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Abstract

Forecasting of risk measures is an important part of risk management for financial

institutions. Value-at-Risk and Expected Shortfall are two commonly used risk

measures and accurately predicting these risk measures enables financial institu-

tions to plan adequately for possible losses. Point forecasts from different methods

can be compared using consistent scoring functions, provided the underlying func-

tional to be forecasted is elicitable. It has been shown that the choice of a scoring

function from the family of consistent scoring functions does not influence the

ranking of forecasting methods as long as the underlying model is correctly speci-

fied and nested information sets are used. However, in practice, these conditions do

not hold, which may lead to discrepancies in the ranking of methods under different

scoring functions.

We investigate the choice of scoring functions in the face of model misspecifi-

cation, parameter estimation error and nonnested information sets. We concentrate

on the family of homogeneous consistent scoring functions for Value-at-Risk and

the pair of Value-at-Risk and Expected Shortfall and identify conditions required

for existence of the expectation of these scoring functions. We also assess the

finite-sample properties of the Diebold-Mario Test, as well as examine how these

scoring functions penalize for over-prediction and under-prediction with the aid of

simulation studies.
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Chapter 1

Introduction

Point forecasting plays an important role in many fields. To make accurate predic-

tions about an uncertain future, there is a need to make desicions on the appropri-

ate forecasting procedure as well as measures for evaluating forecasts. Competing

forecasting procedures can be compared using scoring functions. Scoring func-

tions play an important role in the theory and practice of forecasting [Gneiting,

2011a]. Gneiting [2011a] argues that in the situation where point forecasts are

to be issued and evaluated, it is important to either specify a scoring function for

evaluation from which the functional to be forecasted can be deduced or make the

statistical functional (e.g., the mean, quantile or expectile) to be forecasted known.

In finance, point forecasting plays an important role in decision making. Financial

institutions rely on conditional forecasts of risk measures for the purposes of inter-

nal risk management as well as regulatory capital calculations [Nolde and Ziegel,

2016]. Most modern risk measures for a portfolio are statistical quantities which

describe the (conditional) loss distribution of the portfolio [McNeil et al., 2005].

Value-at-Risk (VaR) and Expected Shortfall (ES) are examples of such risk mea-

sures. The decision on the forecasting procedure to use in estimating a chosen risk

measure can be made using scoring functions. The choice of scoring function is

therefore an important aspect of forecasting in finance.

A scoring function is an error measure which assesses how close or far-off point

forecasts are from the verifying observations. When comparing two competing

forecasting procedures using a scoring function, the forecast cases obtained from

1



each of the forecasting procedures and the corresponding verifying observations

are used to obtain score values for each forecast case. These score values are

averaged to obtain a single estimate for each forecasting procedure as shown in

(1.1)

S̄ j =
1
n

n

∑
i=1

S(ŷ j
i ,yi), i = 1, ...,n j = 1,2 (1.1)

where ŷ j
i is the ith point forecast from forecasting procedure j and yi is the corre-

spoding verifying obeservation. Smaller average scores correspond to better fore-

casting procedures. Commonly used scoring functions for the mean and median

forecasts include the squared error and the absolute error, respectively. A func-

tional is a potentially set-valued mapping T (F) from a class of probability distri-

butions, F , to the real line, R. Examples include the mean and quantile. Gneiting

[2011a] argues that it is important for a scoring function S(ŷ,y), where ŷ is the point

forecast and y is the observed value, to be consistent for the functional T relative

to the class F . This means that the expectation of the scoring function with re-

spect to the distribution F is minimized at a given functional compared to all other

forecasts.

Statistical functionals for which a consistent scoring function exists are known

as elicitable functionals. We discuss the concept of consistency and elicitability

in Section 2.1. Patton argues that evaluating forecasts of a given functional us-

ing consistent scoring functions is a minimal requirement for sensible rankings of

competing forecasts.

It is shown in Thomson [1979] and Saerens [2000] that quantiles are elicitable

functionals. Hence, VAR is an elicitable functional since it is simply the quantile of

a given distribution in probabilistic terms. On the other hand, ES is not elicitable.

However, it is jointly elicitable with VAR; see [Acerbi and Szekely, 2014] and

[Fissler and Ziegel, 2016]. This implies that there are scoring functions that are

consistent for VAR and the pair (VAR, ES). Detailed review on these elicitable risk

measures and their respective consistent scoring functions is presented in Section

2.2 and Section 2.3.

For a given elicitable functional, there are infinitely many consistent scoring

2



functions that can be used in the evaluation of forecasts. Patton assesses the per-

formance of consistent scoring functions for given functionals in the presence of

misspecified models, parameter estimation error, or nonnested information sets.

He concludes that the choice of the scoring function for ranking forecasts does not

matter provided that models are correctly specified and information sets of com-

peting forecasting procedures are nested. However, in practice, the model used

for forecasting is uncertain, the parameters need to be estimated, and forecasting

procedures do not have much information about competing forecast models. He

argues that scoring functions are sensitive to model misspecification, parameter

estimation error, or nonnested information sets and the ranking of forecasts may

be inconsistent when different scoring functions are used in evaluating forecasts.

Gneiting [2011a] also presents a simulation study where he shows that the choice

of an arbitrary scoring function in the assessment of forecasts could produce mis-

leading results. Due to this, there is the need to establish criteria for desirable

scoring functions within the class of consistent scoring functions.

This research work seeks to identify the criteria for choosing desirable consis-

tent scoring functions for the evaluation of VAR and the pair (VAR, ES) forecasts.

We seek to identify the class of consistent scoring functions that satisfy the cho-

sen criteria and may lead to accurate ranking of forecasting procedures in practice.

The report is organized as follows: Chapter 2 presents key definitions and theoreti-

cal discussion of consistent scoring functions, elicitable functionals, risk measures

VAR and ES, and the family of consistent scoring functions for VAR and the pair

(VAR, ES). Chapter 3 presents an overview of the criteria to consider in choos-

ing a consistent scoring function for evaluating the risk measures and introduces

the class of homogeneous scoring functions for VAR and (VAR, ES). In Chapter

4, we look at the tail behaviour of GARCH processes, examining the conditions

under which the expected value of chosen scoring function with respect to the ran-

dom variable Y with distribution F will exist. In Chapter 5, we present simulation

studies where the finite-sample size and power properties of the Diebold-Mariano

test [Diebold and Mariano, 1995] are assessed for consistent scoring functions for

VAR and the pair (VAR, ES). Chapter 6 assesses how consistent scoring functions

penalize for under-prediction and over-prediction of the same magnitude with the

aid of simulation studies. Finally, conclusions for our work and possible further

3



studies are presented in Chapter 7.
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Chapter 2

Preliminaries

A key component of point forecasting is the means by which competing forecasts

are evaluated. Competing point forecasting procedures are typically compared

based on a scoring function which is averaged over forecast cases. A scoring func-

tion, S, is any mapping S : Rk×R→ R, where S(ŷ,y) represents the score when

a point forecast ŷ ∈ Rk is issued and the observation y ∈ R is realized. Decisions

concerning the choice of scoring functions when evaluating competing forecasts is

important in point forecasting since an arbitrary choice of the scoring function for

the evaluation of forecasts may give misleading results.

2.1 Consistency and elicitability
Following Gneiting [2011a], a functional is a potentially set-valued mapping T(F)

from a class of probability distributions, F , to the real line R. It is important that

for the given functional relative to the class F , the scoring function chosen for

evaluation of forecasts be consistent. A scoring function is consistent for a given

functional if the expected score is minimized under the true distribution compared

to all other forecasts.

Definition 2.1.1. (Gneiting [2011a]) Let F a family of probability measures on

R, T : F → R a functional, and S : Rk×R→ R a scoring function. The scoring

function S is consistent for the functional T relative to the class F , if EFS(ŷ,Y )

5



exists and is finite for all F ∈F and a given point forecast ŷ ∈ R, and if

EFS(t,Y )≤ EFS(ŷ,Y ) (2.1)

for all F ∈F , all t ∈ T (F), and all point forecasts ŷ ∈ R. It is strictly consistent if

it is consistent and equality of expectations implies that ŷ ∈ T (F).

This means that, for a given scoring function S, and a predictive distribution F , the

functional T (F) is the optimal point predictor if

T (F) = argminŷEF [S(ŷ,Y )].

An example of a consistent scoring function for the mean functional is the

squared error given by S(ŷ,y) = (ŷ− y)2. Even though it is desirable for a given

functional to have a consistent scoring function for forecast evaluation. However,

not all functionals have consistent scoring functions. One example is the variance.

A functional for which a consistent scoring function exists is called an elicitable

functional [Lambert et al., 2008]. Examples of elicitable functionals are the mean,

quantile, and expectile functionals. A formal definition for an elicitable functional

is given below.

Definition 2.1.2. (Lambert et al. [2008]) A functional T is elicitable relative to the

class F if there exists a scoring function S that is strictly consistent for T relative

to F .

Misleading results about the quality of forecasts may be obtained when the scoring

function used in the evaluation of point forecasts is not consistent for the given

functional under the true distribution. Nolde and Ziegel [2016] illustrate with a

simulation study how the methods used in forecasting VAR and the pair (VAR,

ES) have reasonable rankings when consistent scoring functions for these func-

tionals are used in evaluating forecasts. In particular, the optimal forecast with

knowledge of the data generating process is ranked as “best” among competing

forecasting procedures. Ziegel [2016] describes elicitable functionals as function-

als for which meaningful point forecasts and forecast performance comparisons are

possible. This report concentrates on forecasting of two risk measures, the VAR

and the pair (VAR, ES), which are introduced next.
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2.2 Value-at-Risk and Expected Shortfall
The use of VAR as a risk measure in risk management is very common. For a

given confidence level α ∈ (0,1), VAR is the value x such that, the probability of

observing a value greater than x is no larger than 1-α . Typical α values in risk

management are α = 0.95 (internal risk management) and α = 0.99 (regulatory

level). A formal definition for VAR is given below.

Definition 2.2.1. For a random variable X , VAR at confidence level α ∈ (0,1) is

defined as:

VARα(X) = in f{x ∈ R : P(X > x)≤ 1−α}. (2.2)

From the statistical perspective, VARα is simply an α-quantile of a given loss (or

profit) distribution, provided the α-quantile is single-valued. As mentioned earlier,

the α-quantile is an elicitable functional, and the family of consistent scoring func-

tions for the α-quantile consists of generalized piecewise linear functions of order

α ∈ (0,1). VAR as a risk measure has been criticized for structural drawbacks by

a number of researchers over the years. ES, a coherent risk measure, was proposed

by Artzner et al. [1999] as an alternative to VAR and there has been a growing

consensus on the use of ES as a risk measure over the VAR; [Kusuoka, 2001] and

[Acerbi and Tasche, 2002]. The Bank for International Settlements [2013] has

been looking into the arguments for and against the change of the regulatory risk

measure from VAR to ES. There is a close relation between ES and VAR and the

two have been found to be jointly elicitable. This means that for there is a consis-

tent scoring function for the pair (VAR, ES). The formal definition for ES is given

below.

