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Abstract 

 

The demand for high pressure injection of natural gas in underground has been an incentive for a 

growing interest in the design and manufacture of multistage compressors. Many of such 

compressors suffer from violent sub-synchronous whirl. If the spin-speed of the rotors exceed the 

“threshold speed of instability,” the rotor-bearing system experiences sub-synchronous whirling 

known as oil whirl/whip. For rotors supported on journal bearings, oil whirl is the most common 

cause of instability. Existing models fall short in predicting the nature of sub-synchronous 

instabilities in journal bearings with a finite length. In this thesis, a new nonlinear rotor-bearing 

model is introduced to characterize the phenomenon of oil whirl for rotors supported on finite 

length journal bearings. 

 

As a first step in constructing a rotor-bearing model, this research introduces a modified scheme 

for performance predictions of cavitated journal bearings. The resulting algorithms are then used 

throughout the thesis to obtain solutions to the Reynolds equation in original and perturbed form 

in order to calculate journal induced pressure and pressure gradients. The pressure gradients are 

used as a basis for the calculation of bearing linear and nonlinear dynamic coefficients. Dynamic 

coefficients are widely used to represent the journal bearing reaction forces exerted on the rotating 

shaft. These coefficients are implemented to construct mathematical models of the system that are 

suitable for studying dynamics and stability. Analytical treatments are introduced wherever 

possible to provide a means for verification purposes. 

 

The linear and nonlinear stability of flexible shafts supported on finite length journal bearings is 

studied. As linear models are not suitable for bifurcation analysis, a simple yet versatile nonlinear 

rotor-bearing model is proposed such that the journal force is represented by first and higher order 

dynamic coefficients. Results show that the implementation of nonlinear coefficients can enable 

the application of nonlinear analysis methods. Nonlinear stability analysis is carried out by 

implementing a variety of techniques including the Hopf bifurcation theorem and eigenvalue 

analysis of the Monodromy matrices.  The versatility of the techniques used made it possible to 

study the existence and directions of Hopf bifurcations for rotors supported on finite length journal 

bearings.  
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Preface 

 

Chapter 2 is collected from the data presented in the following article: 

Miraskari, M., Hemmati, F., Jalali, A., AlQaradawi, M., and Gadala, M. S., 2016, "A Robust 

Modification to the Universal Cavitation Algorithm in Journal Bearings," Journal of Tribology. 

I discretized and solved the governing equations specific to the problem at hand, generated and 

extracted the results, and wrote the manuscript in consultation with Mohamed S. Gadala. Some 

modifications were suggested by Farzad Hemmati, A Jalali, and M.Y AlQaradawi. 

 

Chapter 3 is collected from the data presented in the following article: 

Miraskari, M., Hemmati, F., M.Y. AlQaradawi, Mohamed S. Gadala, 2017, “Linear Stability 

Analysis of Finite Length Journal bearings in Laminar and Turbulent Regimes,” accepted for 

publication in Journal of Engineering Tribology. 

I derived the governing equations, solved the appropriate equations, generated and extracted the 

results, and wrote the manuscript in consultation with Mohamed S. Gadala. Some modifications 

were suggested by Farzad Hemmati and M.Y. AlQaradawi. 
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Journal Bearings – Part (A): Analytical Bearing Model," submitted – under review. 

I derived the governing equations and constructed the appropriate models, solved the equations, 

generated and extracted the results, and wrote the manuscript in consultation with Mohamed S. 
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Chapter 5 is collected from the data presented in the following article: 

Miraskari, M., and Gadala, M. S., 2017, " Nonlinear Dynamics of Flexible Rotors Supported on 

Journal Bearings – Part (B): Numerical Bearing Model," submitted – under review. 
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 𝐾𝑖𝑗𝑘𝑙 

𝐾𝑠, 𝑘̅𝑠 Shaft stiffness where 𝑘̅𝑠 = 
𝐶 

Π
𝐾𝑠 =

1

𝑆

𝐶 𝐾𝑠

 𝑊
 

𝑘𝜃, 𝑘𝑧 Circumferential and longitudinal turbulent coefficients 

𝐾𝑛𝑢𝑚 Numerical stiffness 

𝐿 Journal bearing Length, m 

M, 𝑚𝑢, 𝑚̅𝑢 Reduced mass of the rotor, and unbalance mass where: 𝑚̅𝑢 =
𝑚𝑢

𝑀
 

𝑴 Monodromy matrix 

𝑚, 𝑛 Number of elements in x and z directions 

𝑁 Rotating speed, 
𝑟𝑒𝑣

𝑠𝑒𝑐
 

𝑂𝐵, 𝑂𝑗𝑠, 𝑂𝑗𝑑 , 𝑂𝑀 𝑂𝐵: Geometric center of the Bearing chamber, 𝑂𝑗𝑠, 𝑂𝑗𝑑: steady state and 

instantaneous position of the journal center, instantaneous position of 

the central disk 

𝑂𝐿 Order of the system of ordinary differential equations 

𝑃𝜀(𝑡) Periodic solutions due to Hopf bifurcation 

𝑃, 𝑃̅ Bearing induced pressure and its non-dimensional form: P̅ =
P

 𝜇 𝑁 (
𝑅

𝐶
)
2 

𝑃0, 𝑃𝑅 , 𝑃𝑇 , 𝑃𝑅 , 𝑃𝑇  Steady pressure and its gradients in R-T coordinates 

𝑃0, 𝑃𝑥, 𝑃𝑦, 𝑃𝑥 , 𝑃𝑦 ,  

𝑃𝑥𝑦, 𝑃𝑥𝑥, 𝑃𝑦𝑦, 

𝑃𝑦𝑥 , 𝑃𝑥𝑦 , 𝑃𝑥𝑥 , 𝑃𝑦𝑦  

Steady pressure and its gradients in X-Y coordinate system 

𝑃̅𝑚𝑎𝑥, 𝑃̅𝑔 Non-dimensional maximum pressure and supply groove pressure 

𝑄 Rotation matrix 

𝑞𝑖 Generalized journal bearing position and velocity: 𝑞1 = 𝑒, 𝑞2 =

𝜑, 𝑞3 = 𝑒  and 𝑞4 = 𝜑  

𝑅 Journal radius, m 

𝑅𝑢, 𝑅̅𝑢 Unbalance mass eccentricity radius where: 𝑅̅𝑢 =
𝑅𝑢

𝐶
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𝑅(𝑈), ‖𝑅(𝑈)‖2 Residual matrix and the L2 norm of the residual 

𝑅𝑒 Average Reynolds number: 𝑅𝑒 =
𝜌 𝑅 𝜔 𝐶

𝜇
 

𝑅𝑒∗ Local Reynolds number: 𝑅𝑒∗ =
𝜌 𝑅 𝜔 ℎ

𝜇
 

𝑆 
Sommerfeld number 𝑆 =  

𝐿 𝐷 𝜇 𝑁 

𝑊
(
𝑅

𝐶
)
2

 

𝑆̅ Source term for the steady and perturbed Reynolds equation 

𝑡, 𝜏 Time (sec) and its non-dimensional form: 𝜏 = 𝜔 𝑡 

u, 𝑢̅  Solution to the governing PDE and its control volume average 

𝑢̃, 𝑈̃ Axillary control volume solution and its vector representation 

𝑈⃗⃗ , 𝛿𝑈⃗⃗  Control volumes solution vector and the change in solution vector 

𝑊, 𝑊̅ Bearing load capacity 𝑊 =
𝑀𝑔

2
 (𝑁) and its non-dimensional form: 

𝑊̅ =
𝑊

𝐿 𝐷 𝜇 𝜔
(
𝐶

𝑅
)
2

 

𝑥, 𝑦, 𝑅, 𝑇 Cartesian and rotated coordinate systems. The R coordinate is aligned 

with the line of centers. 

𝑥 , 𝑦 , 𝑅 , 𝑇  Velocity components in Cartesian and rotated coordinate systems 

𝑥̈, 𝑦̈ Journal bearing acceleration in (𝑥, 𝑦) coordinate system 

𝑋𝑖 State-space variables of the dynamical system. 𝑖 =  1,2, … ,6 

𝑋𝑖 State-space variables of the dynamical system. 𝑖 =  1,2, … ,6 

𝑋𝑛 linearly independent vector solutions of 𝐗 = 𝑨(𝑡) 𝐗 

𝑿̇∗ Fixed point or steady state of the system 

𝑿̇𝑛, 𝑿̇𝑛+1 State-space vector at time-step n and n+1 

𝛿𝑿̇ Change in solution of the dynamical system from two consecutive 

time-steps 

𝑥̅, 𝑦̅, 𝑋̅𝑗𝑜𝑢𝑟𝑛𝑎𝑙, 𝑌̅𝑗𝑜𝑢𝑟𝑛𝑎𝑙 Dimensionless journal center displacement in horizontal and vertical 

directions 

𝑥, 𝑧 Circumferential and axial directions in space 

𝑥̅, 𝑧̅ Dimensionless circumferential and axial directions in space 

𝑋𝑖 Coefficients of the linear discretized system in x direction. 𝑖 =

 −2,−1, 0, 1 
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𝑍𝑗 Coefficients of the linear discretized system in z direction. 𝑗 =

 −1, 0, 1 

𝜜(𝜈),𝜝(𝜈) Real and imaginary parts of the complex eigenvalues of the Jacobian 

matrix 

𝛼 Fluid density ratio: 𝛼 =
𝜌

𝜌𝑐
 

𝛽, 𝛽̅ Lubricant bulk modulus (Pa) and its non-dimensional form: 𝛽̅ =

𝛽

𝜇𝜔
(
𝐶

𝑅
)
2

 

𝛾, Γ Stability parameter 𝛾 =
𝐶 𝐾𝑠

𝑊
𝜔̅𝑡ℎ
2  and bearing characteristic number: 

Γ =
𝜇𝑅𝐿3

𝑀𝐶2.5𝑔0.5
 

𝜖0,  𝜑0 Steady state eccentricity ratio 𝜖 =  
𝑒

𝐶
 and attitude angle 

𝜖, 𝜑, 𝜖 , 𝜑  Instantaneous journal position and velocity in rotating frame of 

reference (𝜖, 𝜑) 

𝝓(t) T-periodic solution to the system 𝐗 = 𝑨(𝑡) 𝐗 

𝚽(𝑡) fundamental matrix solution for the linearized equation about the 

periodic orbit 

𝜼0 Set of initial conditions for the system of equations: 𝜼0 = 𝑿̇(0) 

𝜁, 𝜗, 𝜉, 𝜓 Attitude angles measured from: 

𝜉: instantaneous line of centers to the load line 

𝜗: instantaneous line of centers to squeeze velocity vector line 

𝜁: pure squeeze velocity vector to the global X coordinate 

𝜓: instantaneous line of centers to the global X coordinate 

𝜃0, 𝜃, 𝜃𝑛  𝜃0, 𝜃 are circumferential coordinates measured with respect to steady 

and dynamic line of centers. 𝜃𝑛 is measured from the −𝑋 global 

coordinate. 

𝜃𝑐𝑎𝑣 The cavitation boundary 

𝜆  Eigenvalues of the discretized system coefficient matrix 

𝜇 Fluid film (lubricant) viscosity (Pa.s) 
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𝜇𝑗 , 𝜇
𝐻, 𝜇2𝑖 Floquet exponents corresponding to the periodic solution of the system 

where 𝜇𝐻 is the first nonzero exponent of 𝜇𝑗, and 𝜇2𝑖 is the coefficient 

in the series expansion of the Floquet exponent 𝜇𝐻 

𝜈, 𝜈𝑐, 𝜈
𝐻, 𝜈2𝑖 𝜈 is the system tuning parameter, 𝜈𝑐 is the critical system parameter at 

which a bifurcation occurs, 𝜈𝐻 is the predicted system parameter when 

Hopf bifurcation occurs; and 𝜈2𝑖 is the coefficient in the series 

expansion of 𝜈𝐻 

𝜈, 𝜈̅ Whirl frequency 𝜈 = 𝜔𝜈̅ 

Π 
Non-dimensionalizing group: Π = 𝐿 𝐷 𝜇 𝑁 (

𝑅

𝐶
)
2

  

𝜌, 𝜌𝑐 Fluid film density (𝑘g 𝑚3⁄ ) and film viscosity at cavitation pressure 

𝜌𝑗 Characteristic (Floquet) multipliers corresponding to the periodic 

solution of the system 

𝜑 Attitude angle 

Φ𝑒𝑥𝑡
21 Extrapolated field variable in fine grid 

Φ1, Φ2, Φ3 Numerical estimate of the field variable in fine, medium and coarse 

mesh 

𝜔,𝜔̅ Dimensional and non-dimensional Shaft rotating speed (rad/s): 𝜔̅ =

𝜔√𝑀 𝐾𝑠⁄  

𝜔𝑟  Under-relaxation parameter 

𝜔̅𝑡ℎ Dimensionless threshold speed of instability 
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Chapter 1: Introduction  

 

1.1 Background 

Rotating machines started being manufactured in significant numbers concurrent with the 

development of waterwheels for hydraulic power in the early 1800s, and steam turbines in the late 

1800s. The first type of dynamic problem associated with rotor bearing systems was the critical 

speed phenomena when the excitation frequency (the spin speed of an unbalanced shaft) coincides 

with a natural frequency of the system and may lead to excessive vibration amplitudes. The first 

analysis of the critical speed phenomena was done by Rankine in 1869 [1]. Through his incorrect 

modeling, he concluded that rotor systems will become unstable if they operate above the first 

critical speed of the system. This conclusion has been found to be incorrect, and has delayed 

progress in the field of rotor science by 50 years [2]. It was shown later that Rankine’s incorrect 

predictions was due to a failure to include the Coriolis force in his model [3]. Rankine’s over-

simplified model of a rotor-bearing system is depicted in Figure 1-1. The first experimental 

evidence of successful supercritical operation was reported in 1890s by Delaval [2].  

 

 

Figure 1-1. The Rankine rotor-bearing model 

 

In the early developments in the field, the importance of bearings was not recognized until the 

work of Reynolds in 1886 that showed mathematically how a pressure is generated in the oil film 

to support the shaft. In 1919, Jeffcott [4] has corrected the analysis of the critical speed and showed 

analytically that rotor systems can operate at supercritical speeds. The Jeffcott model is shown in 

Figure 1-2. The next major issue to arise was whirl instability, first addressed by Newkirk and 

Kimball in 1920 [2]. 
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Figure 1-2. The Jeffcott rotor-bearing model 

 

1.1.1 Hydrodynamic Bearings 

In the 19th century, it was widely accepted that the oil in bearings simply serves to reduce the 

sliding friction between the shaft and the bearing. In 1886, Reynolds’s mathematical analysis 

showed that a pressure is generated in the oil film due to the rotation of the shaft within the bearing 

[5]. A schematic of a journal bearing inside the bearing chamber is shown in Figure 1-3. 

 

 

Figure 1-3. The schematic of a journal bearing inside the bearing chamber 

 

At the time, Reynolds’s partial differential equation of the oil film was not feasible to solve in two 

dimensions. The first successful remedy came from the work of Sommerfeld and Harrison [6] who 
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simplified the problem and were able to solve the Reynolds equation to obtain the induced pressure 

and bearing forces on the shaft. The most important aspects of their work were firstly, to show that 

the induced bearing force is enough to support the load of the shaft and to show that this oil film 

force is not in line with the radial deflection of the shaft from the bearing centerline. As a result, 

there will be a component of the force normal to the radial deflection which is known as the cross-

coupled force, and this force is responsible for the sub-synchronous instability that occurs at 

supercritical speeds, known as the oil whirl/whip effect. The cross coupled terminology comes 

from the form of the force expressions in a nonrotating X-Y coordinate where a rotor displacement 

in X direction produces a force in the Y direction [2]. The induced journal forces are shown in 

Figure 1-4. 

 

 

Figure 1-4. The tangential force component exerted from the oil onto the journal 

 

Newkirk and Taylor [7] were among the first to relate the bearing induced instability to the oil film 

bearings. They found that when the system reaches twice its first critical speed, a sub-synchronous 

whirl destabilizes the system; however, they could not successfully explain the phenomenon. In 

1959, Hori [8] succeeded in explaining various fundamental characteristics of oil whip by studying 

the stability of shaft motion under the induced pressures of journal bearings. 

 

1.1.2 Rotordynamic Models 

A better model of the rotor bearing system was introduced by D.M Smith in 1933 [9]. He went far 

beyond Jeffcott in his work and successfully concluded that while damping always favors stability 
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in bearing supports, it can also cause instability in the rotating parts at speeds above the critical 

speed. A new method for calculating critical speeds of flexible rotors was introduced in 1945 by 

Prohl [10] for rotors modeled by a series of lumped masses at different stations. His method 

became known later as the transfer matrix method. 

 

Early researchers modeled flexible rotors as circular, flexible beams with concentrated mass 

stations being supported at rigid points in the bearing locations. It was not until the work of Hagg 

and Sankey in 1956 that journal bearings began to be modeled as radial springs and dampers [11]. 

The very first attempts to solve the Reynolds equation by means of numerical methods goes back 

to the work of Raimondi and Boyd in 1958 [12]. J.W Lund, in his PhD thesis in 1966, defined the 

so called linearized force coefficients for oil film bearings [13]. Lund defined the stiffness and 

damping coefficients for the bearings. His definition also included the cross-coupling effects. A 

modified Jeffcott model with journal forces modeled as spring and dampers is shown in Figure 

1-5. 

 

 

Figure 1-5. A modified rotor-bearing model with 8 DOFs [14] 

 

While most of the rotor systems being used before the 1940s were generally operating at low 

speeds, the development of gas turbines for aircraft propulsion, as well as the need for centrifugal 

machines for petrochemical gas compression, brought many more applications at a variety of 

speeds in turbomachinery. The demand for high pressure injection of natural gas in underground 
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lead to the design of multistage compressors. In the 1970’s many such compressors were suffering 

from violent sub-synchronous whirl [2], a form of instability in rotordynamics. These very 

expensive problems arising in industrial compressors were the incentive for the development of 

computer simulations of rotordynamic instability. The most significant development was an 

algorithm published by Lund in 1974 as an extension to the Myklestad-Prohl method (which only 

calculated the critical speeds). His algorithm allowed damping and cross coupled force coefficients 

to be included in the model, and damped eigenvalues of the system were computed [15]. 

 

1.1.3 Rotordynamic Instability  

In turbomachinery, instabilities are characterized by whirling of the rotor-bearing systems at 

frequencies other than the rotating frequency of the shaft. While the most common source of 

vibrations in rotor-bearing systems is the shaft imbalance, the resulting vibrations are synchronous 

and they never cause instability. The term instability in rotordynamics is often associated with sub-

synchronous vibrations. While large amplitudes of sub-synchronous vibrations do not occur 

frequently, they can appear at certain operating conditions and can lead to high amplitude and 

destructive vibrations [16]. Different mechanisms have been identified in the literature to explain 

rotordynamic instability, such as the hydrodynamic bearings (oil whirl/whip) [7], internal friction 

in rotating parts [17], dry friction whip [18], labyrinth seals [19] et cetera. For the rotor bearing 

systems supported on journal bearings, the oil whirl/whip instability is the most frequent source of 

instability and will be addressed in detail. 

 

In a fully balanced rotor-bearing system and at moderately low rotational speeds, the only mode 

of motion is the rotor spinning at its designed operating speed. At this equilibrium point, the journal 

bearing induced pressures can support the weight of the shaft. This point is referred to as the static 

equilibrium position or the steady state point of the system. If the rotor bearing system is 

undisturbed, the system remains at its steady state operating point. A small unbalance force 

however, will push the shaft to orbit around the steady state point. Although any mode of motion 

beyond the desired spinning is generally unwanted, small orbits are usually tolerated and do not 

endanger the safe operation of the system. Upon increasing the spin speed of the shaft, and after 

crossing critical shaft spin speed, high amplitude vibrations can suddenly occur even for a fully 

balanced rotor. This occurrence of high amplitude vibrations is a bifurcation in the dynamical 
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system and is known as the oil whirl phenomenon in rotor-bearing systems. Oil whirl is a self-

induced instability and is a result of the transfer of energy from rotor spinning to rotor lateral 

motion [20]. As high amplitude vibrations can be extremely hazardous to the operation of the 

system and the safety of the working personnel, characterizing the mechanisms that can cause 

excessive whirling motion is of paramount importance. Photos of a catastrophic system failure due 

to excessive whirling amplitudes in a steam turbine unit are shown in Figure 1-6. 

 

 

(a) 

 

(b) 

Figure 1-6. Photos [14] from a 1970s catastrophic failure of a large 600MWsteam turbine-generator set. 

Failures is potentially traced to the large unbalance forces from loss of one or more large LP turbine blades 

at running speed, coupled with behavior of journal bearings during large unbalance. (a) LP steam turbine 

last stage. (b) Generator shaft.  
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The follower journal bearing forces at a spin speed beyond a critical value, known as the threshold 

speed of instability, 𝜔𝑡ℎ, is responsible for this instability [2, 21]. The follower force can 

alternatively be expressed as the cross-coupled stiffness coefficient of a journal bearing [16]. In 

linear stability theory applied to rotor-bearing systems, the equations of motion of the rotor and 

journal are constructed using the linearized stiffness and damping coefficients around steady state 

equilibrium points [13]. Eigenvalue analysis of this linearized system of equations of motion are 

then used to find the speed at which the real part of the eigenvalue of the system becomes positive 

(indication of instability due to undamped vibrations) for each eccentricity. Stability maps are then 

obtained to help identify the stable/unstable regions of operation [18].  

 

1.2 Literature Review 

 

1.2.1 Cavitation in Journal Bearings 

The first successful mathematical model ever proposed for the lubrication problem was by Osborne 

Reynolds in 1886. Even Reynolds himself was doubtful that the fluid film can sustain sub-

atmospheric pressures and hence he limited his analysis to lower eccentricities. The remarkable 

analytical solution to the Reynolds Equation by Sommerfeld in 1904 predicted a negative anti-

symmetric pressure (tensile stress) in the divergent region of the bearing with magnitudes as large 

as the predicted positive pressure. Liquids in pure form or with a small amount of dissolved 

gaseous content were reported to withstand tensile stresses of even up to hundreds of atmospheres 

[22]. However, in tribological environments with extreme shearing of the lubricant and high rates 

of heat generation and dissipation, a film rupture is expected when the fluid pressure drops below 

the saturation pressure of the dissolved gases (gaseous cavitation) or below the vapor pressure 

(vapor cavitation or boiling) [23]. The onset and extent of liquid cavitation in fluid film bearings 

is equally important in determining the load capacity of a fluid film bearing as well as largely 

influencing the rotor-dynamic stability of a rotor-bearing system and its maximum whirl amplitude 

of vibration [24]. Furthermore, vapor cavitation collapse (implosion) can cause severe surface 

material damage.  
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Regardless of the nature of the bubbles that form during cavitation, whether caused by the 

environment or coming from the lubricant film itself, the bubbles induce a rupture in the 

continuous lubricant film. This happens in the diverging part of the lubricant film where the 

original Reynolds theory predicts negative pressures. Although the existence of the cavitated 

region is well understood, the exact position of the rupture interface and the applied boundary 

conditions at the interface are subjects for considerable discussion.  

 

The first attempt to account for the film rupture, was made by Gumbel in 1914; he assumed the 

boundary of the rupture originated in the immediate vicinity of the film at minimum thickness, and 

neglected the sub-ambient pressure loop completely when calculating bearing performance. His 

work falls short mainly because it does not respect the mass continuity at the interface and does 

not account for film reformation. Although the pressure predictions based on the Gumbel condition 

are at variance with experimental data, the Gumbel boundary condition applied to short and long 

journal bearings result in closed-form solutions for bearing performance and is still employed in 

theoretical work [25]. The next major work came from Swift and Stieber in 1932, who assumed a 

zero pressure gradient at the start of the cavitation zone. The algorithm proposed by Christopherson 

[26] in 1941 is based on the Swift-Stieber model and has been widely used in numerical analysis 

due to its ease of implementation. The main disadvantage of the Christopherson algorithm is that 

it is not mass-conserving and it is not capable of presenting the sub-cavity pressures that occur just 

upstream from the cavitation boundary. Non mass-conserving schemes are shown to predict 

incomplete identification of the film rupture and incorrect detection of the film reformation. 

Analysis of dynamic journal bearings and bearings with textured surfaces revealed that ensuring 

the mass continuity is necessary to correctly predict film rupture and reformation [27, 28]. 

 

The majority of existing mass-conserving algorithms are based on the notable work of Jacobsson-

Floberg [29] and Ollson [30], together known as the JFO cavitation model. This model assumes a 

constant pressure everywhere in the cavitation region (𝑃 = 𝑃𝑐𝑎𝑣) and hence, takes the pressure 

gradient to be zero in the cavitated region. Their model also provides boundary conditions that 

conserve the mass at the interface between the full film (non-cavitated) and the cavitation zones at 

rupture and reformation boundaries. The JFO model semi-accurately [31] predicts the onset and 

shape of the cavitation region in bearings that operate at moderate to high journal eccentricities 
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(i.e. moderate to large static loads). The main disadvantage of the JFO model is the difficulty of 

implementation in computer codes, due to the complexity of numerical treatment of the nonlinear 

boundary conditions. Elrod and Adams [32, 33] developed a finite difference algorithm based on 

the JFO theory, but in a very simple manner. They introduced a change of variable that is related 

to the film pressure through the bulk modulus of the lubricant and rewrote the governing equations 

(in terms of the new variable) assuming constant bulk modulus throughout the lubricant film. They 

also combined two governing equations into a single equation throughout the lubrication region 

by proper use of a switch function to suppress the pressure driven terms in the cavitated region. 

Their ingenious approach was very successful for cavitated journal bearing performance 

predictions and is usually referred to as the universal cavitation algorithm (also E.A. algorithm). 

The cavitation algorithm was then mainly solved by means of Gauss-Seidel based relaxation 

methods [28, 34] or Alternate direction Implicit (ADI) [24, 35]. 

 

Vijayaraghavan and Keith [36] addressed a change in the type of PDE at the cavitation boundary, 

and designed an algorithm that takes this change into consideration to further refine computational 

efficiency. As relaxation and ADI methods require large computing times to convergence, 

different algorithms were proposed to enhance the convergence speed of the Elrod algorithm. 

Vijayaraghavan and Keith [36] proposed the use of the Approximate Factorization (AF) technique. 

Woods and Brew [37] and Qiu and Khonsari [38] advocated the use of Multigrid techniques to 

accelerate the convergence speed.  

 

The implementation of the universal cavitation algorithm is generally troubling in a computer 

code, mainly due to dependency of the numerical efficiency on the chosen values for the lubricant 

bulk modulus (𝛽). Choosing 𝛽 values close to its physical value of approximately 2 GPa, can 

render the system of equations too stiff to obtain accurate solutions, and it can also affect the 

convergence speed drastically. This difficulty was addressed by choosing artificially low values 

for  𝛽  [32, 36], assuming that this particular choice does not affect the final results [39].  Many 

subsequent studies show that the choice of 𝛽 indeed affects the performance predictions of the 

journal bearings [40-43]. 
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Sahlin et al. [43] reported that treating the bulk modulus as a constant in the whole domain can 

produce accurate results only for a narrow pressure range . They introduced an algorithm mainly 

based on the Elrod algorithm, but with an arbitrary choice for pressure-density to account for bulk 

modulus variations with pressure, and noted the importance of the bulk modulus on the final 

calculations. Bayada and Chupin [41] and Bayada [44] proposed an algorithm similar to Elrod-

Adams by directly solving the constitutive equations of the lubricant with detailed descriptions of 

the mixture characteristics in the cavitated region. They proposed a smooth pressure-density 

relation similar to Sahlin et al. [43], together with models for viscosity variations with density. 

Their unified treatment of the cavitated and full film regions eliminate the need for up-winding 

differencing in the cavitation region and naturally allows for sub-cavitation pressures in the 

cavitation region, which is in-line with experimental predictions of pressures as low as 0.07 MPa 

upstream of the rupture interface [45].  They also showed how the choice of the lubricant bulk 

modulus can change the pressure distribution and the cavitation boundary. However, there was no 

reference made to how this choice can affect the performance of the numerical scheme itself. 

 

As an alternative approach to the universal cavitation algorithm, Giacopini et al. [46] proposed a 

mass-conserving linear complementarity formulation for the one dimensional cavitation problem. 

The major advantage of their complementarity formulation is that it alleviates the problems 

associated with the need to change the scheme differencing method as a result of a change in the 

PDE type at the cavitation boundary. Bertocchi et al. [42] extended the original one-dimensional 

LCP formulation of Giacopini et al. [46] to include the effects of fluid compressibility (pressure-

density relationship), piezo-viscosity (variation of viscosity with pressure) and non-Newtonian 

fluid behavior (shear rate dependence of lubricant viscosity) for 1D and 2D cavitation problems. 

Almqvist et al. [40] proposed a model starting with the expression of the mass flow that leads 

directly to the linear complementarity problem (LCP). The linearity is guaranteed by treating 𝛽 as 

a constant.  They reported on the influence of chosen bulk modulus values (100 MPa up to 10 GPa) 

on fluid film pressure, and suggested that the load carrying capacity of the bearing increases as the 

compressibility of the fluid decreases. The LCP based algorithms do offer benefits compared to 

the Switch function approaches; however, a complete performance analysis of these algorithms is 

missing in the literature and hence their computational efficiency is unclear and undocumented.  
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1.2.2 Linear Stability Analysis under Laminar and Turbulent Conditions 

Rotor whirling can be caused by a variety of mechanisms such as imbalance and misalignment 

with whirl frequencies of equal (synchronous) and higher (super-synchronous) than the spin speed 

of the shaft, respectively. In turbomachinery, an instability is usually referred to rotor whirling at 

frequencies other than the rotating spin frequency of the shaft. Although sub-synchronous rotor 

whirling is not the most common type of instability, when it does occur at certain operating 

conditions, it can lead to high amplitude and potentially destructive lateral vibrations in the system. 

The necessary condition for the occurrence of such  sub-synchronous whirling, known as oil 

whirl/whip, is an operating spin speed of the shaft that exceeds a threshold speed, known as 

“threshold speed of instability” [16]. Linearized stiffness and damping coefficients are frequently 

used as a basis for stability analysis of the rotor bearing systems in an aim to find the threshold 

speeds of instability for a rotor-bearing system. The linearized coefficients are evaluated at the 

equilibrium position of the journal and are commonly calculated either by the infinitesimal 

approach of Lund [47] or the finite perturbation approach as in Qiu and Tieu [48]. 

 

The journal bearing force is a strong nonlinear function of its position with respect to the bearing 

chamber. However, the stability of the rotor-bearing system can be characterized by means of 

linear analysis with the use of linearized bearing dynamic coefficients. It is widely known that the 

“local” stability of a non-linear system is essentially the same as the local stability of its linearized 

form; even though their stability type and global stability could be different [49]. Local stability 

analysis is valid only if the operating condition of interest is close enough to an operating 

equilibrium point or a fixed point of the system. Being close to a fixed point of the system is also 

a requirement for accurately estimating the linearized dynamic coefficients of the system, although 

there are different reports on the minimum required distance from fixed points to obtain accurate 

results. Lund [47] used the infinitesimal approach to obtain the dynamical coefficients such that 

the induced bearing pressure is perturbed by an infinitesimal amount through perturbing the oil 

film thickness. The operating points arising from this infinitesimal perturbation of the system are 

by definition very close to the steady state points of the system. He reported that the obtained 

coefficients are valid up to 40% of the bearing clearance.  
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As an alternative approach to obtain the dynamic coefficients, finite perturbations of the journal 

position and velocity are carried out, combined with direct numerical differencing to obtain the 

linearized coefficients. Qiu and Tieu [48] studied the effect of perturbation amplitudes and 

concluded that the finite perturbation-based calculated coefficients are within 2.5% of those 

obtained by the infinitesimal approach, if the perturbations of displacement and velocity are kept 

lower than 5% and 4%, respectively. Choy et al. [50] calculated nonlinear bearing stiffness 

coefficients and showed that oil film forces will exhibit nonlinearities when displacements are 

sufficiently far from the steady state operating point. San-Andres and Santiago [51] obtained the 

dynamic coefficients under high dynamic loads for which the journal moved in large orbital 

motions of up to 50% of the bearing clearance, and found good agreement with analytical 

linearized coefficients. Meruane and Pascual [52] calculated linear and nonlinear bearing 

coefficients under large orbital motion and showed that the linearized analytical coefficients agree 

reasonably with numerically obtained linear coefficients. They reported negligible variations 

between the linear and nonlinear models, provided that the operating speed is kept below the 

threshold speed of instability. Wang et al. [53] and Yang et al. [54] used an infinitesimal approach 

to calculate linear and nonlinear bearing coefficients. Their results indicate close similarity 

between linear and nonlinear coefficients for eccentricity ratios of up to 𝜖 = 0.8 . They reported 

that linearized results will be incorrect at very high journal loads, especially for 𝜖 > 0.95. 

 

The majority of stability studies of rotor-bearing systems in the literature are based on the 

declaration that fluid-film flow remains laminar throughout the operation of the machine. For large 

and heavy load bearings that run at high spin speeds and utilize low kinematic viscosity lubricants, 

the oil film flow becomes turbulent. To correctly identify the instability phenomenon and the oil 

whirl threshold speed of instability, the flow regime (whether laminar or turbulent) needs to be 

taken into account. This requires the inclusion of the effects of turbulence on the dynamic fluid 

forces. Hashimoto et al. [55, 56] and Wang et al. [57] investigated turbulent journal bearing 

performance under dynamic conditions for short bearings. They linearized turbulent coefficients 

in the Ng-Pan-Elrod model in an attempt to derive analytical expressions for the journal force. 

However, their implemented linearization can lead to erroneous force predictions at large 

eccentricity ratios and high Reynolds numbers. Cai-Wan Chang-Jian et al. [58, 59] investigated 

the dynamics of a flexible rotor bearing system supported by two turbulent journal bearings. They 
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neglected the spatial gradients of turbulent coefficients to simplify the pressure and force 

calculations to obtain close form solutions. Their simplifying assumption can also lead to 

erroneous performance predictions.  

 

1.2.3 Nonlinearity in Rotor-Bearing Systems 

Based on the linear stability criterion, it is generally believed that machines should not operate at 

speeds above the threshold speed of instability. Several cases were reported where machines 

operated in stable condition much beyond the threshold speed of instability [15].  

 

When nonlinearity exists in a system, a destabilizing force can cause sudden qualitative dynamic 

change in the system (bifurcation), such as the nonlinear jump phenomenon in rotors in the 

presence of large unbalance force [60] or the transition from steady state solution of a balanced 

spinning shaft to limit cycle (rotor whirl) and nonsynchronous and chaotic responses [61, 62]. 

These types of undesirable motion can endanger the safe operation of the rotor-bearing system. 

While linearized coefficients are useful in obtaining a stability threshold for the rotor system, 

stability analysis based on these coefficients cannot reveal the nature of bifurcations (being sub or 

supercritical) in the system [61-63]. 

 

It has been realized that localized nonlinearities can have very significant local and global effects 

on high speed rotor systems. A very important source of nonlinearities is caused by fluid film 

forces within journal bearings and seals, which can have significant effects on the dynamic 

characteristics of rotor systems [21]. 

 

In linear systems, response to harmonic excitation (like the imbalance force) can only contain the 

frequencies of the harmonic driving forces. However, in nonlinear systems, the response to 

harmonic driving forces can lead to periodic (possibly with sub and super-harmonics), quasi-

periodic (non-integer related harmonics), and chaotic motions [14]. Linearized models for studying 

the dynamic behavior of rotor systems may lead to inaccurate results as a consequence of missing 

complex phenomena such as transitions to limit cycles, and aperiodic and chaotic responses [63, 

64].  
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Among the very first observations of subharmonic vibrations resulting from nonlinearity in rotor 

systems is the work done by Ehrich [65]. Ehrich found that when the system is running at speeds 

near twice the fundamental frequency of the rotor, subharmonic responses are present. Later on, 

Bently [66] reported experimental observations of second and third order subharmonics by 

studying a simple horizontal rotor, and concluded that the occurrence of these subharmonics is due 

to the bearing clearances in the rotor system. Botman [67] reported non-synchronous vibrations at 

speeds above two times the critical speed of a rigid rotor mounted on dampers, and concluded that 

the non-synchronous response originates from the effect of the supporting dampers. Assuming the 

nonlinear effects to be as a result of bearing clearances, Childs [68] used a perturbation technique 

to study the occurrence of subharmonics. Saito [69] utilized a harmonic balance method (HBM) 

along with a fast Fourier transform procedure originally proposed by Yamamuchi [70] to explain 

nonlinear effects of ball bearings on a Jeffcott rotor. The same procedure was used by Choi and 

Noah [71] to investigate the occurrence of superharmonics and subharmonics in the presence of 

bearing clearance. Ehrich [72] used a finite difference formulation for numerical integration of the 

mathematical model and showed that higher order subharmonics, up to the 9th order, exist in a high 

speed rotor system with bearing clearances. 

 

Aperiodic behavior in journal bearings was reported by Holmes et al. [73], by studying the motion 

of a symmetric rigid shaft supported on short journal bearings. Nikolajsen and Holmes [74] 

reported subharmonic vibrations of orders up to four, with operating speeds near three to four times 

the critical speed of a flexible shaft supported on journal bearings and squeeze film dampers. 

Muszynska [75] calculated rotor synchronous and sub-synchronous self-excited vibrations (whirl 

and whip) due to an unbalance force by means of modal analysis of a mathematical model of a 

symmetric rigid rotor supported on a journal bearing. The fluid film radial stiffness, damping and 

inertia effects in the model were described by nonlinear functions of the rotor eccentricity. 

Confirmed by several experiments, it was shown that after a threshold of stability, the pure 

rotational motion of the shaft becomes unstable, yet, the resulting whirl regime can remain stable 

[20].  

 

A majority of steady state instabilities occurring in mechanical systems are due to Hopf 

bifurcations [76]. For the case of rotor systems, a Hopf bifurcation means that energy is transferred 
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from the rotating motion into periodic whirl motion — a motion that can be referred to as a limit 

cycle in nonlinear dynamics terminology. In order to understand the nature of the whirling motion, 

it is necessary to determine the direction of bifurcation and stability of the limit cycle [77]. Many 

simplified techniques have developed for this analysis [78]. 

 

1.2.4 Hopf Bifurcations in Dynamic Response of Journal Bearings 

When the rotor operating speed exceeds the threshold speed of instability, the whirl amplitude can 

become unbounded either gradually (supercritical bifurcation) or suddenly (subcritical bifurcation) 

[63]. In the case of subcritical bifurcation, a small perturbation from the equilibrium point may 

lead to instability even when the rotor speed is under the threshold limit. Thus, subcritical 

bifurcations are more dangerous than supercritical bifurcations, and proper considerations are 

needed in the design stage to assure operation within the supercritical region [63]. As mentioned 

before, while linear stability analysis can provide the threshold speed of instability, the nature of 

bifurcation (being sub or supercritical) cannot be obtained. To predict the existence and type of 

the bifurcation, a nonlinear analysis of the dynamic response of the rotor bearing system is needed. 

Once the nonlinear equations of motion are derived, they can be used to predict the existence and 

type of the bifurcation (sub or supercritical) as well as the instability threshold speed based on the 

Hopf theorem [76, 79]. The Hopf bifurcation theory (HBT) is concerned with the bifurcation of 

the periodic orbits from the equilibrium points of a system whose behavior is described by the 

ordinary differential equations 𝑋 = 𝑓(𝑋, 𝜈) as the system parameter 𝜐 crosses a critical value 𝜐𝑐. 

The Hopf bifurcation theorem provides appropriate criteria for the prediction of the existence, 

shape, and period of the periodic solution [76]. Hopf bifurcation theory has been applied to long 

journal bearings [62], short bearings [61], and finite journal bearings [63].  

 

Subcritical bifurcations in rotor-bearing systems were experimentally observed in the early 

twentieth century by Newkirk and Taylor [7]. They reported that at running speeds of lower than 

the threshold speed, violent rotor whipping can occur due to even a small shock applied to the 

system. This was later confirmed by Hori [8], however, the real cause was not clear at the time. 

Hori did extensive research on how an earthquake (a shock) can affect the occurrence of the oil 

whip [80, 81]. As an attempt to explain the effects of a shock on the occurrence of oil whip, 

Khonsari and Chang [82] introduced the concept of  the stability envelope, 𝑅𝑠  , such that if the 
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journal is released from inside the 𝑅𝑠 , the orbit will settle into a steady-state equilibrium position. 

If released from outside the 𝑅𝑠, the orbit will grow larger, extending to the clearance circle of the 

rotor-bearing system. To find 𝑅𝑠, Khonsari and Chang [82] proposed a trial and error method. An 

analytic method for estimating the size of 𝑅𝑠 was later proposed by Wang and Khonsari [83] for 

short journal bearings by implementing the HBT. 

 

Myers [62] applied the HBT for stability analysis of a rigid rotor supported on long journal 

bearings. He identified the existence of three separate regions in the parameter space of the steady 

state eccentricity ration. These three regions from low to high values are subcritical, supercritical, 

and again subcritical bifurcations. A similar analysis for short journal bearings was done by Hollis 

and Taylor in 1986 [61]. They reported that in short journal bearings, the subcritical bifurcation 

exists if the modified Sommerfeld number is greater than a critical value; otherwise, the 

supercritical bifurcation exists. 

 

Noah and Sundararajan [63] applied the HBT to a rotor supported on finite length journal bearings. 

They used impedance descriptions originally proposed by Childs et al. [84, 85] to obtain analytic 

expressions for the fluid film forces in journal bearings. It was shown that in the case of 

supercritical bifurcations, there is a gradual transition from stability to instability. On the other 

hand, in the case of subcritical bifurcation, stable journal orbits may exist above and below the 

threshold limit, and no gradual transition from stability to instability occurs. The existence of 

subcritical bifurcation was experimentally verified for a rotor supported on short journal bearings 

by Deepak and Noah [86]. 

 

Ding et al. [77] applied the Hopf bifurcation theory to investigate the balanced and unbalanced 

dynamics of a symmetric rotor-seal system based on Muszynska’s [87] nonlinear seal model. 

Implementing algebraic criterion proposed by Poor [88], they showed that only supercritical 

regions exists for perfectly balanced systems. In their analysis of periodically perturbed Hopf 

bifurcation [89] (due to imbalance), they showed that non-synchronized whirl of the imbalanced 

rotor can either be a quasi-periodic motion resulting from Hopf bifurcation, or a half-frequency 

whirl from period doubling bifurcation. 
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Wang and Khonsari [57] applied the HBT method to dynamic equations of a rotor supported on 

short journal bearings acting in a turbulent regime. They showed that turbulence tends to 

deteriorate the stability of the rotor-bearing system; as the Reynolds number increases in the 

bearing fluid film, the stability threshold speed decreases, especially with small Sommerfeld 

numbers. Effects of rotor stiffness on the existence and type of bifurcation and the instability 

threshold speed was studied by Wang and Khonsari [90] based on the application of Hopf 

bifurcation theory. They reported that rotor stiffness has a profound influence on a system’s 

stability threshold speed and its bifurcation type, and should not be neglected.  

 

The use of closed-form expressions for the journal bearing force is common to all above-

mentioned literature studying the nonlinear system response, whether by applying the HBT or by 

direct time integration of the equations of motion. The closed-form expressions are obtained by 

approximating the journal force based on the asymptotic Short, Long and Finite bearing theories. 

 

1.2.5 Nonlinear Stability Analysis in Rotor-Bearing Systems 

HBT describes the bifurcation of the periodic orbits from the equilibrium points of a system whose 

behavior is described by the autonomous ordinary differential equations 𝑿̇ = 𝒇(𝑿̇, 𝜈) as the system 

parameter 𝜈 crosses a critical value 𝜈𝑐. In the case of rotor-bearing systems, the parameter is 

usually the spin speed 𝜔 and the critical value is the threshold speed of instability 𝜔𝑡ℎ. For the 

nonlinear system of equations in the form 𝑿̇ = 𝒇(𝑿̇, 𝜈), the zeroth order terms in a Taylor 

expansion of the right hand side is used to find the fixed points of the system. The first order terms 

as in the Jacobian matrix, 
𝜕𝒇

𝜕𝑿̇
 , are used to determine the linear stability and whirl threshold speed 

[25, 91]. The second and third order terms are used to identify the type of Hopf bifurcation in the 

system [61, 63].  

