
DISTRIBUTED RANDOM LOAD
BALANCING

by

Chunpu Wang

B.Eng., Harbin Institute of Technology, P. R. China, 2014

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF APPLIED SCIENCE

in

THE COLLEGE OF GRADUATE STUDIES

(Electrical Engineering)

THE UNIVERSITY OF BRITISH COLUMBIA

(Okanagan)

May 2017

c© Chunpu Wang, 2017

The	undersigned	certify	that	they	have	read,	and	recommend	to	the	College	of	Graduate	Studies	for	acceptance,	a	thesis	
entitled:	

Distributed Random Load Balancing

submitted	by											Chunpu	Wang	 in	partial	fulfilment	of	the	requirements	of	the	degree	of							

Master	of	Applied	Science	 .	

Dr. Chen Feng, School of Engineering

Supervisor,	Professor	(please	print	name	and	faculty/school	above	the	line)	

 Dr. Yang Cao, School of Engineering

Supervisory	Committee	Member,	Professor	(please	print	name	and	faculty/school	in	the	line	above)	

Supervisory	Committee	Member,	Professor	(please	print	name	and	faculty/school	in	the	line	above)	

 Dr. Heinz Bauschke, Faculty of Arts and Science/Mathematics

University	Examiner,	Professor	(please	print	name	and	faculty/school	in	the	line	above)	

External	Examiner,	Professor	(please	print	name	and	university	in	the	line	above)	

 31/May/2017

(Date	Submitted	to	Grad	Studies)	

Additional	Committee	Members	include:	

 Dr. Julian Cheng, School of Engineering

(please	print	name	and	faculty/school	in	the	line	above)	

(please	print	name	and	faculty/school	in	the	line	above)	

ii

Abstract

Low latency is highly desirable for cloud services spanning thousands of servers. With the

rapid development of cloud market, the size of server farms grows fast. Hence, stringent timing

requirements are needed for task scheduling in a large-scale server farm. Conventionally, the

Join-the-Shortest-Queue (JSQ) algorithm, which directs an arriving task to the least loaded

server, is adopted in scheduling. Despite its excellent delay performance, JSQ is throughput-

limited, and thus doesn’t scale well with the number of servers. There are two distributed

algorithms proposed as “approximations” of the idealized JSQ. The first one is the Power-of-d-

choices (Pod) algorithm, which selects d servers at random and routes a task to the least loaded

server of the d servers. Despite its scalability, Pod suffers from long tail response times. The

second one is the distributed Join-the-Idle-Queue (JIQ) [1], which take advantages idle servers

for task scheduling.

In this thesis, we are interested in exploring Pod and JIQ further. First, a hybrid scheduling

strategy called Pod-Helper is proposed. It consists of a Pod scheduler and a throughput-limited

helper. Hybrid scheduling takes the best of both worlds, enjoying scalability and low tail

response times. In particular, hybrid scheduling has bounded maximum queue size in the large-

system regime, which is in sharp contrast to the Pod scheduling whose maximum queue size

is unbounded. Second, we conduct an in-depth analysis for distributed Join-the-Idle-Queue

(JIQ), a promising new approximation of an idealized task-scheduling algorithm. In particular,

we derive semi-closed form expressions for the delay performance of distributed JIQ. Third, we

propose a new variant of distributed JIQ that offers clear advantages over alternative algorithms

for large systems.

iii

Preface

This thesis is based on the research work conducted in the School of Engineering at The

University of British Columbia, Okanagan Campus, under the supervision of Dr. Chen Feng

and Dr. Julian Cheng. It contains both published and submitted works.

Chapter 2 of this thesis has been published in the International Conference on Computing,

Networking and Communications (ICNC). The research idea, problem definition, mean-field

analysis, and numerical simulations are the results of my work.

Chapters 3 of this thesis have been submitted to the IEEE Journal on Selected Areas in

Communications. I am the principle contributor for this work. Dr. Feng helped me with the

problem definition and theoretical analysis of the manuscripts.

The reuse of all the materials in this thesis is authorized by the co-authors of corresponding

publication. A list of my papers published at The University of British Columbia, Okanagan

Campus is provided below.

Conference Paper Accepted

1. Chunpu Wang, Chen Feng and Julian Cheng, “Randomized load balancing with a helper,”

International Conference on Computing, Networking and Communications (ICNC), Santa

Clara, CA, 2017, pp. 518-524.

Journal Paper Submitted

1. Chunpu Wang, Chen Feng and Julian Cheng, “Distributed Join-the-Idle-Queue for Low

Latency Cloud Services,” submitted to IEEE Journal on Selected Areas in Communica-

tions.

iv

Table of Contents

Abstract . iii

Preface . iv

Table of Contents . v

List of Tables . viii

List of Figures . ix

List of Acronyms . xi

Acknowledgements . xii

Chapter 1: Introduction . 1

1.1 Motivation and Contributions . 1

1.2 Literature Review . 3

1.3 Mathematical Background . 5

1.4 Organization of the Thesis . 7

Chapter 2: Analysis of Pod-Helper Algorithm 8

2.1 System Model and Main Results . 8

2.1.1 System Model . 8

2.1.2 System State . 10

2.1.3 Main Results . 10

2.2 Mean-Field Analysis . 14

2.2.1 Fluid limit s(t) and its properties . 14

v

TABLE OF CONTENTS

2.2.2 The Markov process SN (t) converges to the fluid limit s(t) 17

2.2.3 The steady-state distribution concentrates on s̃ 19

2.3 Simulations . 20

Chapter 3: Analysis of JIQ Algorithms . 25

3.1 System Model and Main Results . 25

3.1.1 Distributed JIQ Algorithm . 25

3.1.2 Distributed JIQ-Pod Algorithm . 26

3.1.3 Main Results . 27

3.2 Mean-Field Analysis . 28

3.2.1 The Stationary Distribution Under JIQ 31

3.2.2 The Stationary Distribution Under JIQ-Pod 35

3.3 Simulations . 36

3.3.1 Validation of the Mean-field analysis Results 37

3.3.2 Impact of “Delete request” Messages . 39

3.3.3 Comparison of JIQ Algorithms . 42

Chapter 4: Conclusions . 45

4.1 Main Contributions . 45

4.2 Future Work . 46

Bibliography . 47

Appendices . 49

Appendix A: . 50

Appendix B: . 51

Appendix C: . 54

C.0.1 Step One: Convergence to Continuous Functions 54

C.0.2 Step Two: Convergence to the Solution of the Dynamic Model 56

Appendix D: . 61

Appendix E: . 64

vi

TABLE OF CONTENTS

Appendix F: . 67

vii

List of Tables

Table 2.1 Maximum queue length with d = 2 . 12

Table 2.2 Average queue length with d = 2 . 14

Table 2.3 Theoretical analysis of (2.2) versus Simulations when ε = 0.05. 20

Table 3.1 Summary of queue length distribution under JIQ, JIQ-Pod and Pod. . . . 28

Table 3.2 Theoretical analysis of (3.2) and (3.4) versus Simulations for JIQ and

JIQ-Pod when r = 10 and λ = 0.9. 37

viii

List of Figures

Figure 2.1 Hybrid scheduling with a Po2-scheduler and a helper for a cluster with

4 servers. 9

Figure 2.2 Comparison of tail probabilities for three strategies when

λ = 0.99 and N = 100. 21

Figure 2.3 Comparison of tail probabilities for Pod and hybrid strategy when λ =

0.99 and N = 10000. 22

Figure 2.4 The impact of λ on ŝk with ε = 0.05, d = 2 and N = 100. 23

Figure 2.5 Task/job response time with ε = 0.05, d = 2 and N = 200. 24

Figure 3.1 Server 3 is selected by Scheduler 2 and leaves its I-queue. 26

Figure 3.2 Server 3 is selected by Scheduler 1 and sends a “delete request” message

to Scheduler 2. 27

Figure 3.3 Scheduler 1 probes Server 1 and Server 3, and assigns a new task to

Server 3. 27

Figure 3.4 Comparison of the expected task response time among JIQ, JIQ-Pod and

Pod, when r = 10 and d = 2. 29

Figure 3.5 Tail distribution si of JIQ when r = 10 and λ changes from 0.9 to 0.99. . 38

Figure 3.6 Tail distribution si of JIQ-Pod when r = 10 and λ changes from 0.9 to

0.99. 39

Figure 3.7 Response time of JIQ and JIQ-Pod when N = 1000, r = 10 and λ

changes from 0.9 to 0.98. 40

Figure 3.8 Average number of “request” messages per unit time per server of JIQ

and JIQ-Original when r = 10 and λ changes from 0.9 to 0.99. 41

ix

LIST OF FIGURES

Figure 3.9 Tail distribution of three algorithms under light workload (λ = 0.9) and

heavy workload (λ = 0.98). 43

Figure 3.10 An comparison of average task response time between five algorithms. . . 44

x

List of Acronyms

Acronyms Definitions

FIFO First-In-First-Out

JSQ Join-the-Shortest-Queue algorithm

JIQ Join-the-Idle-Queue algorithm

Pod Power-of-d-choices algorithm

xi

Acknowledgements

First of all, I am deeply grateful to my thesis supervisor Dr. Chen Feng and Dr. Julian

Cheng for their guidance and help. It is very lucky to receive constant encouragement and

advice from both of them.

Second, I would like to thank Dr. Heinz Bauschke for his willingness to serve as my external

examiner. I would also like to thank Dr. Yang Cao for his willingness to serve on the committee.

I really appreciate their valuable time and constructive comments on my thesis.

I also have many thanks to my friends Yanjie Dong, Changle Zhu, Haobing Chu, Renming

Qi, Yonghui Lv, Shou Wang, Junyuan Leng, Shou Liu, Junchi Bin, Huan Liu, Fang Shi at the

University of British Columbia for their encouragement and friendship.

Finally, I would like to specially thank my parents and my wife for their constant support

and love over my graduate studies.

xii

Chapter 1

Introduction

1.1 Motivation and Contributions

Nowadays, the market of cloud computing, such as online applications, is growing fast.

Take Facebook as an example. According to the Social Skinny, Facebook users posted 510

comments, 293,000 statuses and 136,000 photos for every minute in 2016. Daily usage of online

applications is so frequent that huge amount of tasks are created every second. Hence, more

servers are required to cope with such massive incoming tasks. Even as of June 2014, Facebook

was running at roughly 180,000 servers in its datacenters. Similarly, Amazon Web Services had

around 1.3 million servers in 2016. Such huge amount of servers consist of a large system.

In many cloud computing applications, such as web search and big-data processing, a sched-

uler assigns arriving tasks to appropriate servers. The objective of the scheduler is to minimize

the response times, which are crucial for user experience. For instance, an extra delay of 500

ms in response time could result in a 1.2% loss of users and revenue, according to Amazon and

Google [2]. Hence, low latency is highly desirable for online services spanning thousands of

servers. For example, Google search typically returns the query results within a few hundreds

of milliseconds. The demand for fast response time, which significantly impacts user expe-

rience and service-provider revenue, is translated into stringent timing requirements for task

scheduling in a large server farm.

Ideally, to minimize response times, a scheduler can track the queue lengths of all the

servers and select the least-loaded server (i.e., the server with the shortest queue) whenever

there is a task arrival. This scheduling strategy—often referred as the Join-the-Shortest-Queue

(JSQ) algorithm—is proven to be delay optimal in certain traffic regimes (see [3] and references

therein). However, JSQ scheduling is throughput-limited and doesn’t scale well with the number

1

1.1. Motivation and Contributions

of servers. This is because JSQ needs to track the status of all the servers and thus cannot

make scheduling decisions at high rate for a system with large number of servers, i.e., large

system.

To alleviate this problem, the Power-of-d-Choices (Pod) algorithm (d ≥ 2) has been proposed

as an “approximation” of the idealized JSQ. Instead of tracking the global information, Pod only

probes d servers uniformly at random upon a task arrival and selects the least loaded one for the

new task. Although Pod achieves reasonably good average response time [4], its tail response

time still remains high for large systems [5, 6] and its probing operation incurs additional delay.

This is undesirable for low-latency big-data-processing jobs (such as interactive Map/Reduce

jobs), where each job (which often consists of a number of tasks) is sensitive to tail response

time (since a job cannot complete until its last task finishes) [5, 6].

Recently, distributed Join-the-Idle-Queue (JIQ) [1] has emerged as a promising new approx-

imation of JSQ. JIQ employs a number of distributed schedulers, each maintaining an I-queue

that stores a list of idle servers. When a new task arrives at the system, it randomly visits

a scheduler asking to join an idle server in its I-queue. Compared to JSQ, each scheduler in

JIQ only maintains local information and is scalable to large systems. Compared to Pod, each

scheduler in JIQ avoids the probing operation and assigns a new task to an idle server directly

as long as its I-queue is non-empty. Due to its clear advantages, JIQ has begun to attract

research attention from both industry and academia [7–10]. Despite these significant research

achievements made recently, distributed JIQ is not yet well understood from a theoretical per-

spective. For example, there is no closed-form expression yet that exactly characterizes the

delay performance of distributed JIQ [7]1. Also, there seems no theoretical guarantee that the

distributed JIQ (or any of its variants) is strictly better than Pod.

In this thesis, we are interested in exploring the distributed Pod and distributed JIQ algo-

rithms. First, we propose a hybrid scheduling algorithm called Pod-Helper that consists of a

Pod scheduler and a throughput-limited helper. Specifically, the helper constantly monitors the

status of all the servers, and “steals” tasks from the most-loaded server (i.e., the server with the

1In [1], the authors provided closed-form expression that approximately characterizes the delay performance
of distributed JIQ based on some simplifying assumptions. Although their expression is insightful, it is not very
accurate for our system model as explained in Section 3.3.

2

1.2. Literature Review

longest queue) at a certain (limited) rate. Intuitively, this hybrid strategy can effectively reduce

tail response times, because it essentially prevents the longest queue from growing. We then

study this hybrid scheduling using a mean-field analysis. In particular, we show that, under

some mild condition on the helper rate, the maximum queue size with the hybrid scheduling is

bounded in the large system regime. This means that tail response times of our scheduler are

indeed low.