Definition 2.2.2. For a random variable X , ES at confidence levels ν ∈ (0,1) is

defined as:

ESν(X) =
1

1−ν

∫ 1

ν

VARα(X)dα. (2.3)
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When X is a continuous random variable, ES can be written as

ESν(X) = E(X |X > VARν(X)). (2.4)

As seen from the definition, the ES looks at the entire tail of the loss (or profit)

distribution and averages the VAR over all levels of α ≥ ν . Generally, ESα ≥
VARα as illustrated in Figure 2.1. For α = 0.95, a VARα value of 3.41 is obtained

while the ESα is 4.77.
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Figure 2.1: An example of a loss distribution with the 95% VAR marked as a vertical line and 95% ES
shown with a dotted line.

2.3 Scoring functions for VAR and (VAR, ES)
There are many possibilities from which to choose a consistent scoring function

for an elicitable functional. Gneiting [2011b] showcases a number of consistent

scoring functions for VAR that arises in different fields where different weights

are assigned in penalizing over-prediction and under-prediction in the evaluation
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of forecasts. Nolde and Ziegel [2016] use the homogeneous consistent scoring

functions for the pair (VAR, ES) for comparative backtesting of the risk measures.

There exists an entire family of consistent scoring functions for VAR and the pair

(VAR, ES). We next review the characterization of the family of consistent scoring

functions for VAR and the pair (VAR, ES).

Theorem 2.3.1. (Thomson [1979]: Saerens [2000]) Up to equivalence and mild

regularity conditions, a consistent scoring function for VARα (α-quantile), α ∈
(0,1) relative to the class of compactly supported probability measures on I ⊆R is

given by

S(ŷ,y) = (1(ŷ≥ y)−α)(G(ŷ)−G(y)), (2.5)

where G is a non-decreasing function on I, ŷ is the point forecast and y is the

observed value. Scoring functions in (2.5) form the family of generalized piecewise

linear (GPL) functions.

Theorem 2.3.2. (Fissler and Ziegel [2016]) Up to equivalence and mild regularity

conditions, all consistent scoring functions for (VARν , ESν ) , ν ∈ (0,1) relative to

the class of probability measures on I ⊆ R are of the form

S(ŷ1, ŷ2,y) = (1{ŷ1 ≥ y}−ν)(G1(ŷ1)−G1(y))+
1
ν

G2(ŷ2)1{ŷ1 ≥ y}(ŷ1− y)

+G2(ŷ2)(ŷ2− ŷ1)−G2(ŷ2),
(2.6)

where ŷ1 is the VAR forecast and ŷ2 is the ES forecast with G1 and G2 being

strictly increasing continuously differentiable functions such that the expectation

E[G1(X)] exists, limx→−∞G2(x) = 0 and G
′
2 = G2; (see Fissler and Ziegel [2016],

corollary 5.5).

From Theorem 2.3.1 and Theorem 2.3.2 above, it is seen that the choice of the

consistent scoring functions for the VAR and the pair (VAR, ES) depends on the

choice G in (2.5) and G1 and G2 in (2.6), respectively. A well known example of

a GPL scoring function is the Lin-Lin (or tick) scoring function which is obtained

when G in (2.5) is the identity function:

S(ŷ,y) = (1(ŷ≥ y)−α)(ŷ− y). (2.7)
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Patton defines a special case of GPL scoring functions which is obtained when

G(y) = sgn(y) |y|
b

b for b > 0. The scoring function is then given by

S(ŷ,y) = (1{ŷ≥ y}−α)(sgn(ŷ)|ŷ|b− sgn(y)|y|b)/b , b > 0. (2.8)

This family of GPL scoring functions is a homogeneous family of scoring func-

tions. The Lin-Lin score function arises when b = 1. Figure 2.2 presents the plot of

S(ŷ,y) for a range of values of ŷ for the homogeneous GPL scoring functions ob-

tained for varying values of b and selected values of α . We examine the behaviour

of the scoring functions for α = 0.9 and α = 0.99 as we are concerned with the

tails of loss distributions. It can be seen that the shape of the different homoge-

neous GPL differs even though they all assign the same score at the optimal value

for a given α level.
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Figure 2.2: Various homogeneous GPL scoring function S(ŷ,y) in (2.8), with α = 0.90 (a) and α = 0.99
(b). The Lin-Lin scoring function is obtained when b = 1. The value of y is set at 1.

For the case where b = 0, Nolde and Ziegel [2016] present the 0-homogeneous

score differences for VAR which is given as

S(ŷ,y) = (1−α−1{y > ŷ})logŷ+1{y > ŷ}logy , ŷ > 0. (2.9)
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Another example of a GPL scoring function is the exponential GPL scoring func-

tion which is obtained when G(y) = exp(y).

For consistent scoring functions for the pair (VAR, ES), Nolde and Ziegel

[2016] present two homogeneous scoring functions for score differences. The

(1/2)-homogeneous scoring function is obtained when G1(y) = 0 and G2(y) = 1
2
√

y

, y > 0 and is given by

S(ŷ1, ŷ2,y) =
( 1

ν

) 1
2
√

ŷ2
1{ŷ1 ≥ y}+ 1

2
√

ŷ2
(ŷ2− ŷ1)−

√
ŷ2 (2.10)

where ŷ1 is the VARν forecast, ŷ2 is the ESν forecast and y is the observed value.

The 0-homogeneous scoring function is obtained when G1(y) = 0 and G2(y) =
1
y , y > 0 and is given by

S(ŷ1, ŷ2,y) =
( 1

ν

) 1
ŷ2
1{ŷ1 ≥ y}+ 1

ŷ2
(ŷ2− ŷ1)− log(ŷ2) (2.11)

Figure 2.3 displays the behaviour of the two homogeneous scoring functions for

a range of values of ŷ1 and ŷ2 when ν = 0.90 and ν = 0.99. It is seen that both

scoring functions assign the lowest score at the optimal forecast. Other examples

of consistent scoring functions for the pair (VAR, ES) presented by Fissler et al.

[2015] include the case where G1(y) = y and G2(y) = exp(y) and the case where

G1(y) = y and G2(y) =
exp(y)

1+exp(y) . It can be seen from Figure 2.2 and Figure 2.3 that

the scoring functions for evaluating these risk measures have varying shapes with

different scores assigned to under-prediction and over-prediction of the same mag-

nitude. We assess the behaviour of the consistent scoring function when penalizing

for under-prediction and over-prediction in chapter 6 of this report.

Ehm et al. [2016] present a Choquet type mixture representation of GPL scor-

ing functions. This mixture representation is a reduction of the infinite number of

GPL scoring functions to a one-dimensional family of elementary scoring func-

tions, in the sense that every GPL scoring function admits a representation as a

mixture of elementary elements.

Theorem 2.3.3. (Ehm et al. [2016]) Any member of the class of GPL scoring
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Figure 2.3: Homogeneous scoring functions S(ŷ1, ŷ2,y) in (2.10) and (2.11) for the pair (VARν , ESν ),
with ν = 0.90 (a) and ν = 0.99 (b). The value of y is set at 1.

functions (SQ
α ) admits a representation of the form

S(ŷ,y) =
∫ +∞

−∞

SQ
α,θ (ŷ,y) dH(θ) (ŷ,y ∈ R), (2.12)

where H is a nonnegative measure and

SQ
α,θ (ŷ,y) = (1(y < ŷ)−α) (1(θ < ŷ)−1(θ < y))

=


1−α, y≤ θ < ŷ,

α, ŷ≤ θ < y,

0, otherwise.

(2.13)

The mixing measure H is unique and satisfies dH(θ) = dG(θ) for θ ∈R, where G

is the non-decreasing function in the representation (2.5).

For the mixture representations, plots of the average scores obtained based on

SQ
α,θ (ŷ,y) are used in comparing competing forecasts. These plots are called Mur-
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phy diagrams. Examples of Murphy diagrams are illustrated in Figure 2.4 and

Figure 2.5. The Murphy diagrams display the plot of the scores for two compet-

ing forecasting procedures obtained from the elementary scoring function in (2.13)

against the parameter θ and the plot of the score differences against the parameter

θ . When there is no difference in the performance of competing forecasting pro-

cedures, the plot of the scores overlap and the score differences are close to zero

(Figure 2.4). However, when the first listed forecasting procedure performs better

than the second, there is a distinction in the plot of the scores over a range of θ

values and the score differences are negative (Figure 2.5).
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Figure 2.4: Murphy diagrams for simulation study comparing forecasts for 0.99-quantile. Data generating
process is a GARCH (1, 1) model with skew-t innovations. The first forecasting procedure uses a
GARCH (1, 1) model and the second forecasting procedure uses an AR (1)-GARCH (1, 1) model. (a)
the plot of the scores from the elementary scoring function against the θ . (b) the plot of the scores
differences against θ . No difference in the performance of forecasting procedures.
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Figure 2.5: Murphy diagrams for simulation study comparing forecasts for 0.99-quantile. Data generat-
ing process is a GARCH (1, 1) model with skew-t innovations. The first forecasting procedure uses
a GARCH (1, 1) model with information on the conditional variance and the second forecasting pro-
cedure uses an ARCH (1) model with no information on the conditional variance. (a) the plot of the
scores from the elementary scoring function against the θ . (b) the plot of the scores differences against
θ . Forecasting procedure with GARCH model performs better than forecasting procedure with ARCH
model.
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Chapter 3

Choice of scoring functions

The choice of a consistent scoring function for evaluating VAR and pair (VAR, ES)

forecasts is a challenging task due to issues that arise in forecasting. Holzmann

and Eulert [2014] show that increasing the information sets, which is the amount

of information forecasting procedures have access to in making forecasts, leads

to better point forecasts and smaller average scores when strictly consistent scor-

ing functions are used in evaluating the forecasts provided the underlying model is

correctly specified. Patton examines the case of forecasting procedures using cor-

rectly specified models and competing forecasting procedures with nested infor-

mation sets compared to forecasting procedures with nonnested information sets

or using misspecified models. He argues that the choice of consistent scoring func-

tions for a given functional is of no concern when models are correctly specified,

and if information sets are nested. However, when the models are misspecified

or forecasting procedures’ information sets are nonnested, care should be taken in

choosing consistent scoring functions for evaluating forecasts. He gives the fol-

lowing propositions for VAR forecasts.

