The quality of ALS data collected directly relates to the quality of classification output (Anders et al. 

2013). Vegetation (leaf-off versus leaf-on) and ground (snow cover) conditions during data 

acquisition can affect data quality. However, White et al. (2015) found no significant difference (p < 

0.05) between most leaf-on and leaf-off ALS metrics used in area-based models. Canopy density 

metrics for deciduous trees and the fifth height percentile for coniferous trees were significantly 

different based on leaf conditions. ALS has contributed to the advancement of cryospheric research 

on features such as snow cover, glaciers, ice sheets, and permafrost (Bhardwaj et al. 2016). It does 

not however, penetrate snow, and to obtain the most accurate terrain metrics, data acquisition must 

occur while the ground is snow-free. 

 

Ranking feasibility 

Criteria used to classify ecosystem attributes that are highly feasible to attain using ALS data and 

which can be used in additional research are canopy characteristics, stand height, and topography 

(Table 3). While not stand-alone criteria for ecosystems, these attributes do provide a reliable and 

essential base for predictive modelling. Conversely, attributes that are currently not feasible to 

classify with ALS data are soil depth and forest floor (Table 3). Inferring soil depth, and to a lesser 

extent, soil order, based on terrain attributes and geomorphologic process is possible. However, 
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depth classifications would likely be very broad and the resolution too coarse for reliable accuracies 

to be reached (e.g., valleys have deep soil; steep slopes have shallow soil). Additionally, using ALS 

data to describe the forest floor is currently not likely given that they provide minimal information 

that can contribute toward ecosystem classification.  

 

Table 3 Feasibility of using ALS data to describe criteria for attribute classification. 

 
High Feasibility Moderate Feasibility 

(requires more research) 
Low Feasibility 

Criteria for 
classification 

 
Canopy characteristics     
Stand height  
Topographya 
 

Geomorphological process  
Drainage pattern 
Terrain attributesb 
Soil drainage 
Tree species composition 
Understory or non-forested 
vegetation composition  

Soil depth 
Forest floor  

 

a Includes landscape position and shape, aspect, slope, and drainage pattern. 

b Includes texture, parent material, surface expression, and qualifiers. 

 

The important next step is to use the well-established ALS-based metrics and integrate them with 

the classification of the less established ecosystem attributes: geomorphic process, drainage pattern, 

terrain attributes, soil drainage, tree species composition, and understory or non-forested vegetation 

composition (Table 3). The use of ALS data to classify these attributes independently is increasing. 

The integration of this knowledge into a workflow alongside the well-established metrics has yet to 

be used to test the feasibility of ALS-based ecosystem mapping.  
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Next steps 

Terrain attribute criteria that are most plausible to successfully classify using ALS are surface 

expression (e.g., blanket veneer, terrace, hummock) and surficial material (i.e., parent material). 

Drainage patterns can be discerned from hydrologically conditioned DEM and can form a critical 

component for classification of soil drainage (e.g., poorly drained, well drained). Geomorphological 

classification from ALS data has had marked success through the work of Anders et al. (2011a, 

2011b, 2013) and van Asselen & Seijmonsbergen (2006). The most appropriate layers to use for the 

delineation and classification of terrain attributes, drainage pattern, and geomorphic process will 

need to be tested. However, topographic openness (Yokoyama et al. 2002 in Anders et al. 2011a), 

elevation percentile (Gallant & Wilson 2000 in Anders et al. 2011a), surface curvature (Akumu et al. 

2015), Topographic Position Index (TPI), (Jenness 2006 in Akumu et al. 2015), and slope angle 

(Burrough & McDonnell 1998 in Anders et al. 2011a) have all been shown to be useful (Figure 2).  
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Figure 2 Example of various terrain metrics that can be calculated from an ALS based DEM and 
used for mapping ecosystems 
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For vegetation layers, delineation and classification could be improved by using the ALS point cloud 

rather than just using ALS-based DEMs (Tiede et al. 2012). It is expected that coniferous and 

deciduous trees can be distinguished and the structural stage (e.g., herbaceous, shrub, mature forest) 

identified with ALS data. For species classification, it is anticipated that spectral data will be an 

important addition to ALS data, as will indicators of the local environment, including terrain 

attributes such as Topographic Wetness Index (Figure 2) (Tarboton 1997 in Thompson et al. 2016), 

Topographic Radiation Aspect  (Figure 2) (Roberts & Cooper 1989 in Thompson et al. 2016), gap 

fraction (Thompson et al. 2016), Normalized Difference Vegetation Index, height percentiles (Jones 

et al. 2012), canopy height descriptors, and volume profiles (Jones et al. 2012).  

 

Suggested methods  

Within the current science, a wide variety of techniques for attribute classification exists, the most  

plausible being Object-based Image Analysis. Object-based approaches are applied directly to the 

point cloud or to rasterized canopy or terrain models and/or images (Höfle & Rutzinger 2011). 

Generally, these approaches first spatially segment (i.e. delineate) the surface into homogeneous 

areas to define patches of points or pixels, which represent a part of an object. Segments are then 

merged to create an object of interest by applying a classification on statistical features. Features that 

describe segments can be either related to the statistical distribution of the point or pixel values 

within them or to their geometrical and topological characteristics, such as segment shape, size, and 

neighborhood relations. 

 

It is likely that the best method will be to use a stratified approach that first segments and classifies 

individual ecosystem attributes (e.g., geomorphic process) to feature type (e.g., snow avalanches, 
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gully erosion) and then applies all of these layers to segment and classify ecosystem type. For 

Object-based Image Analysis methods, objects can be created from ALS-derived DEM data but also 

from almost every other continuous data set of an area, like optical imagery, or already existing 

classifications (e.g., cadastral maps, soil maps, land use/land cover maps, forest inventory maps) 

(Tiede et al. 2012). However, at a provincial level, many of these data are not available, so it will be 

important that attributes can be classified without these data or that areas that do have multiple data 

sets (such as many Tree Farm Licenses) are mapped first. Implementation of automated methods 

will be important to ecosystem classification and mapping. By using automated methods, analysis 

becomes easier to replicate and update.  
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Chapter 3: Classifying and mapping site series in coastal British Columbia 
using Airborne Laser Scanning 

3.1 Introduction 

Landforms and their modification of climate, influence the structure and composition of vegetation 

for a given area (Rowe 1996). Boundaries between relatively homogeneous sites are typically gradual, 

and species composition overlaps and changes across various aspects and slope positions (Bailey 

1985). There are often many interactions and dependencies, such as energy and water movements, 

that link sites (Bailey 1987), and mapping ecosystems at the site level can strengthen our ability to 

understand and manage landscapes. As discussed in the earlier chapters, the Terrestrial Ecosystem 

Mapping (TEM) approach used in British Columbia primarily uses aerial photography and fieldwork 

to identify and delineate ecosystem patterns and define classes. In the TEM system, site series is the 

finest scale used to classify ecosystem type at the site level and describes the potential climax 

community for a site, as indicated by the soil nutrients and moisture in a location.  

 

The current practice for mapping site series through TEM in BC can be labour intensive, requiring 

the input of expert ecologists, who preferably are familiar with the location being mapped, and 

additional field verification. Due to the level of detail required and often, difficult terrain (limited 

accessibility) of the landscapes, this is a time consuming and expensive process. Field observations in 

hard to access areas are often limited, and thus, interpretations of data may be subject to bias. With 

the continued advancement and application for ecosystem attribute mapping using remote sensing, 

testing the capacity of these technologies to map site series is the next logical step.  
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Mapping Site Series 

A site series is the suite of sites within a BEC subzone or variant (i.e., subregional climatic envelope) 

that support the same (potential) mature plant community (Pojar et al. 1987). Site condition (and 

potential vegetation) is determined by attributes such as warmth (e.g. south slopes are warm, or a 

depression may experience cold air ponding), moisture, which is influenced by soil texture and slope 

position (e.g. sandy soils drain quickly, depressions hold water longer), slope position (e.g. ridge 

crests have fewer nutrients and more exposure to sun and wind), and slope angle (e.g. steep slopes 

may have shallower soils and drain water relatively rapidly). All of these attributes are connected and 

sometimes attributes compensate for each other. An attribute that tends to increase moisture may 

compensate for an attribute that tends to decrease moisture or nutrient availability nutrients (e.g., 

coarse-textured soil in a lower slope position) (Green and Klinka 1994). Thus, site series can be 

difficult to predict, especially if soil type is unknown. One outcome, regardless of the factors at play, 

is the composition and structure of a site’s vegetation (Swanson et al. 1988).   

