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Abstract

Alternative splicing is highly appreciated as a major contributor to cellular complexity,
and its dysregulation has been associated to several diseases. Despite being the focus
of numerous studies in recent years, there remains much unknown about functions and
regulations of alternative splicing in mammalian systems. Here, I take a systems biology
approach to study alternative splicing using high-throughput sequencing data.

In Chapter 2, I use tissue-specific high-throughput libraries of Drosophila melanogaster

to explore the potential inter-relation of RNA editing and alternative splicing. I first de-
velop a pipeline to accurately detect editing events. Next, I find regions where editing and
splicing are likely to influence each other, and report conserved RNA structures that can
mediate the inter-relation.

In Chapter 3, I study functions of Cyclin dependent kinase 12 (CDK12) using hu-
man cell line data. I show that CDK12 influences the differential usage of alternative
last exon. Additionally, the results demonstrate that CDK12 modulates the expression of
DNA damage response genes, and increases the tumorigenicity of breast cancer cells by
down-regulating the long isoform of DNAJB6 gene.

Finally, in chapter 4, I first present a review of methods that search for underlying
mechanisms explaining variations between high-throughput measurements of two biolog-
ical conditions. Next, I introduce our RNA-seq data derived from progressively inhibiting
splicing-related proteins at multiple concentrations of pharmaceuticals, and I discuss how
the reviewed methods should be adopted to benefit most from our type of data.

Our systems biology research provides new insights on how the studied components of
the splicing machinery contribute to splicing functions and regulations, and these findings
can help to improve our understanding of related diseases.

ii



Lay Summary

Genes contain information that determine what cells should do at specific times, and they
are sometimes referred to as the blueprint for life. Alternative splicing is a mechanism
through which multiple products are generated from a single gene, and these products (e.g.
proteins) can have different functions; therefore, the mechanism expands the capacity of
genes. Disruption in alternative splicing has been associated to many genetic diseases.
However, the mechanism is not fully understood. Fortunately, recent advances in technol-
ogy have brought new opportunities to better investigate this mechanism. In this thesis,
I study how the alternative splicing mechanism and its functions are regulated by some
genes and cellular machineries using data generated by new sequencing technologies. The
selected genes and mechanisms are known to play important roles in human diseases such
as cancers. Our findings can help to improve our understanding of the alternative splicing
mechanism and related diseases.
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Chapter 1

Introduction

Complexity of molecular responses is created through the interplay between biological
mechanisms. Hundreds and thousands of genes, RNA molecules and proteins communi-
cate through signalling pathways to provide appropriate responses to environmental stim-
uli. Disruption in any of these cellular processes including transcription, translation, DNA
repair, cell division and cell adhesion can initiate disease development. Consequently, in-
vestigating the inter-relations and interactions between these mechanisms is one key step
towards deciphering their regulations and functions.

Alternative splicing, a mechanism thorough which multiple products are generated
from a single gene, is highly appreciated as a major contributor to cellular complexity [3].
Many disease mutations have been associated to mis-regulation of alternative splicing [4,
5]. As a result, this process has become a critical topic for thorough research. Fortunately,
recent advances in technology [6, 7] has brought new opportunities to better investigate
alternative splicing and the related mechanisms such as transcription, RNA editing, and
poly-adenylation.

In this thesis, I took a systems biology approach to study the inter-relation between al-
ternative splicing and two other mechanisms, RNA editing, and phosphorylation of splic-
ing related proteins by Cyclin Dependent Kinase 12 (CDK12). I also studied the global
consequence of intervening with the splicing machinery. Based on the systems biology
perspective, understanding properties of a system requires simultaneously modelling com-
ponents of systems and integrating results of multiple types of experiments. The modelling
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can benefit from the experiments in biological backgrounds when different conditions are
screened, or it can benefit from intervening with the system and knocking down parts of
the system to monitor its influence on the other parts.

I start by studying the inter-relation of RNA editing and alternative splicing in a model
organism, Drosophila melanogaster in tissue specific data sets. Model organisms have
been broadly studied for understanding biological machineries and development of ther-
apeutics [8–10]. Fewer repeat regions, fewer overlapping genes, and smaller number of
transcripts per gene on average in Drosophila melanogaster compared to human [11, 12]
make the computational study of editing and splicing in Drosophila melanogaster easier
and less error prone. Thus, D. melanogaster brings great opportunities to study the inter-
relation of these two mechanisms in a context less complex than human, and its interpreted
results provide a test bed to explore various hypotheses.

Furthermore, I study the influence of CDK12 on the regulation of alternative splicing
through inhibiting CDK12 in human cell lines. I use data sets where CDK12 expression
was manipulated to quantify and model its influence on global RNA processing. More-
over, I show that how the proper gathering of information from multiple cell lines leads to
understanding the main functions of a protein. Human cell lines present closer estimates
to the rules governing cellular responses in human and are broadly being used to carefully
investigate findings [13, 14].

Finally, I investigate how inhibiting components of the splicing machinery impacts cel-
lular responses when the inhibition level is gradually increased. With the development of
pharmacologic agents, there is the opportunity to systematically interfere with the spliceo-
some components to inhibit their functions in human. By progressively increasing drug
levels and measuring responses and studying response curves, one can develop more ac-
curate assumptions regarding the primary and secondary effects of disrupted components.

In parallel to my focus on the main topic of this thesis, how splicing relates to its
components and other mechanisms, the thesis is designed to cover different steps which
should be taken for understanding a mechanism and targeting it in relevant diseases.
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1.1 Alternative splicing
In this section, I will briefly present the current knowledge of the splicing mechanism,
functions and regulations of alternative splicing, and also the computational approaches
developed to study alternative splicing.

1.1.1 Splicing mechanism
Splicing is a mechanism responsible for removing introns from a pre-mRNA molecule
and merging exons together [15, 16]. The process is carried out by spliceosomes in the
nucleus, where the splicesosome can cooperate and couple with other RNA processing
machineries such as transcription [17]. A typical exon is on average about one order
of magnitude shorter than an average-size intron in human [18] (few hundred and few
thousand nucleotides in a typical exon and intron, respectively). Thus, exon recognition
remains non-trivial for spliceosomes.

Spliceosomes employ the information in some regulatory conserved sequence motifs to
accomplish RNA splicing [19]. These complex macromolecular machines identify intron
boundaries with the help of the 5’ and 3’ conserved sequences [19]. More specifically,
there exist a highly conserved GU di-nucleotide at the 5’ end (splice donor site) and a
conserved AG di-nucleotide at the 3’ end (splice acceptor site) of introns. Some of the
other conserved informative sequences in a primary sequence are the branch point located
close to the acceptor site followed by a pyrimidine rich region [18–20]. Mutations in
these conserved sequences can change open reading frames and result in degradation of
transcripts, or producing incorrect amino acids and non-functional proteins.

Through detection of conserved sequence motifs by small nuclear ribonnucleoproteins
(snRNPs) of the spliceosomal machinery, two transesterification steps are carried out [21].
In the first transesterification step (figure 1.1.A), RNA molecules in snRNPs interact and
detect conserved motifs to trigger transesterification steps. Once the region is identified,
the 2’ hydroxyl of the branch point adenine nucleotide in the intron attacks the 5’ splice
site and cuts the sugar phosphate backbone of the pre-RNA molecule (figure 1.1.B). Sub-
sequently, the end of the intron covalently bonds to the adenine nucleotide and forms a
lariat structure. In the second transesterification step, the spliceosome goes to a conforma-
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Figure 1.1: The two transesterification steps of the splicing mechanism. (A) Before the
catalytic reactions of splicing, snRNA molecules in the spliceosome interact with the
pre-mRNA molecule. These interactions followed by conformational changes in the
splicing machinery initiate splicing. (B) The transesterification steps carried out by the
spliceosome. The first step reactions are shown in red, and the second step reactions
in blue. Conserved consensus motifs are shown in green, and the circled P’s represent
phosphates. Figure modified from [21] and [22].

tional rearrangement to bring the exons together, and guides the 3’ hydroxyl group of the
detached exon to react with the 5’ end of the other exon. Finally, the two exons are merged
into a continuous sequence and the lariat is released and degraded [21].

The spliceosome is composed of five snRNPs (U1, U2, U4, U5, and U6) and hundreds
of other protein components [21, 23]. The two transesterification reactions required for
the splicing mechanism cannot completely explain the necessity for such a complicated
machinery. Some of the spliceosomal proteins are required to avoid making defective
mRNAs, and some others link splicing to transcription, or other post-splicing events such
as mRNA transport [24].
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1.1.2 Functions and regulations of alternative splicing
Alternative splicing (AS), a process by which multiple transcripts are produced from a sin-
gle pre-mRNA molecule is one major cause of cellular complexity [25]. Splicing patterns
are determined by cell-types, developmental stages, or external stimulus [26]. Moreover,
studying the alternatively spliced genes reveals that the process is most important where
a differential processing is critical and a high level of diversity is required, especially
in brain [27, 28]. Brain-specific AS events play crucial roles in neuronal differentiation
and development, regulating protein-protein interactions, and regulating transcription net-
works [29, 30]. The accessibility and interactions of cis-regulatory sites with trans-acting
proteins can modify splice site selection. As a result, the final splicing product is not
always uniquely defined, and spliceosome decisions dictate the final conformation when
alternative junction choices are available. Based on the consequences of such decisions,
AS events are classified into multiple types, as illustrated in Figure 1.2.

Skipped exon

Retained intron

Alternative 3’
splice site (A3SS)

Alternative 5’
splice site (A5SS)

Mutually exclusive
exon (MXE)

Alternative �rst
exon (AFE)

Alternative last
exon (ALE)

Tandem 3’ UTR

Figure 1.2: Types of alternative splicing defined by the alternative choices that spliceosome
can make. The black boxes represent constitutive exons and the white boxes represent
alternative regions whose inclusion depend on splicing choices. Only in the “Retained
intron” type, an intron is contained in the final product. The red solid lines and the
blue dashed lines illustrate the two possible patterns of splicing for each class. Figure
modified from [31].
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Specific features of RNA regions qualify them as candidates of each AS type. For
example, skipped exons are usually shorter than constitutive exons and are flanked by
long intronic regions [32]. Besides, the number of nucleotides in skipped exons is often
multiples of three in order to prevent a change of reading frame and the introduction of a
premature stop codon [32]. On the other hand, retained introns tend to be short and possess
weak splicing signals around their junctions [33]. Finally, alternative 3’ and 5’ splice sites
are mainly evolved from constitutive exons after introducing mutations that could create
competitive splice sites [33].

The alternative splicing mechanism is evolutionarily conserved and is observed abun-
dantly in multicellular eukaryotic organisms [34]; however, its prevalence increases in
more behaviorally complex species such as humans [35]. The prevalence of alternatively
spliced genes grows from ∼25% of the genes in C. elegans and ∼60% in Drosophila

melanogaster to ∼95% of the genes in human [36]. Also, the relative abundance of splic-
ing types changes among organisms. As an example, in lower metazoans intron reten-
tion is common while the relative abundance of skipped exons grows for more complex
species [37].

Because the AS mechanism is conserved, one promising way to evaluate related hy-
potheses would be using model organisms. In the second chapter of this thesis, we chose to
investigate the regulation of alternative splicing in Drosophila melanogaster. Drosophila

melanogaster shares a large amount of its genetic content with human has been broadly
used to improve our understanding of many cellular mechanisms including alternative
splicing [38]. For example, Reiter et al showed ∼77% of human disease genes have sta-
tistically significant related sequences in Drosophila melanogaster [39]. According to
FLYBASE [40] (release: May 24, 2016), the genome of Drosophila melanogaster contains
∼17,700 genes of which ∼13,900 are protein coding. These 13,900 protein coding genes
encode ∼30,400 protein coding isoforms in total (an average of ∼2.2 isoforms per gene)
manifesting the potential of AS regulation in D. melanogaster. In particular, more than
40% of the genes are alternatively spliced and there exist a set of highly complex genes
(∼50 genes) each encoding over 1000 isoforms [41]. Similar to human, different patterns
of splicing are detected in Drosophila melanogaster [38, 41]. Dscam (Down syndrome cell
adhesion molecule) is an example of a gene displaying complex AS patterns. The gene
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contains 20 constitutive and 95 alternatively spliced exons [42]. Combinatorial assembly
of observed local splicing patterns in Dscam can potentially encode more than 38,000 iso-
forms; a number greater than the number of genes in the entire D. melanogaster’s genome.
Dscam encodes an axon guidance receptor and this huge level of complexity seems essen-
tial for its functional roles as an axon guidance receptor [42].

In addition to the interesting features of splicing in Drosophila melanogaster that re-
sembles AS in human, a massive volume of publicly available data makes Drosophila

melanogaster a promising candidate model to study alternative splicing. UCSC genome
browser [43, 44] provides a genome annotation of Drosophila melanogaster and an align-
ment of its genome to 14 other Drosophila species. This alignment enables benefiting from
evolutionary information and comparative methods. Besides, FLYBASE is a rich growing
source of information on gene expression, genes interactions, observed phenotypes, and
also genome features gathered from thousands of papers [40]. Additionally, there exist ex-
perimental data sets generated by different experimental pipelines including RNA-seq and
chromatin immunoprecipitation (ChIP) in the MODENCODE project [45]. These exper-
iments are replicated on different tissues and through various developmental stages, and
the information can be used to study cellular behaviors in a condition-specific manner.

Apart form the cis-acting regulatory sites discussed, there are two other main classes of
such primary sequence signals known as splicing silencers and splicing enhancers [46, 47].
Moreover, these sites and the corresponding trans-acting proteins have the tendency to
decrease (in the case of silencers) or increase (in the case of enhancers) the probability
of a neighboring intron to be spliced. These signals can be intronic or exonic (Exonic
Splicing Silencers (ESS)/Enhancers (ESE), Intronic Splicing Silencers (ISS)/Enhancers
(ISE)). These regulatory motifs can function as a silencer or an enhancer depending on
their location in a pre-mRNA sequence. For instance, if G triplets occur in introns, they
act as enhancers and in exonic context they usually act as silencers [31].

Recent studies have significantly improved our understanding of the AS mechanism.
Apart from the regulatory elements discussed, splicing is found to be modulated by other
factors such as transcription rates, pre-mRNA structures, histone marks and nucleosome
positioning [48]. Among these, of special interest to my focus in this thesis are transcrip-
tion rates and pre-mRNA structures, as they are more related to the splicing components I
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investigate.
RNA splicing generally happens co-transcriptionally [49, 50]. Being co-transcriptional

provides further opportunities to regulate the splicing mechanism. For example, C terminal
domain (CTD) of RNA polymerase II (RNA poly II) helps in the recruitment of splice
factors [50]. Additionally, when RNA pol II elongates slowly, weak 3’ splice sites acquire
higher chance of being properly processed without competing with stronger downstream
3’ splice sites [50]. Also, the transcription rate can influence formation of alternative
structures which in turn can affect splicing, as discussed in the following [51].

Pre-mRNA structures act as additional regulators of alternative splicing [52]. Sev-
eral mechanisms in which the formation of structure influences splicing patters have been
reported in literature [53]. A considerable amount of studies reported that the substrate se-
lection of RNA binding proteins depends not only on the primary sequence of a target, but
also on the target structure [52], and clearly this conformation dependence exists for many
of the major SR proteins (proteins with RNA binding motifs important in AS regulations)
as well. As a simple example, an RNA sequence which is detected by the spliceosome
machinery (e.g. 5’ and 3’ splice sites) becomes inaccessible because of its base-parings
with the other parts of the sequence in the human MAPT gene (microtubule-associated
protein tau). Meanwhile, the splicing machinery requires well-suited distance between the
splicing consensus motifs in order to carry out splicing in a certain way. Pre-mRNA struc-
tures have the tendency to decrease the effective distance between the conserved motifs,
and thus resulting in a modified pattern of splicing. These findings are well supported
by further computational evidence as well. Pervouchine et al [54] searched for pairs of
complementary sequences around splice sites that can form stable hairpin structures. By
studying mammalian protein-coding genes, they identified hundreds of such pairs where
the energy of suggested structures could modify the pattern of splicing. In an earlier study,
Meyer and Miklos [55] analyzed the alignment of 11 human genes to other vertebrates and
found conserved double-stranded structures in coding regions. They showed that among
codons encoding the same amino acid (due to degeneracy of genetic code) there is a selec-
tive pressure towards those leading to a more appropriate double-stranded structure. Also,
in a case study, Meyer and Miklos [55] predicted secondary-structures of regions around
exon 12 of the human CFTR (cystic fibrosis transmembrane regulator) gene for the wild
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type sequence and also for the sequences carrying synonymous mutations. They showed
that secondary-structure of sequences with high (experimentally evaluated) splicing effi-
ciencies are more similar to each other than to those sequences with low splicing efficien-
cies. These studies suggest a global regulation of alternative splicing by the formation of
different structures and consequently, taking the secondary-structure of pre-mRNAs into
consideration facilitates understanding splicing patterns [53].

A considerable number of human diseases have been linked to aberrant splicing events
[56]. Genomic mutations can create or destroy splicing sites or splicing enhancers and
silencers, and in this way they sometimes alter the splicing patterns [52, 56]. For example,
the severity of spinal muscular atrophy is affected by the creation of an ESS (Exonic Splic-
ing Silencer) [57]. Also, mutations in genes involving the splicing mechanism have been
linked to some human diseases such as retinitis pigmentosa [58]. After the uncovering of
the cause of these and many other diseases, splicing events became important therapeutic
targets.

The importance of AS regulation can be illustrated by an example involving tau pro-
tein. A gene located on chromosome 17, MAPT, encodes tau which is a microtubule-
associated protein required for the polymerization and stability of axonal transport in neu-
rons [26]. Through the alternative splicing of exons 2, 3 and 10, six protein isoforms are
produced in the adult human brain. There exist three patterns of splicing which involve
exons 2 and 3; and exon 10 is included or skipped independently [58]. Exon 10 and three
other exons (9, 11, and 12) encode four microtubule-binding domains. Depending on the
inclusion or exclusion of exon 10, the N-terminal of the resulted protein can have 3 or 4
microtubule-binding domains. In a normal human brain, the abundance of isoforms in-
cluding exon 10 is equal to isoforms where exon 10 is spliced out, and the ratio of these
two sets of isoforms seem to be important for neuronal function [26, 58]. Furthermore,
it has been shown that mutations in tau protein cause neuro-degeneration accounting for
fronto-temporal dementia and parkinsonism. Further analysis of the pre-mRNA structure
revealed that a stem-loop structure could be formed involving the 5’ exon/intron junction
of exon 10 and the accessibility of the splice site is regulated by the structural configu-
ration of this region [53] (See Figure 1.3). Mutations that destabilize the helix structure
enhance the accessibility of the region and result in the increase of the set of isoforms
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Figure 1.3: Alteration of alternative splicing in a human disease (modified from [53]). A
hairpin-loop structure plays an important role in regulating the inclusion of exon 10
in the human tau protein. (A) The U1 snRNA structure and its potential interaction
with the exon-intron hairpin-loop structure, revealed by NMR studies. Exonic and
intronic nucleotides of the hairpin-loop are shown by uppercase and lowercase letters,
respectively. If the structure is formed, the interaction of the region and U1 snRNA (the
dashed line) does not happen properly, and U1 snRNA cannot detect the region. (B)
Mutations in the primary sequence disrupt the hairpin-loop structure and increase the
recognition of the region by U1 snRNA. As a result, more transcripts will include exon
10 (Abundance of the isoforms are presented by the thickness of red and blue lines in
the two conditions); the condition leads to frontotemporal dementia and parkinsonism.
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that include exon 10. Accordingly, therapeutic agents have been suggested to stabilize the
stem-loop configuration.

Genome-wide studies have broaden our understanding of regulations and functions
of alternative splicing; however, considering the diversity of cis-acting elements and the
huge number of corresponding trans-acting factors, there is still so much unknown re-
garding position dependent and context dependent regulations and functions of alternative
splicing [59]. Moreover, the role and importance of factors such as non-coding RNAs and
dsRNAs, and upstream pathways are being more appreciated based on recent studies [60];
accordingly, the discovery of many new AS regulators are anticipated [61]. Finally, to get
closer to understanding the splicing code, we need to investigate genes that are affected by
specific splicing factors [62].

Despite the numerous studies on alternative splicing, some fundamental questions are
yet to be answered. For example, it is still not clear what percentage of observed isoforms
are essential for regulating cellular responses [49], or what are the relevance of coupling
alternative splicing and other mechanisms such as transcription? [49] and how abundant
and functionally relevant are the coupling of alternative splicing with other mechanisms?
In this thesis, I investigate some of these questions.

1.1.3 Computational identification of alternative splicing using
RNA-seq data

Despite being remarkably helpful in improving our understanding of the AS mechanism,
properly interpreting RNA-seq data is challenging. Short reads are sometimes mis-aligned,
especially when they originate from the repetitive regions of genomes (e.g. more than 50%
of the human genome constitute repetitive elements [63]) or when they harbor multiple
sequencing errors. Besides, sequencing biases due to non-uniform sampling of sequencing
machines should be appropriately addressed [64, 65]. Additionally, many of the isoforms
share common parts, making prediction of reads’ origins nontrivial. Understanding and
modeling these and other potential issues help avoid misleading conclusions.

The importance of the AS mechanism and the inherent complexity of studying AS us-
ing RNA-seq data have motivated the development of several computational methods [66–
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76]. Alamancos et al published a comprehensive review of the proposed methods along
with their strengths and limitations [77]. Conceptually, these methods can be classified
into two groups: The first group contains algorithms that model the problem at the isoform
level and assess the differential usage of entire isoforms; and the second group contains
methods that model AS at local regions (e.g. an exon or an intron) without being concerned
to the other parts of transcripts. Another criteria that differentiate methods is whether they
are restricted to the existing transcriptome annotations or they detect de novo AS events as
well.

Some of the methods performing differential splicing analysis at the isoform level are
CUFFDIFF2 [71], BITSEQ [72] and MISO [73]. All three methods take aligned reads in
addition to annotation files as input and provide information on the differential regula-
tion of genes and isoforms. Apart from distinct statistics being used in these methods,
there are some other clear distinctions as well. CUFFDIFF2 can detect de novo isoforms
and AS events. Both BITSEQ and CUFFDIFF2 allow incorporating biological replicates,
while MISO cannot. CUFFDIFF2 assigns a p-value to candidate events, MISO reports a
Bayes factor, and BITSEQ uses a one sided Bayesian test to rank the genes based on their
probability of being up or down regulated.

The event based differential alternative splicing analysis includes methods such as
MISO [73], DEXSEQ [74], DSGSEQ [75], and DIFFSPLICE [76]. MISO can be applied
in both isoform-based and event based analysis and therefore is placed in both categories.
All methods accept aligned read files and identify differential regulation in local regions
of transcripts. Among them, DIFFSPLICE is the only method that does not rely on an-
notation files. It constructs alternatively spliced modules (ASMs) using the aligned reads
which represent regions where transcripts diverge. Accordingly, it is able to identify com-
plex splicing events. On the other hand, MISO is able to distinguish between 8 different
pre-annotated types of splicing (those shown in figure 1.2). In contrast, DEXSEQ and
DSGSEQ are specialized for only one type of AS event, skipped exon. All the methods
except MISO incorporate information from multiple replicates. MISO assigns a Bayes Fac-
tor values to each of the identified events as a measure of confidence, DEXSEQ reports
corrected p-values, DSGSEQ uses Negative Binomial statistics to rank AS candidates and
finally DIFFSPLICE outputs events under a given false discovery rate by considering its
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introduced test statistics.
Isoform-based methods model the AS problem in more detail and take into account

all potential transcripts and all reads aligned to the genes under investigation. Therefore,
properly solving these models can provide helpful clues on global regulation of isoforms.
However, sequencing biases with regard to non uniform sampling, as well as shared re-
gions among transcripts complicate the inference problem. In situations where the genes
constitute many alternatively spliced isoforms, these methods encounter problems [78].
On the other hand, local event based methods resolve this issue by only considering reads
aligned to a small region of interest. Clearly these methods disregard information from
many reads and are especially error prone when local events are short [78]. The appro-
priate method should be selected according to the research question, type and amount of
available data (e.g. read length and read depth), and also the completeness of existing
annotations for the species of interest.

1.2 RNA editing by ADAR proteins
In the second chapter of this thesis, I investigate the inter-relation between alternative
splicing and RNA editing. Here, I briefly summarize what we already know about the
editing mechanism.

1.2.1 Mechanism and abundance of A-to-I RNA editing
RNA editing is a widespread molecular mechanism which modifies transcripts [79]. The
mechanism was first discovered in 1986 in trypanosomes, where nucleotide insertions
cause reading frame shifts [80]. However, in mammals, the most frequent type of RNA
editing is A-to-I conversion carried out by ADAR (Adenosine Deaminase that Act on
RNA) proteins through deamination process (Figure 1.4). Most cellular mechanisms in-
terpret inosine as guanosine, including splicing and translation. Therefore, in RNA-seq
data also adenosines will be presented as guanosines. Some cellular factors (e.g., Tudor
staphylococcal nuclease involved in RNA interference), however, can distinguish inosine
from guanosine (as shown in Xenopus laevis [81]).

Different ADAR genes show non-identical behavior based on their distinct conserved
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Figure 1.4: A-to-I mechanism carried out by ADAR proteins. (A) Chemical process of de-
maination through which an adenosine is converted to an inosine (Part A from [82]).
(B) ADARs target double-stranded structures in pre-mRNA molecules. Many of these
structures are formed by base pairings between exons and flanking introns and usually
upon ADAR binding, multiple nucleotides are converted until the structure is destabi-
lized and ADAR is released [83] (more details in the text).

protein domains [84]. All members of the ADAR gene family share protein domains es-
sential for RNA binding and catalytic activities (Figure 1.5). The dsRNA (double-stranded
RNA) binding domains in the N-terminal region of ADAR genes fulfill the recognition and
binding of the protein to the substrate. The highly conserved catalytic domain carries out
the deamination process in all ADAR proteins. Additionally, there are some other do-
mains which make human ADARs work uniquely [85]. The functional impact of Z-DNA
binding domains in ADAR1 is still unclear, but one hypothesis is that Zα domain local-
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Figure 1.5: Organization of domains in ADAR proteins (from [85]). Domains that are
identified in ADAR family members are shown for three genes in human genome
(ADAR1 encodes two expressed isoforms), two genes in C. elegans and one gene in
D. melanogaster. The deaminase domain and the dsRNA binding domains are com-
mon in species, whereas there are other domains specific to some of the genes.

izes ADAR1 at genes being transcribed, which enables ADAR1 to more efficiently use
intronic regions required for editing, before they are removed [85]. Finally, ADAR3 has
been shown to bind to single stranded RNA with the aid of its arginine-rich RNA binding
domain (R-domain) [85].

A remarkable number of RNA editing events were found in different species indicat-
ing their significant potential to contribute to the regulation of other cellular mechanisms.
RADAR [86] (Rigorously Annotated Database of A-to-I RNA editing) database gathered
∼5,000 editing sites in fly, ∼9,000 editing sites in mouse and over 2.5 million, a surpris-
ingly huge number, editing sites in human (version 2, update: December 24, 2014).

