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Abstract

The central concern of this thesis is the study of critical behaviour in models of statistical

physics in the upper-critical dimension. We study a generalized n-component lattice |ϕ|4 model

and a model of weakly self-avoiding walk with nearest-neighbour contact self-attraction on the

Euclidean lattice Zd. By utilizing a supersymmetric integral representation involving boson

and fermion fields, the two models are studied in a unified manner.

Our main result, which is contingent on a small coupling hypothesis, identifies the precise

leading-order asymptotics of the two-point function, susceptibility, and finite-order correlation

length of both models in d = 4. In particular, we show that the critical two-point function

satisfies mean-field scaling whereas the near-critical susceptibility and finite-order correlation

length exhibit logarithmic corrections to mean-field behaviour. The proof employs a renormal-

ization group method of Bauerschmidt, Brydges, and Slade based on a finite-range covariance

decomposition and requires two extensions to this method.

The first extension, which is required for the computation of the finite-order correlation

length (even for the ordinary weakly self-avoiding walk and |ϕ|4 model), is an improvement of

the norms used to control the evolution of the renormalization group. This allows us to obtain

improved error estimates in the massive regime of the renormalization group flow.

The second extension involves the identification of critical parameters for models initialized

with a non-zero error coordinate coupled to a marginal/relevant coordinate. This allows us, for

example, to realize the two-point function and susceptibility for the walk with self-attraction as

a small perturbation of the corresponding quantities without self-attraction, whose asymptotic

behaviour was determined by Bauerschmidt, Brydges, and Slade. This establishes a form of

universality.
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Lay Summary

In this thesis, we study two models from statistical physics: the weakly self-avoiding walk with

self-attraction, which is a model of a linear polymer in a poor solution; and the lattice |ϕ|4

model, which can be understood as a model of a ferromagnet. Both models are expected to

undergo a phase transition at which certain precise quantitative properties, known as critical

exponents, should become independent of the fine model specifications. Our main result pro-

vides a mathematically rigorous confirmation of several predicted values of critical exponents

for both models.
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Preface

Sections 1–1.6 are a general introduction to the subject matter of this thesis and we do not

claim any originality here. Section 1.7 states our main result, which combines and slightly

extends results from the following:

• the article [12], written jointly with Roland Bauerschmidt, Gordon Slade, and Alexandre

Tomberg and published in Annales Henri Poincaré; and

• the article [13], written jointly with Roland Bauerschmidt and Gordon Slade and published

in Journal of Statistical Physics.

Section 1.8 includes part of [13].

Chapters 2–5 are based on [12,13]:

• Chapter 2 includes part of [12,13], and discusses the general theory developed in [10,28–31]

and applied and extended in [8, 9, 108];

• Chapter 3 includes part of [12, 13] and Section 3.1 includes an additional discussion re-

garding an argument of [9];

• Chapter 4 includes part of [12]; in addition, Sections 4.1 and 4.3.4 include discussions

regarding some of the ideas in [31] and [29], respectively; and

• Chapter 5 includes part of [13].
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Chapter 1

Introduction

Thermodynamics originated as the study of heat and its transformations into other forms of

energy, but can more generally be described as the study of bulk matter. That is, it seeks

to answer questions regarding those properties of matter that are defined in terms of large

collections of particles. Two familiar examples are density and temperature. The density of a

substance is its mass per unit volume. Such a quantity is sometimes said to be intensive: it

depends only on the nature of the substance under consideration, not on the amount that is

present.

There is a small caveat that should be added to this definition: the mass per unit volume

of a sample of some substance will only become independent of the volume once this volume is

sufficiently large. This makes density a macroscopic quantity (as opposed to, e.g. the atomic

number). To say that thermodynamics is the study of bulk matter amounts to saying that it

deals in macroscopic quantities.

This raises a number of simple questions. For instance, if these quantities are truly intensive,

then it should be possible to derive them from the microscopic behaviour of the substance’s

constituent particles; yet above, we have resorted to discussing “large” quantities of matter

in order to make sense of density. In fact, this leads us to another natural question: what

constitutes a sample sufficiently large to be considered bulk matter and why should certain

measurements of a sample stabilize when the sample is large?

A natural response is that some sort of law of large numbers must be at work. Although

the behaviour of a system of particles is not random, it may be sufficiently complex that it is

reasonable to view it as such. This is the basic idea of equilibrium statistical mechanics: to

leverage the complexity of large systems of particles in order to explain the apparent simplicity

of bulk matter as arising from the kind of self-averaging that pervades probability theory. From

this point of view, macroscopic quantities are types of averages that arise from some probability

distribution. These averages typically depend on temperature or other parameters, so in this

sense the main objects of study in statistical mechanics are certain parameterized families of

probability measures.

It is useful to organize these measures according to their qualitative properties. Qualitatively

similar measures correspond to a phase of a substance. For instance, water at 20◦C is not

significantly different from water at 50◦C. On the other hand, steam and water have very

different behaviours despite both being H2O. In fact, the boiling of water is signalled by an

abrupt drop in density by a factor of around 1/1000 at normal atmospheric pressure.

1



Chapter 1. Introduction

Gas

Liquid

Solid

Temperature (T )

Pressure (P )
Tc(P )

Pc

Tc(Pc)

Figure 1.1: The phase diagram of H2O

A similar effect occurs under different atmospheric conditions as well. The temperature at

which water boils varies as a function of pressure Tc = Tc(P ) and a phase transition is said to

occur when the pressure and/or temperature are varied in such a way as to cross the graph of

this function; see Figure 1.1. However, as P is increased, the density difference along this curve

decreases and there is a critical point (Tc(Pc), Pc) at which this difference vanishes.

Since statistical mechanics deals with extremely large, complicated systems of interacting

particles, only simplified models of real materials can usually be studied in detail. Such models

are useful for building a qualitative understanding of the phases of matter and phase transitions.

However, the simplifications inherent in their definitions mean that they are usually not suitable

for making quantitative predictions.

A remarkable phenomenon, known as universality, is that this is no longer entirely true at

the critical point. At criticality, many quantities behave in a way that is independent of the fine

details of the model being used. Thus, some of the quantitative properties of real materials can

in principle be predicted exactly by studying models only roughly resembling these materials

In the 1970’s Ken Wilson, inspired by ideas in quantum field theory, gave an explanation of

universality in terms of the renormalization group: an abstract dynamical system that acts on

models by averaging out their fine details. This idea was enormously successful and led to his

1982 Nobel Prize.

There have been several rigorous implementations of Wilson’s ideas, some of which will

be mentioned in Section 1.5.4. The main purpose of this thesis is to discuss extensions of a

rigorous renormalization group method of Bauerschmidt, Brydges, and Slade that have been

used to study the critical behaviour of a generalized |ϕ|4 model and a model of weakly self-

avoiding walk with contact self-attraction (WSAW-SA). We will introduce these models and

our main results in the present chapter and discuss the proofs in the remainder of the thesis.
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1.1. Asymptotics

We begin in Section 1.1 with some general background on asymptotic notation and the

method of generating functions and Laplace transforms. In Section 1.2, we briefly introduce

some of the basic ideas of equilibrium statistical physics. The models we study are defined on

graphs, which we discuss in Section 1.3. We define spin systems, in particular the |ϕ|4 model, in

Section 1.4. Critical behaviour and the renormalization group is probably most easily explained

in the context of such systems, and we give an informal description of these ideas in Section 1.5.

In Section 1.6, we introduce the WSAW-SA and discuss its critical behaviour. This gives us

all the necessary definitions to state our main results in Section 1.7. Before proceeding to the

method of proof, we discuss the close relationship between models of walks and spin systems in

Section 1.8; in particular, we recall a representation of the WSAW-SA in terms of a spin system

related to the |ϕ|4 model that allows us to unify our treatment of both models. The remainder

of the thesis is outlined in Section 1.9.

1.1 Asymptotics

We begin with a short discussion of some useful notation and mathematical background.

1.1.1 Asymptotic notation

Let F and G be a functions on a subset of the real line. For a ∈ [−∞,∞], we write

F (x) ∼ G(x), x→ a (1.1.1)

F (x) = o(G(x)), x→ a (1.1.2)

if, respectively,

lim
x→a

F (x)

G(x)
= 1 (1.1.3)

lim
x→a

F (x)

G(x)
= 0. (1.1.4)

We also write

F (x) = O(G(x)) or F (x) ≤ O(G(x)), x→ a (1.1.5)

if there is a constant C ≥ 0 such that |F (x)| ≤ CG(x) for all x in some neighbourhood of a (in

the extended real line). Lastly, we write

F (x) � G(x), x→ a (1.1.6)

if F (x) = O(G(x)) and G(x) = O(F (x)) as x→ a, possibly with different constants for the two

inequalities. We will sometimes write F (x) ≈ G(x) in heuristic arguments where the hope is

that a rigorous argument might replace ≈ by � or ∼.

3



1.2. Equilibrium statistical mechanics

1.1.2 Generating function and Laplace transform

The generating function of a sequence an is the function g(z) defined by the power series with

coefficients an:

g(z) =
∞∑
n=0

anz
n. (1.1.7)

If the function g is sufficiently well understood, then the coefficients can be recovered by differ-

entiation:

an =
1

n!
g(n)(0). (1.1.8)

This is known as the method of generating functions [114].

In many cases, g cannot be computed exactly. Nevertheless, there is a close relationship

between the asymptotics of the sequence an as n→∞ and the function g(z) near its dominant

singularities, i.e. its singularities closest to the origin [52]. For instance, if an ∼ r−nnα, then

the root test implies that the generating function f has radius of convergence r. If, moreover,

an ≥ 0, then g(z) ∼ C(r − z)−(α+1) as z ↑ r. This is an example of an Abelian theorem. The

converse does not always hold; a theorem providing conditions under which the converse is true

is known as a Tauberian theorem, and is generally harder to prove than its Abelian counterpart.

Likewise, the asymptotics of a function f(T ) as T → ∞ can sometimes be recovered from

the behaviour of its Laplace transform

G(ν) =

∫
f(T )e−νT dT (1.1.9)

near ν0 := inf{ν : G(ν) < ∞}. There are Abelian and Tauberian theorems for the Laplace

transform analogous to those for generating functions. For instance, f(T ) ∼ ATα implies that

G(ν) ∼ A′(ν − ν0)−(α+1) as ν ↓ ν0 and the converse holds when f is monotone (see [113]).

1.2 Equilibrium statistical mechanics

Let (Ω, λ) be a measure space. We view λ as some “natural” measure on Ω. The dynamics of

a physical system with state space Ω are often determined by a function H on Ω, known as the

Hamiltonian. Typically, H(ω) represents the total energy of the system in state ω; it is thus

reasonable to assume that H is bounded below1.

Example 1.2.1. The canonical example is a system of n point particles in a domain U ⊂ R3,

for which Ω = (U × R3)n and λ is Lebesgue measure on Ω. A state ω ∈ Ω consists of the

positions qi ∈ U and momenta pi ∈ R3 of the n particles. The Hamiltonian is usually smooth

1It is convenient to allow H to take on negative values.

4



1.2. Equilibrium statistical mechanics

and the dynamics are determined by Hamilton’s equations

dq

dt
= ∇pH (1.2.1)

−dp
dt

= ∇qH. (1.2.2)

Typically, the Hamiltonian has the form

H(q, p) =
1

2m
|p|2 + U(q). (1.2.3)

The first term is the usual definition of kinetic energy and the second term, which depends only

on q, is a potential energy function.

In statistical mechanics, the systems of concern consist of a very large number of particles

(n large in the previous example). Typically, the state space Ω is very high-dimensional and

studying the exact dynamics is infeasible.

A common simplifying assumption is that after a long time has passed, the system will

settle into a state of thermal equilibrium, meaning that there is no net flow of heat between the

system and its surroundings. Thus, the temperature is constant; we denote by β the inverse

temperature. The Gibbs measure for a system with Hamiltonian H at inverse temperature β is

the probability measure on Ω given by

µβ(dω) =
1

Z
e−βH(ω)dλ(ω) (1.2.4)

when this is well-defined. The normalizing constant

Z =

∫
e−βH dλ (1.2.5)

is known as the partition function.

1.2.1 Relation to quantum theory

Let us briefly describe the relationship between equilibrium statistical mechanics and quantum

field theory. Our presentation is heuristic and involves manipulations of a priori ill-defined

objects. A rigorous development of these ideas goes back to [95, 97, 98, 110]; useful references

are [105] (for quantum mechanics) and [60] (for quantum field theory).

Let H(x, p) be the Hamiltonian (1.2.3) (we have written x instead of q). In quantum

mechanics, the state space is replaced by a Hilbert space, usually L2 = L2(R3n); the position xj

is replaced by the position operator x̂j given by multiplication by xj ; and the momentum pj is

replaced by the momentum operator p̂j = −i~∂/∂xj (we ignore details regarding the domains

of these operators). The resulting operator Ĥ = H(x̂, p̂) on L2 determines the evolution of the

5



1.2. Equilibrium statistical mechanics

wave function ψ ∈ L2 via the Schrödinger equation

i~
dψ

dt
= Ĥψ (1.2.6)

whose solution with initial condition ψ(0) is given by ψ(t) = e−itĤ/~ψ(0).

Suppose that the solution operator is an integral operator with kernel Kt:

e−itĤ/~f =

∫
Kt(·, y)f(y) dy. (1.2.7)

The Feynman path integral formulation of quantum mechanics [50] involves writing the kernel

as

Kt(a, b) =

∫
Wt(a,b)

e(i/~)
∫ t
0 L(x(s),ẋ(s)) ds Dx, (1.2.8)

whereWt(a, b) is a space of paths [0, t]→ R3n from a to b equipped with a “Lebesgue measure”

Dx and

L(x, ẋ) =
1

2
m|ẋ|2 − U(x) (1.2.9)

is the Lagrangian of the classical system we started with. As such, the integral representation

of Kt is ill-defined; for instance, the measure Dx on paths does not exist. However, let us not

concern ourselves with this.

Suppose that ψ can be analytically continued to a region of the complex plane containing

the positive imaginary axis. Then we might hope the function t 7→ ψ(−it) has solution operator

with kernel of the form

K−it(a, b) =

∫
W−it(a,b)

e(i/~)
∫−it
0 L(x(s),ẋ(s)) ds Dx. (1.2.10)

By the change of variables s = −iu,

(i/~)

∫ −it
0

L(x(s), ẋ(s)) ds = (1/~)

∫ t

0
L(x̃(u), i ˙̃x(u)) du = −(1/~)

∫ t

0
H(x̃(u),m ˙̃x(u)) du

(1.2.11)

with x̃(t) = x(−it). Thus, by the fictive change of variables in which Wit(a, b) is replaced by

Wt(a, b), we get

K−it(a, b) =

∫
Wt(a,b)

e−(1/~)
∫ t
0 H(x(u),mẋ(u)) du Dx (1.2.12)

This procedure is known as a Wick rotation.

The analogue of this idea in quantum field theory involves replacing integration over paths

with integration over fields ϕ, which are functions on Rd. The corresponding “measures” of the

form e−(1/~)
∫
HDϕ should be compared with the Gibbs measures (1.2.4) with Planck’s constant

~ playing the role of temperature. Although H has been replaced by the integral
∫
H, we will

discuss how natural choices for the Hamiltonian in a Gibbs measure are given by sums over

6



1.3. Graphs

spaces of fields on discrete approximations to Rd (graphs).

Remark 1.2.2. In fact, it turns out that (1.2.12) is not too unreasonable. For simplicity, let

us take ~ = 1 and m = 1. Then we would expect ψ̃ to solve

dψ̃

dt
= −Ĥψ̃. (1.2.13)

When U = 0, we have H(x, p) = |p|2, so Ĥ = −1
2∆R3n is the Laplacian on R3n and (1.2.13)

is the heat equation. On the other hand,
∫ t

0 H is formally a positive-definite quadratic form,

so (1.2.12) is a formal Gaussian integral. This is consistent with the well-known fact that a

solution ψ̃ of the heat equation on a domain can (under appropriate conditions) be written

as ψ̃(t, x) = E(ψ̃(0, Bt) | B0 = x), where Bt is a Brownian motion. More generally, under

appropriate hypotheses, the Feynman-Kac formula expresses solutions to (1.2.13) with U 6= 0

as averages with respect to a Brownian motion.

1.3 Graphs

An undirected graph or simply a graph is a pair G = (V, E), where V is a set of vertices and E
is a set of edges {x, y} with x, y ∈ V; we will write x ∼ y if {x, y} ∈ E . For simplicity, we will

assume that V is countable and that there are no self-loops {x} ∈ E .

A graph automorphism is a bijection f : V → V such that x ∼ y if and only if f(x) ∼ f(y).

We will assume that G is transitive meaning that for all pairs of distinct vertices a, b ∈ V,

there exists an automorphism f with f(a) = b. We fix a vertex 0 ∈ V whose precise choice is

immaterial due to transitivity.

1.3.1 Functions on graphs

Let us denote the components of an element ϕ ∈ (Rn)V by ϕix ∈ R for x ∈ V and i = 1, . . . , n.

The Euclidean inner product and norm on (Rn)V are defined by

ϕ · ϕ̃ =
∑
x∈V

ϕx · ϕ̃y =

n∑
i=1

∑
x∈V

ϕixϕ̃
i
x (1.3.1)

|ϕ|2 = ϕ · ϕ. (1.3.2)

A V × V matrix M = (Mxy)x,y∈V acts on ϕ component-wise:

(Mϕ)x =
∑
y∈V

Mxyϕy. (1.3.3)
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1.3.2 The graph Laplacian

Let us say that a V ×V matrix M is indexed by E if Mxy 6= 0 if and only if x ∼ y. Throughout

this chapter, we let J be a matrix indexed by E with nonnegative entries. Thus,

Jxy ≥ 0 (1.3.4)

with equality if and only if x 6∼ y. The pair (G, J) is an example of a weighted graph. We will

usually denote this weighted graph simply as G, with J implicit.

Let D be the diagonal V × V matrix with diagonal entries

dx = Dxx =
∑
y∼x

Jxy, (1.3.5)

where the sum is over all vertices y adjacent to x. The graph Laplacian on G is defined by

−∆ = D − J. (1.3.6)

An important case is when Jxy = 1x∼y, for which

−∆xy = dx1x=y − 1x∼y. (1.3.7)

We also define the massive Laplacian with squared mass m2 > 0 by

−∆ +m2. (1.3.8)

Note that

ϕ · (−∆ϕ) =
1

2

∑
x,y∈V

Jxy|ϕx − ϕy|2 ≥ 0, (1.3.9)

so −∆ is positive-semidefinite.

Example 1.3.1. We will often work on the discrete d-dimensional torus of side LN , defined

by

Λ = ΛN = Zd/LNZd (1.3.10)

for integers L > 1 and N ≥ 0. We view Λ as a graph with V = Λ and x ∼ y if x and y have

distance 1 on the torus. This graph is transitive and dx = 2d for all x.

1.3.3 The Green function

If m2 > 0, then −∆ +m2 is positive-definite, hence invertible with inverse

(−∆ +m2)−1 = (m2 +D)−1
∞∑
n=0

ZnPn, (1.3.11)
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1.4. Spin systems

where

Z = (m2 +D)−1D, P = D−1J. (1.3.12)

Let zx denote the diagonal elements of Z. The Green function of G is the kernel of (−∆+m2)−1,

given by

Cxy = (m2 + dx)−1
∞∑
n=0

znxP
n
xy. (1.3.13)

1.4 Spin systems

We begin by restricting our attention to spin systems in finite volume:

|V| <∞. (1.4.1)

Suppose that S ⊂ Rn is equipped with a measure dλ0, let Ω = SV , and define the product

measure

dλ(ϕ) =
∏
x∈V

dλ0(ϕx), ϕ ∈ Ω. (1.4.2)

We refer to the elements of Ω as fields or spin configurations on V with spins in S.

Let H : Ω → R be a function and suppose that e−H is integrable with respect to dλ. The

spin system with Hamiltonian H : Ω → R at inverse temperature β is given by the Gibbs

measure

dµβ(ϕ) =
1

Zβ
e−βH(ϕ) dλ(ϕ). (1.4.3)

We sometimes add an external field h ∈ R by considering the measure

dµβ,h(ϕ) =
1

Zβ,h
e−β
(
H(ϕ)−h

∑
x∈V ϕx

)
dλ(ϕ). (1.4.4)

We will mainly be concerned with ferromagnetic spin systems, for which the Hamiltonian is

given by

H(ϕ) = −ϕ ·Mϕ, Mxy ≥ 0. (1.4.5)

The total energy of such a system is a sum of contributions of the form −2ϕx ·Mxyϕy for x ∼ y.

Such a contribution attains its minimum when ϕx = ϕy and its maximum when ϕx = −ϕy. In

this sense, it is energetically favourable for spins to align in ferromagnetic systems.

1.4.1 Examples of spin systems

Below we discuss some common examples of spin systems. In many cases, we discuss Hamilto-

nians that depend on one or more parameters for which adjusting the inverse temperature β is

equivalent to rescaling these parameters. In these cases, we will fix

β = 1 (1.4.6)
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1.4. Spin systems

without loss of generality.

Gaussian measures

Suppose S = Rn and λ0 is Lebesgue measure. Then the Hamiltonian H must be bounded

below for the Gibbs measure (1.4.3) to be well-defined. Essentially the simplest class of non-

constant2 Hamiltonians are positive-definite quadratic forms. These are given by a positive-

definite symmetric V × V matrix C, called the covariance matrix, and take the form

HC(ϕ) =
1

2
ϕ · C−1ϕ. (1.4.7)

The corresponding Gibbs measures are Gaussian measures.

The partition function can be computed explicitly and the Gibbs measure takes the form

dϕ√
det(2πC)

e−
1
2ϕ·Aϕ. (1.4.8)

Wick’s theorem gives an expression for the moments: if x1, . . . , x2p ∈ Λ, then

∫
dµC(ϕ)

2p∏
k=1

ϕixk =
∑
π

∏
kl∈π

Cxkxl (1.4.9)

where the sum is over all pairings π of {1, . . . , 2p} (i.e. partitions of this set into 2-element

subsets).

The |ϕ|4 model

As in the previous example, let S = Rn and λ0 be Lebesgue measure. The next step up in

complexity is a quartic Hamiltonian. In particular, we have the Hamiltonian for the lattice |ϕ|4

model or Ginzburg-Landau-Wilson model :

Hg,ν(ϕ) =
∑
x∈V

(
1

4
g|ϕx|4 +

1

2
ν|ϕx|2 +

1

2
ϕx · (−∆ϕ)x

)
, (1.4.10)

where g > 0 and ν ∈ R. The expression (1.4.10) should be compared with (1.2.3). With p = mq̇

in the latter expression, the kinetic energy takes the form 1
2m|q̇|

2. The lattice analogue of this

quantity in (1.4.10) is
1

2

∑
x∈V

ϕx · (−∆ϕ)x =
1

4

∑
x∈V

∑
y∼x

(ϕy − ϕx)2, (1.4.11)

where we have applied (1.3.9) to get the right-hand side.

2The Gibbs measure with constant Hamiltonian is just the product measure.
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1.4. Spin systems

Example 1.4.1 (The GFF). With g = 0 and ν > 0,

H0,ν(ϕ) = HC(ϕ), C = (−∆ + ν)−1. (1.4.12)

In other words, the |ϕ|4 model becomes the Gaussian measure with covariance given by the

massive Green function. The corresponding spin system is the discrete massive Gaussian free

field or GFF.

The continuum analog of this model with mass 0 (which can be defined on Rd with d > 2)

is a simple example of a non-interacting3 quantum field theory. The |ϕ|4 model was introduced

in attempts to construct an interacting theory.

The O(n) spin model

Consider the |ϕ|4 model and suppose that
∑

y∼x Jxy = d0 for all x ∈ V (e.g. this occurs in the

setting of (1.3.7) when every vertex in G has d0 neighbours). In this case, we can write

Hg,ν(ϕ) =
∑
x∈V

Ug,ν(ϕx)− 1

2
ϕ · Jϕ, (1.4.13)

where the single-spin potential Ug,ν is given by

Ug,ν(t) =
1

4
g|t|4 +

1

2
(ν + d0)|t|2, t ∈ Rn. (1.4.14)

We can see from (1.4.13) that the |ϕ|4 model is ferromagnetic. When ν + d0 < 0, the potential

has the shape of a double well with roots at t = 0 and on the sphere |t| = ±
√
−2(ν + d0)/g.

Thus, as g →∞ with ν = −(d0 +g/2), the Gibbs measure for the |ϕ|4 model converges (weakly)

to the Gibbs measure with Hamiltonian

HJ(ϕ) = −1

2
ϕ · Jϕ, ϕ ∈ (Sn−1)V (1.4.15)

where Sn−1 ⊂ Rn is the (n−1)-dimensional unit sphere. This is known as the O(n) spin model.

The special case n = 1 is the famous Ising model. The cases n = 2 and n = 3 are known as the

XY model and the classical Heisenberg model.

Remark 1.4.2. The Ising model on Zd (defined by a limiting procedure) was introduced by

Willhelm Lenz [87]. Lenz suggested it as a problem for his student Ernst Ising, who determined

in 1924 [75] that there is no (non-trivial) phase transition when d = 1. In [70] Heisenberg,

seeking a model that would possess a phase transition, proposed the quantum version of his

model (see [16] for a discussion on this). Ironically, it turns out that the classical version of

his model does not possess a phase transition in both d = 1 and d = 2 [92]; and, moreover,

in 1936 Rudolf Peierls [100] put forth an argument for the existence of a phase transition in

3The corresponding classical model only involves the kinetic term (1.4.11).
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1.4. Spin systems

the Ising model if d > 1. Peierls’ argument was made rigorous in [62], but even before that

Onsager [96] provided an exact computation of the free energy in d = 2, which incontrovertibly

demonstrated the existence of a phase transition in two dimensions. The general O(n) model

was first studied in [109].

1.4.2 Phase transition in the Ising model

Let G = ΛN and consider the Hamiltonian for the Ising model with interaction Jxy = 1x∼y in

an external field h ∈ R:

H
(N)
h (ϕ) = −1

2

∑
x∼y

ϕxϕy − h
∑
x∈V

ϕx, ϕ ∈ {±1}V . (1.4.16)

Let 〈·〉(N)
β,h denote the expectation with respect to the corresponding Gibbs measure µ

(N)
β,h and

let Z
(N)
β,h be the partition function.

The free energy is defined (in finite volume) by

F
(N)
β,h = − 1

β|V|
logZ

(N)
β,h . (1.4.17)

The magnetization is given by

M
(N)
β,h =

1

|V|
∑
x∈V
〈ϕx〉(N)

β,h (1.4.18)

and can be written in terms of the free energy as

M
(N)
β,h = − ∂

∂h
F

(N)
β,h . (1.4.19)

When h = 0, the Gibbs measure is invariant under the spin-flip transformation ϕ 7→ −ϕ and it

follows that M
(N)
β,0 = 0 for all β.

In order to study the dependence of the magnetization on h, we define the magnetic sus-

ceptibility

χ(N)(β, h) =
1

β

∂

∂h
M

(N)
β,h . (1.4.20)

By translation-invariance,

χ(N)(β, h) =
1

β2

∑
x∈V

G(N)
x (β, h), (1.4.21)

where

G(N)
x (β, h) = 〈ϕ0ϕx〉β,h − 〈ϕ0〉β,h〈ϕx〉β,h (1.4.22)

is the correlation between ϕ0 and ϕx, known as the two-point function. These are all analytic

functions. In order to detect a phase transition, we must take the infinite-volume limit N →∞.

The infinite-volume free energy, magnetization, susceptibility, and two-point function are

defined as the N →∞ limits of their finite-volume counterparts; we denote them by Fβ,h, Mβ,h,
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χ(β, h), and Gx(β, h). Let

M±β = lim
h→0±

Mβ,h. (1.4.23)

Then when β is sufficiently large [62,100], there is a non-zero spontaneous magnetization, mean-

ing that

M−β < 0 < M+
β . (1.4.24)

That is, the magnetization is discontinuous at h = 0. Equivalently, the free energy is not

differentiable4 at that point. The critical point for the Ising model is the inverse temperature

βc = sup{β > 0 : M+
β = 0}. (1.4.25)

At the critical point, the magnetization is continuous [4,118], i.e. the free energy is differentiable.

However, the susceptibility diverges (see [3]), so the free energy is not twice-differentiable. This

divergence corresponds to slow decay of the two-point function, which will be discussed further

in Section 1.5.

1.4.3 Infinite-volume spin systems

A broad distinction can be made between first-order phase transitions in which the free energy

has discontinuous first derivative with respect to an external field h and continuous phase

transitions, in which the free energy is differentiable but non-analytic. As discussed above, the

infinite-volume limit must be taken in order for a phase transition to manifest. For the Ising

model, we took the infinite-volume limit of the free energy along a sequence of increasing tori.

It is worth mentioning that a more general and elegant approach to the study of infinite-

volume spin systems was developed by Dobrushin [41] and Lanford and Ruelle [82]. An excellent

introduction to this subject is given in [54] and a comprehensive reference is [59] (see also [86]

for spin systems with unbounded 1-component spins).

Loosely speaking, this approach take as fundamental not the Hamiltonian but rather a

“potential”, which is a collection of functions encoding the microscopic interactions from which

the Hamiltonian is to be defined; for instance, for the Ising model, the Hamiltonian is a sum

of contributions of the form Jxyσxσy for x ∼ y. Given such a potential, a Hamiltonian can

be defined on any finite subgraph of G and a probability measure on Ω is said to be a Gibbs

measure or Gibbs state whenever its finite-volume conditional measures are of the form (1.4.3).

This is somewhat in the spirit of Kolmogorov’s consistency conditions with the important

difference that the resulting collection Gβ of Gibbs states at inverse temperature β need not

consist of only a single element. This is significant due to the interpretation of distinct elements

of Gβ as corresponding to different phases. For many systems of interest there is a critical

inverse temperature βc such that |Gβ| > 1 if and only if β > βc. The region β > βc is typically

associated with first-order phase transitions whereas continuous phase transitions usually occur

4There is an interchange of limit and derivative implicit in this statement, but it can be justified.
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at the critical point βc.

In this thesis, we are mainly interested in the single-phase regime β ≤ βc. Thus, we will avoid

the issue of existence and uniqueness of infinite-volume Gibbs measures by defining observable

quantities of interest in infinite volume as limits of their finite-volume counterparts as was done

in the previous section. Below we give the definitions we will use throughout the rest of this

thesis for (a generalization of) the |ϕ|4 model.

Generalized |ϕ|4 model

We view ΛN as a subset of Zd approximately centred at the origin (say as [−1
2L

N+1, 1
2L

N ]d∩Zd

if LN is even and as [−1
2(LN − 1), 1

2(LN − 1)]d ∩ Zd if LN is odd). This allows us to preserve

translation-invariance of the models that concern us when defining them in finite volume.