Second, we take a further step in understanding the performance of distributed JIQ, applying

a mean-field analysis to derive semi-closed form expressions of the stationary tail distribution

and the expected response time for distributed JIQ. Our expressions contain a parameter p̂0 ∈

(0, 1) that can be efficiently calculated by a binary search. We show that, in the large-system

limit, the tail probability ŝi of a server having at least i tasks is given by ŝi = p̂i−10 λi, where λ is

the normalized arrival rate. We also show that the expected task response time is 1+p̂0
∑∞

i=1 ŝi.

These two expressions allow us to compare JIQ and Pod directly and suggest that JIQ is not

always better than Pod.

Third, we propose a new variant of JIQ called JIQ-Pod that strictly outperforms Pod. JIQ-

Pod enjoys the best of both worlds. Similar to JIQ, a scheduler with a non-empty I-queue in

JIQ-Pod assigns a new task to an idle server on its I-queue. Similar to Pod, a scheduler with

an empty I-queue in JIQ-Pod probes d servers and selects the least loaded one. Intuitively,

JIQ-Pod improves upon JIQ in that it makes schedulers with empty I-queues “smarter”; it

improves upon Pod in that schedulers with non-empty I-queues can assign new tasks directly

to idle servers without the probing operation. Using the mean-field analysis, we are able to

quantify the improvements of JIQ-Pod over JIQ and Pod in the large-system limit.

1.2 Literature Review

The Pod algorithm and its variants have been used in today’s cloud systems as an alternative

to the ideal JSQ algorithm. One such variant is called batch sampling, which works quite well

when task arrivals occur in batches [5]. In particular, batch sampling is able to significantly

reduce tail response times compared to the original Pod algorithm. In fact, batch sampling

leads to bounded maximum queue size, as shown in a recent study [6]. Another variant is

3

1.2. Literature Review

called batch filling [6], which also exploits batch arrivals and achieves better delay performance

than batch sampling. Unlike these two variants, our hybrid scheduling doesn’t rely on batch

arrivals; instead, it explores a new dimension (i.e., the use of a helper) to reduce tail response

times.

The use of hybrid scheduling has begun to receive increasing attention from both academia

and industry. This line of work includes Hawk [11] and Mercury [12]. For instance, long jobs

in Hawk are scheduled with a centralized scheduler, and short ones are scheduled in a fully

distributed way [11]. To the best of the authors’ knowledge, most of these works are based on

simulations or prototype implementations. Our work differs from those works in that we seek

for a theoretical understanding of the benefits of hybrid scheduling. In addition, our hybrid

scheduling operates differently from Hawk and Mercury.

Our Pod-Helper is partially inspired by the seminal work of Tsitsiklis and Xu [13] on the

power of resource pooling. They found a strong qualitative impact of even a small degree

of centralization. In their system model, a fraction of p of the total available service rate is

deployed as a central server, while the remaining fraction 1−p is allocated to n local servers. In

other words, there is only a helper in the system to coordinate workloads among independent

servers. In contrast, our hybrid strategy combines a helper with a Pod scheduler. Such a

combination leads to better delay performance, as we will see in Chapter 2.3.

The JIQ algorithm was originally proposed in a seminal work [1] in 2011. The authors

assumed that all servers in I-queues are idle as a simplification of their performance analysis.

As pointed out in [1], this assumption is violated when an idle server receives a random arrival.

When studying JIQ in our work, we do not make such assumption. Instead, we introduce delete

request messages (as explained later) to ensure that all servers in I-queue are idle. To simplify

notation, we just use JIQ to denote the distributed JIQ with delete request messages, while

using JIQ-original to denote the JIQ proposed in [1].

Recently, Mitzenmacher studied the distributed JIQ algorithm through a fluid limit ap-

proach [7]. He proposed an innovative classification of the states of servers and derived families

of differential equations that describe the JIQ system in the large-system limit. Due to the

high complexity of those differential equations, there is no expression of the equilibrium in a

4

1.3. Mathematical Background

convenient form in terms of λ [7]. Our work is inspired by Mitzenmacher’s fluid limit approach.

By introducing delete request messages, we are able to simplify the differential equations and

obtain semi-closed form expressions for distributed JIQ. Based on the insights from our analy-

sis, we propose and analyzed a new variant of JIQ that outperforms both JIQ and Pod in all

conditions.

In a series of papers [8–10], Stolyar studied a centralized JIQ algorithm where there is only

one scheduler (or a fixed number of schedulers) in the system through mean-field analysis. It

shows that centralized JIQ approaches the performance of JSQ in the large-systems limit. This

means that a centralized scheduler only needs to track idle servers instead of all the servers.

1.3 Mathematical Background

The mean-field analysis is used to study the process of large and complex stochastic models.

Generally, in the mean-field analysis, we derive deterministic differential equations to describe

the system with infinite size. Here is a simple example [14]. In an epidemic model, we have the

total population N , the number of infected people Ni, the number of susceptible people Ns and

the number of immune people Nm. Suppose the chance for a susceptible person becoming an

infected person is proportional to the fraction of the infected population with fixed parameter

a, the chance for an infected person becoming an immune person is proportional to a fixed

parameter b. Then the transition rates are as following:

(Ns, Ni, Nm)→ (Ns − 1, Ni + 1, Nm) : q1 = a
Ni

N
Ns = aN

Ni

N

Ns

N
, (1.1a)

(Ns, Ni, Nm)→ (Ns, Ni − 1, Nm + 1) : q2 = bNi = bN
Ni

N
. (1.1b)

Let ni be the fraction of the infected population, ns be the fraction of the susceptible

population, and nm be the fraction of the immune population. We then have the following

differential equations:

dns
dt

= −anins, (1.2a)

dni
dt

= anins − bni, (1.2b)

5

1.3. Mathematical Background

dnm
dt

= bni. (1.2c)

Intuitively speaking, the expectation of the system is close to the solution of above differ-

ential equations as the law of large numbers will take effect when the size of the system goes to

infinity. Based on those differential equations, we can study the stationary distribution of the

infinite system when t→∞.

In fact, the simple example of an epidemic model is a typical density dependent jump

Markov process. The concept of the density dependent jump Markov processes goes as follows.

Definition 1.1: For n ≥ 1, the continuous-time Markov process {Xn(t), t ≥ 0} is a density

dependent Markov process on the d-dimensional lattice Zd, such that:

1. There are only finite possible transactions l of X(t)n, that l ⊆ Zd;

2. The transition rates are q
(n)
x,x+l = nβl(n

−1x), where βl are nonnegative continuous func-

tions.

Then, we can measure the error between finite and infinite density dependent jump Markov

systems. A well-known theorem, called Kurtz’s Theorem, helps with the approximation of the

finite system when the system size n → ∞. Kurtz’s Theorem states that the deterministic

process is the limit of the process when appropriate differential equations are chosen.

Theorem 1.2: Consider there is a sequence of density dependent Markov processes {Xn(t)},

which satisfies that:

1. The Lipschitz condition |F (x)− F (y)| ≤ K |x− y|, where F (x) =
∑
l

lβl(x) and K is a

certain constant;

2. For x0, we have x0 = lim
n→∞

Xn(0).

Set X(t) to be a deterministic process X(t) = x0 +
∫ t
0 F (X(u))du. Then

lim
n→∞

sup
u≤t
|Xn(u)−X(u)| = 0, almost surely. (1.3)

Kurtz’s Theorem originally only applies to the finite dimensional system (i.e., d is a finite

6

1.4. Organization of the Thesis

number). In the work of the “power of two choices” [4], the author extended it to include some

infinite dimensional systems.

1.4 Organization of the Thesis

Our thesis consists of four chapters, which are organized as follows.

In Chapter 2, we introduce our system model of Pod-Helper. Through mean-field analysis,

we show that it has a bounded maximum queue size in the condition of the large-system regime.

The simulation result indicates such nice property also holds when system size is limited.

In Chapter 3, we introduce our system model of JIQ and JIQ-Pod. Then we perform the

mean-field analysis for both JIQ and JIQ-Pod, obtaining semi-closed form expressions of the

stationary distributions of JIQ and JIQ-Pod. Additionally, extensive simulations are conducted

to validate our analysis.

In Chapter 4, we conclude the whole thesis and list some possible future work related to

our Pod and JIQ variants.

7

Chapter 2

Analysis of Pod-Helper Algorithm

In this chapter, we study the Pod-Helper algorithm through mean-field analysis. We mainly

focus on the large-systems limit (i.e., the number of servers tends to∞), since today’s datacenter

often consists of tens of thousands of servers. Our main results state that, in the large-systems

regime, the maximum steady-state queue size of the hybrid algorithm is bounded and the

average steady-state response time is strictly smaller than that of the Pod algorithm. We then

use mean-field analysis to cover two proof paths. Also, we conduct simulation to verify the

correctness of our theoretical analysis.

2.1 System Model and Main Results

2.1.1 System Model

Consider a cluster with N identical servers together with a Pod scheduler (d ≥ 2) and a

throughput-limited helper, as illustrated in Fig. 2.1. Time is assumed to be continuous.

1. Servers: Each server maintains a first-in first-out (FIFO) queue which stores the tasks

to be processed. The queue length (i.e., the number of tasks) for server i at time t is

denoted by Qi(t) for i ∈ {1, 2, . . . , N}. To simplify analyze, we assume that the task

service times at each server are independent and exponentially distributed with mean 1.

Or equivalently, the task processing at each server can be modelled as a “Poisson clock”

with rate 1 (i.e., the times between two clock ticks are independent and exponentially

distributed with mean 1). These Poisson processes are independent of each other. When

the clock for server i ticks at time t, if Qi(t) > 0, server i completes the task at the head

of the queue and removes it from the queue immediately; otherwise, server i does nothing

and this clock tick is wasted. This equivalent interpretation facilitates our analysis.

8

2.1. System Model and Main Results

helper
1

2

3

Po2
scheduler

4

Figure 2.1: Hybrid scheduling with a Po2-scheduler and a helper for a cluster with 4 servers.

2. Task Arrivals: Tasks arrive to the system according to a Poisson process with rate λN

where λ < 1.

3. Pod Scheduler : Upon a task arrival, the Pod scheduler samples d servers uniformly at

random and directs the task to the least-loaded server (i.e., the server with the shortest

queue)2. If there are multiple least-loaded servers, the scheduler chooses one uniformly

at random.

4. Helper : The task processing at the helper is modelled as a Poisson clock with rate εN ,

where ε � λ (since the helper is throughput-limited). When the clock at the helper

ticks at time t, if the system is non-empty (i.e.,
∑N

i=1Qi(t) > 0), the helper “steals”

the head-of-the-queue task from some server i, chosen uniformly at random among the

most loaded-servers (i.e., the server with the longest queue), and completes the task

immediately. Otherwise, the helper does nothing, and the clock tick is wasted3.

Remark 1: When ε = 0, our system model reduces to the standard setup for the Pod algo-

2Although our system model assumes a single Pod scheduler, it can be easily extended to the case of multiple
Pod schedulers as long as the task arrivals on these schedulers are independent Poisson processes with aggregated
rate λN .

3Similarly, our system model can be easily extended to the case of multiple helpers as long as the aggregate
rate of their Poisson-clock processes is εN .

9

2.1. System Model and Main Results

rithm. Setting d = 1, our system model is essentially the same as that in [13], where servers

receive streams of tasks according to independent Poisson processes with a common rate λ. In

this sense, our work extends [13] from d = 1 to an arbitrary d.

Remark 2: The helper can be implemented in a distributed fashion. For example, one can set

a threshold so that any server whose queue length is larger than the threshold will constantly

report its queue-length information to the helper. With a “good” choice of threshold, only a

small fraction of servers will report their queue-length information, lowering the communication

overhead of both servers and helper.

2.1.2 System State

It is straightforward to show that the queue-length process (Q1(t), Q2(t), . . . , QN (t)) forms a

Markov process for any fixed N , because all events (including task arrivals and task departures)

are generated according to independent Poisson processes, and the change of queue lengths only

depends on the current queue lengths.

Now, define

SNk (t) ,
1

N

N∑
i=1

1 (Qi(t) ≥ k) , k ≥ 0.

Here, 1(·) denotes the indicator function. Clearly, SNk (t) represents the fraction of queues with

at least k tasks, which can be interpreted as the tail probability of a typical server having at

least k tasks. Also,
∑∞

k=1 S
N
k (t) is equal to the average queue length at time t. For these

reasons, we will use the process
{
SNk (t)

}∞
k=0

to represent the system state at time t. In fact, it

is easy to show that
{
SNk (t)

}∞
k=0

is a Markov process.

2.1.3 Main Results

We require several new definitions in order to formally state our main results. Consider the

following iterations:

sk = λsdk−1 − ε for all k ≥ 1, given that s0 = 1. (2.1)

10

2.1. System Model and Main Results

Let k∗(λ, ε, d) be the smallest integer such that sk∗(λ,ε,d) > 0 and sk∗(λ,ε,d)+1 ≤ 0. Note that

such k∗(λ, ε, d) always exists under our assumption of λ < 1 and 0 < ε� λ. Note also that, by

construction, we have 1 = s0 > s1 > · · · > sk∗(λ,ε,d) > 0.

Define a new sequence {s̃k}∞k=0 as

s̃k =


sk, if 0 ≤ k ≤ k∗(λ, ε, d),

0, if k > k∗(λ, ε, d).

(2.2)

Clearly, we have 1 = s̃0 > s̃1 > · · · > s̃k∗(λ,ε,d) > 0 and s̃k = 0 for all k > k∗(λ, ε, d). As we will

soon see, s̃k corresponds to the fraction of queues with at least k tasks in the steady state for

large systems. For convenience, let s̃ denote the sequence {s̃k}∞k=0. That is,

s̃ , (s̃0, s̃1, s̃2, · · ·).

Now, we are ready to introduce our main theorem. Let SN (t) denote the Markov process{
SNk (t)

}∞
k=0

. That is,

SN (t) ,
(
SN0 (t), SN1 (t), SN2 (t), · · ·

)
.

If the process SN (t) is ergodic, it has a unique steady-state distribution and we denote the

steady-state distribution of SN (t) by limt→∞ SN (t).