Proposition 1. (Patton) Assume that (i) The information sets of two forecasting

procedures are nested, so F B
t ⊆F A

t or F A
t ⊆F B

t , and (ii) Forecasts A and B are

optimal under some GPL scoring function. Then the ranking of these forecasts by

expected Lin-Lin scoring function is sufficient for their ranking by any GPL scoring

function.
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Proposition 2. Assume that (a) The information sets of two forecasting procedures

are nonnested, so F B
t * F A

t and F A
t * F B

t , for some t, but Forecasts A and B are

optimal under some GPL scoring function, or (b) one or both of the α-quantile

forecasts are based on misspecified models. Then the ranking of these forecasts is,

in general, sensitive to the choice of GPL scoring function.

He presents a realistic set-up where he compares the ranking of forecasts by

two forecasting procedures. Forecasting procedure A has knowledge of only the

conditional mean of the time series process while forecasting procedure B has

knowledge of only the conditional variance of the process. In assessing the per-

formance of quantile forecasts from the two forecasting procedures using a homo-

geneous GPL scoring function, inconsistent results are obtained with forecasting

procedure B performing better than forecasting procedure A for quantiles close to

the lower tail while for quantiles between the lower tail and the center, forecasting

procedure A performs better than forecasting procedure B.

Inconsistency in the results when ranking forecasts with different consistent

scoring functions poses a possible problem in forecasting. Since the issue of pa-

rameter estimation error, model misspecification and nonnested information sets

are often encountered in practice, it is desirable to identify which of the consistent

scoring functions are better at identifying forecasting procedures that give more ac-

curate forecasts. That is, since two competing forecasting procedures can be com-

pared based on the average score obtained from the scoring functions as shown in

(1.1), we seek to identify consistent scoring functions that may lead to making the

right decision on forecasting procedures. From Theorem 2.3.1 and Theorem 2.3.2,

we realize that there is a large number of consistent scoring functions that can be

used in assessing VAR and pair (VAR, ES) forecasts. The choice of a consistent

scoring function depends on the choice of G in (2.5) and G1 and G2 in (2.6). We

begin by identifying some criteria for the selection of consistent scoring functions

to assess forecasts of the risk measures.

A desirable property of scoring functions is the property of homogeneity. Pat-

ton [2011] argues that for homogeneous scoring functions, the ranking of forecasts

is invariant to re-scaling of data and this is very useful in economic and financial

applications where the choice of units of measurements is arbitrary (e.g., measur-
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ing in US dollars versus Canadian dollars).

A scoring function is positive homogeneous of order b if

S(cŷ,cy) = cbS(ŷ,y) for all ŷ = (ŷ1, ..., ŷk), all y and for c > 0.

We concentrate on the homogeneous scoring functions for VAR and pair (VAR,

ES) presented in (2.8), (2.9), (2.10), and (2.11) and identify the scoring functions

that yield more accurate ranking of forecasts based on the criteria presented in

following paragraphs.

The use of consistent scoring functions for a given functional is a minimal re-

quirement in forecast evaluation, and hence one criterion for a desirable scoring

function is that the expected value of the scoring function with respect to the dis-

tribution of random variable Y (the observed value) should exist under the weakest

conditions. In finance, the GARCH model is commonly used in modeling log-

returns data and the stationary solutions of GARCH processes are known to have

heavy tails which may lead to restrictions on the choice of scoring functions as

the EFS(ŷ,Y ) may not exist. Following Sun and Zhou [2014], we examine the tail

behaviour of a GARCH (1, 1) model and what implications it has on the range of

values of b, the homogeneity order.

Next, Patton mentions that the use of multiple scoring functions in evaluating

forecasts can lead to clouded results since a forecaster may be the best under one

scoring function and the worst under the other. He states that consistent scoring

functions have different sampling properties and a careful choice of the scoring

function to use in forecast evaluation may result in improved efficiency. We assess

the finite-sample properties of the Diebold-Mariano (D-M) test which is used to

test the significance of the score difference for two forecasting procedures. The D-

M test makes use of score values obtained from scoring functions. We assess the

performance of the different homogeneous consistent scoring functions for VAR

and the pair (VAR, ES) when used for the D-M test.

Lastly, the ability of scoring functions to penalize more for under-prediction

than over-prediction is a desirable property in financial applications. To enable

financial institutions make informed decisions in risk management, risk measures

are estimated and the predicted amount is put aside to cater for any possible future
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losses. Forecasts may over-predict or under-predict the possible loss and this may

have some negative effect on the operations of financial institutions. The magnitude

of under-prediction could lead to institutions making big losses. We examine the

homogeneous scoring functions to identify the scoring functions that penalize more

for under-prediction than for over-prediction of VAR and ES. We expand on the

above listed criteria in the following chapters.
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Chapter 4

Scoring functions and tail
behaviour

4.1 Expectation of homogeneous scoring function
The choice of a consistent scoring function from the family of consistent scoring

functions for VAR and pair (VAR, ES) respectively, depends on the choice of G

for the consistent scoring functions for VAR and the choice of G1 and G2 for the

consistent scoring functions for the pair (VAR, ES). The EFG(Y ), for a chosen G,

should exist and be finite for the expectation of the scoring function to exist and

hence be consistent. The homogeneous scoring functions with homogeneity order

b in (2.8) is consistent for VARα if EF(|Y |b) exists and is finite.

The use of GARCH processes to model returns is very common in finance.

We seek to identify the conditions under which the expected value of a return Y,

modeled as a GARCH process, will exist. This section looks at the tail behaviour

of GARCH processes. In particular, we concentrate on the range of values for the

parameters of a GARCH (1, 1) model for which the expectation of a homogeneous

GPL scoring function exists.
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4.1.1 GARCH Processes in QRM

When looking at VAR and ES in quantitative risk management, we concentrate

on the tail behaviour of the loss distribution. Various models have been proposed

when describing common features of financial returns. Amongst these are the mod-

els of the GARCH and ARCH family. One popular model used is the GARCH (1,

1) model. The stationary GARCH (1, 1) model is believed to capture various em-

pirical observed properties of financial returns despite its simplicity [Mikosch and

Starcia, 2000].

The marginal distributions of GARCH models are known to have heavy tails.

This may lead to restrictions on the choice of a consistent scoring function as the

E[S(ŷt ,Yt)] may not exist. We next look at the tail behaviour of a GARCH (1, 1)

model presented by [Sun and Zhou, 2014] and what implications it has on the range

of values of b, the homogeneity order.

Consider a GARCH (1, 1) model Yt ,

Yt = σtεt ,

σ
2
t = α0 +α1Y 2

t−1 +β1σ
2
t−1,

(4.1)

where {εt} are independent and identically distributed (i.i.d) innovations with zero

mean and unit variance, and the parameters α0, α1 and β1 are non-negative.

Suppose κ is the non-zero solution to the equation 1

E[(α1ε
2
t−1 +β1)

κ ] = 1. (4.2)

The stationary solution of {Yt} follows a heavy-tailed distribution with tail index

2κ:

P(|Yt |> x)∼Cx−2κ ,as x→ ∞. (4.3)

From (4.3) it follows that E(|Yt |b)< ∞ as long as b < 2κ . This leads to the follow-

ing proposition.

1the solution to (4.2) exists provided that α1 + β1 < 1 and E[ε2κ0
t ] = +∞ for κ0 := sup{m :

E[ε2m
t ]<+∞} (see Davis and Mikosh, 2009).
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Proposition 3. For a GARCH (1, 1) model in (4.1), the homogeneous scoring

function with homogeneity order b in (2.8) is strictly consistent for VARα provided

b < 2κ , where κ is the solution to (4.2).

For the pair (VAR, ES), the expected value for the 0-homogeneous scoring

function and the (1/2)-homogeneous scoring functions for the score differences is

finite and exists for given values of ŷ1 and ŷ2 and information set up to time t-1 as

long as κ > 1
2 .

We present in Figure 4.1 the plot of tail index (2κ) values against selected

parameter values of α1 and β1 for the GARCH (1, 1) model to show the upper

bound of the homogeneity order b for which the expected value of the scoring

function will exist. We consider the case of the standard normal innovations, t-

distributed and skewed t innovations for 3, 4, 5, 6, 7, and 8 degrees of freedom.

With all tail indices falling above 2 for the different parameter value combinations,

the different distributions of the innovations, and the different degrees of freedom

for the t-distribution and skewed t-distribution, it indicates that the homogeneous

scoring function is consistent for VAR in most cases where the homogeneity order

ranges from 0 to 2 and a GARCH (1, 1) model with α1 +β1 < 1 is used to model

financial returns. More care has to be taken in choosing homogeneous scoring

functions with b > 2 since the moments might not exist.
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Figure 4.1: Upper bounds of the homogeneity order b for the expectation of the b-homogeneous scoring
functions for VARα to exist.
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Chapter 5

Finite-Sample Properties of the
Diebold-Mariano test

In this chapter, we assess the finite-sample size and power properties of the Diebold-

Mariano (D-M) test when the homogeneous consistent scoring functions are used

in assessing the VAR and the pair (VAR, ES) forecasts from misspecified models,

forecasting procedures with nonnested information sets, and models with parame-

ter estimation errors.

For the simulation study, data is generated from an ARMA-GARCH process

with different model specifications. We consider the three cases: parameter esti-

mation error, wrongly specified models, and forecasting procedures with nonnested

information sets in forecasting the risk measures. Table 5.1 and Table 5.2 summa-

rize the models for the data generating process (DGP), the model used by the first

forecaster in making predictions and the model used by the second forecaster in

making predictions for the various cases when looking at the size and power prop-

erties of the D-M test for the homogeneous consistent scoring functions for VAR

and the pair (VAR, ES).