The identified editing sites occur in both exons and introns. Based on RADAR an-
notations intronic editing happens ∼20 times more often than exonic editing in human
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(∼2,000,000 intronic sites compared to∼100,000 sites in coding regions and untranslated
regions). In Drosophila, however, exonic sites are ∼1.5 times more observed compared to
intronic sites (∼2700 exonic sites compared to ∼1750 intronic sites). The dominance of
intronic sites observed only in human can be at least partially explained by the prevalence
of repetitive elements in human genome that can form dsRNA structures served as ADAR
targets. Meanwhile, it should be noted that most of the RNA-seq libraries are enriched for
the mRNA molecules where most introns are removed. Thus, the ratio of detected intronic
events presents only a lower bound of genuine intronic targets.

In the second chapter, I study the reciprocal influence of RNA editing and alternative
splicing in D. melanogaster. Considering the large number of identified A-to-I RNA edit-
ing events in Drosophila melanogaster in addition to the valuable publicly available data
discussed before, we use Drosophila melanogaster data to study ADAR mechanisms, as
well as alternative splicing. D. melanogaster has one ADAR gene (dADAR), and ADAR2
is the most similar gene to it among vertebrate ADARs [85]. DADAR is highly expressed
in the central nervous system, and similar to vertebrates, its expression shows temporal
regulation [87]. In recent years, there has been an increasing amount of studies on the
importance and abundance of RNA editing in Drosophila melanogaster [88, 89].

1.2.2 Functions of RNA Editing
ADARs require double-stranded RNA regions to perform the deamination process [84].
Double-stranded RNAs are composed of hydrogen bonds that form between pairs of com-
plementary nucleotides (A-U, C-G, and G-U) in an RNA molecule. In primary transcripts,
these regions are typically formed by local RNA secondary-structure features such as
hair-pins and they can be very long (>500 nucleotides). Once an appropriate double-
stranded region is found, ADARs bind a base-paired adenosine and edit it without being
very specific about the primary sequence surrounding the substrate [90]. In other words,
the requirement for a double-stranded structural context is much more important than the
primary nucleotide composition in specifying a potential ADAR binding site [91]. Some-
what surprisingly, this key feature has not yet been directly exploited in most RNA editing
prediction programs [92, 93].
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One of the key features of ADAR-derived RNA editing is that even in the same cell,
the editing of two transcripts of the same gene does not necessarily involve identical RNA
editing sites, but only the same double-stranded region which seems to be necessary and
sufficient requirement for RNA editing to have the desired functional effect. Many of the
known double-stranded regions serving as ADAR binding sites are formed between exonic
sequences and complementary intronic sequences [94] (known as editing site complemen-
tary sequences). This supports the idea that editing usually precedes splicing [95]. Also,
for many editing sites, the levels of pre-mRNA editing and mRNA editing correlate well in
Drosophila melanogaster showing that RNA editing can happen co-transcriptionally [89].
A well-studied example is the editing of RNA structures formed between inverted Alu

repeats in human transcripts [96]. Alu repeats constitute more than 10% of the human
genome and can readily form double-stranded region and thus potential RNA editing sites
by binding to their inverted copies in the same primary transcript. When one site is edited,
other adenosine nucleotides in the same double-stranded region have a high chance of
also being edited by the same ADAR protein; this may result in the conversion of several
adenosines in a small region [97, 98].

Several functions of RNA editing have been identified so far. I briefly review some of
these functions in the following.

RNA editing generally destabilizes the structure of its targets [83]. The function of
an RNA molecule is mainly determined by its structure [99]. In recent years, the crucial
role of RNA structure in regulating other cellular mechanisms has become more clear
[100, 101]. Blow et al [83] studied several editing sites in the human transcriptome to
investigate the global effect of RNA editing on the stability of the target’s structure. By
predicting the secondary-structure of editing regions before and after the corresponding
editing events, the authors illustrate that the abundance of edited A:U matches (which is
changed to a G:U mismatch) reduces the stability of the target molecule. Alteration in the
structure of a target molecule changes the way it interacts with other molecules or the way
it responds to cellular machineries.

Diversifying protein products of a single gene is another known function attributed
to RNA editing [102]. Non-synonymous modifications in coding regions of transcripts
produce protein products with altered functionalities. Most of these editing events oc-
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cur in the genes involving rapid electrical and chemical neuro-transmission in Drosophila

melanogaster [94], which are strongly expressed in central nervous systems. Stark et

al [103] observed that the high conservation in coding regions of 12 aligned Drosophila

genomes continues to hundreds of nucleotides after the stop codon, and argued that the
editing of stop codons in these genes could be a candidate underlying mechanism in such
cases in order to generate two isoforms which are significantly different.

ADAR proteins can also affect gene expression through the editing of miRNA molecules
and their targets [104]. MiRNAs bind to their complementary 3’ untranslated regions of
messenger RNAs and suppress gene expression by preventing translation or causing target
degradation. Several studies have revealed that a notable amount of editing events occur in
3’ UTRs in human and mouse [104, 105]. The large number of editing events in 3’UTRs
indicates the potential effect of RNA editing on post-transcriptional gene silencing. Ad-
ditionally, some of the editing events are known to happen in miRNA sequences, and this
could be considered as another way of affecting gene expression by ADAR proteins [104].

Severe phenotypes have been associated with the deficiency of ADARs. Drosophila

deficient for ADAR shows severe neurological disorders such as locomotor incoordination
and temperature sensitive paralysis [106]; mice deficient for ADAR1 have a heterozygous
embryonic lethal phenotype [107], and in humans, variations of RNA editing have been
linked to neurological and psychiatric disorders [108]. These severe phenotypes also make
it challenging to investigate ADAR functions.

Figure 1.6 illustrates an example of RNA editing in protein coding regions of 5−
HT2CR. 5-HT receptors are G-protein coupled receptors that cross the cell membrane sev-
eral times and play roles in signal transduction. A double-stranded structure is formed
between exon 5 and intron 5 of its pre-mRNA molecule which serves as an editing sub-
strate. Accordingly, five sites in exon 5 of 5−HT2CR undergo A-to-I editing. If all the
sites are edited, the G-protein-coupling activity of the corresponding protein will be hugely
different from the corresponding unedited protein[109]. As a consequence, RNA editing
of these genes have been associated with some psychiatric disorders such as depression
[109].

Although studies suggested some primary sequence features and also proteins that af-
fect ADAR activity in specific target regions, the general regulation of RNA editing is

18



Exon 5

Ile IleAsn

Intron 5
AUA

AUI IAU AIU

IUA IIU IUU
ValGlyIUI

Met Asp Ser

Val

A B E C D

AAU AUU

N

2C

C

5-HT   R

ADAR1 ADAR1

ADAR1
ADAR2

Val
Gly

Val

Figure 1.6: Modification of the amino acid sequence of the human 5−HT2CR through RNA
editing (figure from [109]). A part of the pre-mRNA molecule of 5−HT2CR, a trans-
membrane receptor, is shown in this figure. ADAR1 and ADAR2 target 5 sites (A, B,
C, D, and E) of exon 5 to produce proteins with highly modified properties. These 5
sites are embedded within a hairpin structure formed by base-pairings of exon 5 (thick
blue line) and the exonic complementary sequences of intron 5 (thin blue line).

unclear. Inverted copy sequences in proximity of a region increase the editing probabil-
ity of that region, probably by having the potential to form the double-stranded region
required for ADAR binding; in support of this, Alu repeats were observed to constitute
the majority of ADAR targets in human transcripts [110, 111]. Moreover, some short pri-
mary sequence preferences have been observed for ADAR proteins in human [112, 113],
mouse [93] and fly [114]. On the other hand, few RNA-binding proteins have so far been
shown to suppress the editing levels of specific targets [115]. The SFRS9 gene, which en-
codes a splicing factor, represses the editing of the cyFIP2 gene. This could be the result
of competition between the two proteins for common substrates or due to the protein-
protein interaction between ADAR2 and SFRS9 [115]. The level of ADAR expression
is another regulatory factor, despite it not usually correlating well with the level of RNA
editing [116].
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Moreover, considering the huge number of identified editing sites, there is still much
to be discovered and understood regarding the molecular mechanisms and functional roles
of RNA editing. The way RNA editing interacts with and affects other mechanisms is
still unclear [90]. For example, given the abundance of RNA editing events in noncoding
RNAs, and the growing evidence for the influence of RNA editing on gene expression,
more detailed study of how editing affects RNA interference seems promising [84]. Ad-
ditionally, recent studies suggest that alternative splicing and RNA editing mechanisms
have the potential to influence each other [95, 117]. Considering the co-occurrence of
RNA editing and alternative splicing in same genes[114, 117], we study their potential
inter-relation in this study.

1.2.3 Computational detection of RNA editing
The number of detected RNA editing sites has grown rapidly since the development of
RNA-seq technologies. Sequencing machines are able to generate hundreds of millions
of reads with a much lower cost compared to Sanger sequencing. As a result, the large
number of reads aligned to a single location makes the detection of RNA editing sites with
a low level of editing much easier. In the following, I discuss some of the computational
methods proposed to encounter potential errors when using RNA-seq data. Table 1.1 sum-
marizes these methods.

Author/year Strategy ADAR features incorporated confidence measure? Reference
Peng et al (2011) Using thresholds None No [104]
Danecek et al (2012) Using thresholds Vicinity of targets No [98]
Li et al (2012) Likelihood model None Log-likelihood ratios [113]
Guiliany et al (2012) Bayesian model None Probability based [118]
Laurent et al (2013) Thresholds/Random forest None Ranked based [114]
Zhang et al (2015) Mutual information based Randomness of editing Ranked based [119]

Table 1.1: Summary of the methods proposed to identify editing events.

Early methods of identifying editing events by high-throughput sequencing data were
threshold based, mainly for their simplicity [104, 111, 120]. The major concern when ap-
plying empirically determined thresholds is that the margin value of passing a threshold is
not considered in making the final conclusions [118]. Li et al [120] claimed the discovery
of thousands of editing events for each of the twelve possible conversions, most of which
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were repeatedly reported as being the consequence of sequencing artifacts [121, 122]. One
of the convincing arguments was that most of those events were predicted to occur on ei-
ther ends of the reads where the probability of error is much higher [121]. Accordingly,
More stringent filters were utilized in the following studies to prevent the abundance of
false positive predictions.

Likelihood models offer the ability to quantify the significance of predictions. To over-
come the shortcomings of threshold based models, Bahn et al [113] applied a statistical
approach. By considering the quality score of the aligned reads and the position of nu-
cleotides in a read, the authors proposed a model to compute the likelihood of a site being
edited with ratio r. Then, in order to find the ratio of editing, this likelihood function is
maximized with respect to r. Finally, the confidence in predictions of editing ratios is
assessed by comparing them against the null hypothesis using a log likelihood ratio test.

A study by Guiliany et al [118] involved the jointly modeling of whole genome se-
quencing and RNA-seq data using mixture models. This model, called Auditor, requires
DNA and RNA base counts as input, and calculates the probability of editing at each po-
sition in the genome. To benefit most from data, transcriptotype (mRNA genotype) is
modeled as a function of genotype using a transition matrix to present the probability of
observing an specific transcriptotype given a defined genotype. The transition values can
be learned by the expectation maximization method. When the pipeline is coupled with
MUTATION-SEQ [123], a method to detect somatic mutations, the enzymatic modifica-
tions carried out by ADARs can be effectively distinguished from other types of observed
discrepancies.

In more recent studies, other machine learning approaches have also been proposed.
Laurent et al [114] developed a method based on multiple rounds of detection and vali-
dation to adjust the applied thresholds. They also applied the Random Forest method to
train a classifier based on true positive and true negative events found in their validations,
and also to assess the importance of different features. In an interesting and completely
different approach, Zhang et al [119] used the fact that if a read covers two nearby SNPs
(single nucleotide polymorphisms), the two variable positions will have a fixed allelic link-
age; however the fixed linkage breaks in the case of an RNA editing event coupled with
an SNP due to inherent randomness in editing. Accordingly, they compute the mutual
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information (MI) for observed variants. If the MI value deviates significantly from the
distribution of publicly available MI values for SNPs, it would be considered as an editing
event.

Other known ADAR features can be incorporated to improve the computational power
of existing pipelines. As an example the fact that ADARs edit multiple sites within a small
region has been incorporated in a pipeline introduced by Danecek et al [98] to extend the
list of detected editing sites. As discussed, one of the requirements of ADAR targets is
that they must be dsRNA regions. In the following, I briefly explain methods developed to
computationally detect structural regions within RNA transcripts.

Predicting tertiary structures is computationally hard, and experimentally costly and
time consuming. Fortunately, RNA secondary-structure are also informative for uncov-
ering functional roles of RNA molecules [51]. Conceptually, RNA secondary-structure
prediction methods are classified into two main categories: energy-based methods and
evolution-based methods.

Energy based methods are commonly established upon the idea that the ultimate struc-
tured RNA molecule is the one minimizing the overall free Gibbs energy. RNAFOLD [124],
MFOLD [125] and SFOLD [126, 127] are some of the methods that try to solve this opti-
mization method by introducing time and memory efficient algorithms. These methods are
fast and work for sequences of thousands of nucleotides, however they have some limita-
tions. Several assumptions of these methods are violated in vivo and the accuracy of them
rapidly drops by sequence length for sequences longer than few hundred nucelotides in

vivo. First, in vivo, proteins and other molecules interact with a folding transcript and im-
pose further folding constraints. Second, the folding time for RNA molecules is finite and
the structure may never reach the optimum energy point; and finally, there exist uncertain-
ties in the experimentally measured parameters (stacking energies, energy of bulges, etc)
required by these methods.

The second class of RNA secondary-structure prediction methods rely on a completely
different assumption. The basic idea is that homologous sequences diverge through evo-
lution in a way that the functionally important structures are preserved. In other words,
if a base pair is functionally important, then although the primary sequence of the corre-
sponding nucleotides may diverge, the changes always happen in a way that the pairing
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potential is maintained (C:G base-pair changes to A:U and not A:G). Based on this con-
cept, methods such as TRANSAT [128], EVOFOLD [129], RNA-DECODER [130, 131]
and PFOLD [132] search for the linkage between divergence of pairs of bases. Given a
set of aligned sequences and an evolutionary tree, Most of the proposed methods apply
phylo-SCFG (stochastic context free grammar) to model and score the evolution of paired
columns and unpaired columns statistically and find an optimal solution based on the re-
sulting conservation scores. Moreover, the flexibility of phylo-SCFGs allows assigning
prior probabilities to predictions and also capturing additional hypotheses on secondary-
structures. For example, if functional structures form in coding regions, apart from the
structural restrictions, the amino acid sequences should also be preserved. In other words,
only the third codon position can freely hold structural information because it usually
does not change the amino acid, in contrast to the first and the second positions. RNA-
DECODER is the only method that properly models these different evolutions and in the
case of RNA editing, because many of the editing events happen in coding genes, the
method could be helpful by incorporating coding information as well.

1.3 Phosphorylation by Cyclin Dependent Kinase 12
(CDK12)

In the third chapter of this thesis, I study how CDK12 influences the regulation of RNA
processing and specifically alternative splicing. In this section, I review our current under-
standing of CDK12 mechanisms and functions.

1.3.1 CDK12 is a protein kinase
One other mechanism that contributes to expanding genome repertoire is post-translational
phosphorylatoin. Over 500 protein kinases have been annotated that perform the phospho-
rylation process [133]. This large family of regulatory enzymes supplies cells with an
additional level of regulation in order to control most cellular processes [134]. The func-
tionalities of these enzymes are crucial for determining cell fate; accordingly, impaired
functions of kinases have been attributed to diseases including multiple cancer types..

Kinases have been investigated thoroughly as they constitute attractive targets for ther-
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apeutics. Besides, studies have shown the potential to develop highly selective drugs for
kinases. For instance, matinib is one of them with a high success rate in chronic-phase
CML (Chronic myelogenous leukemia) patients [135]. Therefore, considering the general
role of kinases in regulating many signalling pathways and the small number targeting
agents designed so far, the future investigation to target other members of the family seems
promising and essential [135].

One class of regulatory kinases are cyclin dependent kinases (CDKs). CDKs are in-
active when they are in their monomeric form, and form holoenzymes with their cyclin
partners for activation [136]. Although initial studies conducted based on their cyclin do-
main confirmed their involvement in cell cycle regulation, CDKs are known to be engaged
in a variety of other mechanisms such as transcription, splicing and DNA repair [137–139].
Similar to other kinases, impaired CDKs are hallmark of several diseases. CDK12 is one
member of this family of enzymes which associates with Cyclin K to become active [140].

Cyclin dependent kinase 12 is evolutionarily conserved [141]. Human CDK12 is a
large protein (1,490 amino acids) [142] located on chromosome 17. The Drosophila

melanogasterorthologue is 41% identical to the human CDK12, and the C. elegans or-
thologue shows 53% identity [143]. Among the human genes, CDK13 has a very similar
kinase domain, but other that that looks different [143]. The RS domain (domains rich
in alternating arginine and serine residues) of CDK12 is usually observed in SR proteins,
proteins known to play crucial roles in the regulation of pre-mRNA splicing. Furthermore
the protein is found to be co-localized with the splicing machinery and the hyperphospho-
rylated form of RNA pol II [144].

1.3.2 Functions of CDK12
CDK12 is involved in the regulation of transcription elongation. The protein helps in
the productive elongation of RNA pol II by phosphorylating C terminal domain (CTD) of
RNA polymerase II, as shown both in human and Drosophila [140, 141, 145]. An expres-
sion microarray study showed that the phosphorylation only modulates the transcription
of a small set of genes, primarily long genes with many exons [146]. Some of these tar-
get genes are involved in genome stability including BRCA1 (Breast and ovarian cancer
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type 1 susceptibility protein 1), ATR (Ataxia telangiectasia and Rad3-related) and FANCI

(Fanconi anemia complementation group I).
In addition, CDK12 also contributes actively to the regulation of alternative splicing.

The idea is supported by several evidence. First, as explained before, CDK12 proteins
contain RS domains. RS domains are usually observed in SR proteins and are believed
to be important for recruiting proteins of the splicing machinery [147]. Second, over
30 splicing proteins interact CDK12, including SRSF1 and U2AF2, and several 3’-end
formation factors [148]. Finally, a study by Chen et al [149] illustrated that the expression
of CDK12 can modulate the splicing pattern of a synthetic E1A minigene; and Rodrigues
et al [150] found that CDK12 is essential for regulating the splicing activity carried out
by HOW protein. Further genome-wide investigation seems necessary to uncover general
regulation of AS modulated by CDK12.

Similar to many other protein kinases, functional and structural properties of CDK12

qualify it as a promising drug target. CDK12 is one of few genes recurrently mutated
in ovarian cancer and these mutations are usually mutually exclusive with mutations in
BRCA1 or BRCA2, two of the most abundant mutated genes in ovarian cancer [151]. Dis-
ruption of CDK12 has also been observed in breast and gastric cancers [152]. Furthermore,
CDK12 over-expression has been associated with poor prognosis power and a higher risk
of tumour recurrence [144]. Thus, CDK12 seems to be an attractive drug target for in-
vestigation, and better understanding of its general effect on RNA processing could help
advancement in therapeutics.

In chapter 3, I explore how CDK12 regulates alternative splicing and gene expression,
and how target genes are selected at a genome-wide scale.

1.4 Research contributions
In the following, I briefly summarize my research questions and my objectives in the three
main chapters of this dissertation (Figure 1.7).

In chapter 2, my main research question was how RNA editing regulates splicing pat-
terns. Based on the importance of RNA editing and alternative splicing mechanisms in
diversifying gene products, as described in this section, I investigated the potential inter-

25



Alternative Splicing  
Regulations and  

Functions

Inter-relation of  
Alternative Splicing and  

RNA Editing

Tissue specific data sets from the modENCODE project

Find co-occurrences of editing and alternative splicing

Search for mechanisms that may mediate the inter-relation

Regulation of  
Alternative Splicing by 

CDK12

CDK12 knockdown data in human cell lines; TCGA data

Specify types of alternative splicing regulated by CDK12 

Identify potential mechanisms in cancer biology context

Impacts of Components 
of Splicing Machinery on 

Cellular Responses 
Review of methods to inferring drivers of cellular responses

Data from pharmaceuticals interrupting splicing mechanism

Determine functions of inhibited components

Chapter 4

Chapter 3

Chapter 2

Figure 1.7: A diagram of my research presented in this dissertation. The figure shows data
sets I use and the analyses I perform in the 3 main chapters of this study.

relation between these two mechanisms. Considering the existing evidence on some cases
where editing regulates splicing [95], I hypothesized this regulation happens more fre-
quently than what was known previously.

My main goal was to find local regions where splicing patterns is modulated by RNA
editing and also to uncover the mechanism of regulation. I hypothesized splicing and
editing can compete for common targets in local regions, or editing can influence splicing
through modifying sequence motifs and structural features in a genome-wide scale. I
addressed this problem in the context of Drosophila melanogaster, using tissue-specific
RNA-seq data from the MODENCODE project.

In Chapter 3, the research question I explored is how CDK12 contributes to the regula-
tion of alternative splicing. Despite the growing number of studies investigating functions
of CDK12, the mechanism through which CDK12 contributes to cancer development and
progression is still unclear. I hypothesized that a part of functional roles of CDK12 in
cancer biology occurs through regulation of alternative splicing. Therefore, I performed
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a genome-wide analysis of splicing and expression regulation by CDK12 using knock-
down and control libraries of breast cell line data. I also examined if my findings could be
generalized in tumour cells using The Cancer Genome Atlas (TCGA) ovarian data [153].

In Chapter 4, my main objective was to assess how different methods in the literature
can be employed to provide mechanistic insights when a gene is systematically inhibited
by pharmaceutical agents at different levels. The inhibited genes are splicing related genes
and the data are generated to study their contributions to splicing regulation, and better
understanding the splicing mechanism as a complex machinery. I summarized appropriate
methods in the literature, and compared their advantages and limitations. I also examined
the usefulness of the data using one of the appropriate methods, and finally discussed how
the methods in the literature should be adopted to properly benefit and extract information
from this type of data.
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Chapter 2

Genome-wide Identification and
Characterisation of Tissue-specific RNA
Editing Events in Drosophila
melanogaster and their Potential Role in
Regulating Alternative Splicing

2.1 Introduction
Recent studies suggest that alternative splicing and RNA editing mechanisms have the
potential to influence each other [95, 117]. Obviously, RNA editing can directly modify
splicing patterns by editing primary sequence motifs required such as splice sites, splicing
enhancers or silencers [95, 154]. Other studies in human and fly suggest that many of
the editing sites occur in transcripts encoding RNA-binding proteins that play roles in
alternative splicing. This may alter the expression, efficiency or binding properties of these
proteins which may in turn affect the splicing of many genes [114, 117]. On the other hand,
different ADAR isoforms have different editing efficiencies [87], so the splicing machinery
also has the potential to influence RNA editing. It thus seems obvious to hypothesise
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that there are feedback loops between RNA editing and alternative splicing waiting to be
discovered.

In the past few years, thousands of editing sites have been discovered by calling A-
to-G differences between the reference genome and the transcriptome reads in human
[104, 111, 113], mouse [98], and fly [38, 89] using RNA-seq data. One key challenge when
analysing RNA-seq is to discriminate true editing events from artifacts [104, 111, 113] as
explained in Chapter 1; RNA-seq data require sophisticated and statistical data analysis
methods for reliably detecting RNA editing events.

Fortunately, the large number of experimentally confirmed A-to-I RNA editing events
in Drosophila melanogaster and the considerable amount of publicly available data make
the fly a promising model organism to study ADAR mechanisms. In recent years, there has
been an increasing amount of studies on the importance and abundance of RNA editing
in this organism [38, 87, 89]. Drosophila melanogaster has one ADAR gene (dADAR),
and among vertebrate ADARs, ADAR2 is the most similar gene to dADAR [85]. In fly,
dADAR is highly expressed in the central nervous system, and similar to vertebrates, its
expression shows tight temporal regulation [87].

Here, we use tissue-specific high-throughput data sets of Drosophila melanogaster

from the MODENCODE project [155] to identify RNA editing events in multiple tissues.
To achieve this, we introduce a new computational analysis pipeline to accurately iden-
tify editing events and to distinguish genuine editing events from sequencing and mapping
artifacts. In our analysis of the resulting, predicted cases of RNA editing, we search for
cases of differential exon usage between pairs of different tissues to identify regions where
RNA editing and alternative splicing may influence each other. Finally, in order to dis-
cover potential molecular mechanisms underlying this interplay, we identify many cases
of evolutionarily conserved RNA secondary-structures that have the potential to regulate
alternative splicing via RNA editing.
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2.2 Materials and methods

2.2.1 Data set
To study tissue-specific RNA editing events, we selected tissue-specific RNA-seq libraries
of Drosophila melanogaster from the MODENCODE project [45, 155]. These libraries
correspond to paired-end, strand-specific RNA-seq reads of 74–120 nucleotides length.
The strand-specificity of the reads allows us to assess the correct conversion types in over-
lapping or incompletely annotated parts of the genome [98], whereas the paired-ends im-
prove the alignment of reads to repeat-rich regions of the genome which would otherwise
easily result in incorrectly aligned reads or the false positive prediction of SNPs or RNA
editing sites. The 29 selected libraries are classified into 10 tissues (Table.2.1). Some
of these libraries are extracted from multiple tissues. For each library there exist two
to five technical replicates. All libraries derive from the OregonR strain of Drosophila

melanogaster which is, however, not the strain of the Drosophila melanogaster reference
genome.

Dataset Tissue Dataset Tissue Dataset Tissue

MOD4241 Head MOD4266 Ovaries MOD4259 Digestive system
MOD4242 Head MOD4247 Accessory glands MOD4256 Central nervous system
MOD4243 Head MOD4249 Testes MOD4257 Central nervous system
MOD4245 Head MOD4250 Carcass MOD4260 Fat body
MOD4246 Head MOD4252 Carcass MOD4267 Fat body
MOD4248 Head MOD4254 Carcass MOD4268 Fat body
MOD4263 Head MOD4258 Carcass MOD4261 Imaginal discs
MOD4264 Head MOD4251 Digestive system MOD4262 Salivary glands
MOD4265 Head MOD4253 Digestive system MOD4269 Salivary glands
MOD4244 Ovaries MOD4255 Digestive system

Table 2.1: Tissue specific data sets selected from the MODENCODE project. The
IDs of the selected libraries and the tissues from which these libraries are sam-
pled are shown in this table. The data contain 29 libraries from 10 tissue types.

Since we do not have genomic DNA sequencing reads in our data, it is essential to align
the short transcriptome reads to the reference genome of the OregonR strain when search-
ing for DNA/RNA discrepancies; otherwise, genomic differences between the genome of
the OregonR strain and the D. melanogaster’s reference genome could be misinterpreted
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as RNA editing events. We therefore generate an annotation for the OregonR genome by
aligning the genome of the OregonR strain to the D. melanogaster’s reference genome. We
first use MUMMER [156, 157] to find a set of consecutive matches of at least 20 nucleotides
long. Next, we align the remaining parts between these matches using the NEEDLEMAN-
WUNSCH algorithm [158] with default parameter values. Finally, we convert the coordi-
nates of the reference annotation of Drosophila melanogaster in ENSEMBL [159] to the
corresponding coordinates of the resulting OregonR genome.