Theorem 2.1: The Markov process SN (t) is ergodic (and thus has a unique steady-state

distribution), and

lim
N→∞

lim
t→∞

SN (t) = s̃, in distribution,

lim
t→∞

lim
N→∞

SN (t) = s̃, in distribution.

Theorem 2.1 states that, for all N , the Markov process SN (t) has a unique steady-state

distribution, and that the steady-state distribution concentrates on the sequence s̃, as N →∞.

In addition, it says that the process SN (t) converges to a deterministic fluid limit as N →∞,

and this fluid limit converges to a unique fixed point.

Since the system is fully symmetric in the steady state, Theorem 2.1 implies that the steady-

11

2.1. System Model and Main Results

Table 2.1: Maximum queue length with d = 2

λ
ε

10−4 0.001 0.01 0.03 0.06

0.3 4 3 3 2 2
0.5 4 4 3 3 3
0.9 7 7 6 5 4
0.95 8 8 7 6 5
0.999 14 12 9 7 6

state distribution of the queue length of an arbitrary server in the large-system limit is given

by

πk = s̃k − s̃k+1.

In particular, we have π0 = 1 + ε− λ and πk = 0 for all k > k∗(λ, ε, d). That is, in the steady

state, the fraction of idle servers doesn’t depend on d, and the maximum queue size is bounded

by k∗(λ, ε, d).

Corollary 2.2: The maximum steady-state queue size in the large-system limit under hybrid

scheduling is bounded by k∗(λ, ε, d).

As a comparison, the steady-state distribution of the queue length of a server in the large-

systems limit under the Pod algorithm is given by

πk = λ
dk−1
d−1 − λ

dk+1−1
d−1 . (2.3)

Clearly, the maximum queue size is unbounded, since πk > 0 for all k. Table 2.1 gives examples

of the values for k∗(λ, ε, d) across a wide range of parameters. It appears that k∗(λ, ε, d) is

rather small even when ε is as small as 10−3. This desirable property also holds for other values

of d.

Next, we proceed to the expected queue length.

Corollary 2.3: The expected steady-state queue length in the large-systems limit under hy-

brid scheduling is

s̃1 + s̃2 + · · ·+ s̃k∗(λ,ε,d) (2.4)

12

2.1. System Model and Main Results

which is bounded by
k∗(λ,ε,d)∑
k=1

λ
dk−1
d−1 − k∗(λ, ε, d)ε. (2.5)

Proof. First, note that
k∗(λ,ε,d)∑
k=1

kπk =

k∗(λ,ε,d)∑
k=1

sk.

Hence, the expected steady-state queue length is indeed given by (2.4).

Second, we will establish the upper bound (2.5). To this end, we consider a new sequence

s′i = λ(s′i−1)
d, with s′0 = 1. In fact, this new sequence corresponds to the steady-state tail

probabilities for the Pod algorithm, and we have

s′i = λ
di−1
d−1 . (2.6)

We can show that

si ≤ s′i − ε (2.7)

for all i = 1, . . . , k∗(λ, ε, d). To see this, note that s1 = λ − ε and s′1 = λ. Hence, s1 ≤ s′1 − ε.

Moreover, if si ≤ s′i, then we have

si+1 = λ(si)
d − ε ≤ λ(s′i)

d − ε = s′i+1 − ε.

Finally, combining (2.6) and (2.7), we prove the upper bound (2.5).

As a comparison, the expected queue length in the large-systems limit under the Pod al-

gorithm is
∑∞

k=1 λ
dk−1
d−1 (which is strictly larger than the expected queue length under hybrid

scheduling). Hence, hybrid scheduling indeed achieves shorter average response time than the

Pod algorithm in the large-system limit.

Table 2.2 compares the average queue length for Po2 (ε = 0) and hybrid scheduling (ε > 0).

In particular, when ε = 0.05, hybrid scheduling offers significant advantages over Po2, especially

in the heavy-traffic regime (i.e., λ→ 1).

13

2.2. Mean-Field Analysis

Table 2.2: Average queue length with d = 2

λ
ε

0 0.001 0.01 0.05

0.5 1.6328 1.6291 1.6001 1.5013
0.9 3.3527 3.3359 3.2006 2.7422
0.95 4.2139 4.1825 3.9320 3.1967
0.999 9.6430 8.6389 6.1667 3.9801

2.2 Mean-Field Analysis

In this section, we prove Theorem 2.1 by using the mean-field analysis. First, we will

derive a (deterministic) fluid limit s(t) for the Markov process SN (t) and show that s(t) con-

verges to a unique fixed point s̃ given by (2.1) and (2.2). Second, we will prove that the

Markov process SN (t) converges to the fluid limit s(t) as N →∞. These two steps prove that

limt→∞ limN→∞ SN (t) = s̃ in distribution. Finally, we will show that the steady-state distribu-

tion of the process SN (t) concentrates on s̃, proving limN→∞ limt→∞ SN (t) = s̃ in distribution.

2.2.1 Fluid limit s(t) and its properties

First of all, we need to derive the fluid limit s(t) for the Markov process SN (t). To this end,

consider a dynamical system specified by the following rules:

(i) For t = 0,

1 = s0(0) ≥ s1(0) ≥ · · · ≥ sm(0) > 0

and

sk(0) = 0 for all k > m.

That is, sm(0) is the “last” non-zero element of s(0).

(ii) For all t ≥ 0,

s0(t) = 1 and 1 ≥ sk(t) ≥ sk+1(t) ≥ 0

for all k ≥ 0.

14

2.2. Mean-Field Analysis

(iii) For almost all t ≥ 0,

ṡk(t) = λ
(
sdk−1(t)− sdk(t)

)
− (sk(t)− sk+1(t))− hk (s(t))

for all k ≥ 1, where

hk (s(t)) =



0, sk−1(t) = 0, sk(t) = 0,

min{λsdk−1(t), ε}, sk−1(t) > 0, sk(t) = 0,

max{ε− λsdk(t), 0}, sk(t) > 0, sk+1(t) = 0,

0, sk(t) > 0, sk+1(t) > 0.

Interpretation of the dynamical system.

Conditions (i) and (ii) correspond to initial and boundary conditions, respectively. In fact,

Condition (ii) is not necessary, since it is implied by Conditions (i) and (iii). (Here, we keep

Condition (ii) to simplify the domain of the functions {hk(·)}.)

To understand Condition (iii), let us consider a finite system with N servers. As we will

soon see, when N → ∞, the behaviour of the finite system can be “approximated” by the

(deterministic) dynamical system.

Consider the Markov process SN (t) whose current state at time t is given by ŝ , (ŝ0, ŝ1, · · ·).

Then, there exists some integer mt such that

1 = ŝ0 ≥ ŝ1 ≥ · · · ≥ ŝmt > 0 (2.8)

and ŝk = 0 for all k > mt. Let

ek , (0, · · · , 0︸ ︷︷ ︸
k times

, 1, 0, · · ·).

Clearly, the next state of SN (t) must be one of the following:

(a) ŝ + 1
N ek for some k where 1 ≤ k ≤ mt + 1;

(b) ŝ− 1
N ek for some k where 1 ≤ k ≤ mt.

Note that the transition rate from ŝ to ŝ + 1
N emt+1 is

λNŝdmt −min{λNŝdmt , εN} (2.9)

15

2.2. Mean-Field Analysis

where the first term λNŝdmt corresponds to the event that a task arrives at a server with mt

tasks, and the second term min{λNŝdmt , εN} corresponds to the event that the helper prevents

a server from having mt + 1 tasks (by stealing a task if necessary). More specifically, a task

arrives at a server with mt tasks if and only if a task arrives to the system (with rate λN) and

the Pod scheduler selects d servers all having mt tasks (with probability ŝdmt). This explains

the first term. On the other hand, the helper needs to allocate a total rate of min{λNŝdmt , εN}

in order to prevent a server from having mt + 1 tasks. This explains the second term. Now, we

take the limit as N →∞ and multiply the transition rate with the increment 1
N , obtaining the

term λŝdmt −min{λŝdmt , ε}, which explains the differential equation

ṡmt+1(t) = λsdmt(t)−min{λsdmt(t), ε} (2.10)

in the dynamical system when k = mt + 1.

Using a similar argument, we can show that the transition rate from ŝ to ŝ + 1
N emt is

λN
(
ŝdmt−1 − ŝ

d
mt

)
(2.11)

and the transition rate from ŝ to ŝ− 1
N emt is

Nŝmt + max{εN − λNŝdmt , 0}. (2.12)

Combining these two rates and taking the limit asN →∞, we obtain the term λ
(
ŝdmt−1 − ŝ

d
mt

)
−

ŝmt −max{ε− λŝdmt , 0}, which explains the differential equation

ṡmt(t) = λ
(
sdmt−1(t)− s

d
mt(t)

)
− smt(t)−max{ε− λsdmt(t), 0} (2.13)

in the dynamical system when k = mt.

Finally, when k < mt, the evolution of sk(t) will not be affected by the helper, and so we

have the same set of differential equations

ṡk(t) = λ
(
sdk−1(t)− sdk(t)

)
− (sk(t)− sk+1(t)) (2.14)

16

2.2. Mean-Field Analysis

as for the case of the Pod algorithm [4].

Properties of the dynamical system.

We characterize the behaviour of the dynamical system s(t). First, we can show that s(t)

admits a unique solution. Hence, the dynamical system s(t) is indeed deterministic.

Proposition 2.4: Conditions (i), (ii), and (iii) determine a unique solution s(t).

Proof. Please see Appendix A for more details.

Second, we can show that s(t) converges to a unique fixed point.

Proposition 2.5: The dynamic system s(t) has a unique fixed point s̃ given by Equations

(2.1) and (2.2).

Proof. The existence of a fixed point can be readily established by substituting the sequence s̃.

The uniqueness of the fixed point can be shown by adding all equations of Condition (iii) with

j ≥ i to generate a recursive equation.

Theorem 2.6: The dynamic system s(t) converges to the unique fixed point s̃.

Proof. Please see Appendix B for more details.

Therefore, every trajectory of the dynamical system (with initial condition (i)) converges to

the fixed point s̃.

2.2.2 The Markov process SN(t) converges to the fluid limit s(t)

Here, we will show that the Markov process SN (t) converges to the dynamical system s(t).

As such, s(t) is indeed the fluid limit of SN (t).

We define a weighted l2 norm ‖ · ‖ω as

‖x‖ω =

√√√√ ∞∑
i=0

|xi|2
2i

where x is an infinite vector.

17

2.2. Mean-Field Analysis

Theorem 2.7: Consider a sequence of systems SN (t) indexed by N , the number of servers.

Suppose that the (deterministic) initial conditions sN (0)→ s(0). Then, for any (finite) T > 0,

lim
N→∞

Pr

{
sup
t∈[0,T]

‖SN (t)− s(t)‖ω > γ

}
= 0, ∀γ > 0.

Proof. The proof of Theorem 2.7 is in spirit similar to the proof of Theorem 6 in [13]. The main

idea is to set up suitable fundamental processes, from which all other processes of interest, such

as SN (t), can be derived. Then the convergence of sample paths of SN (t) can be transferred to

the convergence of those fundamental processes, which is much easier to study.

Basically, there are three fundamental processes.

Definition 2.8: 1. Overall Process, {Z(t)}t≥0, which is defined on a probability space

(ΩZ ,FZ ,PZ), is a Poisson process with rate λ + ε + 1, where each jump marks the time

when any event happens in the system.

2. Choose Process, {Y (n)}n∈Z+ , which is defined on a probability space (ΩV ,FV ,PV), is

a discrete time process. Y (n) is independent and uniformly distributed in [0, 1]. This

process is combined with current system state to determine which type of event happens.

3. Initial conditions, {S(0,N)}N∈N is a sequence of random variables defined on a common

probability space (Ω0,F0,P0).

We have the product space (Ω,F , P) , (ΩZ × ΩY × Ω0,FZ × FY × F0,PZ × PY × P0). To

simplify notation, we set

Z(ω, t) , Z(ωZ , t), ω ∈ Ω and ω = (ωZ , ωY , ω0).

As the system is scaled by N , we can have a normalized event process with a unit 1
N for every

step that

ZN (ω, t) ,
1

N
Z(ω,Nt).

Similar to the description of dynamic model, SNi (t) can be decomposed with 4 parts:

SNi (t) = SNi (0) +ANi (t)−GNi (t)− CNi (t),

18

2.2. Mean-Field Analysis

where SNi (0) represents initial condition of SNi , ANi (t), GNi (t) and CNi (t) represent cumulative

arrival, departure and helper events, which all begin with zero. Thus, we can describe the

process of SNi (t) in a fixed sample path ω by the following mapping. In the whole process, we

use tk represents the time when kth step occurs.

1. When Y (ω, k) ∈ λ
1+λ+ε [(S

N
j+1(tk−1))

d, (SNj (tk−1))
d), a new task arrives at a server with j

tasks in step k, then ANj+1(t) will be increased by 1/N .

2. When Y (ω, k) ∈ λ
1+λ+ε + 1

1+λ+ε [S
N
j+1(tk−1), S

N
j (tk−1)), a task departure event happens in

a server with j tasks in step k. If j > 1, GNj (t) will be increased by 1/N .

3. When Y (ω, k) ∈ 1+λ
1+λ+ε + ε

1+λ+ε [0, 1), a helper event happens in step k. If there are tasks

in the system in step k− 1, CNi∗ (t), where i∗ is the longest queue length, will be increased

by 1/N .

After we couple sample paths with those fundamental processes, we show that SN (t) con-

verges to certain Lipschitz continuous trajectory. Then, we justify that the derivative of the

continuous trajectory is the same as the drift of our dynamic model at every point where the

derivative exists. Those steps above complete the sample path tightness. Combined with the

uniqueness of s(t), it is straightforward to prove the convergence of SN (t) to the unique solution

of s(t) in probability. This completes the proof of Theorem 2.7. Please see Appendix C for

more details.

2.2.3 The steady-state distribution concentrates on s̃

Here, we validate the other half of Theorem 2.1, which states that the Markov process SN (t)

has a unique steady-state distribution. Moreover, the steady-state distribution concentrates on

the sequence s̃, as N →∞.