 

Mapping site series has largely depended on using vegetation as the indicator of site level moisture 

and soil nutrients. However, this has limitations. With climate change affecting tree line positions 

and species migration (Aitken et al. 2008; Potter et al. 2017), late successional species are changing, 

and the full dynamics of this transition are not fully understood (Aitken et al. 2008, Prasad et al. 

2016; Wang et al. 2016). Defining ecosystems based on climax vegetation potential could be difficult 

in this changing environment, especially for an area that is in post disturbance and early successional 

stages. What the late successional vegetation for a site will look like in 100 years is no longer 

something that can be easily predicted.  
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Additionally, mapping site series based on vegetation can be difficult in areas that have been heavily 

harvested or have experienced widespread natural disturbances (e.g. fire, insect) and for which no 

seral classification currently exists. It can be difficult for the human interpreter to segment or classify 

site series from aerial photography in this scenario. Fieldwork to verify site conditions and /or 

knowledge of the specific location will be required. Since species composition is , in part, a result of 

topography, it is reasonable to assume that using topographic information for mapping site series 

would confer advantages. Even as species composition changes in future decades, being able to 

segment a site based on attributes that are typically slower to change (e.g. drainage, aspect, and slope 

position), allows room for refining definitions and predictions surrounding ecosystem ecology for a 

given location. The goal of this study was to use the inventory of ALS-based approaches compiled 

in the previous chapter to guide site series classification of a test landscape with an existing 

Terrestrial Ecosystem Map, using ALS derived vegetation and terrain metrics both in isolation and 

in combination.  

 

3.2 Study Site 

The study site is approximately 25-km2, near Campbell River, BC located within the very dry-

maritime Coastal Western Hemlock Biogeoclimatic subzone (CWHxm) (Pojar et al. 1987) (Figure 3) 

The CWH zone has 10 subzones (Figure 4), which vary in precipitation and continentality. The 

study site spans the east (CWHxm1) and west (CWHxm2) variants of the subzone with annual 

precipitation averaging 1500 mm and temperature averaging 9.1°C (Pojar et al. 1991). This subzone 

has a maritime climate with typically cool summers and mild winters, though some years dry 

conditions dominate summer.  The study area has an elevation ranging from 120 - 460 m, and is 

within 10 -15 km from the coast. Douglas-fir (Pseudotsuga menziesii) is the dominant tree species on 
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dry to mesic site series, though wetter site series will contain (relatively more) western redcedar 

(Thuja plicata) and western hemlock (Tsuga heterophylla) (Green and Klinka 1994). The study site has a 

history of harvesting. When the ALS data was acquired (2004) much of the overall area had been 

harvested within the past several decades. Soils within the area range from very gravelly textured 

Duric Humo-Ferric Podzols of fluvial origin at low elevations, to gravelly sandy loam textured Duric 

Humo-Ferric and Ferro-Humic Podzols of morainal origin at intermediate elevations to shallow 

stony Ortho Humo-Ferric Podzols on colluvium on higher elevation hilltops (Jungen 1985). 

 

Figure 3 Approximate location of study site (Quickbird image), which is near Campbell River, 
British Columbia 
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Site Series 

The TEM classification was provided by the Canadian Forest Service (CFS 2005). The CFS 

compiled source data provided by Timberwest and Weyerhauser in 2005, the two forest companies 

that were operating in the area. The CFS completed GIS operations to combine the two datasets 

along the boundary within the study area (CFS 2005). The study site contains nine site series and five 

non-vegetated/sparsely vegetated or anthropogenic units (14 total) according to the TEM map. The 

mapped area of each of nine of these 14 classes made up less than 1% of the total mapped area. For 

simplification, these minor classes, with the exception of the water bodies (river and pond), were 

grouped and not discriminated. As a result, the major TEM site series and non-vegetated units, 

which were the focus of this study, are show in Table 4.  

 

Table 4 Site series and non-vegetated unit descriptions for the study area 

Site 
Series 
Code 

Site Unit 
Name 

Dominant Tree 
Species 

Primary 
Understory  
Species 

Slope Position 
and Angle 

Aspect Drainage
1 

01 Western 
hemlock-
Douglas fir-
Oregon 
beaked moss 

Western hemlock 
Douglas-fir  

Feather 
mosses (e.g. 
Oregon 
beaked moss) 
Salal 
Dull Oregon 
Grape 
Red 
huckleberry 

Varied Varied m-w 

03 Douglas-fir 
western 
hemlock-salal 

Douglas- fir 
Western redcedar 
Western hemlock 

Salal 5-100% 
Upper slope or 
valley bottom 

Varied w-r 

05 Western 
redcedar-
sword fern 
 

Western redcedar 
Western hemlock 
Grand fir 
Douglas-fir 

Sword fern 
Salal 
Red 
huckleberry 

10-100% 
Mid-slope 

North 
facing 
(285-
135°)  

m-w 
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Site 
Series 
Code 

Site Unit 
Name 

Dominant Tree 
Species 

Primary 
Understory  
Species 

Slope Position 
and Angle 

Aspect Drainage
1 

07 Western 
redcedar-foam 
flower 

Western redcedar 
Western hemlock 
Red alder 
Grand fir 
Bigleaf maple 

Dull-Oregon 
grape 
Salmonberry 
Thimbleberry 
Herbs (e.g. 
foam flower; 
swordfern) 

Toe slopes 
Level sites with 
poor drainage 

Varied i-m 

12 Western 
redcedar-Sitka 
spruce-skunk 
cabbage 

Western hemlock 
Sitka spruce 
Red alder 
Big leaf maple 

Salmonberry 
Thimbleberry 
Skunk cabbage 

0-10% 
Depressions 

Varied p 

RI River NA NA Depression NA p 

PD Pond NA NA Depression 
 

NA P 

1 r=rapidly drained; w=well drained; m=moderately well drained; i=imperfectly drained; p=poorly drained 
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Figure 4 Subzones for the British Columbia's Coastal Western Hemlock Zone. The study site is 
located within the xm subzone. Name codes are: x = very dry; d = dry; m = moist; w = wet; v = very 
wet; h = hypermaritime; m = maritime; s = submaritime; un = undifferentiated. 
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3.3 Data acquisition 

Airborne laser scanning data were acquired June 8, 2004, using the Terra Remote Sensing’s (Sidney, 

British Columbia, Canada) ALS instrument on a Bell 206 Jet Ranger helicopter. Based on the pulse 

frequency, lowest sustainable flight speed and altitude, ground point sampling densities of 0.7 m–2 

were achieved with a beam footprint (ground spot size) of 0.19 m diameter (Coops et al. 2007). 

Separation of ground versus non-ground (canopy) hits was conducted using Terrascan v4.006 

(Terrasolid, Helsinki, Finland). Additionally, a 2-m gridded digital elevation model (DEM) was 

developed from all ALS ground hits using GIS-based DEM generation software (Arc/Info, 

TOPOGRID), based on the ANUDEM program (Hutchinson 1989). All ground classified ALS hits 

were used in the DEM development and all non-ground ALS hits were subtracted from the 

topographic surface to produce a canopy height model (CHM). 

 

3.4 Methodology 

Object Based Image Analysis 

Object-Base Image Analysis (OBIA) approaches are increasingly being used as a tool for analyzing 

and classifying remotely sensed data. Object-based approaches can be applied either directly to an 

ALS point cloud or to rasterized canopy or terrain models (Höfle and Rutzinger 2011). Often OBIA 

uses a multiresolution segmentation algorithm to spatially segment the surface into homogeneous 

areas, which represent an image object. Objects are then classified using rules based on statistical 

features. Features describing objects can be either related to the statistical distribution of the point 

or pixel values within them, or to the features’ geometrical and topological characteristics, such as 

segment shape, size, and neighborhood relations.  
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Object-Based-Image-Analysis allows for the integration of multiple data sets (thematic or raster) in 

both the segmentation and classification. The data used at each stage can be different. Multi-

resolution segmentation approaches uses input layers as criteria for calculating the heterogeneity of 

pixels within a defined object size threshold. The size of the image objects created is controlled by 

the scale parameter. Larger objects contain more information and affect the scale at which 

classification can be performed. If objects are too small, there is not enough information for 

classification; on the contrary, too much information makes class-specific heterogeneity harder to 

define (Anders et al. 2011a).  The goal is to have image objects similarly sized, or slightly smaller, 

than the features being classified (Anders et al. 2011a). Likewise, if too many layers are used as 

inputs, segmentations may lose meaning. Therefore, it is critical to determine both the scale and 

input layers most suitable for the features being mapped.  