2.2.2 Prediction pipeline
Figure 2.1 gives an overview of the steps of our computational analysis pipeline for iden-
tifying RNA editing events using multiple RNA-seq libraries and the reference genome as
input. Considering the potential challenges in reliably detecting RNA editing events [160],
we designed a probabilistic pipeline to achieve the following in an efficient manner: (1)
filter variants against artifacts due to mapping and sequencing errors; (2) explicitly capture
ADAR-specific features such as the requirement for double-stranded region to distinguish
RNA editing events from other types of observed variants; and (3) leverage the statistical
power derived from the size and number of our input data sets. In the following, we briefly
explain the steps of our pipeline.

We use TOPHAT2 [163] to align short reads to the genome in a splice-aware manner.
We allow up to five mismatches in the alignment step to permit TOPHAT2 to success-
fully align reads that have been RNA-edited multiple times. Next, we employ PICARD-
TOOLS (http://broadinstitute.github.io/picard) to remove duplicates from each technical
replicate. These duplicate reads may be generated during RT-PCR as a result of ampli-
fication bias [111, 113]. Finally, technical replicates are merged and positions showing
DNA/RNA discrepancies are extracted for further analysis.

Our analysis pipeline combines a set of statistical and deterministic filters that apply
two sets of threshold values, one set called the flexible set and one set called the stringent
set (Figure 2.1). By employing these two sets of threshold values and leveraging the large
size of the input data, it is possible to simultaneously lower the false positive and the false
negative error rates. If only the stringent threshold values were used to distinguish genuine
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Figure 2.1: Outline of the computational analysis pipeline for identifying editing events
from multiple RNA-seq libraries. The input consists of several RNA-seq libraries and
the reference genome. As shown, first, reads are aligned and RNA/DNA mismatches
are extracted. Then, two sets of values (for flexible and stringent filtering) are used
for several filters ((A)-(D)) to remove potential experimental artifacts. Finally, our
pipeline considers clustering of identified candidates and the number of times they are
detected in multiple libraries to output a final set of predicted editing events. (A)-(D)
show the statistical tests and filters used in our pipeline. (A) A set of primary filters
used to assess the initial requirements for candidate sites. (B) The statistical graphi-
cal model (modified from [161]) that we use to find the maximum editing ratio, and
to compute a log likelihood ratio score. Shaded circles are the random variables that
are observed in data and unshaded circles are the ones that are inferred. The rounded
square is fixed to represent the reference genotype. a is a binary variable which in-
dicates whether or not a read aligned to a position comes from an edited molecule. z
is also a binary variable that indicates whether the read is aligned correctly. The edit-
ing ratio of position i is presented with node r; and nodes m and b present mapping
and base qualities. (C) Statistical tests in SAMTOOLS/BCFTOOLS [162] to check the
potential biases in reads. (D) The energy of local structures and base pairing probabil-
ities of nucleotides in close vicinity of candidate sites are used to ensure the structural
requirements of candidates are met. (E) We use the fact that editing events occur in
clusters to improve our predictions. (F) For less confident sites, the site requires to be
detected in multiple libraries in order to be reported in our final set.
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RNA editing sites from mapping and sequencing errors, filtering the potential artifacts
could result in discarding many true RNA editing events, i.e., a high false negative error
rate. On the other hand, using only the set of flexible threshold values could lead to an
increased false positive error rate. To overcome this issue, our pipeline combines the two
sets of threshold values. The potential editing sites that pass the flexible threshold values
are only reported in the final output if they are detected in multiple samples and are close
to other predicted sites.

After the alignment step, a set of primary filters are applied to reduce the identified
DNA/RNA discrepancies and remove those that are likely to be due to mapping and se-
quencing errors (Figure 2.1.A). These primary filters examine, for example, the number of
reads covering a candidate RNA editing site, the read and mapping qualities of the input
data, and also the distance to both ends of the read. In addition, any known variants listed
in the ENSEMBL fly variant files are removed. Some of these variants may correspond
to genuine RNA editing events – similar to what has been observed in human SNP data
bases [102] – yet we decided to be conservative and to remove all known variants in the
absence of any corresponding DNA sequencing reads.

Figure 2.1.B shows the graphical model we use to compute the maximum likelihood
editing ratio, and to apply a log-likelihood ratio test. The model is a modification of the
model introduced in SNVMIX2 [161]. The original model considers both mapping and
base qualities of the reads and takes uncertainties of bases and alignments into account. We
took a part of the model and added a new node (shown with ”ri” in the figure) that presents
the editing ratio (r). This can take values ranging from 0 (not edited) to 1 (always edited)
with uniform prior. We model ai

j (which indicates whether read j aligned to position i

comes from an edited RNA molecule) to have a Bernoulli distribution with its parameter
set to the editing ratio r. The conditional probability distribution for the other three nodes
(”z”, ”b” and ”m” ) are the original ones used in SNVMIX2 [161]. Using this statistical
model, the null hypothesis of a position having an RNA editing level of zero is compared
to the hypothesis of the position being edited with the inferred maximum likelihood level
of editing. More precisely, for each candidate position i, we compute the following log-
likelihood ratio score for position i:
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score(i) = argmaxα log
P(Di |Mi,Bi,ri = α)

P(Di |Mi,Bi,ri = 0)
(2.1)

where ri is the editing ratio; Di presents the observed reads overlapping position i;
and Bi and Mi are the base and the mapping qualities of reads, respectively, overlapping
position i.

In the following step, the pipeline applies SAMTOOLS/BCFTOOLS [162] tests to iden-
tify and remove positions that are discovered as a result of potential biases. These tests
have been used in the literature to improve the quality of variant calls [98]. Base quality
and mapping quality tests gauge the bias of the corresponding scores between the reads
showing the reference allele and the reads showing the variant allele. Two additional other
tests evaluate the strand bias and the tail distance bias. The strand bias gauges the bias
between the distribution of the strand of reference reads and the distribution of the strand
of non-reference reads. The tail distance bias investigates whether nucleotide reads from
one allele tend to occur closer to read ends compared to nucleotide reads from the other
allele.

Unlike most other existing prediction methods for RNA editing sites, our analysis
pipeline explicitly utilises the requirement for the existence of double-stranded regions
in potential ADAR target regions [164] to further improve our predictions (Figure 2.1.D).
Long double-stranded regions constitute perfect potential target sites for ADARs [84], and
structured regions also recruit ADARs to nearby sites that are not in the same double-
stranded region [101]. Consequently, the stability of potential structures has been used to
rank output candidates [92], although edited double-stranded region have been observed
to have a wide range of stabilities [97]. Also, the vicinity of complementary nucleotide
regions which allows the formation of RNA secondary-structures was used to improve
prediction results [93]. Most of the double-stranded regions bound by ADAR have been
shown to correspond to intramolecular interactions, i.e., RNA structure features in the
same transcript [83]. We therefore use local RNA secondary-structure prediction algo-
rithms in our pipeline. We employ RNAFOLD [125] on a sequence interval of 200 nu-
cleotides length around each candidate editing site to calculate the minimum-free-energy
(MFE) RNA structure predicted for this region. We use the corresponding minimum free
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energy as an indicator of the stability of all potential local RNA structures that can be
formed in that region. Additionally, as ADAR binding and editing predominantly happens
in double-stranded regions [84], we use RNAPLFOLD [165] to estimate the probability
of a potential RNA editing site being in a double-stranded region. For this we examine
sequence intervals of five nucleotides length around the candidate editing site. Finally,
the two sets of thresholds (stringent and flexible) introduced above are applied to these
potential RNA editing sites in order to incorporate structural information in our pipeline.

It is well known that ADAR tends to edit several sites in the same double-stranded
region upon binding [97] which we explicitly judge by our analysis pipeline (Figure 2.1.E).
In addition, we expect true RNA editing events to show up in several libraries due to the
large amount of input reads. To use these features, we first include all candidate editing
sites that pass the stringent threshold values. Any remaining candidate sites are then added
if: a) The same position passes the stringent threshold values in another sample, or b)
the position has been predicted (passes the flexible threshold values) at least twice and
there is another identified site showing the same conversion type within a distance of
25 nucleotides.

To summarise, by using a large number of samples as input, by explicitly capturing
ADAR specific features and requirements and by combining two distinct sets of threshold
values, we create an analysis pipeline that has a low false positive as well as a high true
positive rate (see results section below). Assuming similar mutation rates for transitions
and similar mutation rates for transversions, we can use the ratio of A-to-G conversions in
our predictions to estimate the false positive ration [98, 166]. Based on this estimate, we
chose a set of pipeline parameters that result in a decent overall number of predictions and
also a high ratio of A-to-G conversion type. Details of the pipeline including parameter
values are explained in Appendix. A

2.2.3 Finding alternatively spliced exons
To find alternatively expressed exons between pairs of tissues, we use DEXSEQ [74].
DEXSEQ applies a generalised linear model to detect exonic regions that are differen-
tially expressed between two conditions. We consider libraries from the same tissue as
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replicates as required by DEXSEQ. Furthermore, we only consider genes that show an ex-
pression higher than a pre-defined threshold in both conditions in our analysis (by apply-
ing a threshold on expression predicted by CUFFLINKS [167]). Additionally, we discard
genes for which many of the exonic parts are predicted to be alternatively used, keep-
ing only those genes for which the number of alternatively used exons is smaller than
max(2,1/4 · number of exons). The main reason for doing so it so focus our analysis of
the potential interplay between alternative splicing and RNA editing on genes that are
more likely to be regulated locally.

2.3 Results

2.3.1 Our pipeline accurately distinguishes genuine editing sites
from SNPs, and sequencing and mapping artifacts

The set of sites predicted by our pipeline is highly enriched in A-to-G conversions. Fig-
ure 2.2.A shows the number of unique RNA editing sites identified for each of the twelve
possible types of DNA/RNA differences after applying our pipeline to the combined data
set comprising all 29 libraries. We find 3680 unique conversion sites in multiple tissues
of Drosophila melanogaster of which 2879 (78.2%) correspond to A-to-G conversions.
Assuming similar A-to-G and G-to-A mutation rates as well as similar rates of sequencing
and mapping errors for these two types of transitions, we can estimate the false positive
error rate of our predictions. Of the 3680 sites in our set, 112 of them are G-to-A con-
versions. By assuming that up to 112 of these A-to-G detected sites are false positive
predictions, we estimate the false positive rate to be at most 3.9% (112/2879).

Figure 2.2.B shows the extent of overlap of the 2879 RNA editing sites identified by
us and those of two other genome wide studies in Drosophila melanogaster by Graveley
et al [38] and Laurent et al [114]. In contrast to our study, Graveley et al analyse RNA-seq
data sets of the MODENCODE project from different developmental stages, i.e., their read
samples do not overlap our tissue-specific data sets. In another high-throughput genome
wide study of RNA editing in D. melanogaster, Laurent et al employ single molecule
sequencing for data generation. As Figure 2.2.B shows, the overlap of sites predicted by
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Figure 2.2: Types of identified conversions and the overlap of A-to-G conversions with
other high-throughput studies. (A) Number of different types of conversions identi-
fied by our analysis pipeline. Most of the identified sites correspond to A-to-G con-
version. (B) Venn diagram showing the overlap between our study and two other
high-throughput studies by Graveley et al [38] and Laurent et al [114].

this and both previous studies is not very high (369/2879 (13%)), yet the overlap between
our sites and each study separately, especially Laurent et al, is considerable (874/2879
(30%) Laurent et al, 407/2879 (14%) Graveley et al), implying that a reassuring third
(912/2879 (32%)) of our RNA editing sites have been detected by either of these earlier
studies, while still adding a large number (1967) of new potential RNA editing to the
existing Drosophila melanogaster annotation.

Apart from the obvious differences in the sampled cells and the transcripts that may
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be highly expressed in one cell and not the other cell, effects such as random sampling in
high-throughput studies, sequencing errors and other challenges in distinguishing editing
sites from artifacts [160] can account for the observed differences in detected sites. One of
the key features of ADAR-derived RNA editing is that even in the same cell, the editing of
two transcripts of the same gene does not necessarily involve identical RNA editing sites,
but only the same double-stranded region which seems to be necessary and sufficient re-
quirement for RNA editing to have the desired functional effect. Furthermore, differences
in the proposed pipelines in these studies (a different set of thresholds, tests and engaged
features) could at least partially account for some of the observed variations in results.

Among all output sites of our pipeline, 45% (1288/2879) have been predicted by at
least one of four existing RNA-seq studies of RNA editing in D. melanogaster [38, 89,
114, 166], and at least 14% (400/2879) have been experimentally validated. In summary,
the number of previously validated and identified sites combined with the low estimated
false positive error rate indicates that most of our reported sites are likely to be genuine
RNA editing sites.

2.3.2 Characterisation of identified RNA editing sites
As would be expected when analysing libraries of RNA-seq data (i.e., reads derived from
mRNAs), most (40%, 1149/2879) our RNA editing sites occur in coding regions. Fig-
ure 2.3.A represents the distribution of RNA editing sites (which obviously derive from
the transcriptome) onto different types of genomic regions. The abundance of RNA editing
events in coding regions when analysing pre-mRNAs of the fly genome has been reported
earlier [89]. Editing in coding regions can cause non-synonymous changes. These may
alter the sequence of a protein (and possibly its length) and also change the protein’s struc-
ture and function.

The next class of genomic regions with a large number of identified sites are 3’ un-
translated regions (3’ UTRs). Editing of 3’ UTRs may alter gene expression by changing
nucleotides in target sequences, e.g., of miRNAs. On the other hand, binding of ADAR
to a target region can also prevent miRNAs and other molecules from binding [104]. In-
deed, we find that 165 of our editing sites overlap known miRNA target regions. Another
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Figure 2.3: Characterisation of the identified editing sites. (A) Number and percentage
of identified sites in different genomic regions. Coding regions contain more sites
than other regions. (B) The frequency of each nucleotide at each position rela-
tive to the predicted editing sites. Guanosine is depleted at the exact 5’ position of
editing sites. (C) Average base pairing probabilities computed using RNAPLFOLD

[168] for regions close to ADAR targets for sites predicted in our study, and pre-
vious studies [38, 89, 114, 166]. Positions -1 to 1 show higher average pairing
probabilities compared to other loci. Using structural features in our pipeline may
bias our predictions towards sites with higher base pairing probabilities around re-
ported sites; however a similar pattern has also been observed when considering
sites predicted in previous studies. Part (B) is generated using WEBLOGO [http:
//weblogo.berkeley.edu/logo.cgi].
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mechanism for altering gene expression patterns is to directly edit the miRNA molecules
themselves or by interfering with miRNA processing [169–171]. We find 6 editing sites
in 4 miRNA molecules: mir-4971 (1 site), mir-2a-2 (2 sites), mir-4961 (2 sites), and
mir-4956 (1 site). These miRNA editing sites have the potential to influence miRNA pro-
cessing and targeting.

Although our data derives from spliced transcripts, i.e., mRNAs (polyA enriched), we
find 580 editing sites (20%) in genomic regions that are annotated as being intronic. The
prevalence of editing in retained introns has already been reported [89]. Editing in introns
can happen when the editing site falls into an editing site complementary sequence (ECS)
which forms a double-stranded region with a region in an adjacent exon [94]. RNA edit-
ing may then lead to changes in the local RNA secondary structure which may result in
the exon being retained [55]. Via this molecular mechanism, RNA editing thus has the
potential to alter splicing patterns by changing local RNA secondary-structure.

Our remaining sites overlap intergenic regions, 5’ UTRs and exons of non-coding
genes. Sites classified as intergenic may be due to an incomplete annotation of the Drosophila

melanogaster genome. The number of editing sites in the other two classes is small, but
may have interesting biological consequences.

We took advantage of the large number of predicted RNA editing sites to investigate
the primary sequence and structural binding preferences of ADAR. In agreement with
earlier studies [114], we find that a guanosine directly adjacent in the 5’ position of an
adenosine decreases the chance of the adenosine being edited (see figure 2.3.B). Analysing
the estimated base-pairing probabilities of small regions around the predicted RNA editing
sites using RNAPLFOLD [165], we find that the two nucleotides directly adjacent to the
site are the most important to be base-paired in ADAR target regions (2.3.C).

Analysing different tissue-specific data, we find that RNA editing happens in multiple
tissues of D. melanogaster, predominantly in head. We highlight the number of DNA/RNA
mismatches for four tissues in figure 2.4. The majority of detected editing sites occur
exclusively in head and central nervous system. In other tissues, RNA editing is rare.
Reassuringly, we find that in heavily edited tissues most of the predicted sites are A-to-G
conversions that can be attributed to ADAR activity; the false positive rate of our analysis
is thus low, conversely, in other tissues the estimated error rate is higher (figure 2.5.A).
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Figure 2.4: The number of all 12 types of conversions for four tissues of our study: central
nervous system (CNS), digestive system, head, and imaginal discs. Head and CNS
contribute most to the list of our predictions.

Editing patterns differ considerably between different types of tissues. Figure 2.5.B
illustrates the relative overlap between sets of predicted sites in the ten studied tissues.
Generally, different pairs of tissues do not share most of their editing events. One obvious
candidate for regulating RNA editing is the expression of the ADAR gene itself. We find
that ADAR expression is highest in head and central nervous system (CNS), but that the
gene is also expressed in other tissues (figure 2.5.C). Over-expression of ADAR in head
and CNS is in agreement with the number of detected sites in these tissues, however,
a higher expression of ADAR in one tissue compared to the other, does not necessarily
imply a greater level of RNA editing; thus, as suggested before [116], the level of ADAR
expression alone cannot explain how RNA editing levels are regulated.
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Figure 2.5: Comparing the editing mechanism in different tissues of Drosophila
melanogaster. (A) Estimated error rate versus the number of predicted sites in differ-
ent tissues of our study. (B) Percentage of overlapping sites between pairs of tissues as
encoded by color shading. To compute the overlap ratio, the number of common sites
between pairs of tissues is divided by the smaller number of detected sites between
corresponding tissues. (C) Average expression of dADAR in tissues of the MODEN-
CODE project. Expression values are measured in FPKM (fragments per kilobase
of transcript per million fragments mapped) unit using CUFFLINKS [167]. Although
dADAR expression is highest in CNS (central nervous system) and head, but the gene
is expressed in other tissues as well.
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Our functional enrichment analysis using DAVID [172] confirms that edited genes are
involved in ion transport (Benjamini Hochberg (BH) adjusted p-value: 2 · 10−13), gated
channel activity (BH adjusted p-value: 3 · 10−8) and cell-cell signalling (BH adjusted
p-value: 8 · 10−8), the well known functions of ADAR targets [94, 173]. Additionally,
functional annotation clustering using DAVID [172] identifies a cluster of genes involved
in locomotory behaviour (BH adjusted p-value: 2 · 10−3) and similar genes which is in
agreement with the phenotype associated with ADAR knock-down flies [106, 174].

2.3.3 Evidence for cross-regulation of RNA editing and alternative
splicing and the potential underlying regulatory mechanism

As discussed in the introduction, there already exists some evidence for an inter-relation
between alternative splicing and RNA editing mechanisms. Leveraging the large number
of selected tissue-specific data sets used in our study, we decided to investigate the re-
ciprocal effect between alternative splicing and RNA editing in much greater details and
to discover potential underlying regulatory mechanisms. Alternative splicing and RNA
editing both play key roles in diversifying gene products and in fine tuning gene expres-
sion on RNA level. It would thus be of great conceptual importance to identify potential
mechanisms of their cross-regulation.

We find that a gene with a greater number of known isoforms has a higher chance of
being edited. Figure 2.6.A illustrates the positive correlation (RPearson = 0.33, p-value
< 2 ·10−15) between the number of annotated isoforms and the number of predicted RNA
editing sites in our study. One would expect longer genes to have a higher probability of
being edited and to also have more splice variants (based on the larger number of exons). In
order to test if the correlation observed in our data can be explained by gene length alone,
we grouped genes according to their lengths and calculated the average number of known
isoforms per group, once for the sub-group of edited and once for the complementary
sub-group of un-edited genes (Figure 2.6.B). Although we find that longer genes tend
to contain more editing sites, edited genes have a significantly greater number of known
isoforms than un-edited genes (Figure 2.6.C). Other features such as exon lengths, intron
lengths, and nucleotide bias may also affect the number of editing sites in genes.
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Figure 2.6: There is a positive correlation between genes that are targets of RNA editing
and genes that are alternatively spliced. (A) The number of annotated isoforms vs.
the number of predicted sites in our study. The number of detected sites is found to
be greater in genes that express more annotated isoforms. (B) We group genes based
on their length and compare the average number of annotated isoforms for genes of
similar length between those that are edited and those that are un-edited genes. For
genes with similar length, edited genes have a higher chance of being alternatively
spliced. (C) Here we tested whether genes in the same length bins from edited and un-
edited groups have similar lengths. The plot shows that for most of our bins, average
gene lengths is almost equal for edited and un-edited group.
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Even more interestingly, we find that editing events tend to preferentially occur near
exons with multiple splicing donor/acceptor sites (χ2 test, p-value < 2 · 10−15). For this,
we classify exons (including UTR exons) into two groups, those with multiple known
acceptor and/or donor sites and those with unique acceptor and donor sites. Within each
group, we count the number of RNA editing sites and normalise by the combined lengths
of all exons in that group. Based on the resulting numbers, RNA editing sites are 3.2
times more likely to occur in exons with multiple splicing donor/acceptor sites compared
to those with unique acceptor and donor sites (χ2 test, p-value < 2 · 10−15, this p-value
is calculated for the null hypothesis of a 1:1 ratio). To further confirm our findings that
are based on our set of predicted RNA editing events, we repeated the same analysis for
all sites reported by four existing high-throughput studies of RNA editing in Drosophila

melanogaster [38, 89, 114, 166] and find again that RNA editing is 1.9 times more likely
to occur in exons with multiple acceptor/donor sites (χ2 test, p-value < 2 ·10−15).

We then identified 244 regions where RNA editing and tissue-specific alternative splic-
ing can have reciprocal effect (Appendix. A). For this, we searched for RNA editing sites in
and around exons (between -150 and +150 around each exonic part) that are alternatively
spliced when comparing expression for pairs of tissues using DEXSEQ [74]. Figure 2.7
shows an example of a region that is predicted to be highly edited and observed to be
alternatively spliced. The figure shows that many more editing sites are predicted in the
head tissue (blue arrows) compared to digestive system (red arrow). This is also true for
the exonic region that is not predicted to be alternatively used (E002).

One reason for the alternative splicing of the 3’ exon could be the formation of dou-
ble stranded structure; or the binding of ADAR could prevent splicing machinery from
detecting splicing signals and splice out the last exonic part. We should mention that
the predicted editing level is low even in head tissue, and low editing level and random
sampling may have caused the editing events not to be predicted in the digestive system
samples. Dedicated follow-up experiments are required to understand how the two mech-
anisms affect each other.

To discover potential mechanisms regulating the interplay between alternative splicing
and RNA editing, we also searched for statistically significant conserved RNA secondary-
structure features in the vicinity of exons where we found RNA editing and alternative
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Figure 2.7: An example of a region where RNA editing and alternative splicing may affect
each other. Rectangles at the bottom represent exonic parts of gene CG5850 located
on the reverse strand of the left arm of chromosome 2. Exonic parts are numbered by
E001, E002, ..., E009, where E001 is the 3’ most exonic part and E009 is the 5’ most
exonic part. The Y axis shows the number of reads aligned to each exonic bin, nor-
malised by library size. Blue lines correspond to the number of reads from the libraries
of the head tissue and red lines correspond to libraries from the digestive system tissue.
The purple rectangle shows the rectangle that is predicted to be alternatively expressed
between the two tissue types. In this region, multiple arrows are shown for identified
editing sites for head (blue arrows) and digestive system (red arrows). Figure gener-
ated using DEXSEQ [74]

splicing to co-occur. For this, we employed TRANSAT [128] on input alignments of 15 fly
species downloaded from UCSC [176] (We also added OregonR sequence to the align-
ment; see Appendix. A for more details) around splice sites of alternatively spliced exonic
parts where editing sites are also predicted (extended by 150 nucleotides on either side,
a total of 167 regions). There already exist quite a few computational methods to predict
evolutionarily conserved RNA secondary-structure [132, 168, 177]. These programs, how-
ever, expect the input alignment to contain one more or less global secondary-structure,
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Figure 2.8: An example of a region where a conserved RNA secondary structure feature
detected by investigating editing events can potentially influence alternative splicing.
Rectangles at the bottom of the figure show exonic parts of Cip4 gene located on the
reverse strand of the left arm of chromosome 3. The figure shows the structure pre-
dicted using RNAALIFOLD in a region of 100 nucleotides around the splice site of
an exonic region which is predicted to be alternatively used between tissues. Red
arrows show predicted editing sites. Black arcs indicate alignment columns that are
predicted to be base-paired, and black columns correspond to un-paired nucleotides.
Green squares within the alignment show valid base-pairs and orange squares invalid
base-pairs. Dark blue squares represent valid base-pairs with two-sided mutations
(compared to the most common base-pair in the pair of columns), probably in order to
retain base-pairing potential. Likewise, light blue colour represents single mutations to
retain base-pairing potential. The existence of multiple compensatory mutations pro-
vides evidence for its functional importance throughout evolution. Figure generated
using R-CHIE [175]
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i.e., a structure spanning the entire alignment. As there a priori no reason to expect
secondary-structure features relevant for RNA editing to involve the entire transcript – es-
pecially not longish fly pre-mRNAs in vivo – we use TRANSAT as this program has been
specifically designed to identify local, conserved RNA secondary-structure features such
as the double-stranded regions needed for ADAR binding and RNA editing. TRANSAT

method takes a set of aligned sequences and an evolutionary tree as input; extracts po-
tential helices in the alignment, and assigns a p-value to each of these helices. For 96 of
the 167 regions (57%) where alternative splicing and RNA editing co-occur in our data
we find one or more conserved RNA secondary-structure features (when we filter helices
with p-value greater than 0.05 and helices shorter than 8 nucleotides). Figure 2.8 shows
an example of these regions and the corresponding, conserved RNA secondary-structure
detected by RNAALIFOLD [168] in this region. Multiple compensatory mutations for con-
served base-pairs provide evolutionary evidence for a likely functional role of this double-
stranded region. The list of the identified regions is presented in Appendix. A. Finally, we
applied RNAALIFOLD to assess the stability of the global structures in these regions. The
list of the identified regions sorted based on the energy of the predicted global structure by
RNAALIFOLD can be found in Appendix. A.

2.4 Discussion
We identify 2879 A-to-I RNA editing sites in different tissues of Drosophila melanogaster

with high precision. More than half of these have not been identified previously. The
high ratio of A-to-G conversion type among the detected DNA/RNA discrepancies shows
that most of our predictions are anticipated to be true editing events and not the result
of experimental or computational artifacts. Also, our study suggests that other types of
possible RNA editing apart from A-to-I RNA editing are very rare or do not happen at all
in the investigated tissues of D. melanogaster.