 

As discussed, common among existing literature that applies HBT to a rotor-bearing system, is the 

use of closed-form expressions for the journal bearing force that is exerted on the shaft [57, 61, 

71, 83, 90]. This use of closed-form expressions is mostly needed since distinguishing the type of 

bifurcation requires estimating the higher order derivatives of the right hand side of the system of 

equations: 𝑿̇ = 𝒇(𝑿̇, 𝜈). Since the nonlinearity in the system is mainly caused by the journal 
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bearing forces, higher order derivatives of the system reduces down to higher order derivatives of 

the journal force with respect to journal position and velocity. If the journal force is expressed 

analytically, calculating the higher order derivatives is not a challenge. Unfortunately, closed-form 

expressions for the journal force are only available for very limited geometries in the form of 

asymptotic solutions to the Reynolds equation: namely, Ocvirk Short bearing and Sommerfeld 

Long bearing solutions. An approximate solution also exists for Finite length bearings with very 

simple geometries and limited cavitation models based on a weighted sum of the short and long 

asymptotic solutions [85].  

 

Linearized stiffness and damping coefficients were proposed by Lund [47, 92] as an alternative 

way to express the journal force in excess of its equilibrium values. Such treatment can potentially 

be extended to any journal geometry and desired cavitation model [93], and in that sense is superior 

to closed-form journal force expressions. However, application of linear coefficients in stability 

analysis is limited to the calculation of whirl threshold speed. Bifurcation types and directions 

cannot be found based on just linear coefficients, as they are functions of second and third order 

derivatives of the force with respect to journal position and velocity.  

 

Hypothesis: higher order coefficients can be used to avoid degenerate cases that are caused in 

HBT analysis when the journal force is expressed only by linear coefficients. 

 

Although the probable benefits of employing higher order coefficients in bifurcation analysis of 

rotor-bearing systems is not addressed in the literature, there exists a few attempts to calculate the 

nonlinear coefficients mainly aimed for better trajectory predictions. Sawicki and Rao [94] used a 

linear infinitesimal perturbation of the pressure gradients to find the nonlinear coefficients of a 

finite bearing. Meruane and Pascual [52] used a least mean square to fit the numerically obtained 

trajectories to a mathematical model with nonlinear coefficients of up to third order. Wang et al. 

[53] and Yang et al. [54] used a full second order Taylor expansion of bearing induced forces and 

pressure to find the nonlinear dynamic coefficients for a short, long, and finite journal bearing. 

However, widespread differences exist in the reported trends and values of the nonlinear dynamic 

coefficients in the literature. As nonlinear-based analysis is very sensitive to the system parameter 

inputs, such inconsistency in the reported nonlinear coefficients will yield inaccurate predictions. 



19 

 

Thus, a comprehensive method to obtain the nonlinear dynamic coefficients for finite length 

journal bearings is needed. 

 

1.3 Objectives  

The main objectives of this thesis are as follows: 

 

• To have a robust, fast converging algorithm capable of accurately predicting the 

performance characteristics of a journal bearing under a wide range of loading conditions 

 

• To construct a simplified, yet realistic, rotor-bearing model (flexible rotors supported on 

finite length journal bearings) suitable for stability analysis in rotor-bearing systems 

  

• To study the effect of more realistic operating conditions (specifically turbulent flows) on 

linear stability boundaries of a rotor-bearing system  

 

• To extend the mathematical model of the rotor-bearing system such that the complicated 

dynamics of the system, including bifurcation types and directions, can be captured with 

relatively low computational cost  

 

• To predict the safe operating regions for existing rotor-bearing systems and to provide the 

analysis means necessary for a priori predictions in the design stage  

 

1.4 Outline 

In order to achieve the defined objectives, this thesis is divided into four chapters. Chapter 1 starts 

with the necessary background following with a literature review and objectives of this thesis. 

Chapter 2 is devoted to the development of a robust cavitation algorithm. The developed algorithm 

is then used as the basis for performance predictions of journal bearings in the rest of the thesis. 

Chapter 3 addresses the task of constructing a simplified mathematical model of the rotor-bearing 

system and the means of obtaining the stability bounds in the system as well as studying the 

turbulence effects on calculated stability boundaries. Chapters 4 and 5 are designed to test the 
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validity of the proposed hypothesis and to further demonstrate the capabilities of the proposed 

enhanced model. The details of the materials in each chapter are as follows: 

 

1.4.1 On Modifying the Cavitation Algorithm 

In Chapter 2, the long-lasting problem with the robustness of the universal cavitation algorithm is 

addressed. Based on the Finite Volume discretization of the governing equations of motion, an 

alternative solution scheme is proposed as an attempt to accelerate the convergence speed of the 

mass-conserved Elrod-Adams algorithm, and to eliminate the scheme dependency on chosen 

values of the lubricant bulk modulus. The cost of artificially decreasing the bulk modulus on 

computed results is discussed, and recommendations are given for the safe margin for such a 

reduction in order to stabilize the scheme while maintaining the desired accuracy. The dependence 

of the scheme stability on various input parameters is systematically studied by means of a 

thorough eigenvalue analysis of the coefficient matrix of the discretized system of equations.  

 

1.4.2 On the Effect of Flow Regimes on Linear Stability 

In Chapter 3, the pressure distributions of turbulent finite length journals are obtained by proper 

numerical solutions to the modified Reynolds lubrication equation. Two turbulent models of Ng-

Pan and Elrod, and Constantinescu are implemented in the modified equation for comparison 

purposes. The calculated pressures are then used as the basis of the infinitesimal perturbation 

method to find the turbulent dynamic coefficients for a range of operating conditions. Having the 

dynamic coefficients, the threshold speed of instability of a flexible shaft supported on end laminar 

and turbulent journals is found by means of linear stability analysis. Stability bounds are then 

compared for different shaft stiffness and Reynolds numbers, ranging from laminar to fully 

turbulent flows; this is done in an attempt to study the range of applicability for the original 

Reynolds equation and to find the operating conditions for which modified analysis under turbulent 

conditions is necessary in order to obtain accurate stability bounds. The journal bearing trajectories 

are also obtained by means of fast and robust implicit integration techniques for laminar and 

turbulent regimes, solely based on the calculated dynamic coefficients. 
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1.4.3 On Nonlinear Stability Analysis 

To determine the bifurcation types in a rotor-bearing system, finding higher order derivatives of 

the bearing forces with respect to journal velocity and position is required. As closed-form 

expressions for journal bearing force is not generally available, Hopf bifurcation studies of rotor-

bearing systems have been limited to simple geometries and cavitation models. As a main 

hypothesis in this thesis, it is postulated that a rotor-dynamic model that benefits from higher order 

representations of the fluid forces can solve two problems at once. By incorporating the dynamic 

coefficients, one can potentially calculate them for any bearing geometry and type. By using higher 

order coefficients, nonlinear analysis such as HBT can be conducted to characterize the 

bifurcations in the system.  

 

To test the proposed hypothesis, in Chapter 4, a systematic approach is proposed for the calculation 

of nonlinear dynamic coefficients. First, second and third order Taylor expansion of the journal 

force is used to find the nonlinear coefficients in the most general form that is useful for short and 

long journal bearings. The calculated coefficients are then implemented in a mathematical model 

of a flexible rotor-bearing system. A Hopf bifurcation subroutine is developed to assess the 

stability of the oil whirl around the threshold speed of instability and to find the governing 

bifurcation types for a range of operating conditions. System trajectories are also found for the 

rotor-bearing systems for which journal forces are expressed, based on closed-form or the 

proposed nonlinear coefficient-based model. The nonlinear coefficient-based model is shown to 

be capable of revealing the bifurcation types of the system as well as its complicated dynamics in 

real time. 

 

In Chapter 5, the aim is to generalize the nonlinear analysis given in Chapter 4, for bifurcation 

analysis in rotor-bearing systems in which the rotor is supported on finite length journal bearings. 

To do this, nonlinear coefficients for a finite journal are given based on an extended perturbation 

analysis of the Reynolds lubrication equation. The calculated coefficients are then used to 

construct a nonlinear coefficient-based model for a flexible shaft supported on end journal 

bearings. A global nonlinear analysis technique, as an alternative to the local HBT analysis, based 

on the Monodromy matrix of the periodic solutions is conducted. The Monodromy matrix is 

calculated for operating spin speeds beyond the threshold speed of instability. The eigenvalues of 
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the Monodromy matrix, i.e. the Floquet multipliers, are calculated to assess the bifurcation types 

and direction for a fully balanced rotor-bearing system. Balanced and unbalanced system 

trajectories are also studied to further illustrate the benefits of the proposed model in predicting 

the behavior of the rotor-bearing system under a range of operating speeds. 
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Chapter 2: A Mass-Conserving Cavitation Algorithm for Journal 

Bearings 

 

In this chapter, a modified fast converging, mass-conserving, and robust algorithm is proposed in 

order to calculate the pressure distribution of a cavitated axially grooved journal bearing based on 

the finite volume discretization of the Elrod-Adams (E.A.) cavitation model. The solution of the 

cavitation problem is shown to strongly depend on the specific values chosen for the lubricant bulk 

modulus. Results show that the new proposed scheme can handle the stiff discrete numerical 

system for any chosen value of the lubricant bulk modulus (𝛽) and hence a significant 

improvement in the robustness is achieved compared to traditionally implemented schemes in the 

literature. Enhanced robustness is found to have no effect on the accuracy of the obtained results, 

and the convergence speed is shown to be considerably faster than in the widely-used techniques 

in the literature. The effects of bulk modulus, static load, and mesh size on the numerical stability 

of the system are also studied by means of eigenvalue analysis of the coefficient matrix of the 

discrete numerical system. It is shown that the impact of static load and mesh size on numerical 

stability is negligible, compared to the significant impact of varying bulk modulus values. 

 

2.1 Mathematical Model for Mass Converging Cavitation Problem 

The E.A. algorithm [32] with Vijayaraghavan [95] treatment is studied here as the underlying 

mathematical model. The standard J.F.O/E.A. treatment is based on acknowledging the fact that 

Poiseuille (pressure gradient) terms in the compressible Reynolds equation vanish in the cavitated 

region where the mass flow is only governed by the Couette (advective) terms. This distinction 

between the two regions of the flow leads to a mathematical model with two governing equations 

for full film and cavitated regions [25]: 

 𝜕(𝜌ℎ)

𝜕𝑡
+

𝜕
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where 𝜌 is fluid density, ℎ is film thickness, 𝑈 = 𝑅𝜔 is journal surface velocity, 𝑝 is fluid film 

pressure, and 𝜇 is lubricant viscosity. Several pressure-density relations are proposed in the 

literature to relate the change of lubricant density to the lubricant pressure. In general, the validity 

of such relations is a function of induced pressures in the lubricant [96]. The pressure-density 

relation can be expressed in its most general form [42]:  

 𝜌 = 𝜌𝑐𝑓(𝑝) (2.2) 

 The most widely adopted compressibility relation in lubrication applications is based on the 

constant bulk modulus (𝛽) of the lubricant: 

 
𝜌 = 𝜌𝑐  𝑒𝑥𝑝 (

𝑝 − 𝑝𝑐
𝛽

) (2.3) 

where 𝑝𝑐 and 𝜌𝑐 are the pressure and density in the cavitated region. A generalization of Eq. (2.3) 

in the form of Eq. (2.2) can be easily adopted [40] in rewriting the compressible Reynolds equation, 

but is omitted here for simplicity. The constant bulk modulus model is therefore used for the 

analysis in this chapter.  

 

The J.F.O/E.A.  mathematical model is mass converging and can also be derived directly from the 

continuity equation [40], assuming a homogenous three-dimensional flow [97]. The major 

difficulty here is that although the governing equations for each region of the flow are simply 

stated, identifying the cavitation boundary separating the two regions can be challenging. The 

pioneering work of Elrod and Adams [32] suggested the use of a switch function, 𝑔, as well as a 

change of variable in an effort to unify the two governing equations into one equation: 

 
𝑔 = {

1, 𝑖𝑛 𝑓𝑢𝑙𝑙 𝑓𝑖𝑙𝑚 𝑟𝑒𝑔𝑖𝑜𝑛
0, 𝑖𝑛 𝑐𝑎𝑣𝑖𝑡𝑎𝑡𝑒𝑑 𝑟𝑒𝑔𝑖𝑜𝑛

 

𝛼 =
𝜌

𝜌𝑐
 

(2.4) 

where 𝛼 is the density ratio. The switch function permits pressure terms to be retained in the full 

film region or to be neglected in the cavitation region. Eq. (2.3) can be re-written such that: 
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 𝑝 = 𝑝𝑐 + 𝑔𝛽 𝑙𝑛(𝛼) (2.5) 

The pressure is approximately uniform in the cavitated region and is equal to 𝑝𝑐. Since the typical 

lubricant bulk modulus 𝛽 is a large number (≅ 2 𝐺𝑝𝑎), the density ratio (𝛼) is only slightly greater 

than unity in the full film region and hence Eq. (2.5) can be approximately expressed in a simpler 

form [35]: 

 𝑝 = 𝑝𝑐 + 𝑔𝛽 (𝛼 − 1) (2.6) 

And hence the modified compressible Reynolds equation for the new variable 𝛼 becomes [25]: 

 𝜕(𝛼ℎ)

𝜕𝑡
+

𝜕

𝜕𝑥
(
𝑈ℎ𝛼

2
−
𝛽ℎ3

12𝜇
𝑔
𝜕𝛼

𝜕𝑥
) −

𝜕

𝜕𝑧
(
𝛽ℎ3

12𝜇
𝑔
𝜕𝛼

𝜕𝑧
) = 0 (2.7) 

The solution to Eq. (2.7) will yield the density ratio, 𝛼. The induced pressure then is easily found 

through Eq. (2.6). In order to solve Eq. (2.7), a finite volume discretization is employed. 

  

2.2 Numerical Treatment of Cavitation based on Finite Volume Method 

 

2.2.1 Discretization 

Non-dimensionalizing the governing PDE of Eq. (2.7) is preferred for versatility of the numerical 

analysis and faster convergence. The non-dimensionalized variables are as follows 

 
𝑥̅ =

𝑥

2𝜋𝑅
 , 𝑧̅ =

𝑧

𝐿
 , 𝐻 =

ℎ

𝐶
 , 𝛽̅ =

𝛽

𝜇𝜔
(
𝐶

𝑅
)
2

, 𝑡̅ = 𝜔𝑡   (2.8) 

where R, L, C and 𝜔 are journal radius, length, clearance, and rotational velocity, respectively. By 

substituting the non-dimensional variables of Eq. (2.8)  back into Eq. (2.7), the non-dimensional 

form can be constructed as: 

 𝜕(𝛼𝐻)

𝜕𝑡̅
+

𝜕

𝜕𝑥̅
(
𝛼𝐻

4𝜋
−

𝛽̅

48𝜋2
 𝐻3𝑔

𝜕𝛼

𝜕𝑥̅
) −

𝜕

𝜕𝑧̅
(

𝛽̅

48(𝐿/𝐷)2
𝐻3𝑔

𝜕𝛼

𝜕𝑧̅
) = 0 (2.9) 
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Inclusion of the switch function in Eq. (2.9) requires some attention. Similar to the treatment in 

Ref. [35], the pressure induced flow term can be re-arranged such that: 

 
𝑔
𝜕𝛼

𝜕𝑥̅
= 𝑔

𝜕(𝛼 − 1)

𝜕𝑥̅
=
𝜕𝑔(𝛼 − 1)

𝜕𝑥̅
− (𝛼 − 1)

𝜕𝑔

𝜕𝑥̅
 (2.10) 

The term (𝛼 − 1)
𝜕𝑔

𝜕𝑥̅
 vanishes for any 𝛼 since the switch function, 𝑔 only changes at 𝛼 = 1. And 

hence: 

 
𝑔
𝜕𝛼

𝜕𝑥̅
=
𝜕𝑔(𝛼 − 1)

𝜕𝑥̅
 (2.11) 

Similar treatment for the other pressure driven term will simplify Eq. (2.9) to: 

 𝜕(𝛼𝐻)

𝜕𝑡̅
+

𝜕

𝜕𝑥̅
(
𝛼𝐻

4𝜋
−

𝛽̅

48𝜋2
 𝐻3

𝜕𝑔(𝛼 − 1)

𝜕𝑥̅
) −

𝜕

𝜕𝑧̅
(

𝛽̅

48(𝐿/𝐷)2
𝐻3

𝜕𝑔(𝛼 − 1)

𝜕𝑧̅
)

= 0 

(2.12) 

Representing Eq. (2.12) in a general form suitable for discretization and dropping all the non-

dimensional bars for simplifying notation, we can write: 

 𝜕𝑢

𝜕𝑡
+
𝜕𝐹

𝜕𝑥
+
𝜕𝐺

𝜕𝑧
= 0 (2.13) 

where: 

 𝑢 = 𝛼𝐻 

𝐹 =
𝛼𝐻

4𝜋
−

𝛽

48𝜋2
 𝐻3

𝜕𝑔(𝛼 − 1)

𝜕𝑥
 

𝐺 =
𝛽

48(𝐿/𝐷)2
𝐻3

𝜕𝑔(𝛼 − 1)

𝜕𝑧
 

(2.14) 

A finite volume discretization technique is applied for solving Eq. (2.13).  Taking the control 

volume integral (in this case a control surface) of Eq. (2.13) over the volume (surface) of a two-

dimensional representative cell with an area of ∆𝑥 Δ𝑧 will yield: 

 
∬

𝜕𝑢

𝜕𝑡
𝑑𝐴 +∬(

𝜕𝐹

𝜕𝑥
+
𝜕𝐺

𝜕𝑧
) 𝑑𝐴 = 0 (2.15) 
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Applying Gauss’s theorem in plane and assuming a fixed control surface with no moving 

boundaries and defining 𝐹 = 𝐹 𝑖̂ + 𝐺 𝑘̂ will result in: 

 𝑑

𝑑𝑡
∬𝑢 𝑑𝐴 + ∮𝐹 . 𝑛 𝑑𝑆 = 0 (2.16) 

Defining the control surface average quantity as: 

 
𝑢̅𝑖,𝑗 =

1

𝐴𝑖,𝑗
∬𝑢 𝑑𝐴 =

1

𝛥𝑥 𝛥𝑧
∬𝑢 𝑑𝑥 𝑑𝑧 (2.17) 

and performing the contour integral over the boundary of the representative two-dimensional cell 

for the last two terms in Eq. (2.16) will yield: 

 𝑑𝑢̅𝑖
𝑑𝑡̅

+

𝐹
𝑖+
1
2
,𝑗
− 𝐹

𝑖−
1
2
,𝑗

𝛥𝑥
+

𝐺
𝑖,𝑗+

1
2
− 𝐺

𝑖,𝑗−
1
2

𝛥𝑧
= 0 (2.18) 

where the ½ indices correspond to the value of the flux at the cell boundary as compared to the 

flux values at the cell center. In order to discretize the time dependent term, a first order Implicit 

Euler method is adopted here. Hence, Eq. (2.18) can be written as:  

 
𝑢̅𝑖,𝑗

𝑛+1 − 𝑢̅𝑖,𝑗
𝑛

𝛥𝑡
+

𝐹
𝑖+
1
2
,𝑗

𝑛+1 − 𝐹
𝑖−
1
2
,𝑗

𝑛+1

𝛥𝑥
+

𝐺
𝑖,𝑗+

1
2

𝑛+1 − 𝐺
𝑖,𝑗−

1
2

𝑛+1

𝛥𝑧
= 0 

(2.19) 

where superscript n indicates a variable value at the current time-step, and superscript n+1 is to 

represent a variable value at the next time-step. Common to the implicit schemes, the variable 

value in the next time-step needs to be expressed in terms of the variable and its gradients at the 

current time-step by means of a Taylor series expansion of the fluxes: 

 𝐹
𝑖+
1
2
,𝑗

𝑛+1 = 𝐹
𝑖+
1
2
,𝑗
(𝑢̅𝑖,𝑗

𝑛+1 , 𝑢̅𝑖+1,𝑗
𝑛+1)

= 𝐹
𝑖+
1
2
,𝑗
(𝑢̅𝑖,𝑗

𝑛 + 𝛿𝑢̅𝑖,𝑗 , 𝑢̅𝑖+1,𝑗
𝑛 + 𝛿𝑢̅𝑖+1,𝑗)

= 𝐹
𝑖+
1
2
,𝑗
|
𝑛

+

𝜕𝐹
𝑖+
1
2
,𝑗

𝜕𝑢̅𝑖,𝑗
|

𝑛

𝛿𝑢̅𝑖,𝑗 +

𝜕𝐹
𝑖+
1
2
,𝑗

𝜕𝑢̅𝑖+1,𝑗
|

𝑛

𝛿𝑢̅𝑖+1,𝑗 + 𝑂(𝛿𝑢̅2) 

(2.20) 
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where 𝛿𝑢̅𝑖,𝑗 = 𝑢̅𝑖,𝑗
𝑛+1 − 𝑢̅𝑖,𝑗

𝑛 and 𝐹
𝑖+

1

2
,𝑗
|
𝑛

= 𝐹
𝑖+

1

2
,𝑗
(𝑢̅𝑖,𝑗

𝑛 , 𝑢̅𝑖+1,𝑗
𝑛). Other terms in Eq. (2.19) are 

treated in a similar fashion. Plugging zero and first order Taylor expand terms back into Eq. (2.19) 

will result in: 

 

𝛿𝑢̅𝑖,𝑗 (
1

𝛥𝑡
+

1

𝛥𝑥

𝜕𝐹
𝑖+
1
2
,𝑗

𝜕𝑢̅𝑖,𝑗
|

𝑛

−
1

𝛥𝑥

𝜕𝐹
𝑖−
1
2
,𝑗

𝜕𝑢̅𝑖,𝑗
|

𝑛

+
1

𝛥𝑧

𝜕𝐺
𝑖,𝑗+

1
2

𝜕𝑢̅𝑖,𝑗
|

𝑛

−
1

𝛥𝑧

𝜕𝐺
𝑖,𝑗−

1
2

𝜕𝑢̅𝑖,𝑗
|

𝑛

)

+
1

𝛥𝑥

𝜕𝐹
𝑖+
1
2
,𝑗

𝜕𝑢̅𝑖+1,𝑗
|

𝑛

𝛿𝑢̅𝑖+1,𝑗 −
1

𝛥𝑥

𝜕𝐹
𝑖−
1
2
,𝑗

𝜕𝑢̅𝑖−1,𝑗
|

𝑛

𝛿𝑢̅𝑖−1,𝑗

+
1

𝛥𝑧

𝜕𝐺
𝑖,𝑗+

1
2

𝜕𝑢̅𝑖,𝑗+1
|

𝑛

𝛿𝑢̅𝑖,𝑗+1 −
1

𝛥𝑧

𝜕𝐺
𝑖,𝑗−

1
2

𝜕𝑢̅𝑖,𝑗−1
|

𝑛

𝛿𝑢̅𝑖,𝑗−1 = 𝐹𝐼𝑛 

(2.21) 

where 𝐹𝐼𝑛 = −
𝐹
𝑖+
1
2
,𝑗
𝑛−𝐹

𝑖−
1
2
,𝑗
𝑛

𝛥𝑥
−

𝐺
𝑖,𝑗+

1
2

𝑛−𝐺
𝑖,𝑗−

1
2

𝑛

𝛥𝑧
 is the flux integral that is evaluated at the nth time-

step. As noted by Vijayaraghavan and Keith [36, 95],  Eq. (2.9) has different characteristics in the 

full film and cavitation regions; being an elliptic PDE (similar to the Laplace equation) in the full 

film region and a hyperbolic PDE (similar to wave equation) in the cavitated region. Since the 

nature of the governing equation in the full film region is elliptic, the solution is expected to be 

smooth and hence central differencing schemes are desirable in this region. On the other hand, the 

hyperbolic nature of the PDE in the cavitated region necessitates the use of upwind flux functions 

to capture discontinuities and sudden changes in the flow field.  

 

Vijayaraghavan and Keith [36, 95] proposed adding higher order artificial viscosity terms to the 

shear term in Eq. (2.9) in such a way that pressure induced flow terms exist in the full film region 

but vanish in the cavitated region. The whole equation can now be centrally differenced such that 

by substituting 𝑔 = 1 in the full film region, the central differencing remains in effect; and, in the 

cavitation region, central differencing automatically switches to second order upwind differencing 

by substituting 𝑔 =  0 [36]. The shear term is then approximately expressed as: 

 𝜕𝑢

𝜕𝑥
=

𝜕

𝜕𝑥
[𝑢 − (1 − 𝑔) (

𝜕2𝑢

𝜕𝑥2
 
Δ𝑥2

3
−
𝜕3𝑢

𝜕𝑥3
 
Δ𝑥3

4
)] (2.22) 
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By adding the artificial viscosity terms of Eq. (2.22), the fluxes in Eq. (2.14) are to be updated 

such that: 

 𝑢 = 𝛼𝐻 

𝐹 =
𝑢

4𝜋
−

𝛽

48𝜋2
 𝐻3

𝜕𝑔(𝛼 − 1)

𝜕𝑥
−
(1 − 𝑔)

4𝜋
(
𝜕2𝑢

𝜕𝑥2
 
Δ𝑥2

3
−
𝜕3𝑢

𝜕𝑥3
 
Δ𝑥3

4
) 

𝐺 =
𝛽

48(𝐿/𝐷)2
𝐻3

𝜕𝑔(𝛼 − 1)

𝜕𝑧
 

(2.23) 

Substituting Eq. (2.23) into Eq. (2.21) will yield the discretized form of the governing PDE for the 

Cavitation problem. Details of the substitution and the final discretized equation are given in 

Appendix A.  

 

2.2.2 Solution Procedure 

The discretized equation as detailed in Appendix A  is shown to take the final form of: 

 𝐿𝐻𝑆 = 𝑋−2 𝛿𝑢𝑖−2,𝑗 + 𝑋−1 𝛿𝑢𝑖−1,𝑗 + 𝑋𝑍0 𝛿𝑢𝑖,𝑗 + 𝑋+1 𝛿𝑢𝑖+1,𝑗 + 𝑍−1 𝛿𝑢𝑖,𝑗−1

+ 𝑍+1 𝛿𝑢𝑖,𝑗+1 
(2.24) 

The set of linear algebraic equations arisen form the discretized Reynolds equation has been solved 

in the literature with a variety of different methods such as conventional explicit successive over 

relaxation (SOR) scheme [28, 34], implicit Successive Line Over Relaxation (SLOR), Alternate 

Direction Implicit (ADI) [24, 35], Multigrid SOR [37, 38] and Approximate Factorization (AF) 

technique [36, 95].  Linear systems arisen from implicit time schemes of the Adams/Elrod 

algorithm has commonly been solved using the AF technique [36, 54, 95, 98].  

Eq. (2.24) is a single equation written for a representative cell for which its value depends on its 

immediate neighbors. By solving Eq. (2.24), the change in solution of the representative cell 𝛿𝑢𝑖,𝑗 

at each time step can be found. Writing Eq. (2.24) for all control volumes in the field gives a linear 

system of equations which takes the form of: 

 (𝐼 + Δ𝑡 𝐷𝑥 + Δ𝑡 𝐷𝑧)𝛿𝑈⃗⃗ = 𝐹𝐼⃗⃗⃗⃗  (2.25) 
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Assuming a n by m mesh, 𝛿𝑈⃗⃗  and 𝐹𝐼⃗⃗⃗⃗  are column vectors of size 𝑛×𝑚 . 𝐼, 𝐷𝑥 , 𝐷𝑦 are square 

matrices with 𝑛×𝑚 rows and 𝑛×𝑚 columns. The underlying assumption in the approximate 

factorization technique is that the LHS of Eq. (2.25) can be approximated by: 

 (𝐼 + Δ𝑡 𝐷𝑥 + Δ𝑡 𝐷𝑧) = (𝐼 + Δ𝑡 𝐷𝑥)(𝐼 + Δ𝑡 𝐷𝑧) (2.26) 

An extra term Δ𝑡2 𝐷𝑥 𝐷𝑧 is added to the left hand side of Eq. (2.25) as a result of the assumption 

as in Eq. (2.26). For time accurate solutions, this induced error is tolerable due to the fact that the 

space discretization was chosen to be second order accurate for both full film and cavitation 

regions. However, if a higher order space discretization scheme is needed, such approximation 

will force the whole scheme to be only second order accurate. Hence, for any higher order space 

discretization, the AF technique cannot be implemented unless the interest is only in finding the 

steady state solution. 

 

The major benefit from the AF technique is its ability to decouple the two physical dimensions 

such that the solution can be sought in x and z directions in a two-step process: 

 (𝐼 + Δ𝑡 𝐷𝑥)𝛿𝑈̃ = 𝐹𝐼⃗⃗⃗⃗  

(𝐼 + Δ𝑡 𝐷𝑧)𝛿𝑈⃗⃗ = 𝛿𝑈̃ 
(2.27) 

where 𝑈̃ is the axillary solution vector. The tri-diagonal linear systems of Eq. (2.27) can be solved 

on the domain, row by row and column by column, such that the size of coefficient matrices 𝐷𝑥 

and 𝐷𝑧 can be significantly reduced from a full matrix of 𝑛×𝑚 by 𝑛×𝑚 for the whole domain to 

just 𝑚×𝑚 and 𝑛×𝑛, respectively. Such a reduction can be beneficial whenever computer memory 

is of concern, but it does not significantly affect the overall computational cost since each linear 

system of reduced size needs to be repeatedly solved for every row and every column.  As an 

alternative to the existing solution schemes and to enhance the robustness of the solver, a new 

scheme is proposed in this study. 
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2.2.3 Proposed Iterative Solver 

The proposed scheme is mainly consists of three modifications to the extant and widely used 

Elrod/Adams algorithm with Vijayaraghavan and Keith treatment [32, 33, 36] such that: 

1) The system of linear equations is directly solved via Gaussian elimination in a single step 

for the full linear system of Eq. (2.24), as shown in Appendix A  . Solving the full system 

as compared to the approximate factorization based schemes, has two immediate benefits: 

Firstly, the low frequency error is attenuated much more effectively at each iteration and 

hence considerably fewer iterations are required for convergence. Secondly, it does not 

introduce an artificial error of second order to the discretization and hence can be used for 

implicit time-accurate simulations. The scheme that is based on the direct solve of the full 

linear system of Eq. (2.24) will be referred to as FLS in this chapter. It shall be noted that 

since the total number of elements is fairly limited in the majority of lubrication problems, 

obtaining the exact solution to the discretized system is efficiently possible. Hence, 

implementation of iterative solvers for the linear system is not justified for the lubrication 

problem. 

 

2) The automatic time stepping method used here is based on an effective optimization 

scheme recently proposed by Ceze et al. [99] for aerodynamic problems. The update to the 

time step size and the solution update at each iteration will essentially depend on an under-

relaxation parameter 𝜔 such that: 

 𝑈⃗⃗ 𝑛+1 = 𝑈⃗⃗ 𝑛 + 𝜔𝑟 𝛿𝑈⃗⃗  (2.28) 

The updated time-step magnitude is also a function of the under-relaxation parameter: 

 

∆𝑡𝑛+1 = {

𝛾 ∆𝑡𝑛, 𝜔𝑟 = 1
∆𝑡𝑛, 0.01 ≤ 𝜔𝑟 ≤ 1

𝑘 ∆𝑡𝑛, 𝜔𝑟 < 0.01
 (2.29) 

where 𝜔𝑟 is the under-relaxation parameter, 𝑘 and 𝛾 are tunable parameters with default 

values of 0.1 and 2 respectively. Defining the L2 norm of the residual 𝑅(𝑈) as: 

 

‖𝑅(𝑈)‖2 = √
∑ ∑ 𝑅(𝑈)𝑖𝑗

2
𝑗𝑖

𝑖𝑚𝑎𝑥 𝑗𝑚𝑎𝑥
= √

∑ ∑ 𝐹𝐼𝑖𝑗
2

𝑗𝑖

𝑖𝑚𝑎𝑥 𝑗𝑚𝑎𝑥
 (2.30) 



32 

 

Note that the flux integral is a function of the available solution at the current time-step: 

𝐹𝐼 = 𝐹𝐼(𝑈𝑛). Algorithm 1 shows the steps for estimating the value of the under-relaxation 

parameter 𝜔𝑟 :  

Algorithm 1. 

𝜔𝑟 = 1 

𝑈̃ = 𝑈⃗⃗ 𝑛 + 𝜔𝑟 𝛿𝑈⃗⃗  

while ‖
𝑈̃−𝑈⃗⃗ 𝑛

∆𝑡
− 𝑅(𝑈̃)‖

2
> ‖𝑅(𝑈)‖2 

𝜔𝑟 =
𝜔𝑟

2
 

𝑈̃ = 𝑈⃗⃗ 𝑛 + 𝜔𝑟 𝛿𝑈⃗⃗  

End 

Note that a line search algorithm is incorporated with the implicit solver to guarantee the 

reduction of residual norm in the next nonlinear iteration. 

 

3) The switch function is implemented based on the improved scheme of Fesanghari and 

Khonsari [100] such that while iterating, the switch function exponentially decays toward 

zero in the cavitation region and exponentially grows towards unity in the full film region 

unlike the binary switching in the Elrod algorithm. The implementation is shown in 

Algorithm 2. 

 

Algorithm 2.  

If 𝛼𝑖𝑗 ≥ 1 

      If  𝑔𝐹𝑎𝑐𝑡𝑜𝑟 > 0 

           𝑔𝑖𝑗 =
𝑔𝑖𝑗

𝑔𝐹𝑎𝑐𝑡𝑜𝑟
 

      else 

           𝑔𝑖𝑗 = 1 

      end 

else 

     𝑔𝑖𝑗 = 𝑔𝑖𝑗×𝑔𝐹𝑎𝑐𝑡𝑜𝑟 

End 

where 𝑔𝐹𝑎𝑐𝑡𝑜𝑟 is the switch function multiplier with a reported optimal value of 0.8 in 

reference [100]. 
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2.3 Numerical Results 

The proposed numerical scheme of Section 2.2.3 is to be compared to the traditional scheme based 

on the approximate factorization as implemented in references [36, 54, 95, 98]. Eq. (A.10) is solved 

over a structured mesh on the surface of a journal bearing as shown in Figure 2-1(a). The 

computational domain is depicted in Figure 2-1(b). The performance study of the scheme is 

categorized based on the solver type (AF or Full) and selected bulk modulus value (artificially 

softened or physical).  

 

 

(a) (b) 

Figure 2-1 Structured 𝟓𝟎×𝟐𝟎 mesh (a) and the computational domain (b) 

In order to show the performance in each case, three scheme indicators are studied. Firstly, the 

evolution of the 𝐿2 norm of the residual ‖𝑅(𝑈)‖2 as defined in Eq. (2.30) versus number of 

iterations is reported. The last two scheme indicators are the maximum pressure in the field and 

the Sommerfeld number (an average quantity) defined as: 

 
𝑆 =  

𝜇 𝑁 𝐿 𝐷

𝑊
(
𝑅

𝐶
)
2

 (2.31) 

where 𝑁 =
𝜔

2𝜋
 and 𝑊 is the bearing load capacity defined as: 

 
𝑊 = ∫ ∫  𝑝 𝑅 𝑑𝜃𝑑𝑧

𝐿

2

−
𝐿

2

𝜃𝑐𝑎𝑣

0
   (2.32) 

z = 0
x = Dx = 0

z = L

𝑃 =
𝑃

 

𝑃 =
𝑃
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Although predictions of the cavitation algorithm depend on the magnitudes of the lubricant bulk 

modulus (𝛽) chosen for the analysis, realistic 𝛽 magnitudes leads to a very stiff system of equations 

for which obtaining an accurate solution in a short period of time is considerably difficult. To avoid 

the accuracy and slow convergence issues, it is customary to choose artificially lower values for 

the bulk modulus in an attempt to soften the system of equations.  Numerically stable algorithms 

have been proposed and are shown to give acceptable results for 𝛽 values of 1/100 to 1/10 of the 

more realistic values of 𝛽 ≈ 2𝐺𝑝𝑎 [32, 98, 100]. An ideal scheme is therefore a scheme that can 

achieve accurate results in a relatively quick manner while the magnitude of the bulk modulus is 

as close as possible to the realistic physical values. To show the superiority of the numerical 

scheme proposed in Section 2.2.3, the performance prediction is carried out for the artificially 

softened and realistic system of equations as follows. All problems were solved with a personal 

computer on a single core of an Intel i7 chip @ 3.40 GHz and 12 GB memory. 

 

2.3.1 The Softened System of Equations  

The boundary condition used for this analysis is the Dirichlet boundary condition for both 

circumferential (x) and longitudinal (z) directions, as shown in the computational domain in Figure 

2-1(b). The axial Dirichlet Boundary condition is based on selecting a grooved journal bearing 

with the groove located at the maximum film thickness. If the supplied oil pressure at the groove 

is equal to the cavitation pressure 𝑃𝑐𝑎𝑣, reformation happens at the groove itself and there will be 

no reformation boundary to capture. This is the simplest case for the numerical scheme and is 

initially selected here. The scheme performance indicators for the softened system of equations at 

the reduced bulk modulus of 𝛽 = 20 𝑀𝑃𝑎 (≡ 𝛽̅ = 2.75×102) is shown in Figure 2-2 (a) for AF 

and Figure 2-2 (b) for the FLS representation.   
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(a) (b) 

Figure 2-2. Performance study of the softened system of equations at 𝜷 = 𝟐𝟎 𝑴𝑷𝒂 for the AF solver (a) and 

the FLS solver (b). 

 

By direct comparison of the 𝐿2 norm of the residual ‖𝑅(𝑈)‖2 for AF scheme in Figure 2-2 (a) and 

for the FLS scheme in Figure 2-2 (b), it can be seen that both schemes do converge and reach the 

preset goal of ‖𝑅(𝑈)‖2 ≤ 10−8. However, the number of required iterations to reach convergence 

is considerably lower for the full system, being 2,676 for AF versus only 82 iterations for the FLS. 

As the computation cost per iteration is similar between the two schemes, fewer iterations required 

for reaching convergence in the FLS scheme also means faster convergence in computation time. 

To show the similarity of computational cost per iteration, CPU computation time of both schemes 

for the two selected mesh sizes are compared to each other in Figure 2-3.  
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(a) 

  

(b) (c) 

Figure 2-3. CPU computation time of AF and FLS schemes for a 50 by 20 and a 100 by 40 mesh, total 

iterations to converge (a) , first 100 iterations for 50 by 20 mesh (b) and first 120 iterations for 100 by 40 

mesh (c) 

 

Solution indicators for both schemes reach the values of 𝑃̅𝑚𝑎𝑥 = 72.93 and 𝑆 = 0.0427 for a 

predefined eccentricity ratio of 𝜖 = 0.8. In order to study what proportion in computation time and 

iterations is due to the effect of the full linear system representation versus approximate 

factorization, AF and FLS schemes were compared based on two different cases: “Case 1” with 

traditional binary switching of the switch function and with a constant time-step, and “Case 2” 

with all the features of the proposed algorithm as outlined in Section 3.3. Convergence plots for 

both cases versus iterations and CPU time is given in Figure 2-4 (a) and (b), respectively. It is 
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noteworthy to mention that due to the superior robustness of the FLS based algorithm, the fixed 

time-step value chosen to perform the time marching can be chosen more than two to three orders 

of magnitude higher than the biggest time-step for which the AF scheme remains numerically 

stable. Such an advantage will then result in much faster convergence as can be seen in Figure 2-4 

(a) and (b). 

  

(a) (b) 

Figure 2-4. Performance study (a) and CPU computation time (b) of the softened system of equations at 𝜷 =

𝟐𝟎 𝑴𝑷𝒂 for AF and FLS schemes with binary switch function and fixed time step.  

 

2.3.2 The Stiff System of Equations 

Performance studies for the system of equations with realistic bulk modulus values of 𝛽 = 2 𝐺𝑃𝑎 

(≡ 𝛽̅ = 2.75×104) are shown in Figure 2-5. 
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(a) (b) 

Figure 2-5. Performance study of the stiff system of equations at 𝜷 = 𝟐 𝑮𝑷𝒂 for the AF solver (a) and the 

Full linear system solver (b). 

 

The AF based method for solving the stiff system shows poor performance as can be marked by 

lack of convergence in Figure 2-5 (a). The lowest obtained value for ‖𝑅(𝑈)‖2 after 10,000 

iterations is only 0.018 and hence the predefined goal of 10−8 is not achieved. On the contrary, 

the FLS scheme converges in just 145 iterations, only a few iterations more than what was required 

for the softened system. The final obtained values for non-dimensional maximum pressure are 

𝑃̅𝑚𝑎𝑥 = 70.18 and 𝑃̅𝑚𝑎𝑥 = 70.21 for the AF and Full schemes, respectively. The distribution of 

error in obtaining the non-dimensional pressure (𝑑𝑃̅̅̅̅ = 𝑃̅|𝐹𝐿𝑆,𝛽=2 𝐺𝑃𝑎 − 𝑃̅|𝐴𝐹,𝛽=2 𝐺𝑃𝑎) over the 

whole domain is shown in Figure 2-6(a). The error was found to accumulate close to and 

downstream of the cavitation boundary where there is a switch in the differencing scheme from 

central to upwind. 
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(a) (b) 

Figure 2-6. Error distribution 𝒅𝑷̅̅ ̅̅  (a) and 𝑳𝟐 norms of the residual (‖𝑹‖𝟐) versus iterations for rigid and 

softened system based on AF and FLS schemes (b). 

 

It is expected that if the norm of the residuals reaches the predefined goal, the discrepancy between 

the calculated pressure values vanishes. However, this is not computationally effective since the 

number of iterations required for such a reduction in residual norms is far more than what is needed 

for the FLS based scheme and hence its superiority in solving the stiff system of equations is 

evident. The L2 norm of the residual of both schemes are superimposed for both the softened and 

the rigid numerical systems versus iterations and are shown against iteration number in Figure 2-6 

(b).   

 

2.3.3 Verification and Comparison of Results  

A mesh sensitivity analysis is carried out for the non-pressurized axially grooved bearing at 𝛽 =

2𝐺𝑃𝑎 and 𝜖 = 0.8 in both x and z directions separately, and are shown in Figure 2-7 . It shall be 

noted here that unidirectional mesh sensitivity analysis is only helpful to assess the sensitivity of 

calculated parameters to the mesh size, in either directions of the problem. Once such knowledge 

is established, the grid study needs to be carried out in both directions, simultaneously. The 

maximum field pressure as well as the Sommerfeld number and cavitation location at journal 

centerline along x-axis are selected as target variables (𝜑) of interest for mesh sensitivity analysis. 
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(a) (b) 

Figure 2-7. Mesh-Sensitivity analysis in Z (a) and X (b) directions 

 

As can be seen in Figure 2-7, the evolution of solution parameters with increasing mesh-size in 

both Z and X directions becomes insignificant after 40 and 100 divisions, respectively. To study 

the effect of increasing mesh-size in both directions simultaneously with estimated uncertainties 

in obtaining the solution, the fine grid convergence index 𝐺𝐶𝐼𝑓𝑖𝑛𝑒
21

 (an indicator of numerical 

uncertainty in obtaining the solution for a particular mesh) as well as extrapolated target variables 

Φ𝑒𝑥𝑡 and corresponding grid error for a selected mesh (50 ×20 , 100 ×40 and 200 ×80  ) are 

calculated based on [101] and are tabulated in Table 2-1.  

Table 2-1. Sample calculations of discretization errors 

 Φ = 𝑃𝑚𝑎𝑥 Φ = 𝑆 Φ = 𝑥̅𝑐𝑎𝑣 

Φ1 
(fine grid) 

70.1928 0.0385 0.5475 

Φ2 70.1674 0.0385 0.5450 

Φ3 
(coarse grid) 

70.2087 0.0380 0.5500 

Φ𝑒𝑥𝑡
32 70.1012 0.0385 0.5400 

Φ𝑒𝑥𝑡
21 70.2336 0.0385 0.5500 

%𝑒𝑒𝑥𝑡
32 0.0944 0.1332 0.9259 

%𝑒𝑒𝑥𝑡
21 0.0581 0.0139 0.4545 
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 Φ = 𝑃𝑚𝑎𝑥 Φ = 𝑆 Φ = 𝑥̅𝑐𝑎𝑣 

%𝐺𝐶𝐼𝑐𝑜𝑎𝑟𝑠𝑒
32

 0.1179 0.1667 1.1468 

%𝐺𝐶𝐼𝑓𝑖𝑛𝑒
21

 0.0726 0.0174 0.5708 

 

As shown in Table 2-1, the coarse grid (50 ×20 (𝑥, 𝑧)) and intermediate grid (100 ×40)  

convergence indices %𝐺𝐶𝐼𝑐𝑜𝑎𝑟𝑠𝑒
32

and %𝐺𝐶𝐼𝑓𝑖𝑛𝑒
21 , indicating numerical uncertainty in 

calculating maximum target variables in the coarsest and intermediate grids, do not exceed % 1.2 

and % 0.6  for any of the calculated solution indicators of both grids, respectively. Hence both the 

coarsest and intermediate grids are acceptable and the coarse grid is used in this chapter for scheme 

performance analysis. 

 

Comparisons and Verification:  

Case 1-1, pure sliding motion without reformation:  

In this case, the one-dimensional problem of a hydrodynamic bearing with a convergent-divergent 

sinusoidal profile as shown in Figure 2-8 is studied.  