We fix Jxy = 1x∼y so that

−∆xy = 2d1x=y − 1x∼y. (1.4.26)

We will study a generalization of the |ϕ|4 model whose Hamiltonian on ΛN is given by

Vg,γ,ν,N (ϕ) =
∑
x∈ΛN

(
1

4
(g − γ)|ϕx|4 +

1

2
ν|ϕx|2 +

1

2
ϕx · (−∆ϕ)x +

1

4d
γ(∇|ϕx|2)2

)
, (1.4.27)

where

(∇|ϕx|2)2 =
∑
|e|=1

(∇e|ϕx|2)2 (1.4.28)

and the discrete gradient in the direction of a unit vector e ∈ Zd is defined by

∇efx = fx+e − fx. (1.4.29)

The expectation with respect to the corresponding Gibbs measure will be denoted 〈·〉g,γ,ν,N .

Following (1.4.21) and (1.4.22), we define the two-point function and susceptibility by

Gx,N (g, γ, ν;n) =
1

n
〈ϕ0 · ϕx〉g,γ,ν,N , Gx(g, γ, ν;n) = lim

N→∞
Gx,N (g, γ, ν;n) (1.4.30)

and

χ(g, γ, ν;n) = lim
N→∞

∑
x∈ΛN

Gx,N (g, γ, ν;n). (1.4.31)

Existence of these limits (which is not known in general) will follow from the proof of our main

result.

Remark 1.4.3. We have omitted the term 〈ϕ0〉g,γ,ν,N · 〈ϕx〉g,γ,ν,N which vanishes in the regime

of interest β ≤ βc.
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1.5 Critical behaviour and universality

Many systems exhibit singular behaviour at or near the critical temperature in the form of

power law scaling of various observable quantities. This is known as critical behaviour. For

concreteness, we will discuss the generalized |ϕ|4 model on Zd given by (1.4.27) with Jxy = 1x∼y.

1.5.1 The critical point

We follow the convention (1.4.6) of setting β = 1 and seek a phase transition for |ϕ|4 model

when the parameter ν is varied. We define the critical point by

νc = νc(g, γ;n) = inf{ν : χ(g, γ, ν;n) <∞}. (1.5.1)

By (1.4.31), it is reasonable to expect rapid (i.e. summable) decay of Gx(g, γ, ν;n) in |x| for

ν > νc and much slower decay at ν = νc.

In fact, the two-point function is expected to decay exponentially above νc. The correlation

length ξ is defined to be the reciprocal of the exponential rate of decay of the two-point function;

concretely, we let

ξ(g, γ, ν;n) = lim sup
k→∞

−k
logGke(g, γ, ν;n)

, (1.5.2)

where e ∈ Zd is a unit vector whose choice is irrelevant by invariance of this model under lattice

rotations. Roughly speaking, the correlation length acts as a “macroscopic length scale” of the

model; it is a measure of the largest scale at which spins are very strongly correlated. Based

on the above discussion, we expect ξ to diverge as ν ↓ νc. This divergence is one of the key

features of critical behaviour.

A related quantity is the correlation length of order p, defined by

ξp(g, γ, ν;n) =

(∑
x∈Zd |x|pGx(g, γ, ν;n)

χ(g, γ, ν;n)

)1/p

. (1.5.3)

An analysis of ξp requires less control over the behaviour of the two-point function than would

be needed to study the correlation length ξ. Our main result includes a statement regarding

the critical behaviour of ξp in d = 4.

Remark 1.5.1. There is a simple heuristic relationship between ξ and ξp. Suppose that

the two-point function decays exponentially at rate 1/ξ, possibly with some sub-exponential

multiplicative correction; for instance, suppose that

Gx(g, γ, ν;n) ≈ C|x|−αe−|x|/ξ(g,γ,ν;n), (1.5.4)

in some sense, where α and C are positive constants independent of ν. Then the main con-

tributions to the numerator of (1.5.3) should come from |x| ≤ ξ = ξ(g, γ, ν;n). For such |x|,
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Gx(g, γ, ν;n) ≈ C|x|−α and so∑
x∈Zd

|x|pGx(g, γ, ν;n) ≈ C
∑
|x|≤ξ

|x|−(α−p) ≈ Cξ(g, γ, ν;n)d−α+p. (1.5.5)

It follows then from the definition that

ξpp(g, γ, ν;n) ≈ ξp(g, γ, ν;n). (1.5.6)

1.5.2 Critical behaviour

For simplicity, let us drop g, γ, and n from the notation. It is predicted that there exist

constants η, γ̄, and ν̄ (unrelated to γ and ν), known as critical exponents, such that

Gx(νc) ∼ C1|x|−(d−2+η), |x| → ∞ (1.5.7)

χ(ν) ∼ C2(ν − νc)−γ̄ , ν ↓ νc (1.5.8)

ξ(ν) ∼ C3(ν − νc)−ν̄ , ν ↓ νc (1.5.9)

ξp(ν) ∼ C4(ν − νc)−ν̄ , ν ↓ νc (1.5.10)

where the Ci are constants that may depend on g, γ, and n (and p when i = 4). The critical

exponents, on the other hand, are expected to be universal in the sense that they only depend

on “large-scale properties” of the model such as its symmetries and the global geometry of the

underlying graph. In particular, for the n-component |ϕ|4 model on Zd, these exponents should

only depend on n and d and be independent of g and γ when g > 0 and γ is sufficiently small

(depending on g). In fact, analogous relations are expected to hold for the O(n) spin model,

with the same critical exponents.

These and other relations are all believed to be manifestations of the existence of a universal

scaling limit for the |ϕ|4 model and other models in its universality class. That is, any spin

system in this class, when appropriately rescaled, is expected to converge in distribution to

a unique continuum random field. In this sense, the study of critical behaviour involves far-

reaching generalizations of the central limit theorem.

Example 1.5.2 (The Gaussian free field). On Zd, (1.3.13) and (1.4.9) imply that

Gx(0, 0,m2;n) = (m2 + 2d)−1
∞∑
k=0

zkP k0x, (1.5.11)

where z = 2d/(m2 + 2d) and P = (2d)−1J is the transition matrix for the simple random walk

X on Zd. Thus, for m2 > 0,

χ(0, 0,m2;n) = (m2 + 2d)−1
∞∑
k=0

zk = (m2 + 2d)−1(1− z)−1 =
1

m2
. (1.5.12)
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It follows that νc(0, 0;n) = 0 and γ̄ = 1 for this model. It can also be shown that ν̄ = 1/2 and

η = 0 in this case (e.g. see [83] for η). In Appendix B, we give a new proof that ν̄ = 1/2 for

ξp(0, 0,m
2;n).

1.5.3 Critical exponents

As mentioned above, the critical exponents are generally expected to depend on d and n. Below

we discuss some of the conjectured values and known results.

Dimension d = 1

In d = 1, nearest-neighbour models typically do not possess a phase transition. However, phase

transitions may occur for sufficiently long-range models [44].

Dimensions d = 2

In d = 2, the Mermin-Wagner theorem [92] implies that the O(n) model does not possess

a first-order phase transition for n ≥ 2. However, the case n = 2 is expected to possess

a Kosterlitz-Thouless phase transition [81] (Kosterlitz and Thouless, together with Duncan

Haldane, were awarded the 2016 Nobel Prize in Physics for this and related ideas). Rigorous

results relating to this kind of phase transition include [40, 46, 47, 56]. For n = 1, there is a

phase transition; in fact, Onsager [96] gave an exact formula for the free energy of the Ising

model.

The 1-component planar models are expected to possess conformally invariant scaling lim-

its. As a consequence of these conformal symmetries, the predicted critical exponents are

rational numbers: γ̄ = 56/32, ν̄ = 1, and η = 1/4. Recent years have shown rapid progress

in this direction, stimulated by the identification by Schramm [104] of a 1-parameter family

of conformally invariant random planar curves now known as the Schramm-Loewner evolution

with parameter κ, or SLEκ. For instance, it was shown in [34] that the interface curve (between

+1 and −1 spins) for the Ising model on a bounded simply connected domain with Dobrushin

boundary conditions5 converges to SLE3 in an appropriate scaling limit.

Dimension d = 3

Very little is known rigorously about three-dimensional models. In fact, it was only recently

proved that the Ising model’s spontaneous magnetization vanishes continuously at the critical

point in three dimensions [3]. The critical exponents are not expected to take on rational

values. Approximate values for the exponents have been computed by non-rigorous methods

in [45,64,85].

5Positive spins along one side of the boundary and negative spins on the other.
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Dimensions d > 4

If d > 4, the critical exponents for the O(n) and |ϕ|4 models are predicted to become indepen-

dent of d and n and to take on the values of the corresponding exponents for the Gaussian free

field, i.e. γ̄ = 1, ν̄ = 1/2, and η = 0. This phenomenon is known as mean-field behaviour and

dimension 4 is called the upper-critical dimension for this class of models. For n = 1, 2 it is

known that η = 0 for the continuum limit of these models [2, 55] if it exists. On the lattice,

it has been shown that η = 0 for a spread-out version of the Ising model [102] and for the 1-

component |ϕ|4 model with small coupling strength [103]. Extensions to n = 1, 2 are upcoming

in [23].

Dimension d = 4

Dimension 4 is the case of primary interest in quantum field theory, where one dimension

plays the role of time. It is predicted in dimension 4 that a number of observables possess

multiplicative logarithmic corrections to mean-field scaling. An exception is the two-point

function, which is expected to undergo mean-field scaling (η = 0); this was shown for the 1-

component |ϕ|4 model in [57] and [48]. Logarithmic corrections to scaling of the susceptibility

and correlation length of the 1-component model were identified in [66,69].

Recently, Bauerschmidt, Brydges, and Slade [10, 28–31] have developed a renormalization

group method for studying the n-component |ϕ|4 model in 4 dimensions; this method works

for any n and, in a certain sense, extends to models of self-interacting walks, interpreted as

n = 0 (more on this in Section 1.8). In particular, they computed logarithmic corrections to

scaling of the susceptibility and specific heat and also identified the continuum massive GFF as

the scaling limit in the near-critical regime [7]. Using an extension of this method, Slade and

Tomberg computed asymptotics for critical correlation functions in [108]; in particular, they

showed that η = 0. In this thesis, we discuss extensions of this method that have been used to

study the finite-order correlation length [12] as well as more general models of walks [13].

1.5.4 The renormalization group

In [79], Leo Kadanoff considered a coarse-graining procedure for studying the Ising model in

which disjoint blocks in Zd of side L � ξ are replaced by single spins. He argued that spins

inside such blocks are so strongly correlated that the model obtained by making this replacement

should behave approximately like an Ising model with a new (“renormalized”) interaction.

At the critical point, ξ =∞ and the transformation T can be iterated indefinitely resulting

in a dynamical system on a space of models: the one-parameter semigroup (T j)j∈Z+ is known as

the renormalization group6. This was the basis for Ken Wilson’s generalizations of Kadanoff’s

idea in [115,116].

6The name renormalization group is attributed by Wilson in [115] to the work of Gell-Mann and Low [58].
The relationship between these two approaches is discussed in [76].
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1.5. Critical behaviour and universality

The coarse-graining procedure of Kadanoff can be viewed as an approximate method for

computing integrals with respect to a Boltzmann weight e−βH by successively integrating out

fluctuations that are “small” in the sense that they are localized in space. In Wilson’s approach

fluctuations are instead localized in Fourier space.

Wilson’s method results in a dynamical system on a space of models that acts by appropri-

ately integrating out small fluctuations, followed by a rescaling step used to make this system

autonomous (i.e. independent of the “scale” j). He argued that the action of this dynamical

system would leave the long-range behaviour of the models invariant. Consequently, critical

models lying in the same orbit would belong to the same universality class. Thus, such mod-

els should possess the same critical exponents and scaling limit. Moreover, this scaling limit

should be invariant under the action of the renormalization group, i.e. it should arise as a fixed

point of this dynamical system. Therefore, the set of points that flow towards it form its stable

manifold.

In addition to these rather broad statements regarding the nature of universality and scaling

limits, Wilson demonstrated that critical exponents could be computed by a careful analysis

of the asymptotics of the renormalization group near its fixed points. He claimed that such an

analysis could be performed by approximating this infinite-dimensional dynamical system by a

finite-dimensional system spanned by certain marginal and relevant directions. The remaining

irrelevant directions would contract under the action of the renormalization group.

By analyzing this finite-dimensional approximation, Wilson determined that there is a

unique hyperbolic fixed point (in the terminology of dynamical systems theory) in dimensions

d > 4, corresponding to the Gaussian free field and mean-field behaviour. As the dimension is

lowered below 4, a bifurcation occurs in which the Gaussian fixed point splits into two fixed

points. One of these corresponds to Gaussian behaviour but is unstable. The other is hyperbolic

and corresponds to anomalous scaling behaviour; it is sometimes known as the Wilson-Fisher

fixed point [117]. At the bifurcation point d = 4, there is only one (Gaussian) fixed point and

logarithmic corrections to mean-field scaling arise from the fact that this fixed point is not

hyperbolic.

There are many difficulties in making Wilson’s ideas rigorous and several different ap-

proaches exist. For instance, a rigorous implementation of Kadanoff’s block-spin renormaliza-

tion group was developed in [57] and used to show that η = 0 if d = 4 and n = 1. This was also

shown independently in [48], using related ideas. By extensions to the block-spin approach,

logarithmic corrections to mean-field scaling in this case were identified in [69]. This thesis

concerns the renormalization group method of Bauerschmidt, Brydges, and Slade [10, 28–31],

which we will discuss further in Chapter 2.

Example 1.5.3. Let us mention how renormalization group ideas can be used to prove a version

of the classical central limit theorem. This idea appears in [77, 80] and has been extended to

prove stable limit laws in [88].

LetXn denote a sequence of independent identically distributed continuous random variables
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1.6. Self-interacting walks

with mean 0 and variance 1. For such Xn, let Yn = 2−n/2(X1 + · · · + X2n). Then the map

Yn 7→ Yn+1 induces a renormalization group map R on density functions given by a convolution

and rescaling of the form (Rf)(x) =
√

2(f ∗ f)(
√

2x). It is easily verified that the standard

Gaussian density f∗ is a fixed point of R (in fact, it is the unique fixed point).

In this context, a subsequential version of the central limit theorem follows if we can show

that, for all f in an appropriate space of densities, Rnf converges to the fixed point f∗. A

local version of this statement can be proved by analyzing the linearized map DR(f∗). A

computation shows that this map has eigenfunctions Hi given by Hermite polynomials with

eigenvalues λi = 21−i/2 for integers i ≥ 0. The relevant directions (in the sense of Wilson’s

renormalization group) are those in which the linearized map is expanding; thus, the relevant

subspace is spanned in this case by H0 and H1. Similarly, the irrelevant directions are spanned

by Hi with i > 2 while H2 spans the marginal subspace.

1.6 Self-interacting walks

Before introducing the walks studied in this thesis, we mention the following important example

of a self-interacting walk.

Example 1.6.1 (Self-avoiding walk). Let ω : {0, . . . , n} → V be a discrete-time walk of length

n on G, meaning that ωi ∼ ωi+1 for all i. Let us denote by Ŵn the collection of such walks and

set Ŵ =
⋃
n Ŵn. We say that ω is self-avoiding if ωi 6= ωj for all i 6= j. Let Sn denote the

collection of n-step self-avoiding walks with ω0 = 0. We equip Sn with the uniform measure

µn for each n. This gives us a simple model of a linear polymer in a good solution. The

self-avoidance constraint models the excluded volume effect of matter.

The uniform measures do not form a consistent family due to the possibility of “traps”.

That is, the equality

µ|ω|(ω) =
∑
ω̄⊃ω

µ|ω̄|(ω̄) (1.6.1)

does not hold for all ω ∈ Ŵ (the sum here is over all self-avoiding walks extending ω). For

instance, consider the self-avoiding walk ω ∈ Ŵ7 on Zd in Figure 1.2. This walk has positive

probability under µ7 but, since there are no self-avoiding walks extending ω, the sum on the

right-hand side of (1.6.1) is 0.

As a result, there is no straightforward way to apply the usual methods of stochastic pro-

cesses to study the self-avoiding walk. The existence of traps also contributes to the combina-

torial difficulty of this model; for instance, if cn = |Sn|, then it is not clear how to express cn+1

as a simple function of cn.

We do know, however, that the sequence cn is sub-multiplicative: cm+n ≤ cmcn. This follows

from the fact that a self-avoiding walk can be split at any point into two self-avoiding walks,

but the concatenation of two self-avoiding walks is not necessarily self-avoiding. Thus, log cn is
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Figure 1.2: A trapped self-avoiding walk

subadditive and Fekete’s lemma for subadditive sequences implies the existence of the limit

c(G) = lim
n→∞

n−1 log cn. (1.6.2)

We call c(G) the connective constant of G. By definition, c(G) is the reciprocal of the radius of

convergence of the susceptibility, which is defined as the generating function

χ(z) =
∞∑
n=0

cnz
n (1.6.3)

of the sequence cn. Recalling Section 1.1, it is natural to study the asymptotics of the suscep-

tibility as z → c(G)−1.

Due to some of the difficulties involved in studying the self-avoiding walk, alternatives to

this model have been proposed. In fact, models of discrete-time walks can be defined in quite a

bit of generality in terms of measures on Ŵn. It is sometimes useful to work instead with models

of continuous-time walks parameterized by intervals [0, T ]. In both cases, we can conveniently

define Gibbs measures directly in infinite-volume with respect to the base measure induced by

simple random walk. However, instead of discussing models of walks in great generality, we will

proceed directly to the case of interest in this thesis.

1.6.1 Weakly self-avoiding walk with self-attraction

Let X denote the continuous-time simple random walk on G conditioned to start at 0. This is

the V-valued Markov process X with generator ∆. In other words,

P(Xt = y | X0 = x) = (et∆)xy. (1.6.4)

Define the local time up to time T at x ∈ V by

LxT =

∫ T

0
1X(S)=x dS. (1.6.5)
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1.6. Self-interacting walks

We define the intersection local time

IT =

∫ T

0

∫ T

0
1X(S1)=X(S2) dS1dS2 =

∑
x∈V

(LxT )2 (1.6.6)

and the contact self-attraction

CT =

∫ T

0

∫ T

0
1X(S1)∼X(S2) dS1dS2 =

∑
x∈V

∑
y∼x

LxTL
y
T (1.6.7)

up to time T .

Given a parameter g > 0, and γ ∈ R, let

Ug,γ(f) = g
∑
x∈V

f2
x −

γ

2d

∑
x∈V

∑
y∼x

fxfy (1.6.8)

for f : V → R. The weakly self-avoiding walk with self-attraction (WSAW-SA) is defined by the

Hamiltonian

Ug,γ,T = Ug,γ ◦ LT = gIT −
γ

2d
CT (1.6.9)

which induces a Gibbs measure with respect to the measure of X. We will refer to the case

γ = 0 as the weakly self-avoiding walk (WSAW).

Figure 1.3: Monte Carlo simulation of discrete-time WSAW with 100 steps

We let

cT = E0

(
e−Ug,γ,T

)
, cT (x) = E0

(
e−Ug,γ,T1XT=x

)
. (1.6.10)

The two-point function and susceptibility are defined as the Laplace transforms of these weights:

Gx(g, γ, ν) =

∫ ∞
0

cT (x)e−νT dT (1.6.11)
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and

χ(g, γ, ν) =

∫ ∞
0

cT e
−νT dT =

∑
x∈Zd

Gx(g, γ, ν). (1.6.12)

Note that (1.6.12) is more-or-less consistent with (1.4.31) We will establish an exact analogue

of (1.4.31) in Proposition 1.8.4. The relationship between the two-point function for walks and

spin systems will be discussed in Section 1.8.2.

We also have a version of the correlation length of order p:

ξp(g, γ, ν) =

(∑
x∈Zd |x|pGx(g, γ, ν)

χ(g, γ, ν)

)1/p

. (1.6.13)

Note that

ξpp(g, γ, ν) =

∫∞
0 〈|X(T )|p〉cT e−νT dT∫∞

0 cT e−νT dT
, (1.6.14)

where

〈F (X)〉 =
1

cT
E0(F (X)e−Ug,γ,T ) (1.6.15)

is the expectation induced by the weights (1.6.10). Thus, ξp is related to the Laplace transform

of the mean p-th displacement 〈|X(T )|p〉. On Zd, a version of the correlation length can also

be defined exactly as in (1.5.2).

Remark 1.6.2. The discrete-time version of the WSAW-SA is straightforward to define in

terms of discrete-time simple random walk; when γ = 0, it is known as the Domb-Joyce model

or discrete-time weakly self-avoiding walk. A sample of the Domb-Joyce model with 100 steps

is shown in Figure 1.3. The SAW can be recovered as an appropriate limit of the Domb-Joyce

model or the continuous-time WSAW [18].

Alternative representation

For f : Zd → R, let

|∇fx|2 =
∑
|e|=1

|∇efx|2, |∇f |2 =
∑
x∈Zd

|∇fx|2. (1.6.16)

Then by (1.3.9) ∑
x∈Zd

fx∆fx = −1

2
|∇f |2. (1.6.17)

It follows that∑
x∈Zd

∑
e∈U

fxfx+e = 2d
∑
x∈Zd

f2
x +

∑
x∈Zd

fx∆fx = 2d
∑
x∈Zd

f2
x −

1

2

∑
x∈Zd

|∇fx|2 (1.6.18)

and so we get the useful representation:

Ug,γ(f) = (g − γ)
∑
x∈Zd

f2
x +

γ

4d

∑
x∈Zd

∑
e∈U
|∇efx|2. (1.6.19)
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In particular,

Ug,γ,T = (g − γ)IT +
γ

4d
|∇LT |2. (1.6.20)

1.6.2 Predicted behaviour

We can view the susceptibility (1.6.12) as the partition function for a measure on walks of any

length (sometimes called a grand ensemble). When ν reaches the critical point

νc = νc(g, γ) = inf{ν : χ(g, γ, ν) <∞}, (1.6.21)

we expect the susceptibility to diverge. The susceptibility is a partition function for walks

with ν playing the role of an external field, so this divergence would be indicative of a phase

transition as discussed in Section 1.4.3. In a certain sense [42, 61], paths in the ν > νc phase

should scale as geodesics while paths for ν < νc should be space-filling.

In fact, it is not clear how to show that χ(g, γ, νc) = ∞ in general, although this can be

established for γ = 0 (see [9, Lemma A.1]). For γ sufficiently small, this divergence will be part

of our main result.

The two-point function, susceptibility, and correlations lengths of the self-avoiding walk and

(discrete- or continuous-time) WSAW-SA (with γ small depending on g) on Zd are all expected

to scale according to analogues of (1.5.7)–(1.5.10). Moreover, the discussion in Section 1.1

suggests that

cT ∼ C5e
−νcTT γ̄−1, (1.6.22)

〈|XT |2〉 ∼ C6T
2ν̄ . (1.6.23)

The critical exponents γ̄, ν̄, η are expected to be universal; in particular, they should only

depend on d in this context.

Below, we discuss the predicted values of the exponents for γ small before turning our

attention to the case of large γ. A more detailed reference is [90]. The values of ν̄ were first

predicted7 by the chemist Paul Flory [53], who later won the 1974 Nobel Prize in Chemistry

for his work on polymers.

Dimension d = 1

For the SAW, dimension 1 is trivial: the only self-avoiding walks are straight lines. This is not

the case for the WSAW, see e.g. the survey [73].

7Flory’s prediction for d = 3 is no longer generally accepted.
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Dimension d = 2

In d = 2, the predicted values of the critical exponents are

ν̄ = 3/4, γ̄ = 43/32, η = 5/24. (1.6.24)

It was shown in [84] that the scaling limit of SAW, if it exists and is conformally invariant, is

given by SLE8/3, which is consistent with the predicted exponents given above.

It is not immediately clear how to make sense of the supercritical regime (ν < νc for WSAW-

SA). However, the authors of [42] considered SAW on a discretized bounded planar domain.

They showed that the scaling limit of supercritical SAW conditioned to start and end on the

boundary of the domain is space-filling (their results extend to all dimensions d ≥ 2).

Dimension d = 3

In d = 3, again very little is known rigorously. Approximate values of the self-avoiding walk

critical exponents (assuming their existence) have been obtained by running simulations, see

e.g. [35, 36].

Dimension d > 4

The upper-critical dimensions for these models is d = 4 and the mean-field exponents are the

same as for models in the Ising universality class, namely γ̄ = 1, ν̄ = 1/2, η = 0. In other

words, self-avoiding walk is expected to scale like simple random walk in dimensions above 4.

Brydges and Spencer introduced the lace expansion in [32] and used it to show that ν̄ = 1/2

if d > 4 for the discrete-time WSAW. By vastly extending this method, Hara and Slade [67,68]

showed for the SAW that γ̄ = 1, ν̄ = 1/2 (for the mean-squared displacement, correlation

length, and correlation length of order 2), η = 0, and the scaling limit is Brownian motion.

Even above the upper-critical dimension, very little is known about WSAW-SA with γ 6= 0.

Exceptions include [65,111].

Remark 1.6.3. Define the free bubble diagram8 to be the `2(Zd) norm of the massive Green

function x 7→ C0x. Thus, by (1.3.13), if z = 2d/(m2 + 2d), then

Bm2 = ‖C‖`2(Zd) = (m2 + 2d)−2
∞∑

m,n=0

zm+n P(Xm = Yn), (1.6.25)

where X and Y are independent simple random walks started at 0. In other words, Bm2 is

proportional to the expected number of intersections between the traces of two such random

walks killed at rate 1− z. The upper-critical dimension can be “guessed” as follows. First, we

8This is sometimes represented by a graph consisting of two edges (forming a “bubble”) joining a vertex
labeled 0 (denoting the origin) to an unlabeled vertex (denoting an arbitrary point x that is summed over Zd).
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make the convenient definitions

Bm2 = (n+ 8)Bm2 , b =
n+ 8

16π2
. (1.6.26)

Then it is an exercise in Fourier analysis to show that in the limit m2 ↓ 0 (equivalently, z ↑ 1)

Bm2 ∼

b logm−2, d = 4

B0, d > 4,
(1.6.27)

which suggests the value dc = 4 of the upper-critical dimension.

Dimension d = 4

Weakly self-avoiding walk on a hierarchical lattice was studied by a renormalization group

method in [20,24,25,61]. As discussed in Section 1.5.4, Bauerschmidt, Brydges, and Slade have

recently made great strides in the case d = 4 on the Euclidean lattice using a new renormal-

ization group method. This method was first applied to walks in [8,9], where the susceptibility

and two-point function were studied.

Phase diagram

Let d ≥ 2. The predicted behaviour of self-avoiding walk with attraction is discussed in [74,

112]. The predicted phase diagram and critical exponents are shown in Figure 1.4. Generally

speaking, one might expect the self-attraction to dominate when γ > g so that the walk typically

remains in a bounded region, i.e. ν̄ = 0. A proof of this fact appears in [71] for a related model

in d = 1. The authors of [71] also conjecture that ν̄ = 1/(d+1) for g = γ and this is established

for d = 1 in [72].

While it is natural to expect the self-avoidance to dominate when γ < g, a collapse transition

is believed to occur as γ crosses the θ-curve g 7→ γθ(g). The value of the critical exponent ν̄ for

γ = γθ is predicted to be given by ν̄θ = 4/7 if d = 2 and ν̄θ = 1/2 if d ≥ 3 (with a logarithmic

correction in d = 3). However, very little is known rigorously about the θ-curve. Only recently

has a collapse transition been shown to exist for a model of prudent self-avoiding walk with

self-attraction [101].

Remark 1.6.4. De Gennes [38] related the behaviour of polymers in poor solvents to the tri-

critical behaviour of certain spin systems. Such systems typically possess two phase transitions:

one corresponding to each critical point on a line of critical points and one corresponding to a

tricritical point given by an endpoint of this line. For the WSAW-SA, the tricritical point should

be given by (g, γθ, νc). Moreover, the upper-critical dimension for such tricritical behaviour is

d = 3, consistent with the predicted values of ν̄θ.
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ν̄SAW

ν̄θ

ν̄ = 1/d

ν̄ = 1/(1 + d)

ν̄ = 0

g

γ

Figure 1.4: Phase diagram for the WSAW-SA

1.7 Main result

For any integer n ≥ 1, let Gx(g, γ, ν;n) denote the two-point point function for the version

of the |ϕ|4 model defined by (1.4.30). We let Gx(g, γ, ν; 0) denote the two-point function of

the WSAW-SA, defined in (1.6.11); this notation will be explained in Section 1.8. We employ

similar conventions for the susceptibility, correlation length of order p, and critical point, which

we denote by χ(g, γ, ν;n), ξp(g, γ, ν;n), νc(g, γ;n), respectively, with n ≥ 0 an integer. When

n = 0, these correspond to the WSAW-SA, whereas for n ≥ 1 they correspond to the |ϕ|4

model. The following theorem is the main result of this thesis.

Theorem 1.7.1. Let d = 4 and n ≥ 0. For L sufficiently large (depending on n), there exists

g∗ > 0 and a positive function γ∗ : (0, g∗)→ R such that whenever 0 < g < g∗ and |γ| < γ∗(g),

there are constants Ag,γ,n and Bg,γ,n such that the following hold:

(i) The critical two-point function decays as

Gx(g, γ, νc;n) = Ag,γ,n|x|−2
(
1 +O((log |x|)−1)

)
as |x| → ∞, (1.7.1)

with Ag,γ,n = (4π)−2(1 +O(g)) as g ↓ 0.

(ii) The susceptibility diverges as

χ(g, γ, νc + ε;n) ∼ Bg,γ,nε−1(log ε−1)(n+2)/(n+8), ε ↓ 0 (1.7.2)

with Bg,γ,n = ((n+ 8)g/16π2)(n+2)/(n+8)(1 +O(g)) as g ↓ 0.

(iii) For any p > 0, if L is chosen large and g∗ small (both depending on p), then the correlation
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length of order p diverges as

ξp(g, γ, νc + ε;n) ∼ B1/2
g,γ,ncpε

−1/2(log ε−1)(n+2)/2(n+8), ε ↓ 0 (1.7.3)

with

cpp =

∫
R4

|x|p(−∆R4 + 1)−1
0x dx. (1.7.4)

The γ = 0 cases of (i) and (ii) were proved by Bauerschmidt, Brydges, and Slade in [8, 9];

in fact, the n = 1 case of their results was first obtained in [48,57,66,69]. The n > 0 case with

γ 6= 0 is a new result in this thesis. We will only discuss the proof of the γ ≥ 0 case, which

is of primary interest. The proof of the γ < 0 case with n = 0 can be found in [13] and the

extension to n ≥ 1 is straightforward.