5.1 Diebold-Mariano test
When predictions are made by competing forecasting procedures, differences are

observed in these predictions and based on the observed value of the underlying

23



DGP Forecasting procedure A Forecasting procedure B
Parameter estimation error

Case 1 GARCH (1, 1), GARCH (1, 1), AR (1)-GARCH (1, 1),
(FPE & FHS) ε ∼ Skew t(0,1,5,1.5) ε ∼ Skew t(0,1,ν ,γ) ε ∼ Skew t(0,1,ν ,γ)

Case 2 GARCH (1, 1), GARCH (1, 1), AR (1)-GARCH (1, 1),
(FPE) ε ∼ t(0,1,ν = 5) ε ∼ t(0,1,ν) ε ∼ t(0,1,ν)

Model misspecification
Case 1 GARCH (1, 1), GARCH (1, 1), AR (1)-GARCH (1, 1),
(FPE) ε ∼ Skew t(0,1,5,1.5) ε ∼ t(0,1,ν) ε ∼ t(0,1,ν)
Case 2 GARCH (1, 1), GARCH (1, 1), AR (1)-GARCH (1, 1),
(FPE) ε ∼ Skew t(0,1,5,1.5) ε ∼∼N (0,1) ε ∼N (0,1)

Nonnested information sets
(FPE) GARCH (1, 1), GARCH (1, 1), GARCH (1, 1),

ε ∼ Skew t(0,1,5,1.5) ε ∼ Skew t(0,1,ν ,γ) ε ∼ Skew t(0,1,ν ,γ)
Known Unknown

conditional variance conditional variance

Table 5.1: Models for parameter estimation error, model misspecification and nonnested information sets
in the simulation study for the finite-sample size property of the D-M test. Models are used in making
quantile and expected shortfall forecasts and evaluated using selected consistent scoring functions.

DGP Forecasting procedure A Forecasting procedure B
Parameter estimation error

(FPE) AR (1)-GARCH (1, 1), GARCH (1, 1), AR (1)-GARCH (1, 1),
ε ∼ Skew t(0,1,3,3.5) ε ∼ Skew t(0,1,ν ,γ) ε ∼N (0,1)

Model misspecification
(FPE) AR (1)-GARCH (1, 1), GARCH (1, 1), ARCH (1),

ε ∼ Skew t(0,1,4,3.5) ε ∼ t(0,1,ν) ε ∼N (0,1)
Nonnested information sets

(FPE) GARCH (1, 1), GARCH (1, 1), ARCH (1),
ε ∼ Skew t(0,1,5,3) ε ∼ Skew t(0,1,ν ,γ) ε ∼N (0,1)

Known Unknown
conditional variance conditional variance

Table 5.2: Models for the three scenarios (parameter estimation error, model misspecification and
nonnested information sets) in the simulation study for the finite-sample power property of the D-M
test. Models are used in making quantile and expected shortfall forecasts and evaluated using selected
consistent scoring functions.

process, we would like to assess which forecast is the most accurate. There is

the need for formal tests to compare predictive accuracy. Diebold and Mariano

[1995] proposed the Diebold-Mariano test which is now widely used in the field

of econometrics in comparing the predictive accuracy of competing forecasts. The

D-M test makes use of (consistent) scoring functions in assessing the accuracy of

forecasts. The scores for point forecasts from competing forecasting procedures

are obtained from a scoring function and the differences in the score values are

used in the computation of the test statistic. This indicates that the ability of the
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scoring function to accurately distinguish between forecasting procedures is key

to the outcome of the test. Patton and Sheppard [2009] assess the size and power

properties of the D-M test for homogeneous scoring functions used in evaluation

volatility proxies and identify the 0-homogeneous scoring function as a desirable

scoring function for evaluation of volatility forecasts.

The D-M test is for pairwise comparison of forecasts with a null hypothesis of

equal expected score value against a one-sided or a two-sided alternative hypothe-

sis. The D-M test is defined under the following null hypothesis:

H0 : E[S(R̂A
t ,Yt)] = E[S(R̂B

t ,Yt)] ∀t, (5.1)

where R̂A
t and R̂B

t are point forecasts from two competing forecasting procedures at

time t, Yt is the observed value at time t, and S : Rk×R→R, is a consistent scoring

function. For the computation of the test statistic, we first define the difference in

a series of values from a scoring function for forecasts {dt : t = 1,2, ...,T} as:

dt = S(R̂A
t ,Yt)−S(R̂B

t ,Yt) (5.2)

and the test statistic is given as:

DMT =
d̄T√

âvar(d̄T )
, (5.3)

where d̄T ≡
1
T

T

∑
t=1

dt

and âvar(d̄T ) is a consistent estimator of the asymptotic variance of the average

difference. The asymptotic variance of the average difference can be computed

using the Newey-West variance estimator with the number of lags set to T
1
3 for

h step ahead forecasts where h > 1 [Patton and Sheppard, 2009]. For h = 1 it is

possible to show that the score differential series is covariance stationary and hence

we can estimate the asymptotic variance of the average difference using the sample

variance. Under the null hypothesis, the test statistic is asymptotically normally

distributed [Diebold and Mariano, 1995].
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5.2 Simulation-based result for size properties
We begin by assessing the size properties of the D-M test when the respective

homogeneous consistent scoring functions for VAR and pair (VAR, ES) are used

in assessing forecasts under realistic scenarios.

One-step ahead forecasts for the 0.90, 0.95 and 0.99 quantiles using a moving

window of w = 1000 observations are obtained for four different out-of-sample

sizes, T = {500,1000,1500,2000}. The D-M test is repeated 2000 times for each

T at a 5% level of significance. For the homogeneous GPL scoring functions for

VAR, we consider b ∈ {0,0.1,0.5,1,1.5,2,3,5}.
We test the hypotheses

H0 : E[S(R̂A
t ,Yt)] = E[S(R̂B

t ,Yt)] ∀t

H1 : E[S(R̂A
t ,Yt)] 6= E[S(R̂B

t ,Yt)] ∀t.

The first scenario considered is the situation of parameter estimation error. For this

example, we generate data {Yt}t∈Z from a GARCH (1, 1) model first with skewed

t innovations and then with t-distributed innovations:

Yt = σtεt ,

σ
2
t = 0.05+0.10Y 2

t−1 +0.85σ
2
t−1.

Case 1: εt
iid∼ Skew t(0,1,5,1.5)

Case 2: εt
iid∼ t(0,1,5)

(5.4)

The two forecasting procedures compared are based on correctly specified models

that are subject to estimation error. The fully parametric estimation (FPE) and

filtered historic simulation (FHS) procedures 2 are used in parameter estimations.

forecasting procedure A uses a GARCH (1, 1) model while forecasting procedure

B uses an AR (1)-GARCH (1, 1) model with zero mean:

V̂ARα(Y A
t |Ft−1) = σ̂tV̂ARα(εt)

V̂ARα(Y B
t |Ft−1) = µ̂t + σ̂tV̂ARα(εt)

(5.5)

2description of the estimation methods is given in the Appendix.

26



where V̂ARα(εt) = F−1
ε (α), with Fε (.) denoting the cumulative distribution func-

tion of the distribution of the innovations. For case 1, both forecasting procedures

specify a skewed t distribution for the innovations while both forecasting proce-

dures also specify a t-distribution with mean zero and variance one for the innova-

tions in the second case.

Table 5.3 shows the results of the size of the D-M test for the case where the

fully parametric approach is used in the estimation of model parameters. The size

of the test when using the homogeneous GPL scoring function with b less than 2

is close to the theoretical value of 0.05 for the chosen α levels and out-of-sample

sizes (T ). For higher values of b, e.g., b = 5, the size of the test is higher than

the theoretical value. Table 5.4 shows the size of the test when forecasting proce-

dures use the FHS in estimating parameters and once again, homogeneous scoring

functions with lower homogeneity order perform better compared to the higher

homogeneity order values.

α = 0.90 α = 0.95
T= 500 T=1000 T=1500 T=2000 T= 500 T=1000 T=1500 T=2000

b=0 0.059 0.054 0.063 0.058 0.046 0.060 0.053 0.057
b=0.1 0.059 0.057 0.063 0.059 0.047 0.061 0.054 0.056
b=0.5 0.061 0.055 0.059 0.058 0.050 0.065 0.055 0.059
b=1.0 0.061 0.056 0.059 0.058 0.056 0.064 0.057 0.062
b=1.5 0.063 0.066 0.063 0.057 0.062 0.072 0.059 0.067
b=2.0 0.063 0.073 0.071 0.063 0.075 0.083 0.074 0.080
b=3.0 0.073 0.086 0.083 0.078 0.097 0.125 0.106 0.116
b=5.0 0.077 0.104 0.092 0.096 0.118 0.150 0.142 0.150

α = 0.99
T= 500 T=1000 T=1500 T=2000

b=0 0.076 0.072 0.076 0.076
b=0.1 0.078 0.072 0.074 0.075
b=0.5 0.079 0.075 0.078 0.076
b=1.0 0.080 0.079 0.080 0.079
b=1.5 0.093 0.090 0.091 0.093
b=2.0 0.113 0.115 0.111 0.110
b=3.0 0.159 0.183 0.177 0.174
b=5.0 0.259 0.312 0.308 0.303

Table 5.3: Parameter estimation error: (Case 1) Size values of the D-M test for the one-step ahead forecast
of the 0.90, 0.95 and 0.99 quantiles at various out-of-sample sizes. The fully parametric approach is used
in the estimation of the model parameters in this case.

We now consider the case where the innovations follow a t-distribution with

mean zero and variance one rather than a skewed t-distribution using the same

models in (5.5) for forecasting procedure A and forecasting procedure B respec-
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α = 0.90 α = 0.95
T= 500 T=1000 T=1500 T=2000 T= 500 T=1000 T=1500 T=2000

b=0 0.071 0.078 0.094 0.092 0.086 0.091 0.109 0.131
b=0.1 0.070 0.078 0.093 0.094 0.088 0.089 0.108 0.131
b=0.5 0.077 0.076 0.084 0.089 0.091 0.091 0.105 0.124
b=1.0 0.077 0.076 0.082 0.090 0.092 0.092 0.106 0.118
b=1.5 0.084 0.086 0.081 0.083 0.098 0.095 0.106 0.114
b=2.0 0.088 0.092 0.084 0.088 0.106 0.109 0.114 0.117
b=3.0 0.091 0.105 0.092 0.107 0.144 0.141 0.138 0.137
b=5.0 0.102 0.112 0.102 0.119 0.178 0.184 0.164 0.172

α = 0.99
T= 500 T=1000 T=1500 T=2000

b=0 0.145 0.124 0.141 0.152
b=0.1 0.145 0.121 0.140 0.152
b=0.5 0.152 0.123 0.146 0.147
b=1.0 0.167 0.134 0.148 0.155
b=1.5 0.181 0.149 0.159 0.155
b=2.0 0.202 0.169 0.181 0.165
b=3.0 0.248 0.216 0.227 0.216
b=5.0 0.339 0.340 0.359 0.345

Table 5.4: Parameter estimation error: (Case 1) Size values of the D-M test for the one-step ahead forecast
of the 0.90, 0.95 and 0.99 quantiles at various out-of-sample sizes. The filtered historic simulation is
used in the estimation of the model parameters in this case.

tively. Estimation of parameters is done using the fully parametric approach. The

results presented in Table 5.5 show that the size of the test is close to the theoretical

value for the homogeneous GPL scoring function where b is 2 or less for the three

α levels. For higher values of b (e.g., b = 3), the size is slightly lower than 0.05 for

the 0.90 and 0.95 quantiles but gets close to the theoretical value for 0.99 quantile.