 

Figure 2-8. Schematic of a convergent-

divergent bearing under pure sliding motion as 

in Giacopini et al.  [46] 

This particular example is chosen identical to that of Giacopini et al. [46] for comparison of the 

current proposed algorithm to the LCP-based type algorithms of references [40, 42, 46]. The 

selected parameters are tabulated in Table 2-2. The external pressures are chosen as 𝑃0 = 𝑃𝑎 =

0 and hence no film reformation occurs. The pressure curve is calculated by the FLS algorithm at 

a remarkably high bulk modulus of 𝛽 = 100 𝐺𝑃𝑎 (to mimic incompressibility) on a uniform mesh 

a 
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of 60 elements and is compared to the incompressible solution of Giacopini et al. [46] in Figure 

2-9(a). 

Table 2-2. Sliding bearing physical and geometrical parameters as in Giacopini et al. [46] 

Case 
ℎ𝑚𝑎𝑥(𝑚𝑚) ℎ𝑚𝑖𝑛(𝑚𝑚) 𝑎(𝑚𝑚) 𝜇 (𝑃𝑎. 𝑆) 𝑈(𝑚/𝑠) 𝑃𝑐(𝑀𝑃𝑎) 𝑃0 = 𝑃𝑎(𝑀𝑃𝑎) 

1-1 0.025 0.015 125 0.015 4 0 0 

1-2 0.025 0.015 125 0.015 4 0 1 

Case 1-2, pure sliding motion with reformation:  

If the external pressures are chosen as 𝑃0 = 𝑃𝑎 = 1 𝑀𝑃𝑎, reformation takes place in the lubricated 

film. The obtained pressure distribution is calculated and compared to that of ref [46] and is shown 

in Figure 2-9(b).  

  

(a) (b) 

Figure 2-9. Comparison of the calculated film pressure based on the FLS in the current study versus the 

LCP based results of  Giacopini et al. [46] for Case 1-1, (a) and 1-2, (b) 

Pressure distributions obtained by the FLS algorithm agree with the results of Giacopini et al. [46] 

with and without reformation as depicted in Figure 2-9. This agreement was indeed expected as 

both algorithms are mass conserving.  

Case 2-1, axially grooved journal bearing with non-pressured groove (no reformation):  

The scheme indicators as well as the predicted solution indicators of a non-pressured grooved 

journal bearing ( 𝑃̅𝑔 = 0) for a range of lubricant bulk modulus is given in Table 2-3 at an 
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eccentricity ratio of 𝜖 = 0.8, are compared with the reported results of Vijayaraghavan and Keith 

[39] for a 150×8 grid.  

Table 2-3. Comparison of predicted parameters of a non-pressurized grooved journal bearing 

 Current study Current study Current study Ref [39] 

𝛽 20 MPa 30 MPa 2 GPa ≡30 MPa 

Solution Method AF FLS AF FLS FLS AF 

𝑃̅𝑚𝑎𝑥 72.2759 72.4370 71.4976 71.4976 69.6741 70.18 

𝑆 0.0364 0.0362 0.0366 0.0366 0.0374 - 

𝑊̅ 7.5823 7.6081 7.5265 7.5265 7.3645 7.14 

Cav. Location (𝑥̅) 0.5433 0.5500 0.5500 0.5500 0.5500 0.553 

Ref. Location (𝑥̅) - - - - - - 

Time steps to 

steady state 
2108 93 3104 94 144 2354 

 

Case 2-2, axially grooved journal bearing with pressured groove (with reformation): 

If the supplied oil pressure at the groove is greater than the atmospheric pressure, a reformation 

boundary appears at a location other than the groove. In this case, locating the reformation 

boundary is difficult since the reformation front changes position with solution evolution and 

hence makes it a more challenging problem to be numerically solved and to reach the desired 

convergence. Similar performance analysis was carried out for a journal bearing with pressurized 

grooves at 𝑃̅𝑔 = 2 𝜋 and are tabulated in Table 2-4 against results of Vijayaraghavan and Keith 

[39].  

Table 2-4. Comparison of predicted parameters of a pressurized grooved journal bearing 

 Current study Current study Current study Ref [39] 

𝛽 20 MPa 30 MPa 2 GPa ≡30 MPa 

Solution Method AF FLS AF FLS FLS AF 

𝑃̅𝑚𝑎𝑥 73.0067 73.1731 72.2094 72.2094 70.3793 70.81 

𝑆 0.0324 0.0323 0.0326 0.0326 0.0333 - 

𝑊̅ 7.3145 7.3394 7.2597 7.2598 7.1018 6.87 

Cav. Location (𝑥̅) 0.5433 0.5500 0.5500 0.5500 0.5500 0.553 

Ref. Location (𝑥̅) 0.9100 0.9100 0.9100 0.9100 0.9100 0.900 

Time steps to 

steady state 
4950 235 7429 264 428 10,380 
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The pressure distribution on journal surface for both the non-pressured groove and pressured 

grooved journal bearings are shown in Figure 2-10 for a Mesh size of 50 by 20. 

  

(a) (b) 

Figure 2-10. Pressure distribution of a non-pressured supply groove journal bearing of Case 2-1 (a) and for 

a pressurized supply groove with  𝑷̅𝒈 = 𝟐 𝝅 of Case 2-2 (b) both at 𝝐 = 𝟎. 𝟖 with a physical choice of bulk 

modulus 𝜷 = 𝟐𝑮𝑷𝒂 

 

Direct comparison of the predicted parameters for both non-pressured and pressured supply groove 

journal bearings as in Table 2-3 and Table 2-4 can reveal the significant importance of the chosen 

values for the lubricant bulk modulus on reported results. Such a dependency has been denied [39], 

or not much attention has been paid to this dependency, and it has therefore been ignored [35, 98] 

or fully acknowledged [40, 41, 43] in the literature.  To better illustrate this, two solution 

parameters that are most sensitive to the chosen value of the bulk modulus are chosen (Pmax and 

S) and the error in obtaining them for a range of applied lubricant bulk modulus is calculated and 

shown in Figure 2-11. The reference value for error estimation was chosen to be the converged 

values at physical lubricant bulk modulus of 𝛽 = 2𝐺𝑃𝑎 such that: 

 
𝐸𝑟𝑟𝑜𝑟 =

𝑢|𝛽∗ − 𝑢|𝛽𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙
𝑢|𝛽𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙

  (2.33) 

where 𝛽∗ is the bulk modulus value used for analysis. The converged values of pressure 

distribution at journal mid-span against lubricant bulk modulus are shown in Figure 2-11.  
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(a) (b) 

Figure 2-11. Error in obtaining solution parameters vs. choice of bulk modulus, 𝜷 (a) and Pressure variation 

at mid-span with 𝜷 (b) 

 

The variation of calculated error in solution parameters versus the bulk modulus as in Figure 

2-11(a) suggests that the 𝛽 dependency is significant for very low values of 𝛽 (~2×106), and that 

by increasing the lubricant bulk modulus towards 𝛽 = 2×107 and beyond, the error in obtaining 

the solution drops below 3% in magnitude. As increasing 𝛽 is crucial in obtaining the correct 

solution, the inherit numerical difficulty associated with higher 𝛽 values becomes problematic for 

the AF based scheme, while it has almost no effect on the proposed full linear system based scheme 

(FLS), and hence is a good indicator for the robustness of the proposed numerical scheme.  

 

Although 𝛽 dependency for the cavitation solution from the Elrod algorithm has been previously 

addressed [40, 41, 43], a thorough quantitative stability analysis is missing in the literature. 

Implementing the FLS scheme has a second advantage over the AF schemes since the full 

coefficient matrices that are constructed during the solution procedure represent the numerical 

scheme as a whole and are ideal for eigenvalue analysis [102] which is required to assess the 

stability of a numerical scheme. This is further addressed in Section 2.3.4.  

 

Case 3, high eccentric journal bearing with pressurized groove 

The ultimate test for the efficacy and robustness of the FLS based algorithm is to solve for the 

combination of stiff numerical system with physical bulk modulus of 𝛽 = 2 𝐺𝑃𝑎 under high 
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eccentricity ratios of 𝜖 = 0.9~0.99 with a pressurized groove of 𝑃̅𝑔 = 20 𝜋  where the cavitation 

reformation boundary is to be captured. Calculated pressure contours and corresponding 

convergence plots for a range of eccentricity ratios are given in Figure 2-12. Results of Figure 2-12 

are all obtained for a finer mesh of 100 by 40. This particular choice of mesh was indeed required 

to accurately capture the high pressure gradients in high eccentric devices. Based on the 

convergence plots of Figure 2-12 (b), it can be easily inferred that the performance of FLS based 

algorithm is not affected by the choice of eccentricity ratio. However, the difficulty in resolving 

the reformation boundary demands more iterations to reach convergence compared to the 

unpressurized cases of Figure 2-5.  

  

(a) (b) 

Figure 2-12. Pressure contours for a high eccentric journal bearing at 𝝐 = 𝟎. 𝟗𝟓 with pressurized groove at 

𝑷̅𝒈 = 𝟐𝟎 𝝅 and physical bulk modulus of 𝜷 = 𝟐 𝑮𝑷𝒂 (a) and the corresponding convergence plots for a range 

of eccentricity ratios (b) 

 

2.3.4 Numerical Stability of the Cavitation Algorithm 

A numerical stability analysis is performed based on the eigenvalue analysis of the coefficient 

matrix for a pressurized grooved Journal bearing at a range of lubricant bulk modulus values as 

low as 𝛽 = 2×105 (≡ 𝛽̅ = 2.75) up to 𝛽 = 2×109 (≡ 𝛽̅ = 2.75×104). The coefficient matrix 

used for analysis needs to be in the form of Eq. (A.11) for the eigenvalues to represent the 

numerical system as a whole. The calculated eigenvalues are depicted in Figure 2-13.  
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(a) (b) 

  

(c) (d) 

Figure 2-13. Eigenvalues of the Full linear system for a range of lubricant bulk modulus 

 

By analysing the eigenvalues 𝜆 of Figure 2-13, it is evident that there is a space structure to the 

calculated eigenvalues, being spread on both real and imaginary axes as in Figure 2-13 (a) to (c) 

and yet maintaining a structure close to the origin as shown in Figure 2-13 (d). It can be also seen 

that as the bulk modulus increases in magnitude, the space span of the eigenvalues expands on 

both real and imaginary axes and shifts leftward towards the origin on the real axis. An increase 

in the real part of the eigenvalues concurrent with an increase in their imaginary part , is associated 

with the coexistence of lower and higher frequency harmonics with higher amplitudes in the 

solution i.e., increased difficulty to resolve the errors. As a result, schemes that are inherently 

problematic in dealing with low frequency errors like Approximate Factorization are not suitable 
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for the cavitation problem. Another indicator for numerical difficulty in obtaining the solution is 

high values of numerical stiffness.  

 

Defining stiffness of a numerical scheme as 𝐾𝑛𝑢𝑚 =
𝑚𝑎𝑥(|𝑅𝑒(𝜆)|)

𝑚𝑖𝑛(|𝑅𝑒(𝜆)|)
, it can be shown how stiffness 

increases exponentially with increasing bulk modulus as shown in Figure 2-14 (a) for a range of 

eccentricity ratios. The effect of the applied load, i.e. eccentricity ratio, on numerical stiffness for 

a range of selected bulk moduli is shown in Figure 2-14 (b) as well as the choice of number of 

elements in both x and z directions in Figure 2-14 (c) and (d). A 100 ×40  mesh was used to 

calculate the results of Figure 2-14 (a) and (b) and a bulk modulus of  𝛽 = 2 𝐺𝑃𝑎 was used for the 

calculations in Figure 2-14 (c) and (d). Since Figure 2-14 (c) and (d) are designed to study the 

change of numerical stiffness versus 𝑀𝑥 and 𝑀𝑧, the number of mesh divisions in the alternate 

direction is to be kept constant and was set to 𝑀𝑧 = 40 and 𝑀𝑥 = 100 for Figure 2-14 (c) and (d), 

respectively. 
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(c) (d) 

Figure 2-14. Numerical stiffness versus the lubricant bulk modulus (a), eccentricity ratios (b) and number of 

mesh elements in x (c) and z directions x (d).  

 

The numerical stiffness results of Figure 2-14 demonstrate that increasing static load renders the 

numerical system slightly stiffer but not with a great margin. It can also be seen from Figure 

2-14(c) and (d) that the choice of mesh size in both directions is insignificant to numerical stiffness. 

However, as expected, an order of magnitude increase in lubricant bulk modulus significantly 

increases the stiffness of the numerical system regardless of the static load (i.e. eccentricity ratio). 

In order to maintain the stability of such a stiff numerical system, solvers are usually forced to 

choose unreasonably small time-steps, which lead to very slow convergence. In the lubrication 

problem, where accuracy of results depend on the physical choice of the bulk modulus, the 

inevitable stiff discretized numerical system needs to be solved efficiently by means of well 

adopted schemes, such as the one proposed in this chapter. 
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Chapter 3: Linear Stability of Finite Length Journal Bearings in Turbulent 

Regimes 

 

In this chapter, dynamic coefficients of a finite length journal bearing are numerically calculated 

under laminar and turbulent regimes, based on Ng-Pan-Elrod’s and Constantinescu’s turbulent 

models. Linear stability charts of a flexible rotor supported on laminar and turbulent journal 

bearings are found by calculating the threshold speed of instability associated with the start of the 

unstable oil whirl phenomenon. Local journal trajectories of the rotor-bearing system are found at 

different operating conditions solely based on the calculated dynamic coefficients in laminar and 

turbulent flow.   

 

3.1 Governing Equations 

Figure 3-1(a) shows a schematic of a journal bearing inside the bearing clearance. A simple rotor-

bearing system can be represented as a concentrated mass supported on journal bearings modeled 

as direct and cross coupled spring and dampers as shown in Figure 3-1(b) (cross coupled not 

showing). 

Under static equilibrium, the weight of the rotor and journal is in balance with the bearing force 

such that 𝐹 + 𝑊⃗⃗⃗ = 0 , and hence relative to the static equilibrium state, the x and y components 

of the dynamic deviation of bearing force upon the rotor can be expressed as follows: 

 
 

(a) (b) 

Figure 3-1. the schematic of a journal inside bearing (a) and modeling the effect of journal bearings with 

linear stiffness and damping coefficients (b) 
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(3.1) 

It is convenient to write Equation (3.1) in the following matrix form: 

{
𝑓𝑥
𝑓𝑦
} = − [

𝐾𝑥𝑥 𝐾𝑥𝑦
𝐾𝑦𝑥 𝐾𝑦𝑦

] {
𝑥
𝑦} − [

𝐶𝑥𝑥 𝐶𝑥𝑦
𝐶𝑦𝑥 𝐶𝑦𝑦

] {
𝑥 
𝑦 
} (3.2) 

where 𝐾𝑖𝑗 ≡ −(𝜕𝐹𝑖/𝜕𝑥𝑗) and 𝐶𝑖𝑗 ≡ −(𝜕𝐹𝑖/𝜕𝑥𝑗 ) are the eight bearing stiffness and damping 

coefficients as proposed by Lund [13] . The bearing reaction force can be calculated by integrating 

the oil induced pressure over the surface of the journal: 

𝐹𝑅 = ∫ 𝑅𝑑𝜃 ∫ 𝑃𝐶𝑜𝑠(𝜃)𝑑𝑧
𝐿

2

−
𝐿

2

𝜃𝑐𝑎𝑣

0
 ,   𝐹𝑇 = ∫ 𝑅𝑑𝜃 ∫ 𝑃𝑆𝑖𝑛(𝜃)𝑑𝑧

𝐿

2

−
𝐿

2

𝜃𝑐𝑎𝑣

0
 (3.3) 

In order to calculate the oil induced pressure, one needs to solve the Reynolds partial differential 

equation for laminar flow: 

1

𝑅2

𝜕

𝜕𝜃
(
ℎ3

12 𝜇

𝜕𝑃

𝜕𝜃
) +

𝜕

𝜕𝑧
(
ℎ3

12 𝜇

𝜕𝑃

𝜕𝑧
) =

1

2
𝜔
𝜕ℎ

𝜕𝜃
+
𝜕ℎ

𝜕𝑡
 (3.4) 

Equation (3.4) does not have an analytical solution and either needs to be simplified or to be solved 

numerically. For long journal bearings with length to diameter ratio of  
𝐿

𝐷
> 2, it is assumed that 

the variation in the induced pressure is more important in the circumferential direction compared 

to the change in the pressure along the axial direction. In such cases, only the first term in the LHS 

of Eq. (3.4) is retained, and solving the resulting ODE yields the long bearing approximation 

pressures. Retaining the second term in the LHS of Eq. (3.4) only, which holds for  
𝐿

𝐷
< 0.5 , will 

yield the pressure based on the short bearing approximation. In short bearings, the abrupt pressure 

change in the axial direction outweighs the pressure variations along the circumferential direction. 

Despite the relative ease in characterizing the bearing performance based on approximate short 

and long bearings solutions, the application of these approximations can be far from reality since 

𝐹𝑦 +𝑊𝑦 = 𝑓𝑦 =
𝜕𝐹𝑦

𝜕𝑥
𝑑𝑥 +

𝜕𝐹𝑦

𝜕𝑥 
𝑑𝑥 +

𝜕𝐹𝑦

𝜕𝑦
𝑑𝑦 +

𝜕𝐹𝑦

𝜕𝑦 
𝑑𝑦 + (ℎ𝑖𝑔ℎ𝑒𝑟 𝑜𝑟𝑑𝑒𝑟 𝑡𝑒𝑟𝑚𝑠)  

𝐹𝑥 +𝑊𝑥 = 𝑓𝑥 =
𝜕𝐹𝑥
𝜕𝑥

𝑑𝑥 +
𝜕𝐹𝑥
𝜕𝑥 

𝑑𝑥 +
𝜕𝐹𝑥
𝜕𝑦

𝑑𝑦 +
𝜕𝐹𝑥
𝜕𝑦 

𝑑𝑦 + (ℎ𝑖𝑔ℎ𝑒𝑟 𝑜𝑟𝑑𝑒𝑟 𝑡𝑒𝑟𝑚𝑠)  
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most of the real journal bearings used in the industry have length to diameter ratios of around unity 

and hence, accurate characterization of bearing performance is only possible by obtaining the 

solution to the Reynolds equation in its complete form as in Eq. (3.4).  

In relatively large diameter (𝑑 > 0.4𝑚) journal bearings, the flow state becomes turbulent at low 

rotating speeds (𝜔 < 400 𝑟𝑝𝑚), when using low-viscosity lubricants, or when operating with 

large clearances. The state of the flow in fluid-film journal bearings can be judged by its Reynolds 

number. It is unanimously agreed in the literature that turbulence makes its first appearance in 

journal bearings at a Reynolds number of approximately 2000 [103]. Once the flow becomes 

turbulent, the importance of the instability mechanism and transitioning that resulted in the 

turbulence flow diminishes [25].  Even though existing turbulent models for thin-film flows do not 

account for transitioning to turbulent from laminar flow, they are shown to predict the velocity 

profile and pressures with substantial agreement to the near isothermal bearing experiments in the 

fully turbulent region [25, 104]. For unsteady, incompressible turbulent flows in the oil film journal 

bearings as shown in Figure 1, the Reynolds equation can be written as: 

1

𝑅2

𝜕

𝜕𝜃
(
ℎ3

𝑘𝜃𝜇

𝜕𝑃

𝜕𝜃
) +

𝜕

𝜕𝑧
(
ℎ3

𝑘𝑧𝜇

𝜕𝑃

𝜕𝑧
) =

𝜔

2

𝜕ℎ

𝜕𝜃
+
𝜕ℎ

𝜕𝑡
 (3.5) 

where 𝑘𝜃 and 𝑘𝑧 are the turbulence coefficients in circumferential and longitudinal directions, 

respectively. In this Chapter, two turbulence methods are employed. First is the Constantinescu’s 

model based on the Prandtl mixing length hypothesis [104, 105]; second, is the Ng-Pan-Elrod 

model based on eddy viscosity [104, 106]. The turbulence coefficients along with their constants 

for both employed models are presented in Equation (3.6) and Table 3-1.  

{
𝑘𝑧 = 12 + 𝑎1(𝑅𝑒

∗)𝑎2

𝑘𝜃 = 12 + 𝑎3(𝑅𝑒
∗)𝑎4

 (3.6) 

where 𝑅𝑒∗ is the local Reynolds number which varies with 𝜃. 
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Table 3-1. Turbulent constants of Constantinescu and Ng-Pan-Elrod model 

Constants 
Turbulence Models 

Constantinescu Ng-Pan-Elrod 

𝑎1 0.0198 0.0044 

𝑎2 0.741 0.96 

𝑎3 0.026 0.0136 

𝑎4 0.8265 0.9 

From Equation (3.5) and (3.6) the turbulent Reynolds equation can be written as: 

1

𝑅2

𝜕

𝜕𝜃
(
ℎ3

𝑘𝜃𝜇

𝜕𝑃

𝜕𝜃
) +

𝜕

𝜕𝑧
(
ℎ3

𝑘𝑧𝜇

𝜕𝑃

𝜕𝑧
) = −

𝐶𝜖𝜔

2
𝑆𝑖𝑛(𝜃) + 𝐶𝜖 𝐶𝑜𝑠(𝜃) + 𝐶𝜖𝜑 𝑆𝑖𝑛(𝜃) (3.7) 

As mentioned previously, if only the second term in the LHS of Equation (3.4) is retained, solving 

the resulting ODE will yield the pressure in turbulent short bearings. It can be easily shown that 

the resulting pressure can be written as: 

𝑃𝑠ℎ𝑜𝑟𝑡 =
𝑘𝑧𝜇

ℎ3
[−

𝐶𝜀𝜔

2
𝑆𝑖𝑛(𝜃) + 𝐶𝜀 𝐶𝑜𝑠(𝜃) + 𝐶𝜀𝜑 𝑆𝑖𝑛(𝜃)] (

𝑧2

2
−
𝐿2

8
) (3.8) 

 

3.2 Identification of Bearing Dynamic Coefficients 

A direct solution to Equation (3.4) for laminar flow will yield the corresponding laminar pressure 

field. In order to obtain the journal bearing dynamic coefficients, the force derivatives with respect 

to displacement and velocity of the journal center are to be obtained such that 𝑘𝑖𝑗 ≡ −(𝜕𝐹𝑖/𝜕𝑥𝑗) 

and 𝑐𝑖𝑗 ≡ −(𝜕𝐹𝑖/𝜕𝑥𝑗 ) . The coefficients can now be directly calculated by first exerting some 

external finite perturbation at each steady state point following direct numerical differentiation 

[14, 25, 48]. While a finite perturbation approach may be adequate for practical purposes, the 

inherent numerical inaccuracy of the method can be eliminated by employing a perturbation 

solution known as the infinitesimal perturbation approach [47]. It is reported that provided the 

perturbation amplitudes are kept lower than 0.02C (displacement) or 0.02ωC (velocity) for normal 

bearing eccentricities, the calculated dynamic coefficients will be within 0.1% of the infinitesimal 

approach [48]. An infinitesimal perturbation method is used in this work. Following [47, 94], the 
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lubricant thickness in steady state h0 is perturbed in R and T directions (as in Figure 3-1.a) in the 

form: 

This perturbation in film thickness will result in a perturbation of the pressure film as 

Equations (3.9) and (3.10) are substituted back into the modified Reynolds Equation for turbulent 

flow (3.5), and keeping only zeroth and first order terms will omit the time-dependent terms and 

will yield five steady pressure and pressure gradient equations: 

1

𝑅2

𝜕

𝜕𝜃
(
ℎ0

3

𝑘𝜃𝜇

𝜕𝑃0
𝜕𝜃

) +
𝜕

𝜕𝑧
(
ℎ0

3

𝑘𝑧𝜇

𝜕𝑃0
𝜕𝑧

) =
𝜔

2

𝜕ℎ0
𝜕𝜃

 (3.11) 

1

𝑅2

𝜕

𝜕𝜃
(
ℎ0

3

𝑘𝜃𝜇

𝜕𝑃𝑅
𝜕𝜃

) +
𝜕

𝜕𝑧
(
ℎ0

3

𝑘𝑧𝜇

𝜕𝑃𝑅
𝜕𝑧

)

= −
𝜔

2
sin 𝜃 −

1

𝑅2

𝜕

𝜕𝜃
(
3 ℎ0

2

𝑘𝜃𝜇
cos 𝜃

𝜕𝑃0
𝜕𝜃

) −
𝜕

𝜕𝑧
(
3 ℎ0

2

𝑘𝑧𝜇
cos 𝜃

𝜕𝑃0
𝜕𝑧

) 

(3.12) 

1

𝑅2

𝜕

𝜕𝜃
(
ℎ0

3

𝑘𝜃𝜇

𝜕𝑃𝑇
𝜕𝜃

) +
𝜕

𝜕𝑧
(
ℎ0

3

𝑘𝑧𝜇

𝜕𝑃𝑇
𝜕𝑧

)

=
𝜔

2
cos 𝜃 −

1

𝑅2

𝜕

𝜕𝜃
(
3 ℎ0

2

𝑘𝜃𝜇
sin 𝜃

𝜕𝑃0
𝜕𝜃

) −
𝜕

𝜕𝑧
(
3 ℎ0

2

𝑘𝑧𝜇
sin 𝜃

𝜕𝑃0
𝜕𝑧

) 

(3.13) 

1

𝑅2

𝜕

𝜕𝜃
(
ℎ0

3

𝑘𝜃𝜇

𝜕𝑃𝑅 

𝜕𝜃
) +

𝜕

𝜕𝑧
(
ℎ0

3

𝑘𝑧𝜇

𝜕𝑃𝑅 

𝜕𝑧
) = cos 𝜃 

(3.14) 

1

𝑅2

𝜕

𝜕𝜃
(
ℎ0

3

𝑘𝜃𝜇

𝜕𝑃𝑇 

𝜕𝜃
) +

𝜕

𝜕𝑧
(
ℎ0

3

𝑘𝑧𝜇

𝜕𝑃𝑇 

𝜕𝑧
) = sin 𝜃 

(3.15) 

A solution of the modified Reynolds differential equation for steady pressure (Eq. (3.11)) has been 

obtained numerically using a finite volume method with successive over-relaxation scheme (point 

Gauss–Seidel with over relaxation parameter 𝜔 = 1.4). A sample mesh of 100 ×30 (𝜃, 𝑧) was 

ℎ =  ℎ0 + 𝑑ℎ = ℎ0 + 𝑑𝑅 cos 𝜃 + 𝑑𝑇 sin 𝜃 

𝜕ℎ

𝜕𝑡
=  𝑑𝑅 cos 𝜃 + 𝑑𝑇 sin 𝜃 

(3.9) 

𝑃 =  𝑃0 + 𝑑𝑃 = 𝑃0 +
𝜕𝑃

𝜕𝑅
𝑑𝑅 +

𝜕𝑃

𝜕𝑇
𝑑𝑇 +

𝜕𝑃

𝜕𝑅 
𝑑𝑅 +

𝜕𝑃

𝜕𝑇 
𝑑𝑇  (3.10) 
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selected to calculate the pressure field for a low Reynolds number operating point at eccentricity 

ratio of 𝜖 = 0.8. The calculated pressure is non-dimensionalized and is shown along with the mesh 

in Figure 3-2. The pressure boundary condition is the commonly used Swift-Stieber boundary 

condition for a fully cavitated journal bearing such that 𝑃 =
𝜕𝑃

𝜕𝜃
= 0 𝑎𝑡 𝜃 = 𝜃𝑐𝑎𝑣  for the cavitated 

zone and zero pressure at the journal edges 𝑃0 = 𝑑𝑃 = 0 𝑎𝑡 𝑍 = ±
𝐿

2
 [25]. 

  

(a) (b) 

Figure 3-2. The selected mesh (a) and non-dimensional pressure distribution, 𝑷̅,  on the journal surface for 

a cavitated journal bearing (b). 

 

The pressure distributions (non-dimensionalized) of the finite length journal for laminar and both 

available turbulent models are calculated at the journal mid-span and are compared to available 

analytical solutions of a short bearing in Figure 3-3. The corresponding pressure distributions are 

evaluated for two different cases at ε = 0.6. First at a low Reynolds number of 𝑅𝑒 = 1000 (well 

into the laminar region) Figure 3-3 (a), and then for a relatively high Reynolds number of 𝑅𝑒 =

10000 (fully turbulent) as shown in Figure 3-3 (b). Results indicate that as the Reynolds number 

increases, the predicted pressure distributions of the modified Reynolds equation deviates 

increasingly from the pressures as predicted by the classical Reynolds equation. The predicted 

pressures of a turbulent bearing for both turbulent models are sufficiently close at low Reynolds 

numbers but pressure predictions of the Ng-Pan method become increasingly different from the 

pressure predictions based on the Constantinescu model at higher Reynolds numbers.  
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(a) (b) 

Figure 3-3. The comparison of numerically and analytically obtained pressure (non-dimensional) 

distributions at mid-span of a finite length journal bearing with 𝑳/𝑫 = 𝟏/𝟐   for laminar and turbulent flow 

at 𝜺 = 𝟎. 𝟔 and Re = 1000 (a) and Re = 10000 (b). 

 

The obtained pressure field is then used as a basis for calculation of the pressure field gradients 

according to Equations (3.12) to (3.15). Having all the pressure gradients calculated in the R-T 

coordinate system, the dynamic coefficients can be simply found by integrating the pressure 

gradients over the non-cavitated flow region [47] on the journal surface according to the Swift-

Stieber boundary condition:   

Having the dynamic coefficients matrices 𝒌 and 𝒄 in R-T coordinates, a simple coordinate 

transformation with the angle of rotation being the attitude angle 𝜑, will yield the bearing 

coefficients in the x-y coordinate system: 

𝑄 = (
cos𝜑 −sin𝜑
sin𝜑 cos𝜑

) ,  [𝐾̅]𝑥−𝑦 = −𝑄[𝐾̅]𝑅−𝑇 𝑄
𝑇 , [𝐶̅]𝑥−𝑦 = −𝑄[𝐶̅]𝑅−𝑇𝑄

𝑇 (3.17) 

{
𝐾𝑟𝑟
𝐾𝑡𝑟

} = −∫ ∫ 𝑃𝑅 {
cos 𝜃
sin 𝜃

} 𝑅𝑑𝜃𝑑𝑧
𝐿

2

−
𝐿

2

𝜃𝑐𝑎𝑣

0
 , {
𝐾𝑟𝑡
𝐾𝑡𝑡

} = −∫ ∫ 𝑃𝑇 {
cos 𝜃
sin 𝜃

} 𝑅𝑑𝜃𝑑𝑧
𝐿

2

−
𝐿

2

𝜃𝑐𝑎𝑣

0
 

(3.16) 

{
𝐶𝑟𝑟
𝐶𝑡𝑟

} = −∫ ∫ 𝑃𝑅 {
cos 𝜃
sin 𝜃

} 𝑅𝑑𝜃𝑑𝑧
𝐿

2

−
𝐿

2

𝜃𝑐𝑎𝑣

0
 , {
𝐶𝑟𝑡
𝐶𝑡𝑡

} = −∫ ∫ 𝑃𝑇 {
cos 𝜃
sin 𝜃

} 𝑅𝑑𝜃𝑑𝑧
𝐿

2

−
𝐿

2

𝜃𝑐𝑎𝑣

0
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Based on sensitivity analysis of the maximum pressure as a function of the number of divisions in 

the circumferential (θ) and axial (z) directions, it is reported in the literature that the solution is 

more sensitive to the circumferential mesh density [52, 107]. A mesh density sensitivity analysis 

was carried out for four representative mesh sizes of 30 ×12 , 50 ×20 , 100 ×30  and 

150 ×40 (𝜃, 𝑧) . The maximum field pressure as well as all stiffness and damping coefficients 

were selected as target variables (𝜑) of interest for mesh sensitivity analysis and are calculated at 

an eccentricity ratio of  𝜖 = 0.8 for a finite length journal bearing with  
𝐿

𝐷
= 1 . Plots of stiffness 

and damping coefficients vs total number of elements are shown in Figure 3-4.  

  

(a) (b) 

Figure 3-4. Non-dimensional Stiffness (a) and damping (b) coefficients as target variables for mesh sensitivity 

analysis 

 

The fine grid convergence index 𝐺𝐶𝐼𝑓𝑖𝑛𝑒
21

 (an indicator of mesh numerical uncertainty) as well 

as extrapolated target variables and corresponding grid error for a subset of selected mesh 

(30 ×12 , 50 ×20 and 100 ×30  ) were calculated based on [101]. The fine grid convergence 

calculations for dynamic stiffness as target variables are tabulated in Table 3-2. The fine grid 

(100 ×30 (𝜃, 𝑧)) convergence index 𝐺𝐶𝐼𝑓𝑖𝑛𝑒
21

 indicating numerical uncertainty in calculating the 
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maximum target variable does not exceed % 0.4 for maximum field pressure and does not exceed 

% 0.0012 for any of the calculated dynamic coefficients; hence, the final fluid model was selected 

with 100 ×30 (𝜃, 𝑧) divisions with a total of 3000 2D fluid elements. 

 

Table 3-2. Sample calculations of discretization errors 

 𝜙 = 𝑃𝑚𝑎𝑥 𝜙 = 𝐾𝑟𝑟  𝜙 = 𝐾𝑡𝑟 𝜙 = 𝐾𝑟𝑡 𝜙 = 𝐾𝑡𝑡 

Φ1 

(fine grid) 
61.6153 110.1834 -57.7904 15.7893 17.6449 

Φ2 61.4949 110.1880 -57.7910 15.7884 17.6447 

Φ3 

(coarse grid) 
61.5675 110.2128 -57.7946 15.7837 17.6437 

Φ𝑒𝑥𝑡
21 61.7984 110.1823 -57.7902 15.7895 17.6449 

%𝑒𝑎
21 0.1953 4.24E-03 1.15E-03 5.55E-03 8.29E-04 

%𝑒𝑒𝑥𝑡
21 0.2963 9.83E-04 2.59E-04 1.26E-03 1.42E-04 

%𝐺𝐶𝐼𝑓𝑖𝑛𝑒
21

 0.3715 1.23E-03 3.24E-04 1.57E-03 1.78E-04 

The calculated values for stiffness and damping of a finite length journal bearing in laminar flow 

are compared to the analytically available coefficients of a short bearing for a length to diameter 

ratio 
𝐿

𝐷
= 1 when plotted against the Sommerfeld number and are shown in Figure 3-5. 

 

  

(a) (b) 
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(c) (d) 

Figure 3-5. The comparison of numerically calculated laminar dynamic coefficients of a finite length journal 

bearing (𝑳/𝑫 = 𝟏/𝟐) with analytical short bearing results. Direct stiffness (a), Cross-coupled stiffness (b), 

Direct damping (c) and Cross-coupled damping (d). 

As can be seen from Figure 3-5, at high Sommerfeld numbers (lower static load on shaft and hence 

smaller eccentricity ratios), the numerically obtained coefficients from direct solution to the 

Reynolds equations will become increasingly closer to the analytically obtained short bearing 

values unlike the big deviations in the low Sommerfeld region (high load and or higher eccentricity 

ratios). This is of course expected because of the higher pressure relief of the short bearing 

compared to a finite length journal bearing especially at high static loads. 

 

3.3 Mathematical Model of the Rotor-Bearing System 

In an ideal and fully balanced rotor-bearing system, the shaft spins at its designed operating speed 

while the induced pressures inside the end journals can support the weight of the shaft; hence, 

there exists an equilibrium point where the journal center finds and stays during the operation. 

This point is referred to as the static equilibrium position. If the rotor bearing system is undisturbed, 

the rotor will remain in its equilibrium position. For small disturbances, for instance a small 

unbalance force, the shaft will no longer stay at the static equilibrium point. Instead, it orbits via a 

closed elliptic curve around its equilibrium point. These are the harmonic solutions to a stable 

dynamic system operating in its stable region. If the operating speed of the shaft exceeds the so 

called threshold speed of instability 𝜔𝑡ℎ, no stable harmonic solution exists and the journal orbit 

will spiral outward towards either a bounded stable limit cycle (with orbits generally much greater 

than the stable closed harmonic orbits) or towards the point where metal to metal contact occurs. 
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This change of the dynamical behavior of the system is called a bifurcation and is known in rotor 

dynamics terminology as the oil whirl-whip phenomenon. It should be noted that oil whirl and 

rotor whirling will happen for both fully balanced and unbalanced rotors, though the threshold 

speed of a balanced system is higher than the threshold speed of an unbalanced system. 

 

The transition (bifurcation) to high amplitude vibration, whether to a stable limit cycle or towards 

the bearing clearance, can be either gradual (supercritical bifurcation) or sudden (subcritical 

bifurcation). Bifurcation towards the limit cycle is generally considered as an unstable operating 

condition while it is not necessarily unstable. The reason for this is that the majority of the stability 

analyses available in the literature are based on linear analysis. From the viewpoint of linear 

analysis, there is no difference between unstable and stable limit cycles (they are both considered 

as unstable). Even though the bifurcation type cannot be evaluated via linear analysis, the stability 

margin can indeed be identified by simple linear analysis. This is because that local stability of 

nonlinear and linearized systems are essentially the same. Linearized analysis will be used here to 

identify the stability margins of the system. To do this, one needs to find the threshold speed of 

instability for a given rotor-bearing system at any applied static load to the shaft. If the operating 

speed of the rotor is kept below this threshold speed, the system remains in its stable region and 

hence the operation is considered safe. The analysis here follows from [25, 91]. 

Referring to Figure 3-6, to analyze a flexible, center-loaded and perfectly balanced rotor 

symmetrically supported by two identical fluid-film journal bearings, the following assumptions 

are made: 

• Deflection of the flexible shaft is small to allow the use of linear beam theory. 

• The mass of the shaft and rotor torque of the midpoint mass are negligible. 

• The rotor mass is lumped at the midpoint. 

• Axial and torsional vibrations of the lumped mass are negligible.  

• Gyroscopic effect of the shaft, disk and journal bearings are negligible.  
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Figure 3-6. Schematic of a flexible rotor supported on journal bearings. 𝑶𝑱 and 𝑶𝑴 correspond to the 

geometric center of the journal and the central disc respectively. 

The equations of motion for the central disk and journal bearings may be written as follows: 

𝐶𝑒𝑛𝑡𝑟𝑎𝑙 𝐷𝑖𝑠𝑘: {
𝑀𝑥̈2 + 𝐾𝑠(𝑥2 − 𝑥1) = 0

𝑀𝑦̈2 + 𝐾𝑠(𝑦2 − 𝑦1) = 0
  , 

𝐽𝑜𝑢𝑟𝑛𝑎𝑙 𝐵𝑒𝑎𝑟𝑖𝑛𝑔𝑠: {
−2𝑑𝐹𝑥 + 𝐾𝑠(𝑥2 − 𝑥1) = 0

−2𝑑𝐹𝑦 + 𝐾𝑠(𝑦2 − 𝑦1) = 0
 

(3.18) 

where 𝐾𝑠 is the shaft stiffness, 𝑑𝐹𝑥 and 𝑑𝐹𝑦 are the components of the force due to induced bearing 

pressure in excess of the equilibrium forces, and are calculated based on Equation (3.2). Assuming 

harmonic motion of the central disc and journals with frequency 𝜈 = 𝑅𝑒(𝜈) + 𝑖 𝐼𝑚(𝜈): 

(𝑥1
𝑥2
) = (𝑋1

𝑋2
) 𝑒𝜈𝑡 , (𝑦1

𝑦2
) = (𝑌1

𝑌2
) 𝑒𝜈𝑡 (3.19) 

By substituting Equation (3.19) into Equation (3.18), the following expression may be obtained: 

[
 
 
 
 
−𝐾𝑠𝑀𝜈

2

𝐾𝑠 +𝑀𝜈2
+ 2𝐾𝑥𝑥 + 2𝜈𝐶𝑥𝑥 2𝐾𝑥𝑦 + 2𝜈𝐶𝑥𝑦

2𝐾𝑦𝑥 + 2𝜈𝐶𝑦𝑥
−𝐾𝑠𝑀𝜈

2

𝐾𝑠 +𝑀𝜈2
+ 2𝐾𝑦𝑦 + 2𝜈𝐶𝑦𝑦]

 
 
 
 

(
𝑋1
𝑋2
) = (

0

0
) (3.20) 

Non-dimensionalizing according to [25] for shaft and bearing stiffness and bearing damping, and 

also having (𝑋̅1
𝑋̅2
) =

1

𝐶
(𝑋1
𝑋2
) , 𝜔 = 𝜔̅√𝐾𝑠 𝑀⁄ , 𝜈 = 𝜔𝜈̅, 𝛼 =

−𝐾̅𝑠𝜈̅
2𝜔̅2

1+𝜈̅2𝜔̅2  , the non-dimensional from of 

Equation (3.20): 
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[
𝛼 + 2𝐾̅𝑥𝑥 + 2𝜈̅𝐶𝑥̅𝑥 2𝐾̅𝑥𝑦 + 2𝜈̅𝐶𝑥̅𝑦

2𝐾̅𝑦𝑥 + 2𝜈̅𝐶𝑦̅𝑥 𝛼 + 2𝐾̅𝑦𝑦 + 2𝜈̅𝐶𝑦̅𝑦
] (
𝑋̅1
𝑋̅2
) = (

0

0
) (3.21) 

The condition of non-trivial (non-zero) solution requires that the determinant of the characteristic 

matrix be set to zero. By setting the imaginary part of the determinant of Equation (3.21) to zero: 

𝛼 =
2(𝐾̅𝑥𝑦𝐶𝑦̅𝑥 + 𝐾̅𝑦𝑥𝐶𝑥̅𝑦 − 𝐾̅𝑦𝑦𝐶𝑥̅𝑥 − 𝐾̅𝑥𝑥𝐶𝑦̅𝑦)

𝐶𝑥̅𝑥 + 𝐶𝑦̅𝑦
 (3.22) 

By setting the real part of the determinant of Equation (3.21) to zero: 

𝜈̅2 =
𝛼2 + 2(𝐾̅𝑥𝑥 + 𝐾̅𝑦𝑦)𝛼 + 4(𝐾̅𝑥𝑥𝐾̅𝑦𝑦 − 𝐾̅𝑥𝑦𝐾̅𝑦𝑥)

4(𝐶𝑥̅𝑦𝐶𝑦̅𝑥 − 𝐶𝑥̅𝑥𝐶𝑦̅𝑦)
 (3.23) 

In the state of neutral stability, 𝜈̅ is purely imaginary and 
𝜈𝑤ℎ𝑖𝑟𝑙

𝜔
= √−𝜈̅2. Having 𝐾̅𝑠 = 

𝐶 

𝐿 𝐷 𝜇 𝑁 (
𝑅

𝐶
)
2𝐾𝑠 =

1

𝑆

𝐶 𝐾𝑠

 𝑊
  and using the definition of 𝛼, the instability threshold value can be found 

as: 

𝜔̅𝑡ℎ
2 =

𝛼

𝜈̅2(𝐾̅𝑠 − 𝛼)
 (3.24) 

 

3.4 Results and Discussions 

 

3.4.1 Laminar and Turbulent Dynamic Coefficients 

The finite length journal bearing pressure and pressure gradients in turbulent flow can be calculated 

by solving the steady and perturbed modified Reynolds equation, Eq. (3.11) to (3.15). The 

Coefficients in R-T coordinate system are then calculated by integrating the pressure gradients as 

in Eq. (3.16). A coordinate transformation as in Eq. (3.17) from R-T to X-Y is then necessary to 

find the coefficients in the X-Y coordinate system, which is suitable for stability analysis. This is 

done for a range of Reynolds numbers (10000, 20000 and 30000) and for both the Constantinescu 

and Ng-Pan Elrod turbulent models, and are compared to the calculated coefficients in the laminar 

region against the Sommerfeld number in Figure 3-7.  
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(a) (b) 

  

(c) (d) 

Figure 3-7. Comparison of the stiffness coefficients of a fully turbulent finite length journal bearing with the 

laminar (Reynolds independent) stiffness coefficients, 𝑲̅𝒙𝒙 (a), 𝑲̅𝒚𝒙 (b), 𝑲̅𝒙𝒚 (c) and 𝑲̅𝒚𝒚 (d). 

Similar treatment was carried out to calculate the damping coefficients of turbulent journal 

bearings.  The calculated bearing damping coefficients in turbulent flow are compared to the 

previously calculated coefficients in the laminar region and are plotted against the corresponding 

Sommerfeld number in Figure 3-8. 



64 

 

  

(a) (b) 

  

(c) (d) 

Figure 3-8. Comparison of the damping coefficients of a fully turbulent finite length journal bearing with 

the laminar (Reynolds independent) damping coefficients, 𝑪̅𝒙𝒙 (a), 𝑪̅𝒚𝒙 (b), 𝑪̅𝒙𝒚 (c) and 𝑪̅𝒚𝒚 (d). 

