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Abstract 

Non-Constant Luminance (NCL) and Constant Luminance (CL) are the two common 

methods for converting RGB values to luma and chroma for compression efficiency. CL 

coefficients have been derived from the luminous efficacy of the used gamut color primaries in the 

light linear domain. NCL applies the same coefficients but on non-linear inputs, which are 

perceptually encoded values using proper transfer function, thus leading to reduced compression 

efficiency and color shifts. However, since legacy cameras capture perceptually encoded values of 

light, it is common practice to use NCL in the existing video distribution pipelines. Although color 

distortion was not a serious problem with legacy Standard Dynamic Range (SDR) systems, this is 

not the case with High Dynamic Range (HDR) applications where color shifts become much more 

visible and prohibitive to delivering high quality HDR.  

 

In this thesis, we propose methods that address the inefficiencies of the conventional NCL 

method by optimizing NCL luma values to be as close as possible to those of CL, thus improving 

compression performance and color accuracy, while maintaining the current pipeline infrastructure. 

First, we develop a global optimization method for deriving new optimum coefficients that 

approximate NCL values to those of the CL approach. Then, we improve upon this approach by 

conducting content based optimization. This adaptive optimization method takes content pixel 

density into consideration and optimizes only based on these color distributions. Finally, we 

propose a weighted global optimization method, which separates chromaticity into three categories 

(Red, Green, and Blue), and assigns weights based on their contributions to luminance. Evaluations 

show that the proposed method improves color quality and compression efficiency over NCL. 
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Lay Summary 

 Colors are represented with RGB values, where each color has three channels, Red, Green, 

and Blue. For efficient transmission, RGB inputs are converted to one luminance and two color 

values to take advantage of the fact that human eyes are more sensitive to luminance than color. 

During compression, the color portion is filtered without affecting the overall visual quality. 

However, the original conversion from RGB to luma and chroma signals introduces color shifts 

and visual artifacts. Although these may not be problematic for existing Standard Dynamic Range 

systems, they are prohibitive in the case of the emerging High Dynamic Range applications. In 

this thesis, we developed methods that improve color accuracy and compression efficiency, paving 

the path for delivering high quality High Dynamic Range services, while using the existing 

pipeline infrastructure.  
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1 Introduction 

As a new emerging technology with exciting potential, High Dynamic Range (HDR) 

technology has attracted the attention of consumers, camera and display manufacturers, and 

broadcasters [1]. Although HDR was first introduced in some conceptual form more than two 

decades ago [2], it is only just recently that started to mature as technology. The increasing 

availability of some entry level HDR displays in the consumer market, along with the advances in 

camera technologies [3], will soon empower broadcasting companies to offer HDR video services. 

 

HDR technology can capture and represent the full range of perceptible shadow and 

highlight information, offering real life visual quality, close to that perceived by the human eye 

[1]. HDR values correspond to floating point physical light intensities measured in candela per 

square meter (cd/m2) or nits. When HDR content is shown on a HDR display, viewers can 

potentially view the entire range of perceptible color and brightness. Standard Dynamic Range 

(SDR) technology, on the other hand, represents integer code values, which correspond to relative 

light intensities [4]. Furthermore, with limited dynamic range and color gamut, SDR can capture 

and reproduce only part of the luminance range and visible color information. More specifically, 

HDR can cover luminance range from 0.005 to 10,000 cd/m2, while the SDR technology can only 

handle a luminance range from 0.1 to 100 cd/m2. Regarding color, HDR covers the color gamut 

range defined by BT.2020 recommendation [5] while SDR covers the limited color gamut defined 

by the BT.709 recommendation [6] (please see Fig. 1.1). These limitations in the case of SDR are 

imposed by both the capturing and displaying technologies and the way pixels are represented 

throughout the traditional distribution pipeline. 

 



2 
 

In general, SDR and HDR video content is captured in Red, Green, and Blue (RGB) format, 

where each pixel is represented with three color channels (R, G, and B). When transmitting 

SDR/HDR sequences, pixels are traditionally decomposed into a luma (Y’) -chroma (color) signal 

format for improved compression efficiency. Such a representation separates light from color 

information thus improving decorrelation between the light and chroma channels. Since the human 

eyes are more sensitive to luminance change than chrominance change, chroma signals can be 

filtered with minimum impact on visual quality [7]. This filtering is known as chroma down-

sampling, which reduces the amount of information to encode and thus the bitrate for color signals 

with little to no degradation on perceptual quality [8]. Compression efficiency is therefore 

improved. 

  

 To convert Red, Green, and Blue (RGB) values into a luma and two chroma format, such 

 
 

Figure 1.1. Chromaticity diagram with BT.709 and BT.2020 color gamut 
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as Y’CBCR, two methods are usually considered: Non-Constant Luminance (NCL) and Constant 

Luminance (CL). In the case of CL, luminance is calculated as a linear combination of the R, G, 

and B colors, with the corresponding weighted coefficients derived using a color matching 

experiment with linearly generated RGB values [9]. The NCL method applies the same weighting 

coefficients on non-linear RGB values which are perceptually encoded using either gamma or a 

perceptual quantizer (denoted R’G’B’ in this paper) [10] [11]. Since these weighting coefficients 

were derived for the CL case with light linear RGB inputs, using the same coefficients in the NCL 

method results in reduced compression efficiency and color distortions, as detailed in the ITU-R 

Recommendation BT.2246 [8]. However, given the fact that legacy cameras generate non-linear 

perceptually encoded content, it is common practice to follow the NCL implementation in the 

existing SDR content delivery pipelines despite its compression and visual quality drawbacks [8].  

 

Color distortion was not a serious problem with legacy SDR systems, because SDR has 

limited dynamic range and smaller color gamut than what the human eyes can perceive in the real 

world. With the introduction of HDR and Wide Color Gamut (WCG), however, these color shifts 

become much more visible and prohibitive to delivering high quality HDR. Despite the importance 

of color accuracy in HDR and the compression inefficiency of NCL, broadcasters and display 

manufacturers continue to support the NCL approach for the time being. This is due to the 

simplicity of the NCL implementation and the fact the CL implementation radically diverts from 

the existing display infrastructure [12].  

 

1.1 Motivation 

Since compression efficiency and visual quality are of paramount importance in the case 
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of HDR, finding a way of improving the performance of NCL to the levels offered by CL has 

become a hot topic of research. In this thesis, we focus on HDR distribution and address the 

inefficiencies of the conventional NCL method by optimizing NCL luma values to be as close as 

possible to those of CL, thus improving compression performance and color accuracy, while 

maintaining the current pipeline infrastructure.  

 

1.2 Thesis Organization 

The rest of the thesis is structured as follows. Chapter 2 provides background information 

and comparison between NCL and CL. Chapter 3 explains in detail our first proposed global 

optimization method for NCL. In Chapter 4, we improve upon our first approach by developing a 

new, local, content adaptive optimization method. Chapter 5 presents our weighted global 

optimization method, which turns out to be the most effective method for approximating NCL 

values to those of CL. Finally, conclusions, discussions and future work are drawn in Chapter 6. 
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2 Background 

2.1 High Dynamic Range (HDR) Technology 

What makes HDR technology the latest evolution in digital media is that it captures, 

distributes, and displays the full range of luminance and color values that the human eye can 

perceive in real life [1]. Luminance is defined as the quantity of light arriving at the human eye 

and it is measured in cd/m2. The human eye can adapt real world luminance and see a dynamic 

range of more than 14 orders of magnitude, which is the difference between highest and lowest 

luminance value in powers of ten [1]. However, at each single adaptation time, only a maximum 

of five orders of magnitude can be perceived by the human eye [1]. Fig. 2.1 illustrates the dynamic 

range of real world scenes and capabilities of the human eye, camera, and display.  