 

In the classification process, rules can either be pre-established based on existing information or 

manually applied using tools such as feature view (Cleve et al. 2008; Aksoy & Ercanoglu 2012). 

Feature view allows the values of a chosen metric to be represented on a colour gradient from blue 

to green, with green representing higher values. Value thresholds can then be tested to determine 

which objects would be classified in the given threshold. Object-Based-Image-Analysis is ultimately 

a trial-and-error approach, controlled by the interpreter (Yildiz et al. 2012; d'Oleire-Oltmanns 2013; 

Kolecka et al. 2014). The interpreter is typically an expert in the field for the feature being mapped 

and ideally, familiar with the landscape being mapped. If classification rules can be identified 

through successive classifications that have high validation accuracies, the segmentation 

parametrization and classification rule setting can become increasingly automated with a reduced 

trial-and-error approach (Anders et al. 2011a).  
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Workflow overview 

Landform directly influences ecosystem patterns and processes. Elevation, aspect, and slope angle 

influence air and ground temperature and the quantities of moisture and nutrients available, which in 

turn, are expressed in the composition and structure of vegetation (Swanson et al. 1988). Vegetation 

patterns resulting from these influencers can been observed across landscapes at varying scales from 

a few to thousands of hectares (Billings 1973; Bailey 1987; Swanson et al. 1988). Based on this 

understanding, the workflow implemented here begins by using terrain indices to segment and create 

broad classes (slope position and wetness) that are then used to classify site series. Vegetation 

metrics are used to distinguish site series within the broader classes. ALS vegetation data for the 

study area were limited due to recent harvesting and could not adequately be used to test 

applicability of vegetation information to the segmentation and broader classification.  

 

The workflow implemented for this study is highlighted in Figure 5. Both the segmentation and 

classification stages are stratified into multiple steps. The primary steps for the entire process 

include: (1) Data preparation; (2) Find the best segmentation parameters; (3) Segment and classify 

the river; (4) Segment for site series; (5) Classify moisture; (6) Classify slope position-wetness; (7) 

Classify site series (8) Accuracy Assessment 
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Figure 5 Overview of workflow used for this study. Segmentations are performed on individual pixels 
and classifications are performed on objects or existing classifications 

 

Data Preparation and Derivation of ALS metrics 

Various studies that have used ALS data to map ecosystem attributes have implemented a wide 

range of metrics for both terrain and vegetation classifications (Thompson et al. 2016; Campbell et 

al. 2017). Terrain metrics can describe the position of a given location on the landscape (e.g. slope, 
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aspect, elevation or openness) and indicate how water flows through it. Vegetation metrics often 

relate to the structure and composition (e.g. tree heights or canopy density).  

 

In step 1, a number of metrics were extracted from the ALS data based on the review in Chapter 2 

and are described in Table 5. All terrain metrics were calculated from the ALS derived DEM in 

ArcGIS or in R-studio when an ArcGIS tool did not exist to perform the calculation. Vegetation 

metrics were calculated from the canopy height model (CHM) and processed using FUSION 

software (McGaughey 2014). A grid cell size of 20 was used for the vegetation metrics and a height 

break of 2 m was used (Magnussen & Boudewyn 1998; Næsset 2002).  

 

Table 5 Terrain and vegetation metrics used for the segmentation and classification of site series 

Metric Derivation Interpretation 

Elevation Height, in metres, above sea level. Derived 
directly from the 2 m DEM. 

Study site elevations range from 126 m 
to 435 m.  

Elevation 
Percentile (EPC) 

The percentage of cells lower than a centre cell 
in a given neighbourhood. A neighbourhood of 
25-m was used (Gallant & Wilson 2000). 

Provides information about a specific 
location relative to its surrounding. 
Values closer to 0 are lower in their 
surrounding landscape (valleys), while 
values closer to 1 are higher (ridge). 

Slope angle The maximum rate of change between each cell 
and its neighbours. 

Slope in the study site ranged from level 

(0°) to very steep (87°) 
Topographic 
Openness (TO) 

Calculated as the mean angle between a centre 
cell and its surrounding cells in 8 directions 
(Yokoyama et al. 2002). A neighbourhood of 
25 m was used for this study. 

The degree of enclosure of a particular 
location within a landscape 

Topographic 
Position Index 
(TPI) 

The difference between a cell elevation value 
and the mean elevation of its surrounding cells 
(Jenness 2006). Neighbourhoods of 10 m 
(TPI10) and 500 m (TPI500) were calculated. 

Smaller neighbourhoods highlight 
detailed slope position; for example, a 
small depression on a ridge would likely 
be included as a ridge in a larger 
neighbourhood. 
 

Topographic 
Wetness Index 
(TWI) 

TWI = ln (flow accumulation)/tan(slope))  
(Beven and Kirkby 1979) 
Flow accumulation calculated using the D8 
algorithm. 

Measure of wetness based on flow 
accumulation and slope. Higher values 
are increasingly wet and lower values 
are drier. 

Topographic TRASP = (1-cos (3.1416/180) (aspect-30)))/2, Measure of slope warmth based on 
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Metric Derivation Interpretation 

Radiation 
Aspect (TRASP) 

where aspect is in degrees (Roberts and Cooper 
1989). 

aspect. Values closer to 0 are cooler (N, 
E, NE, NW) and values closer to 1 are 
warmer (S, W, SW, SE). 

Drainage 
Network 

Log10 of the flow accumulation value for each 
cell with a contributing area greater than 100 
m2  

Not used directly in the OBIA process 
but used to identify the primary 
drainage pathways and visually confirm 
that classes are logical. 

Gap Fraction Ratio of total numbers of ALS points < 2 m to 
the total number of returns within a grid cell 
(Hopkinson & Chasmer, 2009). 

Measure of how dense a canopy is. 
Higher values represent lower canopy 
cover. 

Height max Based on the CHM. It is the highest return 
value (m) per grid cell. 

Height of the tallest tree (or shrub) in a 
grid cell 

Height mean Mean of return height values (m) ≥ 2 m per 
grid cell. 

The average height of trees within a 
grid cell 

Coefficient of 
Variation (CV) 

Second central moment about the mean. Describes vegetative vertical 
heterogeneity; higher values have 
greater heterogeneity. 

 

 

Step 2: Find the best segmentation parameters 

Segmentation was performed using eCognition software. In step 2 (Figure 5), the optimum 

segmentation parameters were determined through a multistage process. To determine the most 

appropriate terrain indicators and the optimum combination of input metrics for the study site, each 

possible combination of three, four, and five metrics was produced from the seven terrain metrics 

(91 total combinations) and segmentation was performed using a set scale parameter of 100. All 

segmentation objects were exported as shapefiles into ArcGIS and were overlaid with the TEM 

map, and a visual comparison of boundaries of the segmentation objects and the TEM polygons 

boundaries was performed (Zhang et al. 2008; Albrecht et al. 2010; Johnson and Xie 2011). The 10 

combinations of metrics that produced units that best (visually) coincided with the TEM polygons 

were then applied using eCognition software to test for the best scale parameter.  
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To determine the most appropriate scale parameter, a second test was performed where each of the 

10 different combinations of input metrics were segmented with scale parameters varying from 40 - 

90 at intervals of 10. This produced a new set of 60 segmentation outcomes (10 input combinations 

of metrics at 6 different scale parameters each). Again, the segmentation outcomes were imported to 

ArcGIS and visually assessed relative to the TEM map..  

 

Lastly, using eCognition, the best six combinations of metrics (with their associated scale 

parameters), were segmented again, but with varying image layer weights. Outcomes were visually 

assessed and image layer weights adjusted accordingly.  

 

Step 3: Segment and classifying the Oyster River 

Segmenting objects that identified the primary river (i.e. Oyster River) through the study area was 

performed in step 3. Once objects were created that included the river by following the process 

described in Step 2, classification rules were applied and the objects classified as ‘river’ were then 

merged.  

 

Step 4: Segment for site series 

In step 4, once the river segments were identified, segmenting for site series was then performed. 