By substituting laminar and turbulent coefficients obtained based on the two different turbulent 

models (as shown in Figure 3-7 and Figure 3-8) into Equations (3.22) to (3.24), one can obtain the 

stability margins of a flexible shaft supported by laminar and turbulent finite length journal 

bearings.  

 

3.4.2 Identification of Threshold Speed of Instability 

The non-dimensional threshold speed of instability 𝜔̅𝑡ℎ is calculated to find the corresponding 

stability parameter 𝛾 =
𝐶 𝐾𝑠

𝑊
𝜔̅𝑡ℎ
2  for laminar and turbulent bearings at a range of Reynolds numbers. 

The stability parameter 𝛾 is plotted against the Sommerfeld number for different non-dimensional 



65 

 

shaft stiffness parameter values, as shown in Figure 3-9. Stable and unstable regions are indicated 

in the Figure 3-9 (a). 

  

(a) (b) 

  

(c) (d) 

Figure 3-9. Linear stability curves of a flexible shaft supported on laminar and turbulent finite length journal 

bearings at ends against the Sommerfeld number for a range of non-dimensional shaft stiffness 𝑪𝑲𝒔/𝑾 =

𝟎. 𝟏 (a), 𝑪𝑲𝒔/𝑾 = 𝟏 (b), 𝑪𝑲𝒔/𝑾 = 𝟏𝟎 (c) and 𝑪𝑲𝒔/𝑾 = 𝟏𝟎𝟎 (d). 

 

By comparing the stability of turbulent bearings to the laminar bearings and holding the non-

dimensional shaft stiffness constant as in Figure 3-9 (a-d), it is clear that the turbulent curves are 

shifted to the left of the laminar curve for all of the shaft stiffness values, indicating that the 

unstable region expands at higher Reynolds numbers. The expanded unstable region due to 

turbulent bearings is in the low Sommerfeld 𝑆 ≤ 0.05 (high loading) region. This suggests that as 

the static loading increases on the shaft, the turbulent bearings become progressively less stable 

compared to the bearing which is operating in the laminar region of oil film flow. In the high 

Sommerfeld region 𝑆 ≥ 0.2 (low load), the stability curves of laminar and turbulent bearings are 

Unstable S
ta

b
le

 



66 

 

very much alike. This destabilizing effect of turbulent bearings increases with the Reynolds 

number. At each Reynolds and at each non-dimensional shaft stiffness value, the stability curves 

of Constantinescu’s turbulent model are positioned above the curves obtained based on the Ng-

Pan Elrod turbulent model, suggesting that the Ng-Pan Elrod turbulent treatment is more 

conservative when used as a basis for design of the rotor-bearing system. 

 

3.4.3 Rotor-Bearing System Trajectories   

To illustrate the expansion of the unstable operating region and the shortcomings of the laminar 

theory in predicting the stable regions of the rotor-bearing system, the journal trajectories at 

different operating points should be calculated. To do this, the set of governing equations of motion 

for the journal and the shaft are to be numerically calculated to obtain the trajectory of the journal 

center. This is done first by transforming the linear ODE system of Equation (3.18) into a state-

space representation of the form 𝑿̇ = 𝑓(𝑿̇, 𝑡) as follows: 

 

𝑋 1 =
𝐶𝑥𝑦(𝐾𝑠 𝑋2−𝐾𝑠 X4+2  𝐾𝑦𝑥 𝑋1+2 𝐾𝑦𝑦 𝑋2)

2𝐶𝑥𝑥𝐶𝑦𝑦−2𝐶𝑥𝑦𝐶𝑦𝑥
−

𝐶𝑦𝑦(𝐾𝑠 𝑋1−𝐾𝑠 𝑋3+2 𝐾𝑥𝑥 𝑋1+2 𝐾𝑥𝑦 𝑋2)

2𝐶𝑥𝑥𝐶𝑦𝑦−2𝐶𝑥𝑦𝐶𝑦𝑥
  

𝑋 2 =
𝐶𝑦𝑥(𝐾𝑠 𝑋1−𝐾𝑠 𝑋3+2 𝐾𝑥𝑥 𝑋1+2  𝐾𝑥𝑦 𝑋2)

2𝐶𝑥𝑥𝐶𝑦𝑦−2𝐶𝑥𝑦𝐶𝑦𝑥
−

𝐶𝑥𝑥(𝐾𝑠 𝑋2−𝐾𝑠 X4+2  𝐾𝑦𝑥 𝑋1+2  𝐾𝑦𝑦𝑋2)

2𝐶𝑥𝑥𝐶𝑦𝑦−2𝐶𝑥𝑦𝐶𝑦𝑥
  

𝑋 3 = 𝑋5 , 𝑋 4 = 𝑋6 , 𝑋 5 =
−𝐾𝑠(𝑋3−𝑋1)

𝑀
 , 𝑋 6 =

−𝐾𝑠(𝑋4−𝑋2)

𝑀
 

(3.25) 

 

where (𝑋1, 𝑋2) and (𝑋3, 𝑋4) are (x, y) position coordinates of the journal center and the mass disk 

center, respectively. The journal bearing coefficients in Equation (3.18) are time varying functions 

of the journal center (𝑋1, 𝑋2). It shall be noted that trajectories can be solely obtained based on the 

linearized coefficients, provided that the journal position remains close to its steady state position. 

The system of Equations (3.25) can be used as a basis for calculation of the journal trajectories for 

much more complicated systems, provided that the dynamic coefficients are available (either 

previously calculated or experimentally obtained). 

 

The system of coupled linear ODEs of Equation (3.25) is integrated numerically by an implicit 

scheme to obtain the trajectories of the journal and the disk center. When the journal force is 

expressed in terms of dynamic coefficients, the Jacobian of the linear ODE system can be easily 
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calculated and hence can be used effectively in an implicit time integration scheme. A first order 

Implicit Euler method is adopted here:  

𝑿̇ =
𝑿̇𝑛+1 − 𝑿̇𝑛

𝛿𝑡
=
𝛿𝑿̇

𝛿𝑡
= 𝑓𝑛+1(𝑿̇, 𝑡) 

(3.26) 

where superscripts n and n+1 are to represent a variable value at the current and the next time-

step, respectively. The next step is to express the right hand side of Eq. (3.26), 𝑓𝑛+1(𝑿̇, 𝑡), in terms 

of the functions of the variable and its gradients at the current time-step, through a Taylor series 

expansion: 

𝑓𝑛+1(𝑿̇, 𝑡) = 𝑓(𝑿̇𝑛+1) = 𝑓(𝑿̇𝑛 + 𝛿𝑿̇) = 𝑓(𝑿̇𝑛) +
𝜕𝑓

𝜕𝑿̇
|
𝑛

𝛿𝑿̇ + 𝐻. 𝑂. 𝑇 
(3.27) 

where 
𝜕𝑓

𝜕𝑿̇
|
𝑛

is the Jacobian matrix of the linear ODE system evaluated at the current time-step, 

taking the following form: 

𝐽(𝑿̇) =
𝜕𝑓
𝜕𝑿̇

= 

(

 
 
 
 
 
 
 
 

𝐶𝑦𝑦𝐾𝑠 + 2𝐶𝑦𝑦𝐾𝑥𝑥 − 2𝐶𝑥𝑦 𝐾𝑦𝑥

2𝐶𝑥𝑦𝐶𝑦𝑥 − 2𝐶𝑥𝑥𝐶𝑦𝑦

2𝐶𝑦𝑦 𝐾𝑥𝑦 − Cxy(𝐾𝑠 + 2𝐾𝑦𝑦)

2𝐶𝑥𝑦𝐶𝑦𝑥 − 2𝐶𝑥𝑥𝐶𝑦𝑦

𝐶𝑦𝑦𝐾𝑠

2𝐶𝑥𝑥𝐶𝑦𝑦 − 2𝐶𝑥𝑦𝐶𝑦𝑥

𝐶𝑥𝑦𝐾𝑠

2𝐶𝑥𝑦𝐶𝑦𝑥 − 2𝐶𝑥𝑥𝐶𝑦𝑦
0 0

𝐶𝑦𝑥(𝐾𝑠 + 2𝐾𝑥𝑥) − 2𝐶𝑥𝑥 𝐾𝑦𝑥

2𝐶𝑥𝑥𝐶𝑦𝑦 − 2𝐶𝑥𝑦𝐶𝑦𝑥

𝐶𝑥𝑥𝐾𝑠 − 2𝐶𝑦𝑥 𝐾𝑥𝑦 + 2𝐶𝑥𝑥𝐾𝑦𝑦

2𝐶𝑥𝑦𝐶𝑦𝑥 − 2𝐶𝑥𝑥𝐶𝑦𝑦

𝐶𝑦𝑥𝐾𝑠

2𝐶𝑥𝑦𝐶𝑦𝑥 − 2𝐶𝑥𝑥𝐶𝑦𝑦

𝐶𝑥𝑥𝐾𝑠
2𝐶𝑥𝑥𝐶𝑦𝑦 − 2𝐶𝑥𝑦𝐶𝑦𝑥

0 0

0 0 0 0 1 0
0 0 0 0 0 1
𝐾𝑠
𝑀

0 −
𝐾𝑠
𝑀

0 0 0

0
𝐾𝑠
𝑀

0 −
𝐾𝑠
𝑀

0 0)

 
 
 
 
 
 
 
 

 

(3.28) 

Having the Jacobian matrix of the system, we can write the system of coupled linear ODEs as: 

𝑿̇ =
𝛿𝑿̇

𝛿𝑡
≅ 𝑓(𝑿̇𝑛) + 𝐽(𝑿̇)𝛿𝑿̇ (3.29) 

the change in solution 𝛿𝑿̇ can now be found via solving a linear system such that: 

(
𝐼

𝛿𝑡
− 𝐽(𝑿̇)) 𝛿𝑿̇ = 𝑓(𝑿̇𝑛) (3.30) 



68 

 

where 𝐼, 𝛿𝑿̇ and 𝑓(𝑿̇𝑛) are 𝑁×1 matrices and 𝐽(𝑿̇) is a 𝑁×𝑁 matrix for a coupled system of N 

ordinary differential equations of first order. A direct solve of the linear system of Eq. (3.30) by 

Gaussian elimination will yield the change in solution 𝛿𝑿̇ from time-step n to n+1. The calculated 

change in solution can then be used as a basis for first order or second order accurate implicit time 

integration schemes. The major benefit of implicit schemes is that their stability has minor to 

negligible sensitivity to chosen time steps and are therefore ideal for studying stiff dynamical 

systems as in the case of journal bearing supported shafts. As was explained above, a key step in 

implicit calculations is finding the Jacobian matrix at each time step, which is inherently efficient 

if the Jacobian matrix can be found explicitly as in Eq. (3.28).  

Non-dimensional journal trajectories in laminar and turbulent conditions, plot of 

𝑋̅𝑗𝑜𝑢𝑟𝑛𝑎𝑙 𝑣𝑠 𝑌̅𝑗𝑜𝑢𝑟𝑛𝑎𝑙  (𝑋̅ =
𝑋

𝐶
), at three different operating points were calculated by means of the 

detailed implicit time integration method of Equations (3.25) to (3.30). The turbulent journal 

trajectory was based on the Ng-Pan Elrod model at 𝑅𝑒 = 10000. The selected operating points 

(marked with circles) and calculated trajectories are shown in Figure 3-10. 

 

  

(a) 
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(b) 𝑆 = 0.01 , 𝛾 = 5 (c) 𝑆 = 0.03 , 𝛾 = 5 (d) 𝑆 = 0.1 , 𝛾 = 5 

   

(e) 𝑆 = 0.01 , 𝛾 = 5 (f) 𝑆 = 0.03 , 𝛾 = 5 (g) 𝑆 = 0.1 , 𝛾 = 5 

Figure 3-10. Journal bearing trajectory at three operating points (stars in (a)) under laminar (b, c and d) 

and turbulent (e, f and g) regimes of flow. 

 

For all cases shown in Figure 3-10, the journal center is released from a point very close to its 

steady state point (within the radius of 0.1% of the journal clearance around the steady state point), 

and its trajectory is followed in time. The first operating point is selected such that it lies in the 

stable region of both laminar and turbulent curves at 𝑆 = 0.01 , 𝛾 = 5. Similar results were 

obtained where the journal finds its steady state point and remains there, Figure 3-10(b) and (e). 

The next operating point 𝑆 = 0.03 , 𝛾 = 5 lies between the laminar and turbulent curves. As 

expected, the laminar based trajectories, Figure 3-10(c), can still find the steady state point while 

the turbulent based trajectories, Figure 3-10(f), start to grow and hence become unstable. This 

again indicates that stable regions obtained based on the laminar theory can become unstable at 

higher Reynolds numbers. Both laminar and turbulent trajectories grow in the third selected 

operating point of 𝑆 = 0.1 , 𝛾 = 5 though with different speeds, as shown in Figure 3-10(d) and 

(g).  
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Chapter 4: Nonlinear Dynamics of a Rotor-Bearing System using an Analytical 

Bearing Model 

 

To test the proposed hypothesis, a nonlinear coefficient based method for representing the bearing 

force is presented in this chapter as a versatile technique for characterizing the bearing force in a 

rotor-bearing system. Linear and nonlinear dynamic coefficients of a journal bearing are calculated 

in different coordinates with a systematic approach that can be applied to both short and long 

journal bearings. A flexible rotor-bearing system is presented for which bearing force is modeled 

with linear and nonlinear dynamic coefficients. A Hopf bifurcation analysis is then carried out to 

determine whether the proposed model can be used for characterizing the bifurcations in the 

system. 

 

4.1 Nonlinear Bearing Model with Dynamic Coefficients 

Figure 4-1 shows the adopted coordinate system for a journal bearing inside the bearing clearance.  

The geometric center of the bearing is represented by 𝑂𝐵 in Figure 4-1 and is chosen as the center 

of the Fixed and inertial X-Y coordinate system. At steady state and under static equilibrium, the 

weight of the rotor and journal is in balance with the bearing force such that 𝑭 +𝑾 = 0 . The 

steady state position is marked as 𝑂𝐽𝑆  with the associated eccentricity of 𝑒0, and the attitude angle 

 

 

Figure 4-1. the adopted coordinate systems for a journal in bearing clearance 
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of 𝜑0. The components of the lubricant force along the fixed directions (R, T), are 𝐹𝑅 and 𝐹𝑇. If 

the journal is perturbed around its resting point (for instance due to a small imbalance force), at a 

particular instant it will occupy position 𝑂𝐽. At this instant, the eccentricity is 𝑒 = 𝑒0 + 𝛿𝑒, and 

the attitude angle is 𝜑 = 𝜑0 + 𝛿𝜑, with journal instantaneous velocities 𝑒  and 𝑒 𝜑  . The 

instantaneous lubricant force now has components 𝐹𝜖 and 𝐹𝜑, relative to the instantaneous radial 

and tangential coordinates 𝜖 and 𝜑, respectively. A 𝛿𝜑 clockwise rotation can be used to express 

the instantaneous forces in the Fixed R-T coordinate system: 

 
(
𝐹𝑅
𝐹𝑇
) =  (

cos 𝛿𝜑 − sin 𝛿𝜑
sin 𝛿𝜑 cos 𝛿𝜑

) (
𝐹𝜖
𝐹𝜑
)    (4.1) 

assuming 𝛿𝜑 is small: 

 cos 𝛿𝜑 ≈ (1 −
𝛿𝜑2

2
) and sin 𝛿𝜑 ≈ (𝛿𝜑 −

𝛿𝜑3

6
) (4.2) 

The total change in the radial force component ∆𝐹𝑅 in excess of its equilibrium value 𝐹𝑅0 can now 

be written as: 

 ∆𝐹𝑅 = 𝐹𝜖 (1 −
𝛿𝜑2

2
) − 𝐹𝜑 (𝛿𝜑 −

𝛿𝜑3

6
) − 𝐹𝜖0 ,  (4.3) 

And similarly for the change in the tangential force component in excess of its equilibrium value 

𝐹𝑇0 we have: ∆𝐹𝑇 = 𝐹𝑇 − 𝐹𝜑0. Note that the steady state value of the instantaneous force 

components 𝐹𝜖0 and 𝐹𝜑0 is essentially 𝐹𝑅0 and 𝐹𝑇0, respectively. A Taylor expansion of the scalar 

force component functions 𝐹𝜉 , 𝜉 = 𝜖, 𝜑 about the equilibrium point up to the third order can be 

written as: 

 

𝐹𝜉 ≅ 𝐹𝜉0 +∑
𝜕𝐹𝜉

𝜕𝑞𝑖
𝛿𝑞𝑖

4

𝑖=1

+
1

2
∑

𝜕2𝐹𝜉

𝜕𝑞𝑖𝜕𝑞𝑗
𝛿𝑞𝑖𝛿𝑞𝑗

4

𝑖,𝑗=1

+
1

6
∑

𝜕3𝐹𝜉

𝜕𝑞𝑖𝜕𝑞𝑗𝜕𝑞𝑘
𝛿𝑞𝑖𝛿𝑞𝑗𝛿𝑞𝑘

4

𝑖,𝑗,𝑘=1

 

(4.4) 
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with 𝑞1 = 𝑒, 𝑞2 = 𝜑, 𝑞3 = 𝑒  and 𝑞4 = 𝜑 . All the derivatives in Eq. (4.4) are evaluated at the steady 

state point where 𝑒 = 𝜑 = 0. It is customary to write the change in force due to the 

perturbation, ∆𝐹𝜂 , 𝜂 = 𝑟, 𝑡, in the form of stiffness and damping dynamic coefficients such that:  

 ∆𝐹𝜂 = 𝐾𝜂𝑟𝛿𝑒 + 𝐾𝜂𝑡𝛿𝜑 + 𝐶𝜂𝑟𝛿𝑒 + 𝐶𝜂𝑡𝛿𝜑 + 𝐾𝜂𝑟𝑟𝛿𝑒
2 + 𝐾𝜂𝑡𝑡𝛿𝜑

2 + 𝐾𝜂𝑟𝑡𝛿𝑒𝛿𝜑

+ 𝐶𝜂𝑟𝑟𝛿𝑒 𝛿𝑒 + 𝐶𝜂𝑟𝑡𝛿𝑒 𝛿𝜑 + 𝐶𝜂𝑡𝑟𝛿𝜑 𝛿𝑒 + 𝐶𝜂𝑡𝑡𝛿𝜑 𝛿𝜑 + 𝐾𝜂𝑟𝑟𝑟𝛿𝑒
3

+ 𝐾𝜂𝑡𝑡𝑡𝛿𝜑
3 + 𝐾𝜂𝑟𝑡𝑡𝛿𝑒𝛿𝜑

2 + 𝐾𝜂𝑡𝑟𝑟𝛿𝑒
2𝛿𝜑 + 𝐶𝜂𝑟𝑟𝑟𝛿𝑒 𝛿𝑒

2

+ 𝐶𝜂𝑡𝑡𝑡𝛿𝜑 𝛿𝜑
2 + 𝐶𝜂𝑟𝑡𝑡𝛿𝑒 𝛿𝜑

2 + 𝐶𝜂𝑡𝑟𝑟𝛿𝜑 𝛿𝑒
2 

(4.5) 

The dynamic coefficients in the R-T coordinate system can be found by substituting Eq. (4.4) back 

into Eq. (4.3)  and conducting a one-to-one comparison to the form of Eq. (4.5).  

 

4.2 Bearing Dynamic Coefficients in the R-T Coordinate System 

The non-dimensional induced forces of a short journal bearing for a fully cavitated 𝜋-film (Gumbel 

Boundary Condition) bearing are given in the literature [25] as: 

 

𝑓𝜖 = (
𝐿

𝐷
)
2

(1 −
2𝜑 

𝜔
)(−

2𝜋2(2𝜖2 + 1)𝜖 

𝜔(1 − 𝜖2)5 2⁄ (1 −
2𝜑 
𝜔 )

−
4𝜋𝜖2

(1 − 𝜖2)2
) 

𝑓𝜑 = (
𝐿

𝐷
)
2

(1 −
2𝜑 

𝜔
)(

𝜋2𝜖

(1 − 𝜖2)3 2⁄
+

8𝜋𝜖𝜖 

𝜔(1 − 𝜖2)2 (1 −
2𝜑 
𝜔 )

) 

(4.6) 

where the non-dimensional forces and dynamic coefficients are related such that: 

 𝑓 =
𝐹 

Π
 , 𝐾̅𝑖𝑗 =

𝐶 

Π
 𝐾𝑖𝑗 , 𝐶𝑖̅𝑗 =

𝐶 𝜔

Π
 𝐶𝑖𝑗  , 𝐾̅𝑖𝑗𝑘 =

𝐶2 

Π
 𝐾𝑖𝑗𝑘 , 𝐶𝑖̅𝑗 =

𝐶2 𝜔

Π
 𝐶𝑖𝑗  , 𝐾̅𝑖𝑗𝑘𝑙 =

𝐶3 

Π
 𝐾𝑖𝑗𝑘𝑙 , 𝐶𝑖̅𝑗𝑘𝑙 =

𝐶3 𝜔

Π
 𝐶𝑖𝑗𝑘𝑙 with Π = 𝐿 𝐷 𝜇 𝑁 (

𝑅

𝐶
)
2

 

(4.7) 

It shall be noted that since the dynamic bearing forces for both short and long journal bearings (for 

which an analytical expression exists) are not explicit functions of higher powers of 𝑒  and 𝜑 , 

therefore 
𝜕2𝐹𝜖

𝜕𝑒 2
=

𝜕2𝐹𝜖

𝜕𝜑 2
=

𝜕2𝐹𝜖

𝜕𝑒 𝜕𝜑 
=

𝜕2𝐹𝜑

𝜕𝑒 2
=

𝜕2𝐹𝜑

𝜕𝜑 2
=

𝜕2𝐹𝜑

𝜕𝑒 𝜕𝜑 
= 0 (similarly for third order terms), and the 

corresponding dynamic coefficients are zero and are omitted from the form given in  Eq. (4.5). 
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The non-dimensional linear and nonlinear (second order) bearing dynamic coefficients are 

calculated and given in Table 4-1, Table 4-2 and Table 4-3. The third order coefficients are 

calculated in a similar fashion. 

Table 4-1. Linear dynamic coefficients in R-T coordinate 

Linear 

Stiffness 

Coefficients 

General 

 Form 

Short Bearing 

 (𝜋 film) 

Linear 

Damping 

Coefficients 

General 

Form 

Short Bearing 

 (𝜋 film) 

𝐾𝑟𝑟  
𝜕𝑓𝜖
𝜕𝜖

 (
𝐿

𝐷
)
2−8𝜋𝜖(𝜖2 + 1)

(1 − 𝜖2)3
 𝐶𝑟̅𝑟 𝜔

𝜕𝑓𝜖
𝜕𝜖 

 (
𝐿

𝐷
)
2 −2𝜋2(2𝜖2 + 1)

(1 − 𝜖2)5 2⁄
 

𝐾𝑟𝑡 
1

𝜖
(−𝑓𝜑0 +

𝜕𝑓𝜖
𝜕𝜑

) (
𝐿

𝐷
)
2 −𝜋2

(1 − 𝜖2)3 2⁄
 𝐶𝑟̅𝑡 

𝜔

𝜖

𝜕𝑓𝜖
𝜕𝜑 

 (
𝐿

𝐷
)
2 8𝜋𝜖

(1 − 𝜖2)2
 

𝐾𝑡𝑟 
𝜕𝑓𝜑

𝜕𝜖
 (

𝐿

𝐷
)
2 𝜋2(2𝜖2 + 1)

(1 − 𝜖2)5 2⁄
 𝐶𝑡̅𝑟 𝜔

𝜕𝑓𝜑

𝜕𝜖 
 (

𝐿

𝐷
)
2 8𝜋𝜖

(1 − 𝜖2)2
 

𝐾𝑡𝑡 
1

𝜖
(𝑓𝜖0 +

𝜕𝑓𝜑

𝜕𝜑
) (

𝐿

𝐷
)
2 −4𝜋𝜖

(1 − 𝜖2)2
 𝐶𝑡̅𝑡 

𝜔

𝜖

𝜕𝑓𝜑

𝜕𝜑 
 (

𝐿

𝐷
)
2 −2𝜋2

(1 − 𝜖2)3 2⁄
 

 

Table 4-2. Nonlinear (second order) stiffness coefficients in R-T 

Nonlinear 

Stiffness 

Coefficients 

General Form 
Short Bearing 

(𝜋 film) 

𝐾𝑟𝑟𝑟 
1

2

𝜕2𝑓𝜖
𝜕𝜖2

 (
𝐿

𝐷
)
2−4𝜋(3𝜖4 + 8𝜖2 + 1)

(1 − 𝜖2)4
 

𝐾𝑡𝑟𝑟 
1

2

𝜕2𝑓𝜑

𝜕𝜖2
 (

𝐿

𝐷
)
2 3𝜋2𝜖(2𝜖2 + 3)

2(1 − 𝜖2)7 2⁄
 

𝐾𝑟𝑡𝑡 
1

2𝜖2
(−𝑓𝜖0 − 2

𝜕𝑓𝜑

𝜕𝜑
+
𝜕2𝑓𝜖
𝜕𝜑2

) (
𝐿

𝐷
)
2 2𝜋

(1 − 𝜖2)2
 

𝐾𝑡𝑡𝑡 
1

2𝜖2
(−𝑓𝜑0 + 2

𝜕𝑓𝜖
𝜕𝜑

+
𝜕2𝑓𝜑

𝜕𝜑2
) (

𝐿

𝐷
)
2 −𝜋2

2𝜖(1 − 𝜖2)3 2⁄
 

𝐾𝑟𝑟𝑡 
1

𝜖
(−

𝜕𝑓𝜑

𝜕𝜖
+

𝜕2𝑓𝜖
𝜕𝜖𝜕𝜑

) (
𝐿

𝐷
)
2−𝜋2(2𝜖2 + 1)

𝜖(1 − 𝜖2)5 2⁄
 

𝐾𝑡𝑟𝑡 
1

𝜖
(
𝜕𝑓𝜖
𝜕𝜖

+
𝜕2𝑓𝜑

𝜕𝜖𝜕𝜑
) (

𝐿

𝐷
)
2−8𝜋(𝜖2 + 1)

(1 − 𝜖2)3
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Table 4-3. Nonlinear (second order) damping coefficients in R-T 

Nonlinear 

Damping 

Coefficients 

General Form 
Short Bearing 

(𝜋 film) 

𝐶𝑟̅𝑟𝑟 𝜔
𝜕2𝑓𝜖
𝜕𝜖 𝜕𝜖

 (
𝐿

𝐷
)
2−6𝜋2𝜖(2𝜖2 + 3)

(1 − 𝜖2)7 2⁄
 

𝐶𝑡̅𝑟𝑟 𝜔
𝜕2𝑓𝜑

𝜕𝜖 𝜕𝜖
 (

𝐿

𝐷
)
2 8𝜋(3𝜖2 + 1)

(1 − 𝜖2)3
 

𝐶𝑟̅𝑡𝑡 
𝜔

𝜖2
(−

𝜕𝑓𝜑

𝜕𝜑 
+

𝜕2𝑓𝜖
𝜕𝜑 𝜕𝜑

) (
𝐿

𝐷
)
2 2𝜋2

𝜖(1 − 𝜖2)3 2⁄
 

𝐶𝑡̅𝑡𝑡 
𝜔

𝜖2
(
𝜕𝑓𝜖
𝜕𝜑 

+
𝜕2𝑓𝜑

𝜕𝜑 𝜕𝜑
) (

𝐿

𝐷
)
2 8𝜋

(1 − 𝜖2)2
 

𝐶𝑟̅𝑟𝑡 
𝜔

𝜖
(−

𝜕𝑓𝜑

𝜕𝜖 
+

𝜕2𝑓𝜖
𝜕𝜖 𝜕𝜑

) (
𝐿

𝐷
)
2 −8𝜋

(1 − 𝜖2)2
 

𝐶𝑡̅𝑟𝑡 
𝜔

𝜖
(
𝜕𝑓𝜖
𝜕𝜖 

+
𝜕2𝑓𝜑

𝜕𝜖 𝜕𝜑
) (

𝐿

𝐷
)
2−2𝜋2(2𝜖2 + 1)

𝜖(1 − 𝜖2)5 2⁄
 

𝐶𝑟̅𝑡𝑟 𝜔
𝜕2𝑓𝜖
𝜕𝜑 𝜕𝜖

 (
𝐿

𝐷
)
2 16𝜋(𝜖2 + 1)

(1 − 𝜖2)3
 

𝐶𝑡̅𝑡𝑟 𝜔
𝜕2𝑓𝜑

𝜕𝜑 𝜕𝜖
 (

𝐿

𝐷
)
2−2𝜋2(2𝜖2 + 1)

𝜖(1 − 𝜖2)5 2⁄
 

 

4.3 Bearing Dynamic Coefficients in the X-Y Coordinate System 

Once the linear coefficients are calculated in the R-T coordinate, a simple coordinate 

transformation can transfer them to any rotated frame of reference through a simple rotation 

transformation. For instance, the following clockwise transformation will yield the dynamic 

coefficients in the fixed X-Y coordinate of  Figure 3-1:  

 𝑄0 = (
cos𝜑0 −sin𝜑0

sin𝜑0 cos 𝜑0
) ,  [𝐾̅]𝑥𝑦 = −𝑄0[𝐾̅]𝑅𝑇𝑄0

𝑇 , [𝐶̅]𝑥𝑦 = −𝑄0[𝐶̅]𝑅𝑇𝑄0
𝑇 (4.8) 

where [𝐾̅]𝑅𝑇 and [𝐶̅]𝑅𝑇 are linear stiffness and damping matrices in the R-T coordinate system. 

Although such transformation is easily carried out for linear dynamic coefficients, the nonlinear 

coefficients cannot be transformed in a similar fashion and therefore an alternative approach is 



75 

 

needed to calculate the nonlinear dynamic coefficients for any desired rotated frame of reference. 

To do this, the following counter-clockwise transformation is adopted here: 

 
(
𝛿𝑒
𝑒0𝛿𝜑

) =  𝑄 (
𝛿𝑥
𝛿𝑦
) and (

𝛿𝑒 
𝑒0𝛿𝜑 

) =  𝑄 (
𝛿𝑥 
𝛿𝑦 
) where 𝑄 = (

cos 𝜑 sin𝜑
− sin𝜑 cos𝜑

) (4.9) 

Note that the angle of rotation in Eq. (4.9) is the instantaneous position angle 𝜑 . At this point, 

change in the bearing forces in excess of the equilibrium can be written in the X-Y coordinate, 

analogous to the R-T coordinate expression of Eq. (4.5), such that: 

 ∆𝐹𝜁 = 𝐾𝜁𝑥𝛿𝑥 + 𝐾𝜁𝑦𝛿𝑦 + 𝐶𝜁𝑥𝛿𝑥 + 𝐶𝜁𝑦𝛿𝑦 + 𝐾𝜁𝑥𝑥𝛿𝑥
2 + 𝐾𝜁𝑦𝑦𝛿𝑦

2 + 𝐾𝜁𝑥𝑦𝛿𝑥𝛿𝑦

+ 𝐶𝜁𝑥𝑥𝛿𝑥 𝛿𝑥 + 𝐶𝜁𝑥𝑦𝛿𝑥 𝛿𝑦 + 𝐶𝜁𝑦𝑥𝛿𝑦 𝛿𝑥 + 𝐶𝜁𝑦𝑦𝛿𝑦 𝛿𝑦 + 𝐾𝜁𝑥𝑥𝑥𝛿𝑥
3

+ 𝐾𝜁𝑦𝑦𝑦𝛿𝑦
3 + 𝐾𝜁𝑥𝑦𝑦𝛿𝑥𝛿𝑦

2 + 𝐾𝜁𝑦𝑥𝑥𝛿𝑥
2𝛿𝑦 + 𝐶𝜁𝑥𝑥𝑥𝛿𝑥 𝛿𝑥

2

+ 𝐶𝜁𝑦𝑦𝑦𝛿𝑦 𝛿𝑦
2 + 𝐶𝜁𝑥𝑦𝑦𝛿𝑥 𝛿𝑦

2 + 𝐶𝜁𝑦𝑥𝑥𝛿𝑦 𝛿𝑥
2 

(4.10) 

where 𝜁 = 𝑥, 𝑦. Substituting Eq. (4.9) back into the Equations (4.4) and (4.3) and conducting a 

one to one comparison with Eq. (4.10)  will yield the dynamic coefficients in the X-Y coordinate 

system.  

 

4.4 Mathematical Model of the Rotor-Bearing System 

The simplified rotor-bearing system consists of a flexible, center-loaded rotor that is symmetrically 

supported by two identical fluid-film journal bearings. The schematic of the rotor-bearing system 

is given in Figure 3-6. The equations of motion for the central disk and journal bearings can be 

written as follows: 

 
𝐶𝑒𝑛𝑡𝑟𝑎𝑙 𝐷𝑖𝑠𝑘: {

𝑀𝑥̈2 + 𝐾𝑠(𝑥2 − 𝑥1) = +𝑚𝑢 𝑅𝑢 𝜔
2 cos𝜔𝑡

𝑀𝑦̈2 + 𝐾𝑠(𝑦2 − 𝑦1) = +𝑚𝑢 𝑅𝑢 𝜔
2 sin𝜔𝑡

  , 

 𝐽𝑜𝑢𝑟𝑛𝑎𝑙 𝐵𝑒𝑎𝑟𝑖𝑛𝑔𝑠: {
−2∆𝐹𝑥 + 𝐾𝑠(𝑥2 − 𝑥1) = 0

−2∆𝐹𝑦 + 𝐾𝑠(𝑦2 − 𝑦1) = 0
 

(4.11) 

where 𝑥 and 𝑦 are components of the journal displacement vector 𝒙, 𝐾𝑠 is the shaft stiffness, 𝑀 is 

the total mass of the fully balanced rotor-bearing system, 𝑚𝑢 is the unbalance mass at the disc 

location, 𝑅𝑢 is the unbalance mass eccentricity radius, and ∆𝐹𝑥 and ∆𝐹𝑦 are the components of the 



76 

 

force due to induced bearing pressure in excess of the equilibrium forces and are calculated based 

on Eq. (4.10). The equations of motion of Eq. (4.11) can be non-dimensionalized through the 

following non-dimensional variables: 

 𝑿̇ =
𝒙

𝐶
, 𝜏 = 𝜔𝑡 , 𝜔̅ = 𝜔√𝑀/𝐾𝑠 , 𝑅̅𝑢 =

𝑅𝑢

𝐶
 , 𝑚̅𝑢 =

𝑚𝑢

𝑀
 , 𝑘̅𝑠 =

𝐶 

𝐿 𝐷 𝜇 𝑁 (
𝑅

𝐶
)
2  𝐾𝑠    (4.12) 

The non-dimensional equations of motion in the state-space form can be written as: 

 

{
  
 

  
 

−2𝛿𝑓𝑥 + 𝑘̅𝑠(𝑋3 − 𝑋1) = 0

−2𝛿𝑓𝑦 + 𝑘̅𝑠(𝑋4 − 𝑋2) = 0

𝑋 3 = 𝑋5
𝑋 4 = 𝑋6

 𝜔̅2𝑋 5 + (𝑋3 − 𝑋1) = + 𝑚̅𝑢 𝑅̅𝑢 𝜔̅
2 cos 𝜏

 𝜔̅2𝑋 6 + (𝑋4 − 𝑋2) = + 𝑚̅𝑢 𝑅̅𝑢 𝜔̅2 sin 𝜏

 (4.13) 

where (𝑋1, 𝑋2) and (𝑋3, 𝑋4) are (x, y) coordinates of the journal center and the mass disk center 

position, respectively, and 𝛿𝑓𝜁  , 𝜁 = 𝑥, 𝑦 is the non-dimensional journal bearing force components 

vector in excess of the equilibrium journal force and is expressed such that: 

 𝛿𝑓𝜁 = 𝐾̅𝜁𝑥𝛿𝑋1 + 𝐾̅𝜁𝑦𝛿𝑋2 + 𝐶𝜁̅𝑥𝑋 1 + 𝐶𝜁̅𝑦𝑋 2 + 𝐾̅𝜁𝑥𝑥𝛿𝑋1
2 + 𝐾̅𝜁𝑦𝑦𝛿𝑋2

2

+ 𝐾̅𝜁𝑥𝑦𝛿𝑋1𝛿𝑋2 + 𝐶𝜁̅𝑥𝑥𝑋 1𝛿𝑋1 + 𝐶𝜁̅𝑥𝑦𝑋 1𝛿𝑋2 + 𝐶𝜁̅𝑦𝑥𝑋 2𝛿𝑋1

+ 𝐶𝜁̅𝑦𝑦𝑋 2𝛿𝑋2 + 𝐾̅𝜁𝑥𝑥𝑥𝛿𝑋1
3 + 𝐾̅𝜁𝑦𝑦𝑦𝛿𝑋2 

3 + 𝐾̅𝜁𝑥𝑦𝑦𝛿𝑋1𝛿𝑋2 
2

+ 𝐾̅𝜁𝑦𝑥𝑥𝛿𝑋1
2𝛿𝑋2 + 𝐶𝜁̅𝑥𝑥𝑥𝑋 1𝛿𝑋2

2 + 𝐶𝜁̅𝑦𝑦𝑦𝑋 2𝛿𝑋2
2

+ 𝐶𝜁̅𝑥𝑦𝑦𝑋 1𝛿𝑋2
2 + 𝐶𝜁̅𝑦𝑥𝑥𝑋 2𝛿𝑋1

2
 

(4.14) 

where 𝛿𝑋1 and 𝛿𝑋2 are the position of the journal center in excess of the equilibrium position and 

𝑋 1and 𝑋 2 are instantaneous journal center velocities. Non-dimensional equations of motion of Eq. 

(4.13) may now be used to study the stability of the rotor-bearing system as well as its dynamical 

response at any operating point of the system.  
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4.5 Nonlinear Stability Analysis of the Flexible Rotor-Bearing System 

 

4.5.1 Application of the Hopf Bifurcation Theory in Stability Analysis 

The term Hopf bifurcation refers to the local birth or death of a periodic solution (self-excited 

oscillation) from an equilibrium state, as a parameter crosses a critical value [108, 109]. In an 

autonomous system of ordinary differential equations 𝑿̇ = 𝒇(𝑿̇, 𝜈), a Hopf bifurcation occurs 

when the system of equations has an isolated stationary point (fixed point or steady state of the 

system) 𝑿̇ = 𝑿̇∗ such that 𝒇(𝑿̇∗, 𝜈) = 0, and the Jacobian matrix of the system of equations defined 

as: 

 𝑱(𝜈) =
𝜕𝒇

𝜕𝑿̇
(𝑿̇∗, 𝜈)  (4.15) 

has a pair of complex conjugate eigenvalues 𝜆1,2 = 𝛢(𝜈) ± 𝑖𝜝(𝜈)  such that at a critical parameter 

value 𝜈 = 𝜈𝑐  the complex pair becomes purely imaginary: 

 𝜝( 𝜈𝑐) > 0 , 𝛢( 𝜈𝑐) = 0 and 𝛢′(𝜈𝑐) ≠ 0 (4.16) 

As a result, there is a loss of linear stability of the fixed point 𝑿̇∗ as 𝜈 crosses 𝜈𝑐 and provided that 

the remaining eigenvalues of  𝑱(𝜈𝑐)  have strictly negative real parts, the system will have a family 

of periodic solutions (i.e. limit cycle) 𝑃𝜀(𝑡) for 0 < 𝜀 < 𝜀𝐻 . The amplitude of the limit cycle is 

proportional to (𝜈 − 𝜈𝑐)
1

2 and the system parameter is given by a 𝐶𝐿+1function of 𝜀 [110]: 

 
𝜈𝐻(𝜀) = ∑ 𝜈2𝑖𝜀

2𝑖
𝑂𝐿

2

𝑖=1
 for 0 < 𝜀 < 𝜀𝐻 (4.17) 

where OL is the order of the system of ordinary differential equations. Exactly two of the Floquet 

(characteristic) exponents of 𝑃𝜀(𝑡) approach 0 as 𝜀 → 0. One of them is zero and the other one is 

a 𝐶𝐿+1 function:  

 
𝜇𝐻(𝜀) = ∑ 𝜇2𝑖𝜀

2𝑖
𝑂𝐿

2

𝑖=1
 for 0 < 𝜀 < 𝜀𝐻  (4.18) 

The periodic solution is orbitally asymptotically stable with asymptotic phase if 𝜇𝐻 < 0 and is 

unstable for 𝜇𝐻 > 0. The role of characteristic exponents of the periodic solution in assessing limit 

cycle stability is given by the Floquet theorem.  
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4.5.2 Floquet Theorem 

For the system of equations of the form 𝐗 = 𝑨(𝑡) 𝐗 where 𝑨(𝑡) is periodic with period T, then x 

need not be periodic, however it must be of the form: 

 𝑿̇(𝑡) = 𝑒𝜇𝑇𝑷(𝑡) (4.19) 

where 𝑷(𝑡) is T-periodic.  

A fundamental solution matrix for the set of ordinary differential equations 𝐗 = 𝑨(𝑡) 𝐗 can be 

obtained by  

 
𝚽(𝑡) = [[𝑋1] … [𝑋𝑛]] (4.20) 

where 𝑋1…𝑋𝑛 are a set of n linearly independent solutions of 𝐗 = 𝑨(𝑡) 𝐗 and thus the 

fundamental solution satisfies: 

 𝚽 = 𝑨(𝑡) 𝚽 (4.21) 

Now, if 𝚽(𝑡) is a fundamental solution, then it easily follows that 𝚽(𝑡 + 𝑇) is also a fundamental 

solution. Hence, there exists a constant nonsingular matrix 𝑴 such that: 

 𝚽(𝑡 + 𝑇)  =  𝚽(𝑡)𝑴  with 𝑑𝑒𝑡(𝑴) = 𝑒𝑥𝑝 (∫ 𝑡𝑟(𝑨(𝑡))𝑑𝑡
𝑇

0
) (4.22) 

The eigenvalues 𝜌1, . . . , 𝜌𝑛 of 𝑴 are called the characteristic multipliers for 𝐗 = 𝑨(𝑡) 𝐗. The 

characteristic exponents or Floquet exponents are 𝜇1, . . . , 𝜇𝑛 satisfying: 

 𝜌1 = 𝑒𝜇1𝑇 , 𝜌2 = 𝑒𝜇2𝑇 , . . . 𝜌𝑛 = 𝑒𝜇𝑛𝑇 (4.23) 

The entire solution is stable if all the characteristic multipliers satisfy |𝜌𝑗  | ≤ 1. 𝑴 = 𝚽(𝑇) can be 

obtained by generating a set of n linearly independent solutions to form 𝚽(𝑡). Except for special 

cases, this is generally difficult and a numerical perturbation method is needed to find an 

approximate solution to the periodic orbit before performing a numerical differentiation to obtain 

𝚽(𝑇). 
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4.5.3 Limit Cycle Stability 

In terms of stability, the fixed point 𝑿̇∗ is a stable spiral for 𝜈 < 𝜈𝑐 and becomes an unstable spiral 

with phase-plane orbits spiraling out: after the system parameter 𝜈 crosses the critical value 𝜈𝑐. 

But this change of stability is a local change and the global behavior of the solution  sufficiently 

far from the fixed point can be qualitatively unaffected to this change of stability.  If the 

nonlinearity makes the far flow contracting then orbits will still be coming in and we expect a 

periodic orbit, a limit cycle, to appear where the near and far flow find a balance. If the periodic 

solution is stable, it will replace the unstable stationary solution as the long-term behavior of the 

system. In this case, for almost all initial conditions in the neighborhood of the unstable stationary 

solution, the system will settle in a controlled state of motion: a stable limit cycle and in the case 

of rotor-bearing stability, stable and low amplitude whirling of the rotor. It is then said that the 

system has undergone a supercritical Hopf bifurcation. However, if the periodic solution is 

unstable, solutions that used to remain near the origin are now forced to grow into large-amplitude 

oscillations and the system is said to have undergone a subcritical bifurcation. In this case, there 

are unstable periodic solutions coexisting with the stationary state even before crossing the critical 

system parameter 𝜈𝑐. These unstable solutions represent a mechanism which certain small but 

finite amplitude perturbations from the stationary solution may grow to high amplitude vibrations 

at a domain that linear stability analysis has identified as “stable”. Subcritical bifurcations are 

hazardous for the safe operation of majority of systems and are to be identified and avoided, if 

possible.  