Furthermore, our results show that editing occurs in multiple tissues, with many of the
sites being edited exclusively in brain and central nervous system where ADAR expres-
sion is also higher than in other tissues. Moreover, patterns of editing differ significantly
between tissues, implying a tissue-specific underlying regulatory mechanism.
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Our study demonstrates how the appropriate use of ADAR specific features enhances
the detection of RNA editing events when DNA reads are not available. A previous study
by Ramaswami et al [166] shows that evolutionary information can be used to detect
editing sites in the absence of DNA reads. Here, we explicitly capture ADAR specific
features - in particular the requirement for the formation of local RNA secondary structures
around target sites and clustering of editing sites - in addition to utilising large number of
selected data sets to distinguish editing events from artifacts and SNPs.

We identify more than 200 regions exist where RNA editing and alternative exon us-
age between tissues co-occur when comparing libraries. Many of the identified regions
have been identified in multiple pair-wise comparison of tissues. Studies showed the co-
occurrence of RNA editing and alternative splicing in same genes [114, 117], similar to
what we find in this analysis. Solomon et al reported the enrichment of editing events in
cassette exons in human, although they reported most of the sites are far from exon bound-
aries. We here show that editing events tend to happen much more abundantly in exons
with multiple known acceptor or donor sites, or 3’ and 5’ UTRs that contain alternative
splicing potential. Further, we find 96 regions around splice sites with significant statisti-
cal evidence for the overlap of evolutionarily conserved, local RNA secondary-structures.
The actual formation of these RNA structure features in vivo is supported by both compu-
tational RNA secondary-structure prediction programs and predicted RNA editing sites.

RNA editing thus has the potential to regulate alternative splicing via changes of local
RNA secondary structures. This suggests a potential, tissue-specific molecular mecha-
nism of regulation for alternative splicing whose potential mediation via changes of local
RNA structure we showed earlier [55].

Overall, we find strong evidence for our hypothesis that RNA editing and alternative
splicing mechanisms directly influence each other in specific regions of the transcriptome.
Both, RNA editing and alternative splicing are abundant in the CNS and are both known
to be temporally and spatially regulated [87]. Also, target genes of the two mechanisms
correlate well. These mechanisms may influence each other in several ways. First, the
splicing machinery may compete with ADAR for common substrates. This is plausible
given that RNA editing and splicing can happen at the same time co-transcriptionally in
Drosophila melanogaster [89, 178]. Targeting of a specific location by one machinery lim-
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its the simultaneous access of the other machinery and can thereby affect its functionality.
Second, considering the potential importance of RNA secondary structures in regulating
alternative splicing, ADAR may edit and thereby alter local secondary structures which
can in turn change exon usage. Blow et al showed earlier that RNA editing of double-
stranded regions has the overall effect of destabilising these features. Finally, editing of
splicing silencers and enhancers or splice site motifs could additionally affect splicing.

Based on our results, the type of local co-regulation through changing RNA structures
happens predominantly within exons with multiple acceptor or donor sites. In these re-
gions, the primary sequence splicing signals may be weak, and these weak signals can
prevent the splicing machinery from always making the same decision.

The formation and RNA editing-mediated modification of local RNA secondary struc-
tures therefore has the potential to significantly alter splicing patterns in these genes as
local RNA structure features can be “encoded” in a transcript-specific way. In fact, the
necessity for encoding RNA structure features that are involved in regulating the alterna-
tive splicing of their own transcript may explain why introns tend to be longer in more
complex organisms: these RNA structure features are (at least partly) encoded in introns
thus imposing no undue additional evolutionary constraints on the protein-coding exons.

Previous studies suggest that the dominant way in which editing regulates splicing
is by editing RNA-binding proteins [117]. This would, however, imply a more indirect
and global way of regulating alternative splicing and could not easily happen in a gene-
specific way. Our results support a gene-specific mechanism where alternative splicing can
be directly regulated via tissue-specific changes of RNA editing. Also, one of the roles of
pre-mRNA sequences may be to not only encode amino-acid information, but also RNA
secondary-structure motifs that determine the correct splicing patterns in a tissue-specific
way. Detailed follow-up experiments, e.g., ADAR knockdowns and mutational studies of
specific genes, are now required to experimentally confirm our results.
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Chapter 3

The Regulation of Alternative Last Exon
Splicing by CDK12 Promotes the
Oncogenic Potential of Breast Cancer
Cells

3.1 Introduction
Cyclin-dependent kinases (CDKs) and their activating cyclin partners integrate numerous
signal transduction pathways to regulate a variety of critical cellular processes [138, 179].
CDK12 (CRK7, CrkRS) is one of several CDKs that regulate transcription through the
differential phosphorylation of the C-terminal domain (CTD) of RNA Polymerase II [137])
as discussed in Chapter 1. There is still much unkonwn regarding how CDK12 regulates
alternative splicing and gene expression at a genome-wide scale.

The Cancer Genome Atlas (TCGA) project identified recurrent somatic alterations in
CDK12 in 13% of breast cancers and 5% of ovarian cancers [153, 180–182]. CDK12

mutations are commonly nonsense mutations or impair CDK12 kinase activity [183], and
are frequently coupled with loss of heterozygosity [180, 184]. Recent studies show that
CDK12 functions in maintaining genome stability. In cell-based assays, depletion of
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CDK12 is associated with defects in DNA damage response (DDR) and decreases ex-
pression of genes involved in the homology-directed repair (HDR) pathway [146, 151,
152, 183, 185]. Though it is generally classified as a tumor suppressor gene from its
role in DDR, additional evidence indicates that CDK12 may have pro-oncogenic func-
tions in breast cancers. CDK12 is located on chromosome 17, 165-267 kb proximal to
HER2 (ERBB2), an oncogene that is frequently amplified in breast cancers. CDK12 is
co-amplified with HER2 in 27-92% of breast tumors or tumor cell lines [186–194]. Sim-
ilar to HER2, over expression of CDK12 also correlates with high proliferative index and
grade 3 tumor status based on tissue microarrays of invasive breast carcinomas [134]. It is
noteworthy that in about 13% of HER2+ (HER2-amplified) breast tumors, the amplifica-
tion breakpoint resides in the CDK12 allele and likely results in the functional loss of one
CDK12 allele [185]. In related observations, recurrent CDK12-HER2 gene fusions in gas-
tric cancers result in impaired CDK12 protein levels [195]. It is currently unknown how
alterations in CDK12 contribute to the myriad of changes seen in breast tumors. Over-
all, these data suggest CDK12 may have oncogenic roles in cancer progression, but the
mechanisms underlying this effect have not been explored.

To address the oncogenic roles of CDK12, we performed a comprehensive and sys-
tematic genomic and proteomic analysis of CDK12 function in a breast cancer cell line
with genomic amplification of CDK12. We sought to determine if the role of CDK12 in
tumorigenesis and DDR was related to its hypothesized ability to regulate splicing or AS
in addition to its role in transcription. Instead of having a general effect on transcription
or splicing, we found that CDK12 regulated the expression and AS of a distinct set of mR-
NAs in a cell type-specific manner. Furthermore, CDK12 predominantly regulated only
the alternative last exon (ALE) sub-type of AS. Functionally, events regulated by CDK12

potentiated tumorigenic processes, indicating that aberrant CDK12 expression can have
oncogenic properties.
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3.2 Materials and methods

3.2.1 Data
The RNA-seq data consists of biological triplicates of SK-BR-3 and 184-hTERT cells
treated with CDK12 siRNA-1 or scrambled siRNA. The libraries contain on average 103
± 12 million paired end 75 nucleotides strand-specific reads (mean ± s.d.). The paired-
end reads were aligned to the reference genome (hg19 reference genome downloaded from
UCSC genome browser [196]) using GSNAP [197]. The corresponding gene annotation
file was downloaded from ENSEMBL [159]. The “novel splicing” parameter of GSNAP

was enabled to allow the discovery and use of novel junctions in the alignment step. In
the final step, duplicate reads were removed using SAMTOOLS [162, 198]. The procedure
resulted in an average of ∼92% successfully aligned reads.

To assess our findings in an independent data set, we downloaded the RNA-seq data
published in a previous study [145]. The data contain two control and two CDK12 shRNAs
in two replicates from HCT-116 cells. These libraries consisted of ∼14 million to ∼48
million single end un-stranded 50 nucleotides reads. On average 84% of the reads were
successfully aligned to the hg19 reference genome using TOPHAT2 [163]. Because of the
small number and short lengths of these reads, duplicate reads were kept in the aligned
files and reads with mapping quality of less than 10 were removed.

3.2.2 Differential gene expression and alternative splicing analysis
DESEQ2 [199] was applied to detect genes that were differentially expressed in CDK12

siRNA-treated libraries as compared to control libraries. Given a table of raw read counts
for genes in the genome, DESEQ2 applies a statistical model to compare counts between
the two conditions, and it calculates a fold change for each gene and assigns a statistical
measure of confidence for differential regulation of the gene. The gene read counts re-
quired as input by DESEQ2 was provided using HTSEQ-COUNT [200] by setting “mode”
parameter to “union”. Genes with adjusted p-values < 0.01 form the list of confident
differentially expressed genes between siRNA-treated and control conditions in each cell
line. CUFFLINKS [201] was also used to quantify gene and isoform expressions.
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Given a ranked list of genes, GSEA [202] applies a statistical method to identify path-
ways for which the genes involved in that pathway are over-represented at the top or bot-
tom of the ranked list. For the RNA-seq data, genes were filtered for having very few
(<100 on average) reads aligned to them and the remaining genes (∼12,000 in SK-BR-3
and 184-hTERT cell lines) were sorted based on the estimated fold changes. For the global
proteome data, the sign of the fold change was multiplied by the inverse of the FDR rate
and the genes were sorted based on the corresponding values. Here, FDR values repre-
sented the statistical significance of evidence for the differential expression of proteins.
The GSEA pre-ranked analysis assigned a normalized enrichment score (NES) represent-
ing the extent of over-representation of genes of a pathway at the top or bottom of the
ranked list. All of the 1,454 GO (Gene Ontology) gene sets from the Molecular Signature
Database (MSigDB) [202] were used. Gene sets having fewer that 15 or more than 500
genes common to each list were filtered out. GSEA was applied in classic enrichment
statistics mode with 1,000 permutations.

The ENRICHMENTMAP plugin [203] in CYTOSCAPE [204] was used to make enrich-
ment map plots. A p-value cut-off to 0.005 and FDR q-value cut-off of 0.01 was applied.
These are output p-values and FDR q-values from the GSEA analysis that represent the
statistical significance of evidence for pathways being enriched for in the top up-regulated
or top down-regulated genes. The clustering feature of ENRICHMENTMAP with default
parameters was used to cluster gene sets that share common genes, and cluster names were
manually curated based on the contained pathways.

The MISO package was used to investigate the regulation of alternative splicing (AS)
by CDK12. The MISO package [73] applies a statistical framework to distinguish eight
different types of annotated AS and processing events. These events are skipped exons,
mutually exclusive exons, retained introns, alternative 3’ and 5’ splice sites, alternative
first and last exons, and tandem 3’ UTRs. The method takes a pair of samples as input and
reports a ∆Ψ value between the two samples for each annotated event. The Ψ (Percent
Spliced In) value represents the fraction of inclusion of one isoform when two isoforms
are being considered in an splicing event (a value between 0 and 1). The method also
reports a Bayes Factor (BF) value to quantify the support for the model where Ψ value is
altered between the two samples compared to the alternative model of no difference in Ψ
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value between the two samples.
For each cell line, siRNA-treated and control samples were randomly paired and events

with BF values ≥ 20 and |∆Ψ| values ≥ 0.1 were selected. To form the most confident set
of detected splicing events, events were required to have been predicted in all three pair-
wise comparisons for each cell line (SK-BR-3 and 184 hTERT). To compare the MISO
analyses in SK-BR-3 and 184-hTERT cells with an independent data set previously pub-
lished [145], a smaller BF threshold value of 10 was applied to allow the discovery of more
events (considering the smaller number of reads present in the Liang et al [145] data).

3.2.3 TCGA data analysis
High-grade serous ovarian cancer data generated by the TCGA Research Network (http:

//cancergenome.nih.gov/) were analyzed for AS events. A total of 70 raw fastq case files
were downloaded from the Cancer Genome Hub (CGHub) repository (https://cghub.ucsc.

edu); 14 cases have CDK12 alterations, including 7 cases with point mutations, 3 cases
with homozygous deletions, and 4 cases with amplifications (Appendix. B). The remaining
56 cases were control tumor samples with no reported alterations in CDK12. Additionally,
these control samples did not have alterations in CDK13, BRCA1, BRCA2, PALB2, and
BRIP1 genes. These criteria were applied to exclude tumors with alterations that may
potentially phenocopy the effects of CDK12 alterations.

Fastq files were aligned to the hg19 reference genome with the same gene annota-
tion file and parameters used for datasets from SK-BR-3 and 184-hTERT cell lines using
GSNAP. MISO was used for pairwise comparisons between two different datasets (e.g.
CDK12-mutated cases vs. cases with no CDK12 alterations). The analysis of AS events in
the TCGA data was restricted to the union set of ALE events detected in 184-hTERT and
SK-BR-3. This list comprised of 133 ALE events (predicted in all 3 pairwise comparisons
for each cell line with BF > 20 and |∆Ψ| > 0.1) with 23 events common between the two
cell lines.

To analyze the effects of CDK12 point mutations, each of the 7 CDK12-mutated cases
was paired with 2 random unique control cases (without CDK12 alterations), generating
14 total comparisons for MISO analysis. The number of times that each of the 133 ALE
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events were detected in these 14 comparisons (with BF ≥ 20) was calculated. As a con-
trol, 7 other random cases without CDK12 alteration were selected and paired with the
same 14 control samples. The control experiment was replicated three times to deter-
mine if the identified ALE events were over-represented when comparing CDK12-altered
cases with other random cases. P-values were calculated using the Mann-Whitney U test.
Similar analyses were performed for cases with CDK12 amplifications and homozygous
deletions. Due to the smaller number of CDK12-amplified and -deleted cases, each sample
was randomly paired with 4 control cases rather than 2.

3.2.4 Motif analysis
The 3’UTRs (3’ untranslated regions) of ALE (alternative last exon) events regulated by
CDK12 were searched to identify polyadenylation motifs based on published Position
Weight Matrices (PWMs) [205]. The number of identified ALE events in SK-BR-3 cells
was small; therefore, to expand the list and include more potential targets in the motif anal-
ysis, all ALE events that were identified in at least 2 of the 3 pairwise comparisons when
using the thresholds of |∆Ψ| > 0.1 and BF > 10 were included. For each MISO ALE
event representing two isoforms, the best two overlapping isoforms from ENSEMBL gene
annotations that explained the ALE event in the RNA-seq data was determined. This was
done by taking into account: isoform expressions computed by CUFFLINKS, the overlap
between the MISO last exon and the ENSEMBL annotated isoform, and the percentage of
exon-exon junctions from each candidate Ensembl isoform that were verified in RNA-seq
data. The positive samples comprised all the genes for which ALE events were predicted in
SK-BR-3 cell lines. These genes were divided into two groups: genes with over-expressed
proximal last exons and genes with over-expressed distal last exons after CDK12 deple-
tion. Negative samples contained genes that were annotated to have ALE events in MISO
annotations, but were not predicted to be regulated by CDK12. Genes for which the total
FPKM expression value of the two isoforms was smaller than 0.5, were filtered out. Posi-
tive and negative samples were split into bins of similar UTR lengths and for each positive
sample UTR, 20 negative samples from the same UTR length bin were randomly selected.

To count motif abundance, background nucleotide frequencies in the extracted regions
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were determined, and then using the PWM for each motif, the log odds score of a se-
quence being a motif hit compared to being randomly generated according to background
frequencies was calculated. The sequence with the maximum of these log odds scores
for each motif was identified. All the sequences for which the computed score was above
80 percent of the maximum score were counted as motif hits. For the count-based motif
analysis, the number of hits in each region was normalized by the length of the region, and
the Mann-Whitney U test was used to compare the normalized hits in positive samples to
the normalized hits in negative samples. The Benjamini-Hochberg correction was used to
correct the calculated p-values for multiple testing. For the distance-based motif analysis,
the distance of each motif hit to the 5’ and to the 3’ end of the 3’UTR was calculated.
The significance (Benjamini-Hochberg corrected) of the difference between the calculated
distances for hits in the positive samples and negative samples was calculated.

3.3 Results

3.3.1 CDK12 regulates alternative last exon splicing of genes with
long transcript and many exons

To explore the function of CDK12 in splicing regulation, we performed mRNA sequenc-
ing (RNA-seq) on SK-BR-3 cells treated with a scrambled siRNA control or siRNA di-
rected to CDK12 (achieving 8- and 7-fold reduction in CDK12 mRNA and protein, re-
spectively). SK-BR-3 cells are a HER2+ epithelial breast cancer cell line where CDK12

is co-amplified with HER2. As a result, SK-BR-3 cells over-express CDK12 protein [185].
We also performed RNA-seq on CDK12 siRNA-treated 184-hTERT cells, an immortalized
normal mammary epithelial cell line that does not over-express CDK12. In our RNA-seq
libraries, the transcriptome was deeply sequenced (103 ± 12 million reads per sample) in
order to enable the identification of low level alternative splicing events.

To find differentially spliced events, we used the MISO package [73], which applies a
statistical framework to distinguish eight different types of annotated AS events in pairwise
RNA-seq comparisons. From three independent pairs of CDK12 siRNA:scrambled siRNA
samples, we identified 102 AS events common to all SK-BR-3 samples and 86 AS events
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common to all 184 hTERT samples (Figure 3.1.A). The regulation of specific AS events
by CDK12 was cell type-specific and only 23 AS events were common to both datasets
(Figure 3.1.B). However, the mechanism of regulation appears conserved: 86% and 79%
of AS events observed in CDK12-depleted SK-BR-3 and 184-hTERT cells, respectively,
were alternative last exon (ALE) splicing. Moreover, all 23 AS events common to both
cell lines were ALE events. ALE events regulated by CDK12 had an average MISO |∆Ψ|
value of 0.23 ± 0.09 (Figure 3.1.C).

The cell type-specific effects we observed (Figure 3.2.A) are likely not an indirect
result of low gene expression in either cell type; genes that were regulated by CDK12 in
only one cell type were similarly expressed in the other cell type (Figure 3.2.B). Genes
with ALE events regulated by CDK12 were expressed with an average FPKM (fragments
per kb of exon per million fragments mapped) value of 12 and 15 in SK-BR-3 and 184-
hTERT cells, respectively. For the 23 genes common to both cell lines, the average FPKM
value was 15 and 16 in SK-BR-3 and 184-hTERT cells, respectively. Genes with SK-
BR-3-specific ALEs had an average FPKM of 15 in 184-hTERT cells, and genes with
184-hTERT-specific ALEs had an average FPKM of 16 in SK-BR-3 cells.

To further explore the universality of this type of regulation, we performed MISO anal-
ysis on published RNA-seq data of HCT-116 cells (derived from colorectal cancer) treated
with CDK12 shRNAs [145]. The experiments in HCT-116 were performed in duplicates
with two different shRNA constructs. Consistent with our findings in SK-BR-3 and 184-
hTERT cells, ALE events accounted for 33% and 41% of all AS types in HCT-116 cells
for each of the two shRNAs, respectively (Figure 3.3.A). Common AS events resulting
from treatment with CDK12 siRNA-1 (SK-BR-3 and 184-hTERT cells) and either of the
two shRNAs (HCT-116) were all ALEs (n = 9, Figure 3.3.B).

The regulation of AS by CDK12 is largely cell type-specific, but the preponderance of
ALE events suggests the regulated genes may possess a common feature. When compared
to the total set of protein coding genes, genes whose ALEs were regulated by CDK12 had
significantly longer transcripts and contained a greater number of exons (Figure 3.4.A).
It was previously reported that genes transcriptionally regulated by CDK12 generally had
longer transcripts [146]. In our analysis, we found that genes with ALE events regulated
by CDK12 were significantly longer than those transcriptionally regulated by CDK12 (Fig-
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Figure 3.1: CDK12 regulates alternative last exon (ALE) splicing. A. MISO analysis iden-
tified AS events that resulted from depletion of CDK12 in SK-BR-3 and 184-hTERT
cells (Bayes Factor ≥ 20, |∆Ψ| ≥ 0.1). AS events present in all three RNA-seq repli-
cates were primarily alterative last exon splicing in both cell types. SE, skipped exons;
RI, retained introns; A3SS, alternative 3’ splice sites; A5SS, alternative 5’ splice sites;
MXE, mutually exclusive exons; AFE, alternative first exons; ALE, alternative last
exons; T-UTR, tandem 3’ untranslated regions. B. The majority of AS events are
cell type-specific, and events common to both SK-BR-3 and 184-hTERT cells are all
ALEs. C. Distribution of |∆Ψ| values for ALE events (total n = 156) regulated by
CDK12 in SK-BR-3 (n = 88) and 184 hTERT (n = 68) cells.
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60



1.0

0.8

0.6

0.4

0.2

0.0

Fr
ac

tio
n 

of
 A

S 
ev

en
ts

184-hTERT + siRNA-1

n = 134

1.0

0.8

0.6

0.4

0.2

0.0

Fr
ac

tio
n 

of
 A

S 
ev

en
ts

HCT-116 + shRNA-1

Liang ., 2015
n = 64

*

1.0

0.8

0.6

0.4

0.2

0.0

Fr
ac

tio
n 

of
 A

S 
ev

en
ts

HCT-116 + shRNA-2

Liang ., 2015
n = 133

*

1.0

0.8

0.6

0.4

0.2

0.0
Fr

ac
tio

n 
of

 A
S 

ev
en

ts

SK-BR-3 + siRNA-1

n = 161

SE R
I

A3
SS

A5
SS

M
XE AF

E
AL

E
T-

UT
R

AS type

SE R
I

A3
SS

A5
SS

M
XE AF

E
AL

E
T-

UT
R

AS type

15
0

10
0 50 0

Set size

SK-BR-3 
+ siRNA-1

184-hTERT 
+ siRNA-1

HCT-116 
+ shRNA-2

HCT-116 
+ shRNA-1

10
0

50
0 N
um

be
r o

f A
S 

ev
en

ts

ALE events
All AS events

AL
E/

Al
l A

S
91

/1
20

36
/9

6
51

/9
5

13
/3

9
25

/2
5

3/
20 7/

7
5/

5
3/

4
3/

3
1/

1
1/

1
0/

0
0/

0
0/

0

A)

B)

Figure 3.3: Regulation of ALE splicing is a universal function of CDK12. A. Comparison of
AS events identified by MISO in SK-BR-3 and 184-hTERT cells (treated with CDK12
siRNA-1, this study), and HCT-116 cells (treated with two shRNA constructs, Liang et
al [145]). Only two replicates of the SK-BR-3 and 184-hTERT RNA-seq were used in
order to match the conditions of the HCT-116 RNA-seq data. In the HCT-116 exper-
iment RNA-seq was performed on total RNA after depletion of rRNA. The RNA was
not enriched for mRNA, which could explain the enrichment of retained introns (de-
noted by asterisks) observed in the HCT-116 data versus the SK-BR-3 and 184-hTERT
data. B. Intersection set analysis showing number of AS and ALE events common to
SK-BR-3, 184-hTERT, and HCT-116 cells. Top: set sizes of each group are shown.
Bottom: numbers of AS and ALE events in each intersection group. Graph created
using the UpSetR package in R (https://cran.r-project.org/web/packages/UpSetR/).
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Figure 3.4: CDK12 regulates ALE splicing of genes with long transcripts and a large num-
ber of exons. A. Distributions of gene transcript length and number of exons. All
protein coding genes are compared to all genes with annotated ALE events and genes
regulated by CDK12 (ALE splicing or differential expression in SK-BR-3 and 184-
hTERT cells). Red lines represent the means. Pairwise statistical comparisons per-
formed using the Kolmogorov-Smirnov test (*p < 0.0005, **p < 1 x 10-6, n.s. not
significant). C. Depletion of CDK12 generally results in the utilization of proximal
ALEs (negative ∆Ψ values).

ure 3.4.A). Genes with ALE events regulated by CDK12 were also longer than all genes
with annotated ALEs. Notably, of all genes with annotated ALEs, only 3% with tran-
scripts longer than the average were regulated by CDK12 in SK-BR-3 or 184-hTERT
cells. In other words, only a subset of long genes was regulated by CDK12-dependent
ALE splicing, suggesting additional gene-specific factors that direct AS by CDK12.

In 76% of ALE events, CDK12 depletion resulted in the enrichment of mRNA isoforms
utilizing the proximal ALE (Figure 3.4.B). When considering only ALE events common

62



to both SK-BR-3 and 184 hTERT cells, the proximal ALE was utilized more in 83% of the
cases. These results were independently validated by performing qRT-PCR (by Christalle
Chow and Jerry Tien) on a select number of ALE events in SK-BR-3 and 184-hTERT cells
depleted of CDK12, with good correlation of ∆Ψ values between the MISO and qRT-PCR
data (Appendix. B). These observations were also not due to off-target effects; we obtained
similar results with a different CDK12 siRNA construct (CDK12 siRNA-2; Appendix. B),
but not with siRNA constructs targeting CDK9 or CDK13.

Furthermore, the immunoprecipitation experiments carried (by Christopher S. Hughes
and Jerry Tien) determined that CDK12 interactome is enriched in spliceosomal proteins.
CDK12-interacting proteins were highly enriched for RNA splicing function (Figure 3.5),
and could be generally classified into core spliceosome components (pre-catalytic com-
plexes A and B, and the associated Prp19 complex) and regulators of constitutive and
alternative splicing (SR proteins, RBM proteins, and hnRNPs) (Figure 3.5.C) [206]. The
interactions between CDK12 and hnRNPs were sensitive to nuclease treatment and were
therefore likely dependent on RNA intermediates, such as the pre-mRNA upon which hn-
RNPs are assembled. By contrast, interactions between CDK12 and core spliceosome
and SR proteins were largely unaffected by nuclease treatment. The universality of in-
teractions between CDK12 and core spliceosome components was further supported by
immunoprecipitation experiments in HEK-293T cells [145, 207], Jurkat T-cells [208], and
HeLa cells [148, 209]; however, many of the regulatory splicing components differ across
cell types. This could be a product of cell type-specific regulation or differences in experi-
mental methodology. Together, these results suggest that CDK12 is a bona fide component
of the splicing machinery.

While the regulation of ALE usage by CDK12 can be achieved through its association
with regulatory splicing factors, it could also be an indirect product of transcription ter-
mination processes (such as alternative polyadenylation) initiated by termination signals
in the 3’ untranslated regions (UTRs) [211]. To address this possibility, we searched for
polyadenylation motifs in the 3’UTRs of proximal and distal ALEs that were regulated
by CDK12 (Figure 3.6). We observed no differences in the distribution and density of
polyadenylation motifs in ALEs regulated by CDK12, as compared to ALEs unaffected
by CDK12 function. This observation further suggests that the regulation of ALE usage
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Figure 3.5: CDK12 interacts with the RNA splicing machinery. A. Immunoprecipitation
of FLAG-CDK12 and mass spectrometry was used to identify 121 CDK12-interacting
proteins in SK-BR-3 cells (enrichment score > 0, padj < 0.05). B. Interacting proteins
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by CDK12 occurs through a splicing mechanism rather than through gene-specific recruit-
ment of polyadenylation factors.