 

HDR technology can cover the luminance range from 0.005 to 10,000 cd/m2, close to what 

the human eye see. As opposed to HDR, SDR technology covers limited color gamut and dynamic 

range, ranging from 0.1 to 100 cd/m2. As shown in Fig. 2.1, conventional SDR display can only 

show up to three orders of magnitude. HDR displays, however, can reach up to five orders of 

  
 

Figure 2.1. The dynamic range of real world scenes and capabilities of the 
human eye, camera, and display [1] 
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magnitude. When showing HDR and SDR contents with same scene on HDR and SDR displays 

respectively, viewers see more details and much more vivid colors on an HDR display, especially 

when the viewed sequences are under-exposed or over-exposed. Even when HDR content is tone-

mapped in order to be seen on an SDR display, the resulting SDR content has way more details 

and is more pleasing to the human eye than the same content captured directly by an SDR camera 

[1] [13]. Fig. 2.2 shows a comparison between an SDR image and an HDR tone-mapped image of 

the same scene.  
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(a) 
 

 

(b) 
 

Figure 2.2. Comparison between (a) an SDR image and (b) an HDR tone-mapped image 
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2.2 Perceptual Encoding 

 When distributing HDR video, one challenge is the conversion from floating point light 

values to integer code values. This process, known as quantization, is necessary since existing 

video compression standards, such as the ITU-T H.265/High Efficiency Video Codec (HEVC) 

[14], only accept integer pixel values. In order to minimize the quantization error and preserve 

most of the pixel information, physical linear light intensities are perceptually transformed to a 

nonlinear domain. This transformation is known as perceptual encoding [15]. 

 

Perceptual encoding is useful for two reasons. The first one aligns with the fact that human 

eyes do not perceive light the same way cameras do [16]. Fig. 2.3 illustrates the camera and human 

eye’ responses for incoming light. We observe that cameras capture light in a linear manner. Twice 

the luminance signal is received when luminance captured at the camera sensor is doubled (see red 

arrows in Fig. 2.3).  However, human eyes are more sensitive to relative differences between dark 

tones than the same differences between bright tones, where twice the light is being perceived as 

 
 

Figure 2.3. Human eyes and cameras’ responses for light 
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a fraction brighter for high light intensities (see blue arrows in Fig. 2.3). In fact, human eyes work 

in a nonlinear logarithmic relationship. Perceptual encoding simulates our eyes’ response to light 

intensity (blue curve in Fig. 2.3). The second reason for applying perceptual encoding is to store 

brightness information more efficiently with fewer bits compared to linear encoding [16]. Using 

same bits for linearly encoded signal and perceptually encoded signal leads to more quantization 

errors (visible artifacts) for the former case (see Fig. 2.4). This is because, for linear signals, more 

bits are needed to describe the brighter tones where the human eyes are not very sensitive, while 

fewer bits are used for describing darker tones where we can really see the difference (see Fig. 

2.4).  Thus, with the close simulation of the human visual system (HVS), perceptually encoded 

signals need fewer bits to cover the whole tonal range during quantization. 

 

Two commonly used perceptual encoding methods are gamma encoding [17], and 

perceptual quantization (PQ) [18]. Gamma encoding is designed for SDR content with luminance 

values up to 100 cd/m2. HDR displays, however, can reach up to luminance values of 10,000 cd/m2. 

For this reason, gamma encoding is not suitable for preparing HDR content. In order to efficiently 

encode HDR content and take advantage of the peak luminance of an HDR display, the Society of 

Motion Picture and Television Engineers (SMPTE) standardized the ST 2084 perceptual encoding, 

also known as PQ [19]. PQ is designed to handle HDR content with luminance ranging from 0.005 

to 10,000 cd/m2. PQ projects light intensities to a more perceptually uniform domain. Visual 

 
 

Figure 2.4. Quantization for linearly encoded and 
perceptually encoded signals 



10 
 

degradation introduced by quantization is, therefore, spread out equally over the entire luminance 

range [4] (see Fig. 2.4). It is reported that only 11 bits are required for PQ to encode HDR signals 

without introducing any visual distortion [20]. 

 

2.3 High Dynamic Range (HDR) Transmission Pipeline 

Once the HDR signal is quantized using PQ, as suggested by the Motion Picture Experts 

Group (MPEG), the HEVC Main 10 profile [21] can be used for compressing the signal. Fig. 2.5 

shows the proposed workflows by MPEG for the transmission of HDR content based on HEVC 

Main 10 profile [21]. As it can be observed, RGB values first need to be converted into the luma 

and chroma format, known as Y’CBCR. 

 

2.4 Color Encoding 

 To derive Y’ from RGB values in the CL approach (represented as Yc’ in this paper), 

perceptual encoding is applied to linear luminance (Y). Luminance signal is originally derived 

from a color matching experiment [9]. In this experiment, human observers are shown a target 

luminance light patch and another light patch next to it, which are generated by a weighted mixture 

of three color primaries (usually R, G, B) [22]. Subjects are asked to adjust the amount of each 

 

 
 

Figure 2.5.  General workflow of an HDR transmission pipeline 
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primary so that the generated light patch visually matches with the target light. Eq. 1 shows how 

Y is derived: 

 � = �� + �� + �� (1) 

where a, b, c are the weighting coefficients. This derivation is based on the fact that the human eye 

has three types of color sensors that respond to different ranges of the color spectrum [23]. Any 

color perceived by humans can be created by a linear combination of R, G, and B. In other words, 

color is three dimensional in the mathematical sense [24]. 

 

In the case of NCL, Y’ is derived from perceptually encoded R’G’B’ values using the CL 

weighting coefficients as follows: 

 ��′ = ��′ + ��′ + ��′ (2) 

The workflows of the two encoding methods are shown in Fig. 2.6. Note that sfCB and sfCR are 

scaling factors for computing CB and CR.  

 

 
 

Figure 2.6. Workflows of NCL (top), and CL (bottom) encoding methods 
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The disadvantages of the conventional NCL representation include hue shift, less 

decorrelation of luma from the chroma signals, error propagation from chroma to luma information 

as described in [25], less resistance to chroma down-sampling, and lower compression efficiency 

as reported in [26]. Color shift is caused by applying PQ on R, G, and B channels individually. 

The highly non-linear PQ transfer function makes RGB values smaller, which in turn results in 

slightly darker pixels. The relative ratio between R, G, and B signals is also affected, thus resulting 

in a different shade of color. Since luminance is generated with a weighted linear combination of 

R, G, and B, color shift of RGB values leads to luminance errors between the original input and 

the resulted output luminance values.  

 

Considering the above-mentioned problems related to the NCL method, the CL approach 

was introduced in the BT.2020 recommendation [5] to transmit physical luminance and offer 

improved coding efficiency. The CL approach results in higher color quality by better de-

correlating light intensity from chromaticity. An in-depth analysis on NCL and CL methods 

presented in [26] reports less loss of original luminance information after chroma sub-sampling in 

the CL scheme. It was further proven that the CL approach has the benefit of higher compression 

efficiency over the traditional NCL method [26]. 