 

Assessing the stability of the resulting limit cycle (i.e. periodic solution upon crossing the critical 

threshold) is essential in characterizing the dynamic response of the system, and also in identifying 

whether a supercritical or subcritical bifurcation is to occur near the critical parameter of the 

system. The linearization does not provide a distinction since in both cases, a pair of eigenvalues 

moves from the left to the right half-plane; thus, a nonlinear analysis is required for accurate 

identification of the bifurcation in the system. As previously mentioned, the stability of the limit 

cycle can be identified by the sign of its characteristic exponents 𝜇𝐻. Determining the characteristic 

exponents of linear periodic systems, analytically, is an extremely difficult task except for simple 

second order systems. It is known [111] that for a second order system: 
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 𝑥 = 𝑓(𝑥, 𝑦, 𝜈) 

𝑦 = 𝑔(𝑥, 𝑦, 𝜈) 
(4.24) 

 with a fixed point (𝑥, 𝑦) = (𝑥0, 𝑦0), the characteristic exponent can be given by: 

 
𝜇𝑗  =

1

16
(𝑓𝑥𝑥𝑥 + 𝑓𝑥𝑦𝑦 + 𝑔𝑥𝑥𝑦 + 𝑔𝑦𝑦𝑦)

+
1

16𝛾(𝜈𝑐)
[𝑓𝑥𝑦(𝑓𝑥𝑥 + 𝑓𝑦𝑦) − 𝑔𝑥𝑦(𝑔𝑥𝑥  + 𝑔𝑦𝑦) − 𝑓𝑥𝑥𝑔𝑥𝑥  

+  𝑓𝑦𝑦𝑔𝑦𝑦] 

(4.25) 

where 𝑓𝑥𝑦 =
𝜕2𝑓

𝜕𝑥𝜕𝑦
|
𝜈=𝜈𝑐

(𝑥0, 𝑦0) and etc. A generalization of Eq. (4.25) for higher order systems is 

given by Hassard and Wan [110] and is included in Appendix B  . The corresponding numerical 

recipe provided by Hassard et al. [76] is used in this chapter as a basis for a Hopf bifurcation 

subroutine. The subroutine is then used for the purpose of analyzing the stability of the oil whirl 

phenomenon in the dynamical system of Eq. (4.13) applied to a fully balanced system with 𝑚̅𝑢 =

0 that can be written in the autonomous form of 𝑿̇ = 𝒇(𝑿̇, 𝜈). As is evident form Eq. (4.25), the 

stability of the limit cycle is a function of higher order derivatives of the 𝒇(𝑿̇, 𝜈) as compared to 

the linear analysis, for which only the Jacobean matrix is sufficient to characterize the stability of 

the system. The common practice in the literature is to represent the journal forces only by the 

linear dynamic coefficients. This linear representation results in a degenerate case in which all the 

higher derivatives in Eq. (4.25) turn to zero and thus the stability of the limit cycle cannot be 

identified. The nonlinear representation of journal forces as functions of journal position and 

velocity as in Eq. (4.10) is suitable for nonlinear analysis, for implementation of the Hopf 

bifurcation theory, and for studying the limit cycle stability.   

 

4.6 Results and Discussions 

 

4.6.1 Bearing Dynamic Coefficients in the X-Y Coordinate System 

The coefficients in the X-Y coordinate, in their general form, and for a 𝜋-film short bearing are 

calculated and given in Appendix C  . The absolute values of linear and nonlinear dynamic 



81 

 

coefficients of a 𝜋-film short bearing are plotted against the eccentricity ratio in Figure 4-2, Figure 

4-3, and Figure 4-4.  

  

(a) (b) 

Figure 4-2. Linear dynamic coefficients in X-Y coordinate system for a 𝝅-film short bearing with 𝑳/𝑫 = 𝟏/𝟐  

 

 

 
 

(a) (b) 

  

(c) (d) 

Figure 4-3. Nonlinear (second order) dynamic coefficients (absolute values) in X-Y coordinate system 
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(a) (b) 

  
(c) (d) 

Figure 4-4. Nonlinear (third order) dynamic coefficients (absolute values) in X-Y coordinate system 

Having all the linear and nonlinear dynamic coefficients of the journal bearings, the mathematic 

model of the rotor-bearing system can be constructed and the stability of the system can be 

assessed. 

4.6.2 Identification of the Stability Bounds of the Rotor-Bearing System by Hopf 

Bifurcation Algorithm 

In the absence of other nonlinear effects such as Reynolds number dependence in modified 

Reynolds equation for Turbulent flow, the operating condition of the rotor-bearing system can be 

identified solely based on the applied static load on the system. This is usually done by representing 

the system characteristics as functions of either the eccentricity ratio or the Sommerfeld number. 

Linear stability bounds (threshold speed of instability 𝜔̅𝑡ℎ) of the system of Eq. (4.13) were 

calculated in Section 3.3 in a similar fashion to Ref [25, 91] and are given as: 
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 𝜔̅𝑡ℎ
2 =

𝛼

𝜈̅2(𝐾̅𝑠 − 𝛼)
 

𝛼 =
2(𝐾̅𝑥𝑦𝐶𝑦̅𝑥 + 𝐾̅𝑦𝑥𝐶𝑥̅𝑦 − 𝐾̅𝑦𝑦𝐶𝑥̅𝑥 − 𝐾̅𝑥𝑥𝐶𝑦̅𝑦)

𝐶𝑥̅𝑥 + 𝐶𝑦̅𝑦
 

𝜈̅2 =
𝛼2 + 2(𝐾̅𝑥𝑥 + 𝐾̅𝑦𝑦)𝛼 + 4(𝐾̅𝑥𝑥𝐾̅𝑦𝑦 − 𝐾̅𝑥𝑦𝐾̅𝑦𝑥)

4(𝐶𝑥̅𝑦𝐶𝑦̅𝑥 − 𝐶𝑥̅𝑥𝐶𝑦̅𝑦)
 

(4.26) 

The calculated threshold speeds are used as an initial guess for the Hopf bifurcation algorithm. 

The algorithm is, however, independent of the analytical expression for 𝜔̅𝑡ℎ as long as the initial 

guess is close enough to the threshold values. The Floquet exponents, 𝜇𝐻, are then found and their 

sign at each operating point is used to identify whether the bifurcation at the threshold speed is sub 

or supercritical. Calculated results of stability parameter 𝛾 =
𝐶 𝐾𝑠

𝑊
𝜔̅𝑡ℎ
2  for a range of non-

dimensional shaft stiffness are plotted against the Sommerfeld number and are shown in Figure 

4-5 (a).  

  

(a) (b) 

Figure 4-5. stability bounds of the flexible rotor-bearing system for a range of non-dimensional shaft stiffness 

values (a) and comparison to experimental results of Wang and Khonsari [90] (b) 

Khonsari and Wang [90] designed and tested an experimental set-up for a flexible shaft supported 

on end journal bearings and identified the threshold speed of instability and bifurcation types for 

a range of bearing parameter Γ defined as: 

 
Γ =

𝜇𝑅𝐿3

𝑀𝐶2.5𝑔0.5
= 2𝜋 (

𝐿

𝐷
)
2 𝑆

𝜔
√
𝑔

𝐶
 (4.27) 



84 

 

where 𝑆 is the Sommerfeld number. Their experimental results for a flexible shaft with non-

dimensional half-shaft stiffness of 𝑘̅𝑤𝑎𝑛𝑔 ≡ 2𝑘̅ = 2.9 is plotted with the numerical predictions 

based on the mathematical model of this chapter as shown in Figure 4-5 (b). As it can be seen from 

Figure 4-5 (b), there is good agreement in threshold speed calculation as well as a qualitative 

agreement on bifurcation types between the numerical predictions and the experimental results. 

Both results suggest a transition from supercritical to subcritical bifurcation as the bearing 

parameter increases. The difference between the numerical estimates and the experiments is due 

to simplifications in the mathematical model such as assuming a perfectly balanced rotor and 

neglecting the fluid inertial and shaft gyroscopic effects, as well as the simplifying assumption of 

concentrated mass at the shaft center.  

Results of Figure 4-5 show that the bifurcation types in the dynamic system of Eq. (4.13) can be 

successfully identified by the Hopf bifurcation analysis. The Hopf bifurcation algorithm will yield 

the Floquet exponents provided that the bearing dynamic forces are represented with nonlinear 

terms as in Eq. (4.10). If linear bearing coefficients are used to represent the bearing forces, Hopf 

bifurcation algorithm cannot differentiate the bifurcation type at the threshold speed of instability. 

The nonlinear force representation of Eq. (4.10) is beneficial not only in the current study of short 

journal bearings, but also makes it possible to study Hopf bifurcations in more realistic systems 

with finite length journal bearings for which a journal force representation is generally not 

available. The underlying dynamics of the system of nonlinear ordinary differential equations of 

Eq. (4.13) can also be studied through direct time integration of the system to obtain journal 

trajectories evolving with time. Such trajectories can further illustrate how the bifurcation type can 

affect physical stability in a rotor-bearing system.  

 

4.6.3 Rotor-Bearing Dynamic Response  

 Numerical integration of the non-dimensional equations of motion as in Eq. (4.13) will yield the 

dynamical response of the system at any instance in time. Four operating points are chosen to 

illustrate the journal trajectories as shown in Figure 4-6. 
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Figure 4-6. Selected operating points of a fully balanced rotor-bearing system in stable and unstable regions 

for time integration 

The operating points I, II, III and IV as marked in Figure 4-6, are selected in an attempt to 

demonstrate the system dynamics before and after crossing the threshold speed of instability for 

both super and subcritical regions of the system. The calculated trajectories for supercritical 

operating points (I and II) and subcritical operating points (III and IV) are shown in Figure 4-7. 

The line of centers is plotted with a dashed line in and the steady state point is marked with a bullet 

in Figure 4-7 (a-d). 
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(c) (d) 

Figure 4-7. Journal trajectories for the operating points within the supercritical region; Point I (𝑺 = 𝟎. 𝟓, 𝜸 =

𝟒), before crossing the threshold speed (a), point II (𝑺 = 𝟎. 𝟓, 𝜸 = 𝟓. 𝟓), after crossing the threshold speed 

(b), and the subcritical region; Point III (𝑺 = 𝟐. 𝟓, 𝜸 = 𝟒. 𝟓), before crossing the threshold speed (c) and point 

IV (𝑺 = 𝟐. 𝟓, 𝜸 = 𝟔), after crossing the threshold speed (d) 

The calculated journal trajectory for operating point I where 𝜔 < 𝜔𝑡ℎ is depicted in Figure 4-7 (a). 

The trajectory is spiraling inward to find the steady state point of the system. If enough time is 

given to the system, the trajectory will settle into a single point where the vertical component of 

the journal force is equal to the rotor weight and the system is in equilibrium. Upon increasing the 

shaft spin speed and crossing the threshold speed of instability, operating point II with > 𝜔𝑡ℎ, the 

system will no longer settle into a steady state point. However, since the operating region lies 

within the supercritical bifurcation region as identified by Hopf bifurcation analysis, the trajectory 

settles into a stable limit cycle as shown in Figure 4-7 (b). At and around the subcritical region, 

the situation is different in the sense that after crossing the threshold speed (operating point IV), 

there is no stable limit cycle and the trajectory rapidly grows; therefore journal position cannot be 

traced if the journal force is represented with dynamic coefficients. This is shown in Figure 4-7  

(c-d). 

An alternative approach to finding the trajectories of the system of Eq. (4.13) and Eq. (4.14) is to 

replace the coefficient-based force representation of Eq. (4.14) with the closed-form forces in 

excess of the equilibrium: 

 𝛿𝑓𝜖 = 𝑓𝜖 − 𝑓𝜖0 

𝛿𝑓𝜙 = 𝑓𝜙 − 𝑓𝜙0 
(4.28) 
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where 𝑓𝜖 and 𝑓𝜙 are given in Eq. (4.6) and 𝑓𝜖0 and 𝑓𝜙0 are steady state journal forces. Although 

using the analytical forces does enable one to calculate the trajectories with any desired time-span 

and any bifurcation region when other methods fail to do so, the disadvantage is that the closed-

form journal forces are available for very limited and simple cases that are far from industrial 

bearings that are used in practice. The main benefit from a trajectory analysis that is based on 

closed-form journal forces is to have a basis of comparison for how other models behave relative 

to the exact journal forces and to show how closely they can mimic the forces and dynamics of the 

system. The last alternative for finding the trajectories is to only retain the linear dynamic 

coefficients from Eq. (4.14) and thus calculate the trajectories based on a linear bearing model. 

The closed-form and linear bearing models are implemented and the resulting trajectories are 

found and are plotted against the nonlinear bearing model of this chapter as shown in Figure 4-8. 

The clearance circle is shown in black. 
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(c) (d) 
Figure 4-8. Comparison of the obtained journal trajectory based on linear and nonlinear coefficient models 

and the force based model for operating points I (a), II (b), IV(c) and (d).  

At operating point I, within the stable boundaries, there is no difference in obtained journal 

trajectories as in Figure 4-8(a). In the supercritical bifurcation region of point II, the trajectories 

are expected to find a limit cycle. While both force-based and nonlinear coefficient models do find 

a stable limit cycle, the linear coefficient model fails to do so and its trajectories grow unbounded, 

as shown in Figure 4-8(b). It shall be noted that the predicted size of the limit cycle in Figure 4-8(b) 

is different for the force and nonlinear models. Since the predictions of the force-based model are 

generally more accurate, this difference in predicted results can be attributed to the approximating 

nature of any coefficient-based model and indicates the limitations of the adopted model.  

 

Despite the limitations, the nonlinear-based model is shown to successfully predict the existence 

of a stable limit cycle, which is indeed the main goal of the current study, unlike the inaccurate 

predictions of the linear bearing coefficient model. The superiority of the force-based model is 

again manifested in Figure 4-8(c-d) where the trajectories are predicted with no difficulty both at 

an early stage, Figure 4-8 (c), and also further ahead in time, Figure 4-8 (d). On the other hand, the 

linear-based model experiences uncontrolled growth, and the nonlinear-based model becomes very 

stiff with minimum required dynamic time increments approaching zero, and thus it fails to predict 

the evolution of trajectories with time. Further time integration as in Figure 4-8(d) shows that the 

force-based predictions are within the clearance cycle despite the asymptotically unstable nature 

of the solution in which the system response becomes only physically bounded. As manifested in 
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the results of Figure 4-8, one can conclude that journal forces are best expressed with closed-from 

expressions. However, the lack of existing analytical expressions for the journal forces limits the 

adaptability of the force-based model to very simple bearing geometries with less realistic 

cavitation models. Thus, the use of nonlinear bearing coefficients in predicting the journal force 

appears promising, not only for the purpose of predicting the stability boundaries and bifurcation 

types, but also for use with any bearing geometry with any desired cavitation model. Hence, the 

nonlinear coefficient-based model is the most versatile between the models discussed in this 

chapter. 
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Chapter 5: Nonlinear Dynamics of a Rotor-Bearing System using a Numerical 

Bearing Model 

 

In the previous chapter, it was shown that higher order coefficients can be used to avoid degenerate 

cases that are caused when the journal force is expressed only by linear coefficients. Although the 

nonlinear coefficient-based model given in the previous chapter was shown to be capable of 

revealing the bifurcation types of the system, the nonlinear coefficients were only given for when 

analytic expressions exist. The treatment can be generalized to any bearing provided that nonlinear 

coefficients can be given for finite bearings with a desired geometry.  

 

In this chapter, the nonlinear stability of a flexible rotor-bearing system supported on finite length 

journal bearings is addressed. A perturbation method of the Reynolds lubrication equation is 

presented to calculate the bearing nonlinear dynamic coefficients, a treatment that is suitable to 

any bearing geometry. A mathematical model, nonlinear coefficient-based model, is proposed for 

the flexible rotor bearing system for which the journal forces are represented through linear and 

nonlinear dynamic coefficients. The proposed model is then used for nonlinear stability analysis 

in the system. A shooting method is implemented to find the periodic solutions due to Hopf 

bifurcations. The Monodromy matrix associated to the periodic solution is found at any operating 

point as a by-product of the shooting method. The eigenvalue analysis of the Monodromy matrix 

is then carried out to assess the bifurcation types and directions due to Hopf bifurcation in the 

system for speeds beyond the threshold speed of instability.  

 

5.1 Nonlinear Bearing Model with Dynamic Coefficients 

Figure 5-1 shows a schematic of a journal bearing inside the bearing clearance.  
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The geometric center of the bearing is given by 𝑂𝐵 in Figure 5-1 and is selected as the center of 

the fixed and inertial X-Y coordinate system. Under steady state conditions, the weight of the rotor 

and journal, 𝑾, is balanced by the induced bearing force, 𝑭, such that 𝑭 +𝑾 = 0 . At the steady 

state, the journal is located at 𝑂𝐽𝑆 with the eccentricity 𝑒0 and an attitude angle of 𝜑0. The steady 

oil induced force components along the fixed directions (R, T), are 𝐹𝑅0 and 𝐹𝑇0. The bearing 

reaction force, 𝑭, can be calculated by integrating the oil induced pressure over the surface of the 

journal: 

 
𝐹𝑅 = ∫  𝑅𝑗  𝑑𝜃 ∫  𝑃 𝑐𝑜𝑠(𝜃) 𝑑𝑧

𝐿

2

−
𝐿

2

𝜃𝑐𝑎𝑣

0
 ,   𝐹𝑇 = ∫  𝑅𝑗  𝑑𝜃 ∫  𝑃 𝑠𝑖𝑛(𝜃) 𝑑𝑧

𝐿

2

−
𝐿

2

𝜃𝑐𝑎𝑣

0
 (5.1) 

where 𝜃𝑐𝑎𝑣 is the circumferential cavitation boundary and 𝑃 is lubricant induced pressure. In order 

to calculate the oil induced pressure, the Reynolds partial differential equation needs to be solved 

[25]: 

 1

𝑅𝑗
2

𝜕

𝜕𝜃
(
ℎ3

12 𝜇

𝜕𝑃

𝜕𝜃
) +

𝜕

𝜕𝑧
(
ℎ3

12 𝜇

𝜕𝑃

𝜕𝑧
) =

1

2
𝜔
𝜕ℎ

𝜕𝜃
+
𝜕ℎ

𝜕𝑡
 (5.2) 

 

Figure 5-1. the schematic of a journal inside bearing with the adopted coordinate systems 
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where 𝑅𝑗 is the journal radius, 𝜇 is lubricant viscosity, (𝜃, 𝑧) are basis of the coordinate system 

given in Figure 5-1, 𝜔 is the spin speed of the journal, and ℎ is the oil film thickness given as [25]: 

 

ℎ = 𝐶 + 𝑅𝑗 + 𝑒 cos(𝜃) − 𝑅𝑗  √1 − (
𝑒

𝑅𝑗
)
2

sin2(𝜃)  (5.3) 

where 𝐶 is the bearing clearance and 𝑒 is the journal eccentricity. In journal bearings with typical 

clearance to radius values of 
𝐶

𝑅𝑗
≈ 0.002, the oil thickness can be given with sufficient accuracy 

by the approximate equation which is accurate to order (
𝑒

𝑅𝑗
) as [112]: 

 ℎ ≡ 𝐶 𝐻 ≅ 𝐶(1 + 𝜖 cos(𝜃)) (5.4) 

where 𝜖 =
𝑒

𝐶
 is the eccentricity ratio and 𝐻 =

ℎ

𝐶
 is the non-dimensional film thickness. At steady 

state, the film thickness ℎ0 is given as:  

 ℎ0 = 𝐶(1 + 𝜖0  cos(𝜃0)) ≡ 𝐶 𝐻0 (5.5) 

where the steady circumferential angle 𝜃0 at any point on the journal surface is measured from the 

steady line of centers 𝑂𝐵𝑂𝐽𝑠̅̅ ̅̅ ̅̅ ̅̅ . If the journal is perturbed, it will occupy the instantaneous position 

𝑂𝐽 with eccentricity 𝑒 = 𝑒0 + 𝛿𝑒 and the attitude angle of 𝜑 = 𝜑0 + 𝛿𝜑 as shown in Figure 5-1. 

Note that the circumferential angle 𝜃 is now measured from the instantaneous line of centers 𝑂𝐵𝑂𝐽̅̅ ̅̅ ̅̅ ̅. 

This change in the position of the journal results in a change in the oil film thickness. The dynamic 

non-dimensional oil thickness can be written as: 

 𝐻 ≅ 1 + (𝜖0 + 𝛿𝜖) cos(𝜃) = 1 + (𝜖0 + 𝛿𝜖) cos(𝜃0 − 𝛿𝜑) (5.6) 

Expanding the argument of the cosine and assuming 𝛿𝜑 is small such that cos(𝛿𝜑) ≈ 1 and 

sin(𝛿𝜑) ≈ 𝛿𝜑, we will have: 

 𝐻 ≅ 𝐻0 + 𝛿𝜖 cos(𝜃0) + 𝜖0𝛿𝜑 sin(𝜃0) + 𝛿𝜖 𝛿𝜑 sin(𝜃0) (5.7) 
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5.1.1 Linear Dynamic Coefficients in X-Y Coordinate System 

It is beneficial for numerical integration to write the Reynolds equation (5.2) in a non-dimensional 

form: 

 𝜕

𝜕𝜃
(
𝐻3

12 

𝜕𝑃̅

𝜕𝜃
) +

1

4
(
𝐷

𝐿
)
2 𝜕

𝜕𝑧̅
(
𝐻3

12 

𝜕𝑃̅

𝜕𝑧̅
) = 𝜋

𝜕𝐻

𝜕𝜃
+ 2𝜋

𝜕𝐻

𝜕𝜏
 (5.8) 

where, 

 
𝑧 = 𝐿 𝑧̅ , ℎ = 𝐶 𝐻 , 𝑃 = Πp 𝑃̅, 𝜏 = 𝜔𝑡 , Πp =

Π

L D
 with Π = 𝐿 𝐷 𝜇 𝑁 (

𝑅

𝐶
)
2

and 𝑁 =

𝜔

2𝜋
 

(5.9) 

A linear approximation for the perturbed film thickness can be obtained by setting the higher order 

terms in Eq.(5.7) to zero: 

 𝐻𝑙 = 𝐻0 + 𝛿𝜖 cos(𝜃0) + 𝜖0𝛿𝜑 sin(𝜃0) (5.10) 

We now define a new circumferential angle, 𝜃𝑛, measured from −𝑋 axis such that 𝜃𝑛 = 𝜃0 +𝜑0 

as shown in Figure 5-1. Thus: 

 𝐻𝑙 = 𝐻0 + 𝛿𝜖 cos(𝜃𝑛 − 𝜑0) + 𝜖0𝛿𝜑 sin(𝜃𝑛 − 𝜑0)

= 𝐻0 + 𝛿𝜖 cos(𝜃𝑛) cos(𝜑0) + 𝛿𝜖 sin(𝜃𝑛) sin(𝜑0)

+ 𝜖0𝛿𝜑 sin(𝜃𝑛) cos(𝜑0) − 𝜖0𝛿𝜑 cos(𝜃𝑛) sin(𝜑0) 

(5.11) 

by adopting a counter-clockwise (CCW) transformation: 

 
(
𝛿𝜖
𝜖0𝛿𝜑

) =  𝑄 (
𝛿𝑥̅
𝛿𝑦̅
) where 𝑄 = (

cos𝜑0 sin𝜑0

−sin𝜑0 cos 𝜑0
) (5.12) 

where 𝑥̅ =
𝑥

𝐶
 is the non-dimensional x-coordinate in the fixed X-Y coordinate system, the 

linearized film thickness can be represented as: 

 𝐻𝑙 = 𝐻0 + 𝛿𝑥̅ cos(𝜃𝑛) + 𝛿𝑦̅ sin(𝜃𝑛)  (5.13) 

and is identical to the expression given by Lund [47] for the perturbed oil film thickness.  A 

perturbation in the film thickness results in a perturbation in the induced fluid pressure. The 

induced journal pressure is a function of journal position and velocity and thus the perturbed 

pressure can be given as a series expansion such that: 
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 𝑃̅ =  𝑃̅0 + 𝛿𝑃̅ ≈ 𝑃̅0 +
𝜕𝑃̅

𝜕𝑥̅
𝛿𝑥̅ +

𝜕𝑃̅

𝜕𝑦̅
𝛿𝑦̅ +

𝜕𝑃̅

𝜕𝑥̅ 
𝛿𝑥̅ +

𝜕𝑃̅

𝜕𝑦̅ 
𝛿𝑦̅   (5.14) 

where 𝑥̅ =
𝑑𝑥̅

𝑑𝜏
 and etc. Upon substituting the perturbed pressure of Eq.(5.14) and the perturbed film 

thickness of Eq.(5.13) into the non-dimensional Reynolds equation (5.8) and performing an order 

analysis, one can obtain partial differential equations in pressure and pressure gradients by 

retaining the first order terms only: 

 𝒪(1):ℛ{𝑃̅0} = −𝜋
𝜕𝐻0

𝜕𝜃
  

𝒪(𝛿𝑥):ℛ{𝑃̅𝑥} = −𝜋 sin(𝜃𝑛) −
𝜕

𝜕𝜃
(
3 𝐻0

2

12
cos(𝜃𝑛)

𝜕𝑃̅0

𝜕𝜃
) −

1

4
(
𝐷

𝐿
)
2 𝜕

𝜕𝑧̅
(
3 𝐻0

2

12
cos(𝜃𝑛)

𝜕𝑃̅0

𝜕𝑧̅
)  

𝒪(𝛿𝑦):ℛ{𝑃̅𝑦} = 𝜋 cos(𝜃𝑛) −
𝜕

𝜕𝜃
(
3 𝐻0

2

12
sin(𝜃𝑛)

𝜕𝑃̅0

𝜕𝜃
) −

1

4
(
𝐷

𝐿
)
2 𝜕

𝜕𝑧̅
(
3 𝐻0

2

12
sin(𝜃𝑛)

𝜕𝑃̅0

𝜕𝑧̅
)  

𝒪(𝛿𝑥 ): ℛ{𝑃̅𝑥 } = 2𝜋 cos(𝜃𝑛) 

𝒪(𝛿𝑦 ):ℛ{𝑃̅𝑦 } = 2𝜋 sin(𝜃𝑛) 

where ℛ{ } =
𝜕

𝜕𝜃
(
𝐻0

3

12

𝜕{ }

𝜕𝜃
) +

1

4
(
𝐷

𝐿
)
2 𝜕

𝜕𝑧̅
(
𝐻0

3

12

𝜕{ }

𝜕𝑧̅
) 

(5.15) 

 where 𝑃̅𝑥 =
𝜕𝑃̅

𝜕𝑥̅ 
 and etc. Journal bearing force components can be expressed in a series expansion 

about the steady state point such that: 

 
𝑓𝜁 ≅ 𝑓𝜁0 +

𝜕𝑓𝜁

𝜕𝑥̅
𝑑𝑥̅ +

𝜕𝑓𝜁

𝜕𝑥̅ 
𝑑𝑥̅ +

𝜕𝑓𝜁

𝜕𝑦̅
𝑑𝑦̅ +

𝜕𝑓𝜁

𝜕𝑦̅ 
𝑑𝑦̅  (5.16) 

where 𝜁 = 𝑥, 𝑦 and 𝑓𝑖 =
𝐹𝑖

Π
 is the non-dimensional journal bearing force. (𝑓

𝑥0
, 𝑓

𝑦0
) are components 

of the bearing force at equilibrium. The eight bearing stiffness and damping coefficients were 

proposed by Lund [13] in the form, 

  𝐾̅𝑖𝑗 ≡ −(
𝜕𝑓𝑖

𝜕𝑥̅𝑗
)  and 𝐶𝑖̅𝑗 ≡ −(

𝜕𝑓𝑖

𝜕𝑥̅𝑗 
) with 𝑖, 𝑗 = 𝑥, 𝑦 (5.17) 
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 The components of the journal force can be directly given in the X-Y coordinate by adopting the 

new circumferential coordinate, 𝜃𝑛, in the force descriptions of Eq. (5.1): 

 
𝑓𝑥 =

1

2
∫ ∫  𝑃̅ cos(𝜃𝑛)  𝑑𝜃𝑑𝑧̅

1

2

−
1

2

𝜃𝑐𝑎𝑣

0
 ,   𝑓𝑦 =

1

2
∫ ∫  𝑃̅ sin(𝜃𝑛)  𝑑𝜃𝑑𝑧̅

1

2

−
1

2

𝜃𝑐𝑎𝑣

0
 (5.18) 

By substituting the perturbed pressure of Eq.(5.14) and the series expansion of bearing force as in 

Eq.(5.16) into Eq.(5.18) and performing an order analysis, the linear dynamic coefficients of the 

journal bearing can be given as functions of the induced pressure gradients: 

 

{
𝐾̅𝑥𝑥
𝐾̅𝑦𝑥

} = −
1

2
∫ ∫ 𝑃̅𝑥 {

cos 𝜃𝑛
sin 𝜃𝑛

} 𝑑𝜃𝑑𝑧̅
1

2

−
1

2

𝜃𝑐𝑎𝑣
0

 , {
𝐾̅𝑥𝑦

𝐾̅𝑦𝑦
} = −

1

2
∫ ∫ 𝑃̅𝑦 {

cos 𝜃𝑛
sin 𝜃𝑛

} 𝑑𝜃𝑑𝑧̅
1

2

−
1

2

𝜃𝑐𝑎𝑣
0

 

{
𝐶𝑥̅𝑥
𝐶𝑦̅𝑥

} = −
1

2
∫ ∫ 𝑃̅𝑥 {

cos 𝜃𝑛
sin 𝜃𝑛

} 𝑑𝜃𝑑𝑧̅
1

2

−
1

2

𝜃𝑐𝑎𝑣
0

 , {
𝐶𝑥̅𝑦

𝐶𝑦̅𝑦
} = −

1

2
∫ ∫ 𝑃̅𝑦 {

cos𝜃𝑛
sin𝜃𝑛

} 𝑑𝜃𝑑𝑧̅
1

2

−
1

2

𝜃𝑐𝑎𝑣
0

 

(5.19) 

 where 𝐾̅𝑖𝑗 , 𝐶𝑖̅𝑗 are non-dimensional dynamic coefficients and 𝑃̅𝑖 are non-dimensional pressure 

gradients: 

 𝐾̅𝑖𝑗 =
𝐶 

Π
 𝐾𝑖𝑗 , 𝐶𝑖̅𝑗 =

𝐶 𝜔

Π
 𝐶𝑖𝑗 , 𝑃̅𝑥 =

𝐶

Πp
𝑃𝑥 , 𝑃̅𝑥 ≡

𝜕𝑃̅

𝜕𝑥̅ 
=

𝐶 𝜔

Πp
𝑃𝑥  (5.20) 

The pressure gradients of Eq. (5.15) are numerically solved for and then are integrated according 

to Eq.(5.19)  to find the journal bearing linear dynamic coefficients.  

 

5.1.2 Nonlinear Dynamic Coefficients in X-Y Coordinate System 

A nonlinear approximation to the perturbed film thickness, 𝐻𝑛𝑙, can be obtained by expanding 

Eq.(5.6): 

 𝐻𝑛𝑙 = 1 + 𝛿𝜖 cos(𝜃0) + 𝜖0 cos(𝜃0) + 𝜖0 𝛿𝜙 sin(𝜃0) −
1

2
𝛿𝜖 𝛿𝜙2 cos(𝜃0) +

𝛿𝜖 𝛿𝜙 sin(𝜃0) −
1

2
𝛿𝜙2 𝜖0 cos(𝜃0)  

(5.21) 

In calculating the film thickness in Eq.(5.21), it is assumed that for small 𝛿𝜑: 

 cos(𝛿𝜑) ≈ (1 −
𝛿𝜑2

2
), and sin(𝛿𝜑) ≈ 𝛿𝜑 (5.22) 
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Substituting 𝜃0 in Eq.(5.21) by 𝜃𝑛 − 𝜑0 and again adopting the counter-clockwise transformation 

of Eq. (5.12), the nonlinear perturbed film thickness in the X-Y coordinate can be written as: 

 𝐻𝑛𝑙 = 𝐻0 + 𝛿𝑥̅ cos(𝜃𝑛) + 𝛿𝑦̅ sin(𝜃𝑛) +
1

8𝜖0
[− cos(𝜃𝑛 − 3𝜑0) −

2 cos(𝜃𝑛 − 𝜑0) + 3 cos(𝜃𝑛 + 𝜑0)]𝛿𝑥̅
2 +

1

4𝜖0
[sin(𝜃𝑛 − 3𝜑0) + 3 sin(𝜃𝑛 +

𝜑0)]𝛿𝑥̅𝛿𝑦̅ +
1

8𝜖0
[cos(𝜃𝑛 − 3𝜑0) − 2 cos(𝜃𝑛 − 𝜑0) − 3 cos(𝜃𝑛 + 𝜑0) ]𝛿𝑦̅

2  

(5.23) 

The nonlinear perturbed film thickness of Eq.(5.23) will result in a nonlinear perturbed pressure. 

This perturbed pressure can again be expressed in a Taylor series expansion that is an extension to 

higher order terms from the pressure perturbation of Eq. (5.14) such that: 

 𝑃̅ ≈ 𝑃̅0 +
𝜕𝑃̅

𝜕𝑥̅
𝛿𝑥̅ +

𝜕𝑃̅

𝜕𝑦̅
𝛿𝑦̅ +

𝜕𝑃̅

𝜕𝑥̅ 
𝛿𝑥̅ +

𝜕𝑃̅

𝜕𝑦̅ 
𝛿𝑦̅ +

1

2

𝜕2𝑃̅

𝜕𝑥̅2
𝛿𝑥̅2 +

1

2

𝜕2𝑃̅

𝜕𝑦̅2
𝛿𝑦̅2 +

1

2

𝜕2𝑃̅

𝜕𝑥̅ 2
𝛿𝑥̅ 2 +

1

2

𝜕2𝑃̅

𝜕𝑦̅ 2
𝛿𝑦̅ 2 +

𝜕2𝑃̅

𝜕𝑥̅𝜕𝑦̅
𝛿𝑥̅𝛿𝑦̅ +

𝜕2𝑃̅

𝜕𝑥̅ 𝜕𝑥̅
𝛿𝑥̅ 𝛿𝑥̅ +

𝜕2𝑃̅

𝜕𝑥̅ 𝜕𝑦̅
𝛿𝑥̅ 𝛿𝑦̅ +

𝜕2𝑃̅

𝜕𝑦̅ 𝜕𝑥̅
𝛿𝑦̅ 𝛿𝑥̅ +

𝜕2𝑃̅

𝜕𝑦̅ 𝜕𝑦̅
𝛿𝑦̅ 𝛿𝑦̅ +

𝜕2𝑃̅

𝜕𝑥̅ 𝜕𝑦̅ 
𝛿𝑥̅ 𝛿𝑦̅   

(5.24) 

Similar to the linear analysis performed in the previous section, the perturbed pressure of Eq.(5.24) 

and the perturbed film thickness of Eq.(5.23) are to be substituted into the non-dimensional 

Reynolds equation (5.8). An order analysis (of second order terms) will then yield the partial 

differential equations in higher order pressure gradients: 

 
𝒪(𝛿𝑥2): ℛ{𝑃̅𝑥𝑥} = cos(𝜃𝑛 − 3𝜑0) [𝜕𝜃 (

𝐻0
2

16𝜖0
𝜕𝜃𝑃̅0) + (

𝐷

𝐿
)
2 𝐻0

2

64 𝜖0
𝜕𝑧𝑧𝑃̅0] +

cos(𝜃𝑛 − 𝜑0) [𝜕𝜃 (
𝐻0

2

8𝜖0
𝜕𝜃𝑃̅0) + (

𝐷

𝐿
)
2 𝐻0

2

32 𝜖0
𝜕𝑧𝑧𝑃̅0] − cos(𝜃𝑛 +

𝜑0) [𝜕𝜃 (
3𝐻0

2

16𝜖0
𝜕𝜃𝑃̅0) + (

𝐷

𝐿
)
2 3𝐻0

2

64 𝜖0
𝜕𝑧𝑧𝑃̅0] − cos2(𝜃𝑛) [𝜕𝜃 (

𝐻0

2
 𝜕𝜃𝑃̅0) +

(
𝐷

𝐿
)
2 𝐻0

8
 𝜕𝑧𝑧𝑃̅0] − cos(𝜃𝑛) [𝜕𝜃 (

𝐻0
2

2
𝜕𝜃𝑃̅𝑥) + (

𝐷

𝐿
)
2 𝐻0

2

8
𝜕𝑧𝑧𝑃̅𝑥]  

(5.25) 
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𝒪(𝛿𝑦2):ℛ{𝑃̅𝑦𝑦} = −cos(𝜃𝑛 − 3𝜑0) [𝜕𝜃 (

𝐻0
2

16𝜖0
𝜕𝜃𝑃̅0) + (

𝐷

𝐿
)
2 𝐻0

2

64 𝜖0
𝜕𝑧𝑧𝑃̅0] +

cos(𝜃𝑛 − 𝜑0) [𝜕𝜃 (
𝐻0

2

8𝜖0
𝜕𝜃𝑃̅0) + (

𝐷

𝐿
)
2 𝐻0

2

32 𝜖0
𝜕𝑧𝑧𝑃̅0] + cos(𝜃𝑛 +

𝜑0) [𝜕𝜃 (
3𝐻0

2

16𝜖0
𝜕𝜃𝑃̅0) + (

𝐷

𝐿
)
2 3𝐻0

2

64 𝜖0
𝜕𝑧𝑧𝑃̅0] − sin2(𝜃𝑛) [𝜕𝜃 (

𝐻0

2
 𝜕𝜃𝑃̅0) +

(
𝐷

𝐿
)
2 𝐻0

8
 𝜕𝑧𝑧𝑃̅0] − sin(𝜃𝑛) [𝜕𝜃 (

𝐻0
2

2
𝜕𝜃𝑃̅𝑦) + (

𝐷

𝐿
)
2 𝐻0

2

8
𝜕𝑧𝑧𝑃̅𝑦]  

(5.26) 

 

 
𝒪(𝛿𝑥 𝛿𝑦):ℛ{𝑃̅𝑥𝑦} = −sin(𝜃𝑛 − 3𝜑0) [𝜕𝜃 (

𝐻0
2

16𝜖0
𝜕𝜃𝑃̅0) + (

𝐷

𝐿
)
2 𝐻0

2

64 𝜖0
𝜕𝑧𝑧𝑃̅0] −

sin(𝜃𝑛 + 𝜑0) [𝜕𝜃 (
3𝐻0

2

16𝜖0
𝜕𝜃𝑃̅0) + (

𝐷

𝐿
)
2 3𝐻0

2

64 𝜖0
𝜕𝑧𝑧𝑃̅0] − sin(2𝜃𝑛) [𝜕𝜃 (

𝐻0

4
 𝜕𝜃𝑃̅0) +

(
𝐷

𝐿
)
2 𝐻0

16
 𝜕𝑧𝑧𝑃̅0] − sin(𝜃𝑛) [𝜕𝜃 (

𝐻0
2

4
𝜕𝜃𝑃̅𝑥) + (

𝐷

𝐿
)
2 𝐻0

2

16
𝜕𝑧𝑧𝑃̅𝑥] −

cos(𝜃𝑛) [𝜕𝜃 (
𝐻0

2

4
𝜕𝜃𝑃̅𝑦) + (

𝐷

𝐿
)
2 𝐻0

2

16
𝜕𝑧𝑧𝑃̅𝑦]  

(5.27) 

 

 𝒪(𝛿𝑥 𝛿𝑥 ): ℛ{𝑃̅𝑥𝑥 } = −
𝜋

2𝜖0
cos(𝜃𝑛 − 3𝜑0) −

𝜋

𝜖0
cos(𝜃𝑛 − 𝜑0) +

3𝜋

2𝜖0
cos(𝜃𝑛 +

𝜑0) − cos(𝜃𝑛) [𝜕𝜃 (
𝐻0

2

4
𝜕𝜃𝑃̅𝑥 ) + (

𝐷

𝐿
)
2 𝐻0

2

16
𝜕𝑧𝑧𝑃̅𝑥 ]  

(5.28) 

 

 𝒪(𝛿𝑥 𝛿𝑦 ): ℛ{𝑃̅𝑥𝑦 } =
𝜋

2𝜖0
sin(𝜃𝑛 − 3𝜑0) +

3𝜋

2𝜖0
sin(𝜃𝑛 + 𝜑0) −

cos(𝜃𝑛) [𝜕𝜃 (
𝐻0

2

4
𝜕𝜃𝑃̅𝑦 ) + (

𝐷

𝐿
)
2 𝐻0

2

16
𝜕𝑧𝑧𝑃̅𝑦 ]  

(5.29) 

 

 𝒪(𝛿𝑦 𝛿𝑥 ): ℛ{𝑃̅𝑦𝑥 } =
𝜋

2𝜖0
sin(𝜃𝑛 − 3𝜑0) +

3𝜋

2𝜖0
sin(𝜃𝑛 + 𝜑0) −

sin(𝜃𝑛) [𝜕𝜃 (
𝐻0

2

4
𝜕𝜃𝑃̅𝑥 ) + (

𝐷

𝐿
)
2 𝐻0

2

16
𝜕𝑧𝑧𝑃̅𝑥 ]  

(5.30) 

 

 𝒪(𝛿𝑦 𝛿𝑦 ): ℛ{𝑃̅𝑦𝑦 } =
𝜋

2𝜖0
cos(𝜃𝑛 − 3𝜑0) +

𝜋

𝜖0
cos(𝜃𝑛 −𝜑0) −

3𝜋

2𝜖0
cos(𝜃𝑛 +

𝜑0) − sin(𝜃𝑛) [𝜕𝜃 (
𝐻0

2

4
𝜕𝜃𝑃̅𝑦 ) + (

𝐷

𝐿
)
2 𝐻0

2

16
𝜕𝑧𝑧𝑃̅𝑦 ]  

(5.31) 
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 𝒪(𝛿𝑦  𝛿𝑦 ) = 𝒪( 𝛿𝑥  𝛿𝑥 ) = 𝒪( 𝛿𝑥  𝛿𝑦 ) = 0 (5.32) 

where ℛ{} is given in Eq.(5.15). Analogous to the induced pressure, bearing force components can 

be written in a series expansion as: 

 

𝑓𝜉 ≅ 𝑓𝜉0 +∑
𝜕𝑓𝜉

𝜕𝑞𝑖
𝛿𝑞𝑖

4

𝑖=1

+
1

2
∑

𝜕2𝑓𝜉

𝜕𝑞𝑖𝜕𝑞𝑗
𝛿𝑞𝑖𝛿𝑞𝑗

4

𝑖,𝑗=1

 (5.33) 

with 𝜉 = 𝑥̅, 𝑦̅ and 𝑞1 = 𝑥̅, 𝑞2 = 𝑦̅, 𝑞3 = 𝑥̅  and 𝑞4 = 𝑦̅ . The bearing force expansion of Eq.(5.33) 

can be written in terms of bearing dynamic coefficients: 

 𝑓𝜉 = 𝑓𝜉0 + 𝐾̅𝜉𝑥𝛿𝑥̅ + 𝐾̅𝜉𝑦𝛿𝑦̅ + 𝐶𝜉̅𝑥𝛿𝑥̅ + 𝐶𝜉̅𝑦𝛿𝑦̅ + 𝐾̅𝜉𝑥𝑥𝛿𝑥̅
2 + 𝐾̅𝜉𝑦𝑦𝛿𝑦̅

2

+ 𝐾̅𝜉𝑥𝑦𝛿𝑥̅𝛿𝑦̅ + 𝐶𝜉̅𝑥𝑥𝛿𝑥̅ 𝛿𝑥̅ + 𝐶𝜉̅𝑥𝑦𝛿𝑥̅ 𝛿𝑦̅ + 𝐶𝜉̅𝑦𝑥𝛿𝑦̅ 𝛿𝑥̅

+ 𝐶𝜉̅𝑦𝑦𝛿𝑦̅ 𝛿𝑦̅ 

(5.34) 

where 𝜉 = 𝑥̅, 𝑦̅, and 𝐾̅𝑖𝑗𝑘 =
𝐶2 

Π
 𝐾𝑖𝑗𝑘 , 𝐶𝑖̅𝑗𝑘 =

𝐶2 𝜔

Π
 𝐶𝑖𝑗𝑘 are non-dimensional second order nonlinear 

dynamic coefficients of the journal bearing. Note that in force expansion of Eq.(5.34), there are no 

coefficients defined as multiplying factors for 𝛿𝑥  𝛿𝑥 , 𝛿𝑦  𝛿𝑦  and 𝛿𝑥  𝛿𝑦 . This is because the order 

analysis for pressure gradients 𝑃̅𝑥 𝑥 , 𝑃̅𝑦 𝑦 , and 𝑃̅𝑥 𝑦  resulted in a zero right hand side, as was given 

in Eq.(5.32). Thus, these pressure gradients are all zero and therefore the corresponding dynamic 

coefficients are zero as well.  