Remark 1.7.2.

1. The behaviour (1.7.3) is consistent with predictions for the correlation length ξ and should

be understood as a step towards a rigorous understanding of ξ in four dimensions (even

in the case γ = 0).

2. The statement of Theorem 1.7.1 does not provide a quantitative upper bound on γ.

However, it should be possible to extend this result to all |γ| ≤ Cg3 for some constant

C. We did not pursue this extension here as we expect that the results of Theorem 1.7.1

may well hold for γ larger than O(g3). Indeed, these results should hold for all γ below

the θ-curve and we know of no particular reason to expect the θ-curve to scale like g3.

3. We expect that the results of [108] on higher-order correlation functions can be extended

to the γ-dependent case considered here by the methods used to prove Theorem 1.7.1.

For instance, it should be possible to show that

1

n
〈|ϕ0|2; |ϕx|2〉g,γ,νc ∼ Cg,γ,n|x|−4(log |x|)−2(n+2

n+8) (1.7.5)

1.8 Relations between models

One way to understand universality is via representation theorems that relate different models.

For instance, the Kac-Siegert transformation can be used to write the partition function of

the O(n) model as a partition function for a perturbation of the |ϕ|4 model (we will discuss

this further in Section 6.1.2). In the other direction, the Simon-Griffiths construction [106] can

be used to approximate the 1-component |ϕ|4 model as a suitable limit of Ising models. Such

theorems do not necessarily imply universality (in the sense that models related in this way

have the same critical exponents or scaling limit), but tend to be suggestive of it and may in

some cases be used as the basis for the proof of a universality-type result.

We have already noted in Example 1.5.2 the close relationship between the simple random

walk and the Gaussian free field, which ultimately stems from the representation of matrix
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powers in terms of walks and which is familiar to anyone who has studied Markov chains.

Namely, if M is a V × V matrix, then

Mn
ab =

∑
x1,...,xn∈V

Max1Mx1x2 . . .Mxnb. (1.8.1)

When M is indexed by E , the sum above can be replaced by a sum over n-step walks from a to b

on G. When the entries of M are nonnegative, such a sum acquires a probabilistic interpretation

as an expectation with respect to the random walk whose steps are weighted by the entries of

M .

It was discovered by Symanzik [110] that certain spin systems could be represented as models

of interacting walks in a background of interacting loops. Symanzik used this insight to study

quantum field theories in terms of walks. Such representations were also studied, e.g. in [21,43].

A comprehensive reference is [49].

In the opposite direction, one can consider studying walks by looking for corresponding spin

systems. In [37], de Gennes argued that the self-avoiding walk corresponds to an n→ 0 “limit”

of the O(n) spin model and used this to predict the values of its critical exponents. Since n

is the number of components of the spins, the O(n) model is only well-defined for n a positive

integer and it is not clear how to make sense of such a limit.

Parisi and Sourlas [99] and McKane [91] discovered an alternative approach to the pre-

dictions of de Gennes. They argued that the weakly self-avoiding walk two-point function

could be represented as the two-point function for a version of the |ϕ|4 model, involving boson

and fermion fields (we discuss these below). The formal appearance of n = 0 quantities was

then explained as a consequence of a symmetry between the bosons and fermions known as

supersymmetry.

In Section 1.8.1, we provide a brief description of the heuristic relation between spin systems

and self-avoiding walk. Then in Section 1.8.2, we describe the rigorous representation of WSAW-

SA as a supersymmetric field theory.

1.8.1 The n→ 0 limit

The heuristic relation between self-avoiding walk and spin systems is most easily treated on

finite graphs G of degree 3 so we restrict our attention to this case. In addition, we consider a

version of the O(n) model with spins normalized to lie on the sphere of radius
√
n, which we

equip with the uniform measure. We denote the product measure on the resulting configuration

space by

dσ =
∏
x∈V

dσx. (1.8.2)

Remark 1.8.1. This normalization of the spins was in fact used when the O(n) model was orig-

inally introduced in [109]. Moreover, in [78], it was shown that this normalization is necessary

for the study of the n→∞ limit.
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The high-temperature expansion of a spin system is based on the expansion of the Boltzmann

weight e−βH about β = 0. For the O(n) spin model with interaction Jxy = 1x∼y, neglecting

higher-order terms in the high-temperature expansion yields

Z =

∫
dσ
∏
xy∈E

eβσx·σy

≈
∫
dσ
∏
xy∈E

(1 + βσx · σy)

=
∑
E⊂E

β|E|
∫
dσ

∏
xy∈E

σx · σy (1.8.3)

By reflection-invariance, the last integral above is non-zero if and only if every vertex in the

product over E appears an even number of times. On a graph of degree 3, this is only possible if

E is a (possibly empty) collection of mutually avoiding (i.e. disjoint) self-avoiding loops (walks

from a vertex to itself that are self-avoiding everywhere except this vertex).

Moreover, for any loop L, invariance under orthogonal transformations and the fact that

spins have radius
√
n implies that∫

dσ
∏
xy∈L

σx · σy =
n∑
i=1

∏
x∈V(L)

∫
dσx (σix)2 = n, (1.8.4)

where V(L) is the set of vertices in L. Thus,

Z ≈ 1 +
∑
N≥1

nN

N !

∑
L1,...,LN

β|L1|+···+|LN |, (1.8.5)

where the inner sum is over all collections of disjoint loops L1, . . . , LN and permutations of these

loops are accounted for by the 1/N ! factor. Notice that the final expression on the right-hand

side of (1.8.5) makes sense for any N and equals 1 when n = 0.

The two-point function for the O(n) model can be defined analogously to (1.4.30) and

(1.4.22). By a similar expansion as was used to study the partition function above, the numer-

ator in the two-point function becomes

n−1

∫
dσ(σa · σb)

∏
xy∈E

eβσx·σy ≈ n−1
∑
E⊂E

β|E|
∫
dσ(σa · σb)

∏
xy∈E

σx · σy. (1.8.6)

Once again, every vertex must appear twice on the right-hand side in order to make a non-zero

contribution to the sum. Due to the presence of the factor σa · σb, this means (unless a = b)

that the sum can be replaced by a sum over subsets E containing a self-avoiding walk from a

to b together with with a (possibly empty) family of mutually avoiding self-avoiding loops that

also avoid this walk. (As a very simple example, if a ∼ b, then there is a non-zero contribution
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from E = {a, b}.) For any such configuration E containing N loops,∫
dσ (σa · σb)

∏
xy∈E

σx · σy = n1+N . (1.8.7)

The extra factor of n arises from the walk in E but is cancelled by the normalization in (1.8.6).

Thus, after formally setting n = 0 (so that Z = 1), the two-point function is approximately

given by

1 +
∑

ω∈Sn(a,b)

β|ω|, (1.8.8)

which is the two-point function, i.e. the generating function for all self-avoiding walks from a

to b.

1.8.2 Self-avoiding walk representation

In this section we describe an integral representation of the of WSAW-SA on the discrete torus

Λ. We begin with the necessary background on Grassmann integration, which was introduced

in [15]. However, we follow the treatment of [26] in terms of differential forms.

Boson and fermion fields

Let φx, φ̄x denote complex variables indexed by x ∈ Λ. We refer to (φ, φ̄) as a boson field. Let

ux, vx denote the real and imaginary parts of φx and define the differentials dφx = dux + idvx

and likewise for dφ̄x. We multiply differential forms in the usual way via the anticommutative

wedge product ∧ but drop this in our notation; in particular,

dφ̄xdφx = 2iduxdvx. (1.8.9)

Example 1.8.2. Let C be a positive-definite symmetric Λ×Λ matrix. The complex Gaussian

measure with covariance C is the probability measure on R2Λ given by

dµC(φ, φ̄) =
dφ̄dφ

det(2πiC)
e−φ·Aφ̄ (1.8.10)

where A = C−1 and

dφ̄dφ :=
∏
x∈Λ

dφ̄xdφx (1.8.11)

The order in which the product over x ∈ Λ is taken does not matter since the dφ̄xdφx commute.

The complex Gaussian satisfies a version of Wick’s theorem. In particular,∫
φ̄xφy dµC(φ, φ̄) = Cxy. (1.8.12)
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Let

ψx =
1√
2πi

dφx, ψ̄x =
1√
2πi

dφ̄x, (1.8.13)

where we fix a choice of complex square root. We refer to (ψx, ψ̄x)x∈Λ as a fermion field. A

differential form that is the product of a function of (φ, φ̄) with p differentials is said to have

degree p. A sum of forms of even degree is said to be even.

We introduce a copy Λ̄ of Λ and we denote the copy of X ⊂ Λ by X̄ ⊂ Λ̄. We also denote

the copy of x ∈ Λ by x̄ ∈ Λ̄ and define φx̄ = φ̄x and ψx̄ = ψ̄x. Then any differential form F can

be written

F =
∑
~y

F~y(φ, φ̄)ψ~y (1.8.14)

where the sum is over finite sequences ~y over Λt Λ̄, and ψ~y = ψy1 . . . ψyp when ~y = (y1, . . . , yp).

Here, we take the sequences to be ordered in some fixed but arbitrary fashion. We let F 0 denote

the 0-degree (bosonic) part of F , given by the coefficient F~y with ~y = ∅ the empty sequence.

In order to apply the results of [8, 9, 12], we require smoothness of the coefficients F~y of

F . For Theorem 1.7.1(i,ii), we need these coefficients to be C10, and for Theorem 1.7.1(iii) we

require a p-dependent number of derivatives for the analysis of ξp. In either case, we let pN

denote the desired degree of smoothness. We will discuss this further in Section 4.2.2.

We letN∅ be the algebra of even forms (i.e. differential forms of even degree) with sufficiently

smooth coefficients and we let N∅(X) ⊂ N∅ be the sub-algebra of even forms only depending

on fields in X. Thus, for F ∈ N∅(X), the sum in (1.8.14) runs over sequences ~y over X t X̄.

Now let F = (Fj)j∈J be a finite collection of even forms indexed by a set J and write

F 0 = (F 0
j )j∈J . Given a C∞ function f : RJ → C, we define f(F ) by its Taylor expansion about

F 0:

f(F ) =
∑
α

1

α!
f (α)(F 0)(F − F 0)α. (1.8.15)

The summation terminates as a finite sum, since ψ2
x = ψ̄2

x = 0 by anticommutativity.

We define the integral
∫
F of a differential form F in the usual way as the Riemann integral

of its top-degree part (which may be regarded as a function of the boson field). In particular,

given a positive-definite symmetric Λ × Λ matrix C with inverse A = C−1, we define the

Gaussian expectation (or super-expectation) of F by

ECF =

∫
e−SAF, (1.8.16)

where

SA =
∑
x∈Λ

(
φx(Aφ̄)x + ψx(Aψ̄)x

)
. (1.8.17)

The super-expectation has the following self-normalizing property:

EC1 =

∫
e−SA = 1. (1.8.18)

32



1.8. Relations between models

Moreover, if F is a degree-0 form, then

ECF =

∫
F dµC . (1.8.19)

There is also a version of Wick’s theorem for fermions. In particular,∫
e−SAψ̄xψx = Cxx. (1.8.20)

Proofs of the statements (1.8.18)–(1.8.20) can be found in [26].

For F = f(φ, φ̄)ψ~y, we let

θF = f(φ+ ξ, φ̄+ ξ̄)(ψ + η)~y, (1.8.21)

where ξ is a new boson field, η = (2πi)−1/2dξ a new fermion field, and ξ̄, η̄ are the corresponding

conjugate fields. We extend θ to all F ∈ N∅ by linearity and define the convolution operator

ECθ by letting ECθF ∈ N∅ denote the Gaussian expectation of θF with respect to (ξ, ξ̄, η, η̄),

with φ, φ̄, ψ, ψ̄ held fixed.

Integral representation of the two-point function

An integral representation formula applying to general local time functionals is given in [20,26].

We state the result we need in the proposition below. A direct proof can be obtained by a small

modification to the proof in [108, Appendix A].

We define the differential forms:

τx = φxφ̄x + ψxψ̄x (1.8.22)

τ∆,x =
1

2

(
φx(−∆φ̄)x + (−∆φ)xφ̄x + ψx(−∆ψ̄)x + (−∆ψ)xψ̄x

)
(1.8.23)

|∇τx|2 =
∑
|e|=1

(∇eτ)2
x. (1.8.24)

The forms τx are special due to the following remarkable property of the super-expectation

(see [26]): ∫
e−SAF (τ) = F (0). (1.8.25)

Note that (1.8.18) is an immediate consequence of this fact. Recall (1.6.19) and define

Vg,γ,ν,N = Ug,γ(τ) +
∑
x∈ΛN

(
ντx + τ∆,x

)
(1.8.26)

Proposition 1.8.3. Let d > 0 and g > 0. For γ < g and ν ∈ R,

Gx,N (g, γ, ν; 0) =

∫
e−Vg,γ,ν,N φ̄0φx. (1.8.27)
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Finite-volume approximation

In order to make use of the integral representation above, we must approximate the WSAW-SA

on Zd by a model on ΛN .

Let XLN denote the simple random walk on ΛN . For FT = FT (X) any one of the functions

LxT , IT , CT of X defined in (1.6.5)–(1.6.7), we write FN,T = FT (XLN ). For instance, with

n = LN ,

LxN,T =

∫ T

0
1Xn

t = x dt, IN,T =
∑
x∈ΛN

(LxN,T )2. (1.8.28)

As before, we identify the vertices of ΛN with nested subsets of Zd, centred at the origin (ap-

proximately if L is even), with ΛN+1 paved by Ld translates of ΛN . We denote the expectation

of XLN started from 0 ∈ ΛN by EΛN
0 and define

cN,T (x) = EΛN
0

(
e−Ug,γ,T1X(T )=x

)
, x ∈ ΛN (1.8.29)

cN,T = EΛN
0

(
e−Ug,γ,T

)
. (1.8.30)

The finite-volume two-point function and susceptibility are defined by

Gx,N (g, γ, ν; 0) =

∫ ∞
0

cN,T (x)e−νT dT, (1.8.31)

χN (g, γ, ν; 0) =

∫ ∞
0

cN,T e
−νT dT. (1.8.32)

The proof of the following proposition is given in Appendix A.

Proposition 1.8.4. Let d > 0, g > 0 and γ < g. For all ν ∈ R,

lim
N→∞

Gx,N (g, γ, ν; 0) = Gx(g, γ, ν; 0) (1.8.33)

and

lim
N→∞

χN (g, γ, ν; 0) = χ(g, γ, ν; 0). (1.8.34)

In fact, χN and χ are analytic in Reν > νc and χN → χ uniformly on compact subsets of this

domain.

1.9 Outline

Chapter 2 introduces the elements and formalism of the renormalization group method devel-

oped in [10,28–31]. However, we proceed differently from these papers in two regards.

Firstly, in Section 2.4.3 we employ a different choice of norm weights from that used in [31],

where the renormalization group map was constructed. However, these new weights cannot

be used with the same norms as in [31]. In Chapter 4, we explain how to overcome this

obstacle by a new choice of norm and we provide a detailed verification that the estimates
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on the renormalization group map are improved by this choice. The result is summarized as

Theorem 2.7.1, which is the first main technical achievement of this thesis. The improved

estimates that we obtain are required for the proof of Theorem 1.7.1(iii), even when we take

γ = 0. This result first appeared in [12].

Secondly, the initial coordinates for the renormalization group that we define in Section 2.6.1

involve a non-trivial error coordinate that captures the self-attraction term in the WSAW-

SA and the γ(∇|φx|2)2 term in the generalized |ϕ|4 model. This error coordinate is coupled

to a coordinate capturing the relevant and marginal directions and a version of the implicit

function theorem is consequently required for the identification of critical parameters such

that the renormalization group can be initialized on its stable manifold when γ 6= 0. The

construction of these critical parameters is carried out in Chapter 5 and the result is summarized

as Theorem 2.8.1. This is the second main technical achievement of this thesis and is required

for the proof of Theorem 1.7.1 with γ 6= 0. This result first appeared in [13] for n = 0; here, we

have extended it to all n ≥ 0. However, we restrict our attention to the more interesting case

of γ ≥ 0 for simplicity.

Prior to proving Theorems 2.7.1 and 2.8.1, we show in Chapter 3 how to obtain Theo-

rem 1.7.1 as a consequence of these results. The proof of Theorem 1.7.1(iii) is a novel contri-

bution even in the case γ = 0, which first appeared in [12].

The proof of Theorem 1.7.1(i)–(ii) was previously obtained for γ = 0 by Bauerschmidt,

Brydges, and Slade in [7–9] and Slade and Tomberg in [108]. The extension to γ 6= 0 is

an adaptation of the proofs found in those papers but involves (in addition to the proof of

Theorem 2.8.1) a change of variables result stated and proved in Section 3.1.1.

We conclude in Chapter 6 with a discussion of some open problems.
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Chapter 2

Renormalization group method

This chapter introduces the elements of the renormalization group method developed in the

series of papers [10, 28–31] and applied in [7–9, 108]. We will often state results from these

papers without proof.

The main contribution of this thesis, which is based on the work in [12,13], is the improve-

ment of the estimates in Theorem 2.7.1 and the extension to γ0 6= 0 in Theorem 2.8.1.

2.1 Notation

To unify our treatment of the two models, we define the forms τx, τ∆,x, |∇τx|2 according to

(1.8.22)–(1.8.24) if n = 0 and

τx = 1
2 |ϕx|

2, τ∆,x = 1
2ϕx · (−∆ϕ)x, |∇τx|2 =

∑
|e|=1

(∇e|ϕx|2)2 (2.1.1)

if n ≥ 1. Then by (1.4.27), (1.6.19), and (1.8.26),

Vg,γ,ν,N =
∑
x∈ΛN

(
(g − γ)τ2

x + ντx + τ∆,x + 1
4dγ|∇τx|

2
)

(2.1.2)

for any choice of n. We write

〈F 〉g,γ,ν,N =


∫
Fe−Ug,γ,ν,N , n = 0

1

Zg,γ,ν,N

∫
F (ϕ)e−Ug,γ,ν,N dϕ, n ≥ 1.

(2.1.3)

The action SA is defined by (1.8.17) if n = 0 and

SA =
1

2

∑
x∈Λ

ϕx · (Aϕ)x (2.1.4)

if n ≥ 1. In either case, if A = −∆ +m2, then

SA =
∑
x∈Λ

(τ∆,x +m2τx). (2.1.5)
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Thus, if ECθ is the super-expectation (1.8.16) for n = 0 and Gaussian integration over (Rn)Λ

if n ≥ 1, then for ν > 0,

〈F 〉0,0,m2,N = ECF, C = (−∆ +m2)−1. (2.1.6)

By (1.4.30), (1.8.33), and (1.8.27),

Gx(g, γ, ν;n) = lim
N→∞

Gx,N (g, γ, ν;n), (2.1.7)

where

Gx,N (g, γ, ν;n) =

〈φ̄0φx〉g,γ,ν,N , n = 0

〈ϕ0 · ϕx〉g,γ,ν,N n ≥ 1.
(2.1.8)

By Proposition 1.8.4 and (1.4.31), for any integer n ≥ 0,

χ(g, γ, ν;n) = lim
N→∞

χN (g, γ, ν;n) (2.1.9)

χN (g, γ, ν;n) =
∑
x∈ΛN

Gx,N (g, γ, ν;n). (2.1.10)

ξp(g, γ, ν;n) =

(∑
x∈Zd |x|pGx(g, γ, ν;n)

χ(g, γ, ν;n)

)1/p

(2.1.11)

νc = νc(g, γ;n) = inf{ν : χ(g, γ, ν;n) <∞}. (2.1.12)

2.2 Reformulation of the problem

In preparation for our application of the renormalization group, we write the two-point function

and susceptibility in terms of appropriate perturbations of Gaussian measures.

Given m2 > 0 and z0 > −1, let

g0 = (g − γ)(1 + z0)2, ν0 = ν(1 + z0)−m2, γ0 =
1

4d
γ(1 + z0)2. (2.2.1)

We discuss the role of (m2, z0) some more in Remark 2.3.2.

We fix two points 0, x ∈ Λ and introduce observable fields σ0, σx ∈ R. We distinguish these

from the bulk fields ϕ, φ, φ̄, ψ, ψ̄. We also make a distinction between bosonic fields ϕ, φ, φ̄,

σ, and fermionic fields ψ, ψ̄.

For any y ∈ Λ, we define the polynomials

V +
0,y = g0τ

2
y + ν0τy + z0τ∆,y − f0σ01y=0 − fxσx1y=x, U+

y = |∇τy|2 (2.2.2)
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where

fu =


φ̄0, n = 0, u = 0

φx, n = 0, u = x

ϕ1
u, n ≥ 1.

(2.2.3)

These are examples of local polynomials, which are polynomials in the fields and their derivatives

at a point y ∈ Λ. For any such local polynomial Vy, we will usually write

V (X) =
∑
y∈X

Vy. (2.2.4)

Let

Z0 =
∏
y∈Λ

e−(V +
0,y+γ0U

+
y ) (2.2.5)

and

ZN = ECθZ0 (2.2.6)

where the covariance is given by C = (−∆ +m2)−1 as in (2.1.6). In particular,

ECZ0 = Z0
N (0). (2.2.7)

Recall here that Z0
N denotes the 0-degree part of ZN (when n ≥ 1, Z0

N = ZN ). This is a

function of the bulk bosonic fields, which we have set to 0 on the right-hand side of (2.2.7).

Recall that the Gaussian convolution operator ECθ was defined in Section 1.8.2. We define

a test function 1 : ΛN → R by 1y = 1 for all y. If F is a sufficiently smooth function of the

bosonic fields (i.e. F = F (φ, φ̄) if n = 0 and F = F (ϕ) if n ≥ 1), let

D2F (0;1,1) =
∂2

∂s∂t

∣∣∣
0

F (s1, t1), n = 0

F (s1 + t1), n ≥ 1
(2.2.8)

where the derivative is evaluated with all fields (bulk and observable) and s, t set to 0. Let F (0)

denote F evaluated at 0 bulk field. We denote by D2
σ0σxF (0) the second partial derivative of

F (0) with respect to the observable fields σ0, σx evaluated at σ0 = σx = 0.

Proposition 2.2.1. Let d > 0, γ, ν ∈ R, g > 0 and γ < g. If the relations (2.2.1) hold, then

Gx,N (g, γ, ν;n) = (1 + z0)D2
σ0σx logECZ0 (2.2.9)

and

χN (g, γ, ν;n) = (1 + z0)χ̂N (m2, g0, γ0, ν0, z0;n), (2.2.10)

with

χ̂N (m2, g0, γ0, ν0, z0;n) =
1

m2
+

1

m4

1

|Λ|
D2Z0

N (0;1,1)

Z0
N (0)

. (2.2.11)
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Proof. We prove the case n = 0 and drop the parameter n from the notation. Note that by

(1.8.25), ZN (0)
∣∣
σ0=σx=0

= 1 in this case. The proof for n ≥ 1 is similar and involves only

ordinary integration with respect to real boson fields.

We make the change of variables φx 7→ (1 + z0)1/2φx and likewise for φ̄x, ψx, ψ̄x in (1.8.27),

and obtain

Gx,N (g, γ, ν) = (1 + z0)

∫
e−
∑
x∈Λ(g0τ2

x+γ0|∇τx|2+ν(1+z0)τx+(1+z0)τ∆,x)φ̄aφb. (2.2.12)

Note here that the Jacobian factor is automatically accounted for by the change of variables in

the fermionic fields. For any m2 ∈ R, it follows that

Gx,N (g, γ, ν) = (1 + z0)

∫
e−
∑
x∈Λ(τ∆,x+m2τx)Z0φ̄0φx (2.2.13)

(m2 simply cancels with ν0 on the right-hand side). We use this with m2 > 0, so that the

inverse matrix C = (−∆ +m2)−1 exists and

Gx,N (g, γ, ν) = (1 + z0)EC(Z0φ̄0φx) (2.2.14)

by (2.1.6). The identity (2.2.9) follows by the standard procedure of writing the moments of

an integral as a derivative of a moment-generating function.

Summation of (2.2.14) over x ∈ ΛN gives the formula χN (g, γ, ν) = (1+z0)
∑

x∈Λ EC(Z0φ̄0φx).

Call the right-hand side χ̂N (g, γ, ν). To show that this is consistent with (2.2.11), begin by not-

ing that

χ̂N (g, γ, ν) = |Λ|−1D
2Σ(0;1,1)

ZN (0)
, (2.2.15)

where

Σ(J, J̄) = EC(Z0e
J ·φ̄+φ·J̄). (2.2.16)

Completing the square yields

Σ(J, J̄) = eJ ·CJ̄Z0
N (CJ,CJ̄) (2.2.17)

and differentiating this expression gives

D2Σ(0;1,1) = (1, C1) +D2Z0
N (0;C1, C1) (2.2.18)

The result then follows from the fact that

C1 = A−1
1 = m−2

1. (2.2.19)
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2.3 Progressive integration

By Proposition 2.2.1, our task is to understand the Gaussian expectation ZN = ECZ0 and its

derivatives to leading order, uniformly in the volume ΛN and the mass m2 near 0.

We proceed using the covariance decomposition

C = C1 + · · ·+ CN−1 + CN,N (2.3.1)

constructed in [5]; a similar decomposition was also constructed in [22]. The covariances

C1, . . . , CN−1 are independent of the volume ΛN . The final covariance CN,N does depend

on the volume; so, for instance, CN,N 6= CN,N+1. Nevertheless, we will often write CN := CN,N

when the volume is implicit.

The covariances Cj have the following important finite-range property :

Cj;xy = 0 if |x− y| ≥ 1
2L

j . (2.3.2)

Thus, if ζ is a Gaussian field with covariance Cj , then ζx is independent of ζy whenever |x−y| ≥
1
2L

j . In particular, if Fx, Fy are functions of the fields at x, y, respectively, then

ECj+1(FxFy) = (ECj+1Fx)(ECj+1Fy). (2.3.3)

In addition, we have the following covariance bounds (this is a restatement of [10, Proposi-

tion 6.1(a)]).

Proposition 2.3.1. Let d > 2, L ≥ 2, j ≥ 1, m̄2 > 0. For multi-indices α, β with `1 norms

|α|1, |β|1 at most some fixed value p, for any k, and for m2 ∈ [0, m̄2],

|∇αx∇βyCj;x,y| ≤ c(1 +m2L2(j−1))−kL−(j−1)(d−2+|α|1+|β|1), (2.3.4)

where c = c(p, k, m̄2) is independent of m2, j, L. The same bound holds for CN,N if m2L2(N−1) ≥
ε for some ε > 0, with c depending on ε but independent of N .

It is a basic property of the Gaussian distribution that a sum of independent Gaussian

random variables with covariances C ′ and C ′′ is itself Gaussian with covariance C ′ + C ′′. It

follows that for any boson field F ,

EC′+C′′θF = EC′θ ◦ EC′′θF. (2.3.5)

This extends to any sufficiently smooth form F (see [28]). It follows that

ZN = ECN θ ◦ ECN−1
θ ◦ . . . ◦ EC1θZ0. (2.3.6)
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2.4. The space of field functionals

We define the renormalization group map Zj 7→ Zj+1 by

Zj+1 = ECj+1θZj , j < N. (2.3.7)

Remark 2.3.2. The key to understanding ZN for large N is the careful choice of critical initial

conditions (m2, z0) in (2.2.1). Viewed as functions of (g, γ, ν), these define a stable manifold for

the dynamical system induced by the renormalization group map and the fixed point for this

stable manifold is the Gaussian measure with covariance (1+z0)(−∆+m2)−1. However, we have

scaled out the factor 1+z0 in the change of variables performed in the proof of Proposition 2.2.1.

Indeed, for n ≥ 1 the exponent in (2.2.12) contains the term −1
2(1+z0)

∑
x∈Λ ϕx ·[(−∆+m2)ϕ]x.

The construction of the critical parameters for γ 6= 0 will be carried out in Section 3.1.1

and is a key step in the proof of Theorem 1.7.1.

2.4 The space of field functionals

For the analysis of the dynamical system (2.3.7), we require a suitable space on which this

system evolves.

Let N∅ be defined as in Section 1.8.2 if n = 0 and

N∅ = N∅(Λ) = CpN ((Rn)Λ,R) (2.4.1)

if n ≥ 1. Recall that pN is the smoothness parameter discussed in Section 1.8.2.

We extend N∅ to a space N that includes functions of the observable fields σ0 and σx, which

we identify to order 1, σ0, σx, σ0σx (this is sufficient for computing the derivative in (2.2.9)).

Formally, we let N ′ denote the extension of N∅ whose elements may depend smoothly on σ0,

σx. In other words, if n ≥ 1, then N ′ consists of functions of (ϕ, σ0, σx) that are CpN in ϕ

and C∞ in σ0, σx. Likewise, for n = 0, a similar statement is true of the coefficients F~y in

(1.8.14). Letting I ⊂ N ′ be the ideal consisting of elements whose formal expansion to order

1, σ0, σx, σ0σx is 0, we define N = N ′/I. Then N has the direct sum decomposition

N = N∅ ⊕N a ⊕N b ⊕N ab, (2.4.2)

where N a consists of elements of the form σaF with F ∈ N∅ and a similar statement is true

of N b,N ab. Thus, every F ∈ N has the form

F = F∅ + σ0F0 + σxFx + σ0σxF0x, F∅, F0, Fx, F0x ∈ N∅. (2.4.3)

There are natural projections πα : N → Nα with α = ∅, 0, x, 0x such that παF = Fα. For

X ⊂ Λ, we let N (X) denote the subspace of N consisting of field functionals that only depend

on fields in X.

In order to control the evolution of Zj on N , we make use of a family ‖ · ‖Tφ,j(hj) of scale-
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2.4. The space of field functionals

dependent seminorms defined in terms of a sequence of weights hj > 0; the field φ lies in CΛ

if n = 0 and (Rn)Λ if n ≥ 1. For convenience, we will simply write ‖ · ‖Tφ(hj) with the scale j

implied by the choice of parameter hj .

We given the precise definitions below for n = 0. The case n ≥ 1 involves only minor

changes, which we describe in Remark 2.4.1.