The best parameters, established in step 2, were used to segment the landscape. The segmented 

objects created in this step were then used in three subsequent steps to assign site series. First each 

polygon was assigned a moisture class, then a topographic position and finally classified into one of 

the existing site series classes. These are described below as steps 5, 6 and 7.  
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Step 5: Assign moisture classes to each delineated site series 

In step 5, classification rules were applied to the site series based image objects. Moisture was 

classified using the ALS derived TWI, which is a steady-state wetness index that takes into account 

upslope catchment area (flow accumulation) and slope angle (Beven & Kirkby 1979). Ponds (there 

are no lakes within the study site) were also classified in this step. Wetness thresholds were based on 

the range of TWI values within the TEM based site series and were allocated as: 

 

Pond: TWI ≥ 8.7 

Wet: 6.4 ≤ TWI < 8.7 

Moderate: 5.5 ≤ TWI < 6.4 

Dry: 4.2 ≤ TWI < 5.5  

Very Dry: TWI < 4.2 

 

Step 6: Assigning slope position-wetness classes 

In step 6, slope position-wetness (SP-W) classes were established. Topographic Position Index (TPI) 

was used to calculate slope position as defined by Jenness (2006). Threshold TPI values are 

established according to standard deviations from the elevation, which accounts for elevation 

variability within that neighborhood (Jenness 2006). Values near zero are either flat or mid-slope so 

slope angle is used to differentiate them. A neighbourhood of 500 m was used (Weiss 2001; Jenness 

2006).  The classification rules combined slope position with the wetness classes to create the SP-W 

class (e.g. If “Wet” had a -1 SD < TPI500 ≤ -0.5 SD than it was classified as “Toe Slope-Wet”; if 

“Dry” had a TPI500>1 SD than it was classified as “Crest-Dry” etc.). The slope position thresholds 

used to establish slope position were: 
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Depression: TPI500 ≤ -1 SD 

Toe Slope: -1 SD < TPI500 ≤ -0.5 SD 

Flat Slope: -0.5 SD < TPI500 < 0.5 SD and Slope ≤ 5° 

Middle Slope: -0.5 SD < TPI500 < 0.5 SD 

Upper Slope: 0.5SD < TPI500 ≤ 1 SD 

Crest: TPI500 > 1 SD 

 

Where TPI500 = Topographic Position Index with a 500 m cell window and SD=Standard 

Deviation 

 

Step 7: Classify site series 

In step 7, the final step was to assign TEM classes to each of the moisture and topographic position 

ranked polygons. Rules for site series classification were both semi-automated and manual. Rules for 

site series classification were first set according to Table 6. This table is based on information from 

several reports and manuals (Klinka & Demarchi 1991; Madrone Environmental Services Ltd. 2008) 

(initially summarized in Table 4) and inferences the average slope position and wetness for each site 

series as found throughout the CWHxm. The table was referenced in such a way, that if a single site 

series (e.g. SS 03) fell under a particular slope position-wetness class (e.g. Crest-Very Dry) then class 

would be re-classified as the associated site series. Classes are then manually refined based on 

applicable metrics (e.g. max height, TRASP) in an effort to differentiate between classes with 

homogeneous data. Manual refinement was aided by using the feature view tool in eCognition. Step 

7 was performed twice, once using both vegetation and terrain metrics and another time using only 

terrain metrics.  
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Table 6 Site series (01, 03, 05, 07, and 12) and their primary associated wetness and slope positions 
within the CWHxm subzone. Multiple site series can exist in one slope position and share similar 
wetness thresholds. Thus further refinement is required for classification. 

 

Step 8: Accuracy Assessment 

Lastly, the site series classifications were validated using the TEM map as the reference. Following 

the methodology identified in Wulder et al. (2007), a stratified random sampling approach was used 

to identify samples for validation. An overall sample size of 1128 was selected using Equation 1 

(Cochran & William 1997) where n is the total sample size, z is the percentile of the standard normal 

(1.96 for 95% confidence interval), m is the margin of error (0.02) and p is the assumed population 

proportion (0.85).  

𝑛 = {(
𝑧

𝑚
)

2

} 𝑋 𝑝 𝑥 (1 − 𝑝) 

Equation 1 

 

Sample points were allocated to site series classes using Equation 2 (Czaplewski and Patterson, 

2003). Where ni is the sample size allocated to class i, pi is the proportion of the total area mapped as 

i, n is the total sample size, and k is the number of classes (7). 

 

Slope Position Wetness (moisture class) 

 Very Dry Dry Moderate Wet 

Crest 03 03, 01 - - 

Upper 03 03, 01 01 - 

Mid - 01, 05 01, 05 - 

Flat - 01 01, 07 - 

Toe - 01 01, 07 - 

Depression - - 01 12 
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𝑛𝑖 = {𝑝𝑖  𝑋 (
𝑛

2
) + (

1

𝑘
) + (

𝑛

2
)} 

Equation 2 

 

ArcGIS was used to produce the random samples with a buffer applied between class samples at a 

minimum of 10 m (Table 7). The accuracy assessment was carried out in R-Studio. 

 

Table 7 Sample allocation for accuracy assessment of site series classification 

Class % of Total Area Target Number of Samples 

1 67.87 482 
3 9.90 134 

5 9.62 134 

12 8.58 126 

7 3.43 96 
RI 0.55 78 

PD 0.05 78 

 

3.5 Results 

Find the best segmentation parameters 

Table 8 displays the optimal parameters found for segmenting both the river and site series by 

comparing the TEM polygons to the derived image objects. Overall, the comparison of the 

segmentation indicated that the optimal image object size, for capturing the site series boundaries, 

was smaller than the average TEM polygon size. Objects were later merged to create polygons more 

similarly sized to the TEM polygons. Figure 6 demonstrates these size differences between the TEM 

polygons and the segmentation results for the river and site series. The TEM polygons are generally 

larger than those segmented in the OBIA process are; however, their size range is much larger (note 

the small SS 05 connected to the SS 12 lower centre in the TEM image). A larger scale parameter 

results in larger image objects as seen in the river and site series segmentations (Figure 6). The larger 
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image objects produced in the river segmentation often included multiple site series and did not 

align to the TEM polygon boundaries. Additionally, the shape of the image objects differed 

according to the metrics and the associated layer weights used (Table 8). The river segmentation 

included TWI, which was weighted more heavily than EPC or TO (1.5) and as a result, generally 

included drainage patterns in the image object boundaries more distinctly than the site series 

segmentation. Elevation was found to improve site series segmentation but it required a lower 

weighting (0.25) otherwise the image objects were narrow and distinctly shaped according to the 

elevation contours. 

 

Table 8 Optimum segmentation parameters used for the river and site series 

 Metric Image Layer Weight Scale Parameter 

R
iv

e
r 

EPC 1 90 

TO 1 

TWI 1.5 

S
it

e
 

S
er

ie
s Elevation 0.25 45 

Slope 1 

TPI10 1 
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Figure 6 Enlarged section of study area segmentation results for site series and the Oyster River 
compared to TEM polygons. A shows the segmentation for site series; B shows the segmentation for 
the river and C is the reference TEM (classified for site series within the CWHxm). 

 

Classification of Wetness and Slope Position 

The results for the wetness and SP-W classes using the thresholds derived in Steps 5 and 6 are 

displayed in the classification maps (Figures 7 and 8) and tables of area by class (Tables 9 and 10). 
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The ‘moderate’ wetness class covered the most area (1148 Ha) and, with the exception of the pond 

(0.85 Ha), the ‘very dry’ class covered the least (45 Ha). Among slope positions, the dry upper slope 

position (Upper-Dry) covered the most area (361 Ha), while very dry mid-slopes (Mid-Very Dry) 

and wet upper slopes (Upper-Wet) covered the smallest area at 2.9 Ha and 17.5 respectively. 