 

By substituting the perturbed pressure of Eq.(5.24) and the series expansion of bearing force as in 

Eq.(5.34) into Eq.(5.18) and performing an order analysis, the nonlinear dynamic coefficients of 

the journal bearing can be given as functions of the second order pressure gradients: 

 
{
𝐾̅𝑥𝑥𝑥
𝐾̅𝑦𝑥𝑥

} = −
1

2
∫ ∫ 𝑃̅𝑥𝑥 {

cos 𝜃𝑛
sin 𝜃𝑛

} 𝑑𝜃𝑑𝑧̅
1

2

−
1

2

𝜃𝑐𝑎𝑣
0

 , {
𝐾̅𝑥𝑦𝑦

𝐾̅𝑦𝑦𝑦
} = −

1

2
∫ ∫ 𝑃̅𝑦𝑦 {

cos𝜃𝑛
sin𝜃𝑛

} 𝑑𝜃𝑑𝑧̅
1

2

−
1

2

𝜃𝑐𝑎𝑣
0

 , 

{
𝐾̅𝑥𝑥𝑦

𝐾̅𝑦𝑥𝑦
} = −

1

2
∫ ∫ 𝑃̅𝑥𝑦 {

cos 𝜃𝑛
sin𝜃𝑛

} 𝑑𝜃𝑑𝑧̅
1

2

−
1

2

𝜃𝑐𝑎𝑣
0

 

(5.35) 

and, 
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{
𝐶𝑥̅𝑥𝑥
𝐶𝑦̅𝑥𝑥

} = −
1

2
∫ ∫ 𝑃̅𝑥𝑥 {

cos𝜃𝑛
sin𝜃𝑛

} 𝑑𝜃𝑑𝑧̅
1

2

−
1

2

𝜃𝑐𝑎𝑣
0

 , {
𝐶𝑥̅𝑦𝑥

𝐶𝑦̅𝑦𝑥
} = −

1

2
∫ ∫ 𝑃̅𝑥𝑦 {

cos 𝜃𝑛
sin 𝜃𝑛

} 𝑑𝜃𝑑𝑧̅
1

2

−
1

2

𝜃𝑐𝑎𝑣
0

, 

{
𝐶𝑥̅𝑥𝑦

𝐶𝑦̅𝑥𝑦
} = −

1

2
∫ ∫ 𝑃̅𝑦𝑥 {

cos 𝜃𝑛
sin𝜃𝑛

} 𝑑𝜃𝑑𝑧̅
1

2

−
1

2

𝜃𝑐𝑎𝑣
0

 , {
𝐶𝑥̅𝑦𝑦

𝐶𝑦̅𝑦𝑦
} = −

1

2
∫ ∫ 𝑃̅𝑦𝑦 {

cos𝜃𝑛
sin𝜃𝑛

} 𝑑𝜃𝑑𝑧̅
1

2

−
1

2

𝜃𝑐𝑎𝑣
0

 

(5.36) 

The nonlinear pressure gradients of Eq.(5.25) to (5.31) are numerically solved for and are then 

integrated according to Eq.(5.35) and (5.36) to find the journal bearing nonlinear dynamic 

coefficients. 

  

5.1.3 Remarks 

I) As was explained in the previous section, to find the pressure gradients for the nonlinear 

case, a perturbed expression for the film thickness is needed. The perturbed film will give rise to 

a perturbed pressure that is then expressed as a series expansion of up to second order. Although 

the necessity of a higher order pressure expansion is realized in the previous attempts to find 

nonlinear coefficients in the literature, the film thickness is generally expanded only to include the 

linear terms [53, 54, 94] as in Eq.(5.13). The resulting pressure gradients and nonlinear coefficients 

would then fail to follow the same trends for nonlinear short bearing coefficients [113], and this is 

the major source for variance in previously reported nonlinear coefficients in the literature. Thus, 

it is essential to include the higher order terms in the film thickness expansion as in Eq. (5.23) to 

ensure the resulting pressure gradients are accurately calculated. 

II) In this chapter, the expressions for pressure gradients are directly calculated the in X-Y 

coordinate system by utilizing the circumferential angle 𝜃𝑛. This was done to facilitate the bearing 

trajectory and stability analysis that are based on dynamic motion equations, normally expressed 

in the global X-Y coordinate. Alternatively, the dynamic coefficients can be represented as 

functions of pressure gradients in the R-T coordinate. To do this, the relation between the space 

derivatives in the two coordinate systems is needed: 

 𝜕

𝜕𝜉
=

𝜕

𝜕𝑅

𝜕𝑅

𝜕𝜉
+

𝜕

𝜕𝑇

𝜕𝑇

𝜕𝜉
  with  𝜉 = 𝑥, 𝑦 (5.37) 

From Eq.(5.12) we will have: 
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 𝜕𝑅

𝜕𝑥
= cos𝜑0 , 

𝜕𝑇

𝜕𝑥
= −sin𝜑0 , 

𝜕𝑅

𝜕𝑦
= sin𝜑0 , 

𝜕𝑇

𝜕𝑥
= cos𝜑0 (5.38) 

It then follows: 

 𝑃̅𝑥 = 𝑃̅𝑅 cos𝜑0 − 𝑃̅𝑇 sin 𝜑0 , 𝑃̅𝑦 = 𝑃̅𝑅 sin𝜑0 − 𝑃̅𝑇 cos𝜑0 (5.39) 

and similarly for the higher order pressure gradients: 

 𝑃̅𝑥𝑥 = 𝜕𝑅(𝑃̅𝑥) cos 𝜑0 − 𝜕𝑇(𝑃̅𝑥) sin𝜑0 = 

 𝜕𝑅(𝑃̅𝑅 cos𝜑0 − 𝑃̅𝑇 sin𝜑0) cos𝜑0 − 𝜕𝑇(𝑃̅𝑅 cos𝜑0 − 𝑃̅𝑇 sin𝜑0) sin𝜑0 = 

cos2 𝜑0 𝜕𝑅𝑅𝑃̅ − sin 2𝜑0 𝜕𝑅𝑇𝑃̅ + sin2 𝜑0 𝜕𝑇𝑇𝑃̅ 

(5.40) 

Integrating the pressure gradients of Eq.(5.39) and Eq.(5.40) according to Eq.(5.19) and Eq.(5.35) 

will result in similar expressions than those of Wang et al. [53] and Yang et al. [54]. 

 

5.2 Discretization 

The Reynolds equation for steady pressure and the governing equations for pressure gradients as 

given in Eq. (5.15) and Eq.(5.25) to (5.31)  are discretized based on the Finite Volume Method 

(FVM) in a similar fashion to the algorithm developed in Chapter 2. The non-dimensional 

Reynolds equation of Eq. (5.15) for steady pressure, 𝑃̅0, can be written in the following form: 

 
−
𝜕𝑃̅0
𝜕𝜏

+
1

2𝜋

𝜕

𝜕𝜃
(
−𝐻0

3

12 

𝜕𝑃̅0
𝜕𝜃

) +
1

8π
(
𝐷

𝐿
)
2 𝜕

𝜕𝑧̅
(
−𝐻0

3

12 

𝜕𝑃̅0
𝜕𝑧̅

) =
1

2

𝜕𝐻0

𝜕𝜃
 (5.41) 

Note that the leading term in the left-hand side of Eq.(5.41), −
𝜕𝑃̅

𝜕𝜏
, is artificially added to the 

original steady equation to facilitate the implementation of robust implicit time-advance schemes. 

This technique is known as pseudo-transient continuation [114]. The solution to the original 

differential equation for 𝑃̅0 is now found as a steady state solution to the pseudo-time-dependent 

problem of Eq.(5.41) [36, 93]. 

 

A first order Implicit Euler discretization in time, and a second order finite volume space 

discretization of the Eq.(5.41) can be written for a representative two-dimensional cell in the mesh 

as: 
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𝑢̅𝑖,𝑗

𝑛+1 − 𝑢̅𝑖,𝑗
𝑛

𝛥𝜏
+

𝐹
𝑖+
1
2
,𝑗

𝑛+1 − 𝐹
𝑖−
1
2
,𝑗

𝑛+1

𝛥𝜃
+

𝐺
𝑖,𝑗+

1
2

𝑛+1 − 𝐺
𝑖,𝑗−

1
2

𝑛+1

𝛥𝑧̅
= 𝑆𝑖̅,𝑗 

(5.42) 

with: 

 
𝐹 =

−𝐻0
3

24𝜋 

𝜕𝑢̅

𝜕𝜃
  , 𝐺 = (

𝐷

𝐿
)
2−𝐻0

3

96𝜋 

𝜕𝑢̅

𝜕𝑧̅
  (5.43) 

where 𝑢̅𝑖,𝑗 and 𝑆𝑖̅,𝑗 are the control volume average of steady pressure, 𝑃̅0, and the source term, 
1

2

𝜕𝐻0

𝜕𝜃
, 

for a representative surface element of the journal. In Eq. (5.42), superscript n indicates a variable 

value at the current time-step, and superscript n+1 represents a variable value at the next time-

step. The ½ indices in Eq. (5.42) correspond to the value of the flux at the cell boundary as 

compared to the flux values at the cell center. For instance, at a control surface boundary using a 

central differencing formulation we will have: 

 
𝐹
𝑖+
1
2
,𝑗
= −

1

24𝜋
(
𝐻𝑖+1,𝑗 + 𝐻𝑖,𝑗

2
)
3

(
𝑢̅𝑖+1,𝑗 − 𝑢̅𝑖,𝑗

𝛥𝜃
) (5.44) 

𝐹
𝑖−

1

2
,𝑗

 can be found by replacing the indice 𝑖 with 𝑖 − 1 in Eq.(5.44). The remaining fluxes in Eq. 

(5.42) can be found in a similar fashion. To express the flux in the next time-step as in Eq. (5.42), 

in terms of the flux and its gradients at the current time-step we can have: 

 𝐹
𝑖+
1
2
,𝑗

𝑛+1 = 𝐹
𝑖+
1
2
,𝑗
(𝑢̅𝑖,𝑗

𝑛+1 , 𝑢̅𝑖+1,𝑗
𝑛+1)

= 𝐹
𝑖+
1
2
,𝑗
(𝑢̅𝑖,𝑗

𝑛 + 𝛿𝑢̅𝑖,𝑗 , 𝑢̅𝑖+1,𝑗
𝑛 + 𝛿𝑢̅𝑖+1,𝑗)

= 𝐹
𝑖+
1
2
,𝑗
|
𝑛

+

𝜕𝐹
𝑖+
1
2
,𝑗

𝜕𝑢̅𝑖,𝑗
|

𝑛

𝛿𝑢̅𝑖,𝑗 +

𝜕𝐹
𝑖+
1
2
,𝑗

𝜕𝑢̅𝑖+1,𝑗
|

𝑛

𝛿𝑢̅𝑖+1,𝑗 + 𝑂(𝛿𝑢̅2) 

(5.45) 

where 𝛿𝑢̅𝑖,𝑗 = 𝑢̅𝑖,𝑗
𝑛+1 − 𝑢̅𝑖,𝑗

𝑛 and 𝐹
𝑖+

1

2
,𝑗
|
𝑛

= 𝐹
𝑖+

1

2
,𝑗
(𝑢̅𝑖,𝑗

𝑛 , 𝑢̅𝑖+1,𝑗
𝑛). Other terms in Eq. (5.42) are 

found similarly and are substituted back into Eq. (5.42) to obtain the discretized equation as: 
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𝛿𝑢̅𝑖,𝑗 (
1

𝛥𝜏
+

1

𝛥𝜃

𝜕𝐹
𝑖+
1
2
,𝑗

𝜕𝑢̅𝑖,𝑗
−

1

𝛥𝜃

𝜕𝐹
𝑖−
1
2
,𝑗

𝜕𝑢̅𝑖,𝑗
+

1

𝛥𝑧̅

𝜕𝐺
𝑖,𝑗+

1
2

𝜕𝑢̅𝑖,𝑗
−

1

𝛥𝑧̅

𝜕𝐺
𝑖,𝑗−

1
2

𝜕𝑢̅𝑖,𝑗
)

+
1

𝛥𝜃

𝜕𝐹
𝑖+
1
2
,𝑗

𝜕𝑢̅𝑖+1,𝑗
𝛿𝑢̅𝑖+1,𝑗 −

1

𝛥𝜃

𝜕𝐹
𝑖−
1
2
,𝑗

𝜕𝑢̅𝑖−1,𝑗
𝛿𝑢̅𝑖−1,𝑗 +

1

𝛥𝑧̅

𝜕𝐺
𝑖,𝑗+

1
2

𝜕𝑢̅𝑖,𝑗+1
𝛿𝑢̅𝑖,𝑗+1

−
1

𝛥𝑧̅

𝜕𝐺
𝑖,𝑗−

1
2

𝜕𝑢̅𝑖,𝑗−1
𝛿𝑢̅𝑖,𝑗−1 = −

𝐹
𝑖+
1
2
,𝑗
− 𝐹

𝑖−
1
2
,𝑗

𝛥𝜃
−

𝐺
𝑖,𝑗+

1
2
− 𝐺

𝑖,𝑗−
1
2

𝛥𝑧̅
+ 𝑆𝑖̅,𝑗 

(5.46) 

Note that all the superscripts in Eq.(5.46) are dropped, knowing that all the terms are evaluated at 

the current time-step. Generalizing the individual element discretization of Eq. (5.46) to include 

all the cells within the meshed journal surface, one can write the resulting system of equations in 

the general form of a linear system in change in solution 𝛿𝑢 [93]: 

 [𝐴][𝛿𝑢] = [𝐵] (5.47) 

Where [𝐴] is a coefficient matrix and is a function of the derivative of fluxes at the cell boundaries 

in both directions, and matrix [𝐵] is the sum of the flux integral and the source term. The solution 

to the linear system of Eq.(5.46) will then yield the change in solution at every iteration (pseudo 

time-step) and thus the solution can be integrated until the asymptotic steady state is reached. 

 

5.3 Dynamics and Stability of a Rotor-Bearing System 

 

5.3.1 Mathematical Model for Rotor-Bearing Dynamics 

The simplified model of a flexible rotor-bearing system of Figure 3-6 is adopted here. The non-

dimensional equations of motion can be written in the state-space form as: 

 

{
  
 

  
 

−2𝛿𝑓𝑥 + 𝑘̅𝑠(𝑋3 − 𝑋1) = 0

−2𝛿𝑓𝑦 + 𝑘̅𝑠(𝑋4 − 𝑋2) = 0

𝑋 3 = 𝑋5
𝑋 4 = 𝑋6

 𝜔̅2𝑋 5 + (𝑋3 − 𝑋1) = + 𝑚̅𝑢 𝑅̅𝑢 𝜔̅
2 cos 𝜏

 𝜔̅2𝑋 6 + (𝑋4 − 𝑋2) = + 𝑚̅𝑢 𝑅̅𝑢 𝜔̅2 sin 𝜏

 (5.48) 
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where (𝑋1, 𝑋2) and (𝑋3, 𝑋4) are (x, y) coordinates of the journal center and the mass disk center 

position, respectively. In Eq.(5.48), 𝑘̅𝑠 is the non-dimensional shaft stiffness, 𝑚̅𝑢 is the non-dim 

unbalance mass at the disc location, 𝑅̅𝑢 is the non-dim unbalance mass eccentricity radius: 

 
𝜔̅ = 𝜔√𝑀/𝐾𝑠 , 𝑅̅𝑢 =

𝑅𝑢
𝐶
 , 𝑚̅𝑢 =

𝑚𝑢

𝑀
 , 𝑘̅𝑠 =

𝐶 

Π
 𝐾𝑠 (5.49) 

where 𝑀 is the total mass of the balanced system rotating at spin speed of 𝜔. In Eq.(5.48),  𝛿𝑓𝑥 

and 𝛿𝑓𝑦 are the non-dimensional journal bearing force components in excess of the equilibrium 

journal force, and are expressed in this chapter based on either of the following cases: 

1) Linear and nonlinear dynamic coefficients; Case 1: 

 𝛿𝑓𝑥 = 𝐾̅𝑥𝑥𝛿𝑋1 + 𝐾̅𝑥𝑦𝛿𝑋2 + 𝐶𝑥̅𝑥𝑋 1 + 𝐶𝑥̅𝑦𝑋 2 + 𝐾𝑥𝑥𝑥𝛿𝑋1
2 + 𝐾̅𝑥𝑦𝑦𝛿𝑋2

2

+ 𝐾̅𝑥𝑥𝑦𝛿𝑋1𝛿𝑋2 + 𝐶𝑥̅𝑥𝑥𝑋 1𝛿𝑋1 + 𝐶𝑥̅𝑥𝑦𝑋 1𝛿𝑋2 + 𝐶𝑥̅𝑦𝑥𝑋 2𝛿𝑋1

+ 𝐶𝑥̅𝑦𝑦𝑋 2𝛿𝑋2  

𝛿𝑓𝑦 = 𝐾̅𝑦𝑥𝛿𝑋1 + 𝐾̅𝑦𝑦𝛿𝑋2 + 𝐶𝑦̅𝑥𝑋 1 + 𝐶𝑦̅𝑦𝑋 2 + 𝐾̅𝑦𝑥𝑥𝛿𝑋1
2 + 𝐾̅𝑦𝑦𝑦𝛿𝑋2

2

+ 𝐾̅𝑦𝑥𝑦𝛿𝑋1𝛿𝑋2 + 𝐶𝑦̅𝑥𝑥𝑋 1𝛿𝑋1 + 𝐶𝑦̅𝑥𝑦𝑋 1𝛿𝑋2 + 𝐶𝑦̅𝑦𝑥𝑋 2𝛿𝑋1

+ 𝐶𝑦̅𝑦𝑦𝑋 2𝛿𝑋2 

(5.50) 

where 𝛿𝑋1 and 𝛿𝑋2 are the position of the journal center in excess of the equilibrium 

position and 𝑋 1and 𝑋 2 are instantaneous journal center velocities. 

➢ Linear coefficient-based model; Case 1(a): 

o In this case, all the second order coefficients in Eq. (5.50) are set to zero. 

➢ Nonlinear coefficient-based model; Case 1(b): 

o In this case, all the coefficients in Eq. (5.50) are retained. 

 

2) Closed-form short bearing approximation; Case 2: 

The journal forces can be expressed based on the short bearing Ocvirk solution [25] for a 

fully cavitated 𝜋-film (Gumbel Boundary Condition) short journal bearing: 

 
𝛿𝑓𝜖 = 𝑓𝜖 − 𝑓𝜖0 with  𝑓𝜖 = (

𝐿

𝐷
)
2

(1 −
2𝜑 

𝜔
)(−

2𝜋2(2𝜖2+1)𝜖 

𝜔(1−𝜖2)5 2⁄ (1−
2𝜑 

𝜔
)
−

4𝜋𝜖2

(1−𝜖2)2
) (5.51) 
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𝛿𝑓𝜑 = 𝑓𝜑 − 𝑓𝜑0
 with  𝑓𝜑 = (

𝐿

𝐷
)
2

(1 −
2𝜑 

𝜔
)(

𝜋2𝜖

(1−𝜖2)3 2⁄
+

8𝜋𝜖𝜖 

𝜔(1−𝜖2)2(1−
2𝜑 

𝜔
)
)  

(
𝛿𝑓

𝑥

𝛿𝑓
𝑦
) =  𝑄𝑇 (

𝛿𝑓
𝜖

𝛿𝑓
𝜑
)  

where 𝑓𝜖0 = 𝑓𝜖|(𝜖 ,𝜑 )=0 is the steady state journal force and 𝑄 is the CCW rotation matrix 

given in Eq.(5.12). 

3) Closed-form finite bearing approximation; Case 3: 

A closed-form approx. was given by Childs [84, 115] based on a weighted sum of the short 

and long bearing asymptotic solutions. The resulting bearing forces were given as: 

 
(
𝐹𝑥
𝐹𝑦
) = −2 𝜇 𝐿 (

𝑅𝑗

𝐶
)
3

𝑉𝑠  (
𝐼𝑚𝑝𝑥
𝐼𝑚𝑝𝑦

) (5.52) 

where 𝑉𝑠 is the amplitude of the pure squeeze-velocity vector 𝑽𝑠: 

 

𝑉𝑠 = ((𝑥 +
𝜔

2
𝑦)

2

+ (𝑦 −
𝜔

2
𝑥)

2

)

1
2
 (5.53) 

with (𝑥, 𝑦) and (𝑥 , 𝑦 ) being the instantaneous journal position and velocity in the global 

X-Y coordinate system. In Eq.(5.52) , 𝐼𝑚𝑝𝑗 are components of the impedance vector,  𝑰𝒎𝒑, 

with amplitude 𝐼𝑚𝑝: 

 𝐼𝑚𝑝𝑥 = 𝐼𝑚𝑝 cos(𝜗 − 𝜉 + 𝜁) , 𝐼𝑚𝑝𝑦 = 𝐼𝑚𝑝 sin(𝜗 − 𝜉 + 𝜁) 

𝐼𝑚𝑝 = (0.15(𝐸2 + 𝐺2)
1
2 (1 − 𝜖 cos 𝜉)

3
2)

−1

 

𝐸 = 1 + 2.12 𝑄 , 𝐺 =  3(𝜖 sin 𝜉) (
1 + 3.6 𝑄

4 (1 − 𝜖 cos 𝜉)
) , 𝑄 = (1 − 𝜖 cos 𝜉) (

𝐿

𝐷
)
−2

 

(5.54) 

where the attitude angle, 𝜉, is given as: 
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𝜉 = (1 − 𝑝(1 − 𝑞2)
−1
2 ) [tan−1(

4 (1 + 2.12 𝐵) (1 − 𝑞2)
1
2

3(1 + 3.6 𝐵) 𝑞
) −

𝜋

2

𝑞

|q|

+ sin−1 𝑞] + 𝜗 − sin−1 𝑞 

with 𝑝 = 𝜖 cos 𝜗 , 𝑞 = 𝜖 sin 𝜗 and 𝐵 = (1 − 𝜖2) (
𝐿

𝐷
)
−2

 

(5.55) 

𝜉, 𝜗 are attitude angles measured from the instantaneous line of centers to the load line and squeeze 

velocity vector line, respectively. 𝜁, 𝜓 are the attitude angles measure from the pure squeeze 

velocity vector and the line of centers to the global X coordinate, respectively. 𝜉, 𝜗, 𝜁 and 𝜓 are 

shown in Figure 5-2 and can be expressed as: 

 

𝜁 = tan−1(
𝑦 −

𝜔
2 𝑥

𝑥 +
𝜔
2 𝑦

) , 𝜓 = tan−1 (
𝑦

𝑥
) , 𝜗 = 𝜓 − 𝜁 (5.56) 

The dynamic force expression of Eq.(5.52) is then used to form:  

 
(
𝛿𝑓𝑥
𝛿𝑓𝑦

) =
1 

Π
(
𝐹𝑥 − 𝐹𝑥0
𝐹𝑦 − 𝐹𝑦0

)  (5.57) 

where 𝐹𝑥0 and 𝐹𝑦0are steady state force components of the finite journal bearing of Eq.(5.52).  
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Figure 5-2. The attitudes angles as defined by Childs [84, 115] 

 

5.3.2 Rotor-Bearing Stability: Linear Stability Analysis 

Linear stability analysis for a dynamic system is carried out through a simple eigenvalue analysis. 

The threshold of instability is a critical value for the system parameter beyond which, the 

eigenvalues of the system will have positive real parts. For the simplified flexible rotor-bearing 

system of Eq.(5.48), the closed-form expression for the threshold speed of instability 𝜔𝑡ℎ is given 

in Section 3.3 as: 

 𝜔̅𝑡ℎ
2 =

𝛼

𝜈̅2(𝐾̅𝑠 − 𝛼)
 

𝛼 =
2(𝐾̅𝑥𝑦𝐶𝑦̅𝑥 + 𝐾̅𝑦𝑥𝐶𝑥̅𝑦 − 𝐾̅𝑦𝑦𝐶𝑥̅𝑥 − 𝐾̅𝑥𝑥𝐶𝑦̅𝑦)

𝐶𝑥̅𝑥 + 𝐶𝑦̅𝑦
 

𝜈̅2 =
𝛼2 + 2(𝐾̅𝑥𝑥 + 𝐾̅𝑦𝑦)𝛼 + 4(𝐾̅𝑥𝑥𝐾̅𝑦𝑦 − 𝐾̅𝑥𝑦𝐾̅𝑦𝑥)

4(𝐶𝑥̅𝑦𝐶𝑦̅𝑥 − 𝐶𝑥̅𝑥𝐶𝑦̅𝑦)
 

(5.58) 

Since the expression for 𝜔𝑡ℎ in Eq.(5.58) is limited to the flexible rotor-bearing system of 

Eq.(5.48) with six general degrees of freedom, a more general approach is used in this chapter 

following Hassard et al. [76]; this approach is suitable for systems with any degrees of freedom.  

The method consists of a secant method to solve the equation 𝛢(𝜈) = 0 and a Newton method to 
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find the fixed points of the system 𝑿̇ = 𝑿̇∗ such that 𝒇(𝑿̇∗, 𝜈) = 0. The algorithm is given in 

Appendix D  . 

 

5.3.3 Rotor-Bearing Stability: Nonlinear Stability Analysis 

The stability of a rotor-bearing system before and after crossing the threshold speed of instability, 

as characterized by linear analysis, is the focus of the nonlinear stability analysis. As the system 

parameter crosses the critical parameter value, periodic solutions can exist before (subcritical) and 

after (supercritical) the crossing. While the mere existence of a larger amplitude periodic solution 

is considered as an unstable operating condition in the context of linear stability, systems can 

generally continue operating safely provided that the resulting periodic solution is stable. This 

occurs in a supercritical bifurcation where after crossing the threshold speed, phase portrait 

gradually spiral towards an isolated and stable limit cycle (i.e. isolated periodic solution). 

Assessing the stability of isolated periodic solutions, i.e. limit cycles, and characterizing the 

bifurcation types is not feasible with linear stability analysis. 

 

Consider 𝑿̇ = 𝒇(𝑿̇,𝜔) has a T-periodic solution 𝝓(𝑡). Stability of a periodic solution manifests 

itself in the way neighboring trajectories behave. If 𝑿̇(𝑡, 𝜼0) ≡ 𝝓(𝑡, 𝜼𝟎) is a solution to 𝑿̇ =

𝒇(𝑿̇,𝜔) where 𝑿̇(0) = 𝜼0 and 𝝓(𝑡, 𝜼0 + 𝛿𝜼) is a solution subject to the initial condition 𝑿̇(0) =

𝜼0 + 𝛿𝜼, then at time 𝑡 = 𝑇 the separation between the solutions is  

 
𝛿𝝓(𝑇) = 𝝓(𝑇, 𝜼0 + 𝛿𝜼) − 𝝓(𝑇, 𝜼0) ≅

𝜕𝝓

𝜕𝜼
(𝑇, 𝜼0). 𝛿𝜼 = 𝑴. 𝛿𝜼 (5.59) 

therefore the matrix 𝑴 (i.e. its eigenvalues) determines whether initial perturbations from the 

periodic orbit decay or grow. This matrix is called the Monodromy matrix [116]. At 𝑡 = 0, any 

initial condition is also a solution and satisfies the differential equations of motion, thus 𝝓(0, 𝜼) =

𝜼. It immediately follows that 
𝜕𝝓

𝜕𝜼
(0) = 𝑰. Since 𝝓(𝑡, 𝜼0) also satisfies the system of 

equations 𝑿̇ = 𝒇(𝑿̇,𝜔), we have that: 

 𝑑

𝑑𝑡
𝝓(𝑡, 𝜼0) = 𝒇(𝝓(𝑡, 𝜼0)) with 𝝓(0, 𝜼0) = 𝜼0 (5.60) 
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Differentiating Eq. (5.60) with respect to 𝜼 will yield: 

 𝑑

𝑑𝑡

𝜕𝝓(𝑡,𝜼𝟎)

𝜕𝜼
=

𝜕𝒇(𝝓)

𝜕𝝓

𝜕𝝓(𝑡,𝜼𝟎)

𝜕𝜼
= 𝐷𝒇(𝝓)

𝜕𝝓(𝑡,𝜼𝟎)

𝜕𝜼
 with 

𝜕𝝓

𝜕𝜼
(0) = 𝑰 (5.61) 

Hence, the Monodromy matrix 𝑴 is the same as 𝚽(𝑇) where 𝚽(𝑡) =
𝜕𝝓(𝑡,𝜼𝟎)

𝜕𝜼
 is the fundamental 

matrix solution for the linearized equation about the periodic orbit: 

 𝚽 = 𝐷𝒇(𝝓) 𝚽 with 𝚽(0) = 𝑰 (5.62) 

𝝓(t) is periodic by definition, and hence 𝐷𝒇(𝝓) is also periodic; Eq. (5.62) takes the general form 

appropriate for the Floquet theorem. The eigenvalues of the Monodromy matrix are characteristic 

multipliers, 𝜌𝑗 = 𝑒𝜇𝑗𝑇, with characteristic (Floquet) exponents , 𝜇𝑗, for the Eq. (5.62) and it is 

shown [116-118] that the periodic solution is stable if all the characteristic multipliers satisfy 

|𝜌𝑗  | ≤ 1. The task is then reduced to calculating the Monodromy matrix, 𝑴 =
𝜕𝝓(𝑇,𝜼0)

𝜕𝜼
, and its 

eigenvalues. Except for special cases, this is generally difficult and a numerical perturbation 

method is needed to find an approximate solution of the periodic orbit before performing numerical 

differentiation to obtain 𝚽(𝑇).  

 

5.3.4 Calculation of the Monodromy Matrix as a By-Product of Shooting Method 

The underlying assumption here is that the system, 𝑿̇ = 𝒇(𝑿̇,𝜔), has a periodic solution, 𝝓(𝑡), 

that exists due to a bifurcation in the system (particularly here, due to a Hopf bifurcation). The aim 

is, then, to identify the stability of the periodic solution based on the corresponding Monodromy 

matrix. The analysis here is based on the implementation of the shooting method to calculate the 

periodic solutions as given by Seydel [116, 119] and is implemented to be used for the system of 

equations given in Eq.(5.48).  

 

Since 𝝓(𝑡) is periodic, there exists a period 𝑇 such that  𝝓(𝑡) = 𝝓(𝑡 + 𝑇). To find the periodic 

solution, the following boundary value problem needs to be solved: 

 𝑿̇ = 𝒇(𝑿̇,𝜔) , 𝑿̇(0) = 𝜼 , 𝑿̇(𝑇) = 𝜼 (5.63) 
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where 𝜼 is a vector of initial values. Both 𝜼 and 𝑇 are unknown at this point. An initial guess of 

𝜼 = 𝜼0 and 𝑇 = 𝑇0 is deviated from the actual values by Δ𝜼 = 𝜼 − 𝜼0 and Δ𝑇 = 𝑇 − 𝑇0. An initial 

guess is acceptable provided that: 

 𝝓(𝑇0 + Δ𝑇, 𝜼0 + Δ𝜼) − (𝜼0 + Δ𝜼) ≈ 𝟎 (5.64) 

By Taylor expanding the first term on left hand side of Eq. (5.64) to the first order around (𝑇0, 𝜼0), 

and back-substituting in Eq. (5.64) we can have: 

 
(
𝜕𝝓

𝜕𝜼
(𝑇0, 𝜼0) − 𝑰)Δ𝜼 +

𝜕𝝓

𝜕𝑇
(𝑇0, 𝜼0) Δ𝑇 ≈ 𝜼0 −𝝓(𝑇0, 𝜼0)  (5.65) 

In Eq. (5.65), the term 
𝜕𝝓

𝜕𝑇
(𝑇0, 𝜼𝟎) is the slope of trajectories at 𝑇 = 𝑇0 and thus: 

 𝜕𝝓

𝜕𝑇
(𝑇0, 𝜼0) =

𝑑𝝓(𝑡, 𝜼0)

𝑑𝑡
|
𝑇=𝑇0

= 𝒇(𝝓(𝑇0, 𝜼0)) ≈ 𝒇(𝝓(0, 𝜼0)) = 𝒇(𝜼0) (5.66) 

The other term in Eq. (5.65), 
𝜕𝝓

𝜕𝜼
(𝑇0, 𝜼0), can be found by solving the system of ODEs as given in 

Eq. (5.62). The system of equations that are to be solved then consists of the set of ODEs in Eq. 

(5.60) simultaneously with that of Eq. (5.62). This will give a set of 42 coupled ODEs for the 

6 𝑏𝑦 6 system of Eq.(5.48). These coupled ODEs are to be integrated to 𝑡 = 𝑇0 and subsequently 

all the terms in Eq. (5.65) are found, which then enables us to calculate Δ𝜼 and Δ𝑇. Since Eq. 

(5.65) is a vector equation of order 6, but the total number of unknowns is 7 (being 6 unknowns in 

Δ𝜼 and the extra unknown: Δ𝑇 ), we need an additional equation to close the set. This can be 

achieved by imposing an orthogonality condition by enforcing the perturbations to be normal to 

the vector field: 𝒇𝑇 . Δ𝜼 = 𝟎. Thus, the complete set can be written as: 

 
(

𝜕𝝓

𝜕𝜼
(𝑇0, 𝜼0) − 𝑰 𝒇(𝜼0)

𝒇𝑇(𝜼0) 0
) (

Δ𝜼
Δ𝑇

) = (
𝜼0 −𝝓(𝑇0, 𝜼0)

0
)  (5.67) 

The complete set of Eq.(5.67) can be written as a Newton iteration scheme: 
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(

𝜕𝝓

𝜕𝜼
(𝑇𝑘, 𝜼𝑘) − 𝑰 𝒇(𝜼𝑘)

𝒇𝑇(𝜼𝑘) 0
)

𝑘

(
Δ𝜼𝑘+1

Δ𝑇𝑘+1
) = (

𝜼𝑘 −𝝓(𝑇𝑘, 𝜼𝑘)
0

)
𝑘

  (5.68) 

All the coefficient matrices in Eq. (5.68) are to be re-calculated at each iteration. The final solution 

is converged when the second norm of the change in solution vector meets a certain tolerance: 

‖(
Δ𝜼
Δ𝑇

)‖
2
 ≤ 10−6. As it is clear from the from Eq. (5.68) , 𝑴 =

𝜕𝝓(𝑇,𝜼0)

𝜕𝜼
, is calculated as the by-

product of the shooting method. Finally, the eigenvalues of the Monodromy matrix are calculated 

to assess the stability of the periodic solution. The periodic solution is stable if the modulus of the 

calculated eigenvalues satisfy |𝜌𝑗  | ≤ 1. 

 

5.4 Results and Discussions 

 

5.4.1 Finite Length Journal Bearing Dynamic Coefficients 

The Reynolds Equation (5.8) is discretized for a structured mesh, similar to the method developed 

in Chapter 2 and Ref [93], and the resulting linear system of Eq.(5.46) is solved with the proposed 

Full Linear System (FLS) scheme. Alternatively, the Approximate Factorization (AF) scheme, in 

a similar fashion to the references [36, 93, 98], is also suitable and can be adopted for the 

discretized system of Eq.(5.46). In the detailed mesh sensitivity analysis of Chapter 2, a coarse 

grid (50 ×20 (𝜃, 𝑧)) and intermediate grid (100 ×40) were studied. It was shown that numerical 

uncertainty in calculating maximum target variables in the coarsest and intermediate grids, do not 

exceed % 1.2 and % 0.6 % for any of the calculated solution indicators of both grids, respectively. 

In the detailed grid study of Chapter 3 for calculation of linear bearing coefficients, it was shown 

that obtaining the solution for the first-order perturbations to the steady state Reynolds equation 

require no more restriction on the grid (compared to the steady state case) to produce accurate and 

mesh-independent results. This was indeed expected since the perturbations of the Reynolds 

equation are, by definition, tiny variations from the original steady state un-perturbed form. Thus, 

the grid that is sufficient for obtaining accurate results in the steady state case can be used for the 

perturbed equations as well. In light of this argument, further grid study for the higher order 

perturbations in this chapter is omitted and the finer grid of 100 ×40 is used for the analysis of 

this chapter. Similarly, the first order pressure gradients of Eq. (5.15), and the nonlinear second 
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order pressure gradients of Eq.(5.25) to (5.31) are discretized and solved for accordingly. The first 

and second order pressure gradients for a finite length journal bearing with 
𝐿

𝐷
= 1 at eccentricity 

ratio of 𝜖 = 0.8 are plotted in Figure 5-3.  
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𝑃̅0 𝑃̅𝑥 𝑃̅𝑦 𝑃̅𝑥  

    

𝑃̅𝑦  𝑃̅𝑥𝑥 𝑃̅𝑦𝑦 𝑃̅𝑥𝑦 

    

𝑃̅𝑥𝑥  𝑃̅𝑥𝑦  𝑃̅𝑦𝑥  𝑃̅𝑦𝑦  

    

Figure 5-3. Journal bearing steady pressure and pressure gradients with 𝑳/𝑫 = 𝟏 at 𝝐 = 𝟎. 𝟖 

The linear pressure gradients of Eq. (5.15)  and nonlinear pressure gradients of Eq.(5.25) to (5.31) 

are numerically solved for a range of journal eccentricity ratios, and are integrated according to 

Eq.(5.19), Eq.(5.35) and (5.36), to find the linear and nonlinear dynamic coefficients. The linear 

and nonlinear calculated dynamic coefficients for a finite journal bearing with 
𝐿

𝐷
= 1 are shown in 

Figure 5-4 and Figure 5-5, respectively. 
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(a) (b) 

Figure 5-4. Linear stiffness coefficients (a), and damping coefficients (c), for a finite journal bearing with 

𝑳/𝑫 = 𝟏. 

 

  

(a) (b) 

  

(c) (d) 

Figure 5-5. Nonlinear second order stiffness coefficients, (a) and (b), and damping coefficients, (c) and (d), 

for a finite journal bearing with 𝑳/𝑫 = 𝟏. 

The calculated coefficients are then used for linear and nonlinear stability analysis and to obtain 

the trajectories of the coefficient-based model of the rotor-baring system. 
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5.4.2 Comparison to Analytical Short Bearing Coefficients 

The linear coefficients of a finite-length journal bearing, as given in Figure 5-4, can be compared 

with available analytical results for a 𝜋-film short bearing. The linear short bearing coefficients 

are reported in many previous studies [16, 25, 47, 48, 84, 92]. However, there is a significant 

shortage of available data for higher order coefficients. Nonlinear bearing coefficients of up to the 

third order were given in Chapter 4 for a 𝜋-film short bearing, and are used here as a basis for 

comparison for the calculated finite bearing results of Figure 5-5. 

𝐾̅𝑥𝑥 , 𝐾̅𝑦𝑥, 𝐶𝑥̅𝑥, 𝐶𝑦̅𝑥, 𝐾̅𝑥𝑥𝑥, 𝐾̅𝑦𝑥𝑥, 𝐶𝑥̅𝑥𝑥 and 𝐶𝑦̅𝑥𝑥 are selected as a subset, out of the total 22 

coefficients, for comparison between the numerical finite bearing and analytical short bearing 

results. The curves are calculated for 
𝐿

𝐷
= 1 and are plotted in Figure 5-6. 

  

(a) (b) 

  

(c) (d) 

Figure 5-6. Comparison of linear and nonlinear dynamic coefficients for a journal bearing with 𝑳/𝑫 = 𝟏 

calculated based on analytic Short bearing coefficients given in Chapter 4 and proposed Finite coefficients 

given in this Chapter. 
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As can be seen in Figure 5-6 (a to d), the general trend for short and finite bearing coefficients are 

similar. This is indeed expected since the short bearing coefficients can be seen as an asymptotic 

limit of the finite bearing coefficients. Such qualitative agreement can also be used for verification 

purposes. This is specifically important for nonlinear coefficients, since essentially no useful 

experimental results are available in the literature. Also, the existing reported analytical 

coefficients (nonlinear) in the literature are too widespread to be used as a coherent basis for 

comparison and verification. 

 

5.4.3 Stability Bounds and Bifurcation Types of the Rotor-Bearing System 

The linear stability bounds of the flexible rotor-bearing system of Case 1 (Section 5.3) is calculated 

according to Algorithm 1 for a range of shaft non-dimensional stiffness values, and are plotted in 

Figure 5-7. The curves of the stability parameter, 𝛾 =
𝐶 𝐾𝑠

𝑊
𝜔̅𝑡ℎ
2 , versus the Sommerfeld number, 𝑆, 

are marked by solid and/or dashed lines to differentiate the regions of sub and supercritical 

bifurcations. These regions are identified by the eigenvalue analysis of the Monodromy matrix as 

was discussed in Section 5.3.4. If the calculated Monodromy matrix at any given operating 

condition (for speeds beyond the threshold speed) has eigenvalues with a modulus of greater than 

unity, 𝜌 > 1, the trajectories that start near the periodic solution will grow and thus the Hopf 

bifurcation is identified as subcritical. For 𝜌 ≤ 1 the region is considered supercritical. As 

expected, results presented in Figure 5-7 (a) show that the extent of the desired supercritical region 

is expanded by increasing the shaft stiffness.  

  

(a) (b) 

Figure 5-7. Stability bounds of the flexible rotor-bearing system for a range of non-dimensional shaft stiffness 

values (a) and comparison to experimental results of Wang and Khonsari [90] (b) 
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The stability bounds and bifurcation regions of a flexible rotor-bearing system are also calculated 

with identical system parameters as in the experimental test rig of Wang and Khonsari [90], and 

are presented alongside their results in Figure 5-7 (b). The selected parameters are given in Table 

5-1.  

Table 5-1. System parameters for comparison to experimental results of Ref. [90] 

Journal bearing length to diameter ratio,  𝐿/𝐷 = 1/2 

Journal Radius,  𝑅 = 0.0127 𝑚 

Rotor Mass,  𝑀 = 5.4523 𝑘𝑔 

Radial Clearance,  𝐶 = 50.8×10−6 𝑚 

Shaft non-dimensional stiffness,  𝑘̅ = 1.45 

Lubricant viscosity,  𝜇 = 0.0274 𝑃𝑎. 𝑠 

The numerically calculated curves of Figure 5-7 (b) are given for two mathematical models: 

• The “Short” bearing model given in Chapter 4 that is based upon a mathematical model of a 

rotor-bearing system with the bearing forces modeled as analytically obtained nonlinear 

dynamic coefficients of a short bearing.  

 

• And the “Finite” model that is the proposed nonlinear coefficient-based model in this chapter, 

as in Case 1(a), Section 5.3.  

For both numerical models, the calculated linear stability bound is sufficiently close to the reported 

experimental results of Wang and Khonsari [90]. However, the predicted boundary between the 

subcritical and supercritical regions is noticeably different. For all the curves in Figure 5-7 (b), the 

high Sommerfeld region is consistently marked as subcritical. As the static load on the shaft 

increases, i.e. lower Sommerfeld, the system becomes more stable until the bifurcation type 

changes to supercritical. This happens around 𝑆 = 0.6 in the experiments and 𝑆 = 2.046 for the 

short bearing model, whereas the prediction for the Finite model is 𝑆 = 1.003. Thus, it is evident 

that the predicted results of the Finite bearing model are in much better agreement with the reported 

experimental results of Ref. [90].  

Another difference between the short and finite models is seen in the very low Sommerfeld region, 

i.e. large static loads. While the prediction for the Finite model is a continuous supercritical region 

all the way to high eccentricity ratios, the short bearing model suggests another change in the 
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bifurcation type. The short bearing models do predict a continuous supercritical region in the low 

Sommerfeld region for higher shaft stiffness, as reported by Wang and Khonsari [90]; however, 

their predictions for short bearings, in line with HBT-based predictions of Chapter 4, suggest a 

change of bifurcation region at low Sommerfeld values for more flexible shafts. As no 

experimental results are available for these operating regions, it is not possible to conclusively 

comment on the accuracy of either models.  

 

5.4.4 Rotor-Bearing Trajectories: Balanced Response 

A direct time integration of the equations of motion, Eq.(5.48), for the four model cases of Section 

5.3 is given here: The linear coefficient-based model, Case 1(a); the nonlinear coefficient-based 

model, Case 1(b); the short bearing force-based model, Case 2; and, the Finite bearing force-based 

model of Case 3. Journal bearing trajectories are calculated for all the model cases at four operating 

points. The selected operating points are marked with bullet-points in  Figure 5-8.  

 

Figure 5-8. Selected operating points for a fully balanced flexible rotor-bearing system with 𝒌̅ = 𝑪𝑲𝒔/𝑾 =

𝟐 in stable and unstable regions for time integration 

The operating points I, II, III and IV, as marked in Figure 5-8, are selected to demonstrate the 

system dynamics before crossing the threshold speed of instability (points I, III), and after crossing 

(points II, IV). The crossing from point I to II is in the supercritical region, whereas the crossing 

from point III to IV is governed by a subcritical Hopf bifurcation. The system parameters for 

selected operating points of Figure 5-8 is given in Table 5-2. 
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Table 5-2. System parameters for operating points I, II, III and IV of Figure 5-8 

Operating 

point: 

Stability 

parameter, 𝛾: 

Sommerfeld, 

𝑆: 

Shaft non-

dimensional 

stiffness, 𝑘̅: 

𝐿

𝐷
 

Unbalance 

mass, 𝑚: 

Bifurcation 

type: 

I 4.4 0.2 2 1 N/A super 

II 6 0.2 2 1 N/A super 

III 4.4 0.5 2 1 N/A sub 

IV 6 0.5 2 1 N/A sub 

The calculated trajectories are given in Figure 5-9. 