Overall, the homogeneous GPL scoring functions with b less than 2 perform well

in the cases considered under the parameter estimation error scenario.

Next, we examine the size of the D-M test for the situation where the two

forecasting procedures which are based on similar but misspecified models. We

look at the ability of the scoring function to assess similar forecasts. Just as in the

first scenario, we generate data {Yt}t∈Z from a GARCH (1, 1) model with skewed

t innovations:
Yt = σtεt ,

σ
2
t = 0.05+0.10Y 2

t−1 +0.85σ
2
t−1.

εt
iid∼ Skew t(0,1,5,1.5)

(5.6)

For the first case, the forecasting procedures specify a t-distribution with mean
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α = 0.90 α = 0.95
T= 500 T=1000 T=1500 T=2000 T= 500 T=1000 T=1500 T=2000

b=0 0.044 0.055 0.062 0.060 0.051 0.061 0.060 0.061
b=0.1 0.045 0.056 0.063 0.061 0.048 0.055 0.061 0.064
b=0.5 0.046 0.059 0.060 0.061 0.048 0.057 0.060 0.061
b=1.0 0.047 0.056 0.056 0.061 0.049 0.059 0.058 0.058
b=1.5 0.049 0.056 0.055 0.060 0.044 0.055 0.058 0.056
b=2.0 0.049 0.054 0.054 0.055 0.041 0.055 0.056 0.049
b=3.0 0.046 0.047 0.049 0.052 0.037 0.050 0.049 0.044
b=5.0 0.040 0.040 0.038 0.036 0.038 0.040 0.044 0.038

α = 0.99
T= 500 T=1000 T=1500 T=2000

b=0 0.051 0.060 0.051 0.062
b=0.1 0.050 0.059 0.051 0.062
b=0.5 0.049 0.053 0.048 0.062
b=1.0 0.046 0.052 0.047 0.061
b=1.5 0.043 0.049 0.047 0.055
b=2.0 0.042 0.047 0.042 0.053
b=3.0 0.044 0.046 0.046 0.052
b=5.0 0.054 0.046 0.052 0.055

Table 5.5: Parameter estimation error: (Case 2) Size values of the D-M test for the one-step ahead forecast
of the 0.90, 0.95 and 0.99 quantiles at various out-of-sample sizes. The fully parametric approach is used
in the estimation of the model parameters in this case.

zero and variance one for the innovations of their models, while they both specify

a standard normal distribution for the innovations in the second case. Forecasting

procedure A uses a GARCH (1, 1) model while forecasting procedure B uses an

AR (1)-GARCH (1, 1) model.

The results presented in Table 5.6 show that the size of the test is close to the

theoretical value for lower values of b of the homogeneous scoring function. The

size of the test is, however, higher for larger values of b(e.g., b = 5) as we get

closer to the upper tail. Table 5.7 shows results of the second example where both

forecasting procedures specify a standard normal distribution for the innovations

of their models. The size of the test is generally close to the theoretical value for

most values of b. Some cases of higher size values are observed for the homoge-

neous scoring function when b > 2 and T increases. Overall, the homogeneous

GPL scoring functions with b < 2 do perform quite well in assessing the similar

forecasts.

The last scenario we consider for the size of the D-M test is when the forecast-

ing procedures have nonnested information sets. Forecasting procedure A has in-

formation about the conditional variance of the returns while forecasting procedure
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α = 0.90 α = 0.95
T= 500 T=1000 T=1500 T=2000 T= 500 T=1000 T=1500 T=2000

b=0 0.064 0.061 0.065 0.063 0.061 0.065 0.067 0.059
b=0.1 0.063 0.060 0.065 0.063 0.059 0.065 0.065 0.059
b=0.5 0.063 0.060 0.061 0.064 0.059 0.064 0.066 0.057
b=1.0 0.064 0.068 0.063 0.062 0.060 0.066 0.067 0.058
b=1.5 0.064 0.074 0.066 0.063 0.060 0.066 0.067 0.064
b=2.0 0.063 0.074 0.068 0.066 0.061 0.071 0.072 0.067
b=3.0 0.068 0.082 0.071 0.066 0.074 0.083 0.076 0.072
b=5.0 0.064 0.083 0.070 0.069 0.081 0.090 0.080 0.085

α = 0.99
T= 500 T=1000 T=1500 T=2000

b=0 0.045 0.060 0.063 0.061
b=0.1 0.046 0.060 0.060 0.060
b=0.5 0.047 0.061 0.061 0.061
b=1.0 0.050 0.057 0.058 0.058
b=1.5 0.050 0.056 0.057 0.057
b=2.0 0.054 0.064 0.062 0.062
b=3.0 0.073 0.076 0.065 0.065
b=5.0 0.119 0.116 0.107 0.107

Table 5.6: Model misspecification: (Case 1) Size values of the D-M test for the one-step ahead forecast of
the 0.90, 0.95 and 0.99 quantiles at various out-of-sample sizes. The fully parametric approach is used
in the estimation of the model parameters in this case.

B has no information on the conditional variance of the process. Both forecasting

procedures use a GARCH (1, 1) model with skewed-t innovations. The data is

generated from the same model used for the first case of the parameter estimation

example. Table 5.8 shows that the size of the test is close to the theoretical value

for lower values of b of the homogeneous GPL scoring function across the different

out-of-sample sizes. The size values are higher for all homogeneous GPL scoring

functions for the case where α = 0.99. The homogeneous GPL scoring function

with b = 0 seems to perform well amongst all the scoring functions with size values

relatively close to the theoretical value of the test in most of the cases considered.

We now assess the performance of consistent scoring functions used in evaluat-

ing forecasts of the pair (VAR, ES) using the same scenarios presented for VAR. A

one-step ahead forecast is estimated for the ES at level ν = {0.754,0.875,0.975}
which should yield similar magnitude of risk as VAR0.90, VAR0.95, and VAR0.99

respectively [Nolde and Ziegel, 2016].

For the size of the D-M test, the (1/2)-homogeneous and 0-homogeneous scor-

ing functions presented in (2.10) and (2.11) respectively, produce size values which

are close to the theoretical value of 0.05 for the different values of T at the dif-
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α = 0.90 α = 0.95
T= 500 T=1000 T=1500 T=2000 T= 500 T=1000 T=1500 T=2000

b=0 0.062 0.063 0.063 0.066 0.058 0.066 0.077 0.069
b=0.1 0.063 0.064 0.063 0.067 0.059 0.068 0.077 0.067
b=0.5 0.062 0.065 0.067 0.067 0.056 0.071 0.079 0.071
b=1.0 0.062 0.068 0.068 0.065 0.058 0.070 0.077 0.073
b=1.5 0.061 0.074 0.070 0.069 0.061 0.072 0.080 0.074
b=2.0 0.061 0.085 0.077 0.078 0.065 0.078 0.085 0.080
b=3.0 0.071 0.090 0.083 0.079 0.072 0.084 0.085 0.084
b=5.0 0.063 0.087 0.080 0.077 0.077 0.089 0.082 0.095

α = 0.99
T= 500 T=1000 T=1500 T=2000

b=0 0.054 0.068 0.069 0.078
b=0.1 0.054 0.070 0.071 0.078
b=0.5 0.053 0.070 0.068 0.074
b=1.0 0.052 0.070 0.067 0.079
b=1.5 0.051 0.070 0.064 0.073
b=2.0 0.055 0.068 0.059 0.073
b=3.0 0.055 0.065 0.057 0.067
b=5.0 0.064 0.069 0.066 0.069

Table 5.7: Model misspecification: (Case 2) Size values of the D-M test for the one-step ahead forecast of
the 0.90, 0.95 and 0.99 quantiles at various out-of-sample sizes. The fully parametric approach is used
in the estimation of the model parameters in this case.

ferent levels of ν . Comparing the size values of the pair (VAR, ES) at level

ν = {0.754,0.875,0.975} with the size values obtained for VAR at level α =

{0.90,0.95,0.99}, it is seen that the values obtained for the 0-homogeneous and

(1/2)-homogeneous scoring functions used in assessing the pair (VAR, ES) fore-

casts are similar to that of the 0-homogeneous and (1/2)-homogeneous GPL scor-

ing functions used in assessing the VAR forecasts. Overall, the size values for the

D-M test in the evaluation of forecasts of the pair (VAR, ES) are close to the theo-

retical value of 0.05. The results for size of the D-M test for the pair (VARν , ESν )

under the different scenarios are presented in the Tables 5.9, 5.10, 5.11, 5.12, and

5.13.

5.3 Simulation-based result for power properties
For the power of the D-M test, we look at the ability of the scoring function to

distinguish between forecasts and assign smaller scoring values to forecasts close
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α = 0.90 α = 0.95
T= 500 T=1000 T=1500 T=2000 T= 500 T=1000 T=1500 T=2000

b=0 0.058 0.064 0.074 0.073 0.059 0.064 0.073 0.077
b=0.1 0.056 0.064 0.074 0.074 0.060 0.066 0.071 0.078
b=0.5 0.054 0.066 0.067 0.076 0.060 0.061 0.072 0.078
b=1.0 0.052 0.064 0.066 0.076 0.065 0.064 0.071 0.078
b=1.5 0.056 0.066 0.065 0.079 0.071 0.070 0.072 0.077
b=2.0 0.060 0.076 0.065 0.086 0.083 0.083 0.083 0.082
b=3.0 0.079 0.103 0.094 0.108 0.131 0.130 0.123 0.124
b=5.0 0.159 0.179 0.165 0.162 0.243 0.243 0.237 0.244

α = 0.99
T= 500 T=1000 T=1500 T=2000

b=0 0.130 0.108 0.097 0.109
b=0.1 0.133 0.108 0.100 0.112
b=0.5 0.138 0.111 0.105 0.114
b=1.0 0.144 0.122 0.112 0.117
b=1.5 0.164 0.136 0.120 0.136
b=2.0 0.185 0.156 0.144 0.155
b=3.0 0.259 0.225 0.227 0.235
b=5.0 0.439 0.426 0.437 0.441

Table 5.8: Nonnested information sets: Size values of the D-M test for the one-step ahead forecast of the
0.90, 0.95 and 0.99 quantiles at various out-of-sample sizes. The fully parametric approach is used in
the estimation of the model parameters in this case.