Proposition 2.9: For any fixed N , SN (t) is positive recurrent and the steady state dis-

tribution of SN (t) , πN , is tight in the sense that for every δ > 0, there exists M that

πN (
∞∑
i=0

SNi ≤M) ≥ 1− δ.

Proof. Please see Appendix D for more details.

19

2.3. Simulations

Table 2.3: Theoretical analysis of (2.2) versus Simulations when ε = 0.05.

(λ, d) ŝk Analysis
Simulation
N = 100

Simulation
N = 500

(0.95, 2) ŝ1 0.9000 0.8961 0.8969

(0.95, 2) ŝ2 0.7195 0.7155 0.7144

(0.95, 2) ŝ3 0.4418 0.4422 0.4371

(0.95, 2) ŝ4 0.1354 0.1490 0.1355

(0.95, 2) ŝ5 0 0.0125 0.0018

(0.8, 3) ŝ1 0.7500 0.7532 0.7510

(0.8, 3) ŝ2 0.2875 0.2991 0.2953

(0.8, 3) ŝ3 0 0.0084 0.0016

Theorem 2.10: As N → ∞, the unique steady-state distribution πN concentrates on the

sequence s̃, which implies

lim
N→∞

πN = δs̃, in distribution

where δs̃ is the Dirac measure concentrated on s̃.

The above theorem states that the steady-state distribution πN concentrates on a single

state s̃, as N →∞. The proof of Theorem 2.10 is exactly the same as the proof of Theorem 7

in [13]. The key step is based on the continuous test functions that verify the limit of πN to be

equal to the fixed point of our dynamic model.

2.3 Simulations

In this section, we conduct extensive simulations to evaluate the performance of hybrid

scheduling. First, we investigate the accuracy of our theoretical analysis for the tail probabil-

ities {ŝk}. It turns out that our analysis result matches simulations well across a wide range

of parameters, as long as the system has a moderate size (say N = 500). For example, Ta-

ble 2.3 compares our theoretical analysis and simulations when ε = 0.05 under two sets of

configurations. We observe that the analysis is fairly accurate when N = 500.

Next, we compare the tail probabilities {ŝk} for three strategies: Po2 scheduling (d = 2, ε =

0), hybrid scheduling (d = 2, ε = 0.05), and the single-helper strategy (ε = 0.05) in [13]. We set

λ = 0.99 and N = 100. As seen from Fig. 2.2, the tail probability ŝk of hybrid scheduling decays

20

2.3. Simulations

much faster than that of Po2 and reaches 0 when k ≥ 7, whereas the tail probability of Po2 is

always positive. Also, hybrid scheduling enjoys better tail probabilities than the single-helper

strategy. In other words, hybrid scheduling can effectively reduce the tail probabilities even

for systems with a relatively small size. When the system size is large (say, N = 10000), the

same trend holds and the simulation is even closer to our theoretical prediction, as illustrated

in Fig. 2.3.

0 5 10 15 20 25 30 35

k

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ŝ
k

Hybrid (numerical)
Po2 (numerical)
Hybrid (N = 100)
Single helper (N = 100)

Figure 2.2: Comparison of tail probabilities for three strategies whenλ = 0.99 and N = 100.

Then, we look at how tail probabilities {ŝk} of hybrid scheduling evolve as the arrival rate

λ increases. We set ε = 0.05, d = 2, and N = 100. We vary λ from 0.5 to 0.95. As we can

see from Fig. 2.4, when λ ≤ 0.8, all the servers have less than four tasks in their queues. Even

when λ reaches 0.95, the fraction of servers with at least four tasks is just around 15% in our

simulation.

21

2.3. Simulations

0 5 10 15 20 25

k

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ŝ
k

Hybrid (numerical)

Po2 (numerical)

Hybrid (N = 10000)

Po2 (N = 10000)

Figure 2.3: Comparison of tail probabilities for Pod and hybrid strategy when λ = 0.99 and
N = 10000.

22

2.3. Simulations

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

λ

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

ŝ
k

ŝ2

ŝ3

ŝ4

ŝ2 (numerical)

ŝ3 (numerical)

ŝ4 (numerical)

Figure 2.4: The impact of λ on ŝk with ε = 0.05, d = 2 and N = 100.

23

2.3. Simulations

Finally, we use some real-world trace obtained from Google’s cluster data [15] to evaluate

the performance of our hybrid scheduling. This data set is from a Borg cell for 7 hours period,

in which there are four types of jobs. Here we focus on Type-3 jobs, which consist of 3187

jobs and 14115 tasks. In particular, we obtain task arrival times and task processing times

from the trace, and use such information to replace the assumption of Poisson arrivals and

exponential service-time distribution. For the following simulations, we set ε = 0.05, N = 200

and d = 2. According to Fig. 2.5, the cumulative distribution function of job response time

of hybrid algorithm implies smaller average response time than that of the Pod algorithm.

Intuitively, with the help of helper, it may shorten the latest task’s response time in a job,

which decreases the response time for this job.

0 10 20 30 40 50 60 70 80 90

Job/Task Response Time

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
u
m

u
la

ti
v
e
 D

is
tr

ib
u
ti
o
n
 F

u
n
c
ti
o
n

Po2 (Task Response Time)

Hybrid (Task Response Time)

Po2 (Job Response Time)

Hybrid (Job Response Time)

Figure 2.5: Task/job response time with ε = 0.05, d = 2 and N = 200.

24

Chapter 3

Analysis of JIQ Algorithms

In this chapter, we take a further step in understanding the performance of distributed

JIQ, applying a mean-field analysis to derive semi-closed form expressions of the stationary

tail distribution and the expected response time for distributed JIQ. Then, we propose a new

variant of JIQ called JIQ-Pod that strictly outperforms Pod. JIQ-Pod enjoys the best of both

worlds. We also quantify the improvements of JIQ-Pod over JIQ and Pod in the large-system

limit.

3.1 System Model and Main Results

3.1.1 Distributed JIQ Algorithm

Consider a system with N identical servers and M schedulers. Each scheduler is equipped

with an I-queue that stores a list of idle servers (which will be specified later). The system

evolves as follows.

− Task arrivals: Tasks arrive at the system according to a Poisson process of rate λN , where

λ < 1, and are sent to a scheduler uniformly at random. Thus, each scheduler observes a

Poisson arrival process of rate λN/M .

− Schedulers with I-queues: Each scheduler has an I-queue, which maintains a list of idle

servers. Upon a task arrival, each scheduler checks its I-queue and assigns the task to a

server according to the following rule: If the I-queue is non-empty, the scheduler selects

an idle server uniformly at random from its I-queue. If the I-queue is empty, the scheduler

selects a server uniformly at random from all the servers.

− Servers: Each server has an infinite buffer and processes tasks in a first-in first-out (FIFO)

25

3.1. System Model and Main Results

1

2

3

3

Scheduler I-queue Server

Figure 3.1: Server 3 is selected by Scheduler 2 and leaves its I-queue.

manner. The task processing times are exponentially distributed with mean 1. Whenever

a server becomes idle, it joins an I-queue selected uniformly at random. Whenever an idle

server becomes busy, it leaves its associated I-queue in one of the following two ways:

1. If it is selected by a scheduler with a non-empty I-queue, then it simply leaves the

I-queue, as shown in Figure 3.1.

2. If it is selected by a scheduler with an empty I-queue, then it has to inform its

associated I-queue by sending a “delete request” message, as shown in Figure 3.2.

We note that some distributed JIQ algorithm doesn’t use the “delete request” messages

(e.g., in [7]), allowing I-queues having non-idle servers. Although it reduces the communication

overhead, it complicates the theoretical analysis. As we will see in Section 3.3.2, such extra

communication overhead is acceptable.

3.1.2 Distributed JIQ-Pod Algorithm

The distributed JIQ algorithm described above doesn’t always outperform the Pod algo-

rithm, especially under heavy workload where most I-queues are empty. To address this issue,

we propose a new variant of JIQ, namely JIQ-Pod, which combines the advantages of JIQ and

Pod. It works as follows. Whenever a new task is sent to a scheduler with an empty I-queue,

the scheduler probes d servers uniformly at random and assigns the task to the least loaded

26

3.1. System Model and Main Results

1

2

3

3

Delete

Scheduler I-queue Server

Figure 3.2: Server 3 is selected by Scheduler 1 and sends a “delete request” message to Scheduler
2.

one, as shown in Figure 3.3. That is, each scheduler with an empty I-queue is applying the Pod

strategy. All other steps remain the same. Clearly, when d = 1, our JIQ-Pod algorithm reduces

to the distributed JIQ algorithm.

1

2

3

3

Scheduler I-queue Server

Figure 3.3: Scheduler 1 probes Server 1 and Server 3, and assigns a new task to Server 3.

3.1.3 Main Results

Table 3.1 presents our main results that characterize the stationary tail distribution and

the expected task response time in the large-system limit (i.e., N →∞ and M →∞ with the

ratio r = N/M fixed), where p̂0 is some parameter in (0, 1) (which will be specified later). The

27

3.2. Mean-Field Analysis

Table 3.1: Summary of queue length distribution under JIQ, JIQ-Pod and Pod.

JIQ JIQ-Pod Pod

Tail distribution of server (ŝi for i ≥ 1) p̂i−10 λi λ
di−1
d−1 p̂

di−1−1
d−1

0 λ
di−1
d−1

Expected task response time (T (λ)) 1 + p̂0
∞∑
i=1

ŝi 1 + p̂0
∞∑
i=1

(ŝi)
d 1 +

∞∑
i=1

(ŝi)
d

stationary tail distribution ŝi is the fraction of servers having no less than i tasks in their task

queues. (Note that ŝ0 is always equal to 1, and that the {ŝi} are non-increasing.) The smaller

ŝi is, the shorter the task delay. The expected task response time T (λ) measures the average

completion time for a task in steady state.

First, we observe that JIQ-Pod gives the best tail distribution ŝi. Compared to Pod, JIQ-Pod

has an additional factor of p̂
di−1−1
d−1

0 < 1, since p̂0 ∈ (0, 1). For instance, when d = 2, i = 2 and

p0 = 0.5, such factor equals to 0.5. Compared to JIQ, JIQ-Pod has larger exponents of λ and

p̂0. For example, when d = 2 and i = 3, the exponent of λ under JIQ-Pod is di−1
d−1 = 7 > i = 3,

and the exponent of p̂0 under JIQ-Pod is di−1−1
d−1 = 3 > i− 1 = 2.

Second, we observe that JIQ-Pod achieves the shortest expected task response time T (λ).

Compared to Pod, JIQ-Pod has an additional factor of p̂0 < 1. Compared to JIQ, JIQ-Pod has

larger exponents of ŝi. To better illustrate the advantage of JIQ-Pod, we provide a concrete

numerical example in Figure 3.4, which shows that, when λ = 0.98, T (λ) of JIQ-Pod is only

around 2.6, whereas T (λ) of JIQ and Pod are 5.3 and 4.5, respectively.

3.2 Mean-Field Analysis

In this section, we will use the mean-field analysis to study the stationary distributions of

the queue lengths under JIQ and JIQ-Pod, as well as their corresponding expected task response

times. The underlying assumptions behind the mean-field analysis will be validated through

simulations in Sec. 3.3.1. In fact, these assumptions can be rigorously validated using proof

techniques such as Kurtz’s theorem, which is beyond the scope of this thesis4.

4The evolution of the system state can be characterized by a density-dependent continuous-time Markov chain
Q̃(N)(t). This allows us to apply Kurtz’s theorem to rigorously validate the use of the mean-field analysis. Most
of the proof steps towards this direction are standard except for the step showing the global convergence of the

28

3.2. Mean-Field Analysis

0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98

λ

1.5

2

2.5

3

3.5

4

4.5

5

5.5

T
(λ
)

JIQ-Pod
JIQ
Pod

Figure 3.4: Comparison of the expected task response time among JIQ, JIQ-Pod and Pod, when
r = 10 and d = 2.

29

3.2. Mean-Field Analysis

Let
(
X

(N)
i (t), Y

(N)
i (t)

)
denote the state of the ith server at time t in a system of N servers

and M I-queues, where X
(N)
i (t) is the queue length of the ith server at time t and Y

(N)
i (t) is the

index of the associated I-queue. If the ith server doesn’t belong to any I-queue at time t, we set

Y
(N)
i (t) = 0. It is easy to check that

{(
X

(N)
i (t), Y

(N)
i (t)

)}N
i=1

forms an irreducible, aperiodic,

continuous-time Markov chain under our system model. Moreover, the following theorem shows

that this Markov chain is positive recurrent and thus has a unique stationary distribution.

Theorem 3.1: The Markov Chain
{(
X

(N)
i (t), Y

(N)
i (t)

)}N
i=1

under the JIQ algorithm is pos-

itive recurrent.

Proof. We first construct a potential function and then apply the Foster-Lyapunov theorem.

Please see Appendix E for more details.

In order to conduct the mean-field analysis, we need to introduce a new representation of

the system state. Let Q
(N)
i (t) denote the number of servers with i tasks at time t. Let Q

(N)
(0,j)(t)

denote the number of idle servers that belong to I-queues of size j at time t. Then, the system

state at time t is

Q(N)(t) =
{
Q

(N)
(0,1)(t), Q

(N)
(0,2)(t), · · · , Q

(N)
1 (t), Q

(N)
2 (t), · · ·

}
.

One can verify that Q(N)(t) also forms a continuous-time Markov chain under our system model,

because the individual servers (or I-queues) of the same queue-length are indistinguishable for

system evolution. In other words, our new Markov chain Q(N)(t) captures the “essential”

information of our original Markov chain
{(
X

(N)
i (t), Y

(N)
i (t)

)}N
i=1

. In particular, if our original

Markov chain has a unique stationary distribution, so does our new Markov chain.

For convenience, we also introduce a normalized version of Q(N)(t) defined as

Q̃(N)(t) =
1

N
Q(N)(t).

Note that Q̃
(N)
(0,j)(t) is the fraction of servers that belong to I-queues of size j at time t, and

Q̃
(N)
i (t) is the fraction of servers with i tasks at time t. Clearly, Q̃(N)(t) is also positive

underlying ordinary differential equations.