Case 1(a): Linear 

coefficient-based 

model 

(Finite bearing) 

Case 1(b): Nonlinear 

coefficient-based 

model 

(Finite bearing) 

Case 2: Forced-based 

model (Short 

bearing) 

Case 3: Forced-based 

model (Finite 

bearing) 

    
(a) (b) (c) (d) 

    
(e) (f) (g) (h) 

    
(i) (j) (k) (l) 
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(m) (n) (o) (p) 

Figure 5-9. Journal bearing trajectories of a balanced rotor-bearing system at different operating points: 

point I (a to d); point II: (e to h); point III: (i to l), and point IV: (m to p) for the case models of section 5.3: 

linear coefficient-based model (a, e, i and m); nonlinear coefficient-based model (b, f, j and n); short bearing 

force-based model (c, g, k and o); and finite bearing force-based model (d, h, l and p).  

For operating point I in the stable supercritical region, all four model cases, Case 1 (a), (b) and 

Case 2 and 3, settle into the steady state point (marked by a bullet). This is shown in the trajectory 

plots of Figure 5-9 (a to d). After crossing the threshold speed, for operating point II in the 

supercritical region, it is expected for the system to have a stable periodic solution (limit cycle) 

due to a supercritical Hopf bifurcation. The calculated trajectories for operating point II, for all 

case models, is given in Figure 5-9 (e to h). However, the only case model that predicts the 

existence of the limit cycle is the nonlinear coefficient-base model, Case 1(b), as shown in Figure 

5-9 (f). The linear coefficient-based model, Case 1 (a), is insensitive to bifurcation types and shows 

a gradual increase in the amplitude of the trajectories towards the boundary of the clearance circle 

marked by a solid circle as shown in Figure 5-9 (e).  

 

For the operating point III in the stable subcritical region, the trajectory is expected to again settle 

into the stable fixed point of the system (i.e. steady state point). This is confirmed by the 

predictions of Case 1 (a), (b), and Case 3, as shown in Figure 5-9 (i), (j) and (l). However, the short 

bearing force-based model of Figure 5-9 (k), Case 2, incorrectly predicts an unstable behavior.  

The operating point IV lies in the unstable subcritical region, and thus the trajectory is expected to 

rapidly grow until only physically bounded by the bearing clearance circle. As shown in Figure 

5-9 (n), (o) and (p), all the trajectories show growth to the clearance circle, or to the point where 

the numerical system is too stiff and further integration is not possible. The only exception is the 

predictions of the linear coefficient-model, Case 1(a), which is again insensitive to the bifurcation 

type and only predicts a gradual growth as shown in Figure 5-9 (m). 
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5.4.5 Rotor-Bearing Trajectories: Unbalanced Response 

The balanced results in the previous section show the superiority of the nonlinear coefficient-based 

model in predicting the dynamics of the rotor-bearing system. In this section, the system response 

to unbalance excitations is studied, and linear and nonlinear-based model predictions, Case 1 (a) 

and (b), are compared to each other. The calculated trajectories at 𝑆 = 0.2 and 𝑘̅ = 2 for four 

different rotational speeds are shown in Figure 5-10. In all cases, the unbalance mass is set to 𝑚 =

0.07 % of the total mass of the system. 

    

(a) (b) (c) (d) 

    

(e) (f) (g) (h) 

Figure 5-10. Journal bearing trajectories for the unbalanced rotor-bearing system, the linear coefficient-

based model (a to d) and nonlinear coefficient-based model (e to h) at different stability parameters: 𝜸 = 𝟑. 𝟎 

(a and e), 𝜸 = 𝟒. 𝟒𝟎 (b and f), 𝜸 = 𝟓. 𝟓𝟑 (c and g) and 𝜸 = 𝟓. 𝟔𝟎 (d and h). 

From the one to one comparison of the unbalance trajectories of the linear and nonlinear system, 

it is evident that at low rotational speeds there is very good agreement between the predicted 

results, as shown in Figure 5-10 (a) and (e). By increasing the rotational speed, the trajectories start 

to deviate increasingly until, at high speeds, even the qualitative pattern in the obtained trajectories 

is not similar to each other, as shown in Figure 5-10 (d) and (h). Although the extent of the oil 

whirl amplitudes and space-span of journal trajectories is similar for both models, as portrayed in 

Figure 5-10 (c), (d), (g) and (h), the difference in the details of the patterns suggests the existence 

of higher harmonics in the journal response. The frequency content of the journal response at 
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different rotational speeds can be studied by means of Fourier analysis. Waterfall and contour 

diagrams of the journal vibrational signal in frequency domain is a common tool in rotor-dynamics, 

and are employed here for model Cases 1(a) and (b) as presented in Figure 5-11. 

  

(a) (b) 

  

(c) (d) 

Figure 5-11. Waterfall plots (a-b) and contour plots (c-d) of the frequency content of the journal bearing 

unbalance response in 𝒙-direction for linear coefficient based model, (a) and (c), and for the nonlinear 

coefficient based model, (b) and (d). 

The waterfall diagrams of Figure 5-11 (a) and (b) show the synchronous frequency component 

starting at lowest rotational speeds and extending to the highest spin speeds. This is expected, since 

an unbalance response is synchronized with rotational frequency of the rotor and its frequency 

increases by increasing the rotor spin speed. Since stability parameter 𝛾 ∝ 𝜔2, a parabola type 

dependency (instead of a linear dependence) in the frequency domain is expected. This is easily 

detected in all the subplots of Figure 5-11.  

By increasing the stability parameter (and thus the rotational speed), there is an increase in the 

journal vibration amplitude, and it peaks around 𝛾 = 1.6 for both models. This is the first critical 

speed for the lateral vibrations of the shaft. Upon further increase of the stability parameter, the 
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first sign of sub-synchronous whirl appears at about 𝛾 = 4.1 in both models. After this threshold 

speed, the sub-synchronous whirl amplitude grows increasingly; however, its frequency remains 

approximately constant, with the constant being the first critical speed of the system. This 

“locking” of the whirl frequency to the critical speed is usually referred to as oil whip. Large oil 

whip amplitudes are very destructive for the safe operations of the rotor-bearing system. Although 

both models predict the onset of whipping similarly, the frequency band in the linear model is 

convoluted, and distinct narrow frequency bands are not detected beyond 𝛾 = 5. On the other 

hand, the whipping frequency bands in the nonlinear model, as in Figure 5-11 (d), are sufficiently 

narrow and the locking mechanism is properly identified.  

Another shortcoming of the linear coefficient-based model is the absence of super-harmonics and 

other sub-harmonics (besides the whipping frequency) in the predicted journal frequency response. 

The nonlinear coefficient-based model, however, has predicted a range of super-harmonics; an 

extra subharmonic in the journal response as can be identified by narrow and low amplitude 

frequency bands beyond and below the synchronous parabola in Figure 5-11 (b) and (d). 

Predictions of higher harmonics is important not only since its existence is supported in 

experimental data [20, 120], but also for fault detection in rotor-bearing systems. Many fault 

detection criteria depend on the detection of sub and super-harmonics in vibration data to identify 

the existence and type of certain faults, such as shaft cracks [121], misalignment and radial loads 

[120], rotor to stator rubbing [120, 122], dry whip [123], etc. Thus, accurate prediction of such 

harmonics caused by the oil bearings is vital for successful fault detection and isolation in rotor-

bearing systems. 
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Chapter 6: Conclusions and Future Work 

 

6.1 Summary and Conclusions 

The purpose of this thesis is to identify and characterize the oil whirl phenomenon — a destructive 

form of instability in rotor-bearing systems. To do so, the rotor-bearing system must be represented 

with a mathematical model that encapsulates the physics of the problem. The most significant step 

in constructing such a model is to represent the bearing forces that are caused by the shearing of 

oil in the bearing chamber. This is done by means of modeling the oil-induced forces through 

journal bearing dynamic coefficients that act as hypothetical springs and dampers in the dynamical 

model of the system. In order to calculate the dynamic coefficients, the simplified form of the 

Navier-Stokes equations for thin-film flows, the Reynolds equation, is solved in its original and 

perturbed form to find journal induced pressure and its gradients. Proper integration of the 

calculated pressure gradients can then reveal the sought-after dynamic coefficients. 

 

Once the mathematical model of the system is constructed, linear and nonlinear stability analyses 

are carried out to find the bifurcation boundary (i.e. the stability boundary or the threshold speed 

after-which oil whirl occurs) and its directions/types. It was shown that identifying the bifurcation 

types for rotors supported on realistic journal bearings with finite length (for which analytical 

solutions cannot correctly predict the performance) is possible despite its absence in the literature. 

The proposed method was to construct the bearing induced forces, not only using the linear 

dynamic coefficients as is widely adopted in the literature, but also by including higher order 

nonlinear coefficients. The dependency of the Floquet exponents on higher order derivatives of 

the journal force was used as the basis for this hypothesis, primarily because bifurcation types are 

known to be identifiable if Floquet exponents can be found for periodic solutions (i.e. oil whirl 

trajectories) of the system.  

 

Thorough analytical and numerical analysis is proposed for the calculation of the higher order 

dynamic coefficients. In the case of short bearings (also applicable to long bearings) with available 

closed-form expressions for the journal force, analytical coefficients were calculated based on a 

Taylor expansion of the journal force around the steady state points of the system. The numerical 
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coefficients were also found based on a perturbation analysis of the Reynolds equation. 

Numerically obtained coefficients are of ultimate interest since they can be found for any geometry 

and cavitation model, and thus are applicable to the finite length journal bearings that are of main 

interest in this thesis. As the analytical method is independent of the numerical approach, the 

calculated coefficients from the two methods were then compared against each other to verify the 

validity of the numerical/analytical results. Linear and nonlinear rotor-bearing models were then 

constructed based on the calculated linear and nonlinear coefficients for both finite-length and 

asymptotically short/long journal bearings. Both nonlinear models were shown to be suitable (and 

thus superior) for the calculation of bifurcation types while their linear counterparts fell short in 

providing a distinction between the bifurcations of the system.   

 

More detailed findings are presented in the following subsections: 

 

6.1.1 Conclusions on the Development of a Robust Algorithm for Cavitated Journal 

Bearings 

A modified fast-converging and robust algorithm was proposed to solve the cavitation problem in 

axially grooved journal bearings based on the Finite Volume Method (FVM). Detailed 

discretization of the Adams/Elrod cavitation algorithm with the Vijayaraghavan and Keith 

treatment was derived and presented based on the FVM. The numerical stability of the fully 

discretized system was also analyzed by means of eigenvalue analysis of the coefficient matrix of 

the full linear system. 

 

• The solution of the cavitation problem was shown to strongly depend on the specific values 

chosen for the bulk modulus of the lubricant. 

 

• It was shown that by increasing the bulk modulus, the space span of the eigenvalues of the 

system both expands and shifts towards the right half plane, as a clear indicator for 

difficulty in the convergence of the discretized numerical system. 
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• Effects of static load and mesh size on the stability of the system were also studied. It was 

found that their impact is negligible compared to the dominant significance of varying bulk 

modulus values. 

 

• It was shown how the new proposed scheme that is based on the direct solve of the full 

linear system is capable of handling the stiff system for any chosen value of the bulk 

modulus 𝛽. 

 

• The new scheme showed a significant improvement in robustness compared to traditionally 

used Approximate Factorization based schemes. 

 

6.1.2 Conclusions on The Effects of Turbulence on the Linear Stability of Rotor-Bearing 

Systems 

The stability bounds of a rotor-bearing system was presented for a range of operating conditions 

based on a simplified mathematical model of the system. The simplification is mainly achieved by 

means of reducing the complicated fluid-solid interaction problem in the rotor-bearing system to 

the oscillation problem of a mass supported on a flexible and isolated support. Such reduction is 

made possible by replacing the fluid effects of the bearings by the so-called dynamic bearing 

coefficients. The proposed simplified model is based on a flexible shaft supported on identical 

finite length journal bearings. Dynamic coefficients of the journal bearing were calculated based 

on the Reynolds equation that is modified for turbulent flows. Two turbulent models were used for 

stability analysis and the corresponding stability boundaries were compared.  

 

• Predicted threshold speeds of instability based on Constantinescu’s model were found to 

be higher than the threshold speeds predicted by the Ng-Pan Elrod turbulent model, and 

hence the latter model proves to be more conservative in design. 

 

• The stable region of flexible shafts supported on both turbulent and laminar journal 

bearings were shown to grow by increasing the shaft non-dimensional parameter. 
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• It was found that at low load and high Sommerfeld region ≥ 0.2 , the stability is not 

affected by the type of flow within the bearing chamber; hence, a laminar analysis that is 

based on a non-modified Reynolds equation is sufficient at these operating ranges. 

 

• As the loading increases, the unstable operating region grows. This will result in the 

occurrence of unstable oil whirl, at even higher static loads, a region that the laminar-based 

stability analysis would consider a safe operating condition. Hence, modified stability 

analysis for turbulent flows needs to be implemented whenever the system is operating 

under high static load. 

6.1.3 Conclusions on Nonlinear Stability Analysis Based on a Theoretical Higher Order 

Coefficient-Based Rotor-Bearing Model 

The nonlinear second and third order dynamic coefficients of a journal bearing were presented 

based on higher order Taylor expansion of the journal forces around the steady state point of the 

rotor-bearing system. Dynamic coefficients were given in a general form, and for 𝜋-film short 

bearings, coefficients were given as functions of eccentricity ratio. The obtained nonlinear 

coefficients were then used jointly with linear coefficients in an attempt to express the induced 

journal force as higher order functions of journal position and velocity. A Hopf bifurcation 

subroutine was developed to study the birth and stability of limit cycles (oil whirl) in a flexible 

rotor-bearing system. Journal trajectories were obtained for four rotor-bearing models to further 

study the true dynamics of the system. In each model, the journal force is represented with either 

an available closed-form expression, linear dynamic coefficients, or nonlinear coefficients of up 

to second and third order. 

 

• The proposed nonlinear coefficient model can potentially be extended to any journal 

bearing with a desired geometry while still revealing the true dynamics of the system. 

 

• The higher order representation was shown to be particularly useful in the study of Hopf 

bifurcations and stability of oil whirl phenomenon in a flexible rotor-bearing system. 

 



127 

 

• Little qualitative difference was found between the nonlinear coefficient-based models of 

second and third order. 

 

• The more simplified second order model was found to be capable of predicting the 

bifurcations and nonlinear dynamics of the rotor-baring system. 

 

• The second order nonlinear coefficient-based model can be used as a simplified alternative 

to the third order model when calculating all the higher order coefficients is not practically 

feasible, especially for finite length journal bearings. 

 

6.1.4 Conclusions on Nonlinear Stability Analysis based on a Numerical Higher Order 

Coefficient-Based Rotor-Bearing Model 

Nonlinear dynamic coefficients for a finite length journal bearing were found by means of an 

extended perturbation analysis on the Reynolds lubrication equation. The governing equations for 

steady pressure and its gradients were then discretized and solved by means of a Finite Volume 

scheme.  

 

• It was shown how a proper higher order perturbation of the film thickness can be used to 

derive governing equations for first and second order pressure gradients.  

 

The calculated gradients were then used to obtain linear and nonlinear stiffness and damping 

coefficients for a finite length journal bearing. Numerically obtained dynamic coefficients for a 

finite bearing were compared to previously calculated analytical short bearing coefficients.  

 

• A qualitative agreement was observed between the coefficients.  

 

• As short bearing results are in fact an asymptotic limit for finite coefficients, such 

agreements were used as verification for the proposed finite bearing coefficients. 
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Linear and nonlinear stability of a flexible rotor-bearing system supported on end journal bearings 

was studied. A mathematical model, nonlinear coefficient-based model, was presented based on 

the calculated linear and nonlinear finite bearing dynamic coefficients. Alternative models based 

on available closed-form solutions for journal force were also presented for comparison purposes. 

A numerical algorithm was used to calculate the linear stability bounds (threshold speed of 

instability) of the given dynamical systems. At spin speeds beyond the threshold speed, the system 

undergoes a Hopf bifurcation and periodic solutions are born. A nonlinear analysis based on the 

Shooting method was presented to calculate the Monodromy matrix associated with the existing 

periodic solutions of the system. The stability of the periodic orbits was then assessed based on 

the eigenvalue analysis of the calculated Monodromy matrix at any given operating condition.  

 

• Curves of stability were shown to have two general bifurcation regions: the sub and 

supercritical bifurcation.  

 

• The predicted boundary between the bifurcation regions for the proposed model were 

found to be in good agreement with the existing experimental results and was shown to be 

a particularly better estimate compared to the results of the short bearing analysis. 

 

•  It was also found that the desired supercritical region expands by increasing the shaft 

stiffness. 

  

Journal bearing trajectories were also obtained for the proposed mathematical models of the rotor-

bearing system. This was done by time-integration of the governing dynamical equations of motion 

for linear and nonlinear coefficient-based models, as well as the short and finite bearing force-

based models. Trajectories were initially obtained for a fully balanced system. The unbalance 

trajectories were also obtained for the linear and nonlinear coefficient-based models. 

 

• The balanced results suggested the superiority of the proposed nonlinear coefficient-based 

model, as it was the only model to properly predict the existence of stable limit cycles 

beyond the threshold speed of instability in supercritical bifurcation regions.  
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• Results indicate that although both models have qualitatively similar trajectories, there are 

noticeable differences in both the patterns and frequency content of the calculated vibration 

signals.  

 

• A complete frequency analysis of the system for a wide range of operating speeds (waterfall 

diagram) showed that the nonlinear model is better at modelling the lock-in oil whip 

mechanism as well as capturing sub and super harmonics in the vibration signal.  

 

• The linear model fell short in detecting these harmonics.  

 

• As super and subharmonic signals are widely used as signatures for rotor-bearing fault 

detection, the ability of the proposed nonlinear model in resolving such frequencies was 

found to be critically important. 

 

6.2 Limitations and Future Work 

At high spin speeds of the shaft, the induced pressure increases; however, the shearing of oil in the 

bearing chamber can produce excessive heat that can then result in the reduction of oil viscosity; 

however, the oil viscosity is assumed to be constant in this thesis. Since a reduction in lubricant 

viscosity also reduces the bearing induced pressures, it counteracts the increase in the pressure at 

high spin speeds and thus affects bearing performance. Consequently, including the effect of heat 

generation in the journal bearings and the temperature dependence of oil viscosity is the next 

important step for modifying the stability boundaries and identifying the bifurcation types of the 

system. Another assumption throughout this thesis was that the oil dynamics is governed by 

properties of Newtonian fluids. Shear-thinning at high rotational speeds can affect the stability 

boundaries of the system and its effects should be included in future studies. 

 

The proposed cavitation algorithm is very well behaved in steady state analysis, yet, difficulties 

arise if the time dependent solution is of interest. Such difficulty is shared between all the existing 

cavitation models and thus needs to be addressed. The proper use of pre-conditioners in solving 

the discretized system of equations, and the use of more advanced iterative solvers can serve as a 

potential remedy for the time dependent problems and can be studied in the future. 
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Although the proposed coefficient-based models in this thesis can generally be extended to any 

bearing geometry and a variety of cavitation boundary conditions, the extension is not necessarily 

carried out easily. Journal bearings are made in a variety of shapes and incorporating these shapes 

and cavitation boundaries can introduce convergence difficulties for the perturbed Reynolds 

equation. Independent research should be devoted to study such effects on linear and nonlinear 

stability of rotor-bearing systems. 
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Appendices 

 

Appendix A  : Discretized Reynolds Equation for the Cavitation Problem  

To simplify notation it is useful to define: 

 
𝐻𝑖+1 2⁄ ,𝑗 =

𝐻𝑖+1,𝑗 + 𝐻𝑖,𝑗

2
;  𝑎𝑛𝑑  𝐻𝑖,𝑗+1 2⁄ =

𝐻𝑖,𝑗+1 + 𝐻𝑖,𝑗

2
 

𝐻𝑖−1 2⁄ ,𝑗 =
𝐻𝑖−1,𝑗 + 𝐻𝑖,𝑗

2
;  𝑎𝑛𝑑  𝐻𝑖,𝑗−1 2⁄ =

𝐻𝑖,𝑗−1 + 𝐻𝑖,𝑗

2
 

𝑔𝑖+1 2⁄ ,𝑗 =
𝑔𝑖+1,𝑗 + 𝑔𝑖,𝑗

2
;  𝑎𝑛𝑑  𝑔𝑖−1 2⁄ ,𝑗 =

𝑔𝑖−1,𝑗 + 𝑔𝑖,𝑗

2
 

(A.1) 

Recall from Eq. (2.23): 

 𝑢 = 𝛼𝐻 

𝐹 =
𝑢

4𝜋
−

𝛽

48𝜋2
 𝐻3

𝜕𝑔(𝛼 − 1)

𝜕𝑥
− (1 − 𝑔) (

𝜕2𝑢

𝜕𝑥2
 
Δ𝑥2

3
−
𝜕3𝑢

𝜕𝑥3
 
Δ𝑥3

4
) 

𝐺 =
𝛽

48 (𝐿/𝐷)2
𝐻3

𝜕𝑔(𝛼 − 1)

𝜕𝑧
 

(A.2) 

Hence, the fluxes at control surface boundaries using a central differencing formulation can be 

written as: 

 
𝐹
𝑖+
1
2
,𝑗
=

1

4𝜋
(
𝛼𝑖,𝑗𝐻𝑖,𝑗 + 𝛼𝑖+1,𝑗𝐻𝑖+1,𝑗

2
)

−

𝛽𝐻
𝑖+
1
2
,𝑗

3

48𝜋2
(
(𝛼𝑖+1,𝑗 − 1)𝑔𝑖+1,𝑗 − (𝛼𝑖,𝑗 − 1)𝑔𝑖,𝑗

𝛥𝑥
)

−
1 − 𝑔𝑖+1 2⁄ ,𝑗

4𝜋
(
𝛼𝑖−1,𝑗𝐻𝑖−1,𝑗 − 2𝛼𝑖,𝑗𝐻𝑖,𝑗 + 𝛼𝑖+1,𝑗𝐻𝑖+1,𝑗

2
) 

𝐹
𝑖−
1
2
,𝑗
=

1

4𝜋
(
𝛼𝑖−1,𝑗𝐻𝑖−1,𝑗 + 𝛼𝑖,𝑗𝐻𝑖,𝑗

2
)

−

𝛽𝐻
𝑖−
1
2
,𝑗

3

48𝜋2
(
(𝛼𝑖,𝑗 − 1)𝑔𝑖,𝑗 − (𝛼𝑖−1,𝑗 − 1)𝑔𝑖−1,𝑗

𝛥𝑥
)

−
1 − 𝑔𝑖−1 2⁄ ,𝑗

4𝜋
(
𝛼𝑖−2,𝑗𝐻𝑖−2,𝑗 − 2𝛼𝑖−1,𝑗𝐻𝑖−1,𝑗 + 𝛼𝑖,𝑗𝐻𝑖,𝑗

2
) 

(A.3) 
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𝐺
𝑖,𝑗+

1
2
=

−𝛽𝐻
𝑖,𝑗+

1
2

3

48 (𝐿/𝐷)2
(
(𝛼𝑖,𝑗+1 − 1)𝑔𝑖,𝑗+1 − (𝛼𝑖,𝑗 − 1)𝑔𝑖,𝑗

𝛥𝑧
) 

𝐺
𝑖,𝑗−

1
2
=

−𝛽𝐻
𝑖,𝑗−

1
2

3

48 (𝐿/𝐷)2
(
(𝛼𝑖,𝑗 − 1)𝑔𝑖,𝑗 − (𝛼𝑖,𝑗−1 − 1)𝑔𝑖,𝑗−1

𝛥𝑧
) 

 

The higher order artificial viscosity terms in 𝐹
𝑖+

1

2
,𝑗
 and 𝐹

𝑖−
1

2
,𝑗
 of Eq. (A.3) are chosen such that by 

substituting 𝑔 = 0 in the shear term at cavitation zone, the second order accurate centrally 

differenced derivative be reduced to a second order upwind difference: 

 𝜕𝑢

𝜕𝑥
=

𝐹
𝑖+
1
2
,𝑗
− 𝐹

𝑖−
1
2
,𝑗

𝛥𝑥
|

𝑔=0

=
1

4𝜋

𝛼𝑖−2,𝑗𝐻𝑖−2,𝑗 − 4𝛼𝑖−1,𝑗𝐻𝑖−1,𝑗 + 3𝛼𝑖,𝑗𝐻𝑖,𝑗

2 𝛥𝑥
 (A.4) 

And hence it satisfies the upwind differencing in the hyperbolic cavitation zone as proposed by 

Vijayaraghavan and Keith [36, 95]. The values of the fluxes at the control surface boundaries in 

Eq. (A.3) is then to be substituted in the space-time discretized system of Eq. (2.21); dropping all 

the superscripts knowing that all the terms are evaluated at the current time-step we can write: 

 

𝛿𝑢̅𝑖,𝑗 (
1

𝛥𝑡
+

1

𝛥𝑥

𝜕𝐹
𝑖+
1
2
,𝑗

𝜕𝑢̅𝑖,𝑗
−

1

𝛥𝑥

𝜕𝐹
𝑖−
1
2
,𝑗

𝜕𝑢̅𝑖,𝑗
+

1

𝛥𝑧

𝜕𝐺
𝑖,𝑗+

1
2

𝜕𝑢̅𝑖,𝑗
−

1

𝛥𝑧

𝜕𝐺
𝑖,𝑗−

1
2

𝜕𝑢̅𝑖,𝑗
)

+
1

𝛥𝑥

𝜕𝐹
𝑖+
1
2
,𝑗

𝜕𝑢̅𝑖+1,𝑗
𝛿𝑢̅𝑖+1,𝑗 −

1

𝛥𝑥

𝜕𝐹
𝑖−
1
2
,𝑗

𝜕𝑢̅𝑖−1,𝑗
𝛿𝑢̅𝑖−1,𝑗 +

1

𝛥𝑧

𝜕𝐺
𝑖,𝑗+

1
2

𝜕𝑢̅𝑖,𝑗+1
𝛿𝑢̅𝑖,𝑗+1

−
1

𝛥𝑧

𝜕𝐺
𝑖,𝑗−

1
2

𝜕𝑢̅𝑖,𝑗−1
𝛿𝑢̅𝑖,𝑗−1 = −

𝐹
𝑖+
1
2
,𝑗
− 𝐹

𝑖−
1
2
,𝑗

𝛥𝑥
−

𝐺
𝑖,𝑗+

1
2
− 𝐺

𝑖,𝑗−
1
2

𝛥𝑧
 

(A.5) 

Where the RHS (right hand side) of Eq. (A.5) is the flux integral and can be written in its final 

form as: 

 

𝑅𝐻𝑆 = 𝐹𝐼 =  −

𝛽𝑔−1+𝑖,𝑗𝐻
𝑖−
1
2
,𝑗

3

48𝜋2Δx2
+

𝛽𝑔𝑖,𝑗𝐻
𝑖−
1
2
,𝑗

3

48𝜋2Δx2
−

𝛽𝑔𝑖,−1+𝑗𝐻
𝑖,𝑗−

1
2

3

48 (
𝐿
𝐷)

2

Δz2
+

𝛽𝑔𝑖,𝑗𝐻
𝑖,𝑗−

1
2

3

48 (
𝐿
𝐷)

2

Δz2
 (A.6) 
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+

𝛽𝑔𝑖,𝑗𝐻
𝑖,𝑗+

1
2

3

48 (
𝐿
𝐷)

2

Δz2
−

𝛽𝑔𝑖,1+𝑗𝐻
𝑖,𝑗+

1
2

3

48 (
𝐿
𝐷)

2

Δz2
+

𝛽𝑔𝑖,𝑗𝐻
𝑖+
1
2
,𝑗

3

48𝜋2Δx2
−

𝛽𝑔1+𝑖,𝑗𝐻
𝑖+
1
2
,𝑗

3

48𝜋2Δx2
 

+(−
𝐻𝑖−2,𝑗

8𝜋Δx
+

𝑔
𝑖−
1
2
,𝑗
𝐻𝑖−2,𝑗

8𝜋Δx
)𝛼𝑖−2,𝑗 

+(
𝐻𝑖−1,𝑗

2𝜋Δx
−

𝑔
𝑖−
1
2
,𝑗
𝐻𝑖−1,𝑗

4𝜋Δx
−

𝑔
𝑖+
1
2
,𝑗
𝐻𝑖−1,𝑗

8𝜋Δx
+

𝛽𝑔𝑖−1,𝑗𝐻
𝑖−
1
2
,𝑗

3

48𝜋2Δx2
)𝛼𝑖−1,𝑗 

+(−

𝛽𝑔𝑖,𝑗𝐻
𝑖−
1
2
,𝑗

3

48𝜋2Δx2
−

𝛽𝑔𝑖,𝑗𝐻
𝑖,𝑗−

1
2

3

48 (
𝐿
𝐷
)
2

Δz2
−
3𝐻𝑖,𝑗

8𝜋Δx
+

𝑔
𝑖−
1
2
,𝑗
𝐻𝑖,𝑗

8𝜋Δx
+

𝑔
𝑖+
1
2
,𝑗
𝐻𝑖,𝑗

4𝜋Δx

−

𝛽𝑔𝑖,𝑗𝐻
𝑖,𝑗+

1
2

3

48 (
𝐿
𝐷)

2

Δz2
−

𝛽𝑔𝑖,𝑗𝐻
𝑖+
1
2
,𝑗

3

48𝜋2Δx2
)𝛼𝑖,𝑗

+ (

𝛽𝑔𝑖+1,𝑗𝐻
𝑖+
1
2
,𝑗

3

48𝜋2Δx2
−

𝑔
𝑖+
1
2
,𝑗
𝐻1+𝑖,𝑗

8𝜋Δx
)𝛼𝑖+1,𝑗 

+

𝛽𝑔𝑖,𝑗−1𝐻
𝑖,−

1
2
+𝑗

3

48 (
𝐿
𝐷)

2

Δz2
𝛼𝑖,𝑗−1 +

𝛽𝑔𝑖,𝑗+1𝐻
𝑖,𝑗+

1
2

3

48 (
𝐿
𝐷)

2

Δz2
𝛼𝑖,𝑗+1 

Carrying out the partial derivations in the LHS (left hand side) of Eq. (A.5) we will have: 

 
𝜕𝐹

𝑖+
1
2
,𝑗

𝜕𝑢̅𝑖,𝑗
=

𝜕𝐹
𝑖+
1
2
,𝑗

𝜕𝛼𝑖,𝑗𝐻𝑖,𝑗
=

6𝜋Δx (3 − 2𝑔
𝑖+
1
2
,𝑗
)𝐻𝑖,𝑗 + 𝛽𝑔𝑖,𝑗𝐻

𝑖+
1
2
,𝑗

3

48𝜋2Δx 𝐻𝑖,𝑗
 

(A.7) 

And similarly for all the other partial derivative terms. Hence the LHS in its final form can be 

written as 

 𝐿𝐻𝑆 = 𝑋−2 𝛿𝑢𝑖−2,𝑗 + 𝑋−1 𝛿𝑢𝑖−1,𝑗 + 𝑋𝑍0 𝛿𝑢𝑖,𝑗 + 𝑋+1 𝛿𝑢𝑖+1,𝑗 + 𝑌−1 𝛿𝑢𝑖,𝑗−1

+ 𝑌−2 𝛿𝑢𝑖,𝑗+1 
(A.8) 

where: 
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𝑋−2 = −

(−1 + 𝑔
𝑖−
1
2
,𝑗
)

8𝜋 Δx
 

𝑋−1 = (

−1 + 𝑔
𝑖+
1
2
,𝑗

8𝜋 Δx
−

6𝜋Δx (3 − 2𝑔
𝑖−
1
2
,𝑗
) 𝐻−1+𝑖,𝑗 + 𝛽𝑔−1+𝑖,𝑗  𝐻

𝑖−
1
2
,𝑗

3

48 𝜋2Δx2 𝐻𝑖−1,𝑗
) 

𝑋𝑍0 = (
1

Δt
+

𝛽𝑔𝑖,𝑗 𝐻
𝑖,𝑗−

1
2

3

48 (
𝐿
𝐷)

2

Δz2𝐻𝑖,𝑗

−

−𝛽𝑔𝑖,𝑗𝐻
𝑖−
1
2
,𝑗

3 + 6𝜋 Δx 𝑔
𝑖−
1
2
,𝑗
𝐻𝑖,𝑗

48𝜋2Δx2𝐻𝑖,𝑗

+

𝛽𝑔𝑖,𝑗 𝐻
𝑖,𝑗+

1
2

3

48 (
𝐿
𝐷)

2

 Δz2𝐻𝑖,𝑗

+

6𝜋 Δx (3 − 2𝑔
𝑖+
1
2
,𝑗
) 𝐻𝑖,𝑗 + 𝛽𝑔𝑖,𝑗𝐻

𝑖+
1
2
,𝑗

3

48𝜋2Δx2𝐻𝑖,𝑗
) 

𝑋+1 =

(−𝛽𝑔𝑖+1,𝑗 𝐻
𝑖+
1
2
,𝑗

3 + 6𝜋 Δx 𝑔
𝑖+
1
2
,𝑗
𝐻1+𝑖,𝑗)

48 𝜋2Δx2 𝐻𝑖+1,𝑗
 

𝑍−1 = −

𝛽𝑔𝑖,𝑗−1 𝐻
𝑖,𝑗−

1
2

3

48 (
𝐿
𝐷)

2

Δz2𝐻𝑖,𝑗−1

 

𝑍+1 = −

𝛽𝑔𝑖,𝑗+1 𝐻
𝑖,𝑗+

1
2

3

48 (𝐿/𝐷)2 Δz2 𝐻𝑖,𝑗+1
 

(A.9) 

And hence the final fully discretized Reynolds equation can be written as: 

 𝑋−2 δΦ𝑖−2,𝑗 + 𝑋−1 δΦ𝑖−1,𝑗 + 𝑋𝑍0 δΦ𝑖,𝑗 + 𝑋+1 δΦ𝑖+1,𝑗 + 𝑍−1 δΦ𝑖,𝑗−1

+ 𝑍−2 δΦ𝑖,𝑗+1 = 𝐹𝐼 
(A.10) 

Now, as an example, considering a 2D mesh of size 4×4 as a subset of a bigger mesh as shown in 

Figure 1-1.  
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(1,1) (1,2) (1,3) (1,4) 

(2,1) (2,2) (2,3) (2,4) 

(3,1) (3,2) (3,3) (3,4) 

(4,1) (4,2) (4,3) (4,4) 

Figure 1-1. A 𝟒×𝟒 mesh  

One can form the full linear system for a 4×4 mesh as: 

where 

[𝐴] = 

 

𝑋𝑍0 𝑋+1   𝑍1            

 

(A.12) 

𝑋−1 𝑋𝑍0 𝑋+1   𝑍1           

𝑋−2 𝑋−1 𝑋𝑍0 𝑋+1   𝑍1          

 𝑋−2 𝑋−1 𝑋𝑍0    𝑍1         

𝑍−1    𝑋𝑍0 𝑋+1   𝑍1        

 𝑍−1   𝑋−1 𝑋𝑍0 𝑋+1   𝑍1       

  𝑍−1  𝑋−2 𝑋−1 𝑋𝑍0 𝑋+1   𝑍1      

   𝑍−1  𝑋−2 𝑋−1 𝑋𝑍0    𝑍1     

    𝑍−1    𝑋𝑍0 𝑋+1   𝑍1    

     𝑍−1   𝑋−1 𝑋𝑍0 𝑋+1   𝑍1   

      𝑍−1  𝑋−2 𝑋−1 𝑋𝑍0 𝑋+1   𝑍1  

       𝑍−1  𝑋−2 𝑋−1 𝑋𝑍0    𝑍1 

        𝑍−1    𝑋𝑍0 𝑋+1   

         𝑍−1   𝑋−1 𝑋𝑍0 𝑋+1  

          𝑍−1  𝑋−2 𝑋−1 𝑋𝑍0 𝑋+1 

           𝑍−1  𝑋−2 𝑋−1 𝑋𝑍0 

and, 

 

  

 
[𝐴][𝛿𝑢] = [𝐹𝐼] (A.11) 
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[𝛿𝑢] = 

 

𝛿𝑢1,1 

 

; [𝐹𝐼] = 

 

𝐹𝐼1,1 

 

(A.13) 

𝛿𝑢2,1 𝐹𝐼2,1 

𝛿𝑢3,1 𝐹𝐼3,1 

𝛿𝑢4,1 𝐹𝐼4,1 

𝛿𝑢1,2 𝐹𝐼1,2 

𝛿𝑢2,2 𝐹𝐼2,2 

𝛿𝑢3,2 𝐹𝐼3,2 

𝛿𝑢4,2 𝐹𝐼4,2 

𝛿𝑢1,3 𝐹𝐼1,3 

𝛿𝑢2,3 𝐹𝐼2,3 

𝛿𝑢3,3 𝐹𝐼3,3 

𝛿𝑢4,3 𝐹𝐼4,3 

𝛿𝑢1,4 𝐹𝐼1,4 

𝛿𝑢2,4 𝐹𝐼2,4 

𝛿𝑢3,4 𝐹𝐼3,4 

𝛿𝑢4,4 𝐹𝐼4,4 
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Appendix B  : The Hopf Bifurcation Algorithm 

 

Find the fixed points, 𝑿̇∗, of 

the system: 𝒇(𝑿̇∗, 𝜈) = 0 

Calculate the eigenvalues of the Jacobian matrix, 

𝑱(𝜈) = 𝜕𝑿̇𝒇(𝑿̇
∗, 𝜈), and order them such 

that: 𝑅𝑒 𝜆1 ≥ 𝑅𝑒 𝜆2 ≥ ⋯ ≥ 𝑅𝑒 𝜆𝑛 

Find a value, 𝜈𝑐, such that: 

 (𝑖) 𝑅𝑒 𝜆1(𝜈𝑐) = 0 & 𝐵0 ≡ 𝐼𝑚 𝜆1(𝜈𝑐) ≠ 0 

(𝑖𝑖) the next eigenvalue, 𝜆2, is a conjugate pair: 𝜆1(𝜈𝑐) = 𝜆̅2(𝜈𝑐) 

(𝑖𝑖𝑖) 𝑅𝑒 𝜆1
′ (𝜈𝑐) ≠ 0 & 𝑅𝑒 𝜆𝑗(𝜈𝑐) < 0 , (𝑗 = 3, … , 𝑛) 

Is 𝑱(𝜈𝑐) in the canonical 

form: [
0 −𝐵0 ⬚

𝐵0 0 ⬚

⬚ ⬚ 𝐷

] 

 

Yes 𝑃 = 𝐼 

Perform the change of variables, = 𝑿̇∗ + 𝑷 𝒀 , thus: 

𝒀 = 𝑭(𝒀) 
The Jacobian matrix, 𝜕𝒀𝑭(𝟎) will have the canonical form 

Form the matrix:  𝑷 = [𝑅𝑒 𝑉1, −𝐼𝑚 𝑉1, 𝑟3, … , 𝑟𝑛] 
where  𝑉1 is the normalized eigenvector of  𝑱(𝜈𝑐) corresponding 

to  𝜆1(𝜈𝑐) = 𝑖 𝐵0 and 𝑟3, … , 𝑟𝑛 are real n-vectors that span the 

union of eigen-spaces for 𝜆3, … , 𝜆𝑛 at 𝜈 = 𝜈𝑐 

 

No 

A 
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A 

Calculate the following at 𝜈 = 𝜈𝑐, 𝒀 = 𝟎: 

 (𝑖) 𝑔11 =
1

4
[𝜕𝑦1𝑦1𝐹1 + 𝜕𝑦2𝑦2𝐹1 + 𝑖(𝜕𝑦1𝑦1𝐹2 + 𝜕𝑦2𝑦2𝐹2)] 

(𝑖𝑖) 𝑔02 =
1

4
[𝜕𝑦1𝑦1𝐹1 − 𝜕𝑦2𝑦2𝐹1 − 2𝜕𝑦1𝑦2𝐹2 + 𝑖(𝜕𝑦1𝑦1𝐹2 − 𝜕𝑦2𝑦2𝐹2 + 2 𝜕𝑦1𝑦2𝐹1)] 

(𝑖𝑖𝑖) 𝑔20 =
1

4
[𝜕𝑦1𝑦1𝐹1 − 𝜕𝑦2𝑦2𝐹1 + 2𝜕𝑦1𝑦2𝐹2 + 𝑖(𝜕𝑦1𝑦1𝐹2 − 𝜕𝑦2𝑦2𝐹2 − 2 𝜕𝑦1𝑦2𝐹1)] 

(𝑖𝑣) 𝐺21 =
1

8
ቂ𝜕𝑦1𝑦1𝑦1𝐹1 + 𝜕𝑦1𝑦2𝑦2𝐹1 + 𝜕𝑦1𝑦1𝑦2𝐹2 + 𝜕𝑦2𝑦2𝑦2𝐹2 + 𝑖(𝜕𝑦1𝑦1𝑦1𝐹2 +

𝜕𝑦1𝑦2𝑦2𝐹2 − 𝜕𝑦1𝑦1𝑦2𝐹1 + 𝜕𝑦2𝑦2𝑦2𝐹1)ቃ 

Is 𝑛 > 2 ? 
No 𝑔21 = 𝐺21 

Yes 

Calculate the following at 𝜈 = 𝜈𝑐, 𝒀 = 𝟎: 

 (𝑖) ℎ11 
𝑘−2 =

1

4
(𝜕𝑦1𝑦1𝐹𝑘 + 𝜕𝑦2𝑦2𝐹𝑘) , 𝑘 = 3,… , 𝑛 

(𝑖𝑖) ℎ20 
𝑘−2 =

1

4
(𝜕𝑦1𝑦1𝐹𝑘 − 𝜕𝑦2𝑦2𝐹𝑘 − 2𝑖 𝜕𝑦1𝑦2𝐹𝑘) , 𝑘 = 3,… , 𝑛 

(𝑖𝑖𝑖) solve the linear systems for 𝑤11, 𝑤20:  

𝐷 𝑤11 = −ℎ11 , (𝐷 − 2𝑖 𝐵0𝐼)𝑤20 = −ℎ20 

(𝑖𝑣) 𝐺110
𝑘−2 =

1

2
ቂ𝜕𝑦1𝑦𝑘𝐹1 + 𝜕𝑦2𝑦𝑘𝐹2 + 𝑖 (𝜕𝑦1𝑦𝑘𝐹2 − 𝜕𝑦2𝑦𝑘𝐹1)ቃ 

(𝑣) 𝐺101
𝑘−2 =

1

2
ቂ𝜕𝑦1𝑦𝑘𝐹1 − 𝜕𝑦2𝑦𝑘𝐹2 + 𝑖 (𝜕𝑦2𝑦𝑘𝐹1 − 𝜕𝑦1𝑦𝑘𝐹2)ቃ 

(𝑣𝑖) 𝑔21 = 𝐺21 + ∑ (2𝐺110
𝑘  𝑤11

𝑘 + 𝐺101
𝑘 𝑤20

𝑘 )𝑛−2
𝑘=1  

 

Let 𝑐1(0) =
𝑖

2𝐵0
(𝑔20𝑔11 − 2|𝑔11|

2 −
1

3
|𝑔02|

2) +
𝑔21

2
 , then: 

𝜇2 = 2 𝑅𝑒 𝑐1(0)  

Is 𝜇2 > 0 ? 
Stable periodic 

solution 

Unstable periodic 

solution 

Yes No 
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Appendix C  : Analytical Dynamic Coefficients 

C.1 Linear Coefficients 

The general form of the linear dynamic stiffness coefficients in the X-Y coordinate system can be 

written as: 

 
𝐾̅𝑥𝑥 =  

𝜕𝑓
𝜖

𝜕𝜖
cos(𝜙)2 −

𝜕𝑓
𝜑

𝜕𝜖
cos(𝜙)sin(𝜙) −

𝜕𝑓
𝜖

𝜖𝜕𝜑
cos(𝜙)sin(𝜙) +

𝜕𝑓
𝜑

𝜖𝜕𝜑
 sin(𝜙)2

+
𝑓ϵ0
𝜖
sin(𝜙)2 +

𝑓ϕ0

𝜖
cos(𝜙)sin(𝜙) 

𝐾̅𝑥𝑦 =
𝜕𝑓

𝜖

𝜖𝜕𝜑
cos(𝜙)2 +

𝜕𝑓
𝜖

𝜕𝜖
cos(𝜙)sin(𝜙) −

𝜕𝑓
𝜑

𝜖𝜕𝜑
cos(𝜙)sin(𝜙) −

𝜕𝑓
𝜑

𝜕𝜖
 sin(𝜙)2

−
𝑓ϵ0
𝜖
cos(𝜙)sin(𝜙) −

𝑓ϕ0

𝜖
cos(𝜙)2 

𝐾̅𝑦𝑥 =
𝜕𝑓

𝜑

𝜕𝜖
cos(𝜙)2 +

𝜕𝑓
𝜖

𝜕𝜖
cos(𝜙)sin(𝜙) −

𝜕𝑓
𝜑

𝜖𝜕𝜑
cos(𝜙)sin(𝜙) −

𝜕𝑓
𝜖

𝜖𝜕𝜑
 sin(𝜙)2

−
𝑓ϵ0
𝜖
cos(𝜙)sin(𝜙) +

𝑓ϕ0

𝜖
sin(𝜙)2 

𝐾̅𝑦𝑦 =
𝜕𝑓

𝜑

𝜖𝜕𝜑
cos(𝜙)2 +

𝜕𝑓
𝜑

𝜕𝜖
cos(𝜙)sin(𝜙) +

𝜕𝑓
𝜖

𝜖𝜕𝜑
cos(𝜙)sin(𝜙) +

𝜕𝑓
𝜖

𝜕𝜖
sin(𝜙)2

+
𝑓ϵ0
𝜖
cos(𝜙)2 −

𝑓ϕ0

𝜖
cos(𝜙)sin(𝜙) 

(C.1) 

It shall be noted again that all the derivatives are to be evaluated at the steady state where 𝑒 = 𝜑 =

0. Since a clockwise rotation can transform the forces to the X-Y coordinate, we can write: 

 𝑓𝑥 = 𝑓𝜖 cos𝜑 − 𝑓𝜑 sin𝜑 and 𝑓𝑦 = 𝑓𝜖 sin𝜑 + 𝑓𝜑 cos𝜑 (C.2) 

Combining Eq. (C.1) with Eq. (C.2) will yield the identical form as in references [25, 92]. 