 

One main drawback of the CL method is the significantly increased implementation cost. 

For the CL case, the chroma values are dependent on a function of the difference between luma 

and B’/R’ (see Fig. 2.6), which has to be calculated for each pixel. On the contrary, in the NCL 

case, only constants are needed for computing chroma signals as illustrated in Fig. 2.6. In the post-

processing stage of the CL approach, recovery of the green signal needs help of inverse perceptual 
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encoding, which demands non-linear circuits [12]. Thus, the hardware implementation of CL 

approach dramatically diverts from that of the NCL method, offering no backward compatibility 

with legacy displays, which assume the input signal Y’CBCR is based on the NCL scheme. Because 

of the above and given that the vast installed base of content delivery pipelines are built around 

NCL, the broadcasting industry still prefers to follow the NCL encoding scheme [12]. Since cost 

and backward compatibility are prohibiting industry from adopting the CL approach, while HDR 

requires higher standards of compression efficiency and visual quality, optimizing the weighting 

coefficients for NCL perceptual encoded RGB values (R’G’B’) seems to be an affordable 

alternative.             

 

2.5 Luma Adjustment 

 As mentioned in the previous section, applying the conventional NCL approach results in 

color shifts and luminance errors between input and output luminance values. Luminance artifacts 

occur when the NCL method and a perceptual non-linear transfer function such as PQ are 

combined with 4:2:0 chroma sub-sampling [27]. This is because of the steep slope of PQ (see Fig. 

2.7) in the low luminance range and the color transform from RGB to Y’CBCR [28]. Since NCL 

applies weighting coefficients on R’G’B’, which are perceptual encoded RGB values, individual 

color components (R, G, B) with low values, after PQ, have significant impact on Y’, CB, CR values. 

Pixels with similar colors, (0, 450, 470) and (1, 450, 470) for example (shown as RGB values), 

become dramatically different when converted to Y’CBCR space: (0.4907, 0.0952, -0.3328) and 

(0.5301, 0.0742, -0.2578). Then, 10-bit quantization, chroma down-sampling, chroma up-

sampling, and 10-bit inverse quantization are applied as shown in Fig. 2.5. During decoding and 

just before displaying, the pixels are converted back to RGB values, which for the above example 
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are (0, 431, 450) and (0, 617, 644), respectively. These two RGB outputs are significantly distorted 

colors comparing to the original ones. The steep slope of PQ combined with chroma down-

sampling lead to color distortion for similar pixel values with one or two of the RGB components 

close to zero in the linear domain. These pixels have saturated colors located at the color gamut 

boundaries. 

 

One method proposed in [27] to solve the above-mentioned problem of luminance errors 

is luma adjustment. This approach utilizes linear luminance, which is calculated the same way as 

that of CL method. luma adjustment solves them by up-sampling sub-sampled chroma components 

and then iterating over different luma values to choose the best luma signal that minimizes the 

difference between resulted linear luminance and that of the original RGB input [28]. Fig. 2.8 

shows the workflow of luma adjustment.  

 

 
 

 
Figure 2.7. PQ transfer function has steep slope at luminance values 

close to 0 
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By taking advantage of “true” luminance, which corresponds to the physical luminance, 

luma adjustment shares the same idea as CL. However, luma adjustment requires several iterations, 

as high as ten, for calculating each luma sample for a 10-bit signal. Computation of the transfer 

function and color transformation at each iteration is time consuming, making the luma adjustment 

approach less practical [28]. 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 2.8. Workflow of luma adjustment 
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3 Global Optimization of NCL to CL for HDR Video Distribution 

3.1 Introduction 

 Given the benefit of CL compression efficiency and its increased complexity, a natural 

solution is to seek reaching CL’s efficiency with the NCL implementation. Since the CL 

coefficients a, b, and c as described in BT.2020 [5] are designed for physical RGB values, they are 

not the best option for perceptually encoded R’, G’, and B’. With this consideration in mind, we 

propose a global optimization method to derive new optimum coefficients that approximate NCL 

values to those of the CL approach. 

 

3.2 Proposed Method 

 In order to benefit from the CL compression efficiency without introducing its increased 

complexity, we propose to derive new coefficients d, e, f to globally minimize the difference 

between our generated alternative luma (denoted Ya’) and the CL luma Yc’. Our optimization 

problem can, thus, be formulated as follows: 

 ��′ = (�� + �� + ��)′ (3) 

 ��′ = ��′ + ��′ + ��′ (4) 

 																	� = ������	‖��� − 	���‖� 

																				= �������(���� − ����)
�

���

���

 

(5) 
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where newly derived coefficients d, e, f are between 0 and 1, and the sum of these three coefficients 

is constrained to be equal to 1. This optimization depends on the targeted bit-depth. In this thesis, 

we solely focused on 10 bits (around 1 billion R’G’B’ code values, 30 bits per pixel). 

 

Chroma scaling factors, sfCB and sfCR, as shown in the workflow of the NCL encoding 

method (see Fig. 2.5), are dependent on the maximum and minimum differences between B’/R’ 

and Y’. The scaling factor, sfCB, is calculated to ensure that CB ranges from -0.5 to 0.5, as required 

in BT.2020 [5]. Eqs. (6) and (7) illustrate how sfCB is derived in the NCL case. The same formula 

applies for sfCR. Since a new different set of coefficients is generated (d, e, f) that leads to a different 

luma (Ya’) value from that of the traditional NCL approach, new chroma scaling factors that 

depend on these new coefficients need to be computed. This can be easily accomplished by 

replacing Yn’ with Ya’ as shown below: 

 
����� =

max	(B� − Yn′)

����
= 0.5 (6) 

 
����� =

min	(B� − Yn′)

����
= −0.5 (7) 

 

Solving the optimization problem from Eqs. (3) to (7) for a 10-bit R’G’B’ input results in 

the following coefficients and scaling factors: d = 0.3365, e = 0.4810, f = 0.1825, sfCB = 1.6350, 

and sfCR = 1.3270. Table 3.1 reports the average distortion between our computed luma (Ya’) and 

the CL luma (Yc’) over all R’G’B’ combinations. The same table also reports the distortion 

between CL (Yc’) and the NCL luma (Yn’). We observe that our new coefficients provide a luma 

closer to that computed using the CL method when considering all R’G’B’ combinations.  
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Note that our new coefficients need to be transmitted in order to reconstruct the R’, G’ and 

B’ channels from Ya’CBCR values. One way of achieving this, for example, is to send them via a 

Supplementary Enhancement Information (SEI) message [29] of the HEVC standard. 

 

3.3 Results and Discussions 

To compare the compression efficiency of our approach with the traditional NCL 

implementation, we encoded 5 HDR video sequences provided in the MPEG Call for Evidence 

(CfE) for HDR and WCG Video Coding [21]. Four different Quantization Parameters (QPs) were 

used with HEVC (version HM 16.7 [30]) according to MPEG recommendations. Two objective 

metrics; tOSNR-XYZ and DE100; were computed for each original and decoded frames, using the 

HDRTools software package v1.0 [31], and averaged over the whole sequence. The tOSNR-XYZ 

metric measures the overall PSNR for pixels in the XYZ color space. This metric measures the 

degradations of the signal when distributed throughout the pipeline. The DE100 metric is a PSNR 

computed using the CIEDE2000 [32] that predicts the color distortion between two pixels and 

includes perceptual aspect since it is based on the CIE L*a*b* color space [33]. 