ν = 0.754 ν = 0.875
T= 500 T=1000 T=1500 T=2000 T= 500 T=1000 T=1500 T=2000

b=0 0.061 0.059 0.070 0.063 0.054 0.060 0.054 0.052
b=0.5 0.059 0.064 0.071 0.067 0.059 0.057 0.061 0.056

ν = 0.975
T= 500 T=1000 T=1500 T=2000

b=0 0.053 0.064 0.066 0.063
b=0.5 0.059 0.061 0.059 0.062

Table 5.9: Parameter estimation error: (Case 1) Size values of the D-M test for the one-step ahead forecast
of (VAR, ES) for ν values 0.754, 0.875 and 0.975 with various out-of-sample sizes. The fully parametric
approach is used in the estimation of the model parameters in this case.

to the realized value. We test the hypotheses

H0 : E[S(R̂A
t ,Yt)] = E[S(R̂B

t ,Yt)] ∀t

H1 : E[S(R̂A
t ,Yt)]< E[S(R̂B

t ,Yt)] ∀t.

We examine the three scenarios examined under the size of the D-M test in this

section. We begin with the parameter estimation error scenario for VAR forecasts

where we generate data from an AR (1)-GARCH (1, 1) model with a zero mean
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ν = 0.754 ν = 0.875
T= 500 T=1000 T=1500 T=2000 T= 500 T=1000 T=1500 T=2000

b=0 0.060 0.063 0.070 0.080 0.050 0.063 0.067 0.075
b=0.5 0.055 0.066 0.069 0.079 0.049 0.058 0.068 0.075

ν = 0.975
T= 500 T=1000 T=1500 T=2000

b=0 0.042 0.048 0.058 0.058
b=0.5 0.041 0.046 0.057 0.056

Table 5.10: Parameter estimation error: (Case 2) Size values of the D-M test for the one-step ahead fore-
cast of (VAR, ES) for ν values 0.754, 0.875 and 0.975 at various out-of-sample sizes. The fully
parametric approach is used in the estimation of the model parameters in this case.

ν = 0.754 ν = 0.875
T= 500 T=1000 T=1500 T=2000 T= 500 T=1000 T=1500 T=2000

b=0 0.056 0.067 0.067 0.064 0.059 0.061 0.064 0.061
b=0.5 0.056 0.069 0.068 0.065 0.059 0.063 0.070 0.060

ν = 0.975
T= 500 T=1000 T=1500 T=2000

b=0 0.051 0.058 0.069 0.069
b=0.5 0.058 0.061 0.064 0.069

Table 5.11: Model misspecification: (Case 1) Size values of the D-M test for the one-step ahead forecast of
(VAR, ES) for ν values 0.754, 0.875 and 0.975 with various out-of-sample sizes. The fully parametric
approach is used in the estimation of the model parameters in this case.

and a right-skewed t-distribution for the innovations:

Yt = µt +σtεt , µt = 0.05Yt−1

σ
2
t = 0.05+0.10Y 2

t−1 +0.85σ
2
t−1.

εt
iid∼ Skew t(0,1,3,3.5)

(5.7)

Forecasting procedure A uses a GARCH (1, 1) model with innovations follow-

ing a skewed-t distribution while forecasting procedure B uses an AR (1)-GARCH

(1, 1) model with standard normal innovations. The results in Table 5.14 show

that the homogeneous GPL scoring function with lower b values are able to dis-

cern superior forecast performance for all the quantile levels recording higher

power values. Figure 5.1 shows the pattern plot of the power values for all T ∈
{500,1000,1500,2000} across the values b. The plots for the 0.90, 0.95 and 0.99

quantile show a general drop in the power of the test as the value of b increases for

all levels of T . The highest power is mostly obtained when b = 0.

For the second scenario, which looks at model misspecification, data is gener-
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ν = 0.754 ν = 0.875
T= 500 T=1000 T=1500 T=2000 T= 500 T=1000 T=1500 T=2000

b=0 0.058 0.068 0.075 0.068 0.060 0.063 0.071 0.065
b=0.5 0.061 0.077 0.073 0.078 0.064 0.068 0.068 0.069

ν = 0.975
T= 500 T=1000 T=1500 T=2000

b=0 0.056 0.070 0.080 0.076
b=0.5 0.058 0.072 0.071 0.075

Table 5.12: Model misspecification: (Case 2) Size values of the D-M test for the one-step ahead forecast of
(VAR, ES) for ν values 0.754, 0.875 and 0.975 with various out-of-sample sizes. The fully parametric
approach is used in the estimation of the model parameters in this case.

ν = 0.754 ν = 0.875
T= 500 T=1000 T=1500 T=2000 T= 500 T=1000 T=1500 T=2000

b=0 0.063 0.062 0.073 0.074 0.066 0.070 0.082 0.081
b=0.5 0.056 0.054 0.073 0.073 0.057 0.066 0.075 0.075

ν = 0.975
T= 500 T=1000 T=1500 T=2000

b=0 0.108 0.099 0.105 0.121
b=0.5 0.092 0.090 0.097 0.108

Table 5.13: Nonnested information sets: Size values of the D-M test for the one-step ahead forecast of
(VAR, ES) for ν values 0.754, 0.875 and 0.975 at various out-of-sample sizes. The fully parametric
approach is used in the estimation of the model parameters in this case.

ated from an AR (1)-GARCH (1, 1) model with a zero mean and a right-skewed t

distribution for the innovations:

Yt = µt +σtεt , µt = 0.05Yt−1

σ
2
t = 0.05+0.10Y 2

t−1 +0.85σ
2
t−1.

εt
iid∼ Skew t(0,1,4,3.5)

(5.8)

Forecasting procedure A uses a GARCH (1, 1) model but wrongly specifies the

distribution of the innovations by choosing a t-distribution. forecasting procedure

B on the other hand wrongly specifies the model and innovation using an ARCH

(1) model with standard normal innovations. In this case, we expect forecasting

procedure A to perform better than forecasting procedure B. Table 5.15 shows

high power values for lower b of the homogeneous GPL scoring function with the

lowest power obtained at b = 5. Higher power values for the lower values of b

indicates the ability of these homogeneous GPL scoring functions to distinguish

between forecasting procedures. Figure 5.2 shows the pattern plot of the power
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α = 0.90 α = 0.95
T= 500 T=1000 T=1500 T=2000 T= 500 T=1000 T=1500 T=2000

b=0 0.389 0.513 0.634 0.701 0.210 0.276 0.347 0.409
b=0.1 0.368 0.511 0.635 0.698 0.189 0.264 0.339 0.397
b=0.5 0.379 0.522 0.638 0.694 0.187 0.255 0.336 0.385
b=1.0 0.389 0.521 0.646 0.668 0.188 0.242 0.322 0.363
b=1.5 0.386 0.499 0.579 0.625 0.192 0.242 0.292 0.331
b=2.0 0.403 0.478 0.542 0.576 0.203 0.227 0.263 0.297
b=3.0 0.394 0.436 0.467 0.471 0.206 0.221 0.222 0.243
b=5.0 0.370 0.350 0.344 0.340 0.202 0.190 0.205 0.206

α = 0.99
T= 500 T=1000 T=1500 T=2000

b=0 0.477 0.715 0.836 0.888
b=0.1 0.459 0.710 0.830 0.884
b=0.5 0.423 0.681 0.801 0.863
b=1.0 0.360 0.612 0.742 0.813
b=1.5 0.269 0.490 0.628 0.714
b=2.0 0.171 0.336 0.461 0.547
b=3.0 0.046 0.109 0.139 0.171
b=5.0 0.009 0.016 0.012 0.018

Table 5.14: Parameter estimation error: Power values of the D-M test for the one-step ahead forecast of
the 0.90, 0.95 and 0.99 quantiles at various out-of-sample sizes. The fully parametric approach is used
in the estimation of the model parameters in this case.

values for all T ∈ {500,1000,1500,2000} across the values b. The plots for the

0.90 and 0.95 quantile show a peak around b = 1.5 with general drop in the power

of the test as the value of b increases.

For the third scenario, we look at the case of forecasting procedures with

nonnested information sets with data generated from a GARCH (1, 1) model with

innovations from a right-skewed t-distribution with mean zero and unit variance:

Yt = µt +σtεt , µt = 0.05Yt−1

σ
2
t = 0.05+0.10Y 2

t−1 +0.85σ
2
t−1.

εt
iid∼ Skew t(0,1,5,3)

(5.9)

Forecasting procedure A uses a GARCH (1, 1) model with skewed t-distributed

innovations while forecasting procedure B uses an ARCH (1) model with standard

normal innovations. Forecasting procedure A has knowledge of the conditional

variance while forecasting procedure B has no knowledge of the conditional vari-

ance. The results presented in Table 5.16 show high power values for lower values

of b of the homogeneous GPL scoring function with the power value decreasing as
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Figure 5.1: Plot of power of the D-M test against homogeneity order b of the homogeneous GPL for the
different out-of-sample sizes.

b increases. From Figure 5.3, we see a general drop in the power values for all T

∈ {500,1000,1500,2000} as the value of b increases. The highest power values of

the D-M test are obtained when the homogeneous GPL scoring function with b =

0 is used in assessing forecasting procedures.