Similarly, linear dynamic damping coefficients in the X-Y coordinate are found as follows: 

 
𝐶𝑥̅𝑥 = 𝜔

𝜕𝑓𝜖
𝜕𝜖 

cos(𝜙)2 − 𝜔
𝜕𝑓𝜑

𝜕𝜖 
cos(𝜙)sin(𝜙) − 𝜔

𝜕𝑓𝜖
𝜖𝜕𝜑 

cos(𝜙)sin(𝜙)

+ 𝜔
𝜕𝑓𝜑

𝜖𝜕𝜑 
sin(𝜙)2 

(C.3) 
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𝐶𝑥̅𝑦 = 𝜔
𝜕𝑓𝜖
𝜖𝜕𝜑 

cos(𝜙)2 + 𝜔
𝜕𝑓𝜖
𝜕𝜖 

cos(𝜙)sin(𝜙) − 𝜔
𝜕𝑓𝜑

𝜖𝜕𝜑 
cos(𝜙)sin(𝜙)

− 𝜔
𝜕𝑓𝜑

𝜕𝜖 
sin(𝜙)2 

𝐶𝑦̅𝑥 = 𝜔
𝜕𝑓𝜑

𝜕𝜖 
cos(𝜙)2 + 𝜔

𝜕𝑓𝜖
𝜕𝜖 

cos(𝜙)sin(𝜙) − 𝜔
𝜕𝑓𝜑

𝜖𝜕𝜑 
cos(𝜙)sin(𝜙)

− 𝜔
𝜕𝑓𝜖
𝜖𝜕𝜑 

sin(𝜙)2 

𝐶𝑦̅𝑦 = 𝜔
𝜕𝑓𝜑

𝜖𝜕𝜑 
cos(𝜙)2 + 𝜔

𝜕𝑓𝜑

𝜕𝜖 
cos(𝜙)sin(𝜙) + 𝜔

𝜕𝑓𝜖
𝜖𝜕𝜑 

cos(𝜙)sin(𝜙)

+ 𝜔
𝜕𝑓𝜖
𝜕𝜖 

sin(𝜙)2 

Noting that 𝜔
𝜕𝑓𝜖

𝜕𝜑 
= −2𝑓

𝜖
 and 𝜔

𝜕𝑓𝜑

𝜕𝜑 
= −2𝑓

𝜑
 [25] and the form of Eq. (C.2), the result of linear 

damping coefficients is again in complete agreement with the literature [25, 92]. The linear 

dynamic coefficients are calculated for the special case of a 𝜋-film short bearing and are tabulated 

in Table C-1 and Table C-2. 

Table C-1. Linear stiffness coefficients for a short bearing (𝝅 film) in X-Y coordinate system 

Linear Stiffness 

Coefficients 
Short Bearing (𝜋 film) 

𝐾𝑥𝑥 −
𝜋𝐿2𝜖(−3𝜋𝜖(𝜖2 − 1)𝑠𝑖𝑛(2𝜙) + 4√1 − 𝜖2(3𝜖2 + 1)𝑐𝑜𝑠(2𝜙) + 4√1 − 𝜖2(𝜖2 + 3))

2𝐷2(1 − 𝜖2)7 2⁄
 

𝐾𝑥𝑦  −
𝜋𝐿2(4√1 − 𝜖2(3𝜖2 + 1)𝜖 𝑠𝑖𝑛(2𝜙) + 3𝜋(𝜖2 − 1)𝜖2𝑐𝑜𝑠(2𝜙) − 𝜋(𝜖4 + 𝜖2 − 2))

2𝐷2(1 − 𝜖2)7 2⁄
 

𝐾𝑦𝑥 −
𝜋𝐿2(4√1 − 𝜖2(3𝜖2 + 1)𝜖 𝑠𝑖𝑛(2𝜙) + 3𝜋(𝜖2 − 1)𝜖2𝑐𝑜𝑠(2𝜙) + 𝜋(𝜖4 + 𝜖2 − 2))

2𝐷2(1 − 𝜖2)7 2⁄
 

𝐾𝑦𝑦 −
𝜋𝐿2𝜖(3𝜋𝜖(𝜖2 − 1)𝑠𝑖𝑛(2𝜙) − 4√1 − 𝜖2(3𝜖2 + 1)𝑐𝑜𝑠(2𝜙) + 4√1 − 𝜖2(𝜖2 + 3))

2𝐷2(1 − 𝜖2)7 2⁄
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Table C-2. Linear damping coefficients for a short bearing (𝝅 film) in X-Y coordinate system 

Linear Damping 

Coefficients 

Short Bearing 

 (𝜋 film) 

𝐶𝑥̅𝑥 −
𝜋𝐿2(8√1 − 𝜖2𝜖 𝑠𝑖𝑛 (2𝜙) + 3𝜋𝜖2𝑐𝑜𝑠(2𝜙) + 𝜋(𝜖2 + 2))

𝐷2(1 − 𝜖2)5 2⁄
 

𝐶𝑥̅𝑦 
𝜋𝐿2𝜖(8√1 − 𝜖2𝑐𝑜𝑠(2𝜙) − 3𝜋𝜖 𝑠𝑖𝑛(2𝜙))

𝐷2(1 − 𝜖2)5 2⁄
 

𝐶𝑦̅𝑥 
𝜋𝐿2𝜖(8√1 − 𝜖2𝑐𝑜𝑠 (2𝜙) − 3𝜋𝜖 𝑠𝑖𝑛(2𝜙))

𝐷2(1 − 𝜖2)5 2⁄
 

𝐶𝑦̅𝑦 
𝜋𝐿2(8√1 − 𝜖2𝜖 𝑠𝑖𝑛(2𝜙) + 3𝜋𝜖2𝑐𝑜𝑠(2𝜙) − 𝜋(𝜖2 + 2))

𝐷2(1 − 𝜖2)5 2⁄
 

 

C.2  Nonlinear Second Order Coefficients 

The general form for six nonlinear stiffness coefficients can be expressed as: 

 
𝐾̅𝑥𝑥𝑥 = 

1

2𝜖2
{
𝜕2𝑓

𝜖

𝜕𝜖2
cos3(𝜙) − 𝜖sin (𝜙)cos2(𝜙) (2

𝜕2𝑓
𝜖

𝜕𝜖𝜕𝜑
+
𝜕2𝑓

𝜑

𝜕𝜖2
𝜖 − 2

𝜕𝑓
𝜑

𝜕𝜖
)

+ (
𝜕2𝑓

𝜖

𝜕𝜑2
− 2

𝜕𝑓
𝜑

𝜕𝜑
) sin2(𝜙)cos (𝜙)

+ 𝜖 (
𝜕2𝑓

𝜑

𝜕𝜖𝜕𝜑
+
𝜕𝑓

𝜖

𝜕𝜖
) sin(𝜙)sin(2𝜙) − (

𝜕2𝑓
𝜑

𝜕𝜑2
+ 2

𝜕𝑓
𝜖

𝜕𝜑
) sin3(𝜙)

− sin2(𝜙) (𝑓
ϵ0
cos(𝜙) − 𝑓

ϕ0
sin(𝜙))} 

𝐾̅𝑦𝑥𝑥 =
1

2𝜖2
{
𝜕2𝑓

𝜑

𝜕𝜖2
𝜖2cos3(𝜙) + 𝜖sin(𝜙)cos2(𝜙) (

𝜕2𝑓
𝜖

𝜕𝜖2
𝜖 − 2

𝜕2𝑓
𝜑

𝜕𝜖𝜕𝜑
− 2

𝜕𝑓
𝜖

𝜕𝜖
)

+ sin2(𝜙)cos (𝜙)(
𝜕2𝑓

𝜑

𝜕𝜑2
− 2

𝜕2𝑓
𝜖

𝜕𝜖𝜕𝜑
𝜖) + (

𝜕2𝑓
𝜖

𝜕𝜑2
− 2

𝜕𝑓
𝜑

𝜕𝜑
) sin3(𝜙)

+ sin(𝜙)sin (2𝜙)(
𝜕𝑓

𝜖

𝜕𝜑
+
𝜕𝑓

𝜑

𝜕𝜖
𝜖) − sin2(𝜙) (𝑓

ϵ0
sin (𝜙) + 𝑓

ϕ0
cos (𝜙))} 

(C.4) 

and, 
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𝐾̅𝑥𝑦𝑦 =

1

2𝜖2
{−

𝜕2𝑓
𝜑

𝜕𝜖2
𝜖2sin3(𝜙) + 𝜖sin2(𝜙)cos(𝜙)(

𝜕2𝑓
𝜖

𝜕𝜖2
𝜖 − 2

𝜕2𝑓
𝜖

𝜕𝜖𝜕𝜑
− 2

𝜕𝑓
𝜖

𝜕𝜖
)

− sin(𝜙)cos2(𝜙)(−2
𝜕2𝑓

𝜖

𝜕𝜖𝜕𝜑
𝜖 +

𝜕2𝑓
𝜑

𝜕𝜑2
+ 2

𝜕𝑓
𝜖

𝜕𝜑
+ 2

𝜕𝑓
𝜑

𝜕𝜖
𝜖)

+ (
𝜕2𝑓

𝜖

𝜕𝜑2
− 2

𝜕𝑓
𝜑

𝜕𝜑
) cos3(𝜙) − 𝑓

ϵ0
cos3(𝜙) + 𝑓

ϕ0
sin(𝜙)cos2(𝜙)} 

𝐾̅𝑦𝑦𝑦 =
1

2𝜖2
{
𝜕2𝑓

𝜖

𝜕𝜖2
𝜖2sin3(𝜙) + 𝜖sin2(𝜙)cos(𝜙)(2

𝜕2𝑓
𝜖

𝜕𝜖𝜕𝜑
+
𝜕2𝑓

𝜑

𝜕𝜖2
𝜖 − 2

𝜕𝑓
𝜑

𝜕𝜖
)

+ sin(𝜙)cos2(𝜙)(
𝜕2𝑓

𝜖

𝜕𝜑2
+ 2𝜖

𝜕2𝑓
𝜑

𝜕𝜖𝜕𝜑
+ 2𝜖

𝜕𝑓
𝜖

𝜕𝜖
− 2

𝜕𝑓
𝜑

𝜕𝜑
)

+ (
𝜕2𝑓

𝜑

𝜕𝜑2
+ 2

𝜕𝑓
𝜖

𝜕𝜑
) cos3(𝜙) − cos2(𝜙) (𝑓

ϵ0
sin (𝜙) + 𝑓

ϕ0
cos (𝜙))} 

(C.5) 

and,  

 
𝐾̅𝑥𝑥𝑦 =

1

𝜖2
{cos(𝜙)3 (

𝜕2𝑓
𝜖

𝜕𝜖𝜕𝜑
𝜖 −

𝜕𝑓
𝜑

𝜕𝜖
𝜖)

+ cos(𝜙)2sin(𝜙) (
𝜕2𝑓

𝜖

𝜕𝜖2
𝜖2 −

𝜕2𝑓
𝜖

𝜕𝜑2
+
𝜕𝑓

𝜑

𝜕𝜑
−

𝜕2𝑓
𝜑

𝜕𝜖𝜕𝜑
𝜖 −

𝜕𝑓
𝜖

𝜕𝜖
𝜖 + 𝑓ϵ0)

+ cos(𝜙)sin(𝜙)2 (−
𝜕2𝑓

𝜑

𝜕𝜖2
𝜖2 +

𝜕2𝑓
𝜑

𝜕𝜑2
−

𝜕2𝑓
𝜖

𝜕𝜖𝜕𝜑
𝜖 +

𝜕𝑓
𝜑

𝜕𝜖
𝜖 − 𝑓ϕ0)

+ sin(𝜙)3 (
𝜕2𝑓

𝜑

𝜕𝜖𝜕𝜑
𝜖 +

𝜕𝑓
𝜖

𝜕𝜖
𝜖) +

𝜕𝑓
𝜖

𝜕𝜑
sin(𝜙)sin(2𝜙)} 

𝐾̅𝑦𝑥𝑦 =
1

𝜖2
{cos(𝜙)3 (

𝜕2𝑓
𝜖

𝜕𝜖𝜕𝜑
𝜖 +

𝜕𝑓
𝜖

𝜕𝜖
𝜖)

+ cos(𝜙)2sin(𝜙) (
𝜕2𝑓

𝜑

𝜕𝜖2
𝜖2 −

𝜕2𝑓
𝜑

𝜕𝜑2
−
𝜕𝑓

𝜖

𝜕𝜑
+

𝜕2𝑓
𝜖

𝜕𝜖𝜕𝜑
𝜖 −

𝜕𝑓
𝜑

𝜕𝜖
𝜖 + 𝑓ϕ0)

+ cos(𝜙)sin(𝜙)2 (+
𝜕2𝑓

𝜖

𝜕𝜖2
𝜖2 −

𝜕2𝑓
𝜖

𝜕𝜑2
−

𝜕2𝑓
𝜑

𝜕𝜖𝜕𝜑
𝜖 −

𝜕𝑓
𝜖

𝜕𝜖
𝜖 + 𝑓ϵ0)

+ sin(𝜙)3 (−
𝜕2𝑓

𝜖

𝜕𝜖𝜕𝜑
𝜖 + 𝜖

𝜕𝑓
𝜑

𝜕𝜖
) +

𝜕𝑓
𝜑

𝜕𝜑
sin(𝜙)sin(2𝜙)} 

(C.6) 

The eight nonlinear second-order damping coefficients can be found in a similar fashion and are 

given in their final simplified form: 
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𝐶𝑥̅𝑥𝑥 =

𝜔

𝜖2
{
𝜕2𝑓

𝜖

𝜕𝜖 𝜕𝜖
𝜖2cos3(𝜙) − 𝜖sin (𝜙)cos2(𝜙) (

𝜕2𝑓
𝜖

𝜕𝜖 𝜕𝜑
+

𝜕2𝑓
𝜖

𝜕𝜑 𝜕𝜖
+

𝜕2𝑓
𝜑

𝜕𝜖 𝜕𝜖
𝜖 −

𝜕𝑓
𝜑

𝜕𝜖 
)

+ sin2(𝜙)cos(𝜙) [
𝜕2𝑓

𝜖

𝜕𝜑 𝜕𝜑
+ 𝜖 (

𝜕2𝑓
𝜑

𝜕𝜖 𝜕𝜑
+

𝜕2𝑓
𝜑

𝜕𝜑 𝜕𝜖
+
𝜕𝑓𝜖
𝜕𝜖 

) −
𝜕𝑓𝜑

𝜕𝜑 
]

− (
𝜕2𝑓

𝜑

𝜕𝜑 𝜕𝜑
+
𝜕𝑓

𝜖

𝜕𝜑 
) sin3(𝜙)} 

𝐶𝑦̅𝑥𝑥 =
𝜔

𝜖2
{
𝜕2𝑓

𝜑

𝜕𝜖 𝜕𝜖
𝜖2cos3(𝜙)

− 𝜖sin (𝜙)cos2(𝜙) (−
𝜕2𝑓

𝜖

𝜕𝜖 𝜕𝜖
+

𝜕2𝑓
𝜑

𝜕𝜖 𝜕𝜑
+

𝜕2𝑓
𝜑

𝜕𝜑 𝜕𝜖
𝜖 +

𝜕𝑓
𝜖

𝜕𝜖 
)

+ sin2(𝜙)cos(𝜙) [−𝜖 (
𝜕2𝑓

𝜖

𝜕𝜖 𝜕𝜑
+

𝜕2𝑓
𝜖

𝜕𝜑 𝜕𝜖
−
𝜕𝑓

𝜑

𝜕𝜖 
) +

𝜕2𝑓
𝜑

𝜕𝜑 𝜕𝜑
+
𝜕𝑓

𝜖

𝜕𝜑 
]

+ (
𝜕2𝑓

𝜖

𝜕𝜑 𝜕𝜑
−
𝜕𝑓

𝜑

𝜕𝜑 
) sin3(𝜙)} 

(C.7) 

and, 

 
𝐶𝑥̅𝑦𝑥 =

𝜔

𝜖2
{
𝜕2𝑓

𝜖

𝜕𝜑 𝜕𝜖
𝜖cos3(𝜙)

+ sin(𝜙)cos2(𝜙) (
𝜕2𝑓

𝜖

𝜕𝜖 𝜕𝜖
𝜖2 −

𝜕2𝑓
𝜖

𝜕𝜑 𝜕𝜖
−

𝜕2𝑓
𝜑

𝜕𝜑 𝜕𝜖
𝜖 +

𝜕𝑓𝜑

𝜕𝜑 
)

+ sin2(𝜙)cos(𝜙) [−𝜖 (
𝜕2𝑓

𝜖

𝜕𝜖 𝜕𝜑
+

𝜕2𝑓
𝜑

𝜕𝜖 𝜕𝜖
𝜖 −

𝜕𝑓
𝜑

𝜕𝜖 
) +

𝜕2𝑓
𝜑

𝜕𝜑 𝜕𝜑
+
𝜕𝑓

𝜖

𝜕𝜑 
]

+ 𝜖 (
𝜕2𝑓

𝜑

𝜕𝜖 𝜕𝜑
+
𝜕𝑓

𝜖

𝜕𝜖 
) sin3(𝜙)} 

𝐶𝑦̅𝑦𝑥 =
𝜔

𝜖2
{
𝜕2𝑓

𝜑

𝜕𝜑 𝜕𝜖
𝜖cos3(𝜙)

− sin(𝜙)cos2(𝜙) (−
𝜕2𝑓

𝜖

𝜕𝜑 𝜕𝜖
𝜖 −

𝜕2𝑓
𝜑

𝜕𝜖 𝜕𝜖
𝜖2 +

𝜕2𝑓
𝜑

𝜕𝜑 𝜕𝜑
+
𝜕𝑓

𝜖

𝜕𝜑 
)

− sin2(𝜙)cos(𝜙) [𝜖 (−
𝜕2𝑓

𝜖

𝜕𝜖 𝜕𝜖
𝜖 +

𝜕2𝑓
𝜑

𝜕𝜖 𝜕𝜑
+
𝜕𝑓

𝜖

𝜕𝜖 
) +

𝜕2𝑓
𝜖

𝜕𝜑 𝜕𝜑
−
𝜕𝑓𝜑

𝜕𝜑 
]

+ 𝜖 (
𝜕𝑓

𝜑

𝜕𝜖 
−

𝜕2𝑓
𝜖

𝜕𝜖 𝜕𝜑
) sin3(𝜙)} 

(C.8) 
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and: 

 
𝐶𝑥̅𝑥𝑦 =

𝜔

𝜖2
{𝜖 (

𝜕2𝑓
𝜖

𝜕𝜖 𝜕𝜑
−
𝜕𝑓

𝜑

𝜕𝜖 
) cos3(𝜙) +

𝜕2𝑓
𝜑

𝜕𝜑 𝜕𝜖
𝜖sin3(𝜙)

− sin(𝜙)cos2(𝜙) [𝜖 (−
𝜕2𝑓

𝜖

𝜕𝜖 𝜕𝜖
𝜖 +

𝜕2𝑓
𝜑

𝜕𝜖 𝜕𝜑
+
𝜕𝑓

𝜖

𝜕𝜖 
) +

𝜕2𝑓
𝜖

𝜕𝜑 𝜕𝜑
−
𝜕𝑓𝜑

𝜕𝜑 
]

+ sin2(𝜙) cos(𝜙) (−
𝜕2𝑓

𝜖

𝜕𝜑 𝜕𝜖
𝜖 −

𝜕2𝑓
𝜑

𝜕𝜖 𝜕𝜖
𝜖2 +

𝜕2𝑓
𝜑

𝜕𝜑 𝜕𝜑
+
𝜕𝑓

𝜖

𝜕𝜑 
)} 

𝐶𝑦̅𝑥𝑦 =
𝜔

𝜖2
{𝜖 (

𝜕2𝑓
𝜑

𝜕𝜖 𝜕𝜑
+
𝜕𝑓

𝜖

𝜕𝜖 
) cos3(𝜙) −

𝜕2𝑓
𝜖

𝜕𝜑 𝜕𝜖
𝜖sin3(𝜙)

− sin(𝜙)cos2(𝜙) [−𝜖 (
𝜕2𝑓

𝜖

𝜕𝜖 𝜕𝜑
+

𝜕2𝑓
𝜑

𝜕𝜖 𝜕𝜖
𝜖 −

𝜕𝑓
𝜑

𝜕𝜖 
) +

𝜕2𝑓
𝜑

𝜕𝜑 𝜕𝜑
+
𝜕𝑓

𝜖

𝜕𝜑 
]

+ sin2(𝜙)cos(𝜙) (
𝜕2𝑓

𝜖

𝜕𝜖 𝜕𝜖
𝜖2 −

𝜕2𝑓
𝜖

𝜕𝜑 𝜕𝜑
−

𝜕2𝑓
𝜑

𝜕𝜑 𝜕𝜖
𝜖 +

𝜕𝑓𝜑

𝜕𝜑 
)} 

(C.9) 

and finally, 

 
𝐶𝑥̅𝑦𝑦 =

𝜔

𝜖2
{(

𝜕2𝑓
𝜖

𝜕𝜑 𝜕𝜑
−
𝜕𝑓𝜑

𝜕𝜑 
) cos3(𝜙) −

𝜕2𝑓
𝜑

𝜕𝜖 𝜕𝜖
𝜖2sin3(𝜙)

− sin(𝜙)cos2(𝜙) [−𝜖 (
𝜕2𝑓

𝜖

𝜕𝜖 𝜕𝜑
+

𝜕2𝑓
𝜖

𝜕𝜑 𝜕𝜖
−
𝜕𝑓

𝜑

𝜕𝜖 
) +

𝜕2𝑓
𝜑

𝜕𝜑 𝜕𝜑
+
𝜕𝑓

𝜖

𝜕𝜑 
]

− 𝜖sin2(𝜙)cos(𝜙) (−
𝜕2𝑓

𝜖

𝜕𝜖 𝜕𝜖
𝜖 +

𝜕2𝑓
𝜑

𝜕𝜖 𝜕𝜑
+

𝜕2𝑓
𝜑

𝜕𝜑 𝜕𝜖
+
𝜕𝑓

𝜖

𝜕𝜖 
)} 

𝐶𝑦̅𝑦𝑦 =
𝜔

𝜖2
{(

𝜕2𝑓
𝜑

𝜕𝜑 𝜕𝜑
+
𝜕𝑓

𝜖

𝜕𝜑 
) cos3(𝜙) +

𝜕2𝑓
𝜖

𝜕𝜖 𝜕𝜖
𝜖2sin3(𝜙)

+ sin(𝜙)cos2(𝜙) [𝜖 (
𝜕2𝑓

𝜑

𝜕𝜖 𝜕𝜑
+

𝜕2𝑓
𝜑

𝜕𝜑 𝜕𝜖
+
𝜕𝑓

𝜖

𝜕𝜖 
) +

𝜕2𝑓
𝜖

𝜕𝜑 𝜕𝜑
−
𝜕𝑓𝜑

𝜕𝜑 
]

+ 𝜖sin2(𝜙)cos(𝜙) (
𝜕2𝑓

𝜖

𝜕𝜖 𝜕𝜑
+

𝜕2𝑓
𝜖

𝜕𝜑 𝜕𝜖
+

𝜕2𝑓
𝜑

𝜕𝜖 𝜕𝜖
𝜖 −

𝜕𝑓
𝜑

𝜕𝜖 
)} 

(C.10) 

The nonlinear second order dynamic coefficients are calculated for the special case of a 𝜋-film 

short bearing and are tabulated in Table C-3 and Table C-4. 
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Table C-3. Nonlinear stiffness coefficients for a short bearing (𝝅 film) in X-Y coordinate system 

𝐾𝑥𝑥𝑥  

𝜋𝐿2

4𝐷2𝜖(1 − 𝜖2)9 2⁄
{𝜋(𝜖2 − 1)𝑠𝑖𝑛(𝜙)[9𝜖4 + 9𝜖2 + (11𝜖4 + 5𝜖2 − 1)𝑐𝑜𝑠(2𝜙) − 3]

− 2𝜖√1 − 𝜖2(13𝜖4 + 50𝜖2 + 9)𝑐𝑜𝑠(𝜙) − 2𝜖√1 − 𝜖2(11𝜖4 + 14𝜖2 − 1)𝑐𝑜𝑠(3𝜙)} 

𝐾𝑦𝑥𝑥 

−𝜋𝐿2

8𝐷2𝜖(1 − 𝜖2)9 2⁄
{8𝜖√1 − 𝜖2𝑠𝑖𝑛 (𝜙)[9𝜖4 + 18𝜖2 + (11𝜖4 + 14𝜖2 − 1)𝑐𝑜𝑠(2𝜙) − 3] + 𝜋(13𝜖6 + 18𝜖4

− 30𝜖2 − 1)𝑐𝑜𝑠(𝜙) + 𝜋(11𝜖6 − 6𝜖4 − 6𝜖2 + 1)𝑐𝑜𝑠(3𝜙)} 

𝐾𝑥𝑦𝑦  

𝜋𝐿2

8𝐷2𝜖(1 − 𝜖2)9 2⁄
{𝜋(𝜖2 − 1)[(13𝜖4 + 31𝜖2 + 1)𝑠𝑖𝑛(𝜙) + (−11𝜖4 − 5𝜖2 + 1)𝑠𝑖𝑛(3𝜙)]

− 4𝜖√1 − 𝜖2(7𝜖4 + 22𝜖2 − 5)𝑐𝑜𝑠(𝜙) + 4𝜖√1 − 𝜖2(11𝜖4 + 14𝜖2 − 1)𝑐𝑜𝑠(3𝜙)} 

𝐾𝑦𝑦𝑦 

−𝜋𝐿2

8𝐷2𝜖(1 − 𝜖2)9 2⁄
{8𝜖√1 − 𝜖2𝑠𝑖𝑛(𝜙)[𝜖4 + 18𝜖2 + (−11𝜖4 − 14𝜖2 + 1)𝑐𝑜𝑠(2𝜙) + 5] + 𝜋(7𝜖6 + 6𝜖4

− 18𝜖2 + 5)𝑐𝑜𝑠(𝜙) + 𝜋(−11𝜖6 + 6𝜖4 + 6𝜖2 − 1)𝑐𝑜𝑠(3𝜙)} 

𝐾𝑥𝑥𝑦  

−𝜋𝐿2

𝐷2𝜖(1 − 𝜖2)9 2⁄
{𝜋(2𝜖6 − 3𝜖4 + 1)𝑐𝑜𝑠3(𝜙) − 8𝜖√1 − 𝜖2(𝜖4 − 1)𝑠𝑖𝑛3(𝜙)

+ 4𝜖√1 − 𝜖2(9𝜖4 + 14𝜖2 + 1)𝑠𝑖𝑛(𝜙)𝑐𝑜𝑠2(𝜙)

+ 3𝜋𝜖2(−3𝜖4 + 𝜖2 + 2)𝑠𝑖𝑛2(𝜙)𝑐𝑜𝑠 (𝜙)} 

𝐾𝑦𝑥𝑦  

−𝜋𝐿2

𝐷2𝜖(1 − 𝜖2)9 2⁄
{𝜋(2𝜖6 − 3𝜖4 + 1)𝑠𝑖𝑛3(𝜙) + 8𝜖√1 − 𝜖2(𝜖4 − 1)𝑐𝑜𝑠3(𝜙)

+ 3𝜋𝜖2(−3𝜖4 + 𝜖2 + 2)𝑠𝑖𝑛 (𝜙)𝑐𝑜𝑠2(𝜙)

− 4𝜖√1 − 𝜖2(9𝜖4 + 14𝜖2 + 1)𝑠𝑖𝑛2(𝜙)𝑐𝑜𝑠(𝜙)} 

  

Table C-4. Nonlinear damping coefficients for a short bearing (π film) in X-Y coordinate system 

𝐶𝑥̅𝑥𝑥 

−𝜋𝐿2

2𝐷2𝜖(1 − 𝜖2)7 2⁄
{8𝜖√1 − 𝜖2𝑠𝑖𝑛 (𝜙)[(7𝜖2 + 1)𝑐𝑜𝑠 (2𝜙) + 5𝜖2 + 3] + 𝜋(13𝜖4 + 31𝜖2 + 1)𝑐𝑜𝑠(𝜙)

+ 𝜋(11𝜖4 + 5𝜖2 − 1)𝑐𝑜𝑠(3𝜙)} 

𝐶𝑦̅𝑥𝑥 

−𝜋𝐿2

2𝐷2𝜖(1 − 𝜖2)7 2⁄
{2𝜋𝑠𝑖𝑛 (𝜙)[(11𝜖4 + 5𝜖2 − 1)𝑐𝑜𝑠 (2𝜙) + 9(𝜖4 + 𝜖2) − 3] − 4𝜖√1 − 𝜖2(5𝜖2

+ 3)𝑐𝑜𝑠 (𝜙) − 4𝜖√1 − 𝜖2(7𝜖2 + 1)𝑐𝑜𝑠(3𝜙)} 

𝐶𝑥̅𝑦𝑦 

−𝜋𝐿2

2𝐷2𝜖(1 − 𝜖2)7 2⁄
{√1 − 𝜖2(3𝜖2 + 1)𝜖𝑠𝑖𝑛3(𝜙) −

𝜋

4
(𝜖2 − 1)2𝑐𝑜𝑠3(𝜙)

−
𝜋

4
(−10𝜖4 − 7𝜖2 + 2)𝑠𝑖𝑛2(𝜙) 𝑐𝑜𝑠(𝜙) − 4√1 − 𝜖2𝜖3𝑠𝑖𝑛 (𝜙)𝑐𝑜𝑠2(𝜙)} 
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𝐶𝑦̅𝑦𝑦 

−𝜋𝐿2

2𝐷2𝜖(1 − 𝜖2)7 2⁄
{−4𝜖√1 − 𝜖2(3𝜖2 + 5)𝑐𝑜𝑠 (𝜙) + 4𝜖√1 − 𝜖2(7𝜖2 + 1)𝑐𝑜𝑠 (3𝜙)

+ 𝜋(13𝜖4 + 31𝜖2 + 1)𝑠𝑖𝑛(𝜙) + 𝜋(−11𝜖4 − 5𝜖2 + 1)𝑠𝑖𝑛 (3𝜙)} 

𝐶𝑥̅𝑥𝑦  

−𝜋𝐿2

2𝐷2𝜖(1 − 𝜖2)7 2⁄
{4𝜖√1 − 𝜖2(3𝜖2 + 5)𝑐𝑜𝑠 (𝜙) − 4𝜖√1 − 𝜖2(7𝜖2 + 1)𝑐𝑜𝑠 (3𝜙)

+ 3𝜋(𝜖4 + 3𝜖2 + 1)𝑠𝑖𝑛(𝜙) + 𝜋(11𝜖4 + 5𝜖2 − 1)𝑠𝑖𝑛 (3𝜙)} 

𝐶𝑦̅𝑥𝑦 

−𝜋𝐿2

2𝐷2𝜖(1 − 𝜖2)7 2⁄
{−8𝜖√1 − 𝜖2 𝑠𝑖𝑛(𝜙) (7𝜖2 𝑐𝑜𝑠(2𝜙) + 3𝜖2 + 𝑐𝑜𝑠(2𝜙) − 3)

+ 3𝜋(𝜖4 + 3𝜖2 + 1) 𝑐𝑜𝑠(𝜙) − 𝜋(11𝜖4 + 5𝜖2 − 1)𝑐𝑜𝑠(3𝜙)} 

𝐶𝑥̅𝑦𝑥 

−𝜋𝐿2

2𝐷2𝜖(1 − 𝜖2)7 2⁄
{−4𝜖√1 − 𝜖2(𝜖2 + 7)𝑐𝑜𝑠(𝜙) − 4𝜖√1 − 𝜖2(7𝜖2 + 1)𝑐𝑜𝑠 (3𝜙)

+ 3𝜋(𝜖4 + 3𝜖2 + 1)𝑠𝑖𝑛 (𝜙) + 𝜋(11𝜖4 + 5𝜖2 − 1)𝑠𝑖𝑛 (3𝜙)} 

𝐶𝑦̅𝑦𝑥 

−𝜋𝐿2

2𝐷2𝜖(1 − 𝜖2)7 2⁄
{−8𝜖√1 − 𝜖2 𝑠𝑖𝑛(𝜙) ((7𝜖2 + 1) 𝑐𝑜𝑠(2𝜙) + 5𝜖2 + 3) + 3𝜋(𝜖4 + 3𝜖2 + 1) 𝑐𝑜𝑠(𝜙)

− 𝜋(11𝜖4 + 5𝜖2 − 1)𝑐𝑜𝑠(3𝜙)} 

 

C.3 Nonlinear Third Order Coefficients 

The third order coefficients can be found in a similar fashion. For instance, 𝐾̅𝑥𝑥𝑥𝑥 and 𝐶𝑥̅𝑥𝑥𝑥 are 

found for a 𝜋-film short bearing as: 

 
𝐾̅𝑥𝑥𝑥𝑥 =

𝜋𝐿2

6𝐷2𝜖2(1 − 𝜖2)
11 2⁄

{−𝜋(𝜖2 − 1)
3
(7𝜖2 + 2)𝑠𝑖𝑛3(𝜙)𝑐𝑜𝑠(𝜙)

− 2𝜖(1 − 𝜖2)
3 2⁄

𝑠𝑖𝑛2(𝜙)[23𝜖4 + 50𝜖2 + (25𝜖4 + 46𝜖2 + 1)𝑐𝑜𝑠 (2𝜙) − 1]

+ 3𝜋𝜖2(14𝜖6 + 13𝜖4 − 33𝜖2 + 6)𝑠𝑖𝑛 (𝜙)𝑐𝑜𝑠3(𝜙) − 96𝜖3√1 − 𝜖2(𝜖4

+ 5𝜖2 + 2)𝑐𝑜𝑠4(𝜙)} 

𝐶𝑥̅𝑥𝑥𝑥 =
−𝜋𝐿2

𝐷2𝜖2(1 − 𝜖2)
9 2⁄

{−6𝜋𝜖6𝑠𝑖𝑛2(2𝜙) + 𝜋(𝜖2 − 1)
3
𝑠𝑖𝑛4(𝜙)

+ 3𝜋𝜖2[8(𝜖2 + 3)𝜖2 + 3]𝑐𝑜𝑠4(𝜙) + 3𝜋(9𝜖2 − 1)𝑠𝑖𝑛2(𝜙)𝑐𝑜𝑠2(𝜙)

+ 8√1 − 𝜖2(−3𝜖4 + 2𝜖2 + 1)𝜖𝑠𝑖𝑛3(𝜙)𝑐𝑜𝑠 (𝜙) + 96√1 − 𝜖2(𝜖2

+ 1)𝜖3𝑠𝑖𝑛 (𝜙)𝑐𝑜𝑠3(𝜙)} 

(C.11) 

The rest of the third order coefficients are calculated similarly.  
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Appendix D  : Estimating the Fixed Points of the System 𝑿̇ = 𝒇(𝑿̇, 𝝂) 

Algorithm.  

Provide an estimate for 𝜈1 as the critical parameter value 

Provide an estimate for 𝑋0
1 = 𝑿̇∗(𝜈1)  

𝜈0 = 𝜈1 + Δν = ν1 + √𝑢(𝜈𝑟𝑒𝑓)  

𝑋1
1 = 𝑋0

1 − [𝜕𝑿̇𝒇(𝑋0
1, 𝜈1)]

−1𝒇(𝑋0
1, 𝜈1)  

𝑋1
1 → 𝑋1

∗ , 𝑋1
∗ → 𝑋0

0 

𝑋1
0 = 𝑋0

0 − [𝜕𝑿̇𝒇(𝑋0
0, 𝜈0)]

−1𝒇(𝑋0
0, 𝜈0)  

𝑋1
0 → 𝑋0

∗ 

𝛢(𝜈1) = 𝑅𝑒 (𝑒𝑖𝑔[𝜕𝑿̇𝒇(𝑋1
∗, 𝜈1)]) 

𝛢(𝜈0) = 𝑅𝑒 (𝑒𝑖𝑔[𝜕𝑿̇𝒇(𝑋0
∗, 𝜈0)]) 

𝛾1 =
𝛢(𝜈1)

𝛢(𝜈1) − 𝛢(𝜈0)
 

𝜈2 = 𝜈1 − 𝛾1(𝜈1 − 𝜈0) 

𝑋0
2 = 𝑋1

∗ − 𝛾1(𝑋1
∗ − 𝑋0

∗) 

𝑋1
2 = 𝑋0

2 − [𝜕𝑿̇𝒇(𝑋0
2, 𝜈2)]

−1𝒇(𝑋0
2, 𝜈2) 

𝑘 = 1 

while |𝛢(𝜈𝑘)| > 𝜀 & |𝜈𝑘+1 − 𝜈𝑘| > 10−𝑁𝑠𝑖𝑔 

𝑘 = 𝑘 + 1 , 𝑗 = 0 

     while ∑ (
𝑋𝑗
𝑘−𝑋𝑗−1

𝑘

𝑋𝑟𝑒𝑓
)
2

𝑁
𝑖=1 > 10(−2𝑁𝑠𝑖𝑔) & ‖𝒇(𝑋𝑗

𝑘 , 𝜈𝑘)‖ > 𝜀 

          𝑋𝑗+1
𝑘 = 𝑋𝑗

𝑘 − [𝜕𝑿̇𝒇(𝑋𝑗
𝑘, 𝜈𝑘)]

−1
𝒇(𝑋𝑗

𝑘, 𝜈𝑘) 

          𝑗 = 𝑗 + 1 

     end 

  𝑋𝑗+1
𝑘 → 𝑋𝑘

∗ 

  𝛢(𝜈𝑘) = 𝑅𝑒 (𝑒𝑖𝑔[𝜕𝑿̇𝒇(𝑋𝑘
∗ , 𝜈𝑘)]) 

  𝛾𝑘 =
𝛢(𝜈𝑘)

𝛢(𝜈𝑘)−𝛢(𝜈𝑘−1)
 

  𝜈𝑘+1 = 𝜈𝑘 − 𝛾𝑘(𝜈𝑘 − 𝜈𝑘−1) 

  𝑋0
𝑘+1 = 𝑋𝑘

∗ − 𝛾𝑘(𝑋𝑘
∗ − 𝑋𝑘−1

∗ ) 

end 

 


	Abstract
	Preface
	Table of Contents
	List of Tables
	List of Figures
	List of Symbols
	List of Abbreviations
	Acknowledgements
	Dedication
	Chapter 1: Introduction
	1.1 Background
	1.1.1 Hydrodynamic Bearings
	1.1.2 Rotordynamic Models
	1.1.3 Rotordynamic Instability

	1.2 Literature Review
	1.2.1 Cavitation in Journal Bearings
	1.2.2 Linear Stability Analysis under Laminar and Turbulent Conditions
	1.2.3 Nonlinearity in Rotor-Bearing Systems
	1.2.4 Hopf Bifurcations in Dynamic Response of Journal Bearings
	1.2.5 Nonlinear Stability Analysis in Rotor-Bearing Systems

	1.3 Objectives
	1.4 Outline
	1.4.1 On Modifying the Cavitation Algorithm
	1.4.2 On the Effect of Flow Regimes on Linear Stability
	1.4.3 On Nonlinear Stability Analysis


	Chapter 2: A Mass-Conserving Cavitation Algorithm for Journal Bearings
	2.1 Mathematical Model for Mass Converging Cavitation Problem
	2.2 Numerical Treatment of Cavitation based on Finite Volume Method
	2.2.1 Discretization
	2.2.2 Solution Procedure
	2.2.3 Proposed Iterative Solver

	2.3 Numerical Results
	2.3.1 The Softened System of Equations
	2.3.2 The Stiff System of Equations
	2.3.3 Verification and Comparison of Results
	2.3.4 Numerical Stability of the Cavitation Algorithm


	Chapter 3: Linear Stability of Finite Length Journal Bearings in Turbulent Regimes
	3.1 Governing Equations
	3.2 Identification of Bearing Dynamic Coefficients
	3.3 Mathematical Model of the Rotor-Bearing System
	3.4 Results and Discussions
	3.4.1 Laminar and Turbulent Dynamic Coefficients
	3.4.2 Identification of Threshold Speed of Instability
	3.4.3 Rotor-Bearing System Trajectories


	Chapter 4: Nonlinear Dynamics of a Rotor-Bearing System using an Analytical Bearing Model
	4.1 Nonlinear Bearing Model with Dynamic Coefficients
	4.2 Bearing Dynamic Coefficients in the R-T Coordinate System
	4.3 Bearing Dynamic Coefficients in the X-Y Coordinate System
	4.4 Mathematical Model of the Rotor-Bearing System
	4.5 Nonlinear Stability Analysis of the Flexible Rotor-Bearing System
	4.5.1 Application of the Hopf Bifurcation Theory in Stability Analysis
	4.5.2 Floquet Theorem
	4.5.3 Limit Cycle Stability

	4.6 Results and Discussions
	4.6.1 Bearing Dynamic Coefficients in the X-Y Coordinate System
	4.6.2 Identification of the Stability Bounds of the Rotor-Bearing System by Hopf Bifurcation Algorithm
	4.6.3 Rotor-Bearing Dynamic Response


	Chapter 5: Nonlinear Dynamics of a Rotor-Bearing System using a Numerical Bearing Model
	5.1 Nonlinear Bearing Model with Dynamic Coefficients
	5.1.1 Linear Dynamic Coefficients in X-Y Coordinate System
	5.1.2 Nonlinear Dynamic Coefficients in X-Y Coordinate System
	5.1.3 Remarks

	5.2 Discretization
	5.3 Dynamics and Stability of a Rotor-Bearing System
	5.3.1 Mathematical Model for Rotor-Bearing Dynamics
	5.3.2 Rotor-Bearing Stability: Linear Stability Analysis
	5.3.3 Rotor-Bearing Stability: Nonlinear Stability Analysis
	5.3.4 Calculation of the Monodromy Matrix as a By-Product of Shooting Method

	5.4 Results and Discussions
	5.4.1 Finite Length Journal Bearing Dynamic Coefficients
	5.4.2 Comparison to Analytical Short Bearing Coefficients
	5.4.3 Stability Bounds and Bifurcation Types of the Rotor-Bearing System
	5.4.4 Rotor-Bearing Trajectories: Balanced Response
	5.4.5 Rotor-Bearing Trajectories: Unbalanced Response


	Chapter 6: Conclusions and Future Work
	6.1 Summary and Conclusions
	6.1.1 Conclusions on the Development of a Robust Algorithm for Cavitated Journal Bearings
	6.1.2 Conclusions on The Effects of Turbulence on the Linear Stability of Rotor-Bearing Systems
	6.1.3 Conclusions on Nonlinear Stability Analysis Based on a Theoretical Higher Order Coefficient-Based Rotor-Bearing Model
	6.1.4 Conclusions on Nonlinear Stability Analysis based on a Numerical Higher Order Coefficient-Based Rotor-Bearing Model

	6.2 Limitations and Future Work

	References
	Appendices
	Appendix A   : Discretized Reynolds Equation for the Cavitation Problem
	Appendix B   : The Hopf Bifurcation Algorithm
	Appendix C   : Analytical Dynamic Coefficients
	C.1 Linear Coefficients
	C.2  Nonlinear Second Order Coefficients
	C.3 Nonlinear Third Order Coefficients

	Appendix D   : Estimating the Fixed Points of the System ,𝑿.=𝒇,𝑿, 𝝂.