 

Table 3.1: Comparison between our NCL (Ya’) and original NCL (Yn’) with CL 
(Yc’) over all possible 10-bit RGB combinations 

  
Average Distortion 

 
Our NCL 

1

2��
�‖��� − ��′‖�
���

�

 

 
0.0399 

Original 
NCL 

1

2��
�‖��� − 	��′‖�
���

�

 

 
0.0470 
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Table 3.2 reports the average bit-rate reduction (in percentage) for the same tOSNR-XYZ 

and DE100 values between our   method and the NCL one. Bit-rate savings are measured using 

the Bjontegaard’s Delta (BD) Rate [34]. Negative numbers represent bit-rate reduction and 

positive numbers are equal to bit-rate increase. Thus, compared with NCL, our method always 

requires a lower bit-rate to achieve the same level of visual quality according to the tOSNR-XYZ 

metric. An average of 4.74% bit-rate reduction is achieved for keeping same overall visual quality. 

However, performance for color quality measured by DE100 is unsatisfactory, with an average of 

20.6% bit-rate increase when maintaining the same level of color quality. In other words, compared 

with NCL, our method results in lower color quality when using the same bit-rate.     

 

 The reason behind the lower color quality is that our proposed global optimization treats 

all possible RGB values as equally important, which is not true for natural content. Figs. 3.1 and 

3.2 show chromaticity distributions of two sample images (first frame of the content [35] [36]). 

Note that since the original content is BT.709 [6], all pixels fall within the BT.709 [6] color gamut 

boundary. In addition, we note that there are no pixels with dark blue while dark red represents 

more than 10,000 pixels. These two sample images have significantly different RGB distributions  

 

Table 3.2: Average BD-rate reduction under the same visual and 
color quality 

 tOSNR-XYZ DE100 

FireEater2 -7.8% 0.5% 

Market3 -3.1% 33.0% 

BalloonFestival -5.7% 18.6% 

Hurdles -2.9% 24.2% 

Start -4.2% 26.7% 

Average -4.74% 20.6% 
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Figure 3.1. Chromaticity distribution for the first frame of the 
FireEater2 sequence in CIE 1931 color space 

 

 

Figure 3.2. Chromaticity distribution for the first frame of the 
SunRise sequence in CIE 1931 color space 
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and densities. Furthermore, these RGB inputs only occupy a fraction of all possible RGB 

combinations (230 R’G’B’ integer code values for 10 bits input). This indicates that natural contents 

have different RGB densities and each possible RGB combination has different weight (from 0 to 

a maximum of the resolution if all pixels have same RGB value). Thus, the resulted new 

coefficients have been compromised for RGB values (pixels) that do not exist in the video 

sequence. 

 

3.4 Conclusion 

We proposed a global optimization method to close the gap between NCL values and those 

of CL. A new set of coefficients for perceptually encoded R’G’B’ values was derived to optimize 

NCL values. Focus was put on minimizing the difference between NCL luma (Yn’) and CL luma 

(Yc’). 

 

 We evaluated the performance of our method using two objective metrics recommended 

by MPEG for measuring HDR quality, tOSNR-XYZ and DE100. Results indicated that our 

proposed method has improved the visual quality according to the tOSNR-XYZ metric. An 

average of 4.74% bit-rate savings is observed for maintaining the same signal quality in the XYZ 

color space. For keeping the same color quality in the CIE L*a*b* color space according to DE100, 

our method increases the bitrate by an average of 20.6%. This is because of the equal treatment of 

all possible RGB inputs by our approach. In reality, natural content has different RGB densities 

and distributions. Furthermore, these RGB values only occupy a fraction of all possible RGB 

inputs. Thus, our method optimizes too many pixels that are not included in the tested sequence. 
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We conclude that a better approach is to identify the existing color combination in a given HDR 

video stream and optimize the coefficients for the specific content. This leads to our next method. 
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4 Content Adaptive Optimization of NCL to CL for HDR Video Distribution 

4.1 Introduction 

 For a 10-bit RGB input, the number of all possible RGB combinations is around 1 billion 

(230 R’G’B’ integer code values, 30 bits per pixel). Pixels from natural content contain only part 

of all possible RGB values. Thus, not all RGB combinations have equal importance. 

 

 As described in Section 3.3, when treating all RGB values as equally important with a 

global optimization method, the color quality is significantly reduced when keeping the same bit-

rate as NCL. Since different HDR sequences have dramatically different RGB distributions, we 

propose a new adaptive optimization method for approximating NCL values to those of the CL 

approach, while preserving the NCL implementation. This new approach derives adaptive 

weighting coefficients based on the density of the pixels in a given HDR content.             

 

4.2 Our Method 

 In the case of global optimization proposed in Chapter 3, each possible R’G’B’ input has 

a weight of one. Since, as we already know, not all RGB combinations are included in natural 

content, coefficients have been compromised for optimizing pixels that may not exist in the video 

sequence. Based on this observation, we propose an adaptive optimization approach, which is 

based on the distribution of pixels for each content. This method perceptually encodes and 

quantizes all pixel values (RGB values) from the first frame of the chosen content into 10-bit 

integer code R’G’B’ values. Then, the density of each R’G’B’ combination is calculated by 

measuring the number of such integer code R’G’B’ combinations. Note that for 10-bit input, the 

total number of all possible integer code R’G’B’ combinations is 230. Our method takes R’G’B’ 
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density into consideration, and optimizes only the luma values of these R’G’B’ inputs. Our 

optimization problem can, thus, be formulated as follows: 

 � = ��������‖��
� − 	���‖� 

											= �������� �(���� − ����)
�

���

���

 

(8) 

Note that newly derived coefficients d, e, f, as shown in Section 3.2 Eq. (4), are falling between 0 

and 1. The sum of these three coefficients is constrained to be equal to 1, and the sum of all weights 

WK (∑ ��)
���
���  is equal to the resolution of the frame (1920 x 1080 = 2073600 in our case since all 

our video dataset is full HD). Note that no normalization is applied for WK, since normalized WK 

would be very small (i.e., 1/2073600) and pixels with low WK would be ignored in the optimization. 

Also note that new chroma scaling factors (sfCB and sfCR) need to be re-calculated as they are 

dependent on the generated coefficients, as described in Section 3.2. 

 

For a given HDR content, the first step is to identify all RGB pixel combinations within 

the first frame. The number of pixels with same RGB combination corresponds to the weight of 

that combination (WK), which is used in the optimization equation (8). Finally, the above-

mentioned formulas (Eqs. 3, 4, 6, 7, and 8) are solved to get the new coefficients d, e, and f for 

R’G’B’ and the corresponding chroma scaling factors sfCB and sfCR. 

 

Solving the optimization problem in Eq. (8) for different sequences results in different sets 

of coefficients. We chose eight HDR representative sequences in terms of brightness from the 
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video dataset provided in the MPEG CfE for HDR and WCG Video Coding [21]: Market3, 

FireEater2, Tibul2, SunRise [35], Hurdles, Start [37], BalloonFestival, and WalkPath [36]. Table 

4.1 reports the new derived coefficients for all eight sequences. 

 

4.3 Experiment Setup 

To compare the compression efficiency of our method with the conventional NCL 

approach, we encoded eight HDR video sequences provided in the MPEG CfE for HDR and WCG 

Video Coding [21], as mentioned in the previous section. It is worth noting that although all these 

HDR contents are represented using the BT.2020 container, their values fall within the BT.709 

color gamut. In our coding test, we used the latest HEVC codec software implementation (HM 

16.7) with Main 10 profile [38]. For each HDR sequence, four different Quantization Parameters 

(QPs) were used as recommended by MPEG as shown in Table 4.2. 