30

3.2. Mean-Field Analysis

recurrent and has a unique stationary distribution. In addition, we can show that Q̃(N)(t) is

density dependent.

The mean-field analysis proceeds as follows. We assume that the N servers are in the

steady state. We also assume that the states of these servers are identically and independently

distributed (i.i.d.). This i.i.d. assumption will be validated later through simulations. We now

consider the state evolution of one server in the system under the i.i.d. assumption. Note that

the possible server states are from the set

{(0, 1), (0, 2), . . . , 1, 2, . . .}

where the state-(0, j) means that the server is idle and belongs to an I-queue of size j, and the

state-i means that the server has i tasks in its queue. Let

q =
{
q(0,1), q(0,2), · · · , q1, q2, · · ·

}
denote the stationary distribution of the server state. (Note that q is unique because Q̃(N)(t) is

positive recurrent.) Then, by the Strong Law of Large Numbers, q0,j can be interpreted as the

fraction of servers belonging to an I-queue of size j, and qi can be interpreted as the fraction

of servers with i tasks in the large-system limit. This means that the stationary distribution of

Q̃(N)(t) “concentrates” on q as N →∞.

We are now ready to derive the stationary distributions under JIQ and JIQ-Pod in the

large-system limit.

3.2.1 The Stationary Distribution Under JIQ

In this subsection, we will derive the stationary distribution of one server in the system

under JIQ. The i.i.d. assumption described above allows us to obtain the transition rates for

the state evolution of the server. In fact, this assumption holds asymptotically in the large-

system limit. In other words, the stationary distribution derived here is sufficiently accurate

for large-scale systems.

To derive the transition rates, we need some additional notations. Let pi be the fraction of

31

3.2. Mean-Field Analysis

I-queues of size i in the large-system limit. Then we have

pi =


rq(0,i)
i , if i ≥ 1,

1−
∞∑
j=1

rq(0,j)
j , if i = 0

where the first equation follows from the fact that the number of servers in state-(0, i) is equal

to i times the number of I-queues of size i, and the second equation follows from the fact that∑∞
j=0 pj = 1.

We now derive the transition rates for the state evolution of a single server as follows:

− ri,i−1 = 1 for i ≥ 2.

The processing rate of a task is exponentially distributed with mean 1.

− ri−1,i = λp0 for i ≥ 2.

The task arrival rate is λN , the probability of joining an empty I-queue is p0, and the

probability of selecting the target server over all servers is 1
N .

− r1,(0,j) = pj−1 for j ≥ 1.

The processing rate of a task is exponentially distributed with mean 1, and the probability

of joining an I-queue of size j − 1 is pj−1.

− r(0,j),1 = λ(p0 + r
j) for j ≥ 1.

The task arrival rate is λN . There are two events leading to this state change because of

a newly arrival task. The first event is that the new task is routed to an empty I-queue

and then directed to the target server. The probability of this event is p0 · 1N . The second

event is that the new task is routed to the I-queue associated with the target server and

then directed to the target server. The probability of this event is 1
M ·

1
j = r

N ·
1
j . Hence,

the transition rate is λN
(
p0 · 1

N + r
N ·

1
j

)
.

− r(0,j−1),(0,j) = rq1 for j ≥ 2.

The generating rate of idle servers is q1N , and the probability of selecting the I-queue

associated with the target server is 1
M .

− r(0,j),(0,j−1) = λ(j − 1)(p0 + r
j) for j ≥ 2.

32

3.2. Mean-Field Analysis

The task arrival rate is λN . There are two events resulting in this state change. The

first event is that the new task is routed to an empty I-queue and then directed to an

idle server having the same I-queue as the target server. The probability of this event is

p0 · j−1N . The second event is that the new task is routed to the I-queue associated with

the target server and then directed to another idle server. The probability of this event

is 1
M ·

j−1
j . Hence, the transition rate is λN

(
p0 · j−1N + r

N ·
j−1
j

)
.

Based on the above transition rates, one can easily write down the local balance equations

as 
qiri,i−1 = qi−1ri−1,i, for i ≥ 2,

q(0,j)r(0,j),1 = q1r1,(0,j), for j ≥ 1,

q(0,j)r(0,j),(0,j−1) = q(0,j−1)r(0,j−1),(0,j), for j ≥ 2.

(3.1)

The following theorem computes the stationary distribution of the state of a single server

in the large-system limit by finding a particular distribution that satisfies the local balance

equations (3.1).

Theorem 3.2: The stationary distribution of the state of a single server under JIQ in the

large-system limit is 
q̂(0,i) = ri−1(1−λp̂0)i

i∏
j=1

(r+jp̂0)

ip̂0, for i ≥ 1,

q̂i = p̂i−10 λi(1− p̂0λ), for i ≥ 1,

(3.2)

where p̂0 is the unique solution to the following equation

p0 +
∞∑
i=1

ri(1− λp0)i
i∏

j=1
(r + jp0)

p0 = 1 (3.3)

over the interval (0, 1).

Proof. We will prove Theorem 3.2 through two steps. First, we will show that (3.3) indeed

has a unique solution. Second, we will show that the distribution q̂ satisfies the local balance

equations (3.1).

33

3.2. Mean-Field Analysis

To prove the first step, we define a function

f(p0) = p0 +

∞∑
i=1

ri(1− λp0)i
i∏

j=1
(r + jp0)

p0.

As we will show in Appendix F, the function f(p0) is differentiable and monotonically increasing

over the interval [0, 1]. Notice that f(0) = 0 and f(1) > 1 as λ < 1. Hence, by the Intermediate

Value Theorem, the equation f(p0) = 1 has a unique solution over the interval (0, 1).

To prove the second step, we only need to verify that the distribution q̂ (constructed in

(3.2)) satisfies the local balance equations (3.1).

Remark 3: It is technically involved to show that f(p0) is differentiable and monotonically

increasing over (0, 1), partly because f(p0) is the sum of an infinite series. To address this

difficulty, we first show the uniform convergence of f(p0) and then bound its derivative by

making a particular use of the structure of f(p0).

Remark 4: We observe that a truncated version of f(p0)

Fn(p0) = p0 +

n∑
i=1

ri(1− λp0)i
i∏

j=1
(r + jp0)

p0

is very close to f(p0) and, in particular, is monotonically increasing, as long as n is reasonably

large. Hence, we can apply a simple binary search to solve the equation Fn(p0) = 1 in order to

numerically compute the value of p̂0.

Corollary 3.3: In the large-system limit, the stationary tail distribution under JIQ is

ŝi =

 1, for i = 0,

p̂i−10 λi, for i ≥ 1

and the expected task response time under JIQ is 1
1−p̂0λ .

34

3.2. Mean-Field Analysis

Proof. The stationary tail distribution

ŝi =

∞∑
j=i

q̂j =

∞∑
j=i

p̂j−10 λj(1− p̂0λ) = p̂i−10 λi.

This proves the first part. To compute the expected task response time, we consider the

following two cases.

1. A new task is sent to a non-empty I-queue (with probability 1− p̂0). The expected task

response time in this case is 1.

2. A new task is sent to an empty I-queue (with probability p̂0). The expected task response

time in this case is
∞∑
i=0

(i+ 1)q̂i.

Combining the above two cases, the expected task response time is

(1− p̂0) + p̂0

∞∑
i=0

(i+ 1)q̂i =
1

1− p̂0λ
.

This completes the second part.

3.2.2 The Stationary Distribution Under JIQ-Pod

Similar to our previous analysis for JIQ, we can derive the transition rates for JIQ-Pod as

follows: 

ri,i−1 = 1, for i ≥ 2,

λp0


(
∞∑

j=i−1
qj

)d
−
(
∞∑
j=i

qj

)d
qi−1

 , for i ≥ 2,

r1,(0,j) = pj−1, for j ≥ 1,

r(0,j),1 = λ

p0 1−
(
∞∑

j=i−1
qj

)d
q0

+ r
j

 , for j ≥ 1,

r(0,j−1),(0,j) = rq1, for j ≥ 2.

r(0,j),(0,j−1) = λ(j − 1)

p0 1−
(
∞∑

j=i−1
qj

)d
q0

+ r
j

 , for j ≥ 2.

35

3.3. Simulations

The local balance equations are the same as those in Equation (3.1), based on which we can

calculate the stationary distribution of the status of single server in the large-system limit.

Theorem 3.4: The stationary distribution of the state of a single server under JIQ-Pod in the

large-system limit is


q̂(0,i) = ri−1(1−λdp̂0)

i

i∏
j=1

[
r+jp̂0(

1−λd
1−λ)

] ip̂0, for i ≥ 1,

q̂i = λ
di−1
d−1 p̂

di−1−1
d−1

0 (1− λdi p̂di−1

0), for i ≥ 1

(3.4)

where p̂0 is the unique solution to the following equation

p0 +
∞∑
i=1

ri(1− λp0)i
i∏

j=1
(r + jp0)

p0 = 1 (3.5)

over the interval (0, 1).

Proof. The proof is omitted here as it’s almost the same as Appendix F.

Corollary 3.5: In the large-system limit, the stationary tail distribution under JIQ-Pod is

ŝi =


1, for i = 0,

λ
di−1
d−1 p̂

di−1−1
d−1

0 , for i ≥ 1

and the expected task response time under the JIQ-Pod algorithm is 1 + p̂0
∞∑
i=0

(ŝi)
d.

Proof. The proof is omitted here as it’s almost the same as that of Corollary 3.3.

Under the JIQ-Pod algorithm, the tail distribution of server queue length is lighter. Hence,

a task is processed faster.

3.3 Simulations

In this section, we validate our theoretical results, measure the impact of “delete request”

messages and compare various JIQ algorithms in finite-sized systems. In all of our simulations,

36

3.3. Simulations

Table 3.2: Theoretical analysis of (3.2) and (3.4) versus Simulations for JIQ and JIQ-Pod when
r = 10 and λ = 0.9.

Analysis
(JIQ)

n = 500
(JIQ)

n = 1000
(JIQ)

Analysis
(JIQ-Pod)

n = 500
(JIQ-Pod)

n = 1000
(JIQ-Pod)

q̂(0,1) 0.0260 0.0259 0.0261 0.0267 0.0266 0.0266

q̂(0,2) 0.0269 0.0266 0.0268 0.0281 0.0279 0.0278

q̂(0,3) 0.0200 0.0200 0.0199 0.0206 0.0203 0.0204

q̂(0,4) 0.0126 0.0128 0.0127 0.0125 0.0124 0.0125

q̂(0,5) 0.0072 0.0074 0.0072 0.0067 0.0068 0.0066

q̂1 0.5097 0.5071 0.5089 0.5571 0.5523 0.5532
q̂2 0.2210 0.2206 0.2207 0.2931 0.2931 0.2939
q̂3 0.0958 0.0963 0.0960 0.0487 0.0529 0.0517
q̂4 0.0416 0.0424 0.0418 0.0010 0.0016 0.0014
q̂5 0.0180 0.0186 0.0183 0.0000 0.0000 0.0000

we start from an empty system with the number of servers, N , set to be either 500 or 1000. The

number of I-queues, M , is chosen as M = N
r , where r will be specified later. The simulation

results are based on the average of 10 runs, where each run lasts for 10,000 unit times.

3.3.1 Validation of the Mean-field analysis Results

In this subsection, we evaluate our analysis results for the stationary distribution and the

expected task response time.

Table 3.2 compares the stationary distributions for JIQ and JIQ-Pod obtained from the-

oretical analysis and simulation. We observe that the larger the system size, the higher the

accuracy. When the server size is only 500, the maximum relative error rate under JIQ is as

small as 3.3% for q̂5.

Figure 3.5 and Figure 3.6 show the tail distribution of JIQ and JIQ-Pod obtained from

theoretical analysis and simulation. we observe that the tail distribution si increase with the

growth of arrival rate. It also shows that our JIQ-Pod algorithm enjoys lighter si than the JIQ

algorithm.

37

3.3. Simulations

0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99

λ

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

s
i

s3

s4

s5

s3 (numerical)
s4 (numerical)
s5 (numerical)

Figure 3.5: Tail distribution si of JIQ when r = 10 and λ changes from 0.9 to 0.99.

38

3.3. Simulations

0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99

λ

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

s
i

s3

s4

s5

s3 (numerical)
s4 (numerical)
s5 (numerical)

Figure 3.6: Tail distribution si of JIQ-Pod when r = 10 and λ changes from 0.9 to 0.99.

Figure 3.7 shows the task response times of JIQ and JIQ-Pod obtained from theoretical

analysis and simulation. As we can see, when the server size is 1000, the maximum relative error

is only 3.4% and the corresponding absolute error is 0.178. Hence, our theoretical predictions

are fairly accurate even for systems of relatively small size. In Figure 3.7, we also compared

the theoretical analysis of task response times from [1] with ours. The higher arrival rate is,

the more accuracy [1] acquires.

3.3.2 Impact of “Delete request” Messages

Recall that in Section 3.1, we added a “delete request” strategy to the conventional JIQ

algorithm (e.g., JIQ-Original). In the subsection, we explore the impact of such “delete request”

strategy on our JIQ algorithm.

39

3.3. Simulations

0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98

λ

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

T
(λ
)

JIQ-Pod (numerical)
JIQ (numerical)
JIQ (Lu-numerical)
JIQ-Pod
JIQ

Figure 3.7: Response time of JIQ and JIQ-Pod when N = 1000, r = 10 and λ changes from 0.9
to 0.98.

40

3.3. Simulations

0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99

λ

0

0.1

0.2

0.3

0.4

0.5

0.6

A
ve
ra
ge

N
u
m
b
er

JIQ (join I-queue request)
JIQ (delete request)
JIQ-Original (join I-queue request)

Figure 3.8: Average number of “request” messages per unit time per server of JIQ and JIQ-
Original when r = 10 and λ changes from 0.9 to 0.99.

41

3.3. Simulations

First, idle servers not only send “join I-queue request”, but also send “delete request”

under our JIQ algorithm, which will increase the number of “request” messages for each server.

Figure 3.8 studies the average number of “request” messages per unit time per server under

JIQ-Original and JIQ. It turns out that the “delete request” only contributes to a small portion

of the overall requests. For instance, when λ = 0.9, the number of “delete request” messages is

no more than 8% of overall requests.