3.3.2 Tumors defective in CDK12 function exhibit mis-regulation of
ALE splicing

Alterations in CDK12 have been described in numerous tumor types, including breast,
ovarian, uterine, gastric, and bladder cancers [153, 181, 185, 194, 195]. The TCGA con-
sortium has performed large-scale analyses on collections of tumor samples, including
RNA-seq for 311 cases of ovarian serous cystadenocarcinoma [153]. CDK12 is recurrently
altered in 6% of these cases (Figure 3.7.A). Tumors containing the CDK12 mutations are
notably not amplified for HER2, and previous studies demonstrated that these ovarian can-
cer mutations impair the kinase activity of CDK12 in vitro [152, 183]. Therefore, these
samples are well suited to explore the consequences of modulating CDK12 function in a
tumor setting.

To generalize the regulation of ALE events by CDK12 to tumor cells, we used the
MISO package to perform pairwise comparisons of tumor samples containing CDK12 al-
terations to tumor samples without CDK12 alterations (Figure 3.7.B). For this analysis,
we utilized data from four types of available TCGA RNA-seq samples [153]: tumors with
CDK12 point mutations (n = 7), tumors with homozygous CDK12 deletions (n = 3), tu-
mors with genomic amplification of CDK12 (n = 4), and tumors with no alterations in
CDK12 (n = 56 control samples). We queried the point mutation, deletion, amplification,
and control samples for the occurrence of the 133 ALE events that resulted from CDK12

depletion in SK-BR-3 and 184-hTERT cells. Each ALE event in CDK12-mutated tumors
was found in 49% of comparisons on average (point mutation:control), as compared to
23% of control (control:control) comparisons (Figure 3.7.B i). When considering only the
23 events common to both SK-BR-3 and 184-hTERT cells, each ALE event was found
in 71% and 27% of mutation and control comparisons on average, respectively. Similar
trends were obtained with tumors containing homozygous CDK12 deletions (Figure 3.7.B
ii), demonstrating that these ALE events were identified more frequently in tumors im-
paired in CDK12 function.
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Figure 3.6: The 3’UTR of ALEs regulated by CDK12 do not feature unique patterns of
polyadenylation motifs. Distribution plots are shown for ALEs regulated by CDK12
(green lines and boxes) and control ALEs (black lines and boxes). ALE events are
divided into those that result in greater usage of the proximal ALE (∆Ψ < -0.1) and
those that favor the distal ALE (∆Ψ > 0.1). A. Analysis of polyadenylation motifs
was performed on the 3’UTRs of proximal and distal ALEs regulated by CDK12.
B. Distributions of distances of polyadenylation motifs from the 5’ and 3’ junctions of
3’UTRs. The n values represent total numbers of polyadenylation motifs identified. C.
Distributions of the densities of polyadenylation motifs in the 3’UTRs. The differences
between the distributions of SK-BR-3 ALEs and control ALEs are not statistically
significant in all comparisons (Mann-Whitney U test, Benjamini-Hochberg corrected
p > 0.05).
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Figure 3.7: Alterations in CDK12 correlate with mis-regulation of ALE splicing in ovarian
tumor samples. A. CDK12 is recurrently altered in ovarian serous cystadenocarci-
nomas [153]. From this dataset, RNA-seq data was available for tumors containing
CDK12 point mutations (blue, n = 7), homozygous deletions (green, n = 3), and am-
plifications (red, n = 4). B. Using the MISO package, changes in AS (Bayes Factor ≥
20) were determined based on the following comparisons: (i) CDK12 point mutation
vs. control, (ii) CDK12 deletion vs. control, and (iii) CDK12 amplification vs. control.
Changes in CDK12-regulated AS events were compared to AS events found in control
vs. control comparisons. To obtain a similar number of comparisons in each scenario,
each point mutation sample (i) was compared to two unique control samples (n = 14
comparisons), while each deletion (ii) and amplification sample (iii) was compared to
four unique control samples (n = 12 and 16 comparisons, respectively). Control vs.
control comparisons were likewise paired, and additionally performed in triplicate (n
= 36, 42, or 48 comparisons). A total of 133 ALE events were queried, representing
the events found in either the SK-BR-3 or 184-hTERT experiments (grey circles). We
also queried 23 ALE events common to both SK-BR-3 and 184-hTERT cells (purple
triangles). Red lines represent the means. The significances of comparisons (grey
and purple lines) were determined using the Mann-Whitney U test (*p < 0.05, **p
< 0.005, ***p < 1 x 10−5). The results published here are in whole or part based
upon data generated by The Cancer Genome Atlas managed by the NCI and NHGRI.
Information about TCGA can be found at: http://cancergenome.nih.gov/.
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In breast cancers, CDK12 is commonly co-amplified with HER2. Similarly, the four
ovarian tumor samples with CDK12 amplifications also contain HER2 amplifications. Un-
like cases containing CDK12 point mutations or deletions, the queried ALE events were
found less frequently in tumors amplified for CDK12 (13% of amplification:control and
20% of control:control comparisons; Figure 3.7.B iii). These findings with the CDK12-
amplified samples mirror our results in SK-BR-3 cells, where the ALE events were iden-
tified after depletion of CDK12 from an over-expressed state. Together, these results sug-
gest that mis-regulation of ALE splicing occurs due to aberrations in CDK12 and support
a functional role of CDK12 alterations in tumor development in ovarian tumors.

3.3.3 Regulation of gene expression by CDK12 is gene- and cell
type-specific but modulates a core set of common pathways

The role of CDK12 in regulating ALE splicing of long transcripts occurs in multiple cell
and tumor types; however, only a small subset of these regulated genes are common to
multiple cell types. To address the question if CDK12 also regulated cell type-specific
gene transcription we evaluated the effects of CDK12 on global gene expression.

We analyzed the triplicate CDK12 siRNA and control siRNA RNA-seq data from SK-
BR-3 and 184-hTERT cells using DESEQ2 [199, 212]. The analysis found that depletion
of CDK12 resulted in modest changes in gene expression (Figure 3.8.A). In SK-BR-3 cells,
3,163 statistically significant (padj < 0.01) events were evenly divided into up-regulated
(50%, mean fold change = 1.5) and down-regulated (50%, mean fold change = -1.5) genes.
Of these events, only 386 exhibited more than a 2 fold change in gene expression (Fig-
ure 3.8.C). Depletion of CDK12 in 184-hTERT cells resulted in slightly more differential
expression events (n = 3,940 with padj < 0.01). Again, events were differentially ex-
pressed in both directions (49% up-regulated an average 1.7 fold; 51% down-regulated
an average 1.6-fold). Only 678 changed more than 2 fold in expression. Of these genes,
37 were differentially expressed in both cell lines (Figure 3.8.C). These analyses con-
trast with a previous study in HCT-116 cells, which reported that 98% of differentially
expressed genes were down-regulated after CDK12 depletion [145]. Taken together, our
observations suggest that similar to the regulation of ALE splicing, regulation of gene
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Figure 3.8: CDK12 differentially regulates gene expression in a cell type-specific manner.
A. Differential gene expression analysis by RNA-seq following CDK12 depletion in
SK-BR-3 and 184-hTERT cells. Mean expression (DESEQ2 counts) is plotted against
fold change (CDK12 siRNA-1 versus scrambled siRNA). Dotted lines delineate events
with | f oldchange|> 2. Events with padj < 0.01 are colored. C. Few differential gene
expression events with padj < 0.01 and | f oldchange| > 2 are common between SK-
BR-3 and 184-hTERT cells.

expression by CDK12 is highly gene- and cell type-specific.
While the regulation of individual genes by CDK12 was cell type-specific, an examina-

tion of the affected cellular pathways using Gene Set Enrichment Analysis (GSEA) [202]
offered additional insight. We found that in both SK-BR-3 and 184-hTERT cells, loss of
CDK12 altered similar pathways. Identification of these pathways also support previously
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reported functions of CDK12 [145, 146, 151, 152, 183, 185, 213, 214]. Namely, depletion
of CDK12 resulted in the down-regulation of genes involved in RNA splicing and process-
ing, cell cycle progression, and regulation of DNA damage response pathways in both cell
types (Figure 3.9). Since these processes were previously reported in different cell types,
they appear to represent universal functions of CDK12.

The pathway analysis also aided in determining cell type-specific properties of CDK12.
Depletion of CDK12 in SK-BR-3 cells decreased expression of genes associated with mi-
tochondrial function (Figure 3.9). This change was not observed in 184-hTERT cells.
Instead, depletion of CDK12 in 184-hTERT cells increased expression of genes associ-
ated with the plasma membrane or related to development and extracellular activity (Fig-
ure 3.9). In general, CDK12 expression both increased and decreased the expression of
genes in various pathways in 184-hTERT cells, but primarily up-regulated pathways in
SK-BR-3 cells (Figure 3.9). Taken together, these results demonstrate that while tran-
scriptional regulation by CDK12 is largely gene- and cell type-specific, common cellular
processes are modulated by CDK12 activity amongst different cell types.

We next sought to determine how changes in gene expression due to CDK12 func-
tion manifest at the protein level to affect the expressed phenotype of SK-BR-3 cells.
Global proteomics experiment was performed (by Grace Cheng, Christalle Chow, Jerry
Tien, and Christopher Hughes) to quantify alterations in protein expression after deple-
tion of CDK12 in SK-BR-3 cells, and we compared the results to the matching RNA-seq
data (Figure 3.10). We found that the proteome data represented a smaller subset of the
transcriptome data (Figure 3.10.A). Of the 11,072 expressed genes in the RNA seq data
(defined as FPKM ≥ 1), 7,031 (64%) were identified at the protein level by mass spec-
trometry (Figure 3.10.A).

Moreover, similar to the transcriptome data, only a small proportion of proteins were
differentially expressed (n = 444, padj < 0.01) in SK-BR-3 cells after depletion of CDK12

(Figure 3.10.B). There was a high correlation in the fold change values of the 197 genes
that were differentially expressed in a statistically significant manner in both the transcrip-
tome and proteome datasets (Figure 3.10.C). We note that 242 genes were changed at the
protein level and not at the mRNA level, and that 1,136 mRNAs were changed at the tran-
scriptome level and not at the protein level. Pathway analyses demonstrated that the core
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Figure 3.9: CDK12 regulates the expression of a core set of genes and pathways. A. En-
richment maps from GSEA analysis of differential gene expression resulting from
CDK12 depletion in SK-BR-3 and 184-hTERT cells. B. For each pathway, GSEA
pre-ranked analysis assigned a normalized enrichment score (NES) representing the
extent of over-representation of genes of a pathway at the top or bottom of a ranked
list. Positive and negative NES values represent up- and down-regulated pathways,
respectively. For each pathway, NES values in SK-BR-3 and 184-hTERT are shown.
Red markers represent NES values significant in both cell lines (FDR < 0.1). The dot-
ted red line shows the general trend of these points. Blue and yellow markers represent
NES values only significant in SK-BR-3 and 184-hTERT cells, respectively.
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Figure 3.10: Differential protein expression due to CDK12 regulation represents a subset
of differential gene expression events. A. Histogram of RNA-seq expression values
(FPKM) for all coding genes and genes with corresponding proteins detected by mass
spectrometry with ≥ 1 unique peptides (blue bars) or ≥ 2 unique peptides (green
bars). B. Top: volcano plot of the global proteome analysis in SK-BR-3 cells. Dotted
horizontal line denotes point at which padj = 0.01. Dotted vertical lines lineate events
with | f oldchange| > 1 s.d. (σ ) from the mean. Bottom: distribution of fold change
values for all differential protein expression events with padj < 0.01. Green vertical
lines denote mean fold change (µ) values for up- and down-regulation. Dotted lines
are the ± 1 σ lines extended from the top plot. C. Correlation of fold change values
from global transcriptome and proteome analysis in SK-BR-3 cells (r2
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10−5). Events with significant fold change values (padj < 0.01) in both datasets are
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functions of CDK12 (e.g., RNA processing and DNA damage response) were all observed
in the proteomics experiment (Appendix. B). Functions specific to SK-BR-3 cells, such as
the involvement of mitochondrial processes, were also found at the protein level. However,
the regulation of proteins involved in cell cycle and cell division, which was prominent in
the transcriptome data, was absent in the proteome data. This is likely a result of mRNA-
independent means of regulating protein expression and turnover, and may also be cell
type-specific.

3.3.4 CDK12 can modulate the expression of DNA damage response
genes in SK-BR-3 cells through alternative splicing

Based on microarray differential gene expression analysis, it was proposed that CDK12

regulates the expression of DNA damage repair genes [146]. Our analysis suggests that
AS may be a significant mechanism of regulation by CDK12, especially for genes with
long transcripts and many exons. One such example we identified in our SK-BR-3 RNA-
seq data was the gene encoding the ATM (Ataxia Telangiectasia Mutated) protein. ATM

is a key regulatory kinase that responds to DNA double-strand breaks and initiates DNA
repair pathways [215]. The canonical isoform of ATM is a 350 kDa protein translated
from a 13,147-bp transcript containing 63 exons (Figure 3.11.A). Along with many other
DDR genes, treatment of SK-BR-3 and 184-hTERT cells with CDK12 siRNA resulted in
a down-regulation of ATM mRNA expression (Appendix B). Specific to SK-BR-3 cells,
however, CDK12 regulates the expression of ATM through ALE splicing (Figure 3.11.B
and C). By examining expression of individual ATM exons (Figure 3.11), and as confirmed
by qRT-PCR (Figure 3.11.C), CDK12 depletion resulted in a 1.3-fold down-regulation of
most of the exons. However, the terminal exon and 3’UTR were down-regulated more
than 4-fold. This was in contrast to 184-hTERT cells, where CDK12 depletion resulted in
a 1.4-fold down-regulation across the entire length of the ATM gene.

These data indicate that in SK-BR-3 cells, the expression of full-length ATM isoform
could be regulated through AS in addition to direct transcriptional control. Using a mono-
clonal antibody targeting ATM residues 980-1,512 (exons 20-30), it was confirmed at the
protein level that the expression of full-length ATM was decreased 3-fold after CDK12
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Figure 3.11: CDK12 regulates the expression of full-length ATM through ALE splicing in
SK-BR-3 cells. A. Exon structure of the canonical ATM isoform, corresponding to
Ensembl transcript ENST00000278616. Primers for qRT-PCR in (C) were designed
to target four exon junctions (i-iv) and are shown as red arrowheads. B. Top: relative
expression of each ATM exon after CDK12 depletion in SK-BR-3 (blue circles) and
184-hTERT (orange triangles) cells. Bottom: normalized read counts for the 3’ end
of the canonical ATM isoform after CDK12 depletion in SK-BR-3 (dark and light
blue traces) and 184-hTERT (dark and light orange traces) cells. C. Validation of
RNA-seq exon expression analysis by qRT-PCR. Expression levels were determined
for the four regions of ATM (i-iv, shown in (A)) after CDK12 depletion in SK-BR-3
(blue circles) and 184-hTERT (orange triangles) cells. Error bars denote the 99%
confidence interval range. D. Relative quantification of full-length ATM protein ex-
pression due to CDK12 depletion by western blot analysis.
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depletion (by Jerry Tien, Christalle Chow, and Leanna Canapi; Figure 3.11.D). These ob-
servations suggest that CDK12 can modulate the protein expression of full-length ATM by
altering the ratio of different ATM splice isoforms. These results demonstrate that AS is
an additional mechanism by which CDK12 can control DNA repair pathways.

3.3.5 CDK12 down-regulates the long isoform of DNAJB6 and
increases the tumorigenicity of breast cancer cells

Pathway analysis of differential gene and protein expression suggests that some CDK12

functions are conserved across cell types. In addition to cell type-specific regulation de-
scribed above, we identified common ALE events that were regulated by CDK12 in mul-
tiple cell lines. From our experiments with SK-BR-3 and 184-hTERT cells, and the avail-
able datasets from HCT-116 cells [145], we found that loss of CDK12 is frequently asso-
ciated with changes in ALE splicing of the DNAJB6 (DnaJ homolog subfamily B member
6, MRJ) gene (in SK-BR-3 and 184-hTERT, ∆Ψavg = 0.21). In our analysis of TCGA
RNA-seq data for tumors containing homozygous CDK12 deletions (12 deletion:control
pairs), the DNAJB6 ALE event was found in 92% of comparisons on average, as compared
to 44% of control (36 control:control pairs) comparisons (Fisher’s exact test p = 0.006).

Unlike the long genes that were regulated in a cell type-specific manner, DNAJB6 en-
codes two small protein isoforms (36 and 27 kDa) from transcripts containing 10 and 8 ex-
ons, respectively (Figure 3.12.A). The short isoform of the DNAJB6 protein (DNAJB6-S)
is a HSP40 family cytosolic chaperone with implicated roles in Huntington’s disease [216,
217]. By contrast, ALE splicing introduces a nuclear localization signal in the long iso-
form of DNAJB6 (DNAJB6-L), and therefore it operates primarily in the nucleus. In-
creased nuclear localization of DNAJB6-L has been reported to mitigate tumorigenicity
and metastasis in breast and esophageal cancer cells [218, 219].

Our RNA seq data showed that through ALE splicing, higher CDK12 expression in
SK-BR-3 cells reduced the expression of DNAJB6-L (Figure 3.12.B), consistent with
CDK12 functioning as an oncogene. We tested this hypothesis using MDA-MB-231 cells,
a highly invasive triple-negative breast cancer cell line where DNAJB6-L had been previ-
ously shown to decrease cell migration potential [218]. Global proteome pathway analysis
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Figure 3.12: CDK12 down-regulates the long isoform of DNAJB6 through ALE splicing. A.
Exon structure of the long (-L) and short (-S) isoforms of DNAJB6, corresponding to
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depletion in SK-BR-3 cells by RNA-seq using CUFFLINKS. Error bars represent
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denote the 99% confidence interval range. D. Relative quantification of changes in
DNAJB6-L and DNAJB6-S protein expression due to CDK12 depletion in MDA-MB-
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of CDK12-depleted MDA-MB-231 cells largely resembled results from SK-BR-3 cells,
with the exception of the down-regulation of cell cycle and cell division proteins that
was not seen in SK-BR-3 cells (Appendix. B). This analysis further supported the use of
MDA-MB-231 cells to examine the effects of CDK12 on tumorigenicity. Using qRT-PCR
and western blot analysis, we confirmed that MDA-MB-231 cells treated with CDK12

siRNA increased gene and protein expression of DNAJB6-L (and decreased expression of
DNAJB6-S) as compared to a scrambled siRNA control (Figure 3.12.C and D).

To examine the cellular phenotype associated with CDK12 expression, a scratch wound
assay and live cell imaging of MDA-MB-231 cells were used (by Grace Cheng and Jerry
Tien) as a functional test for cell migration. The experiments show that the ability of
MDA-MB-231 cells to invade is correlated with CDK12 expression and inversely corre-
lated with the expression level of DNAJB6-L, and suggest that CDK12 can increase the
tumorigenicity of an invasive breast cancer cell line, likely through ALE splicing of the
DNAJB6 gene [2].

3.4 Discussion
We showed that CDK12 regulates ALE splicing in a cell type specific manner. Prior to this
study, the global effect of CDK12 on AS was uncharacterized, and opposing conclusions
had been made regarding its role in gene expression. While several studies proposed that
CDK12 specifically affects a small number of genes [146, 220], another report suggested a
global up-regulation of transcription [145]. Here, we applied stringent criteria, combining
RNA-seq datasets in biological triplicates from two different cell lines to identify AS and
differential gene expression events with high confidence.

We found that the regulation of ALE splicing and differential gene expression by
CDK12 was limited to a small subset of genes and the nature of this regulation was highly
cell type-specific. In 184-hTERT cells, CDK12 both up- and down-regulated the expres-
sion of genes and pathways. Using the same statistical criteria in SK-BR-3 cells, CDK12

both up- and down-regulated genes, but the most significantly affected pathways were all
down-regulated after CDK12 depletion. Down-regulation of pathways in SK-BR-3 cells
is consistent with the role of CDK12 in increasing the rate of transcription elongation.
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Importantly, our proteomic analysis of SK-BR-3 cells suggests that not all CDK12-
mediated transcriptional regulation manifests at the protein level. For example, pathways
relating to cell cycle and cell division were down-regulated in the transcriptome of SK-
BR-3 cells after CDK12 depletion, but not in the proteome. These results could reflect
additional layers of regulation at the protein level, including the modulation of translation,
post-translational modifications, and protein turnover/proteolysis. An additional factor to
explain this observation could be a dominant effect of HER2 over-expression on many
pathways [221]. Consistent with this idea, loss of CDK12 significantly down-regulates
cell cycle and cell division proteins in MDA-MB-231 cells, which do not have HER2

amplification.
In general, we found that CDK12 regulates ALE splicing of genes with long tran-

scripts and high numbers of exons. This trend was significantly more pronounced in ALE
splicing events regulated by CDK12, rather than in differential gene expression events as
previously reported for HeLa cells [146]. Furthermore, in a majority of events, native
CDK12 promoted the splicing of the longer mRNA isoform.

The simplest model for CDK12 regulation of pre-mRNA processing is that CDK12

increases the processivity and/or rate of elongation to achieve successful splicing of one
exon to the next exon. In the absence of CDK12, this splicing event is reduced due to
decreased processivity and transcription defaults to termination and polyadenylation of
what then becomes the last exon (the proximal ALE). However, this simple model cannot
explain all our major observations. For instance, it is unclear how the proximal ALE is
selected amongst all the exons within a long transcript. Notably, we did not observe any
difference in the density of polyadenylation motifs in the 3’UTRs of CDK12-regulated
ALEs.

It is also not known how CDK12 achieves regulation of only a small subset of genes
that differs depending on cell type. This is possibly accomplished by the various tissue-
specific splicing regulatory factors that associate with CDK12 or by signal transduction
processes that regulate the action of CDK12 and/or its interacting proteins. The proces-
sivity and elongation model also does not explain ALE splicing to promote the shorter
mRNA isoform, as observed with a minority of genes ( 20%). One such gene, DNAJB6 ,
is regulated by CDK12 in multiple cell types and tumors, suggesting a gene-specific reg-
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ulation that differs from the possible length-dependent regulation common to other ALE
events. Therefore, it is probable that regulation of AS by CDK12 also requires additional
splicing factors such as the SR proteins, hnRNPs, and RNA processing factors identified
in our immunoprecipitation experiments. Future studies should be aimed at determining
the precise role of these regulatory proteins in CDK12-dependent regulation of splicing.

Our results shows that CDK12 regulates the DNA damage response through multiple
mechanisms. One of the most consistently reported functions of CDK12 has been the
regulation of the DDR. Differential expression of specific DDR genes was first identified
by microarray analysis [146], and changes in DDR pathways were determined from tran-
scriptome analysis [145]. Furthermore, CDK12 depletion was found to be synthetic lethal
with PARP inhibition [151, 183, 185]. This behavior is reminiscent of the sensitivity of
BRCA1/BRCA2-deficient tumors to PARP inhibitors [222–224], suggesting that CDK12

may be specifically involved in the HDR pathway. Indeed, ovarian tumors containing
CDK12 mutations exhibited down-regulation of several HDR genes [152].

In all cell types we examined, CDK12 regulated gene and protein expression of com-
ponents of the DDR pathway. Furthermore, our RNA-seq data for SK-BR-3 cells suggest
that CDK12 may be a key regulator of HDR through ALE splicing of ATM, a master reg-
ulating kinase that directly responds to DNA damage. The splicing-dependent regulation
of ATM in SK-BR-3 cells was independent of transcriptional regulation, whereas in 184-
hTERT cells there was modest transcriptional regulation of ATM. By compiling our data
and those on gene regulation from the literature [145, 146] it is apparent that gene regula-
tion and AS regulation by CDK12 is both cell type specific and gene specific. Furthermore,
while CDK12 alters the transcription of some genes, it can also modulate the splicing of
functional isoforms of DDR genes.

In line with our findings, experiments exploring the effect of loss-of-function muta-
tions in CDK12 on the DDR suggest that CDK12 is a tumor suppressor gene. However,
several observations show that CDK12 can also function as an oncogene. This is particu-
larly pertinent in breast cancers, where CDK12 is frequently co-amplified with the HER2

oncogene. Over-expression of CDK12 is correlated with aggressive tumor behaviour and
poor survival [134, 180, 182]. Notably, these properties also apply to the small fraction
of tumors where CDK12 is amplified but HER2 is not, suggesting an oncogenic potential
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independent of HER2 [144].
Our RNA-seq experiments examining a breast cancer cell line over-expressing CDK12

(SK-BR-3 cells) identified AS splicing events that could promote tumorigenesis. These
events were also found in our analysis of TCGA RNA-seq data of ovarian tumors contain-
ing CDK12 amplifications. One notable AS event regulated by CDK12 and identified in
multiple cell types and tumors was the ALE splicing of DNAJB6. Recent studies show
that the long isoform of DNAJB6 (DNAJB6-L) suppresses cell migration and invasion in
MDA-MB-231 cells [218]. While the mechanism driving this activity was unclear, it was
dependent on the ALE splicing and subsequent nuclear localization of DNAJB6-L.

Using the same MDA-MB-231 cell line model, we showed that CDK12 expression is
inversely correlated with ALE splicing of DNAJB6-L. The ability of cancer cells to migrate
and invade is a fundamental mechanism underlying tumorigenesis and metastasis [225].
MDA-MB-231 cells can seed tumors in mouse models, and increasing DNAJB6-L expres-
sion decreases tumor growth and metastasis in athymic mice [218]. Therefore, the ability
of CDK12 over-expression to down-regulate DNAJB6-L through ALE splicing represents
a specific cellular mechanism by which CDK12 can increase the tumorigenicity of breast
cancer cells. This could be a significant factor contributing to the progression of HER2+

breast cancers, where CDK12 is co-amplified in 27-92% of cases [186–194].
In this study, we applied a comprehensive genomic and proteomic approach to define

the cellular functions of CDK12 and to investigate its oncogenic properties. We showed
that in multiple cell lines, CDK12 regulated a core set of cellular processes including
RNA processing and DNA repair. We also found that CDK12 regulated ALE splicing,
primarily of genes with long transcripts and a large number of exons. While this regulation
mechanism is present in multiple cell lines, the affected genes are highly cell type-specific.
In SK-BR-3 cells, CDK12 modulated ALE splicing to promote the generation of full-
length ATM, a key component of DNA repair associated with tumorigenesis. CDK12 also
regulated splicing of DNAJB6, whose nuclear localization attenuates tumor invasion. In
MDA-MB-231 cells, CDK12 promoted tumor migration and invasion in a dose-dependent
manner. Together, these results show how loss of CDK12 can disrupt DNA repair, but also
demonstrate an AS-dependent mechanism by which CDK12 over-expression can increase
the tumorigenicity of breast cancer cells.
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Chapter 4

Investigating Cellular Responses upon
Inhibiting Components of Splicing
Machinery

4.1 Introduction
Alternative splicing is precisely regulated through complex interactions of a large number
of proteins, RNA molecules, and environmental stimuli [26]. The complex interplay be-
tween components of this machinery is essential to maintain cell functions. Consequently,
a considerable number of genetic diseases has been linked to mutations that impair splic-
ing. For instance, more than 15% of disease causing genetic mutations are believed to
disturb splicing [226].