For the power of the D-M test for the pair (VAR, ES) forecasts, the 0-homogeneous

and (1/2)-homogeneous scoring functions perform well under the three cases pre-

sented. The power values increase as T gets larger for the different ν levels. Com-

paring the power of (VAR, ES) at levels of ν = {0.754,0.875,0.975} to the power
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α = 0.90 α = 0.95
T= 500 T=1000 T=1500 T=2000 T= 500 T=1000 T=1500 T=2000

b=0 0.394 0.520 0.604 0.652 0.287 0.327 0.351 0.358
b=0.1 0.385 0.520 0.612 0.659 0.261 0.293 0.330 0.341
b=0.5 0.408 0.546 0.636 0.695 0.273 0.318 0.363 0.383
b=1.0 0.430 0.560 0.654 0.710 0.283 0.351 0.404 0.437
b=1.5 0.441 0.543 0.648 0.700 0.305 0.374 0.449 0.485
b=2.0 0.460 0.533 0.620 0.658 0.332 0.389 0.461 0.503
b=3.0 0.439 0.486 0.535 0.562 0.349 0.398 0.463 0.473
b=5.0 0.326 0.346 0.361 0.360 0.295 0.328 0.348 0.346

α = 0.99
T= 500 T=1000 T=1500 T=2000

b=0 0.494 0.613 0.708 0.773
b=0.1 0.476 0.604 0.698 0.763
b=0.5 0.468 0.604 0.706 0.775
b=1.0 0.460 0.598 0.706 0.775
b=1.5 0.443 0.589 0.706 0.767
b=2.0 0.427 0.574 0.689 0.742
b=3.0 0.399 0.523 0.622 0.688
b=5.0 0.297 0.360 0.417 0.431

Table 5.15: Model misspecification: Power values of the D-M test for the one-step ahead forecast of the
0.90, 0.95 and 0.99 quantiles at various out-of-sample sizes. The fully parametric approach is used in
the estimation of the model parameters in this case.

obtained for VAR at levels of α = {0.90,0.95,0.99} it is seen that the power val-

ues of the D-M test for the pair (VAR, ES) forecasts are higher than that of the

VAR in most cases. Results are presented in Tables 5.17, 5.18 and 5.19. We also

present plots of the power of the test against the out-of-sample sizes for the two ho-

mogeneous scoring functions considered. The plots indicate that the power of the

test increases as T increases. The (1/2)-homogeneous scoring function has higher

power values for ν values close to the center, however, the 0-homogeneous scoring

function produces higher power values as we get closer to the upper tail.

From the simulation results, we observe that the homogenous consistent scor-

ing functions with lower homogeneity order values have desirable size and power

properties for the D-M test. In particular, the 0-homogeneous scoring function for

evaluating the VAR forecasts and pair (VAR, ES) forecasts respectively, have bet-

ter finite-sample size and power properties in the presence of model uncertainty,

parameter estimation error and nonnested information sets. It is also observed that

the when looking at the extreme tails of the distribution, the size values tend to

increase while the performance of the scoring function for the power of the test

switches for the pair (VAR, ES) forecasts.
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Figure 5.2: Plot of power of the D-M test against homogeneity order b of the homogeneous GPL for the
different out-of-sample sizes.
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α = 0.90 α = 0.95
T= 500 T=1000 T=1500 T=2000 T= 500 T=1000 T=1500 T=2000

b=0 0.402 0.570 0.702 0.779 0.649 0.871 0.938 0.970
b=0.1 0.395 0.566 0.701 0.778 0.638 0.869 0.936 0.968
b=0.5 0.395 0.555 0.694 0.771 0.619 0.850 0.927 0.963
b=1.0 0.381 0.526 0.657 0.742 0.578 0.812 0.904 0.952
b=1.5 0.371 0.488 0.593 0.682 0.511 0.753 0.860 0.927
b=2.0 0.360 0.441 0.526 0.600 0.422 0.656 0.784 0.862
b=3.0 0.333 0.369 0.415 0.462 0.240 0.401 0.504 0.576
b=5.0 0.263 0.266 0.274 0.286 0.094 0.117 0.115 0.120

α = 0.99
T= 500 T=1000 T=1500 T=2000

b=0 0.999 0.999 0.999 0.999
b=0.1 0.996 0.999 0.999 0.999
b=0.5 0.993 0.999 0.999 0.999
b=1.0 0.988 0.999 0.999 0.999
b=1.5 0.979 0.998 0.999 0.999
b=2.0 0.941 0.994 0.999 0.999
b=3.0 0.672 0.873 0.923 0.937
b=5.0 0.002 0.007 0.014 0.017

Table 5.16: Nonnested information sets: Power values of the D-M test for the one-step ahead forecast of
the 0.90, 0.95 and 0.99 quantiles at various out-of-sample sizes. The fully parametric approach is used
in the estimation of the model parameters in this case.

ν = 0.754 ν = 0.875
T= 500 T=1000 T=1500 T=2000 T= 500 T=1000 T=1500 T=2000

b=0 0.890 0.989 0.995 0.998 0.682 0.909 0.972 0.994
b=0.5 0.921 0.994 0.995 0.998 0.726 0.912 0.978 0.995

ν = 0.975
T= 500 T=1000 T=1500 T=2000

b=0 0.411 0.676 0.802 0.872
b=0.5 0.356 0.604 0.741 0.815

Table 5.17: Parameter estimation error: Power values of the D-M test for the one-step ahead forecast of
(VAR, ES) for ν values 0.754, 0.875 and 0.975 at various out-of-sample sizes. The fully parametric
approach is used in the estimation of the model parameters in this case.

ν = 0.754 ν = 0.875
T= 500 T=1000 T=1500 T=2000 T= 500 T=1000 T=1500 T=2000

b=0 0.529 0.725 0.823 0.892 0.378 0.491 0.587 0.656
b=0.5 0.697 0.874 0.942 0.976 0.455 0.609 0.723 0.790

ν = 0.975
T= 500 T=1000 T=1500 T=2000

b=0 0.413 0.531 0.630 0.689
b=0.5 0.375 0.487 0.581 0.635

Table 5.18: Model misspecification: Power values of the D-M test for the one-step ahead forecast of
(VAR, ES) for ν values 0.754, 0.875 and 0.975 at various out-of-sample sizes. The fully parametric
approach is used in the estimation of the model parameters in this case.
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Figure 5.3: Plot of power of the D-M test against homogeneity order b of the homogeneous GPL for the
different out-of-sample sizes.

ν = 0.754 ν = 0.875
T= 500 T=1000 T=1500 T=2000 T= 500 T=1000 T=1500 T=2000

b=0 0.708 0.922 0.983 0.998 0.560 0.819 0.925 0.975
b=0.5 0.751 0.943 0.992 0.998 0.537 0.774 0.903 0.952

ν = 0.975
T= 500 T=1000 T=1500 T=2000

b=0 0.541 0.777 0.900 0.946
b=0.5 0.489 0.728 0.854 0.924

Table 5.19: Nonnested information sets: Power values of the D-M test for the one-step ahead forecast of
(VAR, ES) for ν values 0.754, 0.875 and 0.975 at various out-of-sample sizes. The fully parametric
approach is used in the estimation of the model parameters in this case.

40



500 1000 1500 2000

0.
85

0.
90

0.
95

1.
00

ν=0.754

Out−of−sample size

po
w

er

b=0 

b=0.5

500 1000 1500 2000

0.
65

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

ν=0.875

Out−of−sample size

po
w

er
b=0 

b=0.5

500 1000 1500 2000

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

ν=0.975

Out−of−sample size

po
w

er

b=0 

b=0.5

Figure 5.4: Parameter estimation Error: Plot of power of the D-M test against out-of-sample size (T) for
the homogeneous scoring functions for the pair (VARν , ESν ).
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Figure 5.5: Model misspecification: Plot of power of the D-M test against out-of-sample size (T) for the
homogeneous scoring functions for the pair (VARν , ESν ).
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Figure 5.6: Nonnested information sets: Plot of power of the D-M test against out-of-sample size (T) for
the homogeneous scoring functions for the pair (VARν , ESν ).
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Chapter 6

Over-prediction and
Under-prediction in finance

Financial institutions usually set aside an amount of money to deal with worst

case-scenarios in the financial markets. VAR and ES are often used as the under-

lying risk measure to calculate the amount of capital to set aside to cover potential

losses. Since institutions lose interest on the capital stored, it is their desire to

make accurate predictions of the VAR and ES. If financial institutions over-predict

the VAR or ES, they end up storing more capital than needed and hence lose po-

tential interest income that they could have earned on the extra amount. However,

under-prediction risk measures may lead to banks not having enough capital to ab-

sorb large losses and hence makes them crises-prone.

In this chapter, we look at how the homogeneous scoring functions penalize for

over-prediction and under-prediction. Since firms only have to deal with the loss

of profit that would have been made on extra money stored for over-predicted VAR

or ES, it is desirable for a scoring function to penalize more for under-prediction

than over-prediction.

6.1 Simulation Study
We begin by illustrating how the homogeneous scoring functions penalize for over-

prediction and under-prediction of VARα of the same magnitude. We assume our
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returns follow a standard normal distribution and select the optimal forecast (Ropt)

as the 0.95 quantile of the underlying distribution. The 0.99 and 0.8325 quantiles

are set as the over-predicted and under-predicted VARα forecasts respectively. The

over-predicted VARα forecast (R̂ov) and under-predicted VARα forecast (R̂ud) are

chosen such that

R̂ov−Ropt = Ropt − R̂ud

We compute the expected score (EFS(R̂,Y )) for chosen values of the homogeneity

order (b) of our scoring function and rank the expected scores for the optimal, over-

predicted and under-predicted VARα forecasts. Table 6.1 below shows the ranks

for different values of the homogeneity order. It is seen that the optimal forecast

has the lowest expected score and is hence ranked as the best forecast for all values

b. The over-predicted VARα forecast has the second lowest expected score for the

homogeneous scoring functions with lower homogeneity order. The ranking of the

over-predicted and under-predicted forecasts however changes for the case where

b = 3 or higher.
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Figure 6.1: Plot depicting the optimal forecast value, over-predicted and under-predicted VAR forecasts
for a case where returns are assumed to follow a standard normal distribution
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E(Sop)[Rank] E(Sov)[Rank] E(Sud)[Rank]
b=0 0.0372 [1] 0.0434 [2] 0.0668 [3]

b=0.1 0.5368 [1] 0.5455 [2] 0.5670 [3]
b=0.5 0.1431 [1] 0.1546 [2] 0.1750 [3]
b=1.0 0.1031 [1] 0.1197 [2] 0.1375 [3]
b=1.5 0.0999 [1] 0.1238 [2] 0.1370 [3]
b=2.0 0.1098 [1] 0.1442 [2] 0.1501 [3]
b=3.0 0.1618 [1] 0.2337 [3] 0.2098 [2]
b=5.0 0.5392 [1] 0.8592 [3] 0.6112 [2]

Table 6.1: Expected scores and corresponding forecasts for selected values of the homogeneity order b
used in the scoring function for VAR0.95 forecasts. Sop, Sov and Sud indicate scoring functions when the
optimal forecast, over-predicted forecast and under-predicted forecasts, respectively, are used.

We further explore how the homogeneous scoring functions penalize for over-

prediction and under-prediction as the magnitude of the difference (d) between the

optimal forecast and the over-/under-predicted forecasts increases. We assess the

behaviour of the scoring functions using data generated from a skewed-normal dis-

tribution with skewness parameter of 3 and a skewed t-distribution with 5 degrees

of freedom and a skewness parameter of 3. The expectation of the homogeneous

scoring function under the given distribution of the random variable Y is computed

at various magnitudes of difference.