2.4.1 Test functions

Recall the notation introduced in Section 1.8.2. A test function g is defined to be a function

(~x, ~y) 7→ g~x,~y, where ~x and ~y are finite sequences of elements in Λ t Λ̄. When ~x or ~y is the

empty sequence ∅, we drop it from the notation as long as this causes no confusion; e.g., we

may write g~x = g~x,∅. The length of a sequence ~x is denoted |~x|. Gradients of test functions are

defined component-wise. Thus, if ~x = (x1, . . . , xm) and α = (α1, . . . , αm) with each αi ∈ NU0 ,

and similarly for ~y = (y1, . . . , yn) and β = (β1, . . . , βn), then

∇α,β~x,~y g~x,~y = ∇α1
x1
. . .∇αmxm∇

β1
y1
. . .∇βnyn gx1,...,xm,y1,...,yn . (2.4.4)

We fix a positive constant pΦ ≥ 4 and restrict our attention to test functions that vanish

when |~x|+ |~y| > pN . The Φj = Φ(hj) norm on such test functions is defined by

‖g‖Φj = sup
~x,~y

h
−(|~x|+|~y|)
j sup

α,β:|α|1+|β|1≤pΦ

Lj(|α|1+|β|1)|∇α,βg~x,~y|, (2.4.5)

where |α|1 denotes the total order of the differential operator ∇α. Thus, for any test function

g and for sequences ~x, ~y with |~x|+ |~y| ≤ pN and corresponding α, β with |α|1 + |β|1 ≤ pΦ,

|∇α,βg~x,~y| ≤ h
|~x|+|~y|
j L−j(|α|1+|β|1)‖g‖Φj . (2.4.6)

2.4.2 The Tφ seminorm

If n = 0, then for any F ∈ N∅, there are unique functions F~y of (φ, φ̄) that are anti-symmetric

under permutations of ~y, such that

F =
∑
~y

1

|~y|!
F~y(φ, φ̄)ψ~y. (2.4.7)

Given a sequence ~x with |~x| = m, we define

F~x,~y =
∂mF~y

∂φx1 . . . ∂φxm
. (2.4.8)

We define a φ-dependent pairing of elements of N with test functions by

〈F, g〉φ =
∑
~x,~y

1

|~x|!|~y|!
F~x,~y(φ, φ̄)g~x,~y. (2.4.9)
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2.4. The space of field functionals

Let B(Φ) denote the unit Φ-ball in the space of test functions. Then the Tφ = Tφ(hj)

seminorm on N∅ is defined by

‖F‖Tφ = sup
g∈B(Φj)

|〈F, g〉φ|. (2.4.10)

Remark 2.4.1. If n ≥ 1, a test function is a function g on sequences over Λ× {1, . . . , n}. For

any such sequence ~x = ((x1, i1), . . . , (xm, im)), we write |~x| = m and set

F~x =
∂mF

∂ϕi1x1 . . . ∂ϕ
im
xm

(2.4.11)

and

〈F, g〉ϕ =
∑
|~x|≤pN

1

|~x|!
F~x(ϕ)g~x. (2.4.12)

Then the Tϕ seminorm can be defined as in (2.4.10).

To extend the Tφ seminorm to N , we make use of an additional sequence of parameters

hσ,j . For any F ∈ N of the form (2.4.3), we let

‖F‖Tφ = ‖F∅‖Tφ + (‖F0‖Tφ + ‖Fx‖Tφ)hσ + ‖F0x‖Tφh
2
σ. (2.4.13)

By its definition, the Tφ seminorm controls the values of F and its derivatives (up to order

pN ) at φ. For instance, we will make use of the following facts.

Lemma 2.4.2. If F ∈ N∅, then |F 0(0)| ≤ ‖F‖T0. For F ∈ N ,

|D2F 0(0;1,1)| ≤ 2‖F‖T0(hj)‖1‖
2
ΦN (hj)

= 2‖F‖T0(hj)h
−1
j (2.4.14)

and

|D2
σ0σxF

0(0)| ≤ h−2
σ,j‖F‖T0 . (2.4.15)

An essential property of the Tφ seminorm is the following product property, which is essential

to fully take advantage the factorization property (2.3.3) that follows from the finite-range

property of the covariance decomposition.

Proposition 2.4.3. If F,G ∈ N , then ‖FG‖Tφ ≤ ‖F‖Tφ‖G‖Tφ.

Remark 2.4.4. This follows essentially from the fact that the series expansion of the product

of two functions is the product of their respective series expansions (see [28]). This is part of

the reason the Tφ seminorm was defined in terms of the pairing (2.4.9).

2.4.3 Norm weights

Control of the Tφ seminorm is needed for all values of φ in order to obtain control of the

convolution (2.3.7) sufficient for iteration of the renormalization group map. This will be
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2.4. The space of field functionals

discussed further in Section 4.2.2.

For now, we turn our attention to the special case of the T0 seminorm. Recalling (2.2.7),

it is natural to choose the weights hj so that ECj+1F is of order ‖F‖T0(hj). By Wick’s theorem

(1.4.9), for a 1-component field ϕ,

ECj+1ϕ
2p
x = (2p− 1)!!Cpj+1;00 (2.4.16)

and similar statements hold for complex and fermionic fields by the analogues of Wick’s theorem

for such fields. On the other hand, by definition of the T0 seminorm,

‖ϕ2p
x ‖T0(hj) � h2p

j . (2.4.17)

This suggests defining hj so that |Cj+1;00| ≤ O(h2
j ).

The key to our analysis of the correlation length is that we make a choice of norm weights

that takes full advantage of the k-dependence in the covariance bounds (2.3.4). With k = s+1,

this estimate together with the elementary bound

(1 +m2L2j)−k ≤ cLL−2(s+1)(j−jm)+ (2.4.18)

imply that

|Cj;xy| ≤ O(L−j(d−2)−s(j−jm)+), (2.4.19)

where jm is the mass scale, defined by

jm = blogLm
−1c. (2.4.20)

Based on this, when d = 4, we define the following weights:

`j = `0L
−j−s(j−jm)+ , `σ,j = `−1

j∧jx2(j−jx)+ g̃j , (2.4.21)

where

jx = max{0, blogL(2|x|)c} (2.4.22)

is the coalescence scale and the sequence g̃j = g̃j(m
2, g0) will be discussed in Section 2.5.3. The

origin of the definition of `σ,j is discussed in [30, Remark 3.3].

We will set hj = `j to estimate “small” fields. These are fields which are assumed not to

deviate too much from their expected value. A different norm parameter hj = hj will be used

to control “large” fields. This will be discussed in Section 4.2.2.

Remark 2.4.5. The parameter g̃j is used to overcome what [1] refers to as the “fibred norm

problem”. Briefly, the norms used to control the renormalization group trajectory must be

decoupled from the initial parameter g0. Ultimately, we will set g̃0 = g0 (see Remark 5.2.3).
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2.4.4 Symmetries

It is useful to restrict our attention to field functionals F ∈ N that obey certain symmetry

conditions preserved by Gaussian expectation (and which are obeyed by V +
0 ).

We let any automorphism E of Λ act on N by EF (ϕ) = F (Eϕ) with (Eϕ)x = ϕEx. We

say that F ∈ N is Euclidean-invariant if EF = F for all such automorphisms.

If n = 0, we define the gauge flow (q, q̄) 7→ (e−2πitq, 22πitq̄), where q = φx, ψx, σ with σ0 = σ

and σx = σ̄ for all x ∈ Λ. A form F ∈ N is said to be gauge-invariant if it is invariant under

the gauge flow. We also define the supersymmetry generator

Q = (2πi)1/2
∑
x∈Λ

(
ψx

∂

∂φx
+ ψ̄x

∂

∂φ̄x
− φx

∂

∂ψx
+ φ̄x

∂

∂ψ̄x
.

)
(2.4.23)

A form F ∈ N is said to be supersymmetric if QF = 0.

If n ≥ 1, we let an n × n matrix T act on N by TF (ϕ) = F (Tϕ), where (Tϕ)x = T (ϕx).

We say that F ∈ N is O(n)-invariant if TF = F for all orthogonal matrices T .

2.5 Perturbative coordinate

As mentioned in Section 1.5.4, one of Wilson’s key insights was that the renormalization group

could be well-approximated by a finite-dimensional dynamical system. In this section, we

reformulate Wilson’s insights in terms of the covariance decomposition and define a subspace

on which this finite-dimensional system will evolve.

2.5.1 Dimensional analysis

We call Mx ∈ N a local monomial if it is a monomial in ϕx and its (discrete) gradients. For

instance, for a 1-component field, such Mx has the form

Mx = (∇α1ϕx) . . . (∇αpϕx). (2.5.1)

The T0 seminorm of a local monomial Mx essentially just counts the number of fields and

derivatives in Mx. For instance, for Mx as above,

‖Mx‖T0(`j) = O
(
L−j(|α|+p[ϕ])

)
(2.5.2)

where |α| = |α1|+ · · ·+ |αp| and

[ϕ] =
d− 2

2
(2.5.3)

is the scaling dimension of the field. Based on this observation, we define the dimension of Mx

by

[Mx] = |α|+ p[ϕ]. (2.5.4)
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Note here that we have neglected the rapid decay of fields above the mass scale.

By (2.3.4), ϕ is approximately constant on blocks of side Lj . In a sense, the fields on a block

B act as a unit and this contributes to a volume factor |B| = Ljd. This leads us to compare

the dimension of a monomial with the dimension d of the lattice. We say that Mx is relevant

if [Mx] < d, marginal if [Mx] = d, and irrelevant if [Mx] > d.

Remark 2.5.1. Note that the self-attraction term |∇τx|2 is irrelevant in the above sense.

However, this does not mean that the inclusion of this term should not have an effect on the

critical behaviour of the model under consideration (indeed, this term is responsible for the

phase diagram given by Figure 1.4). Rather, the notion of irrelevance is an asymptotic one:

irrelevant terms are only “unimportant” at very large scales j. At scale j = 0 there is little

difference between a relevant and an irrelevant term, which is why we must choose the coefficient

γ of |∇τx|2 to be small in Theorem 1.7.1.

2.5.2 Local field polynomials

For y ∈ Λ, we supplement (1.8.22)–(1.8.24) and (2.1.1) by defining

τ∇∇,y =

1
2

∑
e∈U

(
(∇eφ)y(∇eφ̄)y + (∇eψ)y(∇eψ̄)y

)
, n = 0

1
4

∑
|e|=1∇eϕy · ∇eϕy, n ≥ 1.

(2.5.5)

When n = 0, it can be shown that the only marginal and relevant local monomials that are

Euclidean-invariant and supersymmetric are constant multiples of

1, τx, τ2
x , τ∆,x, τ∇∇,x. (2.5.6)

When n ≥ 1, these are the only marginal and relevant monomials that are Euclidean-invariant

and O(n)-invariant (see [10]).

The marginal and relevant contributions to the evolution of the renormalization group will

be tracked by a local polynomial (a sum of local monomials) of the form
∑

y∈Λ Uy, where (recall

(2.2.3))

Uy = gτ2
y + ντy + zτ∆,y + u

− 1y=0λ0f0σ0 − 1y=xλxfxσx

− 1
2(1y=0q0 + 1y=xqx)σ0σx. (2.5.7)

We have omitted τ∇∇ as (1.3.9) gives∑
x∈Λ

τ∇∇,x =
∑
x∈Λ

τ∆,x. (2.5.8)
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Remark 2.5.2. When n = 0, we can also omit u since constant terms are not produced by the

Gaussian super-expectation. For example, ECθτx has constant part 0 by (1.8.12) and (1.8.20).

More generally, this is a consequence of the supersymmetry identity (1.8.25).

We define U to be the space of all polynomials of the form Uy. Given X ⊂ Λ, we let

U(X) = {U(X) : U ∈ U}, (2.5.9)

where U(X) is defined as in (2.2.4). We also make use of the subspace V of polynomials with

u = y = q0 = qx = 0. We will usually denote an element of V as V . For U ∈ U , we define the

map U 7→ U (0) ∈ V, which sets u = q0 = qx = 0.

We define the U = Uj norm by

‖U‖U = max
{
|g|, L2j |ν|, |z|, L4j |u|, `j`σ,j(|λ0| ∨ |λx|), `2σ,j(|q0| ∨ |qx|)

}
(2.5.10)

on U ∈ U , which depends on the parameters `j and `σ,j . The U = Uj norm is equivalent to the

T0(`j) seminorm on U(B) when |B| = Ljd:

‖U‖U � ‖U(B)‖T0(`j) = Ljd‖Uy‖T0(`j). (2.5.11)

2.5.3 Perturbative flow

Here we discuss how to maintain the form Zj ≈ e−Vj(Λ) to second order with Vj ∈ V. The basic

idea begins with the cumulant expansion

ECθe−V (Λ) ≈ e−ECθV (Λ)+ 1
2
EC(θV (Λ);θV (Λ)), (2.5.12)

where

EC(F ;G) = EC(FG)− (ECF )(ECG) (2.5.13)

is the truncated expectation. In [29] an operator Locx is defined so that Locx F is an approxi-

mation of F by a local polynomial at x. We make the split

1

2
EC(θV (Λ); θV (Λ)) =

1

2
Locx EC(θV (Λ); θV (Λ)) +

1

2
(1− Locx)EC(θV (Λ); θV (Λ)) (2.5.14)

With eF ≈ 1 + F , we get

ECθe−V (Λ) ≈ e−ECθV (Λ)+ 1
2

Locx EC(θV (Λ);θV (Λ))
(

1 + 1
2(1− Locx)EC(θV (Λ); θV (Λ))

)
. (2.5.15)

Based on this idea, in [10] a map1 Upt : V → U of the form

Upt(V ) = ECθV − P (2.5.16)

1In [10], Upt maps into a larger space including τ∇∇. Here, following (2.5.8), we define Upt by composing that
map with the map that replaces zτ∆ + yτ∇∇ by (z + y)τ∆.
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with P a local polynomial quadratic in V chosen so that the approximation

Zj ≈ e−Uj(Λ)(1 +Wj) (2.5.17)

can be maintained with Wj = Wj(V ) a non-local remainder. Precisely,

Px = Locx ECθWj(V, x) +
1

2
Locx[ECθ(VxV (Λ))− (ECθVx)(ECθV (Λ))] (2.5.18)

and

Wj(V, x) =
1

2
(1− Locx)[Ewjθ(VxV (Λ))− (EwjθVx)(EwjθV (Λ))]. (2.5.19)

By [30, (4.57)],

‖Wj‖T0(`j) ≤ O(ϑj)‖V ‖2V , (2.5.20)

where ϑj is a parameter that decays exponentially above the mass scale and will be discussed

in Section 2.7. We will elaborate on the meaning of (2.5.17) in Section 2.6.

The map Upt depends on the covariance C and in practice we set C = Cj+1 and obtain

a sequence Upt = Upt,j+1. By successively iterating these maps, we generate a sequence of

coupling constants that we refer to as the perturbative flow. The equations defining this flow

can be computed exactly by way of Feynman diagrams or with a computer program [6]. In [10],

these flow equations are summarized and it is shown that a change of variables can be used to

triangularize the resulting system of equations up to third-order errors. Below, we summarize

these transformed flow equations for g, λ, and q.

The flow of g

The (transformed) perturbative flow of g takes the form

ḡj+1 = ḡj − βj ḡ2
j , ḡ0 = g0 (2.5.21)

where

βj = (n+ 8)
∑
x∈Zd

(w2
j+1;0x − w2

j;0x), wj =

j∑
i=1

Ci. (2.5.22)

The sequence βj is closely related to the free bubble diagram (1.6.26). Indeed, using the

telescope nature of
∑

j βj , we can show that

∞∑
j=1

βj = Bm2 . (2.5.23)

The logarithmic divergence of the bubble diagram in (1.6.27) is reflected in the behaviour of g

and, ultimately, in the appearance of logarithmic corrections in Theorem 1.7.1. Precisely, the
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results of [11], were used to show in [9, Proposition 6.1] that

ḡj = O((logm−1)−1) for j ≥ jm, ḡjx = O((log |x|)−1) for jx ≤ jm. (2.5.24)

Remark 2.5.3. A heuristic argument is as follows: Using Proposition 2.3.1, it is straightforward

to show that

βj = O(L−j(d−4)−s(j−jm)+). (2.5.25)

Thus, a crude approximation to the flow of ḡ is the recursion

yj+1 = yj − c1j≤jmy2
j , c > 0. (2.5.26)

Comparing this to the differential equation ẏ = −cy2, which has solutions of the form y(t) =

(C + ct)−1, it is reasonable to expect that yj ≈ (cj)−1 for j ≤ jm. By definition, yj = yjm for

j > jm. Thus, yj ≈ (c logm−1)−1 for j ≥ jm. A similar argument can be used to study yjx .

Following [9, (6.15)], we define the parameter g̃j in (2.4.21) as a function of two variables

(m̃2, g̃0) by

g̃j(m̃
2, g̃0) = ḡj(0, g̃0)1j≤jm̃ + ḡjm̃(0, g̃0)1j>jm̃ . (2.5.27)

These parameters play an important role in Section 2.7 and in the proof of Theorem 2.8.1.

The flow of λ and q

It was shown in [10, (3.34)–(3.35)] (for n = 0) and [108, Proposition 3.2] (for n ≥ 1) that, with

C = Cj+1 and u = 0, x,

λu,pt =

(1− δ[νw(1)])λu, j + 1 < jx

λu, j + 1 ≥ jx
(2.5.28)

qpt = q + λ0λxC0x, (2.5.29)

where

δ[νw(1)] = (ν + 2gC00)w
(1)
j+1 − νw

(1)
j , w

(1)
j =

∑
x∈Λ

j∑
i=1

Ci;0x. (2.5.30)

Note that qpt = q for j + 1 < jx.

2.6 Non-perturbative coordinate

Let V denote either ΛN or Zd. We allow N to depend on V. If V = Λ, then N = N (Λ) was

defined in Section 2.4. Otherwise, we set

N (Zd) =
⋃

finite X⊂V
N (X). (2.6.1)
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2.6. Non-perturbative coordinate

We set N(V) = N if V = ΛN and N(V) = ∞ if V = Zd. For j ≤ N(V) (meaning j < ∞
if N(V) = ∞), we partition V into disjoint scale-j blocks of side length Lj , each of which is a

translate of the block {x ∈ Λ : 0 ≤ xi < Lj , i = 1, . . . , d}. A scale-j polymer is a union of scale-j

blocks. Given a scale-j polymer X and k ≤ j, we let Bk(X) (respectively, Pk(X)) denote the

set of all scale-k blocks (respectively, scale-k polymers) in X. We sometimes write Bj = Bj(V)

and Pj = Pj(V) when the volume V is implicit.

Any map F : Bj → N can be extended to a map on Pj by block-factorization:

F (X) = FX :=
∏

B∈Bj(X)

F (B). (2.6.2)

Given maps F,G : Pj(Λ) → N (sometimes called polymer activities), we define the circle

product F ◦G : Pj(Λ)→ N by

(F ◦G)(X) =
∑

Y ∈Pj(X)

F (X \ Y )G(Y ). (2.6.3)

The circle product is commutative, associative, and has the identity element

1∅(X) =

1, X = ∅

0, X 6= ∅
. (2.6.4)

We track Zj using renormalization group coordinates uj , q0,j , qx,j ∈ R, Ij ,Kj : Pj → N such

that

Zj = eζj (Ij ◦Kj)(Λ), ζj = −uj |Λ|+ 1
2(q0,j + qx,j)σ0σx. (2.6.5)

The coordinate Ij = Ij(V, ·) is defined by setting

Ij(V,B) = e−V (B)(1 +Wj(B, V )), X ∈ Pj , V ∈ V (2.6.6)

and extending this by block-factorization. Thus, (2.6.5) gives a rigorous implementation of

(2.5.17).

Before defining the space in which Kj lies, we need the following notions:

• We call a nonempty polymer X ∈ Pj connected if for any x, x′ ∈ X, there is a sequence

x = x0, . . . , xn = x′ ∈ X such that |xi+1 − xi|∞ = 1 for i = 0, . . . , n− 1. Let C0 = C0(V)

denote the set of connected polymers.

• For X ∈ Pj , let |X|j denote the number of scale-j blocks in X. We call a connected

polymer X ∈ Cj a small set if |X|j ≤ 2d. Let Sj = Sj(V) denote the collection of small

sets. The small set neighbourhood X� of a polymer X is defined by

X� =
⋃

Y ∈Sj :Y ∩X 6=∅

Y. (2.6.7)
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2.6. Non-perturbative coordinate

• Two polymers X,Y do not touch if min(|x− y|∞ : x ∈ X, y ∈ Y ) > 1. We let Comp(X)

denote the set of maximal connected components that do not touch in X.

We say that a map F : Pj → N is Euclidean-covariant if E(F (X)) = F (EX) for all X ∈ Pj
and all automorphisms E of V. We also say that F is gauge-invariant, supersymmetric, or

O(n)-invariant if F (X) is gauge-invariant, supersymmetric, or O(n)-invariant, respectively.

Definition 2.6.1. For j ≤ N(V), let CKj = CKj(V) denote the real vector space of maps

K : Cj(V)→ N (V) satisfying the following properties:

• Field Locality: If X ∈ Cj , then K(X) ∈ N (X�). Also: (i) παK(X) = 0 unless α ∈ X for

α = 0, x; (ii) π0xK(X) = 0 unless a ∈ X and x ∈ X� or vice versa; and (iii) π0xK(X) = 0

if X ∈ Sj and j < jx.

• Symmetry: (i) π∅K is Euclidean-covariant; (ii) if n = 0, then K is gauge-invariant and

π∅K is supersymmetric and has no constant part; if n ≥ 1, then π∅K is O(n)-invariant.

We let Kj = Kj(V) denote the real vector space of functions K ∈ CKj with the following

additional property:

• Component factorization: If X ∈ Pj , then K(X) =
∏
Y ∈Comp(X)K(Y ).

Addition in CKj is defined by (F1 + F2)(X) = F1(X) + F2(X). We extend any F ∈ CKj to

Kj by defining F (X) =
∏
Y ∈Comp(X) F (Y ).

2.6.1 Initial coordinates

At scale j = 0, we are given V +
0 as defined in (2.2.2) and we set ζ0 = 0. In particular, the

initial values of u, q0, qx are zero, and the initial values of λ0, λx are 1. By definition, W0 = 0.

For X ⊂ Λ, we define

I+
0 (X) = I0(V +

0 , X) =
∏
y∈X

e−V
+
0,y , K+

0 (X) =
∏
y∈X

I+
0,y(e

−γ0U
+
y − 1), (2.6.8)

where I+
0,y = I+

0 ({y}). It is straightforward to verify that K0 ∈ K0. Moreover, by (2.2.5),

Z0 =
∏
y∈Λ

(
I+

0,y + I+
0,y(e

−γ0U
+
y − 1)

)
= (I+

0 ◦K
+
0 )(Λ). (2.6.9)

The second equality here follows from the binomial expansion formula∏
y∈Λ

(Fy +Gy) =
∑
X⊂Λ

( ∏
y∈Λ\X

Fy

)( ∏
z∈X

Gz

)
. (2.6.10)

Thus, Z0 takes the form (2.6.5) and we seek (uj , q0,j , qx,j , Vj ,Kj) such that this continues to

hold as the scale advances.
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2.7. Renormalization group step

Equivalently, given (Vj ,Kj), we must define (δuj+1, δq0,j+1, δqx,j+1, Vj+1,Kj+1) so that

Ej+1θ(Ij ◦Kj)(Λ) = e−δζj+1(Ij+1 ◦Kj+1)(Λ). (2.6.11)

Moreover, we need Kj to contract as the scale advances, under an appropriate norm. The

construction of (scale-dependent) maps U+ and K+ such that (2.6.11) holds with

(δuj+1, δq0,j+1, δqx,j+1, Vj+1) = U+(Vj ,Kj), Kj+1 = K+(Vj ,Kj) (2.6.12)

is the main accomplishment of [31].

2.7 Renormalization group step

In [31, Section 1.7.3], a sequence of norms ‖ · ‖Wj = ‖ · ‖Wj(m̃2,g̃j ,Λ) parameterized by (m̃2, g̃j) is

defined on Kj . These are defined in terms of the Tφ(hj) norms with parameters hj = `j , hj . In

order to make use of the improved norm parameters with s > 1, we must modify the definition

of Wj when j is above the mass scale. The precise definition of the Wj norm adapted to our

current setting will be discussed in Section 5.1.3. We note here only the fact that the Wj(Λ)

norm dominates the T0(`j) norm in the following sense:

‖F (Λ)‖T0(`j) ≤ ‖F‖Wj . (2.7.1)

We let Wj = Wj(V) denote the space of K ∈ Kj(V) with finite Wj norm and denote the ball

of radius r in the normed space Wj by BWj (r).

Let

jΩ = jΩ(m2) = inf{k ≥ 0 : |βj | ≤ 2−(j−k)‖β‖∞ for all j} (2.7.2)

and note that, by (2.5.25), jΩ <∞ for m2 > 0. We define

ϑj = ϑj(m
2) = 2−(j−jΩ)+ (2.7.3)

and write ϑ̃j = ϑj(m̃
2). Given constants α > 0 and CD > 0, we define the (finite-volume)

renormalization group domains

Dj = {V ∈ V : g > C−1
D g̃j , ‖V ‖U < CDg̃j}, (2.7.4)

Dj = Dj(V) = Dj ×BWj (αϑ̃j g̃
3
j ). (2.7.5)

The domain Dj is independent of the volume V while Dj depends on V through Wj .

In the statement of the following theorem, we fix the scale j and consider maps U+ = Uj+1

and K+ = Kj+1 that act on the domain Dj and map into U , Kj+1, respectively. We will drop

the scale j from the notation for objects at scale j and replace j + 1 with +. When V = Λ, we
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2.7. Renormalization group step

take j < N . The deviation of the map U+ from the perturbative map Upt is denoted by R+:

R+(V,K) = U+(V,K)− Upt(V ). (2.7.6)

The renormalization group map depends also on the mass m2 through its dependence on

the covariance Cj+1. We let Ĩj(m̃2) be the neighbourhood of m̃2 defined by

Ĩj = Ĩj(m̃2) =

[1
2m̃

2, 2m̃2] ∩ Ij (m̃2 6= 0)

[0, L−2(j−1)] ∩ Ij (m̃2 = 0)
, (2.7.7)

where Ij = [0, δ] if j < N and IN = [δL−2(N−1), δ].

Theorem 2.7.1. Let d = 4, n ≥ 0, and V = Λ or Zd. Fix s > 1 (or s = 0). Let CD and L

be sufficiently large. There exist M > 0, δ > 0, and κ = O(L−1) such that for g̃ ∈ (0, δ) and

m̃2 ∈ I+, and with the domain D defined using any α > M , the maps

R+ : D× Ĩ+ → U , K+ : D× Ĩ+ →W+ (2.7.8)

are analytic in (V,K) and satisfy the estimates

‖R+‖U ≤Mϑ̃+g̃
3
+, ‖K+‖W+ ≤Mϑ̃+g̃

3
+ (2.7.9)

and

‖DKK+‖L(W,W+) ≤ κ. (2.7.10)

When V = Λ, these maps define (V,K) 7→ (U+,K+) obeying (2.6.11).

Remark 2.7.2. When the improved weights are used, a new norm must be employed above the

mass scale. This will be discussed in Section 4.2.2. A technical requirement of this new norm

is that we set s > 1 rather than s > 0 as Lemma 4.2.2 fails with s ∈ (0, 1). This issue is absent

when s = 0 as we do not change the norms in this case. Since we are ultimately interested only

in the cases s = 0 and s large, we have not attempted to handle the case s ∈ (0, 1).

With s = 0 in the choice of weights `j and `σ,j , this theorem was the main achievement

of [31]. The statement in [31] with s = 0 additionally contains bounds on the derivatives of the

maps R+ and K+. Our improvements apply to these bounds as well, but we do not state them

here as we will not make direct use of these bounds. One of the main novelties in this thesis

is the case s > 1, for which the bounds on the observables derived from (2.7.9) are greatly

improved beyond the mass scale.

Note that the maps R+ and K+ themselves are independent of s. The proof of Theorem 2.7.1

involves showing that the inductive estimates (2.7.9) hold for any s. In some cases, we will make

use of these estimates both with s > 1 and s = 0. The proof for s > 1 is an adaptation of
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the proof of the s = 0 case contained in2 [30, 31]. Some steps in this proof continue to hold

unchanged whereas others require some modification. As mentioned above, a major change

that is required is a new definition of Wj above the mass scale. A detailed verification that the

proof holds for s > 1 is carried out in Chapter 4.

2.8 Renormalization group flow

Theorem 2.7.1 allows us to perform a single renormalization group step. The fact that K+

is a contraction, as expressed by the estimate (2.7.10), was used in [9, Proposition 7.1] to

construct critical initial conditions νc0, z
c
0 depending on (m2, g0, n) such that the renormalization

group map can be iterated indefinitely (this was shown for n = 0 in [9] but extends without

difficulty to n ≥ 1 as discussed in [7]). This results in a sequence (Uj ,Kj) generated by the

renormalization group map, hence whose elements lie in the domains Dj . This was proved with

s = 0, but the sequence itself is independent of s and continues to exist in our setting. In

particular, Theorem 2.7.1 shows that this sequence satisfies improved estimates. Thus, there is

no difficulty in extending [9, Proposition 7.1] to the s-dependent domains used here.

However, in order to study the WSAW-SA and the generalized |ϕ|4 model, we must extend

[9, Proposition 7.1] to γ0 6= 0. We state this extension as Theorem 2.8.1 below, which is one of

the main contributions of this thesis. Its proof, which depends on the results of [11] together

with a specially tailored version of the implicit function theorem, is the subject of Chapter 5.

We note that, for n = 0, this proof first appeared in [13]; the proof for n ≥ 1 is new to this

thesis.

Let δ > 0 and suppose r : [0, δ] → [0,∞) is a continuous positive-definite function; by this

we mean3 that r(x) > 0 if x > 0 and r(0) = 0. We define

D(δ, r) = {(w, x, y) ∈ [0, δ]3 : y ≤ r(x)} (2.8.1)

and we let C0,1,+(D(δ, r)) denote the space of continuous functions f = f(w, x, y) on D(δ, r)

that are C1 in (x, y) away from y = 0, C1 in x everywhere, and whose right-derivative in y at

y = 0 exists. In our applications, we take w = m2, x = g0 or g, and y = γ0 or γ.

Theorem 2.8.1. There exists a domain D(δ, r̂) (with δ > 0 and r̂ positive-definite) and

functions ν̂c0, ẑ
c
0 ∈ C0,1,+(D(δ, r̂)) such that for any (m2, g0, γ0) ∈ D(δ, r̂) with g0 > 0 and

m2 ∈ [δL−2(N−1), δ), the following holds: if (U0,K0) = (V +
0 ,K+

0 ) with (ν0, z0) = (ν̂c0, ẑ
c
0), then

for any N ∈ N, there exists a sequence (Uj ,Kj) ∈ Dj(m2, g0) such that

(Uj+1,Kj+1) = (Uj+1(Vj ,Kj),Kj+1(Vj ,Kj)) for all j < N (2.8.2)

2For n ≥ 1, there is an additional step to deal with observables. This is dealt with in the proof of [108,
Theorem 5.1] and is unchanged in the present context.