Disruption of splicing has been involved in many diseases including: Growth hormone
deficiency, Parkinsons disease, Cystic fibrosis, Retinitis pigmentosa, Spinal muscular at-
rophy, and also several types of cancer [5, 227, 228]. Usually, genes important for tumor
biology involved in processes such as cell cycle regulation and apoptosis are regulated
by alternative splicing [228]. In this case, aberrant splicing events in genes with specific
functions can lead to uncontrolled growth and survival of cells [229, 230]. These aberrant
splicing events are usually a consequence of mutations in components of splicing ma-
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chinery, 3’ and 5’ splice sites, or splicing silencers and enhancers. As a result, splicing
mechanism contributes to the development and progression of tumors [231].

Since the recognition of cancer specific splice variants, splicing is now being appreci-
ated as a potential therapeutic target [232]. Conceptually, two strategies are being investi-
gated. The first strategy is trying to interfere with the components of splicing machinery,
and if the components are more crucial for tumor cells compared to normal cells, then the
interruption may show therapeutic advantage [233]. Nevertheless, because the spliceo-
some components modulate the splicing of an extensive number of genes, the correspond-
ing drugs may display cytotoxic effects. As an alternative, in the second strategy, tumor
specific splicing events are targeted directly [233]. This approach is expected to have less
off-target effects, but it is necessary to identify the key splicing events to establish better
treatment potentials.

A primary step to the development of splicing related therapeutics is understanding
how components of spliceosome contribute to the regulation of splicing, and uncovering
how they interact to maintain balance between isoforms. In general, splicing machinery
can be modelled as a dynamic system of interactions. To understand regulations of this
system, we can interfere with the system from multiple points (e.g., inhibiting one protein
at a time) and evaluate the system’s response. Next, systematically integrating the results
of these measurements leads to developing a model, capable of explaining our observations
and predicting system’s responses in further conditions. Already, several methods have
been proposed to infer genetic interactions and relations using perturbation screens [234–
236].

Advancement in developing pharmacological agents improved the opportunities in sys-
tematic study of biological systems. Despite the growing evidence of the importance of
splicing mechanism in maintaining normal cellular functions, there remains much un-
known about its regulation in mammalian systems. Most of our current understanding of
the spliceosome is determined through studying model organisms. Only recently, with the
development of pharmacological agents, we acquired the opportunity to systematically in-
terfere with spliceosome components at different levels to inhibit their functions in human.
In other words, several inhibition levels can be experimented through applying different
dosage of pharmacological agents in order to investigate gradual changes in cellular re-
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sponses. Moreover, following the inhibition, RNA-seq enables us to gauge corresponding
changes in a genome-wide scale. Finally, we can cluster response patterns to determine
groups of genes that may undergo similar regulations. For instance, genes that show mono-
tonically increasing or decreasing response patterns have a higher chance of being primary
targets of inhibited proteins.

When a gene is inhibited, we are interested to know what are the direct targets of it,
which pathways undergo differential regulations as a result, and what are the main reg-
ulators of the observed differences. Here, I first briefly review the methods proposed to
identify primary pathways and genes that are more probable to trigger differential regula-
tion of usually a large number of other genes that are observed in genome-wide RNA-seq
studies. Following that, I present the data set where multiple components of the splic-
ing machinery are inhibited using small compounds, and finally, I show some preliminary
results on how our data can help to understand functions of these components.

4.2 Identifying Pathways and genes contributing most to
cellular responses: A short review

Human cells are remarkably complex systems with thousands of genes whose interactions
are organized in order to maintain appropriate responses based on a given condition. One
important goal in biology is to understand, predict, and ideally advantageously manipulate
emergent responses of these complex systems [237].

To gain a mechanistic insight on how an stimulus drives a cellular response, how a tis-
sue differentially regulates genes, or how a disease state deviates from a normal state, one
needs to interpret the measurable differences between conditions. RNA-seq is one of the
encouraging tools that provides good opportunities to study complex cellular mechanisms.
By simultaneously measuring transcript abundance, RNA-seq provides snapshots of a cell
status in a particular condition. When two conditions are compared using RNA-seq snap-
shots, hundreds or thousands of genes may exhibit alterations in transcript abundance.
Some changes are direct consequence of the modified condition (which are of most inter-
est), some are secondary effects of the direct targets, and some others may be due to errors
or inherent stochasticity in RNA-seq sampling.
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An additional source of knowledge to complement RNA-seq measurements is the in-
formation on known gene interactions stored in knowledge bases [238–243]. The number
of these interactions grow rapidly. As an example, the number of non-redundant physical
interactions in BIOGRID [242, 243] data base increased over 10 times since ten years ago.
It should be noted that many of the stored interactions are context specific and do not al-
ways apply to a particular cell state, some are inferred from high-throughput experiments
with lower confidence, and some may be reported in very few studies. Thus, a careful
strategy should be designed to benefit most from these knowledge bases, while filtering
irrelevant information.

In a study by Rolland et.al et al [244], it was estimated that among all possible binary
interactions (direct interactions) between human proteins, fewer than 10% of them are
known. This estimation does not consider the impact of alternative splicing and could
be optimistic, and thus highlights the limitation of our knowledge in this research area.
Therefore, when investigating cellular responses, the potential novel interactions could
also be taken into account. Here, our focus is on methods that are knowledge-driven, and
we do not consider the problem of inferring novel interactions from RNA-seq data.

Having access to prior knowledge of interactions and RNA-seq measurements, a cen-
tral question is therefore, what are the pathways or genes whose differential regulation in
an experiment contribute most to the observed variations. In this short review, we explain
the two alternative approaches, but only focus on the methods that aim to provide rules
and mechanisms governing the observed differences.

We group methods proposed to interpret variation between conditions into two broad
classes. The first class constitutes approaches that try to find gene sets or pathways that
are enriched by differentially expressed genes. These methods usually assess whether
the genes of a specific gene set are over-represented in a given set of N differentially ex-
pressed genes compared to a randomly selected set of N genes. In a conceptually different
approach, methods in the second class are designed to infer pathways or a small set of
upstream genes driving cascades of changes that lead to the observed measurements.

The first class of methods aim to summarize a list of identified differentially transcribed
genes into smaller sets of genes that are somehow connected: either they participate in a
same pathway, or they take part in related functions. A large number of methods have
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been proposed based on this point of view [245, 246]. Khatri et al [247] categorized these
approaches into 3 smaller groups. In the first group, a threshold is applied to select a set of
genes showing significant alterations, and then, the set of the selected genes are statistically
assessed to detect their over-representation in predefined pathways or gene sets [248–252].
The second group incorporates the fold change magnitudes of the gene expression values
in the statistical evaluation, as an improvement [202, 253, 254]. Finally, the last group
modifies pathway scores in a way to account for interactions between pathway genes as
well [255, 256].

Although gene set and pathway enrichment based methods were successful in orga-
nizing results and highlighting affected functions and pathways, they turn to usually fall
short in predicting driver genes. These techniques become ineffective in spotting genes
that govern the usually large number of genes that undergo differential regulation. In other
words, these methods cannot provide insights on the underlying mechanisms controlling
the transition between the two given conditions [257]. Furthermore, another limitation of
these methods is that they only present transcriptional view of the variations; however,
many of the interactions do not directly influence changes in transcript abundance [257].

To address the limitations of the pathway and gene set enrichment based methods, a
second group of methods focus on detecting a small number of driver genes or few path-
ways, whose mis-regulation elucidate a mechanistic explanation of measured variations
(Figure. 4.1). These methods that rely on the quality and quantity of knowledge bases
for the existence and direction of interactions in regulatory networks are explained in the
following.

Among the methods we discuss here that try to perform mechanistic inference, LPIA
(Latent Pathway Identification Analysis) [257] is the most similar one to pathway enrich-
ment based methods. Similar to previous methods, the output of the algorithm constitutes
pathways; however, here the pathways are scored based on their potential to initiate cas-
cades of changes in other pathways. More specifically, The method first constructs a net-
work of pathways, one node for each pathway of a given knowledge base. Next, it assigns
weighted edges between pathways. For each pair of pathways (pair of nodes in the gen-
erated network), the assigned weight reflects the number of GO (Gene Ontology) terms
that are common between the genes of the two pathways, and also it reflects the number
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Figure 4.1: Methods proposed to perform mechanistic inference using high-throughput se-
quencing data. A. LPIA method [257] searches for pathways central to a set of dis-
rupted pathways that have the potential to initiate alterations in other pathways. Pi’s
represent pathways consisting of sets of genes. Edge thickness displays how pathways
are believed to be inter-related. For instance, the pathway shown in blue (P3), will be
reported as an upstream regulatory pathway based on its connections. B. DEMAND
method [258] searches for dysregulated interactions between genes. The joint prob-
ability density of the expression of interacting genes are compared between the two
conditions (here between the genes G1 and G6), and genes whose interactions are sig-
nificantly altered are reported as upstream causal genes. C. The third group of meth-
ods use the direction and sign of interactions to compare the predicted versus observed
changes upon disruption of a given gene (here the gene shown in orange). Shaded cir-
cles display genes whose transcript abundance are observed and are expected to alter.
D. The last group of methods perform multiple levels of inference in order to connect
several regulatory levels. For example, based on the observed changes (black nodes),
active transcription factors are identified (dark grey nodes), and in the next level of the
analysis, candidate regulatory kinases are determined (the light grey node). For more
information see the main text.
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of common genes between the pathways that are differentially expressed. As a result, the
assigned weights express both the prior belief on how much the two pathways are related,
and also the context dependent (based on the experiment) measure of their interactions. In
the final step, the pathways that are more central in the constructed network are reported
as being potential causal pathways.

A main advantage of this method compared to pathway enrichment analysis is that
here, the genes in the top reported pathways not only show differential regulation, but can
describe observed changes in other pathways as well. On the other hand, one limitation of
LPIA is that it does not benefit from interaction of genes and their directions to increase
the confidence of causal inference. Additionally the amount of observed variations of gene
expression could improve the scoring scheme.

To find genes driving transcriptional transition between the two conditions, DEMAND [258]
(DEtecting Mechanism of Action by Network Dysregulation) searches for genes whose
known interactions are significantly dysregulated. The method was primarily proposed to
identify mechanism of action (MoA) of a compound, defined as targets essential to cause
the pharmacological effect of a compound.

The underlying assumption in DEMAND method is that if a gene belongs to the MoA
of a compound, then its direct targets are more likely to be dysregulated compared to
random genes. As a result, DEMAND evaluates the changes in joint gene expression
probability density of candidate genes using Kullback-Leibler divergence (KLD). Esti-
mating joint probability distributions may require many samples; however, DEMAND
is claimed to efficiently detect the corresponding changes by applying KLD. In the final
step, the evaluated dysregulations between a gene and its neighbors are combined and a p-
value is assigned to candidate genes. The method has been successfully applied to classify
compounds with similar functions and targets.

The first limitation of DEMAND method is that in only considers first order neigh-
bours (directly connected to the gene of interest) without considering the direction of reg-
ulation. Incorporating these additional information may improve the algorithm. Also, the
assumption of expected alterations of gene expression can be violated when the regulation
does not happen at transcriptional level. These issues are addressed in the next class of
methods.
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The next group of methods consolidate direction and sign of known interactions with
differential expression analysis to discriminate upstream causal genes from others [259–
266]. In most of these methods, a directed graph is constructed by putting one node
for each network entity. The nodes represent transcripts, proteins, small molecules and
compounds. Interactions between these entities are compiled from various data bases.
Interactions should be ideally signed and directed, showing the direction of the regulation
and whether the regulation is activation or inhibition. In the inference step, the common
framework is to predict the expected change of downstream genes using signed directed
paths, and then scoring candidates by comparing the expected and measured values.

In one of these methods, Chindelevitch et al [259] evaluated the expected direction
of changes for measured entities (transcript abundance) downstream of a candidate gene,
assuming the candidate gene is disrupted. In their evaluation, they considered directions
and signs of shortest paths from the candidate genes to those measured values. Next, they
introduced a scoring scheme based on rewarding and penalizing correct and incorrect pre-
dictions, accordingly. In the final step, they compared the computed scores to randomized
situations, in order to assign p-values to each of the candidate upstream regulators. Sev-
eral improvements have been applied in IPA (Ingenuity Pathway Analysis) approach [261].
The technique takes advantage of edge weights (indicating the confidence in edge direc-
tion) as well, and additionally, it determines interactions between upstream regulators that
are relevant to explaining variations. Zarringhalam et al implemented similar ideas in a
Bayesian framework [262]. Their proposed approach is however, limited to direct interac-
tions (paths of length one). The authors also incorporated context dependence of edges in
their study. Applying a similar statistical inference to genes connected with longer paths
rapidly increases the computational complexity of the problem, and the information car-
ried in cascades of interactions is inevitably ignored. Finally, several algorithms of using
edge weights, fold change values, and type of paths between nodes (i.e. only shortest vs.

all paths) were compared by Jaeger et al [263].
A clear limitation of these methods is their strong dependence on the quality of prior

networks generated from available knowledge bases. Sign and direction information is
scarce; meanwhile, many of such information heavily rely on the context. As a conse-
quence, some of the methods use knowledge bases not publicly available (for example
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from Ingenuity Inc. (http://www.ingenuity.com) or Selventa Inc. (http://www.selventa.

com) with more curated information. This limitation may be temporary given the huge
amount of high-throughput data generated these days; however, providing a well stud-
ied interaction network along with a high quality high-throughput data seem essential to
benchmark the proposed methods.

Finally, the last group of methods in our classification contains methods that apply one
layer/type of regulator-target detection at each step. Lefebvre et al constructed a network
consisting of context specific transcription factors and their binding sites in human B-cell,
and introduced a method called MARINA (MAster Regulator INference algorithm) to
specify context specific transcription factors with regulatory roles [267]. Genes are ranked
based on their down or up regulation magnitude, and the method evaluates if targets of
a candidate transcription factor are enriched in top or bottom of the ranked list using
GSEA [202]. The algorithms proposed in [268, 269] also investigate this layer of reg-
ulation, but they use different knowledge bases to build the initial graph, and they apply
different enrichment techniques. In addition, these methods incorporate protein-protein
interaction data bases to detect key proteins involving the differential regulation, as an
additional layer. As a final step, EXPRESSION2KINASE method [270] employs kinase en-
richment analysis to find kinases that potentially phosphorylate the input list of detected
proteins in the previous layer of the analysis.

Similar to some methods discussed before, the strength of these methods also strongly
depend on the quality of the generated influence graphs. The methods are very infor-
mative in providing clear insights in mechanisms underlying the regulation at different
regulatory levels; however approaches that integrate information from multiple regulatory
layers [260, 261] may be more sensitive in detecting weaker signals.

Most of the methods we discussed here are proposed to efficiently explain what are the
minimal genes or pathways necessary for a cell to make a transition from state A to state B.
However, it would be helpful to take several other snapshots of the transient states between
the initial and final states as an additional guideline. For instance, when we want to study
function of a gene as a component of a machinery, instead of only comparing the two states
where the gene is active (control experiment) and when it is knocked down, it would be
helpful to investigate the situation where the gene is 50% active. In the remaining part of
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this chapter, we talk about response curves of cells upon inhibiting genes at different levels
using pharmaceutical compounds. We present preliminary results showing that clustering
of response patterns helps to identify gene functions, and in the discussion section, we
explain how we think this type of data can be incorporated in causal reasoning inference
algorithms.

4.3 Analyzing genes expression and splicing through
inhibiting splicing components at multiple levels:
preliminary results

So far, we have reviewed methods enabling extracting biological knowledge when two
RNA-seq experiments are compared, regarding how to identify a smaller number of genes
or pathways essential to attain the observed results. These two experiments, for example,
may originate from a disease state and a normal state, or a knock down experiment and
the analogous control experiment. In addition to the samples from the two conditions,
other measurements from the intermediate conditions can also be informative to better
understanding and tracking of variations. For instance, data may provide measurements at
multiple time points of the transition, or when different inhibition levels are imposed.

In this section, we present results of analyzing a data set consisting of RNA-seq experi-
ments of targeting proteins with pharmaceuticals. Target proteins of these pharmaceuticals
are known to directly or indirectly influence splicing. We show that by appropriately us-
ing our data, we get consistent results when we investigate different cell lines, or different
compounds that target the same protein.

4.3.1 Materials and methods.
Our data consists of samples from multiple concentrations of three pharmaceuticals. The
first compound, T3, targets CDC-like kinases (CLKs) and has been shown to have a high
specificity to CLK1-3 protein isoforms [271]. The two other compounds (T-202 and T-
595) target EIF4A3 (Eukaryotic translation initiation factor 4A-III) protein.

EIF4A3 is known to play roles in translation initiation, splicing and ribosome assem-
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bly [272, 273]. EIF4A3 data consists of RNA-seq libraries generated from 5 inhibition lev-
els of EIF4A3 protein, each being applied with two different pharmaceutical compounds
(T-202 and T-595) in two cell lines. These two cell lines are Hela (derived from cervical
cancer) cell line and HCT-116 (derived from human colon carcinoma) cell line. In total,
EIF4A3 drug data comprises 22 RNA-seq libraries: 2 control libraries, in addition to 20
drug treated libraries. Additionally, we have RNA-seq libraries from 3 different siRNAs
directed to EIF4A3 in Hela cell line and also a corresponding control RNAi experiment.
CLKs are also known to contribute to the regulation of splicing. Especially, phosphoryla-
tion by CLK proteins is required for SR proteins to facilitate their cooperation in splicing
mechanism [274]. CLK data consists of libraries generated from treating HCT116 and
hTert cell lines at three different concentrations of T3 compounds and two control libraries
(one for each cell line). For CLK data, we use stranded libraries previously published by
Funnell et al [271]. Figure 4.2 summarizes our drug RNA-seq libraries and our analysis
workflow. These drugs have been developed by Takeda Pharmaceutical Company Lim-
ited and their specificity and efficacy were previously investigated [271, 275, 276] and the
RNA-seq experimental procedures were previously explained [271].

The paired-end reads of our libraries were aligned to the reference genome (hg19 ref-
erence genome downloaded from UCSC genome browser [43]) using GSNAP [197]. The
corresponding gene annotation file was downloaded from ENSEMBL [159]. We enabled
“novel splicing” parameter of GSNAP. Following the alignment step, duplicate reads were
removed using SAMTOOLS [162, 198]. Next, gene and isoform abundance were computed
by employing CUFFLINKS [167] package, resulting multiple FPKM values assigned to
each gene based on the number of inhibition levels. The computed FPKM values for a cell
line and a compound were combined to form gene responses upon multiple treatments.

Next, we applied WGCNA (Weighted correlation network analysis) [277] to cluster
genes exhibiting correlated response patterns. We filtered genes and isoforms with FPKM
value <1. Moreover, we only considered genes for which the maximum expression level
is at least 50% larger than the smallest observed expression value in a set of experiments
performed by changing compound levels. This was done to remove genes with small
variations across treatments. Next, To determine gene functions, we applied GO enrich-
ment analysis for gene clusters using BINGO [278]. BINGO takes a list of genes as input

91



HCT116

T_202

T_595

HeLa

Gsnap
alignment

Alignment
post-processing

Miso analysis

Cu�inks analysis

RNA ExtractionUnstranded
RNA-seq

Stranded
RNA-seq

HCT116

T3

184hTert

0.5

0

2

5

10 0.5

0 1

5

20

Dose (μM) Dose (μM)

Figure 4.2: Our systematic approach to study proteins via gradual inhibition. For each pro-
tein two cell lines were treated with multiple concentration of pharmaceuticals for
6 hours. Stranded paired-end RNA-seq libraries were generated for CLK and un-
stranded paired-end RNA-seq data for EIF4A3 protein. Reads were aligned using
GSNAP [197]; MISO [73] and CUFFLINKS [167] analyses were performed on each
data set separately.

and examines the over-representation of genes in GO sets within those lists and reports
a FDR (false discovery rate) value for each GO set. We consider GO terms with FDR
value smaller than 0.05 as being statistically significant. Finally, to summarize enriched
GO terms, we cluster them using ENRICHMENTMAP plugin [203] of CYTOSCAPE [204].

We used the MISO package [73] to find differential splicing events when drug treated
RNA-seq samples were compared to control (no treatment) samples. As explained in
previous chapters, MISO detects and differentiate 8 types of splicing events by applying
a statistical framework. These event types are: skipped exons (SE), retained introns (RI),
alternative 3’/5’ splice sites (A3SS/A5SS), tandem 3’ UTRs, mutually exclusive exons
(MXE), alternative first exons (AFE), and also alternative last exons (ALE). The method
assumes two potential splice variants for each event, and assigns a Ψ value (percent spliced
in) to one of the isoforms in the two given conditions. Additionally, it reports a BF (Bayes
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factor) value as a measure of confidence of them being differentially expressed. We filter
events with |∆Ψ| value smaller than 0.1 or events with BF value smaller than 20.

4.3.2 Results
Inhibiting our target proteins using pharmaceuticals imposes dose dependent splic-
ing regulations. First, we investigated the regulation of alternative splicing upon increas-
ing inhibition levels of the proteins. Figure 4.3 illustrates the number of identified differ-
entially spliced events when treated samples were compared to control samples. All three
inhibitors cause the increase of detected splicing events at higher compound concentra-
tions as compared to lower concentrations. Moreover, the type of regulation is maintained
in the different cell lines inspected and also with the two drugs targeting EIF4A3.

The results also suggest the distinct contribution of the two proteins in regulating dif-
ferent splicing types. Although the same database of splicing events was used when ap-
plying MISO pipeline, the proportion of splicing types regulated by proteins are different.
While 4 AS types are almost equally abundant in EIF4A3 detected events, CLKs seem to
predominantly regulate SE type. Additionally, a much larger number of AS events happen
to be influenced by CLK inhibition. The results of these experiments can be utilized to de-
termine genes and splicing regions that are more sensitive to disruption of a gene function.
Events detected at lower drug levels may help in uncovering cis regulatory motifs related
to a protein.

Inhibiting proteins with pharmaceutical compounds partially reproduces the re-
sults of knockdown experiments. We next sought to determine whether treating cells
with drugs reproduces the results of knock down experiments with siRNAs. To compare
the results, we took advantage of EIF4A3 data for which we have 3 different siRNAs tar-
geting EIF4A3 transcripts, and the corresponding control siRNA. We paired data from
each EIF4A3 siRNA to the control siRNA data and detected splicing events using the
MISO package [73]. Events showing BF value ≥ 10 and |∆Ψ| ≥ 0.1 for the three knock-
down:control comparisons were reported, and the overlaps between them are represented
in Figure 4.4.A. There are ∼31% of all events that are observed in at least two of the three
knockdown:control comparisons.
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Figure 4.3: Splicing response patterns upon increasing inhibitor levels. The figure presents
the number of splicing types at multiple inhibitor levels for three compounds. EIF4A3,
and CLK proteins are inhibited at 5, and 3 different levels, respectively. For all types of
splicing, the number of differentially spliced events generally increases by increasing
the inhibitor level. Similar patterns of AS regulations are observed when EIF4A3 is
inhibited in the two different cell lines and using the two distinct drugs; this pattern is
different from the pattern of events undergoing AS regulation upon CLK inhibition

94



Figure 4.4.B shows a Venn diagram of the overlap between events found in the siRNA
knockdown experiments and the drug inhibition experiments. We classified the identified
events in the T-202 drug inhibition data into “low dose” and “high dose” groups based on
the concentration of the treatment at which the events were predicted. Events detected at
drug concentrations of 0.5 µM and 2 µM were classified as “low dose” events and the ones
predicted at higher drug concentrations were classified as “high does” events. The majority
of events detected in “low dose” group were also detected in “high dose” group (60%),
however, only 38% of the events in the union of the three siRNAs were also identified in the
drug inhibition experiments. The different specificity of siRNAs and the drug, their distinct
off-target effects added to the uncertainties and the inevitable noise in RNA-seq data can
explain some of the sources of the observed dissimilarity. This shows the importance
of performing independent experiments to characterize more confident or more sensitive
events as opposed to events less dependent on the gene of interest or potential artifacts.

Genes showing monotonic responses in different cell lines account for similar
functions. In order to assess the potential of utilizing multiple level inhibition data in
exploring gene and drug functions, we clustered gene response patterns in each cell line
and compound in EIF4A3 inhibition data, using WGCNA [277]. Figure 4.5 represents
clusters sorted based on the number of genes in them. For 3 out of 4 of our compound-cell
line pair experiments, there exist two dominant clusters consisting of genes following a
general monotonically increasing or monotonically decreasing patterns. The two patterns
is indeed observed in the remaining compound-cell line experiment as well constituting
two of the top four dominant clusters.

Here, we assume primary targets of a protein tend to show monotonic responses upon
increasing inhibition much more than a set of randomly selected genes. Secondary effects,
or random genes are expected to receive the inhibition signal at a lower amount, only after
several other rounds of regulations were imposed on the signal. Based on this idea, we per-
formed GO enrichment analysis by applying BINGO [278] to uncover primary functions
of EIF4A3 protein in the four sets of libraries that we have.

Parts A and B in Figure 4.6 show the enriched GO terms found by BINGO method for
the set of monotonically increasing and monotonically decreasing genes. For this anal-
ysis, we used the libraries provided by applying the first compound to the HCT116 cell
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Figure 4.4: The overlap of the splicing events detected in the inhibitor and siRNA exper-
iments. A. A venn diagram showing the overlap of the detected events between the
three different siRNA experiments where EIF4A3 was knocked down. B. The overlap
between the results of knocking down EIF4A3 with siRNAs, inhibiting EIF4A3 with
low drug concentrations, and inhibiting EIF4A3 with high drug concentrations. Al-
most 38% of the siRNA knockdown events were also detected in the drug inhibition
experiments.

line. The GO terms (one node per each term) are clustered based on common genes in
them which are also present in the list of monotonically changing genes. The enriched
terms for up-regulated genes include: regulation of metabolic process, regulation of tran-
scription and gene expression, DNA damage response, regulation of kinase activity and
some others. Similarly, the list of enriched terms for down-regulated genes include: reg-
ulation of cell cycle, protein localization, regulation of signal transduction and also some
common enriched terms with GO terms for up-regulated genes such as the regulation of
metabolic processes and gene expression.

Next, we analyzed the other EIF4A3 RNA-seq libraries generated using the other com-
pound or in the other cell line to check if terms and functions associated with EIF4A3 could
also be retrieved in the other datasets. We replicated the GO enrichment analysis in the 3
remaining combination of compounds-cell lines (2 compounds and 2 cell lines), and found
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Figure 4.5: Clustering of expression response patterns upon inhibiting EIF4A3. Results
are presented for distinct compounds in two cell lines. Gene expression values are
clustered using WGCNA [277]. For each case, only the six clusters with the largest
number of genes are shown. In each one of our experiments, two of the largest clus-
ters can be attributed to genes showing mostly monotonically increasing or decreasing
responses. The blue line demonstrates the consensus response pattern for each of the
clusters (by connecting average values of gene expression at different compound lev-
els).
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many common enriched terms among the four experiments. For instance, parts C and D
in Figure 4.6 illustrates the -log10 false discovery rate for the top 15 GO terms identified
in the list of genes showing monotonically increasing expression patterns in HCT116 cell
line, when the cells were treated by the first compound. Additionally, their existence or
absence in the other data sets are also presented in the figure. Out of the 15 top enriched
terms in HCT116 cell lines treated with compound 1, 14 of them are also detected in the
three other libraries for up-regulated genes (part B). For the terms enriched in the list of
down-regulated genes, 12 out of 15 were detected in all three other data sets, and another
term was detected in two of the other data sets as well.