 

Table 9 Area (Ha) of each wetness class derived for the study area 

Wetness Class Area (Ha) 

Very Dry 45.08 

Dry 533.27 

Moderate 1148.17 

Wet 728.93 

PD 0.85 
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Figure 7 Wetness classes created using OBIA methods. Topographic Wetness Index was used to set 
class thresholds 
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Table 10 Area (ha) of each Slope Position - Wetness (SP-W) class derived for the study area 

 

 

 

 

 

 

SP-W Class Area (Ha) SP-W Class Area (Ha) 

Depression - Moderate 156.10 Mid - Dry 66.68 

Depression - Wet 215.62 Mid - Moderate 325.46 

Flat - Dry 89.44 Mid – Very Dry 2.86 

Flat - Moderate 171.08 Mid - Wet 32.24 

Flat - Wet 341.17 Upper-Dry 361.25 

Toe - Dry 23.95 Upper-Mod 338.32 

Toe - Moderate 157.22 Upper – Very Dry 34.17 

Toe - Wet 122.41 Upper - Wet 17.48 
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Figure 8 Slope Position - Wetness classes. Topographic Position Index and Topographic Wetness 
Index were used in conjunction to set classification thresholds 
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Classification of Site Series 

Once slope position and wetness were established for each image object segmented for the study 

area, site series was classified (Figure 9). The areas each site series covers for both classifications 

(only using terrain metrics and using both terrain and vegetation metrics) and for the TEM polygons 

are summarized in Table 11. For all classifications, SS 01 covered the most area. Site series 07 

covered the least (not including PD and RI) area for the TEM and terrain only classification but in 

the classification that included vegetation metrics SS 05 had the least coverage (112 Ha). The use of 

terrain only vs. joint vegetation and terrain metrics resulted in distinctly different relative 

proportions of site series classified. For example, using only terrain metrics classified a similar 

amount of the landscape as SS 01 relative to the TEM (0.43% decrease); whereas the addition of 

vegetation metrics resulted in mapping with 20% less total area in SS 01 than the TEM. Conversely, 

using only terrain metrics classified approximately 50% less area in SS 05 than the TEM, whereas the 

addition of vegetation metrics resulted in mapping with close to 50% more area in SS 05 than the 

TEM. Both approaches classified substantially more of the landscape in site series 07 than did the 

TEM. The classification that used only terrain metrics had an increase of 88%, while the inclusion of 

vegetation metrics resulted in the largest difference from the TEM at 165% increase of area covered 

by SS 07. 
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Figure 9 Classified maps produced using OBIA methods. A is the reference TEM map. B is when 
both terrain and vegetation metrics were used for classification and C is when only terrain metrics 
were used. 
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Table 11 Area (Ha) of each site series class for the reference TEM classification and for the ALS 
based (veg and terrain and terrain only) classifications. Percent increase or decrease from the base 
TEM map is also shown. 

 

 Area  

Class TEM Terrain 
% Difference 
from TEM Veg and Terrain 

% Difference 
from TEM 

1 1678.41 1671.11 -0.43 1331.05 -20.70 

3 244.73 248.29 1.45 269.89 10.28 

5 237.45 112.32 -52.70 348.32 46.69 

7 84.71 159.68 88.50 224.09 164.54 

12 212.23 264.05 24.42 282.10 32.92 

PD 1.24 0.85 -31.45 0.85 -31.45 

RI 13.65 18.75 37.36 18.75 37.36 

 

The specific parameters and their associated criteria used to classify site series were different for 

each process (terrain metrics only or terrain and vegetation) and are summarized in Table 12. For 

both processes, mean slope, mean TWI and mean TRASP were necessary for differentiating 

between site series. TWI was especially helpful for isolating the drier and wetter site series (3 and 12 

respectively). Site series 05 is typically on cooler slopes; therefore, TRASP was used to help identify 

its boundaries. For the vegetation metrics, only CV and max height were found to help. Max height 

was used to differentiate SS 03 and SS 01 from each other (drier sites are typically less productive 

(i.e. shorter trees)). Mean CV had the most heterogeneity within SS 05, SS 07 and SS 12 for the 

vegetation metrics (SS 05 had the lowest CV and SS 07 had the highest). The capacity to use 

vegetation metrics for distinguishing classes was limited because many of the locations did not have 

data due to recent harvesting, also making it impossible to directly compare the classification results.     
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Table 12 Simplified overview of the process used for two classifications using eCognition software 
(terrain-only and veg and terrain). TRASP=Topographic Radiation Aspect; TWI= Topographic 
Wetness Index; CV=coefficient of variation (Veg height); height max refers to tree height >2m; 
VD=very dry; D=dry; Mod=moderately dry; W=wet; Up=upper slope; Mid=middle slope; 
Dep=depression; SS=site series. 

 Class Parameter Criteria/Classified as 

T
e
rr

a
in

 O
n

ly
 

SS 03 Classified as 
Mean slope 
Area, Relative Border  
Merge 

Crest and Up-VD 
Threshold and Up-D 
Thresholds and SS 01 
SS 03 

SS 05 Mean TRASP  
Merge 

Mid-Mod, Mid-D 
SS 05 
 

SS 07 Minimum TWI  
Merge 

Threshold and Toe-Mod, Flat-Mod 
SS 07 

SS 12 Classified as 
Mean TWI 
Mean TWI 
Merge 

Dep-Wet 
Threshold and Toe-W, Flat-W 
Threshold and SS 01 
SS 12 

SS 01 Classified as 
Mean slope 
Mean TRASP 
Minimum TWI 
Mean TWI 
Area 
Shape Index and Relative Border 
Area 
Shape Index and Relative Border 
Area 
Shape Index and Relative Border 
Area 
Merge 

Dep-Mod, Flat-D, Mid-VD, Mid-W, Toe-D, Up-Mod, 
Up-W 
Threshold and Up-D 
Threshold and Mid-Mod, Mid-D 
Threshold and Toe-Mod, Flat-Mod 
Toe-W and Flat-W 
Threshold and SS 12 
Thresholds and SS 03 
Threshold and SS 03 
Thresholds and SS 05 
Threshold and SS 05 
Threshold and SS 07 
Threshold and SS 07 
SS 01 

T
e
rr

a
in

 a
n

d
 V

e
g

e
ta

ti
o

n
 

SS 03 Classified as 
Mean Slope and Mean height-max 
Relative Border 
Area and Relative Border 
Merge 

Crest and Up-VD  
Threshold and Up-D 
Thresholds and Toe-D 
Thresholds and SS 01 
SS 03 

SS 05 Mean TWI, Mean CV, Mean 
TRASP 
Mean TWI and Mean CV  
Mean TWI, Mean TRASP, Mean 
CV 
Merge 

Thresholds and Mid-Mod 
Thresholds and Toe-Mod, Flat-Mod 
Thresholds and Toe-Wet, Flat-Wet 
SS 05 

SS 07 Mean TWI, Mean CV, Mean 
TRASP 
Mean TWI and Mean CV 
Mean TWI, Mean TRASP, Mean 
CV 

Thresholds and Mid-Mod 
Thresholds and Toe-Mod, Flat-Mod 
Thresholds and Toe-Wet, Flat-Wet 
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Class Parameter Criteria/Classified as 
T

e
rr

a
in

 a
n

d
 V

e
g

e
ta

ti
o

n
 

SS 
12 

Mean TWI 
Mean TWI and Mean CV 
Mean TWI, Mean TRASP, Mean 
CV 
Mean TWI 
Merge 

Threshold and Dep-Wet 
Thresholds and Toe-Mod, Flat-Mod 
Thresholds and Toe-Wet, Flat-Wet 
Threshold and SS 01 
SS 12 

SS 
01 

Mean TWI 
Classified as 
Mean Slope and Mean height-max 
Mean TWI, Mean CV, Mean 
TRASP 
Mean TWI and Mean CV 
Mean TWI, Mean TRASP, Mean 
CV 
Area 
Shape Index and Relative Border 
Area 
Shape Index and Relative Border 
Area 
Shape Index and Relative Border 
Area 

Threshold and Dep-Wet 
Dep-Mod, Flat-D, Mid-D, Mid-VD, Mid-W, Up-Mod, 
Up-W 
Threshold and Up-D 
Thresholds and Mid-Mod 
Thresholds and Toe-Mod, Flat-Mod 
Thresholds and Toe-Wet, Flat-Wet 
Threshold and SS 12 
Thresholds and SS 03 
Threshold and SS 03 
Thresholds and SS 05 
Threshold and SS 05 
Thresholds and SS 07 
Threshold and SS 07 

 

Accuracy Assessment 

The accuracy assessments are presented in confusion matrices (Table 13 and Table 14). The terrain-

only classification and the terrain/vegetation classifications were evaluated with overall accuracies of 

59% and 56% respectively. The producer and user accuracies for both comparisons show that some 

site series are easier to classify than others are. Site series 12 and SS 03 were the easiest to distinguish 

and had their highest accuracies in the terrain-only classification (user accuracies were 58% and 67% 

respectively). The best SS 05 classification (producer and user accuracy of 22%) was when 

vegetation metrics were included in the classification. Site series 07 was never classified accurately 