Figure 6.2 and Figure 6.3 display the plot of the expected score of the scoring

function against the magnitude of the difference. For the two cases studied, it is

seen that for lower homogeneity order, the expected score for the under-predicted

value is greater than that of the over-predicted value. However, for higher values

of b (e.g., b = 3), over-prediction is penalized more than under prediction as the

magnitude of the difference (d) increases.

For the pair (VAR, ES) forecasts, we look at the 0-homogeneous and the (1/2)-

homogeneous scoring functions and assess how they penalize for over-prediction

and under-prediction of the same magnitude. The homogeneous scoring functions

for the pair (VAR, ES) assign negative score values and hence assessment of how

they penalize for under-prediction and over-prediction is done by measuring the

distance from the expected score at the optimal forecast to the expected score for

the under-predicted and over-predicted value at a given d. Figure 6.4 illustrates

how the distance from the expected score at the optimal forecast to the expected

score of the under-predicted value is higher than that for the over-predicted value
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Figure 6.2: Plot of expectation of homogeneous scoring function for VAR0.95 forecasts against the mag-
nitude of difference for over-prediction and under-prediction. Top panel shows the case for the lower
homogeneous order b, where under-prediction is penalized more than over-prediction. The lower panel
shows the case for higher values of b where over-prediction is penalized more than under-prediction.
Data is generated from a skewed-normal distribution with mean zero, unit variance and skewness pa-
rameter of 3.

as d increases.
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Figure 6.3: Plot of expectation of homogeneous scoring function for VAR0.95 forecasts against the mag-
nitude of difference for over-prediction and under-prediction. Top panel shows the case for the lower
homogeneous order b, where under-prediction is penalized more than over-prediction. The lower panel
shows the case for higher values of b where over-prediction is penalized more than under-prediction.
Data is generated from a skewed-t distribution with mean zero, unit variance, 5 degrees of freedom and
skewness parameter of 3.

48



0.2 0.4 0.6 0.8 1.0 1.2 1.4

−
0.

5
0.

0
0.

5
1.

0

skewed−t, b = 0

difference

ex
pe

ct
ed

 s
co

re

optimal forecast 

under−prediction 

over−prediction 

0.2 0.4 0.6 0.8 1.0 1.2 1.4

−
1.

0
−

0.
6

−
0.

2
0.

0

skewed−t, b = 0.5

difference

ex
pe

ct
ed

 s
co

re

optimal forecast 

under−prediction 

over−prediction 

0.2 0.4 0.6 0.8 1.0 1.2 1.4

−
0.

5
0.

0
0.

5
1.

0

skewed − normal, b = 0

difference

ex
pe

ct
ed

 s
co

re

optimal forecast

under−prediction 

over−prediction 

0.2 0.4 0.6 0.8 1.0 1.2 1.4

−
1.

0
−

0.
8

−
0.

6
−

0.
4

−
0.

2
0.

0

skewed − normal, b = 0.5

difference

ex
pe

ct
ed

 s
co

re

optimalforecast 

under−prediction 

over−prediction 

Figure 6.4: Plot of expectation of homogeneous scoring function for(VAR0.95, ES0.95) forecasts against
the magnitude of difference for over-prediction and under-prediction. Top panel shows the case where
data is generated from a skewed-t distribution with mean zero, unit variance, 5 degrees of freedom and
skewness parameter of 3. The lower panel shows the case where data is generated from a skewed-
normal distribution with mean zero, unit variance and skewness parameter of 3.
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Chapter 7

Conclusion

This thesis investigates the criteria for choosing desirable scoring functions for

evaluating forecasting procedures for Value-at-Risk and Expected Shortfall. Gneit-

ing [2011a] argues that consistent scoring functions lead to reasonable ranking of

forecasts. Patton illustrates that in the face of model misspecification, parameter es-

timation error and nonnested information sets, ranking of forecasts may change de-

pending on the consistent scoring function used and hence care should be taken in

selecting a consistent scoring function for the evaluation of forecasts. We identify

homogeneity of scoring functions as the first criterion since ranking of forecasts is

invariant under change of units when homogeneous scoring functions are used. We

concentrate on the family of homogeneous scoring functions for evaluating VAR

and pair (VAR, ES) forecasts. We show that for a heavy-tailed GARCH (1, 1)

model with tail index 2κ , the expectation of the homogeneous scoring functions

exists as long as the homogeneity order (b) is less than the tail index. We assess the

finite-sample properties of the Diebold-Mariano test [Diebold and Mariano, 1995]

which is used in testing for significance of the difference between competing fore-

casts. With the aid of simulations, we show that homogeneous scoring functions

with lower homogeneity order have better size and power properties for the D-

M test and hence should be considered in evaluating forecasts of VAR and pair

(VAR, ES). Lastly we show that the homogeneous scoring functions with lower

homogeneity order penalize more for under-prediction than over-prediction of the

same magnitude which is a desirable property of a scoring function for financial
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institutions when predicting risk measures.

Some future work can be done building on the criteria we have established for

choosing scoring functions. Firstly, further research can be done to study the be-

haviour of the homogeneous scoring functions as we examine the extreme upper

tails of a given distribution to help understand why the size and power values for

the extreme upper tails are different from the less extreme cases. Secondly, re-

search can be done on other criteria to consider in choosing a consistent scoring

function for evaluating the VAR and the pair (VAR, ES) forecasts. Furthermore, re-

search can be done on the criteria for choosing among non-homogeneous consistent

scoring functions for evaluating VAR and pair (VAR, ES). Lastly, this work con-

centrates on the criteria for selecting scoring functions for evaluating forecasts for

quantiles and expected shortfall in risk management. This can be extended to iden-

tify the criteria for the selection of consistent scoring functions for the evaluation of

forecasts for functionals such as the mean and expectiles in different applications

and fields where forecasts of these functionals are issued and evaluated.

51



Bibliography

C. Acerbi and B. Szekely. Backtesting expected shortfall. Risk Magazine, 2014.
→ pages 2

C. Acerbi and D. Tasche. On the coherence of expected shortfall. Journal of
Banking and Finance, 26(7):1487–1503, 2002. → pages 7

P. Artzner, F. Delbaen, J.-M. Eber, and D. Heath. Coherent measures of risk.
Math. Finance, 9:203–228, 1999. → pages 7

Bank for International Settlements. Consultative Document: Fundamental review
of the trading book: A revised marked risk framework. 2013. → pages 7

F. X. Diebold and R. S. Mariano. Comparing predictive accuracy. J. Bus. Econ.
Stat., 13:253–263, 1995. → pages 3, 24, 25, 50

F.X. Diebold, T. Schuermann, and J.D. Stroughair. Pitfalls and opportunities in
the use of extreme value theory in risk management. Journal of Risk Finance,
1:30–35, 2000. → pages 56

W. Ehm, T. Gneiting, A. Jordan, and F. Krüger. Of quantiles and expectiles:
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Appendix A

Forecasting Risk Measures

The aim of this report is to examine the performance of consistent scoring functions

used in assessing VAR and pair (VAR, ES) forecasts. There are various methods

used in producing point forecasts for risk measures. Kuester et al. [2006] review

a number of approaches including the fully parametric estimation, historical sim-

ulation, quantile regression approach, among other methods. To illustrate how the

estimation methods for risk measures are used, we assume the series of negated

log-returns {Yt}t∈N can be modeled as

Yt = µt +σtεt , (A.1)

where {εt}t∈N is a sequence of independent and identically distributed (i.i.d) ran-

dom variables with zero mean and unit variance, and µt and σt are measurable

with respect to sigma algebra Ft−1, which represents information about the pro-

cess {Yt} available up to time t-1. To capture time dynamics of financial time

series, we can assume that the conditional mean µt follows an ARMA process. An

ARMA process of order (p,q) is given as

µt = c+
p

∑
i=1

aiYt−i + zt +
q

∑
j=1

b jzt− j, t ∈ Z, (A.2)

where (zt) is the linear innovation process of (Yt).

The conditional variance σ2
t is assumed to evolve according to a GARCH (p,q)
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model specification given as

σ
2
t = ω +

q

∑
i=1

αiY 2
t−i +

p

∑
j=1

β jσ
2
t− j, t ∈ Z. (A.3)

Let R be a generic risk measure, a rea-valued map from a space of random vari-

ables. Then based on (A.1), the conditional one step ahead forecast of a risk mea-

sure R is

R(Yt |Ft−1) = µt +σtR(ε), (A.4)

where ε is used to denote a generic random variable with the same distribution

as the εt’s. We estimate µt , σt via the maximum likelihood procedure under a

specific assumption on the distribution of innovations εt in (A.1) and use the fully

parametric estimation (FPE) and the (filtered) historic simulation (FHS) to estimate

R(ε) based on the sample of standardized residuals

{ε̂t = (yt − µ̂t)/σ̂t}. (A.5)

This two-stage estimation procedure from that of McNeil and Frey [2000] and

Diebold et al. [2000].

A.1 Fully parametric estimation
For the fully parametric approach, a parametric model is assumed for the innova-

tions with parameters of the distribution estimated based on standardized residuals

of the model in (A.1). From the fitted distribution, we estimate the given risk

measure. For example, if the innovations follow a standardized t-distribution, then

VARα(ε) is given by t−1
d̂

(α), where d̂ is the estimated degree of freedom and

t−1
d̂

(α) is the α-quantile of the distribution. The ES can be computed as

ESν(ε) = E(ε|ε ≥VARν(ε))

where numeric integration is used to evaluate the conditional expectation [Nolde

and Ziegel, 2016].
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A.2 Filtered historic simulation
The historic simulation makes use of non-parametric estimation of VARα based on

the standardized residuals {ε̂t} in (A.5), which can be seen as representing a filtered

time series. A sample {ε̂∗t ;1≤ t ≤m} of a large size m (e.g., m = 10,000) is drawn

from the estimated standardized residuals {ε̂t ;1 ≤ t ≤ n} and then the empirical

estimate of the α-quantile is taken which gives V̂AR
FHS
α (ε), the VAR estimate. The

ES is estimated using the empirical version of the conditional expectation given

that the residual exceeds the corresponding VAR estimate:

ÊS
FHS
ν (ε) =

1

#{i : i = 1, ...,m, ε̂∗i > V̂AR
FHS
α (ε)}

m

∑
i=1

ε̂
∗
i 1{ε̂∗i > V̂AR

FHS
α (ε)}.
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