To further assess if the type of our data can uncover functions of a targeted protein,
we inspected a previously known function of EIF4A3 in our data. EIF4A3 is known to be
a core component of exon junction complex, an important member of nonsense mediated
decay (NMD) mechanism. Through NMD, mRNA molecules that contain premature stop
codons are eliminated before being translated. Inhibiting EIF4A3 intervenes with NMD,
thus the isoforms that are supposed to undergo NMD are expected to be expressed more.

To analyze the consequence of EIF4A3 inhibition on NMD using our data, we first
extracted ∼14,000 isoforms known to undergo NMD from ENSEMBL data base. Next,
similar to our gene expression analysis, we clustered isoform expressions for the isoforms
having average FPKM value ≥ 1 and median value ≥ 0. Figure 4.7 shows WGCNA
clustering results. Unlike gene expression clusters where we usually found two domi-
nant clusters with both up- and down-regulated genes, here for all the experiments, we
only found 1 dominant cluster that predominantly contains genes with monotonically in-
creasing expression patterns. Moreover, we confirmed that the observed pattern cannot be
associated to the up-regulation of the corresponding genes (results not shown), and there-
fore, the up-regulation may be mainly attributed to in-activation of NMD process. Thus,
the clustering of isoform expression patterns confirms a known function of EIF4A3.
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Figure 4.6: GO enrichment analysis for clusters of genes showing similar expression change
pattern. A. For the cluster of genes with monotonically increasing consensus pattern
after inhibiting EIF4A3 with the first inhibitor in HCT116 cell line, we performed
GO enrichment analysis using BINGO. Each node represents a GO term enriched in
our analysis with false discovery rate ≤ 0.05, and edges show gene sets with com-
mon genes present in the input list. GO terms are clustered using ENRICHMENTMAP

software. B. Similar analysis as in part A was carried out for genes in the cluster of
monotonically decreasing consensus pattern. C. For the top 15 GO terms with lowest
FDR, we checked if replicating the analysis with the other compound, or in the other
cell line could detect similar GO terms. Bar plots illustrate FDR values; the black cir-
cle indicates the same term was also detected in the corresponding data with ≤ 0.05,
and the grey circle indicates that the same GO term was not detected.
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Figure 4.7: Clustering of NMD isoforms response patterns upon inhibiting EIF4A3. Results
are presented for distinct compounds in two cell lines. Expression profiles of isoforms
known to undergo NMD are clustered using WGCNA [277]. In each case, only the
six clusters with the largest number of genes are shown. In contrast to the clustering
of gene expression where we observed two dominant clusters (Figure 4.5), here there
only exists one dominant cluster constituting genes with monotonically increasing re-
sponse patterns. The blue line demonstrates the consensus response pattern for each
of the clusters (by connecting average values of isoform expression at different drug
levels).
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4.4 Discussion
In this chapter, we discussed an important goal of molecular Biology research: under-
standing functions and regulations of genes. We reviewed methods developed to inferring
functional and regulatory knowledge from high-throughput sequencing data. Based on the
power and limitations of methods discussed, the type of experiment, and the research ques-
tion, the appropriate method should be employed. With the improvement in technology
and the reduction of sequencing costs, data is being generated at a much faster rate. There-
fore, the methods should also be adopted to benefit from the amount of extra information
available.

Methods performing mechanistic inference reviewed here have been successfully ap-
plied to improve our understanding of how an specific response emerges when a condition
is modified [257, 267]. Despite being helpful, the methods have some limitations as well.
Our knowledge on biological interactions essential for the success of the discussed meth-
ods is still incomplete. Additionally, many of the known interactions are indeed context
specific without the context being specified in public data bases. Fortunately, the increas-
ing amount of data generated these days seem to make many of such limitations to be only
temporary.

We also presented our RNA-seq data consisting of inhibiting proteins at multiple lev-
els. Advancement in therapeutics has made similar data sets much more abundant than
before, and consequently, adopting methods to incorporate dose dependent responses in
computational analyses is of huge interest. Most of the methods reviewed are only in-
tended to handle situations where two conditions are compared; thus not being optimized
to benefit from the extra information provided by inducing various inhibition levels.

Our preliminary analysis showed that increasing inhibition levels of the genes we in-
vestigated imposes gradual effects, both at the splicing level and at the expression level.
This type of effect can be further investigated to realize primary functions of targets and
differentiate them from secondary consequences. When applying a correlation-based clus-
tering methods (WGCNA), the results suggested that the data could be engaged to con-
sistently derive gene functions when distinct compounds and cell lines were used.

Appropriately modifying methods performing mechanistic inference can enhance our

101



findings using pharmaceutical inhibition data. In order to benefit from these methods, we
need to determine which interactions among the known prior interactions are active in
a given condition, and accordingly which genes are being regulated by a given candidate
gene. An obvious approach is to define interactions based on response correlations, instead
of considering direction and the magnitude of changes for the interacting genes in the two
conditions case. One issue with using correlation based methods is that they assume linear
dependencies among responses which can be violated [234].

Hidden Markov models [279] (HMMs) are also appropriate tools to model the se-
quence of observed responses in our data. HMMs have been extensively applied to prob-
lems where there could be a long range dependencies among a sequence of observations.
For instance, the observations can be presented by a series of fold changes and hidden
states (which control the generative probabilistic components explaining observations)
can take three values: “Up”, “Down”, and “No change”, indicating whether the gene is
up-regulated, down-regulated or there is no change compared to the previous inhibitor
level. Besides, a probability distribution is assigned to each hidden state from which the
observations are derived. Finally, the probability of each possible path (a sequence of
“Up”, “Down” and “No Change”s) could be calculated to assess the probability of genes
showing similar patterns of responses.

In a recent study, Leng et al [280] proposed auto-regressive hidden Markov models
(AR-HMM) to infer probability of potential paths (a sequences of “up”, “Down” and “No
change”’s). The model allows to capture the dependence of an observed FPKM value
or a read count value in an experiment not only based on the current hidden state (up-
regulation, down-regulation or no change), but also on the observed previous FPKM value
as well (Figure 4.8). As an extension, separate models could be designed and trained for
potential regulation between any two given genes in interaction data bases. Paired obser-
vations (transcript abundances of two interacting genes) are derived based on the hidden
state of the upstream gene in each model, and the best model describing the observations
can define the type of interaction.

In this chapter we have taken the first steps towards developing methods that in future
can help to study biological systems, drug effects, and gene functions with the increasing
amount of data provided by pharmaceutical agents. We discussed the existing methods,
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Figure 4.8: An auto-regressive hidden Markov model proposed by Leng et al [280] to an-
alyze ordered high-throughput sequencing data. Zi’s show hidden states and can take
values from “Up”, “Down” and “No change” to represent direction of change between
consecutive observations. Shaded circles (Yi’s) represent observations that could re-
port FPKM values or read counts per each gene. Connected nodes enable modelling
dependencies among an ordered set of observations.

our type of data, preliminary analysis on their usefulness, and also the way we think the
data should be incorporated in the existing pipelines.
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Chapter 5

Conclusion

In this thesis, I took a systems biology approach to investigate functions and regulations of
alternative splicing. Through AS mechanism, cells expand the capacity of their genomes
and orchestrate complex responses. The regulated interplay between components of splic-
ing machinery is essential to maintain normal cellular functions, and consequently, many
of the genetic diseases have been associated to impaired splicing. Our approach offers
new insight on how AS is regulated and also how it affects related mechanisms. Our
study provides additional perspective towards a more comprehensive picture of alternative
splicing.

Advancement in high-throughput sequencing technologies and the development of
cost-effective methods has brought new opportunities to better understanding of AS mech-
anism. In all research questions explored here, we benefited from RNA-seq libraries to
perform a genome-wide identification of AS events and the corresponding global con-
sequences on transcriptome regulation. Additionally, by taking advantage of replicated
experiments, multiple cell lines, and state of the art computational methods, we addressed
limitations and uncertainties of RNA-seq data.

In Chapter 2, I presented our findings on tissue specific RNA editing in Drosophila

melanogaster and its potential role in regulating alternative splicing. We designed a
pipeline that utilizes large input data and ADAR’s requirement for double-stranded targets
to distinguish genuine editing sites from mapping and sequencing errors. We showed that
editing events happen 3 times more frequently in exons with multiple acceptor/donor sites
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than exons with unique splice site. This finding demonstrates a potential inter-relation be-
tween AS and RNA editing. Next, we searched conserved secondary structures in regions
where alternative splicing and RNA editing co-occur, and reported conserved structures
that may mediate their inter-relation. Our research suggests a tissue specific and gene
specific regulation of alternative splicing by RNA editing mediated through formation of
RNA structures.

Considering the huge number of editing sites that have been already reported in human,
exploring a similar hypothesis in human in future can uncover regions where a similar
inter-relation may happen. Additionally, it should be noted that in our study, we used
mRNA libraries (poly-A enriched) where most intronic signals were removed. In future
studies, using pre-mRNA sequencing data enables investigating editing in more detail,
especially in human, where a large number of editing sites have been predicted to happen
in intronic regions [104, 113].

In a different prospective, our study identifies RNA structures that form in vivo. Al-
though potential RNA structures can be predicted computationally, it is hard to determine
whether they actually form in vivo in an specific tissue, or at a given time. However, we
know ADAR requires double stranded structures which confirms the formation of struc-
tures. Once these structures are detected, their potential roles in regulating splicing or their
relevance to diseases regardless of RNA editing can be further analyzed. Furthermore, in
future studies, mutational experiments will be required in order to validate the importance
of these structures in regulating splicing.

In chapter 3, we studied the roles of CDK12 in regulating RNA splicing and transcrip-
tion. Our RNA-seq data demonstrate that CDK12 expression predominantly influence
splicing by regulating the differential usage of alternative last exons. The regulation could
be modulated either at the transcription or splicing level. Furthermore, our proteomics
data indicates that CDK12 interacts with the components of splicing machinery, especially
those associated with splice site selection. We showed that long genes with many exons
constitute differentially regulated genes upon knocking down CDK12. We also showed
that the regulation of gene expression by CDK12 is tissue specific, however, common
pathways are influenced in the two cell lines that we analyzed. DNA damage response
genes are one class of common affected genes. We analyzed TCGA data and showed
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that the regulation of alternative last exon events that we found in our data could also be
observed when comparing samples from CDK12 mutant patients to control patients.

In future studies, our findings on the differential regulation of ATM and DNAJB6 and
their potential contribution to the tumorigenicity of breast cancer cells can be further in-
vestigated to better understand tumor biology of breast cancer cells harboring genomic
alterations in CDK12. Additionally, our study is limited in providing mechanisms that
regulate the tissue specific splicing of events such as the one happening in DNAJB6 which
should be taken into account in future studies.

In this study, we only considered splicing events that are already annotated and are
present in MISO [73] database. Using methods that enable discovering de novo splicing
events as discussed in chapter 1 can further increase the number of identified regulated
genes, and might help to infer more plausible models to explain functions of CDK12.
Also, chip-seq experiments can be used to measure the occupancy of RNA polymerase II
across the genome for the same cell lines to help distinguish events that are a consequence
of disruption in transcription elongation rate and the other ones.

In chapter 4, I presented a review on methods developed to perform mechanistic infer-
ence using high-throughput sequencing data, and methods that try to identify a small set
of genes and pathways that control the transition between the two given conditions. The
methods have been successfully applied to uncover how a response emerges by modify-
ing conditions. Our review provides a guideline to choose appropriate methods based on
research questions and available data sets. We also introduced our data sets where genes
known to directly or indirectly affecting splicing regulations were progressively inhibited
using multiple concentrations of the inhibitor. Using clustering of response patterns and
applying gene set enrichment analysis, we showed the data can contribute to exploring
functions and regulations of proteins.

By the advancement in therapeutics and decreasing sequencing cost, this type of data
will become more accessible. Although we discussed how the reviewed methods could be
adopted to incorporate the additional information provided by the introduced data, so far
no method has been developed. The next step would be to develop methods (e.g. HMM
based methods) to benefit more from the additional information provided by the systematic
gene inhibition using pharmaceuticals.
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Taken together, our systems biology approach in this thesis provides additional insight
on regulations and functions of alternative splicing. I hope this study can motivate further
investigation of mechanisms discussed and their roles in associated diseases, and eventu-
ally lead to the advancement in therapeutics.
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Appendix A

Supporting Materials for Chapter 2

A.1 Details of the proposed pipeline
In our analysis, we used dm3 reference genome (fasta file) from UCSC (http://genome.

ucsc.edu). Drosophila melanogaster annotation file (BDGP5.74 ensembl.gtf ) was down-
loaded from the Ensembl web page (http://www.ensembl.org). In making the correspond-
ing annotation file for the OregonR genome we employed MUMMER [156, 157] version
”3.23” and NEEDLEMAN-WUNSCH [158] program version ”0.3.5”. To align short reads to
the OregonR genome we executed: “tophat2 -F 0 -i 40 -g 40 –library-type fr-secondstrand
-r 200 –mate-std-dev 20 –segment-length 16 –read-mismatches 5 –read-edit-dist 5” using
TOPHAT2 version ”v2.0.10”. Information such as library type and mate standard deviation
were chosen based on the information provided on http://www.modencode.org/.

For each candidate position, we require at least 2 and 5 reads in the flexible and strin-
gent threshold sets, accordingly. We employed SAMTOOLS [162, 198] mpileup to extract
reads covering each position. Sites that contain stars in SAMTOOLS mpileup tracks are
also discarded (They present evidence for small insertions and deletions near a candidate
site).

Additionally, at least one of the observed nucleotides from each variant should be from
a high quality read (phred score of at least 20) and more than 5 nucleotides distant from the
read ends. This filter can improve the results in two ways: first, random hexamer priming
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can cause errors in the 5’ starting positions of reads [166]; and second, read ends at splice
junctions are prone to being misaligned [89]. We also filter sites where two or more alleles
are observed other than the reference allele.

To filter known variations, we use Ensembl fly variant file http://uswest.ensembl.org/

info/data/ftp/index.html (Ensembl release 74). Because variations reported in the file only
contains variations of chromosomes X, 2 and 3, we ignored all predictions from other
regions.

We filter candidates with log likelihood score smaller than 3. Additionally, we re-
quire editing ratio to be between 0.03 and 0.97, in order to lower the chance of including
homozygous sites in our predictions [166], since sequencing and mapping errors are in-
evitable. These thresholds are equal in both sets threshold values.

The thresholds for all four of the SAMTOOLS/BCFTOOLS tests are set to 0.15 in flexible
thresholding and 0.02 for the stringent thresholding. Our results were generated using
SAMTOOLS version ”0.1.19”.

We employ RNAFOLD [125] with default parameters and RNAPLFOLD [165] with
“-W 200 -L 150 -u 1” as suggested [281]; and for each site we calculate the average of
pairing probabilities for a local region of length 5 (candidate position extended by two
nucleotides from each side). A candidate site passes the structural filter if it is in a highly
structured region (based on RNAFOLD [125] energy) or it shows evidence for being a part
of a stem (based on RNAPLFOLD [165] energy). We set RNAFOLD [125] thresholds to
-10 and -50 for the flexible and stringent threshold sets and we set RNAPLFOLD [165]
thresholds to 0.2 and 0.7, accordingly. The analysis in the paper was carried out using
RNAFOLD version ”2.0.4” and RNAPLFOLD version ”2.0.7”.

For finding alternatively used exons, we applied DEXSEQ [74] version ”1.8.0”. In
cases that there are transcripts with overlapping exons with different boundaries, DEXSEQ

cuts the exons into multiple parts (see [74] for more details) and analyses their usage
separately. Each of these exonic parts are considered as an exon in our analysis when
we investigate the potential inter-relation between editing and splicing, however, we only
report the ones that are longer than 10 nucleotides. Additionally, when we compare two
tissues, we only consider genes that are predicted to have FPKM (fragments per kilobase
of transcript per million fragments mapped) expression values greater than 2. Expression
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values were computed by employing CUFFLINKS [167] package version ”2.2.1”.
In our analysis, we classify exonic regions into two groups: for each gene, we put all

the exons in all the transcripts together; then we find the union of these exonic regions.
Next, for each region, if the region constitutes multiple exons that are not identical, we call
the region an exonic region with multiple acceptor/donor sites. The other group contains
all the other exonic regions.

When we searched for structural features using TRANSAT [128], we only considered
those helices that contain at least 8 base-pairs. The 15 fly species alignment was down-
loaded from UCSC http://genome.ucsc.edu for regions of interest. We added OregonR
genome to the alignments and realigned the 16 sequences in each region by employing
MUSCLE [282] (version 3.8.31).

Micro-RNA target sites were downloaded from http://microrna.org (August 2010 re-
lease), and miRNA sites were downloaded from: http://www.mirbase.org/ (miRBase v19).
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A.2 Editing events within or in close vicinity of
alternatively spliced exonic regions

The following table presents alternatively spliced exonic parts for which we found editing
events within or in close vicinity (+/- 150 nt) of them.

Chrom Strand OregonR
start

OregonR
end

Reference
start

Reference
end

Ensembl ID Gene name

chr2L + 2752952 2753088 2753235 2753371 FBgn0031453 CG9894
chr2L + 2756391 2757424 2756664 2757703 FBgn0031453 CG9894
chr2L + 2964499 2968083 2964852 2968434 FBgn0010263 Rbp9
chr2L + 4307994 4308077 4308776 4308859 FBgn0010473 tutl
chr2L + 4313423 4313836 4314202 4314615 FBgn0010473 tutl
chr2L + 4313837 4315272 4314616 4316050 FBgn0010473 tutl
chr2L + 5126158 5138115 5127058 5139015 FBgn0261836 Msp-300
chr2L + 5157555 5164499 5158455 5165399 FBgn0261836 Msp-300
chr2L + 5164500 5185064 5165400 5185964 FBgn0261836 Msp-300
chr2L + 5205305 5205461 5206205 5206361 FBgn0065104 snmRNA:158
chr2L + 5205462 5206102 5206362 5207002 FBgn0261836 Msp-300
chr2L + 6497626 6498803 6498642 6499819 FBgn0051637 CG31637
chr2L + 7050813 7052418 7051760 7053365 FBgn0262872 milt
chr2L + 8109514 8115564 8110481 8116531 FBgn0261822 Bsg
chr2L + 8176785 8177403 8177779 8178397 FBgn0031993 Piezo
chr2L + 9255522 9255655 9256563 9256696 FBgn0028433,

FBgn0263984
Ggamma30A,
CG43733

chr2L + 9255656 9255773 9256697 9256814 FBgn0028433 Ggamma30A
chr2L + 12723188 12723334 12724472 12724618 FBgn0032456 MRP
chr2L + 14082195 14082304 14083458 14083567 FBgn0028875 nAcRalpha-

34E
chr2L + 16172868 16173007 16174057 16174196 FBgn0001991 Ca-alpha1D
chr2L + 16748691 16750760 16749944 16752013 FBgn0032600 CG17912
chr2L + 16750761 16752451 16752014 16753704 FBgn0032600 CG17912
chr2L + 16778450 16778567 16779728 16779845 FBgn0264695 Mhc
chr2L + 21124662 21124877 21126159 21126374 FBgn0040297 Nhe2
chr2L + 22443026 22447535 22444518 22449027 FBgn0040010 CG17493
chr2L + 22735693 22736072 22737200 22737579 FBgn0041004 CG17715
chr2L - 227580 228164 227548 228132 FBgn0086902 kis
chr2L - 1008285 1011311 1008378 1011417 FBgn0031294 IA-2
chr2L - 2782981 2785243 2783275 2785538 FBgn0004242 Syt1
chr2L - 3461785 3462873 3462213 3463289 FBgn0005616 msl-2
chr2L - 3503294 3503904 3503689 3504299 FBgn0014396 tim
chr2L - 6631823 6633573 6632798 6634548 FBgn0051635 CG31635
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Chrom Strand OregonR
start

OregonR
end

Reference
start

Reference
end

Ensembl ID Gene name

chr2L - 6792277 6792422 6793228 6793373 FBgn0015777 nrv2
chr2L - 6792423 6792453 6793374 6793404 FBgn0015777 nrv2
chr2L - 7227712 7228024 7228700 7229012 FBgn0259111 Ndae1
chr2L - 7802122 7802654 7803044 7803576 FBgn0031952 cdc14
chr2L - 9788515 9788572 9789675 9789732 FBgn0042174 CR18854
chr2L - 9789454 9789583 9790616 9790745 FBgn0042174 CR18854
chr2L - 9808062 9808242 9809222 9809402 FBgn0032151 nAcRalpha-

30D
chr2L - 9934485 9936150 9935570 9937237 FBgn0051712 CG31712
chr2L - 9958179 9959380 9959248 9960449 FBgn0032172 CG5850
chr2L - 11158599 11158963 11159880 11160244 FBgn0259822 Ca-beta
chr2L - 11828938 11829492 11830277 11830831 FBgn0259225 Pde1c
chr2L - 17369521 17370498 17370843 17371820 FBgn0032633 Lrch
chr2L - 21662309 21664103 21663806 21665595 FBgn0032957 CG2225
chr2R + 2704047 2705453 2704298 2705704 FBgn0033107 koi
chr2R + 4790682 4792342 4790636 4792296 FBgn0004921 Ggamma1
chr2R + 5996022 5997233 5995980 5997192 FBgn0004907 14-3-3zeta
chr2R + 6166227 6172274 6166251 6172306 FBgn0033504 CAP
chr2R + 6499104 6499267 6499021 6499184 FBgn0263102 psq
chr2R + 9704073 9704297 9704260 9704484 FBgn0261041 stj
chr2R + 10164604 10166977 10164786 10167147 FBgn0263397 Ih
chr2R + 10185231 10185547 10185402 10185718 FBgn0263397 Ih
chr2R + 12002296 12002709 12002445 12002858 FBgn0034075 Asph
chr2R + 13249308 13252422 13249777 13252891 FBgn0261642 mbl
chr2R + 13260853 13266410 13261323 13266881 FBgn0261642 mbl
chr2R + 13458532 13458825 13458978 13459271 FBgn0040294 POSH
chr2R + 13458887 13459381 13459333 13459827 FBgn0040294 POSH
chr2R + 14708584 14708731 14708995 14709142 FBgn0010551 l(2)03709
chr2R + 15110431 15111243 15110745 15111557 FBgn0263395 hppy
chr2R + 15112756 15112977 15113070 15113291 FBgn0263395 hppy
chr2R + 16893090 16894180 16894147 16895245 FBgn0034570 CG10543
chr2R + 17030976 17030998 17032011 17032033 FBgn0021872 Xbp1
chr2R + 20770449 20772868 20772049 20774468 FBgn0085442 NKAIN
chr2R + 20796894 20797221 20798487 20798814 FBgn0085434 NaCP60E
chr2R + 20797929 20798103 20799522 20799696 FBgn0085434 NaCP60E
chr2R + 20801661 20801761 20803254 20803354 FBgn0085434 NaCP60E
chr2R - 674709 675916 674643 675850 FBgn0250830 CG12547
chr2R - 2814780 2815538 2814895 2815653 FBgn0053558 mim
chr2R - 2818453 2819232 2818568 2819347 FBgn0053558 mim
chr2R - 5121984 5123114 5121950 5123080 FBgn0010114 hig
chr2R - 5172488 5172577 5172464 5172553 FBgn0020621 Pkn
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Reference
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Ensembl ID Gene name

chr2R - 5610974 5611177 5611045 5611248 FBgn0259678 sqa
chr2R - 5771494 5771588 5771508 5771589 FBgn0033463 CG1513
chr2R - 5911719 5911875 5911708 5911864 FBgn0022382 Pka-R2
chr2R - 9400439 9405293 9400637 9405491 FBgn0260964 Vmat
chr2R - 9771446 9781481 9771600 9781634 FBgn0013733 shot
chr2R - 9954582 9955019 9954752 9955189 FBgn0040752 Prosap
chr2R - 11150036 11151989 11150309 11152262 FBgn0083959 trpm
chr2R - 11652369 11652498 11652628 11652757 FBgn0083919 Zasp52
chr2R - 11661984 11662733 11662263 11663012 FBgn0083919 Zasp52
chr2R - 19049472 19051556 19050535 19052619 FBgn0085400 CG34371
chr3L + 893317 895105 893521 895313 FBgn0052479 CG32479
chr3L + 1620402 1620503 1620817 1620918 FBgn0035244 ABCB7
chr3L + 2923450 2924848 2924078 2925476 FBgn0262593 Shab
chr3L + 3085267 3085738 3085865 3086336 FBgn0035397 CG11486
chr3L + 4429108 4429621 4429716 4430229 FBgn0000038 nAcRbeta-

64B
chr3L + 9068900 9069378 9070078 9070556 FBgn0023479 Tequila
chr3L + 9824730 9826147 9826028 9827445 FBgn0264489 CG43897
chr3L + 20368371 20368907 20372412 20372948 FBgn0036980 RhoBTB
chr3L + 20761984 20762135 20766064 20766215 FBgn0016696 Pitslre
chr3L + 20762136 20762813 20766216 20766893 FBgn0016696 Pitslre
chr3L + 21202134 21202496 21206229 21206591 FBgn0037060 CG10508
chr3L + 21915634 21921636 21919800 21925802 FBgn0262737 mub
chr3L + 23273132 23276049 23277312 23280229 FBgn0037212 nAcRalpha-