(producer and user accuracies of zero in both comparisons). Waterbodies (i.e. river and pond) had 

high classification accuracies for both user and producer accuracies (99% and 100%) for both 

classifications (terrain-only and terrain/veg).  
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Table 13 Comparison between the classification using only terrain metrics and the point-based 
reference data (TEM map) 

Reference 
Data 

Classification 
   

RI PD 7 5 3 12     1 Total 

User's 
Accuracy 

(%) 

Producer's 
Accuracy 

(%) 

Overall 
Accuracy 

(%) 

RI 78 0 0 0 0 0 0 78 99 100 59 

PD 0 54 0 0 0 0 24 78 100 69 
 7 0 0 0 0 0 0 0 0 0 0 
 5 0 0 13 2 0 11 108 134 6 1 
 3 1 0 2 4 65 3 59 134 67 49 
 12 0 0 3 1 0 61 60 125 58 48 
 1 0 0 40 28 32 31 350 481 58 73 
 Total 79 54 58 35 97 106 601 

     

 

Table 14 Comparison between the classification using both terrain and vegetation metrics and the 
point-based reference data (TEM map) 

Reference 
Data 

Classification 
   

RI PD 7 5 3 12 1 Total 

User's 
Accuracy 
(%) 

Producer's 
Accuracy 
(%) 

Overall 
Accuracy 
(%) 

RI 78 0 0 0 0 0 0 78 99 100 56 

PD 0 54 0 0 0 0 24 78 100 69 
 7 0 0 0 0 0 0 0 0 0 0 
 5 0 0 16 30 2 14 72 134 22 22 
 3 1 0 5 17 64 4 43 134 61 48 
 12 0 0 5 18 1 65 36 125 57 52 
 1 0 0 52 70 38 32 289 481 62 60 
 Total 79 54 78 135 105 115 464 

     

3.6 Discussion 

Workflow overview 

Ecosystems are highly complex with many interactions influencing their composition and structure; 

applying a stratified approach to the segmentation and classification is common practice for 

addressing similar complexities (Anders et al. 2011a; d'Oleire-Oltmanns 2013). While the overall 

accuracies for both classifications were not high (56% with vegetation metrics and 59% without), the 

workflow itself has potential. The workflow funnels information from broad to narrow, aiming to 
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hone in on the attributes known to influence site series the most (nutrients and moisture) (Green 

and Klinka 1994). Upper slopes shed water more quickly and thus, are drier; lower slopes are water 

receiving and subsequently wetter (Figure 10). Additionally, dissolved nutrients make their way 

downhill with the water, and lower slopes are consequently often more productive. Middle slopes 

often shed and receive water equally and zonal sites often dominate here (Green and Klinka 1994). 

Therefore, classifying the study site using surrogates of slope position and wetness, helped build the 

classification rules for the more fuzzy boundaries of site series. 

 

 

Figure 10 Typical relationship between slope position and drainage on a hillslope (Green and Klinka 
1994)  

 

This method of processing from distinct to indistinct is similar to those used in traditional mapping 

methods where obvious features are mapped first (De Graaff et al. 1987). If there were very specific 

thresholds to distinguish classes from one another (e.g. trees=forest and no trees=field) then such a 

process would not be necessary.   
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Considering Metrics 

Determining the best metrics to use in OBIA is another important element. On a landscape such as 

the one used in this study where there are no extreme terrain features; the influences of terrain are 

not always notable between site series (Green and Klink, 1994). Microsites exist but these are not 

captured in the scale typically used in TEM.  Soil moisture and nutrients are key determinants of site 

series, however ALS cannot measure them directly, therefore choosing metrics that can function as a 

proxy for them is ideal. Site moisture and nutrients are influenced by soil properties and drainage 

pattern (Swanson et al. 1988; Green and Klinka 1994). TWI has been found to correlate strongly 

with several soil properties such as horizon depth (r=0.55), silt percentage (r=0.61), organic matter 

content (r=0.57), and phosphorus levels (r=0.53) (Moore et al. 1993). Slope and flow accumulation 

are used to calculate TWI. Therefore, TWI, like slope position, is an excellent indicator of where 

water will move quickly through an area (steep slope) or where it will settle (depression). Unlike 

slope position, TWI also indicates where flow paths congregate or where there are only a few. 

 

The TWI was the most important metric used for classification.  TWI was the only metric used to 

classify PD, which had a user accuracy of 100%, but a much lower 69% producer’s accuracy, which 

is likely due to inaccuracies in its segmentation. While helpful for segmenting the river in the initial 

stages and for classifying wetness, TWI was also important for the classification of every site series.  

Within the rule sets established for site series, TWI was used to distinguish the most homogeneous 

classes affected by wetness. Site series 12 and 3 had TWI values at either end of the spectrum, (i.e. 

wet and dry respectively) and their classification accuracies were some of the highest user and 

producer accuracies (for either the terrain only or terrain and veg classification). TWI was also used 

to refine the classification of lower slopes (toe, flat and depressions). Within these classes, it was 
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found that SS 12, SS 07, SS 05 and SS 01existed. Site series 07 is wetter than SS 05, therefore mean 

TWI helped to isolate them. Teasing out SS 01was difficult because it encompassed such a large 

range of slope positions and wetness. It is possible that if the scale is increased to allow more detail, 

this range could be narrowed and increase the distinguishability of each site series. Field-testing 

would be needed to confirm this refinement. It is likely that having vegetation metrics for the entire 

study area could also help distinguish SS 01 more easily. 

 

Considering scale 

Throughout the entire OBIA process, scale is an important consideration. The same ALS metric can 

highlight and define attributes very differently depending on the scale used. In this study, TPI10 

(calculated with a small neighbourhood of 10 m) was useful for segmenting. In the segmentation, it 

was found that creating objects smaller than the average TEM polygon was the most appropriate for 

representing TEM polygons. The finer detail afforded by TPI10 helped identify the subtle 

boundaries between site series. For setting slope position classes, TPI500 worked well because the 

relatively large neighbourhood of 500 m provided an appropriate level of detail relative to the scale 

used in TEM. However, it is possible that a coarser scale could have helped for the classification of 

site series. For example, the primary determinant of SS 12 was the SP-W class Depression-VeryWet, 

but TPI500 was used to separate SS 12 from other classes within the broader SP-W class. SS 12 had 

an approximate 43% commission error, which could indicate that an even larger neighbourhood for 

TPI could have been used.   

 

The appropriate scale to use for metrics within the OBIA process will change depending on the size 

and shape (i.e. flat terrain vs. undulating) of the features being mapped but also on the size of the 
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area being mapped. In TEM, slope position is determined on a mesoscale, which is defined as 

having a vertical scale between 3 - 300 m for each class (Luttmerding et al. 1990). Therefore, in 

steeper, more undulating terrain, a TPI neighbourhood of 500 m would likely be to large and 

encompass greater vertical distances than 300 m. Scale is something that should regularly be 

evaluated throughout the process and next steps will involve several test locations (with field 

validation) with varying topography to determine the best scale-metric combinations.  

 

Classification difficulties 

Site series 07 was never classified correctly. This was likely due to three reasons. First, this site series 

only covered 3% of the total study site area, which makes it more difficult to isolate in both the 

segmentation and especially in the classification phase. Secondly, for most of the metrics used to 

distinguish site series, SS 07 was usually in the middle of the value range. This made detecting its 

locations using threshold rules difficult, as it was often associated with other classes. The few smal l 

objects containing SS 07 were indistinct from other objects not containing SS07. However, SS 07 is 

a wetter site, (drier than SS 12), but not so wet that productivity is limited. The use of vegetation 

metrics (e.g. gap fraction and height) could have helped distinguish it. Unfortunately, and the third 

reason it was so difficult to classify it, is that for the majority of locations where SS 07 was, there had 

been recent harvesting and vegetation data was absent. 