Second, such “delete request” strategy has little impact on the mean task response time.

Figure 3.10 compares the mean task response times of different JIQ algorithms. It shows that

the mean task response times of both JIQ-Original and JIQ are close to each other. To sum

up, the “delete request” strategy has little impact on JIQ.

3.3.3 Comparison of JIQ Algorithms

Finally, we compare our JIQ-Pod with two other variants, JIQ-Threshold and JIQ-SQ(d)

[1, 7].

− JIQ-Threshold: There is a threshold z for server queue length. As long as a server has

less than or equal to z tasks, it will send a “join I-queue request” message to an I-queue.

Thus, I-queues contain all servers with less than or equal to z tasks.

− JIQ-SQ(d): When an idle server needs to send a “join I-queue request” message to an

I-queue, it adopts the Pod algorithm to select which I-queue to report.

For comparison, we use the tail distribution ŝi and the mean task response time. Figure 3.9

compares the tail distributions ŝi among those three algorithms when d = 2 and z = 1. In

Figure 3.9, the JIQ-Pod algorithm always has the lightest tail in the heavy workload region.

Figure 3.10 compares the mean task response time of different JIQ algorithms. It is shown that

the mean task response time of JIQ-Pod is the shortest among five alternative algorithms. Over-

all, our JIQ-Pod algorithm achieves the best delay performance compared with other alternative

JIQ algorithms.

42

3.3. Simulations

0 1 2 3 4 5 6 7 8 9

i

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ŝ
i

JIQ-Pod (λ = 0.9)
JIQ-Threshold (λ = 0.9)
JIQ-SQ(d) (λ = 0.9)
JIQ-Pod (λ = 0.98)
JIQ-Threshold (λ = 0.98)
JIQ-SQ(d) (λ = 0.98)

Figure 3.9: Tail distribution of three algorithms under light workload (λ = 0.9) and heavy
workload (λ = 0.98).

43

3.3. Simulations

0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99

λ

1

2

3

4

5

6

7

8

9

T
(λ
)

JIQ
JIQ-Original
JIQ-Pod (d=2)
JIQ-SQ(d) (d=2)
JIQ-Threshold (z=1)

Figure 3.10: An comparison of average task response time between five algorithms.

44

Chapter 4

Conclusions

In this chapter, we summarize the contributions of the thesis and discuss the potential future

works based on the current process.

4.1 Main Contributions

Our main contributions are as follows:

1. First, we propose a hybrid algorithm called Pod-Helper and analyze it by mean-field

analysis. In particular, theoretical results show that, under some mild condition of the

helper rate, the maximum queue size is bounded in the large-system regime. This means

that tail response time of JIQ-Helper is indeed low. Moreover, extensive simulation results

show that our analytical results are still valid in large, yet finite, systems.

2. Second, we analyze the distributed JIQ with mean-field analysis. We derive semi-closed

form expressions of the stationary tail distribution and the expected response time for

distributed JIQ. Comparing JIQ and Pod, we find out that JIQ is not always better than

Pod.

3. Third, we extend the JIQ algorithm to the JIQ-Pod algorithm. With the combination of

the JIQ and Pod, the performance of the JIQ-Pod is improved. With the same approach

of JIQ, we get the stationary state distribution under large-scale limit in the JIQ-Pod

system, which is better than that of the JIQ system. Then, we are able to quantify the

improvements of JIQ-Pod over JIQ and Pod in the large-system limit.

45

4.2. Future Work

4.2 Future Work

In the thesis, we studied variants of Pod and JIQ. For real practice, there are some heuristic

algorithms to simplify the difficulties of implementation. For example, there can be a threshold

of queue length such that each distributed server won’t receive more tasks if its queue length

reaches the threshold. Thus, it is of great interest to conduct relevant theoretical analysis.

In this thesis, our analysis is based on the supermarket model, in which we assume the

task arrival and departure event follows Poisson processes. Thus, it remains unknown for the

performance of those algorithms in other stochastic conditions. Moreover, nowadays, a job

consists of hundreds of tasks. Hence, the job is completed only if all the tasks of it are finished.

In this condition, how to study the impact of our algorithms for jobs’ completion times is

meaningful.

Last but not least, to the best of the author’s knowledge, hybrid algorithms still lack the-

oretical analyze of multi-resources scenarios, in which tasks require more than just computing

resource. For example, when tasks require both CPU and memory, how should one arrange

tasks in a way that minimizes the jobs’ completion time? These questions are related to more

complicated models and deserve further exploration.

46

Bibliography

[1] Y. Lu, Q. Xie, G. Kliot, A. Geller, J. R. Larus, and A. Greenberg, “Join-idle-queue: A novel

load balancing algorithm for dynamically scalable web services,” Performance Evaluation,

vol. 68, no. 11, pp. 1056–1071, Nov. 2011. → pages iii, 2, 4, 39, 42

[2] E. Schurman and J. Brutlag, “The user and business impact of server delays, additional

bytes, and http chunking in web search,” in O’Reilly Velocity Web Performance and Op-

erations Conference, 2009. → pages 1

[3] A. Eryilmaz and R. Srikant, “Asymptotically tight steady-state queue length bounds im-

plied by drift conditions,” Queueing Systems: Theory and Applications, vol. 72, no. 3–4,

pp. 311–359, Dec. 2012. → pages 1

[4] M. Mitzenmacher, “The power of two choices in randomized load balancing,” Ph.D. dis-

sertation, UC Berkeley, 1996. → pages 2, 7, 17

[5] K. Ousterhout, P. Wendell, M. Zaharia, and I. Stoica, “Sparrow: Distributed, low latency

scheduling,” in Proc. of SOSP, Farminton, Pennsylvania, Nov. 3–6, 2013, pp. 69–84. →

pages 2, 3

[6] L. Ying, R. Srikant, and X. Kang, “The power of slightly more than one sample in ran-

domized load balancing,” in Proc. of INFOCOM, Hong Kong, Apr. 26 – May 1, 2015, pp.

1131–1139. → pages 2, 3, 4

[7] M. Mitzenmacher, “Analyzing distributed join-idle-queue: A fluid limit approach,” arXiv

preprint arXiv:1606.01833, 2016. → pages 2, 4, 5, 26, 42

[8] A. L. Stolyar, “Pull-based load distribution in large-scale heterogeneous service systems,”

Queueing Systems, vol. 80, no. 4, pp. 341–361, 2015. → pages 5

47

Bibliography

[9] ——, “Pull-based load distribution among heterogeneous parallel servers: The case of

multiple routers,” Queueing Syst. Theory Appl., vol. 85, no. 1-2, pp. 31–65, Feb. 2017. →

pages

[10] S. Foss and A. Stolyar, “Large-scale join-idle-queue system with general service times,”

ArXiv e-prints, May 2016. → pages 2, 5

[11] P. Delgado, F. Dinu, A.-M. Kermarrec, and W. Zwaenepoel, “Hawk: Hybrid datacenter

scheduling,” in Proc. of ATC, Santa Clara, CA, USA, Jul. 8–10, 2015, pp. 499–510. →

pages 4

[12] K. Karanasos, S. Rao, C. Curino, C. Douglas, K. Chaliparambil, G. M. Fumarola, S. Hed-

daya, R. Ramakrishnan, and S. Sakalanaga, “Mercury: Hybrid centralized and distributed

scheduling in large shared clusters,” in Proc. of ATC, Santa Clara, CA, USA, Jul. 8–10,

2015, pp. 485–497. → pages 4

[13] J. N. Tsitsiklis and K. Xu, “On the power of (even a little) resource pooling,” Stochastic

Systems, vol. 2, no. 1, pp. 1–66, 2012. → pages 4, 10, 18, 20, 50, 54

[14] H. Andersson and T. Britton, Stochastic epidemic models and their statistical analysis.

Springer, 2012. → pages 5

[15] J. Wilkes and C. Reiss., “Traceversion1,” 2015. [Online]. Available: https:

//github.com/google/cluster-data → pages 24

[16] K. Xu, “On the power of centralization in distributed processing,” Ph.D. dissertation, MIT,

2011. → pages 54, 56

[17] W. Rudin, “Functional analysis,” 1991. → pages 67

48

https://github.com/google/cluster-data
https://github.com/google/cluster-data

Appendices

49

Appendix A

Our first step proof is similar to that of Theorem 4 in [13]. First, we convert s(t) to u(t),

where uj(t) ,
∞∑
i=j

si(t). Consider two different solutions of u(t) with different initial conditions:

ul(t) with initial condition ul(0) = l0 and uf (t) with initial condition uf (0) = f0. By expanding

and scaling the derivative of
∥∥uf − ul

∥∥2
ω

, we have

d

dt

∥∥∥uf − ul
∥∥∥2
ω
≤M

∥∥∥uf − ul
∥∥∥2
ω

(A.1)

where M is a fixed number. When f0 = l0, according to Grönwall’s inequality, we have

∥∥∥uf (t)− ul(t)
∥∥∥2
ω
≤ eMt

∥∥∥uf (0)− ul(0)
∥∥∥2
ω

= 0. (A.2)

This establishes the uniqueness of u(t).

When it comes to the uniqueness of s(t), we consider the initial condition s(0) and u(0)

first. According to Condition (i), we have the finite support of s(0), which implies that there

only exists one u(0) correspond to s(0). Hence, when sf (0) = sl(0), we have uf (0) = ul(0).

∥∥∥sf (t)− sl(t)
∥∥∥2
ω

=
∞∑
i=0

∣∣∣(ufi (t)− ufi+1(t))− (uli(t)− uli+1(t))
∣∣∣2

2i

≤
∞∑
i=0

(
∣∣∣ufi (t)− uli(t)

∣∣∣+
∣∣∣ufi+1(t)− uli+1(t)

∣∣∣)2
2i

(A.3)

≤2
∞∑
i=0

∣∣∣ufi (t)− uli(t)
∣∣∣2 +

∣∣∣ufi+1(t)− uli+1(t)
∣∣∣2

2i

≤4
∞∑
i=0

∣∣∣ufi (t)− uli(t)
∣∣∣2

2i
= 4

∥∥∥uf (t)− ul(t)
∥∥∥2
ω

= 0.

This completes the proof.

50

Appendix B

First, we show the coordinate-wise dominance of s(t). Then, through the dominance, we

prove the convergence of si(t) to s̃. Let sa(t) and sb(t) be two solutions at any t > 0 in dynamic

model with initial condition that sa(0) dominates sb(0) (e.g., sa(0) � sb(0)).

Lemma B.1: sa(t) dominates sb(t) (i.e., sa(t) � sb(t)) for t > 0.

Proof. Let τ > 0 be the first time that sai (τ) = sai (τ) > 0 for some i > 0, while saj (τ) > saj (τ)

for other coordinates.

If τ =∞, it is obvious that sa(t) � sb(t) for all t > 0. If τ <∞, we have

d(sai (τ))

dt
− d(sbi(τ))

dt

={((sai−1(τ))d − (sai (τ))d)− ((sbi−1(τ))d − (sbi(τ))d)}

− {(sai (τ)− sai+1(τ))− (sbi(τ)− sbi+1(τ))} (B.1)

− {hi(sa(τ))− hi(sb(τ))}

=((sai−1(τ))d − (sbi−1(τ))d) + (sai+1(τ)− sbi+1(τ))

− {hi(sa(τ))− hi(sb(τ))}.

Next, we can discuss the three terms separately.

1. As sai−1(t) ≥ sbi−1(t), we have ((sai−1(τ))d − (sbi−1(τ))d) ≥ 0.

2. As sai+1(t) ≥ sbi+1(t), we have (sai+1(τ)− sbi+1(τ)) ≥ 0.

3. As sai+1(t) ≥ sbi+1(t), we have {hi(sa(τ))− hi(sb(τ))} ≤ 0.

Thus,
d(sai (τ))

dt − d(sbi (τ))
dt ≥ 0. Because sa(t) and sb(t) are continuous, we have sa(t) � sb(t)

for t > τ . This completes the proof.

Now, let’s set ŝ(t) and s(t), which satisfy ŝ(0) � s̃ � s(0). According to Lemma B.1, we

have ŝ(t) � s̃ � s(t).

51

Appendix B.

Here we discuss the coordinate-wise convergence of si(t). Recall that uj(t) ,
∞∑
i=j

si(t), we

have

dui
dt

= λ(ui−1 − ui)d − (ui − ui+1)−
∞∑
j=i

hj(s) (B.2)

= λsdi−1 − si −
∞∑
j=i

hj(s).

First, let’s focus on û1(t). Recall that s̃0 = ŝ0 = 1, we have

dû1
dt

= λŝ0(t)
d − ŝ1(t)−

∞∑
j=i

hj(ŝ)(t)

= λ− ŝ1(t)− ε (B.3)

= s̃1 − ŝ1(t).

Here we assume that lim
t→∞

sup |s̃1 − ŝ1(t)| = σ, where σ > 0. Since ŝ(t) � s̃, we have ŝ1(t) ≥ s̃1,

which implies that

lim
t→∞

inf(
dû1
dt

) = −σ. (B.4)

As ŝi(t) is L-Lipschitz-continuous for all i, we can get a infinite sequence {tk} with lim
k→∞

tk =∞

in which there exists certain τ > 0 that

dû1
dt
≤ −1

2
σ, ∀t ∈ [tk − τ, tk + τ],∀k ≥ 0. (B.5)

According to the initial condition that û1(0) < ∞, we have lim
t→∞

û1(t) = −∞ by integration.

This contradicts to the fact that û1(t) ≥ 0, ∀t > 0. Thus, we can conclude that

lim
t→∞
|s̃1 − ŝ1(t)| = 0. (B.6)

Next, let lim
t→∞
|s̃i − ŝi(t)| = 0 holds for some i > 0. Then for ûi+1(t), we have

dûi+1

dt
=λŝdi (t)− ŝi+1(t)−

∞∑
j=i+1

hj(ŝ)(t)

52

Appendix B.

=(λŝdi (t)−
∞∑

j=i+1

hj(ŝ)(t))− ŝi+1(t)

=(λs̃di −
∞∑

j=i+1

hj(ŝ)(t))− ŝi+1(t) + λ(ŝdi (t)− s̃di) (B.7)

≤(s̃i+1 − ŝi+1(t)) + λd(ŝi(t)− s̃i).