 

The objective metric DE100 was used to compute the color difference for each original 

and decoded frame, using the HDRTools software package v0.13 [38]; the results were averaged 

Table 4.1: New derived coefficients for contents 

 Coefficient (d) Coefficient 
(e) 

Coefficient 
(f) 

FireEater2 0.3869 0.6131 0.0000 
Market3 0.3299 0.5147 0.1554 
SunRise 0.2778 0.6873 0.0349 
Tibul2 0.4347 0.5653 0.0000 

BalloonFestival 0.1956 0.7413 0.0631 
Hurdles 0.3910 0.4730 0.1360 

Start 0.3359 0.6324 0.0317 
WalkPath 0.2459 0.7121 0.0420 
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over the entire sequence. As mentioned in the previous Chapter, the metric DE100 measures the 

color distortion between two pixels. We chose this metric according to MPEG recommendations 

and also the fact that it involves perceptual quality as well as color distortion. 

 

4.4 Results and Discussions 

 Table 4.3 reports the average bit-rate reduction (in percentage) for the same color quality 

(same DE100 value) between our method and the NCL one. Bit-rate savings are measured via the 

Bjontegaard’s Delta (BD) Rate [34]. Negative numbers represent bit-rate reduction while positive 

numbers are equivalent to bit-rate increase. Apart from sequences Market3 and Hurdles, lower bit-

Table 4.3: Average BD-rate reduction under the same 
color quality 

Sequence DE100 
FireEater2 -10.4% 
Market3 27.5% 
SunRise -6.1% 
Tibul2 -6.5% 

BalloonFestival -2.7% 
Hurdles 22.7% 

Start -1.8% 
WalkPath -2.4% 

 

Table 4.2: Applied QPs for each content 

Sequence Selected QPs 

FireEater2 [20, 23, 26, 29] 
Market3 [21, 28, 31, 33] 
SunRise [18, 21, 25, 29] 
Tibul2 [19, 24, 29, 34] 

BalloonFestival [22, 26, 29, 31] 
Hurdles [23, 27, 32, 36] 

Start [22, 26, 32, 36] 
WalkPath [22, 26, 29, 31] 
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rates are achieved for all other sequences compared with the traditional NCL scheme. These 

compression results suggest that for contents with extreme RGB distributions, Tibul2 and 

BalloonFestival (see Figs. 4.1, and 4.2), for example, improved color quality is possible due to the 

better weighted optimization and better decorrelation achieved by our method. Tibul2 has more 

red pixels while BalloonFestival has more deeply saturated green components as illustrated in Figs. 

4.1, and 4.2. 

 
Sequences with uniform chromaticity distributions, such as Market3 and Hurdles (see Figs. 

4.3, and 4.4), however, do not benefit from our approach. This is due to the fact that these uniform 

distributed contents cover more chromaticity range than sequences with prominent red, green, or 

blue pixels. Thus, optimization for such content has similar effect to global optimization, which 

assigns the same importance to all possible RGB values. The new generated coefficients for  

 

Figure 4.1. Chromaticity distribution for the first frame of the Tibul2 
sequence in CIE 1931 color space 
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Figure 4.2. Chromaticity distribution for the first frame of the 
BalloonFestival sequence in CIE 1931 color space 

 

 

Figure 4.3. Chromaticity distribution for the first frame of the Market3 
sequence in CIE 1931 color space 
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Market3 and Hurdles share similar distributions and are pretty close to each other (see Table 4.1). 

As a matter of fact, these two sets of parameters are also close to the result of the global 

optimization method (d = 0.3365, e = 0.4810, f = 0.1825). Unfortunately, treating all RGB inputs 

as equally important leads to reduced color accuracy compared with the NCL approach. 

 

Figs. 4.5, 4.6, 4.7, and 4.8 plot the DE100 results for a dark HDR content (FireEater2), a 

normal daylight HDR content (BalloonFestival), and two broad daylight video sequences (Market3 

and Hurdles). FireEater2 has red prominent signals and BalloonFestival is a green dominant 

sequence. Market3 and Hurdles are uniformly distributed video streams. We observe that our 

method yields higher DE100 values when considering the same bit-rates for FireEater2 and 

 

Figure 4.4. Chromaticity distribution for the first frame of the Hurdles 
sequence in CIE 1931 color space 
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BalloonFestival. The contrary is true for Market3 and Hurdels. These results are coherent with the 

percentages reported in Table 4.3. 

 

 

 
 

Figure 4.5. DE100 vs bit-rate for FireEater2 
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Figure 4.6. DE100 vs bit-rate for BalloonFestival 
 

 
 

Figure 4.7. DE100 vs bit-rate for Market3 
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These results indicate that, based on the CIEDE2000 metric [32], our proposed method 

successfully increases the color quality over the NCL approach for content with extreme RGB 

distributions. For sequences with uniform chromaticity distributions, however, the NCL method 

can outperform our approach. Similar performance is expected for full range of BT.2020 [5] gamut 

content, when available. For uniformly distributed sequences, the former NCL coefficients can be 

sent with an SEI message. Note that the above-provided compression results do not include 

transmission of the new coefficients. However, transmission cost for these coefficients is 

negligible (as much as five 32 bits floating point values = 160 bits). 

 

4.5 Conclusion 

In this chapter, we proposed a content adaptive local optimization method that calculates 

new NCL coefficients based on the RGB pixel density for a specific HDR content.  

 
 

Figure 4.8. DE100 vs bit-rate for Hurdles 
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Compression results showed that our proposed method yields improved color quality for 

content with one prominent primary (either R, G, or B). For such HDR sequences, an average of 

4.98% bit-rate savings was observed for the same color quality according to the DE100 metric. 

However, for uniformly distributed sequences, our method did not offer better performance over 

the NCL approach. Given the fact that this method does not perform equally well for all video 

contents, we propose to use a hybrid approach, where we adaptively choose to either generate new 

coefficients and new chroma scaling factors using our proposed method or use the original NCL 

method, depending on the distribution of pixels in the specific HDR content.  

 

 

 

 

 

 

 

 

 

 

 

 

 



34 
 

5 Weighted Global Optimization of NCL to CL for HDR Video Distribution 

5.1 Introduction 

 In Chapter 4, we proposed an adaptive optimization method to close the gap between NCL 

luma values and those of the CL. This approach takes RGB density of content into consideration 

and only optimizes based on these RGB values. As mentioned in Section 4.4, this proposed 

approach indicated that improved color quality can be achieved for extreme content cases where 

one of the RGB primaries (R, G, or B) is prominent. However, for HDR sequences with uniform 

chromaticity distributions, this method leads to reduced color quality compared with NCL. Since 

content with uniform chromaticity distribution covers more chromaticity range than a sequence 

with extreme red, green, or blue signals, adaptive optimization for such uniform distributed video 

has the same effect as the global optimization method mentioned previously. Thus, the generated 

coefficients for uniformly distributed content share similar distributions and are very close to the 

resulted coefficients from the global method. 

 

In fact, in the global method the optimization error is spread out over all color values. 