 

In general, classification of site series in this area was difficult because the dominance of the zonal 

site (SS 01), which has an area greater than all other site series combined. Site series 01 made up 68% 

of the study area, with the next largest site series belonging to SS 03 at only 10 %. Notably, SS 03 

was mostly classified with higher accuracies than SS 01, which had six times the coverage, because 



66 

 

the typically high slope position and dryness of SS03 made it distinguishable. Likewise, the river and 

pond were the smallest classes in the site (0.05% of the area each) but were classified with high 

accuracies because their shape (river) and wetness made them distinct. Zonal site (i.e. SS 01) by 

definition is the mesic site for the Biogeoclimatic subzone and therefore has median levels of 

moisture and nutrients. When 68% of segmented objects are of average values, it becomes difficult 

to distinguish site series covering smaller areas, especially if their descriptive attributes do not vary 

distinctly from the central (zonal) concepts.  

 

Classification with or without vegetation metrics 

The overall accuracies for both the terrain-only classification and the combined terrain and 

vegetation metrics, are not very strong. They do suggest however, that terrain metrics alone may be 

suitable to classify site series for an altered landscape (e.g. harvested). Most of the accuracies were 

very similar regardless of the classification process used, but because much of the study area was 

absent of vegetation data a direct comparison between the two approaches cannot be made. 

However, for several site series specifically, vegetation metrics improved classification.  

 

 The one site series that particularly stands out is SS 05. Its accuracy was improved (still low at 22% 

user and producer) when vegetation metrics were included. Initially, it was presumed that isolating 

cool aspects (TRASP) would distinguish SS 05, since it is usually found on cooler slopes, however 

this was not the case. Given the moderate wetness and midslope position of SS 05 and that aspect 

overall did not seem to be a determinant of site series, (e.g. SS 03 was not only on south slopes, it 

was on many steep north aspects as well), it was a difficult site series to classify. However, mean CV 

helped distinguish it from site SS 07 and SS 12. Site series 05 had the lowest CV, likely because it is 
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the driest and coolest site series of the three. Relative to SS 12 and SS 07, the tree heights on a SS 05 

site likely have more variance because they receive less nutrients and water and have less access to 

sunlight (northward facing), all factors that influence tree height (Kosh et al. 2004).  

 

3.7 Conclusion 

This study has demonstrated the potential and difficulties of mapping TEM based site series using 

only ALS data. These methods are transparent, utilize the key influences on ecosystems, and indicate 

that site series could be mapped without the implementation of vegetation metrics. The process as it 

currently stands requires refinement.  However, developing modifications based on the issues 

discussed and applying them to new strategies would likely increase accuracies. Using these refined 

methods applied to a larger study site, with more diverse terrain or a higher number/coverage of a 

zonal site series would allow the methods to be tested more thoroughly. The classifications with the 

highest accuracies highlight the importance of wetness and slope position for some site series. 

However, the low accuracies overall indicate that either homogeneity can only be found between 

classes if polygon size of site series is smaller (this would not replicate current TEM) or if there are 

other untested attributes that could distinguish classes. 

 

As discussed at the start of this chapter and throughout the previous ones, there are many valuable 

reasons why mapping ecosystems with ALS data, or with only terrain metrics, is important. Aside 

from the classification of site series, this study demonstrated some of the ways that ALS data can be 

applied to relate ecosystem attributes with landscape.  Wetness and slope position classes (and their 

combined classification), along with a flow network are all excellent attributes to be mapped and that 

can be helpful to ecologists, land managers and even TEM mappers. They can assist in the current 
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map-making processes, whether they are used as references in the field or when interpreting aerial 

photographs.  

 

If ALS data can be incorporated successfully into a reliable OBIA process it would become 

increasingly automated, increasing the cost:benefit ratio. The spatial resolution of the ALS data 

allows more boundaries to be segmented (Figure 6), likely picking up on more information than 

possible from aerial photographs or field work. To confirm the usefulness and true accuracy of the 

ALS based classifications, field validation will be necessary. It is possible that the ALS-based maps 

produced are a better representation the ecosystems in the study area.  
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Chapter 4: Conclusion 

4.1 Overview 

The aim of this thesis was to establish the feasibility of using ALS data to classify and map 

ecosystems. To accomplish this task: (1) a literature review was completed and (2) A case study was 

performed.  

 

Literature Review 

The review concluded there has been limited research into the application of ALS data to classify 

ecosystem units across a landscape. In order to determine if it is possible to achieve such a task a 

review of current research (within the last 5 years) was performed. To refine the process, British 

Columbia’s Terrestrial Ecosystem Mapping (TEM) standards were used as a template. The feasibility 

for implementing the mapping of the various attributes and applying the methods to classify and 

map ecosystems was then evaluated.  

 

Case Study 

Applying what was learned through the literature review to a site specific case study was the next 

step. The goal was to map an area to site series (TEM ecosystem unit). A study site was required that 

had both ALS and TEM data. A 25 km2 area near Campbell River, BC was selected. Object Based 

Image Analysis was chosen as the approach for segmenting and classify site series. The site series 

and non-vegetated units classified for this site and used in the study are as follows: 01, 03, 05, 07, 12, 

RI (river) and PD (pond). This study used a workflow that focused on two key factors that influence 

ecosystem variability, wetness and slope position. At the site level, slope position and wetness are 
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strongly correlated and influence soil moisture and nutrients, which in turn influence the potential 

vegetation on a site (Bailey 1987; Swanson et al. 1988).  

 

The workflow segmented the study area first for the river and a second time for site series. Finding 

the best parameters for segmentation was a critical part of this study; the metrics used and the scale 

parameter will strongly affect the ability to classify accurately. The study area was classified for slope 

position-wetness and then into the specific site series. In the classification of site series two 

approaches were used. One approach used only terrain metrics; the other incorporated both terrain 

and vegetation metrics. A confusion matrix was used to compare the classifications with the 

reference TEM polygons. 

 

4.2 Key findings 

Literature review conclusions 

The following details the feasibility for each attribute to be used for the mapping of ecosystems at 

site level. 

 

High Feasibility: Canopy characteristics, stand height and topography are attributes that can 

reliably be classified using ALS data; doing so is well established. The capacity for providing accurate 

and detailed DEMs with slope, aspect, elevation and curvature and the proven ability to quantify 

stand height and canopy metrics, place ALS in a strong position for use in ecosystem mapping. 

While vegetation metrics and detailed DEMs are likely not stand-alone criteria for ecosystem 

mapping, they do provide a reliable and essential base from which predictive modelling can be 

structured. 
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Moderate Feasibility: Geomorphic process, drainage pattern, terrain attributes, soil drainage, soil 

depth, tree species composition, and understory or non-forested vegetation composition or 

characteristics are TEM criteria that may require some additional research to demonstrate their 

applicability or accuracy.  The classification of some of these criteria, however, has been well 

demonstrated elsewhere, but warrant further research. Species composition is an important criterion 

in determining site series, yet remains the criterion classified with the most variable success. The 

inclusion of spectral data into the classification methodology will likely be necessary. Hyperspectral 

and multispectral data would also serve to improve all vegetation mapping (i.e. site series, seral stage, 

and structural stage). 

 

Low Feasibility: Soil depth and forest floor are the criteria that currently have not been successfully 

classified using ALS data. Soil depth can be somewhat inferred based on terrain attributes and 

geomorphologic process and to a lesser extent soil order. However, depth classifications would likely 

be very broad and the resolution too coarse (i.e. valleys have deep soil; steep slopes have shallow 

soil) to contribute effectively to ecosystem unit delineation. Additionally, using ALS data to describe 

forest floor is currently not likely given the minimal information the ALS data provides that can 

contribute towards ecosystem classification. The limited research being done has focused on fuel 

loads and fire management rather than relating forest floor composition to ecosystem type.  

 

Case Study Findings 

In the segmentation process, finding the appropriate scale parameter was crucial. If it was too high, 

heterogeneity among image objects was difficult to detect because multiple distinguishing features of 

various site series become enclosed. If the scale parameter was too small however, there is not 
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enough information within image objects and they are not distinct. For this study segmentation 

worked best when image objects were slightly smaller than the average TEM polygon size.  

 

Scale (both resolution and extent over which a metric is calculated) is also important to consider 

within the OBIA process. The same metric can highlight and define attributes very differently 

depending on the extent of the neighbourhood used for its calculation. For example, Topographic 

position index (TPI) was a metric that was used with varying scales in both the segmentation and 

classification stages. It was found that a smaller neighbourhood (10 m) for calculating TPI was 

better for segmenting the finer boundaries within the terrain but a larger neighbourhood (500 m) 

was better for classifying slope position and site series. 