3Note that our usage of this term is different from that in the theory of quadratic forms.
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and (2.6.11) is satisfied. Moreover, the sequence Uj , j = 1, . . . , N is independent of the volume

Λ and

ν̂c0 = O(g0), ẑc0 = O(g0) (2.8.3)

uniformly in (m2, γ0).

Note that in the statement of Theorem 2.8.1 flow, we have evaluated the domains Dj at

(m̃2, g̃0) = (m2, g0), where m2 is the mass in the covariance C and g0 = g(1 + zc0)2.

2.9 Bibliographic remarks

The notion of a polymer used in Section 2.6 was introduced in [63]. The utility of multi-scale

decompositions of a singular covariance as a sum of regular covariances in the context of the

renormalization group was probably first clearly articulated in [14]. The use of expansions

of the form (2.6.3) together with carefully weighted norms to achieve rigorous control of the

renormalization group map goes back to Brydges and Yau [33]. This method was extended by

Dimock and Hurd, see e.g. [39,40]. Finite-range decompositions were first used with this method

to study a continuum model in [94], following a suggestion of Brydges. Lattice covariance

decompositions were constructed in [22] and used in [93] to study the renormalization group flow

for the supersymmetric field theory corresponding to WSAW; however, critical exponents were

not computed. Critical exponents for a version of weakly self-avoiding walk on a hierarchical

lattice were computed by a renormalization group method in [24,25] (such hierarchical models

go back to [44]).
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Chapter 3

Analysis of critical behaviour

In this chapter, we prove Theorem 1.7.1 using Theorem 2.8.1. For simplicity, we drop the

parameter n from the notation. In order to employ Theorem 2.8.1, we fix

ν0 = ν̂c0(m2, g0, γ0), z0 = ẑc0(m2, g0, γ0). (3.0.1)

Then Theorem 2.8.1 defines a sequence

(Uj ,Kj) ∈ Dj , 0 ≤ j ≤ N (3.0.2)

for any N . Moreover, Uj is independent of the volume, so we actually have an infinite sequence

Uj ∈ Dj j ≥ 0. (3.0.3)

Throughout this section we write Uj as

Uj;x = gjτ
2
y +νjτy+zjτ∆,y+uj−λ0,jf01y=0−λx,jfx1y=x− 1

2(1y=0q0,j +1y=xqx,j)σ0σx. (3.0.4)

3.1 Susceptibility

The proof of Theorem 1.7.1(ii) involves some small changes to the proof of the γ0 = 0 case

in [9]. Rather than specifying the individual changes that need to be made, here we sketch the

complete argument.

Since the only scale-N blocks are the empty set and Λ, at scale j = N the representation

(2.6.5) becomes

ZN = eζN (IN (Λ) +KN (Λ)). (3.1.1)

In particular, (2.7.4)–(2.7.5), (2.5.10), (2.5.20), and (2.7.1) imply that

uN |ΛN | = O(1), νN = O(L−2NgN ), (3.1.2)

‖WN‖T0(`N ) ≤ O(ϑNg
2
N ), ‖KN‖T0(`N ) ≤ O(ϑNg

3
N ). (3.1.3)

Now by (3.1.1) and (2.2.11) together with the definitions of IN and VN ,

χ̂N (m2, g0, γ0, ν
c
0, z

c
0) =

1

m2
+

1

m4|Λ|
−νN |Λ|+D2W 0

N (0;1,1) +D2K0
N (0;1,1)

(1 +W 0
N (0) +K0

N (0))
. (3.1.4)
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Remark 3.1.1. In fact, with a bit more work it can be shown that D2W 0
N (0;1,1) = 0.

However, we will not need this here.

Using Lemma 2.4.2 with s = 0 (recall (2.4.21)) together with (3.1.3), we see that the last

term vanishes as N →∞ leaving

χ̂(m2, g0, γ0, ν0, z0) = lim
N→∞

χ̂N (m2, g0, γ0, ν0, z0) =
1

m2
. (3.1.5)

In order to identify the asymptotics of m2 as ν approaches the critical point, we will need

information about the derivative of χ̂ with respect to ν0. Let us denote by F ′ the derivative

of a function F with respect to ν0. By (3.1.4), the derivative χ̂′N will contain a term −ν ′N/m4.

An argument using Lemma 2.4.2 shows that the remaining terms are of strictly higher order.

Together with a careful analysis of the derivatives of the renormalization group flow with respect

to the initial condition ν0 (as in [9, Section 8] for γ = 0), we get

χ̂′(m2, g0, γ0, ν
c
0, z

c
0) ∼ − 1

m4

c(ĝ0, γ0)

(ĝ0Bm2)(n+2)/(n+8)
as (m2, g0, γ0)→ (0, ĝ0, γ̂0), (3.1.6)

where c is a continuous function. The bubble diagram Bm2 was defined in (1.6.26) and its

logarithmic divergence as m2 ↓ 0 is ultimately the source of the logarithmic corrections in

Theorem 1.7.1.

Remark 3.1.2. There is one aspect of the proof of (3.1.6) that must be modified when γ0 = 0:

This is the verification of the third bound in the base case (j = 0) of the inductive hypothesis [9,

(8.34)]. This will be done in Section 5.1.4 (see Remark 5.1.7).

3.1.1 Change of parameters

We wish to recover the asymptotics of χ from (3.1.5) and (3.1.6). By (2.2.10),

χN (g, γ, ν) = (1 + z0)χ̂N (m2, g0, γ0, ν0, z0), (3.1.7)

whenever the variables on the left- and right-hand sides satisfy

g0 = (g0 − γ)(1 + z0)2, ν0 = ν(1 + z0)−m2, γ0 =
1

4d
γ(1 + z0)2. (3.1.8)

On the other hand, (3.1.5) is contingent on the initialization of the renormalization group with

the critical parameters

ν0 = ν̂c0(m2, g0, γ0), z0 = ẑc0(m2, g0, γ0). (3.1.9)

Given g, γ, ν, the relations (3.1.8) leave free two of the variables (m2, g0, γ0, ν0, z0). More

generally, if any three of the variables (g, γ, ν,m2, g0, γ0, ν0, z0) are fixed, then two of the re-

maining variables are free. In the following two propositions, which together form an extension
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of [9, Proposition 4.2], we fix three variables and show that the addition of the constraints

(3.1.9) allows us to uniquely specify the two remaining variables. For this, we make use of the

following version of the implicit function theorem, which we prove in Appendix C.

Proposition 3.1.3. Let δ > 0, and let r1, r2 be continuous positive-definite functions on [0, δ].

Recalling (2.8.1), set

D(δ, r1, r2) = {(w, x, y, z) ∈ D(δ, r1)× Rn : |z| ≤ r2(x)}, (3.1.10)

and let F be a continuous function on D(δ, r1, r2) that is C1 in (x, z). Suppose that for all

(w̄, x̄) ∈ [0, δ]2 there exists z̄ such that both F (w̄, x̄, 0, z̄) = 0 and DY F (w̄, x̄, 0, z̄) is invert-

ible. Then there is a continuous positive-definite function r on [0, δ] and a continuous map

f : D(δ, r) → Rn that is C1 in x and such that F (w, x, y, f(w, x, y)) = 0 for all (w, x, y) ∈
D(δ, r). Moreover, if F is left-differentiable (respectively, right-differentiable) in y at some

point (w, x, y, z), then f is left-differentiable (respectively, right-differentiable) at (w, x, y).

Our first application of this result is Proposition 3.1.4, in which the three fixed variables

are (m2, g0, γ).

Proposition 3.1.4. There exist δ∗ > 0, a continuous positive-definite function r∗ : [0, δ∗] →
[0,∞), and continuous functions (ν∗, g∗0, γ

∗
0 , ν
∗
0 , z
∗
0) defined for (m2, g, γ) ∈ D(δ∗, r∗), such that

(3.1.8) and (3.1.9) hold with ν = ν∗ and (g0, γ0, ν0, z0) = (g∗0, γ
∗
0 , ν
∗
0 , z
∗
0). Moreover,

g∗0 = g0 +O(g2
0), ν∗0 = O(g0), z∗0 = O(g0). (3.1.11)

Proof. Suppose we have found the desired continuous functions (g∗0, γ
∗
0) and that g∗0 satisfies

the first bound in (3.1.11). Then the functions defined by

ν∗0 = ν̂c0(m2, g∗0, γ
∗
0), z∗0 = ẑc0(m2, g∗0, γ

∗
0), ν∗ =

ν∗0 +m2

1 + z∗0
(3.1.12)

are continuous, satisfy (3.1.8), and satisfy the remaining bounds in (3.1.11) by (2.8.3).

In order to construct (g∗0, γ
∗
0), we first solve the third equation of (3.1.8), and then solve the

first equation of (3.1.8). To this end, we begin by defining

f1(m2, g0, γ, γ0) = γ0 − (4d)−1γ(1 + ẑc0(m2, g0, γ0))2 (3.1.13)

for (m2, g0, γ0) ∈ D(δ, r̂) and |γ| ≤ r̂(g0). Although f1 is well-defined for any γ ∈ R, we restrict

the domain in preparation for our application of Proposition 3.1.3. Note that f1 is C1 in γ

and f1(·, ·, γ, ·) ∈ C0,1,+(D(δ, r̂)) for any γ. The equation f1(m2, g0, γ, γ0) = 0 has the solution

γ0 = 0 when γ = 0 and, for any γ0 6= 0,

∂f1

∂γ0
= 1− (2d)−1γ(1 + ẑc0(m2, g0, γ0))

∂ẑc0
∂γ0

. (3.1.14)
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By Theorem 2.8.1, the one-sided γ0 derivatives of ẑc0 exist at γ0 = 0. Thus, the γ0 derivative

of f1 is well-defined and equal to 1 when γ = 0 for any small γ0 (including γ0 = 0). It follows

by Proposition 3.1.3 (with w = m2, x = g0, y = γ, z = γ0 and r1 = r2 = r̂) that there exists a

continuous function γ
(1)
0 (m2, g0, γ) on D(δ, r(1)) (for some continuous positive-definite function

r(1) on [0, δ]) such that f1(m2, g0, γ, γ
(1)
0 ) = 0. Moreover, γ

(1)
0 is C1 in (g0, γ).

Next, we define

f2(m2, g, γ, g0) = g0 − (g − γ)(1 + ẑc0(m2, g0, γ
(1)
0 (m2, g, γ)))2 (3.1.15)

for (m2, g0, γ) ∈ D(δ, r(1)) and g ∈ [0, δ∗], where δ∗ > 0 will be made sufficiently small below.

Then f2(m2, g, γ, g0) = 0 is solved by (γ, g0) = (0, g∗0(m2, g, 0)), where g∗0(m2, g, 0) was con-

structed in [9, (4.35)]. By [9, (4.37)], g∗0 = g + O(g2), so we may restrict the domain of f2 so

that |g0| ≤ 2g. Moreover,

∂f2

∂g0
= 1− 2(g − γ)(1 + ẑc0(m2, g0, γ

(1)
0 ))

(
∂ẑc0
∂g0

+
∂ẑc0
∂γ0

∂γ
(1)
0

∂g0

)
. (3.1.16)

Differentiating both sides of

γ
(1)
0 =

1

4d
γ(1 + ẑc0(m2, g0, γ

(1)
0 ))2, (3.1.17)

and solving for
∂γ

(1)
0

∂g0
, gives

∂γ
(1)
0

∂g0
=

γ(1 + ẑc0)
∂ẑc0
∂g0

2d− γ(1 + ẑc0)
∂ẑc0
∂γ0

, (3.1.18)

where ẑc0 and its derivatives are evaluated at (m2, g0, γ
(1)
0 ). Thus,

∂γ
(1)
0

∂g0
= 0 when γ = 0. It

follows that ∂f2/∂g0 is well-defined when (γ, g0) = (0, g∗0(m2, g, 0)) and equals

1− 2g(1 + ẑc0(m2, g∗0, 0))
∂ẑc0
∂g0

(m2, g∗0, 0), (3.1.19)

which is positive when δ∗ is small, by (2.8.3). Thus, by Proposition 3.1.3 (with w = m2, x = g,

y = γ, z = g0 and r1 = r(1), r2(g) = 2g), there exists a function g∗0(m2, g, γ) ∈ C0,1,+(D(δ∗, r
(2)))

(for some continuous positive-definite function r(2) on [0, δ∗]) such that f2(m2, g, γ, g∗0) = 0.

By the fact that g∗0 solves f2 = 0,

g∗0 = (g − γ) +O((g − γ)2). (3.1.20)

Since |γ| ≤ r(2)(g0) and r(2)(g0) can be taken as small as desired, this implies the first estimate

in (3.1.11). Thus, by taking r∗ sufficiently small, if |γ| ≤ r∗(g0), then |γ| ≤ r(2)(g∗0(m2, g, γ)).
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3.1. Susceptibility

Thus, for g < δ∗ and |γ| ≤ r∗(g), we can define

γ∗0(m2, g, γ) = γ
(1)
0 (m2, g∗0(m2, g, γ), γ), (3.1.21)

which completes the proof.

Using Proposition 3.1.4, it is possible to identify the critical point νc, as follows. By (3.1.5),

(3.1.7), Proposition 1.8.4, and Proposition 3.1.4,

χ(g, γ, ν∗) =
1 + z∗0
m2

=
1 +O(g)

m2
. (3.1.22)

Thus, with ν = ν∗, we see that χ < ∞ when m2 > 0, and χ = ∞ when m2 = 0. By (2.1.12),

this implies that

νc(g, γ) = ν∗(0, g, γ) = O(g), νc(g, γ) < ν∗(m2, g, γ) (m2 > 0). (3.1.23)

It follows that

χ(g, γ, νc) =∞, (3.1.24)

which is a fact that cannot be concluded immediately from the definition (2.1.12).

In (3.1.22), χ is evaluated at ν∗ = ν∗(m2, g, γ). However, in the setting of Theorem 1.7.1,

we need to evaluate χ at a given value of ν and then take ν ↓ νc. To do so, we must determine

a choice of m2 in terms of ν such that (3.1.8) is satisfied and this choice must approach 0 (as

it should by (3.1.23)) right-continuously as ν ↓ νc. The following proposition carries out this

construction. In the following, the functions m̃2, g̃0 should not be confused with the parameter

m̃2, g̃0 that appeared previously in the Wj norms (these norms are not used in this chapter).

Proposition 3.1.5. Write ν = νc + ε. There exist functions m̃2, g̃0, γ̃0, ν̃0, z̃0 of (ε, g, γ) ∈
D(δ∗, r∗) (all right-continuous as ε ↓ 0) such that (3.1.8) and (3.1.9) hold with

(m2, g0, γ0, ν0, z0) = (m̃2, g̃0, γ̃0, ν̃0, z̃0). (3.1.25)

Moreover,

m̃2(0, g, γ) = 0, m̃2(ε, g, γ) > 0 (ε > 0) (3.1.26)

g̃0 = g +O(g2), ν̃0 = O(g), z̃0 = O(g). (3.1.27)

Proof. The proof is a minor modification of the proof in [9], using Proposition 3.1.4. Define

m̃2 = m̃2(ε, g, γ) = inf{m2 > 0 : ν∗(m2, g, γ) = νc(g, γ) + ε}, (3.1.28)
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3.2. Two-point function

on D(δ∗, r∗). By continuity of ν∗, the infimum is attained and

νc(g, γ) + ε = ν∗(m̃2(ε, g, γ), g, γ). (3.1.29)

From the above expression, continuity of ν∗, and (3.1.23), it follows that m̃2 is right-continuous

as ε ↓ 0. It is immediate that (3.1.26) holds. Also, the functions of (ε, g, γ) defined by

ν̃0 = ν∗0(m̃2, g, γ), z̃0 = z∗0(m̃2, g, γ), (3.1.30)

g̃0 = (g − γ)(1 + z̃0)2, γ̃0 =
1

4d
γ(1 + z̃0)2 (3.1.31)

are right-continuous as ε ↓ 0 and satisfy (3.1.8). The bounds (3.1.27) follow from the definitions

and (3.1.11), and the proof is complete.

3.1.2 Conclusion of the argument

We sketch the remainder of the argument, which follows as in [9, Section 4]. By Proposi-

tion 1.8.4, (3.1.7), (3.1.5), and Proposition 3.1.5,

χ(g, γ, ν) =
1 + z̃0

m̃2
. (3.1.32)

Similarly, from (3.1.6) (using (3.1.32)), we get

χ′(g, γ, ν) ∼ −χ2(g, γ, ν)
c0(g, γ)

(g̃0Bm̃2)
n+2
n+8

(3.1.33)

with c0(g, γ) = limε↓0 c(g̃0, γ̃0). By exactly the same argument as in [9, Section 4.3], the

differential relation (3.1.33) can be solved, which gives the result of Theorem 1.7.1(ii).

Remark 3.1.6. It is a consequence of (1.7.2) and (3.1.32) that

m̃2 ∼ Ã−1
g,nε(log ε−1)−

n+2
n+8 as ε ↓ 0. (3.1.34)

3.2 Two-point function

Our analysis of the two-point function and finite-order correlation length is based on the fol-

lowing proposition.

Proposition 3.2.1. Let d = 4, n ≥ 0, ε ∈ (0, δ) with δ sufficiently small, and ν = νc + ε. Let

x ∈ Z4 with x 6= 0. Fix s = 0 or s > 1. For L sufficiently large and for g > 0 sufficiently small

(depending on s),

1

1 + z̃0
Gx(g, γ, ν) = (1 +O(ḡjx))Gx(0, 0, m̃2) +Rx(m̃2) (3.2.1)
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3.2. Two-point function

and the remainder Rx satisfies the bound

|Rx(m2)| ≤ O(ḡjx)

|x|2
×

1, (m|x| ≤ 1)

(m|x|)−2s, (m|x| ≥ 1)
(3.2.2)

with the constant depending on L and s.

Proof. Let Dσ0 and Dσx denote differentiation with respect to σ0 and σx, respectively, evaluated

with all fields set to 0. By (2.2.9), (3.1.1), and (2.6.5),

1

1 + z̃0
Gx,N (g, γ, ν) =

1

2
(q0,N + qx,N ) +

D2
σ0σxK

0
N

1 +K0
N

−
(
Dσ0K

0
N

) (
DσxK

0
N

)
(1 +K0

N )2
, (3.2.3)

where the quantities on the right-hand side are evaluated at (m̃2, g̃0, γ̃0, ν̃0, z̃0). No WN term

appears on the right-hand side since WN is quadratic in V and V has no constant part. By

(3.1.3) and Lemma 2.4.2, the last two terms vanish as N →∞ leaving

1

1 + z̃0
Gx(g, γ, ν) =

1

2
(q0,∞ + qx,∞). (3.2.4)

Now it is a straightforward computation using (2.5.28)–(2.5.30) and (2.7.6) to show that

qu,∞ = λ0,jxλx,jxGx(0, 0, m̃2) +
∞∑
i=jx

Rqui , u = 0, x (3.2.5)

where Rqui is the coefficient of 1y=uσ0σx (recall (2.5.7)) in R+,i. Moreover, as in [108, (5.30)]

and [108, Corollary 6.4],

λu,jx = 1 +O(ϑjx ḡjx). (3.2.6)

It follows that
1

1 + z̃0
Gx(g, γ, ν) = (1 +O(ḡjx))Gx(0, m̃2) +Rx (3.2.7)

with

Rx =
1

2

∞∑
i=jx

(Rq0i +Rqxi ). (3.2.8)

By the first bound of (2.7.9) and the definition (2.5.10) of the V norm,

|Rqu+,i| ≤ O(`−2
σ,iϑiḡ

3
i ). (3.2.9)

We insert the definition of `σ,j from (2.4.21) into (3.2.9). We also use g̃−2
j = O(ḡ−2

j ), ϑi ≤ 1,

`20 ≤ O(1), as well as ḡj ≤ O(ḡjx) for j ≥ jx. The definitions of the coalescence scale jx and the
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3.3. Finite-order correlation length

mass scale jm imply that L−2jx ≤ O(|x|−2) and L−(jx−jm)+ ≤ O((m|x|)−1). All this leads to

∞∑
j=jx

|Rquj | ≤ L
−2jx−2s(jx−jm)+

∞∑
j=jx

O(ḡj)4
−(j−jx)

≤ |x|−2(m|x|)−2sO(ḡjx). (3.2.10)

This gives the desired estimate (3.2.2).

A version of this result with s = 0 and γ = 0 was obtained in [8, 108]. This version is

sufficient for studying the critical two-point function with γ = 0. With the extension to γ 6= 0,

we can complete the proof of the first part of Theorem 1.7.1.

Proof of Theorem 1.7.1(i). We apply Proposition 3.2.1 with s = 0 to get

1

1 + z̃0
Gx(g, γ, ν) = (1 +O(ḡjx))Gx(0, 0, m̃2) +Rx(m̃2). (3.2.11)

By Proposition 3.1.5, m̃2 = 0 when ν = νc. Since Rx(0) = O(ḡjx)Gx(0, 0, 0),

1

1 + z̃0
Gx(g, γ, νc) = (1 +O(ḡjx))Gx(0, 0, 0) (3.2.12)

and the result follows from (2.5.24).

3.3 Finite-order correlation length

An elementary ingredient in the proof of Theorem 1.7.1(iii) is the following result for the g = 0

case, which is independent of n ≥ 0. For simplicity, we restrict attention to dimensions d > 2,

as only d = 4 is used here. A proof is provided in Appendix B.

Proposition 3.3.1. Let cp be the constant defined by (1.7.4). For all dimensions d > 2 and

all p > 0, as m2 ↓ 0, ∑
x∈Zd

|x|pGx(0, 0,m2) = cppm
−(p+2)(1 +O(m)). (3.3.1)

In particular, ξp(0, 0, ε) = cpε
−1/2(1 +O(ε1/2)) as ε ↓ 0.

Proof of Theorem 1.7.1. We multiply (3.2.1) by |x|p, sum over x ∈ Z4, and use (3.1.22) to

obtain

ξpp(g, γ, ν) =
∑
x∈Z4

|x|pGx(g, γ, ν)

χ(g, γ, ν)
= m̃2

∑
x∈Z4

|x|p
(
Gx(0, 0,m2) + rx(m̃2)

)
, (3.3.2)
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with

rx(m2) = O(ḡjx)Gx(0, 0,m2) +Rx(m2). (3.3.3)

By Proposition 3.3.1, this gives (as m̃2 ↓ 0)

ξpp(g, γ, ν) ∼ cppm̃
−p + m̃2

∑
x∈Z4

|x|prx(m̃2). (3.3.4)

By (3.1.34), it suffices to prove that the first term on the right-hand side of (3.3.4) is dominant.

For the term O(ḡjx)Gx(0, 0,m2) in (3.3.3), we apply (2.5.24) to obtain∑
x∈Z4

ḡjx |x|pGx(0, 0, m̃2)

≤
∑

x:0<jx≤jm̃

c|x|p

log |x|
Gx(0, 0, m̃2) +

c

log m̃−1

∑
x:jx>jm̃

|x|pGx(0, 0, m̃2). (3.3.5)

In the first term, we use Gx(0, 0,m2) ≤ Gx(0, 0, 0) ≤ O(|x|−2). The restriction jx ≤ jm̃

ensures that |x| ≤ O(m̃−1). Therefore the first term is bounded above by a multiple of

(m̃−1)d+p−2(log m̃−1)−1, which suffices. For the term with jx > jm̃, we extend the sum to

x ∈ Z4 and apply Proposition 3.3.1 to obtain a bound of the same form as for the first term.

For the term Rx of (3.3.3), we use Proposition 3.2.1 to see that

|Rx(m̃2)| = O(ḡjx)L−2jx−2s(jx−jm̃)+ . (3.3.6)

We divide Z4 into shells S1 = {x : |x| < 1
2L} and, for j ≥ 2, Sj = {x : 1

2L
j−1 ≤ |x| < 1

2L
j}.

The number of points in Sj is bounded by O(L4j). Note that jx is the unique scale so that

x ∈ Sjx+1. (3.3.7)

By (3.3.6) with s > 1
2(p+ 2) and (3.3.7),

∑
x∈Z4

|x|p|Rx(m̃2)| =
∞∑
j=1

∑
x∈Sj

|x|p|Rx(m̃2)| =
∞∑
j=1

L4j+pj−2j−2s(j−jm̃)+O(ḡj), (3.3.8)

with an L-dependent constant. By Lemma 3.3.2 below (with a = p+ 2 and b = 1), we obtain

m̃2
∑
x∈Z4

|x|p|Rx(m̃2)| = O
(
m̃−p(log m̃−1)−1

)
. (3.3.9)

The first term on the right-hand side of (3.3.4) therefore dominates, and the proof is complete.

The estimate used to obtain (3.3.9) is given by the following lemma, which is stated more
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3.3. Finite-order correlation length

generally for use in the proof of Proposition 3.3.1.

Lemma 3.3.2. Let L > 1, 2s > a > 0, b ≥ 0, and let ḡ0 > 0 be sufficiently small. Then

∞∑
j=1

Laj−2s(j−jm)+ ḡbj = O(m−aḡbjm) = O(m−a(logm−1)−b). (3.3.10)

Proof. We divide the sum at the mass scale as

∞∑
j=1

Laj−2s(j−jm)+ ḡbj =

jm∑
j=1

Laj ḡbj +
∞∑

j=jm+1

Laj−2s(j−jm)ḡbj . (3.3.11)

For the second sum on the right-hand side, we use ḡj = O(ḡjm) for j > jm by (2.5.24), and

obtain a bound consistent with the first equality of (3.3.10). For the first term, we use the

crude bound ḡi/ḡi+1 = 1 +O(g0) (by [11, Lemma 2.1]), and find

jm∑
j=1

Laj ḡbj ≤ Lajm ḡbjm
jm∑
j=1

((1 +O(ḡ0))L−a)jm−j = O(Lajm ḡbjm), (3.3.12)

for sufficiently small ḡ0 > 0. This proves the first equality in (3.3.10). The second equality then

follows since ḡjm = O(logm−1) by (2.5.24).
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Chapter 4

The renormalization group step

In this chapter we discuss the proof of Theorem 2.7.1 with s > 1 in the definitions (2.4.21) of

the weights `, `σ. The proof involves numerous changes to results in [29–31]. Consequently, the

arguments presented here will not be completely self-contained; for instance, we will not detail

the construction of the renormalization group map, which makes up the bulk of [31]. However,

we will begin in Section 4.1 with an informal overview of some of the key ideas used in these

papers.

The details of the proof begin in Section 4.2, where we define new norms above the mass

scale and show that they satisfy two key hypotheses required by results in [30]. The use of these

new norms is essential: the old norms fail to work with the new weights for technical reasons

discussed briefly in Remark 4.2.3. In Section 4.3, we discuss the changes that must be made

in [29,30] with the new weights. Of particular importance is the adaptation of the proof of the

crucial contraction to these new weights, which is discussed in Section 4.3.4.

Throughout this chapter, we use the notation appropriate for the spin field ϕ ∈ (Rn)Λ for

n ≥ 1; only notational modifications are needed for n = 0. Since we are dealing with a single

renormalization group step, we will often drop the index j of the current scale and write a

subscript + to indicate objects at the next scale j + 1.

4.1 Simplified renormalization group step

For this discussion, let us drop λ, q, u from the notation and write U = V . In this setting our

goal, given (V,K), is to construct (V+,K+) such that, with I = I(V ) and I+ = I(V+),

E+θ(I ◦K)(Λ) = (I+ ◦K+)(Λ) (4.1.1)

with K 7→ K+ contractive in some sense; this is needed not only to control the error produced

by K in the computation of critical exponents (e.g. recall the use of Lemma 2.4.2 in Section 3)

but also so that the map (V,K) 7→ (V+,K+) can be iterated an arbitrary number of times as

in Theorem 2.8.1. The algebraic problem (4.1.1) admits a multitude of solutions and the main

difficulty is the construction of a solution with good analytic properties.

A possible definition of the map (V,K) 7→ V+ is suggested by perturbation theory, as

discussed in Section 2.5.3. For now, let us suppose that V+ = Vpt is the correct definition and

set I+ = Ipt = I(Vpt). Then we have the following procedure for the construction of K+ in

terms of Ipt such that (4.1.1) holds.
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Recall (2.6.2). For B ∈ B, let δI(B) = θI(B)−Ipt(B) and extend this to X ∈ P by imposing

block-factorization. Then by (2.6.10) and associativity of the circle product,

(I ◦K)(Λ) =
∑
X∈P

(Ipt + δI)Λ\XK(X)

= [(Ipt ◦ δI) ◦K](Λ)

= [Ipt ◦ (δI ◦K)](Λ). (4.1.2)

Note that the fluctuation fields at scale j have been integrated out in the definition of Vpt.

Thus,

E+θ(I ◦K)(Λ) = [Ipt ◦ K̃](Λ) (4.1.3)

with

K̃ = E+(δI ◦ θK). (4.1.4)

This has the form (4.1.1) but with the circle product on the right-hand side at the wrong scale.

This is remedied by a simple resummation:

E+θ(I ◦K)(Λ) =
∑
Y ∈P

I
Λ\Y
pt K̃(Y ) =

∑
X∈P+

I
Λ\X
pt K+(X) = (Ipt ◦K+)(Λ) (4.1.5)

where

K+(X) =
∑

Y ∈P̄(X)

I
X\Y
pt K̃(Y ). (4.1.6)

Here, P̄(X) is the collection of polymers Y ∈ P(X) whose polymer closure is X, i.e. for which

X is the smallest polymer in P+ containing Y .

4.1.1 Main contributions to K+

By expanding the circle product in the definition of K̃, we can write

K+(X) = IXpt [h(X) + k(X) +R(X)] (4.1.7)

where (letting C̄(X) = C ∩ P̄(X))

h(X) =
∑

Y ∈P̄(X)

I−Ypt E+δI(Y ) (4.1.8)

k(X) =
∑

Y ∈C̄(X)

I−Ypt E+θK(Y ) (4.1.9)

and R is the remainder. If δI and K are sufficiently small (in an appropriate sense), then it

is reasonable to view the terms h and k as first-order contributions to K+. Note that the sum

defining k is restricted to connected polymers; by component-factorization, terms involving the
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values of K on disconnected polymers should be higher-order in this sense. Our main task then

is to bound h and k.