However, according to the ITU-R Recommendation BT.2020 [5], the a, b, c coefficients for 

R’,G,’B’ are: a = 0.2627, b = 0.6780, c = 0.0593. We observe that G’ has the highest contribution 

to luma while B’ is the least important one. The same trend can be observed in the ITU-R 

Recommendation BT.709 (a = 0.2126, b = 0.7152, c = 0.0722) [6]. Since our objective is to 

minimize the luma difference between NCL and CL, we should put higher priority to greenish 

pixels and a lower priority to bluish ones during the optimization process for calculating the new 

a, b, c coefficients. 
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5.2 Our Proposed Method 

 Given the above-mentioned findings, we propose to derive new coefficients d, e, f that 

significantly reduce the difference between NCL and CL luma values by prioritizing the 

importance of RGB colors, with greenish being of the highest importance and bluish the lowest. 

In order to do this, we need to separate all possible colors into three important regions, Red, Green, 

or Blue. To categorize any pixel as either a Red, Green, or Blue dominant signal, we transform the 

RGB values into CIE xyY color space and map them on CIE 1931 xy chromaticity diagram, which 

shows the full visible color gamut (see Fig. 5.1). Fig. 5.2 shows the full visible color spectrum and 

associated wavelength. Table 5.1 shows the actual wavelength ranges for the different colors. Fig. 

5.3 presents an enhanced version of the CIE 1931 xy chromaticity diagram (see [41] for more 

details). 

 

 

Figure 5.1. CIE 1931 xy chromaticity diagram with BT.2020 gamut coverage 
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Separation between Blue and Green is approximately 500 nanometers (nm) according to 

Table 5.1. Yellow pixels are closer to green as shown in the chromaticity diagram (see Fig. 5.3). 

Yellow RGB pixel, (255, 255, 51), for example, is more greenish since G has more contributions 

to luminance than R (when G, and R components have same value). Orange, as illustrated in Fig. 

5.3, is closer to red and is, therefore, more reddish. An orange RGB pixel, (255, 128, 0), for 

instance, has higher R component than that of G. Thus, we put yellow pixels into the Green 

category, and orange pixels into the Red category. Separation between yellow and orange is 

roughly 600 nm as described in both Fig. 5.3 and Table 5.1. 

 

The remaining question is how to separate the Blue and Red sections. Since violet is closer 

to red as seen in Figs. 5.1 and 5.3, we drew the line to point to (0.3, 0) on the x axis of the CIE 

 
 

 
 

Figure 5.2. The full visible color spectrum and associated wavelength [39] 
 
 
 
 

Table 5.1: Visible color wavelength range [40] 

Color Wavelength 
(nm) 

Violet 380 - 450 
Blue 450 - 495 

Green 495 - 570 
Yellow 570 - 590 
Orange 590 - 620 

Red 620 - 750 
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1931 xy chromaticity diagram. This ensures that more than 50 percent of the violet pixels belong 

to the Red category. Based on the above observations, we classify the colors into a Red dominant 

region, a Blue dominant region and a Green dominant region as shown in Fig. 5.4. 

 

Once all the RGB samples in the BT.2020 gamut are separated into three regions of Red, 

Green, and Blue, we assign different priority to the optimization error corresponds to each RGB 

sample based on its region in the BT.2020 gamut and calculate new coefficients d, e, and f as 

follows: 

 
 
 

Figure 5.3. Enhanced CIE 1931 xy chromaticity diagram with divisions 
for different colors [41] 
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(9) 

where coefficients d, e, f are the newly derived coefficients that are summed c to 1, and Wk is the 

weight for each RGB sample. The weights (Wk) for samples are calculated based on the distribution 

of coefficients a, b, and c from BT.2020 [5]. In other words if the RGB sample falls into the Red 

region the weighting factor (Wk) is equal to a, if it in the Green region Wk  is equal to b, and if it is 

in the Blue region it is equal to c. To avoid normalization and ensure that these weights are not 

being ignored during optimization, we multiply a, b, c by 100. Since PQ covers the luminance 

 

 
Figure 5.4. Separation of CIE 1931 xy chromaticity diagram into Red, Green, 

and Blue 
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range from 0.005 to 10,000 cd/m2, the lowest luminance value for non-zero RGB samples (at least 

one of the RGB channels is larger than 0) should be 0.005 cd/m2 when deriving new coefficients. 

Note that all RGB inputs that have luminance value below 0.005 will be clipped to 0.005 during 

perceptual encoding. Thus, the lowest luminance value for linear RGB is 0.005 and the 

corresponding lowest luma value for perceptually encoded RGB (R’G’B’) is 0.0151. To satisfy 

this condition, coefficients d, e, f need to be constrained to range from 0.0151 to 1. Again, note 

that the above optimization depends on the used color gamut primaries and targeted bit-depth. In 

this thesis, we focused on BT.2020 color gamut and 10 bits (230 R’G’B’ code values, 30 bits per 

pixel). Also note that new chroma scaling factors, sfCB and sfCR, dependent on new coefficients 

should be calculated. 

 

 Solving the above-mentioned optimization problem (Eqs. 3, 4, 6, 7 and 9) for a 10-bit 

R’G’B’ input results in the following coefficients: d = 0.2590, e = 0.7259, f = 0.0151, sfCB = 1.9698, 

and sfCR = 1.4820. Once more, please note that our new coefficients need to be transmitted in order 

to reconstruct R’G’B’ from Ya’CBCR values at the decoding stage. One way of achieving this, for 

instance, is to send them via an SEI message of HEVC.                 

 

5.3 Experiment Setup 

 To compare the compression efficiency of our approach with the traditional NCL method, 

we encoded 8 representative HDR video sequences provided in the MPEG CfE for HDR and WCG 

Video Coding [21]: Market3, FireEater2, Tibul2, SunRise [35], Hurdles, Start [37], 

BalloonFestival, and WalkPath [36]. All these HDR contents fall within the BT.709 gamut [6]. 
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But their values are represented using the BT.2020 [5] container. Table 5.2 summarizes the 

characteristics of each sequence. 

 

 

Table 5.2: HDR video dataset 

Sequence Frame rate 
(fps) 

Number of 
frames 

Bit depth Scene 
type 

FireEater2 25 200 10 Outdoor/ 
Night 
light 

Market3 50 400 10 Outdoor/ 
Day light 

SunRise 25 200 10 Outdoor/ 
Day light 

Tibul2 30 240 10 Outdoor/ 
Day light 

BalloonFestival 24 240 10 Outdoor/ 
Day light 

Hurdles 50 500 10 Outdoor/ 
Day light 

Start 50 500 10 Outdoor/ 
Day light 

WalkPath 24 240 10 Outdoor/ 
Day light 
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In our test, we used the HEVC codec, Main 10 profile (test model software HM 16.7 [30]). 

HEVC is the most recent video compression standard [42], which has 50% more compression 

efficiency over its predecessor H.264/Advanced Video Coding (AVC) [43]. Four different 

Quantization Parameters (QPs) were used with according to MPEG recommendations. Table 5.3 

shows the QP values used for each content. Note that the 10-bit quantization performed throughout 

the study follows the restricted range quantization as described in the ITU-R Recommendation 

BT.2100 [44]. 

 

Two objective metrics tOSNR-XYZ and DE100 were computed for each original and 

decoded frame, using the HDRTools software package v0.13 [38], and the results were averaged 

over the whole sequence. The tOSNR-XYZ metric measures the overall PSNR for pixels in the 

XYZ color space. It also measures the degradations of the signal when transmitted through the 

pipeline. The DE100 metric is a PSNR quantified version of the CIEDE2000 metric [32], which 

predicts the color distortion between two pixels [33]. 