80B
chr3L + 24531314 24532438 24535510 24536634 FBgn0044510 mRpS5
chr3L - 2039221 2040112 2039681 2040572 FBgn0086906 sls
chr3L - 2561442 2562353 2561932 2562843 FBgn0010909 msn
chr3L - 4096290 4096364 4096904 4096978 FBgn0035497 CG14995
chr3L - 4322064 4322921 4322672 4323529 FBgn0035533 Cip4
chr3L - 4367031 4368514 4367649 4369133 FBgn0035538 DopEcR
chr3L - 4824734 4825093 4825328 4825687 FBgn0261797 Dhc64C
chr3L - 5148383 5150468 5148921 5151007 FBgn0052423 shep
chr3L - 6944092 6946063 6944904 6946872 FBgn0035720 CG10077
chr3L - 7172281 7172729 7173238 7173686 FBgn0263218 Dscam2
chr3L - 7822499 7823929 7823487 7824910 FBgn0016694 Pdp1
chr3L - 7920585 7922201 7921569 7923185 FBgn0024187 syd
chr3L - 11549184 11549651 11551372 11551839 FBgn0259481 Mob2
chr3L - 12199603 12203376 12201959 12205752 FBgn0260941 app
chr3L - 13424958 13425445 13427842 13428329 FBgn0036360 CG10713
chr3L - 14497699 14500007 14500714 14503019 FBgn0087007 bbg
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chr3L - 17048362 17054741 17052007 17058366 FBgn0260943 Rbp6
chr3L - 17959290 17961085 17962744 17964539 FBgn0000568 Eip75B
chr3L - 18047937 18049283 18051337 18052698 FBgn0000568 Eip75B
chr3L - 19132438 19136013 19135998 19139573 FBgn0016797 fz2
chr3L - 19880748 19884381 19884505 19888138 FBgn0014037 Su(Tpl)
chr3L - 20145870 20146412 20149780 20150322 FBgn0261556 CG42674
chr3L - 21186766 21187109 21190860 21191203 FBgn0053054 CG33054
chr3L - 21187110 21187176 21191204 21191270 FBgn0053054 CG33054
chr3R + 121421 122682 121423 122684 FBgn0041605 cpx
chr3R + 528121 530970 528134 530983 FBgn0263346 CG43427
chr3R + 3019037 3019078 3018693 3018734 FBgn0086372 lap
chr3R + 3829261 3829801 3828942 3829482 FBgn0037536 CG2698
chr3R + 5274501 5275314 5274377 5275190 FBgn0261552 ps
chr3R + 6021459 6021790 6021438 6021769 FBgn0004575 Syn
chr3R + 6067512 6073989 6067519 6073996 FBgn0261928 CG42795
chr3R + 7217000 7217144 7217251 7217395 FBgn0004595 pros
chr3R + 9489835 9490352 9490657 9491174 FBgn0004587 B52
chr3R + 9516531 9518800 9517357 9519629 FBgn0024555 flfl
chr3R + 10615974 10618161 10616975 10619164 FBgn0263929 jvl
chr3R + 11237203 11238136 11238301 11239234 FBgn0041188 Atx2
chr3R + 11780587 11780904 11781712 11782029 FBgn0013334 Sap47
chr3R + 12127035 12127383 12128095 12128443 FBgn0250823 gish
chr3R + 13744178 13745815 13745554 13747191 FBgn0263995 cpo
chr3R + 13835530 13836146 13836819 13837435 FBgn0263995 cpo
chr3R + 13998906 13999410 14000262 14000766 FBgn0042693 PP2A-B’
chr3R + 14002949 14004109 14004328 14005496 FBgn0042693 PP2A-B’
chr3R + 14794533 14794750 14796353 14796570 FBgn0261262,

FBgn0263983
CG42613,
CG43732

chr3R + 14795191 14795317 14797012 14797138 FBgn0261262,
FBgn0263983

CG42613,
CG43732

chr3R + 15589530 15589636 15591367 15591473 FBgn0024963 GluClalpha
chr3R + 16145871 16147064 16147671 16148864 FBgn0261550 CG42668
chr3R + 16834442 16834471 16836308 16836337 FBgn0013995 Calx
chr3R + 17036498 17038080 17038410 17039991 FBgn0264357 SNF4Agamma
chr3R + 18426603 18427004 18428784 18429185 FBgn0051158 Efa6
chr3R + 20529756 20529892 20532259 20532395 FBgn0003429 slo
chr3R + 20530492 20531282 20532995 20533784 FBgn0003429 slo
chr3R + 20531283 20531615 20533785 20534111 FBgn0003429 slo
chr3R + 20531616 20534411 20534112 20536911 FBgn0003429 slo
chr3R + 21425417 21431422 21428144 21434145 FBgn0011666 msi
chr3R + 23530288 23531240 23533099 23534051 FBgn0039544 CG12877
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chr3R + 24737936 24738410 24740662 24741136 FBgn0259220 Doa
chr3R + 27659530 27659581 27662904 27662955 FBgn0039883 RhoGAP100F
chr3R - 622768 623397 622790 623419 FBgn0260794 ctrip
chr3R - 1108329 1109043 1108387 1109101 FBgn0013576 mtd
chr3R - 1827447 1827676 1827555 1827784 FBgn0003261 Rm62
chr3R - 1828380 1828724 1828476 1828820 FBgn0003261 Rm62
chr3R - 1828725 1829298 1828821 1829394 FBgn0003261 Rm62
chr3R - 3687162 3687752 3686861 3687451 FBgn0037525 CG17816
chr3R - 4661546 4663665 4661313 4663432 FBgn0262614 pyd
chr3R - 5845458 5847136 5845427 5847105 FBgn0053208 Mical
chr3R - 7590636 7591909 7590844 7592117 FBgn0086910 l(3)neo38
chr3R - 7629238 7630103 7629438 7630309 FBgn0051116 ClC-a
chr3R - 7772790 7773053 7773103 7773362 FBgn0037963 Cad87A
chr3R - 10638940 10642622 10639971 10643653 FBgn0053555 btsz
chr3R - 11921737 11922221 11922858 11923342 FBgn0026059 Mhcl
chr3R - 12163638 12164821 12164665 12165848 FBgn0040284 SF2
chr3R - 13598188 13600676 13599554 13602042 FBgn0262562 CG43102
chr3R - 13706530 13708449 13707906 13709825 FBgn0053547 Rim
chr3R - 13708450 13709028 13709826 13710404 FBgn0053547 Rim
chr3R - 14016821 14019193 14018216 14020580 FBgn0011481 Ssdp
chr3R - 14963038 14965628 14964776 14967365 FBgn0261285 Ppcs
chr3R - 19926699 19926891 19929101 19929293 FBgn0013343 Syx1A
chr3R - 19926892 19929063 19929294 19931465 FBgn0013343 Syx1A
chr3R - 21179732 21180606 21182356 21183230 FBgn0004509 Fur1
chr3R - 27424594 27425436 27427953 27428795 FBgn0039858 CycG
chrX + 936417 936786 936466 936835 FBgn0003638 su(w[a])
chrX + 936787 936917 936836 936966 FBgn0003638 su(w[a])
chrX + 1541203 1543216 1541398 1543411 FBgn0000210 br
chrX + 1677514 1677859 1677689 1678034 FBgn0026086 Adar
chrX + 1677860 1681927 1678035 1682100 FBgn0026086 Adar
chrX + 2005630 2007591 2005737 2007698 FBgn0000382 csw
chrX + 2561982 2562647 2562199 2562864 FBgn0003371 sgg
chrX + 2568738 2569418 2568955 2569635 FBgn0003371 sgg
chrX + 2569419 2569437 2569636 2569654 FBgn0003371 sgg
chrX + 2570917 2571662 2571134 2571879 FBgn0003371 sgg
chrX + 3232900 3237343 3233361 3237800 FBgn0000479 dnc
chrX + 3846095 3847427 3846800 3848138 FBgn0029687 Vap-33-1
chrX + 5132003 5132968 5133459 5134415 FBgn0086911 rg
chrX + 5293695 5295921 5295157 5297372 FBgn0029761 SK
chrX + 8124249 8124726 8126462 8126939 FBgn0261873 sdt
chrX + 8131254 8132287 8133475 8134507 FBgn0261873 sdt
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chrX + 9007936 9009533 9010179 9011772 FBgn0030089 AP-1gamma
chrX + 9066982 9081106 9069224 9083342 FBgn0026206 mei-P26
chrX + 10742995 10743629 10745738 10746360 FBgn0030240 CG2202
chrX + 11384395 11384582 11387231 11387418 FBgn0052666 Drak
chrX + 11594708 11595593 11597542 11598427 FBgn0011754 PhKgamma
chrX + 11691173 11692768 11694026 11695620 FBgn0000259 CkIIbeta
chrX + 11726864 11728598 11729760 11731493 FBgn0262684 CG43154
chrX + 12539706 12540359 12542817 12543464 FBgn0030412 tomosyn
chrX + 12661863 12663735 12665012 12666884 FBgn0030421 CG3812
chrX + 13604153 13605164 13607457 13608468 FBgn0052627 NnaD
chrX + 14823230 14823799 14827047 14827616 FBgn0264078 Flo-2
chrX + 14888251 14889359 14892167 14893275 FBgn0000535 eag
chrX + 14890535 14890950 14894446 14894861 FBgn0000535 eag
chrX + 14892240 14892527 14896148 14896435 FBgn0000535 eag
chrX + 15793632 15795071 15797823 15799262 FBgn0003392 shi
chrX + 15795072 15795334 15799263 15799525 FBgn0003392 shi
chrX + 16228492 16230171 16232805 16234476 FBgn0011764 Dsp1
chrX + 16326218 16326300 16330538 16330620 FBgn0026575 hang
chrX + 16823620 16824025 16828071 16828476 FBgn0027556 CG4928
chrX + 18767196 18769775 18772088 18774669 FBgn0085430 CG34401
chrX + 19395304 19397722 19400519 19402937 FBgn0027621 Pfrx
chrX + 21249448 21250319 21255317 21256188 FBgn0003423 slgA
chrX - 6681872 6683314 6683745 6685194 FBgn0259228 C3G
chrX - 6977733 6977754 6979803 6979824 FBgn0263563 mir-4956
chrX - 6977755 6977765 6979825 6979835 FBgn0263563 mir-4956
chrX - 6977766 6977787 6979836 6979857 FBgn0263563 mir-4956
chrX - 6977918 6977941 6979988 6980011 FBgn0264270 Sxl
chrX - 7940386 7941253 7942563 7943432 FBgn0004656 fs(1)h
chrX - 9170062 9170707 9172285 9172930 FBgn0040236 c11.1
chrX - 9949290 9949353 9951699 9951762 FBgn0030174 CG15312
chrX - 10217262 10217284 10219824 10219846 FBgn0259170 alpha-Man-I
chrX - 11859737 11860300 11862684 11863247 FBgn0263111 cac
chrX - 11913895 11916122 11916861 11919090 FBgn0030366 Usp7
chrX - 13093610 13093927 13096773 13097090 FBgn0005410 sno
chrX - 13094040 13094586 13097203 13097742 FBgn0005410 sno
chrX - 13161461 13161511 13164676 13164726 FBgn0041210 HDAC4
chrX - 14677766 14679544 14681511 14683283 FBgn0003301 rut
chrX - 14681551 14682656 14685281 14686386 FBgn0003301 rut
chrX - 15818777 15818930 15822964 15823117 FBgn0053180 Ranbp16
chrX - 15879107 15879164 15883302 15883359 FBgn0030719 eIF5
chrX - 15967717 15968843 15971920 15973046 FBgn0028397 Tob
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chrX - 16451371 16454003 16455710 16458346 FBgn0030758 CanA-14F
chrX - 17819913 17820103 17824619 17824809 FBgn0003380 Sh
chrX - 17855688 17856565 17860381 17861258 FBgn0003380 Sh
chrX - 19462271 19462409 19467498 19467636 FBgn0031030 Tao
chrX - 19462410 19462649 19467637 19467876 FBgn0031030 Tao
chrX - 19462650 19462663 19467877 19467890 FBgn0031030 Tao
chrX - 20626419 20630935 20632098 20636616 FBgn0085387 shakB
chrX - 20630936 20632981 20636617 20638654 FBgn0085387 shakB
chrX - 21072832 21074690 21078702 21080560 FBgn0052521 CG32521
chrX - 21074691 21075035 21080561 21080905 FBgn0052521 CG32521
chrX - 21493913 21494001 21499782 21499870 FBgn0024807 DIP1
chrX - 21494951 21495131 21500820 21501000 FBgn0024807 DIP1

Table A.1: Alternatively spliced exonic parts for which we found editing events in
close vicinity
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A.3 Genomic regions with evidence for the inter-relation
of RNA editing and alternative splicing

The following table contains the list of genomic regions for which we found evidence that RNA editing may regulate
alternative splicing.

Chrom Strand OregonR
start
position

OregonR
end posi-
tion

Reference
start
position

Reference
end posi-
tion

Ensembl gene
ID

Gene name RNAal
ifoldE
nergy

chr2R + 17030848 17031148 17031883 17032183 FBgn0021872 Xbp1 -47.47
chr2R + 17030826 17031126 17031861 17032161 FBgn0021872 Xbp1 -43.97
chr3R + 6021309 6021609 6021288 6021588 FBgn0004575 Syn -35.74
chr2R + 15112606 15112906 15112920 15113220 FBgn0263395 hppy -35.32
chr3R + 20530342 20530642 20532845 20533145 FBgn0003429 slo -34.33
chr2L + 4307844 4308144 4308626 4308926 FBgn0010473 tutl -32.99
chr3R - 1827526 1827826 1827634 1827934 FBgn0003261 Rm62 -32.71
chrX - 6977637 6977937 6979707 6980007 FBgn0263563 mir-4956 -30.22
chr2L + 4313686 4313986 4314465 4314765 FBgn0010473 tutl -28.02
chr2R + 15112827 15113127 15113141 15113441 FBgn0263395 hppy -28.01
chr2L - 3503144 3503444 3503539 3503839 FBgn0014396 tim -27.77
chr2R + 20796744 20797044 20798337 20798637 FBgn0085434 NaCP60E -27.50
chr3R + 20529742 20530042 20532245 20532545 FBgn0003429 slo -27.01
chr3L + 1620353 1620653 1620768 1621068 FBgn0035244 ABCB7 -26.77
chr3L + 21201984 21202284 21206079 21206379 FBgn0037060 CG10508 -24.89
chr3R + 20529606 20529906 20532109 20532409 FBgn0003429 slo -24.83
chr2L - 9808092 9808392 9809252 9809552 FBgn0032151 nAcRalpha-

30D
-24.60

chr3R + 14795167 14795467 14796988 14797292 FBgn0261262,
FBgn0263983

CG42613,
CG43732

-24.09

chr2R - 2819082 2819382 2819197 2819497 FBgn0053558 mim -23.82
chrX + 14889209 14889509 14893125 14893424 FBgn0000535 eag -21.86
chr2R - 2814630 2814930 2814745 2815045 FBgn0053558 mim -21.81
chr2L - 9807912 9808212 9809070 9809372 FBgn0032151 nAcRalpha-

30D
-21.19

chr2L + 5205311 5205611 5206211 5206511 FBgn0065104 snmRNA:158 -20.95
chr2L + 9255372 9255672 9256413 9256713 FBgn0028433,

FBgn0263984
Ggamma30A,
CG43733

-20.94

chrX + 16823875 16824175 16828326 16828626 FBgn0027556 CG4928 -20.77
chr2L - 9789304 9789604 9790464 9790766 FBgn0042174 CR18854 -20.15
chr3L + 1620252 1620552 1620667 1620967 FBgn0035244 ABCB7 -19.52
chr2L - 7227562 7227862 7228550 7228850 FBgn0259111 Ndae1 -18.93
chr3L - 4322771 4323071 4323379 4323679 FBgn0035533 Cip4 -18.87
chr3L - 7172579 7172879 7173536 7173836 FBgn0263218 Dscam2 -18.84
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chr3L + 3085588 3085888 3086186 3086486 FBgn0035397 CG11486 -18.05
chr3R + 5274351 5274651 5274219 5274527 FBgn0261552 ps -17.27
chr3R + 3018887 3019187 3018543 3018843 FBgn0086372 lap -17.03
chr2L + 16778417 16778717 16779695 16779995 FBgn0264695 Mhc -16.91
chr2L + 5205155 5205455 5206055 5206355 FBgn0065104 snmRNA:158 -16.51
chr2L + 9255505 9255805 9256546 9256846 FBgn0028433,

FBgn0263984
Ggamma30A,
CG43733

-16.25

chr3R + 27659431 27659731 27662805 27663105 FBgn0039883 RhoGAP100F -16.14
chr3R + 24738260 24738560 24740986 24741286 FBgn0259220 Doa -16.02
chr2L + 21124727 21125027 21126224 21126524 FBgn0040297 Nhe2 -15.11
chr2R + 13458737 13459037 13459183 13459483 FBgn0040294 POSH -14.58
chr3R + 9490202 9490502 9491024 9491324 FBgn0004587 B52 -14.17
chr3R + 27659380 27659680 27662754 27663054 FBgn0039883 RhoGAP100F -13.76
chr2L + 12723038 12723338 12724322 12724622 FBgn0032456 MRP -13.49
chr3R - 27424444 27424744 27427803 27428103 FBgn0039858 CycG -11.81
chrX - 21493851 21494151 21499720 21500020 FBgn0024807 DIP1 -11.79
chr2L - 11829342 11829642 11830681 11830979 FBgn0259225 Pde1c -11.54
chr2R + 9704147 9704447 9704334 9704634 FBgn0261041 stj -11.38
chrX - 13161361 13161661 13164576 13164874 FBgn0041210 HDAC4 -11.27
chr3R + 14795041 14795341 14796861 14797162 FBgn0261262,

FBgn0263983
CG42613,
CG43732

-10.94

chr2L + 12723184 12723484 12724468 12724768 FBgn0032456 MRP -10.76
chr3R - 11921587 11921887 11922708 11923008 FBgn0026059 Mhcl -10.73
chr3L + 21202346 21202646 21206441 21206741 FBgn0037060 CG10508 -10.50
chr3L - 19135863 19136163 19139423 19139723 FBgn0016797 fz2 -9.94
chr2R + 20797779 20798079 20799372 20799672 FBgn0085434 NaCP60E -9.58
chr2R + 6498954 6499254 6498871 6499171 FBgn0263102 psq -9.31
chr3R + 7216850 7217150 7217101 7217401 FBgn0004595 pros -9.15
chrX - 9949140 9949440 9951549 9951849 FBgn0030174 CG15312 -8.74
chr3L - 4368364 4368664 4368982 4369283 FBgn0035538 DopEcR -8.32
chrX + 16326068 16326368 16330388 16330688 FBgn0026575 hang -7.85
chr3R + 122532 122832 122534 122834 FBgn0041605 cpx -7.50
chr3L - 4824584 4824884 4825178 4825478 FBgn0261797 Dhc64C -7.43
chr2R + 14708581 14708881 14708992 14709292 FBgn0010551 l(2)03709 -7.37
chr3L - 21186959 21187259 21191053 21191353 FBgn0053054 CG33054 -7.05
chr2R - 5610824 5611124 5610895 5611195 FBgn0259678 sqa -6.95
chr3L + 24531164 24531464 24535360 24535660 FBgn0044510 mRpS5 -6.70
chrX + 10742845 10743145 10745588 10745888 FBgn0030240 CG2202 -5.77
chrX - 13093777 13094077 13096940 13097240 FBgn0005410 sno -5.31
chr3R - 1827297 1827597 1827405 1827705 FBgn0003261 Rm62 -4.48
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chrX - 13161311 13161611 13164526 13164824 FBgn0041210 HDAC4 -4.06
chr2R - 5911569 5911869 5911558 5911858 FBgn0022382 Pka-R2 -3.63
chr3L - 13425295 13425595 13428179 13428479 FBgn0036360 CG10713 -3.60
chrX - 15879014 15879314 15883210 15883509 FBgn0030719 eIF5 -3.57
chr3R - 7590486 7590786 7590694 7590994 FBgn0086910 l(3)neo38 -2.95
chr2R + 13458675 13458975 13459121 13459421 FBgn0040294 POSH -2.66
chr3R + 12126885 12127185 12127945 12128245 FBgn0250823 gish -2.31
chr2L + 22735922 22736222 22737429 22737729 FBgn0041004 CG17715 -2.03
chr3R + 18426453 18426753 18428640 18428934 FBgn0051158 Efa6 -1.89
chr3R + 23531090 23531390 23533901 23534201 FBgn0039544 CG12877 -1.70
chrX + 11384432 11384732 11387268 11387568 FBgn0052666 Drak -1.62
chr2L - 6792303 6792603 6793254 6793554 FBgn0015777 nrv2 -1.14
chr2R + 16894030 16894330 16895092 16895395 FBgn0034570 CG10543 -1.14
chr3L - 14497549 14497849 14500564 14500864 FBgn0087007 bbg -0.79
chr3L - 11549034 11549334 11551222 11551522 FBgn0259481 Mob2 -0.60
chr2R - 5911725 5912025 5911714 5912014 FBgn0022382 Pka-R2 -0.20
chrX + 15795184 15795484 15799375 15799675 FBgn0003392 shi -0.02
chr2L - 1011161 1011461 1011267 1011570 FBgn0031294 IA-2 0.22
chrX - 14679394 14679694 14683133 14683433 FBgn0003301 rut 0.96
chr3R + 12127233 12127533 12128293 12128593 FBgn0250823 gish 1.12
chrX - 17855538 17855838 17860231 17860531 FBgn0003380 Sh 1.56
chrX - 13093890 13094190 13097053 13097353 FBgn0005410 sno 1.80
chrX + 1677709 1678009 1677884 1678184 FBgn0026086 Adar 1.98
chr3L - 21187026 21187326 21191120 21191420 FBgn0053054 CG33054 2.08
chrX + 15794921 15795221 15799112 15799412 FBgn0003392 shi 3.13
chrX + 2569268 2569568 2569485 2569785 FBgn0003371 sgg 3.31
chrX + 2569287 2569587 2569504 2569804 FBgn0003371 sgg 3.43
chrX + 14823080 14823380 14826897 14827197 FBgn0264078 Flo-2 4.06

Table A.2: Genomic regions with evidence for the inter-relation of RNA editing and
alternative splicing
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Appendix B

Supporting Materials for Chapter 3

B.1 Selected TCGA overian serous cystadenocarcinoma
samples

Sample ID Alteration Amino acid change Type of mutation
TCGA-13-0891-01 Mutation T10114 Q1016del In frame deletion
TCGA-13-1495-01 Mutation Q602* Nonsense
TCGA-20-0987-01 Mutation E928Gfs*27 Frame shift insertion
TCGA-25-1322-01 Mutation Y901C Missense
TCGA-25-2392-01 Mutation R882L Missense
TCGA-31-1953-01 Mutation W719* Nonsense
TCGA-59-2351-01 Mutation K975E Missense
TCGA-04-1332-01 Deletion - -
TCGA-23-1030-01 Deletion - -
TCGA-61-2003-01 Deletion - -
TCGA-10-0934-01 Amplification - -
TCGA-24-1431-01 Amplification - -
TCGA-61-2002-01 Amplification - -
TCGA-61-2092-01 Amplification - -
TCGA-04-1343-01 Control - -
TCGA-04-1348-01 Control - -
TCGA-04-1361-01 Control - -
TCGA-04-1517-01 Control - -
TCGA-09-1662-01 Control - -
TCGA-09-2053-01 Control - -
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Sample ID Alteration Amino acid change Type of mutation
TCGA-10-0927-01 Control - -
TCGA-10-0933-01 Control - -
TCGA-13-0720-01 Control - -
TCGA-13-0724-01 Control - -
TCGA-13-0800-01 Control - -
TCGA-13-0884-01 Control - -
TCGA-13-0897-01 Control - -
TCGA-13-0905-01 Control - -
TCGA-13-1407-01 Control - -
TCGA-13-1483-01 Control - -
TCGA-13-1492-01 Control - -
TCGA-13-1505-01 Control - -
TCGA-13-1506-01 Control - -
TCGA-13-1507-01 Control - -
TCGA-20-0991-01 Control - -
TCGA-23-1032-01 Control - -
TCGA-23-1116-01 Control - -
TCGA-24-0966-01 Control - -
TCGA-24-1419-01 Control - -
TCGA-24-1422-01 Control - -
TCGA-24-1436-01 Control - -
TCGA-24-1471-01 Control - -
TCGA-24-1545-01 Control - -
TCGA-24-1552-01 Control - -
TCGA-24-1553-01 Control - -
TCGA-24-1558-01 Control - -
TCGA-24-1563-01 Control - -
TCGA-24-1564-01 Control - -
TCGA-24-1565-01 Control - -
TCGA-24-1567-01 Control - -
TCGA-24-1603-01 Control - -
TCGA-24-1604-01 Control - -
TCGA-24-2038-01 Control - -
TCGA-24-2261-01 Control - -
TCGA-24-2290-01 Control - -
TCGA-25-1320-01 Control - -
TCGA-25-1321-01 Control - -
TCGA-25-2396-01 Control - -
TCGA-25-2399-01 Control - -
TCGA-30-1862-01 Control - -
TCGA-36-1570-01 Control - -
TCGA-36-1574-01 Control - -
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Sample ID Alteration Amino acid change Type of mutation
TCGA-59-2355-01 Control - -
TCGA-61-1728-01 Control - -
TCGA-61-1919-01 Control - -
TCGA-61-2009-01 Control - -
TCGA-61-2016-01 Control - -
TCGA-61-2095-01 Control - -
TCGA-61-2104-01 Control - -
TCGA-61-2111-01 Control - -

Table B.1: Ovarian serous cystadenocarcinoma samples selected from TCGA
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B.2 qRT-PCR validation of identified ALE splicing
events

Fig. S7
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Figure B.1: qRT-PCR analysis of identified alternative splicing events. A. Correlation of
∆Ψ values for a panel of ALE events regulated by CDK12 in SK-BR-3 and 184-
hTERT cells, as determined by RNA-seq (MISO) versus qRT-PCR for genes: NFX1,
RIBF1, DNAJB6, BRCA2, DPP9, THADA, ZFYVE26, PADI2 and ATM. B. Correlation
of ∆Ψ values for SK-BR-3 cells treated with two different CDK12 siRNA constructs.
C. Depletion of CDK13 or CDK9 did not phenocopy the effect of CDK12 depletion
on ALE splicing. For nine genes with ALEs regulated by CDK12, qRT-PCR was used
to measure changes in the expression of long (ALE-L) and short (ALE-S) mRNA
isoforms after depletion of CDK12, CDK13, or CDK9 in SK-BR-3 cells. Also, the
depletion of the CDKs did not affect expression of CCNK.
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B.3 Proteomics analysis of SK-BR-3 after CDK12
depletion

Fig. S10
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Figure B.2: Proteomic analysis of SK-BR-3 after CDK12 depletion confirms trends
observed by differential gene expression analysis. A. Enrichment map from
global proteome analysis in SK-BR-3 cells by GSEA. B. For each pathway,
GSEA pre-ranked analysis assigned a normalized enrichment score (NES) rep-
resenting the extent of over-representation of genes of a pathway at the top or
bottom of a ranked list. Positive and negative NES values represent up- and
down- regulated pathways, respectively. The dotted red line shows the gen-
eral trend for NES values significant in both proteomics and transcriptomics
datasets (FDR <0.1).
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B.4 Up-regulation of cell proliferation pathways in
MDA-MD-231 cells by CDK12

Fig. S11
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Figure B.3: CDK12 up-regulates cell proliferation pathways in MDA-MB-231
triple-negative breast cancer cells. A. Top: volcano plot of the global proteome
analysis in MDA-MB-231 cells. Bottom: distribution of fold change values for all
differential protein expression events with padj < 0.01. B. Enrichment map from
global proteome analysis in MDA-MB-231 cells by GSEA. C. For each pathway,
GSEA pre-ranked analysis assigned a normalized enrichment score (NES) represent-
ing the extent of over-representation of genes of a pathway at the top or bottom of a
ranked list. Positive and negative NES values represent up- and down- regulated path-
ways, respectively. For each pathway, NES values in the MDA-MB-231 and SK-BR-3
proteome are shown. Red markers represent NES values significant in both cell lines
(FDR < 0.1). The dotted red line shows the general trend of these points.
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