Recall that lim
t→∞
|s̃i − ŝi(t)| = 0, then we can repeat the proof procedure of s̃1(t), from which

we have lim
t→∞
|s̃i+1 − ŝi+1(t)| = 0. Thus, we can have the weak convergence of ŝ(t), i.e.

lim
t→∞
‖s̃− ŝ(t)‖ω = 0. (B.8)

When it comes to the convergence of s(t), the proof is almost the same, we have

lim
t→∞
‖s̃− s(t)‖ω = 0. (B.9)

This completes the proof.

53

Appendix C

First, we introduce a preliminary Lemma from [16].

Lemma C.1: Fix T > 0. There exists a measurable set C ⊂ Ω, such that Pr(C) = 1 and for

all ω ∈ C,

lim
N→∞

sup
t∈[0,T]

∣∣ZN (ω, t)− (1 + λ)t
∣∣ = 0

lim
N→∞

1

N

N∑
i=1

I[a,b) (Y (ω, i)) = b− a,∀[a, b) ⊂ [0, 1]

There are some definitions from [16], which will also be used in the following steps.

− The Nth system is defined as XN , (SN ,AN ,GN ,CN).

− DZ+ [0, T] denotes the space of functions from [0, T] to RZ+ that are right-continuous-

with-left-limit for every coordinate. We use D[0, T] to represent DZ+ [0, T] for simplicity.

− The uniform metric dZ+(·, ·) is defined as dZ+(x, y) , sup
t∈[0,T]

‖x(t)− y(t)‖ω, where x, y ∈

DZ+ [0, T]. We use d(·, ·) to represent dZ+(·, ·) for simplicity.

C.0.1 Step One: Convergence to Continuous Functions

First, we show that the sample paths are “close to” some continuous functions. Here we

have a similar proposition. As the proof is essentially the same as Proposition 11 [13], we only

introduce the outline of this proof.

Proposition C.2: For all ω ∈ C, suppose there exists s(0) = s0 and

lim
N→∞

∥∥SN (ω, 0)− s(0)
∥∥
ω

= 0. (C.1)

Then any subsequence of the sample path {XN (ω, .)} contains a subsequence {XNk(ω, .)} that

converges to some coordinate-wise Lipschitz-continuous function x(t) = (s(t),a(t),g(t), c(t)),

54

Appendix C.

where a(0) = g(0) = c(0) = 0 and

|xi(a)− xi(b)| ≤ L |a− b| ,∀a, b ∈ [0, T], i ∈ Z+, (C.2)

where L > 0 is a universal constant, independent of ω, x and T . Then dZ+(SNk , s),dZ+(ANk ,a),

dZ+(GNk , g) and dZ+(CNk , c) converge to 0 as k →∞.

Proof. The proof consists of 2 steps. First, we find the coordinate-wise limit of XN
i for all i.

Second, through a diagonal argument approach, we construct the limit point of XN .

When showing the coordinate-wise limit, we first introduce some preliminary definitions

and lemmas.

Definition C.3: Let Ec be a non-empty compact subset of D[0, T]. A sequence of subsets

ε = {EN}N≥1, which are in space D[0, T], are asymptotically close to Ec if they satisfy

lim
N→∞

sup
x∈EN

d(x,Ec) = 0

where d(x,Ec) , inf
y∈Ec

d(x, y). .

Now, set ε = {EN}N≥1 be a sequence of subsets in the space D[0, T] that

EN = {x ∈ D[0, T] :
∣∣x(0)− x0

∣∣ ≤MN , and |x(a)− x(b)| ≤ L |a− b|+ γN}

where x0 is a constant and MN → 0, γN → 0 with N → ∞. Then, let a set of Lipschitz-

continuous functions on [0, T] with Lipschitz constant L and initial values bound M ≥ 0 be

denoted by

Ec = {x ∈ D[0, T] : |x(0)| ≤M , and |x(a)− x(b)| ≤ L |a− b|}.

With Ec and ε defined as above, the preliminary lemmas go as following.

Lemma C.4: Ec is compact.

Lemma C.5: ε is asymptotically close to Ec.

Lemma C.6: Suppose there exists a s0 such that for all ω ∈ C,
∥∥S(0, ω)− s0

∥∥
ω
≤ M̃N , for

some M̃N ↓ 0. Then, for all ω ∈ C and coordinate i, there exist L > 0 and MN ↓ 0 and γN ↓ 0,

55

Appendix C.

such that XN
i (ω, ·) ∈ EN .

Lemma C.4 and Lemma C.5 are directly from Appendix A [16], while there is slightly

change for Lemma C.6. Although we use SN instead, for each coordinate i, the total number of

jumps ANi , GNi and CNi are still dominated by ZN , while ANi , GNi and CNi are monotonically

non-decreasing. Hence, the proof of Lemma C.6 remains unchanged.

Through the lemmas above and the definition of “asymptotically close”, we can show that

for every coordinate i, there exist a subsequence of {XN (ω, ·)}, denoted by {XNj (ω, ·)}, and a

sequence of {yj}, that

lim
j→∞

d(X
Nj
i (ω, ·), yj) = 0. (C.3)

According to the character of Ec, the limit point of {yj} implies that a further subsequence

converges to that limit point. This is the main idea in finding the coordinate-wise limit of XN
i

for all i.

Then, the construction of the limit points of XN mainly depends on the following two steps.

Take SN (ω, ·) as an example. The first key step is the construction of the further subsequence.

From sequence {SNj (ω, ·)}, we derive a subsequence {SN
1
j (ω, ·)}, that S

N1
j

1 (ω, ·) → s1 with

j → ∞ . Recursively, we have a subsequence {SN
i+1
j (ω, ·)}, that S

N i+1
j

i+1 (ω, ·) → si+1 with

j →∞, from previous subsequence. The second key step is to select suitable Nk that

Nk = min

{
N ≥ Nk−1 : sup

1≤i≤k
d(si, S

N
i (ω, ·)) ≤ 1

k

}
,

where N1 = 1 and k ≥ 2. Then we can bound the dZ+(SNk , s). This completes the proof.

C.0.2 Step Two: Convergence to the Solution of the Dynamic Model

Then, we ought to show the fluid limit of SN (t) is indeed the solution of the dynamic model.

We can achieve this goal through showing that the drift of the fluid limit is exactly the same

as that of the dynamic model in regular points.

Proposition C.7: Fix ω ∈ C and T > 0. Set x(t) be the limit point of the subsequence of

{XN (ω, ·)} in Proposition C.2 and x(t) is coordinately differentiable at t. Then we can show

56

Appendix C.

that for ∀i ∈ N,

ȧi(t) = λ{(si−1(t))d − (si(t))
d},

ġi(t) = (si(t)− si+1(t)),

ċi(t) = hi(s(t)),

(C.4)

where hi(s(t)) is defined in dynamic model, with initial condition s(0) = s0 and boundary

condition s1(t) = 1.

This implies that the limitation of SN (t) is the solution of the dynamic model.

Proof. Here we will discuss those three parts one by one.

claim 1: ġi(t) = (si(t)− si+1(t)). Since gi(t) is differentiable, we have

ġi(t) = lim
τ→0

gi(t+ τ)− gi(t)
τ

. (C.5)

Recall Proposition C.2, we then have

gi(t+ τ)− gi(t) = lim
N→∞

(GNki (t+ τ)−GNki (t)). (C.6)

According to coupling construction, GNi (t) will increased by 1
N if an event happens and the

corresponding Y (·) ∈ λ
1+λ+ε + 1

1+λ+ε [S
N
i+1(t−), SNi (t−)). Thus, we can have

GNki (t+ τ)−GNki (t) =
1

Nk

NkW
Nk (t+τ)∑

j=NkW
Nk (t)

IIj (Y (j)), (C.7)

where Ij , λ
1+λ+ε + 1

1+λ+ε [S
N
i+1(t−), SNi (t−)) and tNkj is the time when jth event happens in

ZNk(·).

Lemma C.8: Fix i and t. For any sufficiently small τ > 0,

|(gi(t+ τ)− gi(t))− τ(si(t)− si+1(t))| ≤ 2τ2L. (C.8)

Proof. First, fix ω ∈ C, i ≥ 1, t > 0 and ε > 0. According to Proposition C.2, there exists a

non-increasing sequence γn ↓ 0 so that for all b ∈ [t, t + τ] and all sufficiently large k, we have

57

Appendix C.

SNkj (s) ∈ [sj(t)− (τL+ γNk), sj(t) + (τL+ γNk)), for j ∈ {i− 1, i, i+ 1}. Then, we have

[SNki+1(b), S
Nk
i (b)) ⊃ [si+1(t) + (τL+ γNk), si(t)− (τL+ γNk)),

[SNki+1(b), S
Nk
i (b)) ⊂ [[si+1(t)− (τL+ γNk)]+, si(t) + (τL+ γNk)).

Then we define the sequence of self-valued functions {ηn(t)} as

ηn(t) ,
λ

1 + λ+ ε
+

1

1 + λ+ ε
[[si+1(t)− (τL+ γNk)]+, si(t) + (τL+ γNk)). (C.9)

Recall that γn ↓ 0, we have ηn+1(t) ⊂ ηn(t) and

lim
n→∞

ηn(t) =
λ

1 + λ+ ε
+

1

1 + λ+ ε
[[si+1(t)− τL]+, si(t) + τL). (C.10)

Set 1 ≤ l ≤ Nk, we have

GNki (t+ τ)−GNki (t)

≤ 1

Nk

NkW
Nk (t+τ)∑

j=NkW
Nk (t)+1

IηNk (t)(Y (j))

≤ 1

Nk

NkW
Nk (t+τ)∑

j=NkW
Nk (t)+1

Iηl(t)(Y (j)) (C.11)

=
1

Nk
(

NkW
Nk (t+τ)∑
j=1

Iηl(t)(Y (j))−
NkW

Nk (t+τ)∑
j=1

Iηl(t)(Y (j))).

According to Lemma C.1, we have

lim
N→∞

1

N

NWN (t)∑
i=1

I[a,b)(Y (i)) = (1 + λ+ ε)t(b− a). (C.12)

Combining (C.11) and (C.12), we can establish the connection between gi(·) and si(·)

gi(t+ τ)− gi(t)

= lim
k→∞

(GNki (t+ τ)−GNki (t))

58

Appendix C.

≤(t+ τ − t)(1 + λ+ ε)
1

1 + λ+ ε
(si(t)− si+1(t) + 2(τL+ γn)) (C.13)

≤τ(si(t)− si+1(t)) + 2τ(τL+ γn).

Taking l→∞, we have

(gi(t+ τ)− gi(t))− τ(si(t)− si+1(t)) ≤ 2τ2L. (C.14)

Through similar steps, if we set

ηn(t) ,
λ

1 + λ+ ε
+

1

1 + λ+ ε
[si+1(t) + (τL+ γNk), si(t)− (τL+ γNk)), (C.15)

there will be a lower bound that

(gi(t+ τ)− gi(t))− τ(si(t)− si+1(t)) ≥ −2τ2L. (C.16)

This completes the proof of Lemma C.8.

Thus we have

ġi(t) = lim
τ→0

gi(t+ τ)− gi(t)
τ

= (si(t)− si+1(t)). (C.17)

claim 2: ȧi(t) = λ{(si−1(t))d − (si(t))
d}. The proof of Claim 2 is similar as that of Claim

1.

claim 3: ċi(t) = hi(s(t)). Recall the dynamic model, hi(s(t)) is separately discussed in four

cases. Thus ċi(t) also requires separate discussion.

1. ċi(t) = 0, si−1(t) = 0, si(t) = 0. Here, we have

ċi(t) = ȧi(t)− ġi(t)− ṡi(t). (C.18)

According to claim 1 and 2, we have ȧi(t) = 0 and ġi(t) = 0. As si(t) ≥ 0 always holds,

if ṡi(t) exists, we can have ṡi(t) = 0. Thus, we can have ċi(t) = 0.

2. ċi(t) = 0, si(t) > 0, si+1(t) > 0. There exists some small enough τ , such that SNki+1(b) > 0

59

Appendix C.

for all b ∈ [t, t+ τ]. According to the mapping for the sample path, we have CNki (t+ τ)−

CNki (t) = 0, which implies that

ci(t+ τ)− ci(t) = lim
N→∞

(CNki (t+ τ)− CNki (t)) = 0. (C.19)

Thus, we can show that ċi(t) = 0.

3. ċi(t) = min{λsdi−1, ε}, si−1(t) > 0, si(t) = 0. First, we consider λsdi−1 ≤ ε. According

to Claim 1 and 2, we have ȧi(t) = λsdi−1 and ġi(t) = 0. Through (C.18) and the fact

that si(t) ≥ 0, we have ṡi(t) = 0. Thus, ċi(t) = λsdi−1. Second, we consider λsdi−1 > ε.

If ċi(t) exists, we will have ċi(t) > ε, which is impossible. Thus, the second case is not

differentiable.

4. ċi(t) = ε−min{λsdi−1, ε}, si(t) > 0, si+1(t) = 0. In the finite N -server system, we have

∞∑
i=1

CNki (t+ τ)−
∞∑
i=1

CNki (t) =
1

Nk

NkW
Nk (t+τ)∑

j=NkW
Nk (t)

IIc(Y (j)), (C.20)

where Ic = [1+λ
1+λ+ε , 1).

According to the same argument in the proof of Lemma C.8, we have
∞∑
i=1

ċi(t) = ε. Hence,

we have

ċi(t) = ε−
i−1∑
j=1

ċj(t)−
∞∑

j=i+1

ċj(t) = ε−min{λsdi−1, ε}. (C.21)

Finally, we check boundary condition s0(t) = 1. It is straightforward that boundary condi-

tion holds as the fact that SN0 = 1. This completes the proof.

60

Appendix D

We will use the Lyapunov function to show positive recurrence of SN (t). First, we consider

a N -server system. Set the average arrival rate λ < 1, the processing rate of each server to

be 1. The state of each server can be represented by a set {qi(t)}Ni=1, in which qi(t) is the

queue length of server i. Let {qi(n)}Ni=1 be the embedded Markov chain. This implies that

{qi(n)}Ni=1 = {qi(tn)}Ni=1, where tn is the time in which nth event happened. Here, we use

embedded Markov chain in the analysis of the drift of the Lyapunov function.