Perturbative contribution and covariance bound

By the definition (2.6.6) of I, we expect that δI = O(δV ) where δV = θV−Vpt. Indeed, a version

of this statement is true by [30, Proposition 2.7]. Thus, in order to bound the contribution h

defined in (4.2.13), we must consider the size of δV . By definition,

‖δV (B)‖T0(`) ≤ ‖θV (B)− V (B)‖T0(`) + ‖V (B)− Vpt(B)‖T0(`). (4.1.10)

By (2.5.16), Vpt − V = (EθV − V ) − P (V ) and the first term on the right-hand side can

be bounded term-by-term. For instance, the difference between a single quartic term and its

expectation is given by

ϕ4
x − Eθϕ4

x = 6C00ϕ
2
x + 3C2

00. (4.1.11)

Covariance terms such as those above can be estimated using Proposition 2.3.1. The method

of [30] is more flexible, however, and does not require the precise bounds in (2.3.4). Rather,

necessary bounds on the covariance and its derivatives are encoded in the hypothesis [30,

(1.73)] on the Φ(`) norm estimate of the covariance. This constraint naturally ensures that

the T0(`) seminorm estimates properly reflect the size of the expectation of a field as discussed

in Section 2.4.3. Our main bound on the covariance, which extends [30, (1.73)], will be stated

in Section 4.2.1.

Remark 4.1.1. The generality provided by predicating the results of [30] on a norm estimate

on the covariance is very useful, e.g. as in [107].

Extraction and contraction

The term k in (4.1.9) is the contribution to K+ that is linear in K. Thus, its control is essential

to obtaining the contractivity estimate (2.7.10).

In the simple case that K = 0, we will have K+ = Ipth, which is a Taylor remainder that

contains terms at all orders in the fields. Thus, it includes relevant and marginal terms as well

as non-local irrelevant terms. The size and number of such terms will prevent K from shrinking

under the action of the renormalization group unless they are somehow dealt with. This is done

by using the operator Loc mentioned in Section 2.5.3 to extract a marginal/relevant part from

K prior to integration.

Thus, the true definition of the renormalization group map constructed in [31] involves

several more steps than (4.1.6). In fact, the definition of the map (V,K) 7→ (V+,K+) is a

composition of 6 maps, called Maps 1–6. In Maps 1–2, the operator Loc is used to perform

extraction. Map 3 then implements the expectation and change of scale in (4.1.6).
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Once a sufficiently large portion of the marginal and relevant terms have been extracted

from K in Maps 1–2, we expect by the discussion in Section 2.5.1 that the expectation in Map

3 should cause K to contract. The fact that irrelevant terms shrink under expectation and

change of scale is formally captured by [30, Proposition 2.8], which we refer to as the crucial

contraction. In Section 4.3.4, we prove that the crucial contraction continues to hold when

s > 1.

Remark 4.1.2. In order to maintain the form (4.1.1), the extraction step in Maps 1–2 must

make a corresponding adjustment to V . This adjustment results in a map V 7→ V+, given by

V+ = Vpt(V −Q), Q(B) =
∑

B⊂Y ∈S
LocY,B I

−YK(Y ), (4.1.12)

where LocY,B F is the restriction to B ⊂ Y of the polynomial on Y determined by LocY F .

The map V+ is a perturbation of Vpt whose size is determined by the norm of K. In

particular, for (V,K) ∈ D we get the first bound of (2.7.9) (recall (2.7.6)), which ensures that

the flow of coupling constants exhibits the same qualitative behaviour as the perturbative flow.

On the other hand, if K is large, then the resulting perturbation may have a non-trivial effect

on the flow of coupling constants, resulting in different critical behaviour than that predicted

by the perturbative flow.

4.2 Improved norm

In this section, we prove an improved covariance estimate, which indicates why it is possible to

use the improved weights (2.4.21). This leads to a discussion of simplified norm pairs beyond the

mass scale. A lemma concerning the fluctuation-field regulator indicates why the simplification

is possible.

4.2.1 Covariance bounds

Recall from (2.4.21) that

`j = `0L
−j−s(j−jm)+ , `σ,j = `−1

j∧jx2(j−jx)+ g̃j . (4.2.1)

The analysis of [30, 31] uses the norm parameters `j and `σ,j with s = 0. To distinguish these

from our new choice (4.2.1) of `j and `σ,j , we write

`old
j = `0L

−j , `old
σ,j = (`old

j∧jx)−12(j−jx)+ g̃j . (4.2.2)

We may regard a covariance Cj in the decomposition (2.3.1) as a test function depending
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on two arguments x, y, and with this identification its Φj(`j) norm is

‖Cj‖Φj(`j) = `−2
j sup

x,y∈Λ
sup

|α|1+|β|1≤pΦ

L(|α|1+|β|1)j |∇αx∇βyCj;x,y|. (4.2.3)

The following lemma justifies our choice of `j in (4.2.1), by showing that the bound [30,

(1.73)], proved there only for the s = 0 version `old
j of (4.2.2), remains true with the stronger

choice of norm parameter `j that permits arbitrary s ≥ 0. Recall that the sequence ϑj was

defined in (2.7.3).

Lemma 4.2.1 (Extension of [30, (1.73)]). Given c ∈ (0, 1], `0 can be chosen large (depending

on L, c, s) so that

‖Cj‖Φj(`j) ≤ min(c, ϑj). (4.2.4)

Proof of Lemma 4.2.1. For d = 4, insertion of (2.3.4) into (4.2.3) gives

‖Cj‖Φj(`j) ≤ cL
pΦ`−2

j (1 +m2L2(j−1))−kL−2(j−1). (4.2.5)

With s = 0 in (4.2.1), (4.2.5) gives ‖Cj‖Φj(`j) ≤ cL`
−2
0 (1 + m2L2(j−1))−k for an L-dependent

constant cL (whose value may now change from line to line). We insert (2.4.18) and the definition

`j = `0L
−j−s(j−jm)+ from (4.2.1) into (4.2.5), to conclude that there exists c0 = c0(s, L) such

that

‖Cj‖Φj(`j) ≤ c0`
−2
0 L−2(j−jm)+ . (4.2.6)

By definition of ϑj , L
−2(j−jm)+ is bounded by a multiple of ϑj . It thus suffices to choose `0

large enough that `20 ≥ c0c
−1.

4.2.2 New choice of norm beyond the mass scale

A field ϕ can be viewed as a test function supported on sequences with |~x| = 1 and |~y| = 0. In

particular,

‖ϕ‖Φj(`j) = `−1
j sup

x∈Λ
sup

1≤i≤n
sup
|α|1≤pΦ

Lj|α|1 |∇αϕix|, (4.2.7)

As in [30, (1.36)], we use the localized version of (4.2.7), defined for subsets X ⊂ Λ by

‖ϕ‖Φj(X) = inf{‖ϕ− f‖Φj : f ∈ CΛ such that fx = 0 ∀x ∈ X}. (4.2.8)

A similar definition is given for general test functions. Given X ⊂ Λ and ϕ ∈ (Rn)Λ, we recall

from [30, (1.38)] that the fluctuation-field regulator Gj is defined by

Gj(X,ϕ) =
∏
x∈X

exp
(
|Bx|−1‖ϕ‖2Φj(B�

x ,`j)

)
, (4.2.9)
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where Bx ∈ Bj is the unique block that contains x, and hence |Bx| = Ldj . The large-field

regulator is defined in [30, (1.41)] by

G̃j(X,ϕ) =
∏
x∈X

exp

(
1

2
|Bx|−1‖ϕ‖2

Φ̃j(B�
x ,`j)

)
. (4.2.10)

The Φ̃j seminorm appearing on the right-hand side of (4.2.10) will be defined in Section 4.3.4.

The two regulators serve as weights in the regulator norms of [30, Definition 1.1]. The regulator

norms are defined, with t ∈ (0, 1] and for F ∈ N (X�) by

‖F‖Gj(`j) = sup
ϕ∈(Rn)Λ

‖F‖Tϕ,j(`j)
Gj(X,ϕ)

, (4.2.11)

‖F‖G̃t
j(hj)

= sup
ϕ∈(Rn)Λ

‖F‖Tϕ,j(hj)
G̃t
j(X,ϕ)

. (4.2.12)

The parameter `j that appears in the regulators (4.2.9)–(4.2.10) and in the numerator of (4.2.11)

was taken to be `old
j in [30], but now we use `j instead. As in [30], the parameter hj and its

observable counterpart hσ,j are given by

hj = k0g̃
−1/4
j L−j , hσ,j = (`old

j∧jx)−12(j−jx)+ g̃
1/4
j . (4.2.13)

In [30], estimates on ‖ · ‖j+1 are given in terms of ‖ · ‖j , where the pair (‖ · ‖j , ‖ · ‖j+1) refers

to either of the norm pairs

‖F‖j = ‖F‖Gj(`old
j ) and ‖F‖j+1 = ‖F‖T0,j+1(`old

j+1), (4.2.14)

or

‖F‖j = ‖F‖G̃j(hj) and ‖F‖j+1 = ‖F‖G̃t
j+1(hj+1). (4.2.15)

We will show that, above the mass scale jm, the results of [30] hold with both norm pairs in

(4.2.14) and (4.2.15) replaced by the single new norm pair

‖F‖j = ‖F‖Gj(`j) and ‖F‖j+1 = ‖F‖Gj+1(`j+1), (4.2.16)

with the improved `j of (4.2.1) with s > 1 fixed as large as desired.

The use of two norm pairs adds intricacy to [30,31]. The pair (4.2.14) is insufficient, on its

own, because the scale-(j+ 1) norm is the T0 seminorm which controls only small fields, and an

estimate in this norm does not imply an estimate for the Gj+1 norm. The norm pair (4.2.15)

is used to supplement the norm pair (4.2.14), and estimates in both of the scale-(j + 1) norms

can be combined to provide an estimate for the Gj+1 norm. This then sets the stage for the

next renormalization group step. Above the mass scale, the use of (4.2.16) now bypasses many

issues. For example, for j > jm the Wj norm of [31, (1.45)] is replaced simply by the Fj(G)
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norm, and there is no need for the Yj norm of [31, (2.12)] nor for [31, Lemma 2.4].

The need for both norm pairs (4.2.14)–(4.2.15) is discussed in [30, Section 1.2.1] and is

related to the so-called large-field problem. Roughly speaking, the norm pair (4.2.15) is used

to take advantage of the quartic term in the interaction to suppress the effects of large values

of the fields. This approach relies on the fact that the interaction polynomial is dominated by

the quartic term in the h-norm, as expressed by [30, (1.91)], together with the lower bound [30,

(1.90)] on the quartic term. However, above the mass scale, large fields are naturally suppressed

by the rapid decay of the covariance. This idea is captured in Lemma 4.2.2 below, which

replaces [30, Lemma 1.2] above the mass scale. The regulators in its statement are defined by

(4.2.9) with the s-dependent `j of (4.2.1).

Lemma 4.2.2 (Replacement for [30, Lemma 1.2]). Let X ⊂ Λ and assume that s > 1. For

any q > 0, if L is sufficiently large depending on q, then for jm ≤ j < N ,

Gj(X,ϕ)q ≤ Gj+1(X,ϕ). (4.2.17)

Proof. By (4.2.9), it suffices to show that, for any scale-j block Bj and any scale-(j + 1) block

Bj+1 containing Bj ,

q‖ϕ‖2
Φj(B�

j ,`j)
≤ L−4‖ϕ‖2

Φj+1(B�
j+1,`j+1)

. (4.2.18)

In fact, since ‖ϕ‖Φj(B�
j ,`j)

≤ ‖ϕ‖Φj(B�
j+1,`j)

by definition, it suffices to prove the above bound

with Bj replaced by Bj+1 on the left-hand side. According to the definition of the norm in

(4.2.8), to show this it suffices to prove that

q‖ϕ‖2Φj(`j) ≤ L
−4‖ϕ‖2Φj+1(`j+1) (4.2.19)

(then we replace ϕ by ϕ− f in the above and take the infimum).

By definition,

‖ϕ‖Φj(`j) ≤ `
−1
j `j+1 sup

x∈Λ
sup
|α|≤pΦ

`−1
j+1L

(j+1)|α||∇αϕx|, (4.2.20)

with the inequality due to replacement of Lj|α| on the left-hand side by L(j+1)|α| on the right-

hand side. Since `−1
j `j+1 = L−1−s1j≥jm ,

‖ϕ‖Φj(`j) ≤ L
−1−s1j≥jm‖ϕ‖Φj+1(`j+1). (4.2.21)

Thus,

q‖ϕ‖2Φj(`j) ≤ qL
−4L2−2s1j≥jm‖ϕ‖2Φj+1(`j+1), (4.2.22)

and then (4.2.19) follows once L is large enough that qL2−2s ≤ 1.

Remark 4.2.3. The elimination of the h-norm after the mass scale is more than a convenience.

It becomes a necessity when we improve the `-norm. Briefly, the reason is as follows. In the
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proof of [31, Lemma 2.4], the ratio `σ/hσ must be bounded. For this, we would need to increase

hσ beyond the mass scale (since `σ has been increased). This forces a compensating decrease

in h beyond jm, to keep the product hhσ bounded for stability (as in Section 4.3.2 below). But

if we do this, we lose the lower bound required on εgτ2 required for stability in the h-norm

(see [30, (3.8)]).

4.3 Proof of Theorem 2.7.1

In this section, we show that Theorem 2.7.1 holds, thereby completing the proof of Proposi-

tion 3.2.1. The key steps in the proof of the s = 0 case of Theorem 2.7.1 are contained in [30,31].

Our main objective in this section is to show that the results in [30, 31] continue to hold with

the new norm parameters `j , `σ,j . To this end, we may and do use the fact that the estimates

of [30] have already been established with the old norm parameters.

In the following, we indicate the changes in the analysis of [30,31] that arise due to the new

choice of norm parameters (4.2.1) beyond the mass scale, and due to the reduction from two

norm pairs to one. This requires repeated reference to previous papers. In such references, we

will sometimes use the notation from those papers without defining it here.

4.3.1 Norm parameter ratios

The analysis of [30] assumes that the norm parameters hj , hσ,j , for h = ` or h = h, satisfy the

estimates [30, (1.79)]; these assert that

hj ≥ `j ,
hj+1

hj
≤ 2L−1,

hσ,j+1

hσ,j
≤ const

L (j < jx)

1 (j ≥ jx).
(4.3.1)

We do not change hj or hσ,j for j below the mass scale, so there can be no difficulty until above

the mass scale. Above the mass scale, the parameters hj , hσ,j are eliminated, and requirements

involving them become vacuous. Thus, for (4.3.1), we need only verify the second and third

inequalities for the case h = `. By definition,

`j+1

`j
= L−(1+s1j≥jm ),

`σ,j+1

`σ,j
=
g̃j+1

g̃j
×

L1+s1j≥jm (j < jx)

2 (j ≥ jx).
(4.3.2)

According to [30, (1.77)], 1
2 g̃j+1 ≤ g̃j ≤ 2g̃j+1. Thus, the second estimate of (4.3.1) is satisfied

(the ratio being improved when j ≥ jm), while the third is not when s > 1 and jm < jx.

This potentially dangerous third estimate in (4.3.1) is used to prove the scale monotonicity

lemma [30, Lemma 3.2], as well as the crucial contraction. We discuss [30, Lemma 3.2] next,

and return to the crucial contraction in Section 4.3.4 below.

73



4.3. Proof of Theorem 2.7.1

[30, Lemma 3.2] There is actually no problem with the scale monotonicity lemma. Indeed,

for the case α = ab of the proof of [30, Lemma 3.2], the hypothesis that π0xF = 0 for j < jx

ensures that this case only relies on the dangerous estimate for j ≥ jx where the danger is

absent in (4.3.2). For the cases α = a and α = b of the proof of [30, Lemma 3.2], what is

important is the inequality `σ,j+1`j+1 ≤ const `σ,j`j , which continues to hold with (4.2.1) for

all scales j, both above and below the mass scale, since the products in this inequality are the

same for the new and the old choices of `. So [30, Lemma 3.2] continues to hold with the choice

(4.2.1). In addition,

‖F‖Tϕ(`j) ≤ ‖F‖Tϕ(`old
j ). (4.3.3)

This strengthened special case of the first inequality of [30, (3.6)] (strengthened due to the

constant 1 on the right-hand side of (4.3.3) compared to the generic constant in [30, (3.6)]) can

be seen from an examination of the proof of the α = a, b case of [30, Lemma 3.2], together with

the observation that `σ,j`j = `old
σ,j`

old
j by definition.

4.3.2 Stability domains

In [30, (1.83)], an extension of the domain (2.7.4) is defined. By some abuse of notation, we

will also denote this extended domain by Dj . We modify Dj only for the coupling constant q,

by replacing rq in [30, (1.84)] by

L2jx+2s(jx−jm)+22(j−jx)rq,j =

0 j < jx

CD j ≥ jx.
(4.3.4)

[30, Proposition 1.5] With (4.3.4), [30, Proposition 1.5] as it pertains to h = ` (omitting all

reference to h = h) continues to hold beyond the mass scale by the same proof. In particular,

with the smaller choice for the domain of q, [30, (3.14)] holds with the larger s-dependent `σ,j .

Note that we do not need to change the domain of λ. This is because the bound [30, (3.13)]

continues to hold with the new norm parameters. Indeed, while `j and `σ,j have been modified,

their product `j`σ,j has not. This guarantees that the T0 seminorm ‖σϕ̄a‖T0 = `σ` remains

identical to what it was with the old norm parameters, and therefore there is no new stability

requirement arising from this.

The choice (4.3.4) places a more stringent requirement on the domain than does the s = 0

version. To see that this requirement is actually met by the renormalization group flow, we

note a minor improvement to the proof of [31, Lemma 6.2(ii)], where the bound |δq| ≤ cL−2j

is used to show that v(X) (defined there) satisfies

‖v(X)‖ ≤ cL−2j(`old
σ,j )

2 ≤ c′. (4.3.5)

Here the factor L−2j arises as a bound on the covariance Cj+1;00 in the perturbative flow [30,

(3.35)] of q and it can therefore be improved to L−2j−2s(j−jm)+ by Lemma 4.2.1. Thus also with
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`old, `old
σ replaced by `, `σ, the required bound ‖v(X)‖ ≤ c′ remains valid.

4.3.3 Extension of stability analysis

In this and the next section, we verify that the results of [30, Section 2] remain valid with

`old replaced by `. In this section, we deal with the results whose proofs need only minor

modification.

First, we note that the supporting results of [30, Section 4] hold with the new norms. Indeed,

it is immediate from (4.3.3) that analogues of [30, Proposition 4.1] and [30, Lemmas 3.4, 4.11–

4.12] hold with the new `j . Moreover, [30, Lemma 4.7] and [30, Proposition 4.10] hold for

general values of the parameters hj (which are implicit in the T0,j-norm). We discuss [30,

Proposition 4.9] in Section 4.3.4 below, and the remaining results of [30, Section 4] do not make

use of norms.

[30, Proposition 2.1] With h = `, [30, (2.1)] continues to hold with the same proof; in fact

the proof does not depend on the explicit choice of h. We do not need [30, (2.2)] as it is only

applied with h = h.

[30, Proposition 2.2] The only change to the proof is for the case j∗ = j + 1. To get [30,

(2.9)], we proceed as previously in the case h = h but applying Lemma 4.2.2 rather than [30,

Lemma 1.2] following [30, (5.22)]. In the same way, we get [30, (2.10)] and the remaining parts

of the proposition follow without changes to the proof.

[30, Proposition 2.3] Again the only required change in the proof is the use of Lemma 4.2.2

in the case j∗ = j + 1, for which as previously we use Lemma 4.2.2 instead of [30, Lemma 1.2].

[30, Proposition 2.4] No changes need to be made to the proof. In fact, it is necessary not

to use the h = ` case of the estimate [30, (5.32)]. Instead, the h = `old case of this estimate

should be used for gQ. This is possible since the renormalization group map, and in particular

the coupling constants, are independent of the choice of norm.

[30, Proposition 2.5] Using (4.3.3), we see that the proof continues to hold above the mass

scale. The only change to the proof is that in the application of [30, Proposition 2.2], j should

be replaced by j + 1 in [30, (2.9)] with j∗ = j + 1 (corresponding to the Gj+1 norm). This

yields [30, (6.6)] with a Gj+1 norm on the left-hand side.

[30, Proposition 2.6] A version of [30, Lemma 6.1] with the new ` continues to hold. This

lemma makes use of ˆ̀, which superficially depends on the choice of ` in its definition [30, (3.17)].

However, brief scrutiny of [30, (3.17)] reveals that the apparent dependence on ` actually cancels

and there is in fact no dependence. Similarly, [30, Lemma 3.4] continues to hold without any

changes to its proof. The proof of [30, Proposition 2.6] then applies without change.
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[30, Proposition 2.7] With the new choice of ` (and G = G), [30, Lemma 7.1] continues to

hold with no changes to its proof. Thus, by [30, (3.6)] and [30, Lemma 7.1],

‖Ej+1δI
XθF (Y )‖Tϕ,j+1(`j+1)

≤ ‖Ej+1δI
XθF (Y )‖Tϕ,j(`j)

≤ α|X|j+|Y |jE (CδV ε̄)
|X|j‖F (Y )‖Gj(`j)Gj(X ∪ Y, ϕ)5. (4.3.6)

By Lemma 4.2.2, Gj(X ∪Y, ϕ)5 ≤ Gj+1(X ∪Y, ϕ). Now we divide both sides by Gj+1(X ∪Y, ϕ)

and take the supremum over ϕ to complete the proof.

4.3.4 Extension of the crucial contraction

The proof of the “crucial contraction” [30, Proposition 2.8] makes use of the third estimate in

(4.3.1), which is now violated above the mass scale due to our new choice of `j . On the other

hand, the second estimate of (4.3.1) is improved by the new choice and compensates for the

degraded third estimate, as we explain in this section.

The operator Loc

There is a certain kind of duality between the space Φ of test functions and the space N of

field functionals induced by the pairing (2.4.9). By exploiting this, in [30] the operator Loc

is defined as a kind of adjoint to an operator Taya, which replaces test functions by a lattice

Taylor expansion at a ∈ Λ. Non-constant polynomials are not well-defined on the whole torus

Λ, but such a Taylor expansion can nevertheless be defined for test functions supported on

sequences whose components lie in a sufficiently “small” subset of Λ. These are referred to

in [30] as coordinate patches. By definition, they are nonempty and any small set is contained

in a coordinate patch. (In this chapter, we are ultimately only concerned with the case of small

sets).

Suppose we fix a coordinate patch Λ′ ⊂ Λ. By definition, it can be identified with a rectangle

in Zd. Then given a local monomial M of the form (2.5.1), we define pM ∈ Φ by

pM (x1, . . . , xp) = xα1
1 . . . x

αp
p , x1, . . . , xp ∈ Λ′ (4.3.7)

and set pM (~x) = 0 if |~x| 6= p or if the lattice points in ~x do not all lie in Λ′. Following (2.5.4),

we define the dimension of such a monomial to be the dimension of M , i.e. |α|+ p[ϕ]. We let

d+ ≥ 0 and let Π = Π[Λ′] denote the span of the monomials of this form with dimension at

most d+. For X ⊂ Λ′, we can also define Π(X) = Π[Λ′](X) as the space of test functions that

agree with an element of Π on X. Thus, Π(X) ⊃ Π.

For a ∈ Λ′, in [29] the operator Taya is defined as a map Taya : Φ→ Π by a lattice analogue

of Taylor expansion. Although the monomials pM form an obvious basis with respect to which
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this expansion can be performed, a different basis1 is used in [29]. The operator Tayag satisfies

lattice analogues of the usual properties of Taylor polynomials. We will not discuss this further

as we will only use the fact that Tayag ∈ Π here.

The following, which is a restatement of [30, Proposition 1.5] specialized to small sets,

defines LocX F as the unique element of V(X) that agrees with F to order d+ in the sense of

the pairing.

Proposition 4.3.1. Let X ∈ S be a small set and let F ∈ N (X). Then there is a unique

polynomial V ∈ V such that

〈F, g〉0 = 〈V (X), g〉0 (4.3.8)

for all g ∈ Π. Moreover, V is independent of the choice of coordinate patch used to define Π.

We write LocX F = V (X).

Define the seminorm

‖g‖Φ̃(X) = inf{‖g − f‖Φ : f ∈ Π(X)} (4.3.9)

on Φ (this is used in the definition of the large-field regulator (4.2.10)). We will need the

following lemma, which is a restatement of [29, Lemma 2.6].

Lemma 4.3.2. Let X ∈ S be a small set and let g ∈ Φ. There exists f ∈ Π(X) such that, with

h = g − f , we have ‖g‖Φ̃(X) ≤ ‖h‖Φ ≤ (1 + ε)‖g‖Φ̃(X) and ‖f‖Φ ≤ (2 + ε)‖g‖Φ.

Proof of the crucial contraction

Below the mass scale, we continue to use the crucial contraction as stated in [30, Proposition

2.8] in terms of two norm pairs. Next, we state a version of the crucial contraction for use above

the mass scale using the new norm pair (4.2.16). Throughout this section, we sometimes write

the dimension as d for emphasis, although we only consider d = 4. We define

Ĩpt(B) = e−Vpt(B)(1 +Wj+1(Vpt, B)), B ∈ Bj (4.3.10)

and extend this to Ĩpt(X) = ĨXpt for X ∈ Pj+1 by block-factorization.

Proposition 4.3.3 (Improvement of [30, Proposition 2.8]). Let jm ≤ j < N and V ∈ Dj. Let

X ∈ Sj and let U be the polymer closure of X. Let F (X) ∈ N (X�) be such that παF (X) = 0

when α /∈ X (α = 0, x) and such that π0xF (X) = 0 unless j ≥ jx. There is a constant C

(independent of L) such that

‖ĨU\Xpt ECj+1θF (X)‖Gj+1(`j+1) ≤ C
(

(L−d−1 + L−1
1X∩{0,x}6=∅)κF + κLocF

)
, (4.3.11)

with κF = ‖F (X)‖Gj(`j) and κLocF = ‖ĨXptLocX Ĩ
−X
pt F (X)‖Gj(`j).

1This basis is similar to the Newton polynomial basis used in the calculus of finite differences.
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An ingredient in the proof of Proposition 4.3.3 is [29, Lemma 3.6], which is the s = 0

version of the following lemma. The proof of Lemma 3.6 with s = 0 is based on the assumption

`j+1/`j ≤ cL−1 (we take [ϕi] = 1; the parameters `σ,j are not used). For our new values of `,

the stronger assumption `j+1/`j ≤ L−1−s1j≥jm holds. The unique change to the proof occurs

in the transition from [29, (3.42)] to [29, (3.43)], where the ratio `j+1/`j is used.

In the following, we let Φ = Φj(hj) and Φ′ = Φj+1(hj+1). We employ similar conventions

for Φ(X) and Φ̃(X). The constant d′+ is defined in [29, (1.38)] and in this context becomes

d′+ = d+ + 1. The enlargement X+ of a polymer X ∈ Pj is defined by replacing each block

B ∈ Bj(X) by a cube of twice the side length of B (minus 1 if Lj is odd) that is centred at B.

Lemma 4.3.4 (Improvement of [29, Lemma 3.6]). With the same hypotheses and notation as

in [29, Lemma 3.6],

‖g‖Φ̃(X) ≤ C̄3L
−(1+s1j≥jm )d′+‖g‖Φ̃′(X+). (4.3.12)

Proof. Assume without loss of generality that X is connected. Let f ∈ Π(X) and h ∈ Φ be as

in Lemma 4.3.2. Thus, g = f + h and so we have g − (h−Tayah) = f + Tayah ∈ Π(X), where

a is the largest point which is lexicographically no larger than any point in X. By definition of

the Φ̃(X) seminorm,

‖g‖Φ̃(X) = ‖h− Tayah‖Φ̃(X) ≤ ‖h− Tayah‖Φ(X). (4.3.13)

By the bound on h (from Lemma 4.3.2), it suffices to show that

‖h− Tayah‖Φ(X) ≤
1

2
C̄3L

−(1+s1j≥jm )d′+‖g‖Φ̃′(X+). (4.3.14)

To this end, let r = h− Tayah. By [29, Lemma 3.3] with t = 1/2, there exists K > 1 such

that

‖r‖Φ(X) ≤ sup
~x∈X+

(K`−1
j )~x sup

|β|∞≤pΦ

Lj|β|1 |∇βr~x| (4.3.15)

where A~x = A|~x| and X+ is the set of sequences whose components lie in X+. In other words,

we can estimate the Φ(X) norm of r in terms of the values of r and its derivatives in the

enlargement X+ of X. With the new ratio (4.3.2), we can rewrite this as

‖r‖Φ(X) ≤ sup
~x∈X+

(K`−1
j+1)~x sup

|β|∞≤pΦ

L−(|~x|+|~x|s1j≥jm+|β|1)L(j+1)|β|1 |∇βr~x|, (4.3.16)

replacing [29, (3.43)].

By definition, for the empty sequence ∅, (Tayah)∅ = h∅, and thus r∅ = 0. It follows that

we can take |~x| ≥ 1 in the supremum over ~x ∈ X+ in (4.3.16). Thus,

‖r‖Φ(X) ≤ L−s1j≥jm sup
~x∈X+

(K`−1
j+1)~x sup

|β|∞≤pΦ

L−(|~x|+|β|1)L(j+1)|β|1 |∇βr~x|. (4.3.17)
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The quantity

sup
~x∈X+

(K`−1
j+1)~x sup

|β|∞≤pΦ

L−(|~x|+|β|1)L(j+1)|β|1 |∇βr~x| (4.3.18)

is identical to the right-hand side of [29, (3.43)] when [ϕi] = 1 and is bounded in the same way.

Namely, it is shown in [29] that this quantity can be bounded by a constant times

L−d
′
+‖h‖Φ′(X+), (4.3.19)

which completes the proof.

Roughly speaking, the L-dependent factor in (4.3.12) implements the dimensional gain for

irrelevant directions in a renormalization group step when passing from one scale to the next.

In other words, we may regard the dimension of the field as improving from 1 below the mass

scale to 1 + s above the mass scale. The s = 0 version of Lemma 4.3.4 is adapted to the

scaling at the critical point, where m2 = 0. In the noncritical case m2 > 0, the dimensional

gain improves greatly for j > jm as apparent from (2.3.4), and is captured more accurately

by the general-s version of (4.3.12). As a consequence of the former improvement we have the

following two further improvements.