 

The topographic wetness index (TWI) was found to be one of the most important metrics used. It 

was applied at every stage in the workflow, from the segmentation of the river and site series and 

throughout all classification stages. The classifications with the highest accuracies highlight the 

influence of wetness on site series. Slope position was also necessary for classifying most site series. 

Vegetation metrics were limited in their usefulness for this study because of recent harvesting and a 

lack of data, especially in areas where difficult to segment site series exist; determining the extent to 

which vegetation metrics could improve classification accuracies could not be fully tested. However, 

the terrain-only classification and the terrain-vegetation classifications were evaluated with overall 

accuracies of 59% and 56% respectively, suggesting that they both have similar potential to classify 

site series in relatively modified landscape.  
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Overall, accuracies were low, but with workflow refinement it is likely these could be improved. The 

difficulty to classify site series could indicate that site series polygons need to be smaller so that 

homogeneity between classes is distinguishable; however, this would not replicate current TEM 

polygon sizes. With the scale currently used in TEM, the zonal site (SS 01) takes up considerably 

more space on the landscape than any of the other site series (68% of the study area), with the next 

largest site series belonging to SS 03 at only 10%. Zonal sites typically have average levels of warmth, 

wetness and slope for the particular biogeoclimatic zone. This makes it difficult to distinguish other 

site series with much smaller coverages, especially if their determining attributes do not vary far 

from the mean. It is also possible that terrain or vegetation metrics not used in this study could 

distinguish classes more easily. 

 

4.3 Implications for refining site series mapping 

There are many ways to approach classifying ecosystems using ALS data. The literature review 

highlights ways to measure and classify individual ecosystem attributes. Incorporating these into a 

succinct workflow for the classification of site series could take many forms and the case study 

results highlight some of the difficulties for integrating these various methods to map something as 

complex as ecosystems. While the classification had limited success, several implications can be 

made for refinement to the workflow used that would likely improve future accuracies. 

 

Many of the biotic studies discussed in the literature review use multispectral data for classifying tree 

species and other vegetation related attributes. TEM uses vegetation species to indicate soil moisture 

and nutrients, and the site series classification defines the climax vegetation for a particular site 

based on the influences of terrain. Mapping site series using ALS data alone is a novel idea and the 
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specificities of this study have not been done prior to this. Multispectral data were not used in the 

case study and the ALS vegetation data was limited because much of the study area harvested at the 

time the data was acquired. It is likely that if vegetation data could have been integrated more 

thoroughly, accuracies would have been higher. 

 

The segmentation approach used in this study relied on visual assessment for comparing image 

objects created in the OBIA with the TEM polygons to determine the best segmentation 

parameters. This method is commonly used (Zhang 2008; Johnson & Xie 2011) and can be 

extremely effective but its limitations are worth considering. Visual assessment can be time 

consuming and labour intensive and can be prone to subjectivity (Johnson & Xie 2011). 

Segmentation quality affects image classification accuracy (Kim et al. 2008; Anders et al. 2011a), and 

while it is likely that the main limitations to classification accuracy in this study was a lack of 

heterogeneity between classes, a more rigorous approach with statistical validation could be 

advantageous (Drǎguţ et al. 2010; Anders et al. 2011; Johnson & Xie 2011). It is worth noting that 

while an unsupervised approach could improve objectivity in the segmentation process, visual 

assessment is required for many multi-scale approaches, especially to assess over and under-

segmentation (Grybas et al. 2017).  

 

Identifying the best metrics to input for both the segmentation and classification is also important. 

In the methods used for this case study, seven terrain and four vegetation metrics were initially 

chosen. All of the seven terrain metrics were used within the workflow, but only two of the 

vegetation metrics were required. The metrics EPC and TO, which were the inputs for the river 

segmentation, were not used again. Elevation percentile provides information about a locations 
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relative position within a landscape and TO defines the degree of enclosure for a location. While 

these metrics easily identified the river as an object, it is likely that similar metrics could as well. 

Topographic Position Index could likely replace EPC and TO. All three metrics ultimately describe 

the position of a given location within the context of its surroundings (i.e. whether a location is 

lower (e.g. valley) or higher (e.g. ridge) than a specified neighbourhood around it). However, each of 

these metrics have their own nuances and should be considered within the context of a study’s 

location and goals. Regardless of metrics used, eliminating metrics with overlapping qualities, should 

serve to streamline the process. 

 

The classification steps of the workflow classified broader ecosystem influencers (wetness and slope 

position) first, and then attempted to segregate site series according to these broader classes and 

lastly applied increasingly specific rules based on distinguishers such as tree height, coefficient of 

variation, slope or aspect. An alternate approach could stratify according to site series. This would 

segment for a specific site series, followed by classifying it. Then a new segmentation for the next 

site series would be performed on the unclassified area. This approach would allow the 

segmentation parameters and objects produced to be more specific to each site series. However, 

polygon variance for site series can be high and changing the scale parameter might not adequately 

address this.  

 

4.4 Limitations 

This study was limited in its ability to test how the incorporation of ALS vegetation metrics could 

improve classification and distinguish site series where terrain information alone cannot. The ability 

to classify with and without vegetation metrics could not be directly compared because of the absent 
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data for much of the study area. As well, the forest within the Oyster River study area was mostly 

young forest, adding further limitations to fully the capacity for using ALS data. The study area was 

small, but likely, its size was not the limitation, but rather the diversity of the landscape it contained. 

There were only five main site series to be mapped and the zonal site dominated this site. There are 

many landscapes like this and the goal of ecosystem mapping would ultimately be to map 

homogeneous or disturbed areas using ALS data. However, as a starting point for determining best 

methods and classification rules, a study site with more heterogeneity or more represented by other 

site series besides the zonal site would allow trends and thresholds to be identified and established 

more easily. With a diverse and complete vegetation dataset (i.e. no harvesting or stand level 

disturbance) more vegetation metrics could be tested and outcomes based on the incorporation of 

vegetation data or not could be directly compared.  

 

Another limitation is that the accuracy of the TEM maps is not known. The boundaries of the 

polygons are not intended to be exact but rather representative and highlighting the dominant 

potential of an area. As the ALS mapping process becomes more efficient and accuracies are 

improved it would be beneficial to incorporate field validation. The detail of the ALS has potential 

to identify site series with greater accuracy than the TEM map being used as a reference. It is 

plausible that the ALS based maps could have much higher accuracies if validation was made using 

field data. 

 

4.5 Future directions 

Next steps should include some of the suggestions discussed above (statistically evaluate 

segmentations, test new metrics or simplify the number of metrics used, use a larger (more diverse) 
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study area, field validate, have a more complete vegetation dataset, directly compare classification 

with and without vegetation data, try various stratification approaches etc.). The overall, future 

potential for using ALS data is continuing to expand and become more proficient. Access to ALS 

data is increasingly affordable and the diversity of its application is growing. Drones mounted with 

ALS sensors are one example of this increased accessibility and potential for new application. 

Improving the ability to map ecosystems using ALS data has vast implications and will likely play an 

important role in the future management of lands and resources.  

 

The classification of site series requires more research but the case study produced many maps that 

have application independently. Maps of wetness, slope position and flow networks (stream network 

and drainage) all can be applied within a framework for managing and understanding ecosystems. 

They can also be useful for a mapper using more traditional mapping methods. The detailed terrain 

and vegetation metrics produced with the ALS data can provide more information about a specific 

location than simply observing an aerial photograph; they can even provide information that is 

difficult to measure in the field.  

 

Additionally, the image objects created in the segmentation could help refine current TEM mapping 

methods even before classifying site series using ALS data attains higher accuracies. The OBIA 

image objects produced polygons that shared similar boundaries to many of the site series. This is 

because the process segments an area into relatively homogenous regions based on the information 

of the metrics used (e.g. influencers of ecosystems). Thus, image objects themselves are meaningful 

and a TEM ecologist could use these to aid their current mapping methods. Segmented boundaries 

might provide more detail than could be identified from aerial photos, especially in heavily forested 
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landscapes where identifying ecosystem boundaries at a site scale is difficult. An expert TEM 

mapper could perhaps use the detail afforded by these segmented boundaries to map site series with 

greater accuracies than without the ALS data. 

 

The ultimate goal of course is to use ALS data to map site series and this thesis provides important 

information for attaining that. The literature review includes methods not tested in the case study 

and information that can be applied to new, refined approaches. The case study identifies many of 

the difficulties using ALS data for mapping ecosystems and it also presents a novel method that, 

with further refinement, will likely see higher accuracies.  
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