In M/M/N queues case, qi(n+ 1) = qi(n) + ai(n)− di(n), where ai(n) denotes task arrival

at step n and di(n) denotes task departure. From n step to n + 1 step, there is only one task

arrive or departure signal generated, we have

Pr[
N∑
i=1

(ai(n) + di(n)) = 1] = 1,

Pr[ai(n) = 1] = 1
N

λ
1+λ ,

Pr[di(n) = 1] = 1
N

1
1+λ .

(D.1)

Considering a Lyapunov function V (n) =
N∑
i=1

q2i (n), the drift of V (n) goes as

E[V (n+ 1)− V (n)
∣∣q(n) = {qi}Ni=1]

=E[
N∑
i=1

((qi(n) + ai(n)− di(n))+)
2 −

N∑
i=1

q2i (n)]

≤E[

N∑
i=1

(qi(n) + ai(n)− di(n))2 −
N∑
i=1

q2i (n)]

=E[
N∑
i=1

(ai(n)− di(n))2 +
N∑
i=1

2qi(n)(ai(n)− di(n))] (D.2)

=1 + 2
N∑
i=1

ai(n)qi(n)− 2
N∑
i=1

di(n)qi(n)

61

Appendix D.

=1 +
1

N

2λ

1 + λ

N∑
i=1

qi −
1

N

2

1 + λ

N∑
i=1

qi

=1 +
1

N

2(λ− 1)

1 + λ

N∑
i=1

qi.

Thus, for any θ > 0, we have
N∑
i=1

qi >
(1+θ)(1+λ)N

2(1−λ) . According to Foster Lyapunov theorem,

it is straightforward to show that {qi(t)}Ni=1 of M/M/N is positive recurrent.

Similarly, in Pod case, set the same average arrival rate and processing rate.

Pr[
N∑
i=1

(ai(n) + di(n)) = 1] = 1,

Pr[di(n) = 1] = 1
N

1
1+λ .

(D.3)

Recall Pod algorithm, if qi(n) > qj(n), then Pr[ai(n) = 1] < Pr[aj(n) = 1]. Using the same

Lyapunov function, we have

E[V (n+ 1)− V (n)
∣∣q(n) = {qi}Ni=1] ≤ 1 +

1

N

2(λ− 1)

1 + λ

N∑
i=1

qi. (D.4)

Hence, we can prove that {qi(t)}Ni=1 of Pod is positive recurrent.

Finally, we show the positive recurrence of {qi(t)}Ni=1 using external strategy. We can

describe the N -server system as follows. From nth step to (n + 1)th step, with probability

1+λ
1+λ+ε it will behave the same as Pod, while a helper may change the queue length of the

maximum queue and the minimum queue with probability ε
1+λ+ε .

If the helper works in step n and there exists qi > 0, then we have

E[V (n+ 1)− V (n)
∣∣q(n) = {qi}Ni=1] = (qmax − 1)2 − qmax

2 < 0. (D.5)

Thus, the drift of Lyapunov function goes as

E[V (n+ 1)− V (n)
∣∣q(n) = {qi}Ni=1] ≤ 1+λ

1+λ+ε(1 + 1
N

2(λ−1)
1+λ

N∑
i=1

qi) (D.6)

62

Appendix D.

This also gives us a bound on average queue length, which is

E[V (n+ 1)− V (n)
∣∣q(n) = {qi}Ni=1] ≤ 1 + λ

1 + λ+ ε
(1 +

1

N

2(λ− 1)

1 + λ
E(

N∑
i=1

qi)). (D.7)

Thus, for any θ > 0,

1 + 1
N

2(λ−1)
1+λ

N∑
i=1

qi < −1+λ+
1+λ θ,

N∑
i=1

qi >
(1+ 1+λ+

1+λ
θ)(1+λ)N

2(1−λ) .

(D.8)

Thus, we prove the positive recurrence of {qi(t)}Ni=1. This implies the positive recurrence

of SN (t). When it comes to the tightness of πN , it is straightforward to be shown by standard

stochastic dominance. This completes the proof.

63

Appendix E

Set the potential equation V (z) as

V (z) =
N∑
i=1

z2i,1 +
N∑
i=1

z2i,2 (E.1)

where z =
{(
z
(N)
i,1 (t), z

(N)
i,2 (t)

)}N
i=1

.

Let qz,w be the transition rate from system state z to w. The system state changes only

when there is a task-arrival or a task-departure event happens. We consider the Lyapunov drift

as follows:

∑
w 6=z

qz,w [V (w)− V (z)]

=
∑
w 6=z

qz,w

[
N∑
i=1

(w2
i,1 − z2i,1) +

N∑
i=1

(w2
i,2 − z2i,2)

]
.

(E.2)

By the Foster-Lyapunov theorem, we only need to show that for any fixed N and M ,

∑
w 6=z

qz,w [V (w)− V (z)]

≤ 2(λ− 1)
N∑
i=1

zi,1 + (1 +M2 + λ)N

(E.3)

This is because:

1. If
N∑
i=1

zi,1 >
(1+M2+λ)N

2(1−λ) , we have

∑
w 6=z

qz,w [V (w)− V (z)] < 0.

64

Appendix E.

2. If
N∑
i=1

zi,1 ≤ (1+M2+λ)N
2(1−λ) , we have

∑
w 6=z

qz,w [V (w)− V (z)] <∞.

In terms of zi,2, it increases from 0 to a positive number in [1,M] when the ith server

becomes idle. In other cases, zi,2 remains unchanged or decreases to 0. As zi,2 ∈ [0,M] and the

processing rate for each server is 1, we obtain

∑
w 6=z

qz,w

[
N∑
i=1

(w2
i,2 − z2i,2)

]
≤ N(M2 − 02) = NM2. (E.4)

In terms of zi,1, it increases by 1 when a task arrives to the ith server; it decrease by 1

when a task departures the ith server. Let p
(N)
0 be the fraction of empty I-queues. Recall the

evolution of a JIQ system, when a new task arrives, we obtain

Pr{meet a non-empty I-queue} = 1− p(N)
0

and

Pr{meet an empty I-queue} = p
(N)
0 .

For task-arrival events, we have

∑
w 6=z

q
(arrival)
z,w

[
N∑
i=1

(w2
i,1 − z2i,1)

]
≤ λNp(N)

0

N∑
i=1

(zi,1−1)2−z2i,1
N + λN(1− p(N)

0)(12 − 02)

≤ 2λ
N∑
i=1

zi,1 + λN.

65

Appendix E.

For task-departure events, recall that the server processing rate is 1, we have

∑
w 6=z

q
(departure)
z,w

[
N∑
i=1

(w2
i,1 − z2i,1)

]
≤

N∑
i=1

[
(zi,1 + 1)2 − z2i,1

]
= −2

N∑
i=1

zi,1 +N.

Thus, we have

∑
w 6=z

qz,w

[
N∑
i=1

(w2
i,1 − z2i,1)

]
≤ 2(λ− 1)

N∑
i=1

zi,1 + (1 + λ)N. (E.5)

Finally, we sum up (E.4) and (E.5) to have (E.3). This completes the proof.

66

Appendix F

We first show f(p0) is differentiable.

Proof. First, we prove the uniform convergence of f(p0) through the Weierstrass M-test [17].

We construct a series of functions Hn(p0) and hi(p0) as

Hn(p0) =
n∑
i=0

hi(p0), n ≥ 0

and

hi(p0) = (
r − rλp0
r + p0

)ip0, i ≥ 0.

Recall from (3.2), we construct another function of p0, gi(p0) as

gi(p0) =


p0, i = 0,

ri(1−λp0)i
i∏

j=1
(r+jp0)

p0, i ≥ 1.
(F.1)

Hence, we have f(p0) =
∞∑
i=0

gi(p0). Compare gi with hi, we obtain that hi(p0) ≥ gi ≥ 0.

Besides, for Hn(p0), we have

Hn(p0) =
n∑
i=0

(
r − rλp0
r + p0

)i
p0

which is exactly the sum of a geometric sequence with a common ratio in (0, 1). Thus, this

summation converges. Therefore, f(p0) is uniformly convergent.

In order to show that

f (p0) =

∞∑
i=0

dgi
dp0

, (F.2)

we need to show the uniform convergence of
∞∑
i=0

dgi
dp0

further.

According to , we have the derivative of pi.

67

Appendix F.

dgi
dp0

=

 1, i = 0,

− r(rλ+i)

(r+ip0)
2 gi−1 + r(1−λp0)

(r+ip0)
dgi−1

dp0
, i ≥ 1.

(F.3)

For each i ≥ 1, we have

∣∣∣∣ dgidp0

∣∣∣∣ ≤ r(rλ+ i)

(r + ip0)
2 gi−1 +

r(1− λp0)
(r + ip0)

∣∣∣∣dgi−1dp0

∣∣∣∣ . (F.4)

Hence, the summation of pi can be scaled as the following.

∞∑
i=0

∣∣∣∣ dgidp0

∣∣∣∣ ≤ ∞∑
i=1

r(rλ+ i)

(r + ip0)
2 gi−1 +

∞∑
i=1

r(1− λp0)
(r + ip0)

∣∣∣∣dgi−1dp0

∣∣∣∣+ 1

∞∑
i=0

∣∣∣∣ dgidp0

∣∣∣∣ ≤ ∞∑
i=1

r(rλ+ i)

(r + ip0)
2 gi−1 +

∞∑
i=0

r(1− λp0)
(r + p0)

∣∣∣∣ dgidp0

∣∣∣∣+ 1

p0(1 + rλ)

r + p0

∞∑
i=0

∣∣∣∣ dgidp0

∣∣∣∣ ≤ ∞∑
i=1

r(rλ+ i)

(r + ip0)
2 gi−1 + 1

p0(1 + rλ)

r + p0

∞∑
i=0

∣∣∣∣ dgidp0

∣∣∣∣ ≤ 1

p0

∞∑
i=1

gi−1 + 1

∞∑
i=0

∣∣∣∣ dgidp0

∣∣∣∣ ≤ r + p0
p20(1 + rλ)

∞∑
i=0

gi +
r + p0

p0(1 + rλ)

Recall that
∞∑
i=0

gi <∞, we can conclude that for any p0 ∈ (0, 1),

∞∑
i=0

∣∣∣∣ dgidp0

∣∣∣∣ <∞
Hence,

∞∑
i=0

dgi
dp0

is uniformly convergent. Thus, f(p0) is differentiable in (0, 1) and (F.2)

stands.

Next step shows that f(p0) increases monotonically with p0 ∈ [0, 1].

68

Appendix F.

Proof. To be concise, our target is
∞∑
i=0

dgi
dp0

> 0.

According to (F.1), we have the following recursive function

gi =
r(1− λp0)
(r + ip0)

gi−1, for i ≥ 1. (F.5)

Since λ < 1 and 0 ≤ gi ≤ 1, we have



− r(rλ+ i)

(r + ip0)
2 < 0

r(1− λp0)
(r + ip0)

> 0

gi−1 ≥ 0.

According to (F.3), if dgi−1

dp0
< 0, then dgi

dp0
< 0. This implies that when dgk

dt < 0, then dgi
dt < 0

for all i ≥ k.

Also, through deformation of (F.5), we obtain

(r + ip0)gi = r(1− λp0)gi−1

∞∑
i=1

(r + ip0)gi =
∞∑
i=1

r(1− λp0)gi−1

r
∞∑
i=1

gi + p0

∞∑
i=1

igi = r
∞∑
i=0

gi − rλp0
∞∑
i=0

gi.

Thus, we have
∞∑
i=0

igi = r − rλ
∞∑
i=0

gi (F.6)

and
∞∑
i=0

i
dgi
dp0

= −rλ
∞∑
i=0

dgi
dp0

. (F.7)

Let k be the number that when 0 ≤ i ≤ k, dgi
dp0
≥ 0, when i ≥ k + 1, dgi

dp0
< 0 .

1. If k =∞, then
∞∑
i=0

dgi
dp0

> 0.

69

Appendix F.

2. If k <∞, Then, we have

∞∑
i=0

k
dgi
dp0

>

∞∑
i=0

i
dgi
dp0

= −rλ
∞∑
i=0

dgi
dp0

(k + rλ)
∞∑
i=0

dgi
dp0

> 0

∞∑
i=0

dgi
dp0

> 0.

Thus, we conclude that f(p0) increases monotonically with p0 ∈ [0, 1].

This completes the whole proof.

70

	Abstract
	Preface
	Table of Contents
	List of Tables
	List of Figures
	List of Acronyms
	Acknowledgements
	1 Introduction
	1.1 Motivation and Contributions
	1.2 Literature Review
	1.3 Mathematical Background
	1.4 Organization of the Thesis

	2 Analysis of Pod-Helper Algorithm
	2.1 System Model and Main Results
	2.1.1 System Model
	2.1.2 System State
	2.1.3 Main Results

	2.2 Mean-Field Analysis
	2.2.1 Fluid limit s(t) and its properties
	2.2.2 The Markov process SN (t) converges to the fluid limit s(t)
	2.2.3 The steady-state distribution concentrates on

	2.3 Simulations

	3 Analysis of JIQ Algorithms
	3.1 System Model and Main Results
	3.1.1 Distributed JIQ Algorithm
	3.1.2 Distributed JIQ-Pod Algorithm
	3.1.3 Main Results

	3.2 Mean-Field Analysis
	3.2.1 The Stationary Distribution Under JIQ
	3.2.2 The Stationary Distribution Under JIQ-Pod

	3.3 Simulations
	3.3.1 Validation of the Mean-field analysis Results
	3.3.2 Impact of ``Delete request'' Messages
	3.3.3 Comparison of JIQ Algorithms

	4 Conclusions
	4.1 Main Contributions
	4.2 Future Work

	Bibliography
	Appendices
	A
	B
	C
	C.0.1 Step One: Convergence to Continuous Functions
	C.0.2 Step Two: Convergence to the Solution of the Dynamic Model

	D
	E
	F