[29, Proposition 1.19] The improvement in Lemma 4.3.4 propagates to [29, Proposi-

tion 1.19], which now holds as stated except with γα,β improved to

γα,β =
(
L−(d′α+s1j≥jm ) + L−(A+1)

)(`σ,j+1

`σ,j

)|α∪β|
. (4.3.20)

The right-hand side can be estimated as follows. By (4.3.2),

`σ,j+1

`σ,j
≤ 4

L1+s1j≥jm j < jx

1 j ≥ jx,
(4.3.21)

and hence

γα,β ≤ C ′′
(
L−(d′α+s1j≥jm ) + L−(A+1)

)
×

L(1+s1j≥jm )(|α∪β|) j < jx

1 j ≥ jx.
(4.3.22)

[30, Proposition 4.9] As we explain next, using (4.3.20) and identical notation to that

defined in and around [30, Proposition 4.9], the proposition holds as stated also for the improved

norms, provided we take A ≥ 5 + s. For this, what is required is to show that under the
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hypotheses of [30, Proposition 4.9], the γα,β that arise in its proof obey

γα,β ≤ C

L−5 |α ∪ β| = 0

L−1 |α ∪ β| = 1, 2.
(4.3.23)

For |α∪β| = 0, the first term of (4.3.22) obeys the bound of (4.3.23), since d′∅ = d+ 1. For the

remaining cases, d′α = 2 for j < jx and d′α = 1 for j ≥ jx. For |α ∪ β| = 2, the assumption that

F1, F2, F1F2 have no component in N0x unless j ≥ jx means that we are in the case with no

growth due the ratio `σ,j+1/`σ,j in (4.3.22), and its first term again obeys the bound (4.3.23)

with room to spare. Finally, when |α∪β| = 1, the first term of (4.3.22) also obeys the estimate

(4.3.23), and again with room to spare. Concerning the second term of (4.3.22), given our choice

of A and the fact that we need only consider the growing factor in (4.3.22) for |α ∪ β| = 1, it

suffices to observe that

L−(A+1)L1+s1j≥jm ≤ L−5. (4.3.24)

This completes the proof of the improved version of [30, Proposition 4.9].

Proof of Proposition 4.3.3. We complete the proof of Proposition 4.3.3 by modifying the proof

of [30, Proposition 2.8] above the mass scale. The estimate [30, (7.22)] follows from [30, Propo-

sition 2.7] as an estimate in terms of the modified norm pair (4.2.16), for which [30, Proposi-

tion 2.7] was verified in Section 4.3.3. The bound [30, (7.25)] with improved γ is obtained

by applying the improved version of [30, Proposition 4.9]. In the remainder of the proof

of [30, Proposition 2.8], we specialize each occurrence of G to the case G = G and we con-

clude by obtaining an analogue of [30, (7.31)] with G̃ replaced by G by applying Lemma 4.2.2

rather than [30, Lemma 1.2].

An additional detail is that it is required that we choose the parameter defining the space

N to obey pN > A. Since we have changed A (depending on s), we must make a corresponding

change to pN . This does not pose problems (beyond the previously discussed requirement that

g needs to be chosen small depending on p), as this parameter may be fixed to be an arbitrary

and sufficiently large integer (see [108, Section 7.1.3] where this point is addressed in a different

context). Similarly, the value of A is immaterial and can be any fixed number in the proof

of [30, Proposition 2.8].
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Chapter 5

Critical initial conditions

In this chapter, we prove Theorem 2.8.1. We begin in Section 5.1.1 by showing that K+
0 satisfies

the inductive assumption required by Theorem 2.7.1. In Section 5.2, we discuss a general version

of this theorem for a parameter K0 that is independent of the coupling constants. This theorem

is then applied with K0 = K+
0 by solving a set of implicit equations in Section 5.3.

Throughout this chapter, we take n ≥ 1, drop n from the notation, and denote fields by

ϕ. The n = 0 case is dealt with in [13]. We also deal only with the bulk flow (so we set

σ0 = σx = 0). The construction of the observable flow follows as in [108] (with the same critical

initial conditions) once the bulk flow has been constructed.

5.1 Initial coordinates for the renormalization group

We establish norm estimates on K+
0 in Sections 5.1.1–5.1.3. The initial coordinate K+

0 depends

on the coupling constants (g0, γ0, ν0, z0) of (2.2.1) and regularity of K0 as a function of these

variables is shown in Section 5.1.4.

5.1.1 Properties of the Tϕ seminorm

We will need several properties of the Tϕ seminorm, whose proofs can be found in [28]. We

have already mentioned the product property in Proposition 2.4.3. An immediate consequence

is that ‖e−F ‖Tϕ ≤ e‖F‖Tϕ . This is improved in [28, Proposition 3.8], which states that

‖e−F ‖Tϕ ≤ e−2F (ϕ)+‖F‖Tϕ . (5.1.1)

We will also use [28, Proposition 3.10], which states that if F ∈ N is a polynomial in ϕ of

total degree A ≤ pN , then

‖F‖Tϕ ≤ ‖F‖T0(1 + ‖ϕ‖Φ)A. (5.1.2)

Let x� denote the small set neighbourhood of a singleton {x} and recall that the Φx ≡ Φ(x�)

norm of ϕ ∈ (Rn)Λ was defined in (4.2.8). By taking the infimum in (5.1.2) over all possible

re-definitions of ϕy for y /∈ x�, we get

‖F‖Tϕ ≤ ‖F‖T0(1 + ‖ϕ‖Φx)A (5.1.3)

when F ∈ N (x�).
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5.1. Initial coordinates for the renormalization group

5.1.2 Bounds on K0

The main estimate on K+
0,x is given by the following proposition. Recall that Dj was defined in

(2.7.4).

Proposition 5.1.1. Suppose that V +
0 ∈ D0, with g̃0 sufficiently small. If 0 ≤ γ0 ≤ g̃0, then

(with constants that may depend on L)

‖K+
0,x‖G0 = O(γ0), ‖K+

0,x‖G̃0
= O(γ0/g0). (5.1.4)

The form of the estimates (5.1.4) can be anticipated from the definition of K+
0 . The upper

bound arises from the small size of e−γ0U
+
x − 1. For small fields, hence small U+

x , this is of

order γ0, as reflected by the G0 norm estimate of (5.1.4). For large fields, namely fields of size

|ϕ| ≈ g̃−1/4
0 , the difference e−γ0U

+
x − 1 is roughly of size γ0 |ϕ|4 ≈ γ0/g̃0. This effect is measured

by the G̃0 norm.

Before proving the proposition, we write

K+
0,x = I+

0,xJ
+
x (5.1.5)

where, by the fundamental theorem of calculus,

I+
0,x = e−V

+
0,x (5.1.6)

J+
x = e−γ0U

+
x − 1 = −

∫ 1

0
γ0U

+
x e
−tγ0U

+
x dt. (5.1.7)

Let F ∈ N (x�) be a polynomial of degree at most pN . Then the stability estimates [30,

(2.1)–(2.2)] imply that there exists c3 > 0 and, for any c1 ≥ 0, there exist positive constants

C, c2 such that if V +
0 ∈ D0 then

‖I+
0,xF‖Tϕ(h0) ≤ C‖F‖T0(h0)

e
c3g0

(
1+‖ϕ‖2

Φx(`0)

)
h0 = `0

e
−c1k4

0‖ϕ‖2Φx(h0)e
c2k4

0‖ϕ‖2Φ̃x(`0) h0 = h0.
(5.1.8)

This essentially reduces our task to estimating J+
x . The next lemma is an ingredient for this.

Lemma 5.1.2. There is a universal constant C̃ such that

‖U+
x ‖Tϕ(h0) ≤ 2U+

x + C̃h4
0(1 + ‖ϕ‖2Φx(h0)). (5.1.9)

Proof. Let

M+ = M+
e = (∇eτx)2 (5.1.10)

so that U+
x =

∑
e∈UM

+
e . It suffices to prove (5.1.9) with U+

x replaced by M+ on both sides.

In addition, we can replace the Φx norm by the Φ norm; the bound with the Φx norm then

follows in the same way that (5.1.3) is a consequence of (5.1.2), since M+ ∈ N (x�).
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By definition of the Tϕ seminorm,

‖∇e|ϕx|2‖Tϕ ≤ ∇e|ϕx|2 + 2h0(|ϕx|+ |ϕx+e|) + 2h2
0. (5.1.11)

With the product property and (2.4.6), this implies that

‖M+‖Tϕ ≤M+ + 2|∇e|ϕx|2|(2h0(|ϕx|+ |ϕx+e|)) +O(h4
0)(1 + ‖ϕ‖2Φ). (5.1.12)

By the inequality

2|ab| ≤ |a|2 + |b|2 (5.1.13)

and another application of (2.4.6),

2|∇e|ϕx|2|(2h0(|ϕx|+ |ϕx+e|)) ≤M+ +O(h2
0‖ϕ‖2Φ), (5.1.14)

and the bound on M+ follows.

An immediate consequence of Lemma 5.1.2, using (5.1.1), is that for any s ≥ 0,

‖e−sU
+
x ‖Tϕ(h0) ≤ e

C̃sh4
0

(
1+‖ϕ‖2

Φx(h0)

)
. (5.1.15)

Proof of Proposition 5.1.1. According to the definition of the regulator norms in (4.2.11)–

(4.2.12), it suffices to prove that, under the hypothesis on γ0,

‖K+
0,x‖Tϕ(h0) = O(γ0h

4
0)

e
‖ϕ‖2Φx (h0 = `0)

e
t
2
‖ϕ‖Φ̃ (h0 = h0).

(5.1.16)

For t ∈ [0, 1], let Ĩ+
x (t) = e−tγ0U

+
x . By (5.1.5), (5.1.7), and the product property,

‖K+
0,x‖Tϕ(h0) ≤ γ0‖I+

0,xU
+
x ‖Tϕ(h0) sup

t∈[0,1]
‖Ĩ+
x (t)‖Tϕ(h0). (5.1.17)

By (5.1.8) and Lemma 5.1.2, there exists c3 > 0, and, for any c1 ≥ 0 there exists c2 > 0, such

that

‖I+
0,xU

+
x ‖Tϕ(h0) ≤ O(h4

0)

e
c3g0‖ϕ‖2Φx(`0) h0 = `0

e
−c1k4

0‖ϕ‖2Φx(h0)e
c2k4

0‖ϕ‖2Φ̃x(`0) h0 = h0.
(5.1.18)

The constant in O(γ0h
4
0) may depend on c1, but this is unimportant. Also, by (5.1.15),

sup
t∈[0,1]

‖Ĩ+
x (t)‖Tϕ(h0) ≤ e

C̃γ0h4
0

(
1+‖ϕ‖2

Φx(h0)

)
. (5.1.19)
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Thus, for h0 = `0, the total exponent in our estimate for the right-hand side of (5.1.17) is

C̃γ0`
4
0 + (c3g0 + C̃γ0`

4
0)‖ϕ‖2Φx(`0). (5.1.20)

This gives the h0 = `0 version of (5.1.16) provided that g0 is small and γ0 is small depending

on L.

For h0 = h0, the total exponent in our estimate for the right-hand side of (5.1.17) is

C̃γ0k
4
0 g̃
−1
0 + (C̃γ0k

4
0 g̃
−1
0 − c1k

4
0)‖ϕ‖2Φx(h0) + c2k

4
0‖ϕ‖2Φ̃x(`0)

. (5.1.21)

This gives the h0 = h0 version of (5.1.16) provided that γ0 ≤ g̃0, c1 ≥ C̃, and c2k
4
0 ≤ t/2.

All the provisos are satisfied if we choose c1 ≥ C̃, k0 small depending on c1 and g̃0 small.

Remark 5.1.3. By a small modification to the proof of Proposition 5.1.1, it can be shown that

if Mx ∈ N (x�) is a monomial of degree r ≤ pN − 4 (so that MxU
+
x has degree at most pN ),

then

‖MxK
+
0,x‖G0 = O(γ0h

4+r
0 ). (5.1.22)

5.1.3 Unified bound on K0

We begin by recalling the definition of the Wj norm from [31]. It follows from the product

property of the Tϕ seminorm that the regulator norms obey the following version of the product

property:

‖F1F2‖Gj ≤ ‖F1‖Gj‖F2‖Gj for Fi ∈ N (X�
i ) with X1 ∩X2 = ∅. (5.1.23)

Given a map K ∈ Kj , we define the Fj(G) norms (for G = G, G̃) by

‖K‖Fj(G) = sup
X∈Cj

g̃
−fj(a,X)
j ‖K(X)‖Gj (5.1.24)

‖K‖Fj(G̃) = sup
X∈Cj

g̃
−fj(a,X)
j ‖K(X)‖G̃t

j
, (5.1.25)

with

fj(a,X) = a(|X|j − 2d)+ =

a(|X|j − 2d) if |X|j > 2d

0 otherwise
(5.1.26)

(recall that |X|j is the number of j-blocks in X). Here a is a small constant; its value is

discussed below [31, (1.46)]. The Wj =Wj(g̃j ,V) norm is then defined by

‖K‖Wj = max
{
‖K‖Fj(G), g̃

9/4
j ‖K‖Fj(G̃)

}
. (5.1.27)
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Proposition 5.1.4. If V +
0 ∈ D0 with g̃0 sufficiently small (depending on L), and if γ0 ≤

O(g̃1+a′

0 ) for some a′ > a, then ‖K+
0 ‖W0 ≤ O(γ0), where all constants may depend on L.

Proof. Let X ∈ C0. By the product property and Proposition 5.1.1,

‖K+
0 (X)‖G0 ≤ (cγ0h

4
0)|X| = (cγ0h

4
0)|X|∧2d(cγ0h

4
0)(|X|−2d)+ . (5.1.28)

For G0 = G0, we use h0 = `0, (cγ0h
4
0)|X|∧2d ≤ O(γ0), and

(cγ0h
4
0)(|X|−2d)+ ≤ (c′g̃0)(1+a′)(|X|−2d)+ ≤ g̃f0(a,X)

0 . (5.1.29)

For G0 = G̃0, we use h0 = h0 = O(g̃
−1/4
0 ) and, since a′ > a,

(cγ0h
4
0)(|X|−2d)+ ≤ (c′g̃0)a

′(|X|−2d)+ ≤ g̃f0(a,X)
0 . (5.1.30)

Since γ0 ≤ g̃0, it follows from (5.1.28) that

g̃
9/4
0 ‖K

+
0 ‖F0(G̃) ≤ g̃

9/4
0 O(γ0g̃

−1
0 ) ≤ γ0, (5.1.31)

and the proof is complete.

5.1.4 Smoothness of K0

Given any map F : D →W0(g̃0,Zd) for D ⊂ R an open interval, let us write FX : D → N (X�)

and FϕX : D → R for the maps defined by partial evaluation of F atX and at (X,ϕ), respectively.

Lemma 5.1.5. Let D ⊂ R be open and F : D → W0(g̃0,Zd) be a map. Suppose that FϕX is

C2 for all X ∈ C0 and ϕ ∈ (Rn)Λ, and define F (i) : D →W0(g̃0,Zd) by (F (i)(t))ϕX = (FϕX)(i)(t)

for i = 1, 2, where the right-hand side denotes the ith derivative of FϕX . If ‖F (i)(t)‖W0 <∞ for

i = 1, 2 and t ∈ D, then F (1) is the (Fréchet) derivative of F .

Proof. For t, t+ s ∈ D, define R(t, s) ∈ W0 by

RϕX(t, s) = FϕX(t+ s)− FϕX(t)− s(FϕX)′(t). (5.1.32)

By Taylor’s theorem, for any ϕ and X,

RϕX(t, s) = s2

∫ 1

0
(FϕX)′′(t+ us)(1− u) du. (5.1.33)

It follows that

‖R(t, s)‖W0 ≤ |s|2 sup
u∈[0,1]

‖F ′′(t+ us)‖W0 ≤ O(|s|2), (5.1.34)
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so F is differentiable and its derivative satisfies (F ′)ϕX = (FϕX)′. Continuity of F ′ follows

similarly, since, by the fundamental theorem of calculus,

‖F ′(t+ s)− F ′(t)‖W0 ≤ |s| sup
u∈[t,t+s]

‖F ′′(u)‖W0 ≤ O(|s|), (5.1.35)

which suffices.

Let us view K+
0 as a map

(g0, γ0, ν0, z0) 7→ K+
0 ∈ W0(g̃0,Zd). (5.1.36)

for (g0, γ0, ν0, z0) satisfying the hypotheses of Proposition 5.1.4. The map K0 is in fact analytic

away from γ0 = 0. However, we only prove the following, which is what we need later.

Proposition 5.1.6. Suppose that V +
0 ∈ D0, with g̃0 sufficiently small (depending on L) and

γ0 ≤ O(g̃1+a′

0 ) for some a′ > a. Then the map K+
0 (g0, γ0, ν0, z0) is jointly continuous in its four

variables, is C1 in (g0, ν0, z0), and (when γ0 6= 0) is C1 in (g0, γ0, ν0, z0), with partial derivatives

with respect to t = g0, ν0, and z0 satisfying

‖∂K+
0 /∂t‖W0 = O(γ0). (5.1.37)

Moreover, K+
0 is right-differentiable in γ0 at γ0 = 0.

Proof. Let t denote any one of the coupling constants g0, γ0, ν0 or z0. We drop the subscript

0 and superscript +, and let K(t) denote K+
0 viewed as a function of t, with the remaining

coupling constants fixed. Then Kϕ
X is smooth for any ϕ,X. If t is g0, ν0 or z0, then

(Kϕ
x )′ = −Mx(ϕ)Kϕ

x , (Kϕ
x )′′ = M2

x(ϕ)Kϕ
x , (5.1.38)

where Mx is τ2
x , τx or τ∆,x, respectively. The maximal degree of Mx is 4, so (5.1.22) implies

that

‖K ′x‖G0 ≤ O(γ0h
8
0), ‖K ′′x‖G0 ≤ O(γ0h

12
0 ). (5.1.39)

For t denoting γ0, we write U = U+ and V0 = V +
0 . Then

(Kϕ
x )′ = −Ux(ϕ)e−Vx(ϕ)−γ0Ux(ϕ), (Kϕ

x )′′ = U2
x(ϕ)e−Vx(ϕ)−γ0Ux(ϕ), (5.1.40)

and (5.1.8) and (5.1.15) imply that

‖K ′x‖G0 ≤ O(h4
0), ‖K ′′x‖G0 ≤ O(h8

0). (5.1.41)

By definition, KX =
∏
x∈X Kx so, for derivatives with respect to any one of the four variables
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5.1. Initial coordinates for the renormalization group

(with γ0 6= 0 when differentiating with respect to γ0),

(Kϕ
X)′ =

∑
x∈X

(Kϕ
x )′Kϕ

X\x, (Kϕ
X)′′ =

∑
x∈X

((Kϕ
x )′′Kϕ

X\x + (Kϕ
x )′(Kϕ

X\x)′). (5.1.42)

Thus, by the product property, (5.1.39), and Proposition 5.1.1,

‖K ′X‖G0 ≤ O(|X|)γ0h
8
0(γ0h

4
0)|X|−1. (5.1.43)

when differentiating with respect to g0, ν0, or z0. The bound (5.1.37) then follows from the

hypothesis on γ0. Similarly, using (5.1.41),

‖K ′X‖G0 ≤ O(|X|)h4
0(γ0h

4
0)|X|−1 (5.1.44)

when differentiating with respect to γ0 away from γ0 = 0. In both cases, we have

‖K ′′X‖G0 ≤ O(|X|2)h8
0(γ0h

4
0)(|X|−2)∧0. (5.1.45)

Thus, by Lemma 5.1.5, K is C1 in any of its variables. Therefore, K is C1 in (g0, ν0, z0) on the

whole domain and in all the variables when γ0 6= 0.

To show right-continuity in γ0 at γ0 = 0, fix (g0, ν0, z0) and define F ∈ W0 by

F (X) =

−Uxe−V0,x X = {x}

0 |X| > 1,
(5.1.46)

where Ux, V0,x are defined above. Let K ′(γ0) denote the γ0 derivative of K evaluated at γ0 > 0.

Then (5.1.40) and (5.1.42) imply that

F (X)−K ′X(γ0) =

UxKx(γ0) X = {x}∑
x∈X K

′
x(γ0)KX\x(γ0) |X| > 1.

(5.1.47)

Thus, by (5.1.22), (5.1.41), and Proposition 5.1.1,

‖F (X)−K ′X(γ0)‖G0 ≤

O(γ0h
8
0) X = {x}

O(|X|)h4
0(γ0h

4
0)|X|−1 |X| > 1.

(5.1.48)

It follows that

lim
γ0↓0
‖F −K ′(γ0)‖W0 = 0, (5.1.49)

i.e., F is the right-derivative of K in γ0 at γ0 = 0.
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Remark 5.1.7. With γ0 sufficiently small, the bound (5.1.37) verifies the condition

‖∂K+
0 /∂ν0‖W0 ≤ O(g3

0) (5.1.50)

required in the proof of [9, Lemma 8.6] (see [9, (8.34)]), which is in turn needed in Section 3.1.2.

5.2 Renormalization group flow

The following theorem is an extension of [9, Proposition 7.1] to non-trivial K0. This extension

is possible with only minor modifications to the proof of the K0 = 1∅ case, due to the generality

allowed by the main result of [11].

The theorem provides, for any N ≥ 1 and for initial error coordinate K0 in a specified do-

main, a choice of initial condition (νc0, z
c
0) for which there exists a finite-volume renormalization

group flow (Vj ,Kj) ∈ Dj for 0 ≤ j ≤ N . In order to ensure a degree of consistency amongst

the sequences (Vj ,Kj), which depend on the volume ΛN , a notion of consistency must be im-

posed upon the collection of initial error coordinates K0,Λ ∈ K0(Λ) for varying Λ. Specifically,

the family K0,Λ is required to satisfy the property (Zd) of [31, Definition 1.15]. We refer to

any such family as a Λ-family. As discussed in [31, Definition 1.15], any Λ-family induces an

infinite-volume error coordinate K0,Zd ∈ K0(Zd) in a natural way.

Remark 5.2.1. Roughly, the requirement that the (KΛ) form a Λ-family is that if Λ ⊂ Λ′,

then KΛ and KΛ′ agree on polymers X ∈ Pj(Λ). However, some care must be taken with this

when the polymer X “wraps around” the torus. This issue is handled using coordinate patches,

as was done for discussing “torus polynomials” in (4.3.7).

Theorem 5.2.2. Let d = 4. There exists a constant a∗ > 0 and continuous functions νc0, z
c
0

of (m2, g0,K0), defined for (m2, g0) ∈ [0, δ]2 (for some δ > 0 sufficiently small) and for any

K0 ∈ W0(m2, g0,Zd) with ‖K0‖W0(m2,g0,Zd) ≤ a∗g
3
0, such that the following holds for g0 > 0: if

K0,Λ ∈ K0(Λ) is a Λ-family that induces the infinite-volume coordinate K0, and if

V0 = V c
0 (m2, g0,K0) = (g0, ν

c
0(m2, g0,K0), zc0(m2, g0,K0)), (5.2.1)

then for any N ∈ N and m2 ∈ [δL−2(N−1), δ], there exists a sequence (Vj ,Kj) ∈ Dj(m2, g0,Λ)

such that

(Vj+1,Kj+1) = (Vj+1(Vj ,Kj),Kj+1(Vj ,Kj)) for all j < N (5.2.2)

and (2.6.5) is satisfied. Moreover, νc0, z
c
0 are continuously differentiable in g0 ∈ (0, δ) and

K0 ∈ BW0(m2,g0,Λ)(a∗g
3
0), and

νc0(m2, 0, 0) = zc0(m2, 0, 0) = 0,
∂νc0
∂g0

= O(1),
∂zc0
∂g0

= O(1), (5.2.3)

where the estimates above hold uniformly in m2 ∈ [0, δ].
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Proof. The proof results from small modifications to the proofs of [9, Proposition 7.1] and then

to [9, Proposition 8.1], where (in both cases) we relax the requirement that K0 = 1∅, which was

chosen in [9] due to the fact that K0 = 1∅ when γ = 0. The more general condition that K0 ∈
BW0(m2,g0,Λ)(a∗g

3
0) comes from the hypothesis of [11, Theorem 1.4] when (m2, g0) = (m̃2, g̃0).

By [11, Remark 1.5], no major changes to the proof result from this choice of K0. The following

paragraph outlines in more detail the modifications to the proof of [9, Proposition 7.1].

By [11, Theorem 1.4] and [11, Corollary 1.8], for any (m̃2, g̃0) ∈ (0, δ)2 and for any K̃0 ∈
BW0(m̃2,g̃0,Zd)(a∗g̃

3
0), there is a neighbourhood N(g̃0, K̃0) of (g̃0, K̃0) such that for all (m2, g0,K0) ∈

Ĩ(m̃2)× N(g̃0, K̃0), there is an infinite-volume renormalization group flow

(V̌j ,Kj) = x̌dj (m̃
2, g̃0, K̃0;m2, g0,K0) (5.2.4)

in transformed variables (V̌j ,Kj). The transformed variables are defined in [9, Section 6.6] and a

flow in the original variables can be recovered from the transformed flow. The global solution is

defined by x̌cj(m
2, g0,K0) = x̌dj (m

2, g0,K0;m2, g0,K0) (or x̌c ≡ 0 if g0 = 0). By [11, Remark 1.5],

the proof of regularity of x̌c can proceed as in [9]. The functions (νc0, z
c
0) are given by the (ν0, z0)

components of x̌c0 = (V̌0,K0) = (V0,K0).

Remark 5.2.3. The proof of [9, Proposition 7.1], hence of Theorem 5.2.2, makes important

use of the parameter g̃0 in order to prove regularity of the renormalization group flow in g0.

However, once the flow has been constructed, we can and do set g̃0 = g0.

We wish to apply this theorem with (g0,K0) = (g0,K
+
0 ). We have already remarked that

K+
0 ∈ K0. It also follows from the definition that the finite-volume coordinates K+

0,Λ form a

Λ-family.

Moreover, by Proposition 5.1.4, if γ0 is sufficiently small (depending on g0; we now take

g̃0 = g0) then K0 = K+
0 satisfies the bound required by Theorem 5.2.2. However, we cannot

apply the theorem immediately with this choice of K0, due to the fact that K+
0 depends on

(g0, ν0, z0). We resolve this issue in the next section.

5.3 Critical parameters

We wish to initialize the renormalization group with (ν0, z0) a solution to the system of equations

ν0 = νc0(m2, g0,K
+
0 (g0, γ0, ν0, z0)), (5.3.1)

z0 = zc0(m2, g0,K
+
0 (g0, γ0, ν0, z0)). (5.3.2)

Such a choice of (ν0, z0) will be critical for K+
0 , where K+

0 is itself evaluated at this same choice

of (ν0, z0).

When γ0 = 0, we get K+
0 = 1∅, so K+

0 no longer depends on (ν0, z0) and this system

is solved by (νc0(m2, g0, 0), zc0(m2, g0, 0)) for any (small) m2, g0 ≥ 0. Local solutions for γ0 6=
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5.3. Critical parameters

0 can then be constructed using a version of the implicit function theorem from [89] that

allows for the continuous but non-smooth behaviour of K+
0 in γ0. In order to obtain global

solutions with certain desired regularity properties (needed in the next section), we make use

of Proposition 3.1.3, which is based on the implicit function theorem from [89].

Recall that D(δ, r) was defined in (2.8.1) by

D(δ, r) = {(w, x, y) ∈ [0, δ]3 : y ≤ r(x)}. (5.3.3)

Proposition 5.3.1. There exists a continuous positive-definite function r̂ : [0, δ]→ [0,∞) and

continuous functions ν̂c0, ẑ
c
0 ∈ C0,1,+(D(δ, r̂)) such that the system (5.3.1)–(5.3.2) is solved by

(ν0, z0) = (ν̂c0, ẑ
c
0) whenever (m2, g0, γ0) ∈ D(δ, r̂). Moreover, these functions satisfy the bounds

ν̂c0 = O(g0), ẑc0 = O(g0) (5.3.4)

uniformly in (m2, γ0).

Proof. Let

F (m2, g0, γ0, ν0, z0) = (ν0, z0)− (νc0(m2, g0,K0), zc0(m2, g0,K0)), (5.3.5)

where K0 = K+
0 (g0, γ0, ν0, z0). Then for δ > 0 small and an appropriate constant c > 0

(depending on a∗), F is well-defined on

{(m2, g0, γ0, ν0, z0) : (m2, g0, γ0) ∈ D(δ, cg3
0), |ν0|, |z0| ≤ CDg0}. (5.3.6)

Indeed, for (m2, g0, γ0, ν0, z0) in this domain, Proposition 5.1.4 (with g̃0 = g0) implies that

(m2, g0,K0) is in the domain of (νc0, z
c
0). By Theorem 5.2.2 and Proposition 5.1.6, F is C1 in

(g0, ν0, z0) and also in γ0 away from γ0 = 0, continuous in m2, and is right-differentiable in γ0

at γ0 = 0.

For fixed (m̄2, ḡ0) ∈ [0, δ]2, set (ν̄0, z̄0) = (νc0(m̄2, ḡ0, 0), zc0(m̄2, ḡ0, 0)) so that

F (m̄2, ḡ0, 0, ν̄0, z̄0) = (0, 0). (5.3.7)

By (5.1.37), at (ḡ0, 0, ν̄0, z̄0),
∂K0,x

∂ν0
=
∂K0,x

∂z0
= 0. (5.3.8)

It follows that Dν0,z0F (m̄2, ḡ0, 0, ν̄0, z̄0) is the identity map on R2. The existence of δ, r̂ and ν̂c0, ẑ
c
0

follows from Proposition 3.1.3 with w = m2, x = g0, y = γ0, z = (ν0, z0), and with r1(g0) = cg3
0,

r2(g0) = CDg0.

By the fundamental theorem of calculus, for any 0 < a < γ0,

ν̂c0(m2, g0, γ0) = ν̂c0(m2, g0, a) +

∫ γ0

a

∂ν̂c0
∂γ0

(m2, g0, t) dt. (5.3.9)
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5.3. Critical parameters

Taking the limit a ↓ 0 and using (5.2.3), we obtain

|ν̂c0(m2, g0, γ0)| ≤ O(g0) + γ0 sup
t∈(0,γ0]

∣∣∣∣∂ν̂c0∂γ0
(m2, g0, t)

∣∣∣∣ . (5.3.10)

The supremum above is bounded by a constant and so the first estimate of (5.3.4) follows from

the fact that |γ0| ≤ r̂(g0) (since r̂(g0) can be taken as small as desired).

Proof of Theorem 2.8.1. By Proposition 5.1.4, and by taking r̂ smaller if necessary, K0 = K+
0

satisfies the estimate required by Theorem 5.2.2 whenever (m2, g0, γ0) ∈ D(δ, r̂). The existence

of the sequence (2.8.2) then follows from Theorem 5.2.2 and Proposition 5.3.1.
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Chapter 6

Conclusion

We end with a discussion of some open problems that may be accessible by extensions to the

renormalization group method discussed in this thesis. We will try to point out some of the

main obstacles that must be overcome.

6.1 Other models

In order to apply the renormalization group to the models we have considered, we had to

express them as perturbations of a Gaussian measure whose covariance admits an appropriate

finite-range decomposition. Here we discuss other models that can be written in this way.