 

Table 5.3: Applied QPs for each content 

Sequence Selected QPs 

FireEater2 [20, 23, 26, 29] 
Market3 [21, 28, 31, 33] 
SunRise [18, 21, 25, 29] 
Tibul2 [19, 24, 29, 34] 

BalloonFestival [22, 26, 29, 31] 
Hurdles [23, 27, 32, 36] 

Start [22, 26, 32, 36] 
WalkPath [22, 26, 29, 31] 

 



42 
 

5.4 Results and Discussions 

 Table 5.4 reports the average bit-rate reduction in percentage for the same DE100 value 

between our method and the NCL one (column 3). Bit-rate savings are measured using the 

Bjontegaard’s Delta (BD) Rate [34]. Negative numbers represent bit-rate reduction and positive 

numbers indicate bit-rate increase. We observe that, the same level of color quality according to 

the DE100 metric, our method results in 4.9% bit-rate reduction on average. These results suggest 

that improvement in color quality is possible due to the better weighted global optimization and 

better decorrelation of luma from chroma achieved by our method. 

 

The results for tOSNR-XYZ metric are also reported in Table 5.4 (column 2). We observe 

that, for the same overall visual quality measured by tOSNR-XYZ, our method requires a minimal 

2.23% increase in bitrate compared to the NCL approach. 

 

 

 

 

Table 5.4: Average BD-rate reduction under same visual and 
color quality 

Sequence tOSNR-XYZ DE100 

FireEater2 2.5% -1.1% 
Market3 1.6% -5.6% 
SunRise 2.5% -14.1% 
Tibul2 1.6% -1.0% 

BalloonFestival 2.4% -6.2% 
Hurdles 1.7% -4.7% 

Start 2.7% -2.5% 
WalkPath 2.8% -4.0% 
Average 2.23% -4.9% 
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Figs. 5.5, 5.6, 5.7 and 5.8 plots the tOSNR-XYZ compression results for a dark light HDR 

content (FireEater2), two broad daylight video sequences (Market3 and Hurdles), and a normal 

daylight sequence (SunRise). We observe that, on each plot, the two curves are nearly identical. 

This observation translates to same tOSNR-XYZ performance for both techniques, at any chosen 

QP, and the bit-rates are slightly different. This result is consistent with the numbers reported in 

Table 5.4. Figs. 5.9 to 5.12 describe the DE100 results for same four sequences. Our method 

always has higher DE100 values when considering the same bit-rates for all contents. Once more, 

these results follow those reported in Table 5.4. 

 

 

 

 

 

 
 

Figure 5.5. tOSNR-XYZ vs bit-rate for FireEater2 
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Figure 5.6. tOSNR-XYZ vs bit-rate for Market3 
 

 
 

Figure 5.7. tOSNR-XYZ vs bit-rate for SunRise 
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Figure 5.8. tOSNR-XYZ vs bit-rate for Hurdles 
 

 
 

Figure 5.9. De100 vs bit-rate for FireEater2 
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Figure 5.10. DE100 vs bit-rate for Market3 
 

 
 

Figure 5.11. De100 vs bit-rate for SunRise 
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Since the chosen HDR sequences are limited and may not be representative of all the scenes 

we see in the real world, we also measured the visual color difference of all possible colors between 

our method and the NCL one. We evaluated the color distortion for 10-bit quantization without 

compression by encompassing all the visible colors of the BT.2020 [5] color gamut at different 

luminance levels. A perceptual color error metric, CIEDE2000 [32], as mentioned in the previous 

section, is used to predict visual color difference. In order to isolate the quantization errors, no 

chroma sub-sampling is applied. Fig. 5.13 shows the workflow of our evaluation process. Note 

 
 

Figure 5.12. DE100 vs bit-rate for Hurdles 
 

 

 
 

Figure 5.13.  Color difference experiment workflow 
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that the 10-bit quantization performed here again follows BT.2100 [44]. To measure the color 

deviations of the tested signal (green boxes in Fig. 5.13) from the original signal (blue boxes in 

Fig. 5.13), we applied the perceptual objective metric CIEDE2000 [32]. Since this metric is 

designed to work on CIE L*a*b* color space [33], the original and the recovered signals are 

transformed to this color space for comparison (see Fig. 5.13). The Just Noticeable Difference 

(JND) threshold of CIEDE2000 is one [45], which means color difference lower than 1 is not 

perceptible by the human eye [46]. Furthermore, the larger the CIEDE2000 value, the more 

different the tested color are perceptually [46].   

 

Our test includes all visible colors within BT.2020 [5] gamut and for luminance levels 

ranging from 0.005 to 10,000 cd/m2. We chose the CIE 1976 Lu’v’ color space [47] to construct 

these colors due to its perceptual uniformity [48]. At each luminance level, the u’ and v’ values 

are increased from 0 to 0.62 with a step size of 0.001, while L is kept constant. The threshold of 

0.001 is chosen because chromaticity changes lower than this value are not perceptible to the 

human eye according to [49]. 

 

Figs. 5.14, to 5.21 illustrate the color distortion generated by the 10-bit NCL method and 

our proposed 10-bit color encoding scheme at each luminance level. The different luminance levels 

selected are: 0.005, 0.01, 0.05, 0.1, 1, 5, 10, 50, 100, 250, 500, 1000, 5000, and 10,000 cd/m2. We 

used a color error bar to demonstrate the CIEDE2000 values. Dark blue represents values below 

the JND (less than 1) and dark red corresponds to values more than or equal to 3. Thus, color 

distortion becomes visible when light blue starts to appear. Note that shortage of colors (less 

coverage of BT.2020 gamut) at luminance level of 0.005, 0.01, 1,000, 5,000 and 10,000 cd/m2 is 
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due to the clipping forced by generated luminance levels above the specified range. It can be 

observed that color errors occur mainly around the white point [50] [51]. This happens because 

human eyes are more sensitive to luminance change than chrominance change. Since colors near 

the white point are much brighter (see Fig. 5.3), errors caused by quantization are more visible and, 

thus, result in higher CIEDE2000 values. 
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Figure 5.14. Color distortion at different luminance levels (0.005 to 0.1 cd/m2) for 10-bit NCL 
Yn’CBCR with PQ transfer function 
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Figure 5.15. Color distortion at different luminance levels (0.005 to 0.1 cd/m2) for 10-bit our 
proposed Ya’CBCR with PQ transfer function 
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Figure 5.16. Color distortion at different luminance levels (1 to 50 cd/m2) for 10-bit NCL 
Yn’CBCR with PQ transfer function 
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Figure 5.17. Color distortion at different luminance levels (1 to 50 cd/m2) for 10-bit our 
proposed Ya’CBCR with PQ transfer function 
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Figure 5.18. Color distortion at different luminance levels (100 to 1000 cd/m2) for 10-bit NCL 
Yn’CBCR with PQ transfer function 
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Figure 5.19. Color distortion at different luminance levels (100 to 1000 cd/m2) for 10-bit our 
proposed Ya’CBCR with PQ transfer function 
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Figure 5.20. Color distortion at different luminance levels (5000 and 10000 cd/m2) for 10-bit 
NCL Yn’CBCR with PQ transfer function 
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Figure 5.21. Color distortion at different luminance levels (5000 and 10000 cd/m2) for 10-bit 
our proposed Ya’CBCR with PQ transfer function 
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Comparing the color errors as shown in Figs. 5.14 to 5.21, we observe that our method 

successfully reduces color distortion over NCL approach at each luminance level. Table 5.5 reports, 

the max and the average CIEDE2000 values at each luminance level. While the max value is the 

same for each chosen luminance, our proposed method always produces lower average values (less 

visible color distortion). Note that since at 0.005 and 10,000 cd/m2, there are barely colors visible 

to human eyes, these two luminance levels are not included in the table. Table 5.6 reports the 

percentage for CIEDE2000 values less than 1 at each luminance level. Results indicate that our 

method increases the percentage of values lower than 1, which means an increase in color 

differences that are not perceptible to our eyes. In other words, our method successfully reduces 

visible color errors over the NCL approach. All these experiments and observations demonstrate 

that by changing NCL method with our proposed encoding scheme, color errors are reduced and 

become less noticeable. 