6.1.1 Long-range models

In [117], Wilson and Fisher suggested studying models in dc−ε dimensions with ε > 0 small and

dc = 4 the upper-critical dimension. Building on this, approximate values for 3-dimensional

critical exponents were computed in [45,64,85]. One approach to the rigorous implementation of

this idea involves studying models in dimension d (an integer) whose upper-critical dimension

is dc + ε. This is not as problematic as considering models in fractional dimensions, as the

upper-critical dimension dc need not be the actual dimension of some ambient space.

Given a massless covariance C ′, the upper-critical dimension is simply a number dc such

that some class of models scales like a Gaussian model with covariance C ′ if and only if d > dc.

For instance, suppose we choose C ′ to decay like

C ′0x � |x|−(d−α) (6.1.1)

with α = 1
2(d+ ε). Such a choice is given by

C ′ = (−∆)−α/2 (6.1.2)

for α ∈ (0, 2). Then recalling Remark 1.6.3, we might expect that dc = 2α. In particular, if

α = 1
2(d+ ε) with d ≤ 3, then d = dc − ε.

This approach has been used to implement the renormalization group below the upper-

critical dimensions in [1, 19, 27, 94]. Recently, Slade [107] has extended the approach discussed

in this thesis to compute anomalous (non-Gaussian) critical exponents for long-range versions

of the weakly self-avoiding walk and the |ϕ|4 model. In particular, he showed that, as ν ↓ νc
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6.1. Other models

for these models, the susceptibility χ satisfies

χ � (ν − νc)
−
(

1+
n+2
n+8

ε
α+O(ε2)

)
. (6.1.3)

By extensions of [107] to use observable fields, we think it should be possible to identify the

scaling behaviour of the two-point function and possibly other correlation functions for these

long-range models. In particular, this would make it possible to confirm the intriguing prediction

of [51], which states that

η = 2− α (6.1.4)

if d = dc − ε for small ε. In other words, unlike the susceptibility, deviations from mean-field

behaviour of the two-point function cannot be detected to any order in ε.

Remark 6.1.1. Models at and above the upper-critical dimension exhibit asymptotic freedom.

In our context, this means that ‖Kj‖Wj → 0, νj , zj → 0, and gj → 0 in the massless regime

m2 = 0. Below dc, we do not have asymptotic freedom, as reflected by the lack of exact

asymptotics in (6.1.3). In some ways, this is advantageous (see [107]), but in others it creates

additional difficulties that must be overcome.

6.1.2 The O(n) model and self-avoiding walk

Recall that the Hamiltonian of the O(n) model was defined in (1.4.15). On Λ, it takes the form

HJ(σ) = −1

2
σ · Jσ, σ ∈ Sn−1. (6.1.5)

This was derived from the |ϕ|4 model by taking a suitable g → ∞ limit. The restriction to

small coupling g is deeply embedded into the method we use, but the Kac-Siegert transformation

(see [17]) offers an alternative approach to the study of this model.

Namely, let Ω = (Sn−1)Λ and let dσ denote the product measure on Ω, where Sn−1 is

equipped with the uniform measure. The partition function of the O(n) model is given by

ZJ =

∫
Ω
e−HJ (σ) dσ. (6.1.6)

When J is a positive-definite symmetric matrix, the Gaussian measure dµJ(ϕ) with covariance

J is well-defined and satisfies the elementary identity

e−HJ (σ) = e
1
2
σ·Jσ =

∫
(Rn)Λ

eσ·ϕ dµJ(ϕ). (6.1.7)

Interchanging the order of integration, we can write

ZJ =

∫
(Rn)Λ

e−
∑
x∈Λ L(ϕx) dµJ(ϕ), (6.1.8)
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6.2. Other observable quantities

where

L(t) = − log

∫
Sn−1

eσ0·t dσ0, t ∈ Rn (6.1.9)

is the negative logarithm of the Laplace transform of the sphere. Since L is a rotation- and

reflection-invariant analytic function and L(0) = 0, it has the form

L(t) = ν|t|2 + g|t|4 +
∞∑
k=3

c2k|t|2k. (6.1.10)

Letting J = (−∆ + γ2)−1, we have

dµJ(ϕ) ∝ e−
1
2

(γ2|ϕ|2+ϕ·(−∆ϕ)). (6.1.11)

Thus, we can express the partition function as a perturbed |ϕ|4 model.

By a procedure as in Section 2.2, the analysis of this model can be reformulated in terms of

the evolution of an effective interaction Zj with initial condition Z0 = (I0 ◦K0)(Λ). Once again,

the initial error coordinate K0 will be coupled to I0, but we expect that the critical parameters

νc0, z
c
0 can be identified by an implicit function theorem argument as in Section 5.3.

However, estimates on K0 (which are straightforward to obtain by a more careful computa-

tion of (6.1.10)) indicate that K0 is not of order g3
0, which is required to invoke Theorem 5.2.2.

In fact, K0 = O(g
3/2
0 ).

One approach to possibly overcoming this issue is the following: First, note that the irrel-

evant error coordinate should shrink by a factor of O(L−1) after each renormalization group

step. Thus, after the first jg = blogL g
−3/2c steps, we should be left with an error coordinate

Kj of size O(g3). A careful analysis of the renormalization group flow is required during these

first jg steps. However, the flow of coupling constants in this regime need only be computed to

first order; indeed, any second-order terms would in any case be of higher order than the error

term, which is of order g3/2.

Remark 6.1.2. Similarly, it is possible to re-cast the strictly self-avoiding walk as a pertur-

bation of weakly self-avoiding walk using a supersymmetric integral representation obtained

in [26]. The covariance of the form (−∆ + γ2)−1 in this case corresponds to a model of spread-

out self-avoiding walk with exponentially decaying jump probabilities. Once again, the initial

error coordinate is not of order O(g3
0).

6.2 Other observable quantities

Here we discuss some open problems concerning the models studied in this thesis.

94



6.2. Other observable quantities

6.2.1 The correlation length

Our results concerning the finite-order correlation lengths ξp are insufficient for recovering the

predicted behaviour of the true correlation length ξ. The estimate (3.2.2) shows that the errors

in the approximation (3.2.1) of the two-point function decay at any desired polynomial rate, but

this is not sufficient for studying ξ, which would need exponentially decaying errors. The current

estimates follow from the covariance bounds (2.3.4) on the decomposition of [5]. Although it

may not be possible to improve the bounds for this particular decomposition, this should be

possible for the decomposition of [22] (see [22, p. 445]).

However, even if this were possible, exponentially decaying errors would require that the

weights `j decay like e−cL
j

above the mass scale. This, in turns, would cause the weights `σ,j

defined by (2.4.21) to grow so quickly that the third bound in (4.3.1) would fail in a major way.

Thus, it seems new ideas would be needed to study the correlation length (note, however, that

the correlation length for the 1-component |ϕ|4 model was successfully studied by a block-spin

renormalization group method in [69]).

6.2.2 Inversion of the Laplace transform

One of the main motivations for studying the susceptibility and finite-order correlation length

for walks is the possibility of recovering information about the growth of the partition function

cT and the mean-squared distance 〈|X(T )|2〉 as T →∞. In particular, recalling the discussion

in Section 1.1, one may try to derive logarithmic corrections to the predicted scaling relations

(1.6.22)–(1.6.23) as a consequence of Theorem 1.7.1(ii)–(iii).

This approach was successfully used in [24], where the mean-squared displacement of a hier-

archical model of weakly self-avoiding walk is recovered by inversion of the Laplace transform.

This requires control over the two-point function in a sector of the complex plane larger than

what has been achieved here on the Euclidean lattice.

6.2.3 The broken symmetry phase

The authors of [61] studied weakly self-avoiding walk on a four-dimensional hierarchical lattice

in the phase ν < νc. They employed a renormalization group method similar to the one

used here in order to show that the walks exhibit a broken supersymmetry in this phase. In

particular, they showed that the asymptotic density

ρ(g, ν) = lim
x→∞

lim
N→∞

1

G0,N (g, 0, ν)

∫ ∞
0

cN,T (0)LxT dT (6.2.1)

of such a walk is non-zero for ν = νc − ε with ε > 0 small. More precisely, they obtained

logarithmic corrections to mean-field behaviour given by ρ(g, νc− ε) ∼ Cε(log ε−1)1/2. It would

be of great interest to see whether an analogue of this fact could be proved on the Euclidean

lattice by an extension of the method described in this thesis.
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[84] G. Lawler, O. Schramm, and W. Werner. On the scaling limit of planar self-avoiding

walk. Proc. Symposia Pure Math., 72:339–364, (2004).

[85] J. Le Guillou and J. Zinn-Justin. Accurate critical exponents from the ε-expansion. J.

Physique Lett., 46:L137–L141, (1985).

[86] J. L. Lebowitz and E. Presutti. Statistical mechanics of systems of unbounded spings.

Comm. Math. Phys., 50(3):195–218, (1976).
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[91] A. McKane. Reformulation of n → 0 models using anticommuting scalar fields. Phys.

Lett. A, 76:22–24, (1980).

[92] N. D. Mermin and H. Wagner. Absence of ferromagnetism or antiferromagnetism in one-

or two-dimensional isotropic heisenberg models. Phys. Rev. Lett., 17:1133–1136, Nov

(1966).

101



Bibliography

[93] P. Mitter and B. Scoppola. The global renormalization group trajectory in a critical

supersymmetric field theory on the lattice Z3. J. Stat. Phys., 133:921–1011, (2008).

[94] P. K. Mitter and B. Scoppola. Renormalization group approach to interacting polymerised

manifolds. Comm. Math. Phys., 209(1):207–261, (2000).

[95] E. Nelson. Construction of quantum fields from Markoff fields. J. Functional Analysis,

12:97–112, (1973).

[96] L. Onsager. Crystal statistics. I. A two-dimensional model with an order-disorder transi-

tions. Phys. Rev., 65:117–149, (1944).

[97] K. Osterwalder and R. Schrader. Axioms for Euclidean Green’s functions. Comm. Math.

Phys., 31:83–112, (1973).

[98] K. Osterwalder and R. Schrader. Axioms for Euclidean Green’s functions. II. Comm.

Math. Phys., 42:281–305, (1975). With an appendix by Stephen Summers.

[99] G. Parisi and N. Sourlas. Self-avoiding walk and supersymmetry. J. Phys. Lett., 41:L403–

L406, (1980).

[100] R. Peierls. On Ising’s model of ferromagnetism. Proc. Cambridge Phil. Soc., 32:477–481,

(1936).
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Appendix A

Finite-volume approximation

In this appendix, we prove Proposition 1.8.4. Since we are only dealing with walks, we can drop

the parameter n = 0 from our notation. We will use n to denote a different quantity below.

A.1 A monotonicity lemma

Let Pn be the projection of Zd onto the discrete torus of side n, which we denote Zdn. Then Pn

has a natural action on the path space (Zd)[0,∞). We let Xn = Pn(X) be the projection of X

and note that Xn is a simple random walk on Zdn.

We call h = (hx)x∈Zd a field of path functionals if hx : (Zd)[0,∞) → R is a function on

continuous-time paths for each x ∈ Zd; a simple example is given by the local time functional.

We assume that the random field h(X) = (hx(X))x∈Zd has finite support almost surely, i.e.,

with probability 1, hx(X) = 0 for all but finitely many x. Denote by h(Xn) the corresponding

random field for Xn, i.e., for x ∈ Zdn,

hx(Xn) =
∑
y∈Zd

hx+ny(X). (A.1.1)

Given a positive integer k, we define Qk ⊂ Zd by Qk = {y ∈ Zd : 0 ≤ yi < k, i = 1, . . . , d}.
Then, for integers n, k ≥ 1,∑

y∈Qk

hx+ny(X
kn) =

∑
y∈Qk

∑
z∈Zd

hx+ny+knz(X) =
∑
y∈Zd

hx+ny(X) = hx(Xn), (A.1.2)

and it follows by summation over x ∈ Zdn that∑
x∈Zdkn

hx(Xkn) =
∑
x∈Zdn

hx(Xn). (A.1.3)

Lemma A.1.1. Let n, k ≥ 1 and let f and g be nonnegative fields of path functionals with

finite support almost surely. Then∑
x∈Zdkn

fx(Xkn)gx(Xkn) ≤
∑
x∈Zdn

fx(Xn)gx(Xn). (A.1.4)
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A.2. Convergence of the finite-volume approximation

Proof. By (A.1.3) and (A.1.2),∑
x∈Zdkn

fx(Xkn)gx(Xkn) =
∑
x∈Zdn

∑
y∈Qk

fx+ny(X
kn)gx+ny(X

kn). (A.1.5)

By nonnegativity and two more applications of (A.1.2),

∑
x∈Zdn

∑
y∈Qk

fx+ny(X
kn)gx+ny(X

kn) ≤
∑
x∈Zdn

∑
y∈Qk

fx+ny(X
kn)

∑
y∈Qk

gx+ny(X
kn)


=
∑
x∈Zdn

fx(Xn)gx(Xn). (A.1.6)

A.2 Convergence of the finite-volume approximation

For L ≥ 2 and N ≥ 1 note that ΛN is the torus Zdn with n = LN . Thus, XLN is the simple

random walk on ΛN . For FT = FT (X) any one of the functions LxT , IT , CT of X defined in

(1.6.5)–(1.6.7), we write FN,T = FT (XLN ). For instance, with n = LN ,

LxN,T =

∫ T

0
1Xn

t = x dt, IN,T =
∑
x∈ΛN

(LxN,T )2. (A.2.1)

We apply Lemma A.1.1 with k = L and n = LN for three choices of f , g:

IN+1,T ≤ IN,T (fx = gx = LxT ), (A.2.2)

CN+1,T ≤ CN,T (fx =
∑

e∈U L
x+e
T , gx = LxT ), (A.2.3)∑

x∈ΛN+1

|∇eLxN+1,T |2 ≤
∑
x∈ΛN

|∇eLxN,T |2 (fx = gx = |∇eLxT |). (A.2.4)

Summation of (A.2.4) over unit vectors e ∈ Zd also gives∑
x∈ΛN+1

|∇LxN+1,T |2 ≤
∑
x∈ΛN

|∇LxN,T |2. (A.2.5)

The following is a re-statement of Proposition 1.8.4.

Proposition A.2.1. Let d > 0, g > 0 and γ < g. For all ν ∈ R,

lim
N→∞

Gx(g, γ, ν) = Gx(g, γ, ν) (A.2.6)

and

lim
N→∞

χN (g, γ, ν) = χ(g, γ, ν). (A.2.7)
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A.2. Convergence of the finite-volume approximation

In fact, χN and χ are analytic in Reν > νc and χN → χ uniformly on compact subsets of this

domain.

Proof. It suffices to prove (A.2.6) and (A.2.7). Analyticity is a property of the Laplace trans-

form and uniform convergence on compact sets follows from Montel’s theorem. For pointwise

convergence, we will only prove the case γ ≥ 0. The proof for γ < 0 can be found in [13].

Fix x ∈ Zd, and consider N sufficiently large that x can be identified with points in ΛN .

By (1.6.20), (A.2.2) and (A.2.5)

cN,T (x) ≤ cN+1,T (x). (A.2.8)

Thus, (A.2.6) follows by monotone convergence, once we show that

lim
N→∞

cN,T (x) = cT (x). (A.2.9)

To show this, recall that we are identifying the vertices of ΛN with nested subsets of Zd.
We can thus define ∂ΛN to be the inner vertex boundary of ΛN . We set

c∗N,T (x) = EΛN
0

(
e−Ug,γ,T1X(T )=b1{X([0,T ])∩∂ΛN 6=∅}

)
(A.2.10)

c∗T (x) = E0

(
e−Ug,γ,T1X(T )=b1{X([0,T ])∩∂ΛN 6=∅}

)
. (A.2.11)

Since walks which do not reach ∂ΛN make equal contributions to both cT (x) and cN,T (x), we

have

cT (x)− c∗T (x) = cN,T (x)− c∗N,T (x). (A.2.12)

Thus,

|cT (x)− cN,T (x)| = |c∗T (x)− c∗N,T (x)| ≤ c∗T (x) + c∗N,T (x). (A.2.13)

Let PΛN
0 and P0 be the measures associated with EΛN

0 and E0, respectively. With Yt a rate-2d

Poisson process with measure P,

c∗T (x) + c∗N,T (x) ≤ P0(X([0, T ]) ∩ ∂ΛN 6= ∅) + PΛN
0 (X([0, T ]) ∩ ∂ΛN 6= ∅)

≤ 2P(YT ≥ diam(ΛN ))→ 0 (A.2.14)

as N →∞. This completes the proof of (A.2.6).

Finally, by monotone convergence of GN to G, for ν ∈ R,

lim
N→∞

χN (g, γ, ν) =
∑
x∈Zd

lim
N→∞

Gx,N (g, γ, ν)1x∈ΛN = χ(g, γ, ν), (A.2.15)

which proves (A.2.7).
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Appendix B

Moments of the free Green function

In this appendix we prove Proposition 3.3.1.

B.1 Main result

The following is a re-statement of Proposition 3.3.1. Since we are only dealing with the free

Green function, we set

Gx(m2) = Gx(0, 0,m2). (B.1.1)

Proposition B.1.1. Let cp be the constant defined by (1.7.4). For all dimensions d > 2 and

all p > 0, as m2 ↓ 0, ∑
x∈Zd

|x|pGx(0,m2) = cppm
−(p+2)(1 +O(m)). (B.1.2)

In particular, ξp(0, ε) = cpε
−1/2(1 +O(ε1/2)) as ε ↓ 0.

The last sentence in the the proposition follows immediately from (B.1.2) and the fact that

χ(0,m2) = m−2 (recall (1.5.12)), so it suffices to prove (B.1.2).

The case p = 2 of (B.1.2) can be obtained easily from the identity∑
x∈Zd

|x|2Gx(m2) = −∆RdĜ(0), (B.1.3)

where Ĝ is the Fourier transform of G. Higher even moments could in principle be computed

by further differentiating Ĝ. We adopt a different approach for general p > 0, based on the

finite range decomposition of (−∆Zd + m2)−1 given in [5, 22]. This finite range decomposition

also provides the basis for the renormalization group method.

B.2 Riemann sum approximation

We will make use of the following elementary result.

Lemma B.2.1. Let f : Rd → R be a Lipschitz function with support in a box of side t centred

at the origin. Then there is a constant C such that for any ε > 0,∣∣∣∣∣∣
∫
Rd
f(x) dx− εd

∑
x∈Zd

f(εx)

∣∣∣∣∣∣ ≤ C(tε)d. (B.2.1)
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B.3. Covariance decomposition

Proof. For any x ∈ Zd, let Sx(ε) denote the square of side ε centred at εx ∈ Rd. Then∫
Rd
f(x) dx =

∑
x∈Zd

∫
Sx(ε)

f(y) dy. (B.2.2)

By the mean value theorem, there exists yx = yx(ε) ∈ Sx(ε) such that∫
Sx(ε)

f(y) dy = εdf(yx). (B.2.3)

Thus, ∣∣∣∣∣∣
∫
Rd
f(x) dx− εd

∑
x∈Zd

f(εx)

∣∣∣∣∣∣ ≤ εd
∑
x∈Zd

|f(yx)− f(εx)|. (B.2.4)

By the Lipschitz condition on f , each summand on the right-hand side is O(ε). By the support

assumption on f , there are at most O(td/ε) such summands and the result follows.

B.3 Covariance decomposition

The finite-range decomposition of the finite-volume covariance discussed in Section 2.3 is derived

from a decomposition of the infinite-volume covariance (whose construction is the main result

of [5]) of the form

Gx(m2) =

∞∑
j=1

Cj;x(m2). (B.3.1)

Recall that the finite-range property refers to the fact that Cj;x(m2) = 0 if |x| ≥ 1
2L

j , where

L > 1 is fixed arbitrarily. We review some properties of this decomposition, from [5,10], before

proving Proposition B.1.1. The positive-definiteness of the finite range decomposition is not

needed here, and L need not be large.

The terms Cj;x(m2) are defined in [10, Section 6.1] by

Cj;x(m2) =



∫ 1
2
L

0
φ∗t (x;m2)

dt

t
(j = 1)∫ 1

2
Lj

1
2
Lj−1

φ∗t (x;m2)
dt

t
(j ≥ 2)

(B.3.2)

(in [10], the notation Cj;0,x and φ∗t (0, x;m2) was used instead). Here, φ∗t is a function of x ∈ Rd

and m2 > 0 given in [5, Example 1.1]. It satisfies the finite range property that φ∗t (x;m2) = 0

for |x| > t. It was also shown in [5] that there exists a function φt satisfying the same finite

range property but giving a decomposition of the continuum Green function:

(−∆Rd +m2)−1
0x =

∫ ∞
0

φt(x;m2)
dt

t
. (B.3.3)
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Moreover, by [5, (1.37)], for |x| ≤ t,

φ∗t (x;m2) = φt(x;m2) +O(t−(d−1)(1 +m2t2)−k). (B.3.4)

This allows us to approximate the discrete Green function by the continuum one, for which the

moments are easily computed. We have set the constant c present in [5] equal to 1, which we

can do by rescaling φ∗t .

As t approaches 0, the error bound in (B.3.4) degenerates. However, to estimate (B.1.1), it

suffices to restrict to x 6= 0. Then, since x ∈ Zd, the finite range property permits replacement

of the lower bound in the range of integration for j = 1 in (B.3.2) by 1
2 , and the contribution

due to j = 1 can be estimated in the same way as the terms j ≥ 2.

Also, by [5, (1.34)], for any k there is a constant Ck such that

|Dxφt(x;m2)| ≤ Ckt−(d−1)(1 +m2t2)−k. (B.3.5)

We fix a choice of k which obeys k > 1
2(p + 1) and use only this choice. By [5, (1.38)], there

exists a function φ̄ such that

φt(x;m2) = t−(d−2)φ̄
(x
t

;m2t2
)
. (B.3.6)

B.4 Proof of main result

Proof of Proposition 3.3.1. We begin by writing

∑
x∈Zd

|x|pGx(m2) =
∑
x∈Zd

|x|p
∞∑
j=1

Cj;x(m2) = M(m2) + E(m2), (B.4.1)

where the main and error terms are respectively

M(m2) =
∑
x∈Zd

|x|p
∞∑
j=1

∫ 1
2
Lj

1
2
Lj−1

φt(x;m2)
dt

t
, (B.4.2)

E(m2) =
∑
x∈Zd

|x|p
∞∑
j=1

(
Cj;x −

∫ 1
2
Lj

1
2
Lj−1

φt(x;m2)
dt

t

)
. (B.4.3)

We first compute the main term M . By (B.3.6),

φt(x;m2) = md−2φmt(mx; 1). (B.4.4)
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B.4. Proof of main result

Therefore, by Riemann sum approximation,

∑
x∈Zd
|x|p

∫ 1
2
Lj

1
2
Lj−1

φt(x;m2)
dt

t
(B.4.5)

= m−(p+2)md
∑
x∈Zd

|mx|p
∫ 1

2
Lj

1
2
Lj−1

φmt(mx; 1)
dt

t
(B.4.6)

= m−(p+2)

∫
Rd
|x|p

∫ 1
2
Lj

1
2
Lj−1

φmt(x; 1)
dt

t
+O(L(p+1)jL−2k(j−jm)+),

where the error estimate follows from (B.3.5) and (2.4.18). Summation over j gives

M(m2) = cppm
−(p+2) +O(m−(p+1)), (B.4.7)

where we used (B.3.3) for the first term, and we used 2k > p + 1 and Lemma 3.3.2 for the

second term.

For the error term, it follows from (B.3.2), (B.3.4), and the observation that the lower bound

in the range of integration for the j = 1 term in (B.3.2) can be changed to 1
2 that

Cj;x =

∫ 1
2
Lj

1
2
Lj−1

φt(x;m2)
dt

t
+O(L−j(d−1)(1 +m2L2j)−k)1|x|≤Lj . (B.4.8)

Therefore, again using (2.4.18), we have

E(m2) =
∞∑
j=1

∑
|x|≤Lj

|x|pO(L−j(d−1)L−2k(j−jm)+) (B.4.9)

=

∞∑
j=1

O(L(p+1)jL−2k(j−jm)+). (B.4.10)

With 2k > p+ 1 and Lemma 3.3.2, this gives E(m2) = O(m−(p+1)), and the proof is complete.
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Appendix C

An implicit function theorem

In this appendix, we prove Proposition 3.1.3.

C.1 Implicit function theorem with a parameter

We make use of [89, Chapter 4, Theorem 9.3], which is a version of the implicit function

theorem that allows for a continuous, rather than differentiable, parameter. While the precise

statement of [89, Chapter 4, Theorem 9.3] takes this parameter from an open subset of a Banach

space, by [89, Chapter 4, Theorem 9.2], the parameter can in fact be taken from an arbitrary

metric space. With this minor change, we restate [89, Chapter 4, Theorem 9.3] as the following

proposition.

Proposition C.1.1. Let A be a metric space, let W,X be Banach spaces, and let B ⊂ W be

an open subset. Let F : A × B → X be continuous, and suppose that F is C1 in its second

argument. Let (α, β) ∈ A× B be a point such that F (α, β) = 0 and D2F (α, β)−1 exists. Then

there are open balls M 3 α and N 3 β and a unique continuous mapping f : M → N such that

F (ξ, f(ξ)) = 0 for all ξ ∈M .

We also use the following lemma, which is a small modification of [89, Chapter 3, Theo-

rem 11.1]. In particular, it considers functions that may only be left- or right-differentiable.

Lemma C.1.2. Let F be a mapping as in the previous proposition with A ⊂ Rm1 × Rm2. In

addition, suppose that F is left-differentiable (respectively, right-differentiable) in α2 at (α, β),

with α = (α1, α2). If f is a continuous mapping defined in a neighbourhood of α, such that

F (ξ, f(ξ)) = 0, then f is left-differentiable (respectively, right-differentiable) in α2 at α.

C.2 Main result

The above results lead to the following proposition, which is a re-statement of Proposition 3.1.3.

Recall that D(δ, r) is defined in (2.8.1) by

D(δ, r) = {(w, x, y) ∈ [0, δ]3 : y ≤ r(x)}. (C.2.1)
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C.2. Main result

Proposition C.2.1. Let δ > 0, and let r1, r2 be continuous positive-definite functions on [0, δ].

Set

D(δ, r1, r2) = {(w, x, y, z) ∈ D(δ, r1)× Rn : |z| ≤ r2(x)}, (C.2.2)

and let F be a continuous function on D(δ, r1, r2) that is C1 in (x, z). Suppose that for all

(w̄, x̄) ∈ [0, δ]2 there exists z̄ such that both F (w̄, x̄, 0, z̄) = 0 and DY F (w̄, x̄, 0, z̄) is invert-

ible. Then there is a continuous positive-definite function r on [0, δ] and a continuous map

f : D(δ, r) → Rn that is C1 in x and such that F (w, x, y, f(w, x, y)) = 0 for all (w, x, y) ∈
D(δ, r). Moreover, if F is left-differentiable (respectively, right-differentiable) in y at some

point (w, x, y, z), then f is left-differentiable (respectively, right-differentiable) at (w, x, y).

Proof. Take any (w̄, x̄) ∈ [0, δ] × (0, δ] and let R(w̄, x̄) be the maximal radius s such that for

all (w, x, y) ∈ B(w̄, x̄, 0; s) there exists z such that both F (w, x, y, z) = 0 and DZF (w, x, y, z)

is invertible. By continuity of (DZF (w, x, y, z))−1 near (w̄, x̄, 0, z̄), and by Proposition C.1.1

(applied to the restriction of F to A × B, for some A 3 (w̄, x̄, 0) and an open set B 3 z̄), we

have R(w̄, x̄) > 0 and there is a continuous function

fw̄,x̄ : B(w̄, x̄, 0;R(w̄, x̄))→ Rn (C.2.3)

such that F (w, x, y, fw̄,x̄(w, x, y)) = 0 for all (w, x, y) ∈ B(w̄, x̄, 0;R(w̄, x̄)). Moreover, the

unique solution to F (w, x, y, z) = 0 is given by z = fw̄,x̄(w, x, y) for all such (w, x, y). By

an application of Lemma C.1.2 (with α1 = (w, x), α2 = y), we see that fw̄,x̄ is left- or

right-differentiable in y wherever F is. By another application of Lemma C.1.2 (with α1 =

(w, y), α2 = x), we see that fw̄,x̄ is C1 in x.

Set R(w̄, 0) = 0 for all w̄ ∈ [0, δ], and let

Df =
⋃

(w̄,x̄)∈[0,δ]2

B(w̄, x̄, 0;R(w̄, x̄)). (C.2.4)

We define f(w, 0, 0) = 0 and, for x > 0,

f(w, x, y) = fw̄,x̄(w, x, y) for (w, x, y) ∈ B(w̄, x̄, 0;R(w̄, x̄)). (C.2.5)

By uniqueness, this function is well-defined. Continuity of f at (w, 0, 0) follows from the fact

that |f(w, x, y)| ≤ r2(x). The remaining desired regularity properties of f follow from those of

the fw̄,x̄. It remains to show that D(δ, r) ⊂ Df for some continuous positive-definite function r

on [0, δ].

First, let us show that R is continuous on [0, δ]2. Let x̄ > 0 and fix 0 < ε < R(w̄, x̄). Then

for any (w̄′, x̄′) ∈ [0, δ]×(0, δ] such that |(w̄, x̄)−(w̄′, x̄′)| < ε, we have B(w̄′, x̄′, 0;R(w̄, x̄)−ε) ⊂
B(w̄, x̄, 0;R(w̄, x̄)) by maximality of R. It follows that R(w̄′, x̄′) ≥ R(w̄, x̄) − ε. By a similar

argument, R(w̄′, x̄′) ≤ R(w̄, x̄) + ε, so |R(w̄, x̄) − R(w̄′, x̄′)| ≤ ε. Thus, R is continuous on

[0, δ]× (0, δ]. Continuity at x̄ = 0 follows from the fact that R(w̄, x̄) ≤ r1(x̄) uniformly in w̄.
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C.2. Main result

For x̄ ∈ [0, δ], let

r(x̄) = inf(R(w̄, x̄) : w̄ ∈ [0, δ]). (C.2.6)

Since R(·, x̄) is continuous, r(x̄) > 0 for x̄ > 0. Moreover, 0 ≤ r(0) ≤ r1(0) = 0, so r is

positive-definite. Continuity of r follows from joint continuity of R. For any (w, x, y) ∈ D(δ, r)

(with this choice of r),

|(w, x, y)− (w, x, 0)| = |y| < r(x) ≤ R(w, x), (C.2.7)

so (w, x, y) ∈ B(w, x, 0;R(w, x)). We conclude that D(δ, r) ⊂ Df .
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