 

Table 5.5: Max and average CIEDE2000 values for NCL and our method at 
each luminance levels 

Luminance 
level (cd/m2) 

NCL max 
CIEDE2000 

Our max 
CIEDE2000 

NCL 
average 

CIEDE2000 

Our average 
CIEDE2000 

0.01 19.7323 19.7323 0.8660 0.8463 
0.05 32.7981 32.7981 1.0021 0.9982 
0.1 40.2353 40.2353 0.6309 0.6261 
1 106.9007 106.9007 0.9173 0.9152 
5 120.0211 120.0211 0.6868 0.6846 
10 123.9355 123.9355 0.6549 0.6525 
50 130.5879 130.5879 0.6332 0.6298 
100 132.6102 132.6102 0.6328 0.6299 
250 134.6968 134.6968 0.6385 0.6360 
500 135.9149 135.9149 0.6454 0.6426 
1000 136.8833 136.8833 0.7388 0.7356 
5000 138.2815 138.2815 0.6672 0.6581 
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Combining the above-mentioned visual color difference experiment with the compression 

results reported in Table 5.4, we can conclude that our method increases the color quality compared 

with NCL approach when using same bit-rate. Furthermore, color distortion for colors at different 

luminance levels is also reduced by our proposed approach. Most importantly, we preserve the 

NCL implementation cost by simply switching existing NCL coefficients with our new optimized 

coefficients. Thus, our method also offers backward compatibility with legacy displays. 

 

5.5 Conclusion 

In this chapter, we propose a weighted global optimization method that reduces the 

difference between NCL and CL luma values by prioritizing the importance of RGB colors. Our 

method separates all colors into three categories, Red, Green, or Blue (three color primaries), by 

Table 5.6: Percentage of CIEDE2000 values less than one for NCL and our 
method at each luminance level 

Luminance 
level (cd/m2) 

NCL percentage 
for CIEDE2000 

< 1 

Our percentage 
for CIEDE2000 

< 1 

0.01 70.00% 71.19% 
0.05 90.23% 90.65% 
0.1 93.93% 94.49% 
1 97.41% 97.55% 
5 97.88% 98.03% 

10 97.85% 97.99% 
50 97.48% 97.65% 
100 97.32% 97.46% 
250 97.04% 97.17% 
500 96.76% 96.93% 
1000 95.92% 96.15% 
5000 87.47% 87.85% 
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dividing the CIE 1931 chromaticity diagram into three regions. Different weights for each category 

are assigned based on their contribution to generated luminance.  

 

Compression evaluations show that our approach reduces bit-rate requirements over the 

NCL while maintaining same level of color quality. An average of 4.9% bit-rate savings is 

observed for the same color quality in the CIE L*a*b* color space [33]. Color errors measured by 

the CIEDE2000 metric [32] for all possible colors at different luminance levels are also reduced 

according to our visual color difference experiment. Although our method slightly increases the 

bit-rate over NCL for the same visual quality in the XYZ color space measured by tOSNR-XYZ 

metric, the increase is relatively small (2.23%). 

 

At the decoding end, R’G’B’ values are reconstructed from Ya’CBCR using the newly 

calculated coefficients for R', G', B', and the chroma scaling factors, which are transmitted via an 

SEI message supported by the HEVC standard. 
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6 Conclusion and Future Work 

6.1 Conclusion 

 In this thesis, we investigate the possibility of improving the performance of NCL to the 

levels offered by CL, aiming at high compression efficiency and color accuracy for HDR content 

delivery, while maintaining the current SDR pipeline infrastructure.  

 

 In Chapter 3, we proposed a global optimization method to approximate NCL values to 

those of CL. This approach considers all possible RGB combinations with equal importance and 

derives new set of coefficients for perceptually encoded R’G’B’ values that close the gap between 

NCL and CL values. Compression experiments with HDR sequences were conducted. Results 

indicate improved visual quality measured by tOSNR-XYZ metric. Compared with the NCL 

approach, our method reduced bit-rate requirement by an average of 4.74% when preserving same 

visual quality in the XYZ color space. However, color quality measured by DE100 metric show 

an average of 20.6% bit-rate increase. The lower color quality is due to the fact that global 

optimization treats all RGB values as equally important, which is not practical for natural content 

as their chromaticity distribution does not cover whole gamut. Furthermore, RGB combinations 

included in the content only occupy a fraction of all possible RGB code values. Thus, the resulted 

coefficients have been compromised for optimizing pixels that may not exist in the video sequence. 

 

 In Chapter 4, we overcome the above-mentioned issues by using a content adaptive 

optimization method, which takes RGB density of content into consideration and optimizes only 

these RGB values. Compression results show that our proposed method yields improved color 

quality for content with one prominent primary (either R, G, or B). For such sequences, an average 
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of 4.98% bit-rate savings is observed for the same color quality in the CIE L*a*b color space [33]. 

However, similar performance is not observed for uniformly distributed sequences, where our 

approach results in lower color quality. This is due to the fact that these uniform distributed 

contents cover more chromaticity range than sequences with prominent red, green, or blue pixels. 

Thus, adaptive optimization for such content has similar effect as global optimization, which 

assigns the same importance to all possible RGB values.  

 

 Finally, in Chapter 5, we proposed a weighted global optimization method, which separates 

all colors into three categories, Red, Green, or Blue. Furthermore, we assigned different weights 

for each category based on their contributions to luminance. Thus, greenish pixels are considered 

as the most important during the optimization process while blueish pixels have the least 

significance. After compression tests, we observed an average of 4.9% bit-rate savings for keeping 

same level of color quality in the CIE L*a*b color space [33]. Furthermore, our method 

successfully reduced color distortions measured by CIEDE2000 metric [32] for all possible colors 

at each luminance level.  

  

 

6.2 Future Work 

 In our experiments, all evaluations are based on objective metrics. A subjective evaluation 

should be conducted to visually assess the impact of our proposed new color encoding scheme. 

For this evaluation, however, a prototype HDR display that supports BT.2020 color gamut is 

needed. 
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 In our compression tests, we prepared the content in the pre-processing stage using our 

method and then compressed it using the HEVC test model software (HM 16.7). After compression, 

we applied our approach during the post-processing stage and conducted objective evaluations. 

Thus, our newly derived coefficients and chroma scaling factors are not transmitted in this entire 

workflow. Future evaluations of sending new coefficients as metadata to HEVC codec should be 

performed to more accurately determine the gain/performance of our approach. 
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