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Abstract

Level set solutions are an important class of weak solutions to the mean

curvature flow which allow the flow to be extended past singularities. Un-

fortunately, when singularities do develop it is possible for the Hausdorff

dimension of the level set solution to increase. This behaviour is referred to

as the fattening phenomenon. The purpose of this thesis is to discuss this

phenomenon and to provide concrete examples, focusing especially on its re-

lation to the uniqueness of smooth solutions. We first discuss the definition

of level set solutions in arbitrary codimension, due to Ambrosio and Soner.

We then prove some technical results about distance solutions, a type of

set-theoretic subsolution to level set solutions. These include a new method

of gluing together distance solutions. Next, we present several known results

on the fattening phenomenon in the context of distance solutions. Finally,

we provide a new example by proving that fattening occurs when immersed

curves in R3 develop self-intersections.
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Preface

The topic of this thesis was chosen in collaboration with the author’s su-

pervisor, Dr. Jingyi Chen. A large portion of this thesis surveys existing

results. The organization and presentation of these results is unique to this

work. Portions of Sections 3.3 and 4.2 present original results obtained

independently by the author.
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Chapter 1

Introduction

The mean curvature flow is a well studied geometric evolution equation for

immersed submanifolds of a Riemannian manifold. Briefly, it is a system

of parabolic PDE which moves an immersion in the direction of its mean

curvature vector H (see Section 2.1 for a full definition). This process is of

interest because it can be used to simplify the geometry of a submanifold,

and also to find special submanifolds such as minimal surfaces (where H ≡
0). Unfortunately, such applications are often impeded by the development

of singularities which prevent flows from being extended for long times.

In order to apply the mean curvature flow in cases when such singu-

larities develop, there have been several attempts to define classes of weak

solutions. Broadly, there have been two major types of weak solutions.1 In

1978, Bakke defined a generalized mean curvature flow in the language of

geometric measure theory, which has become known as the Brakke flow [7].

This flow has the advantage of being defined for a very broad class of initial

data (a large class of rectifiable varifolds). Furthermore, the well-developed

regularity theory of geometric measure theory can be applied in this setting.

However, Brakke’s definition allows for a great deal of non-uniqueness, and

there were certain gaps between the existence and regularity results that

1There have also been several less well known formulations, such as the representation
of mean curvature flow as a singular limit of Ginzberg-Landau type equations [8] or the
method of “ramps” applied in [1].
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have proven difficult to address [15].

The next wave of development in weak solutions of the mean curvature

flow occurred in the early 1990s. Two groups independently defined notions

of a weak mean curvature flow for codimension-1 surfaces represented by

level sets of a scalar function, using the theory of viscosity solutions to

analyze the singular parabolic equation that defined the motion of these

level sets [9, 12]. Critically, such level set flows can be defined for any closed

initial set and are unique. Subsequently, Ambrosio and Soner extended this

definition to higher codimension, and proved that Brakke flows are always

contained in the corresponding level set flow [2]. At nearly the same time,

di Giorgi developed a purely geometric definition of weak solutions, based

on the use of classical solutions as barriers [4]. It was later shown that this

definition was, in fact, equivalent to the level set flows [5].

In this thesis, we focus on the level set flow of Ambrosio and Soner

in arbitrary codimension. In contrast to Brakke flows, the uniqueness of

level set flow is desirable, but also leads to some difficulties. In particular,

when there is non-uniqueness among smooth mean curvature flows or Brakke

flows, the level set flow tends to develop a particular type of singularity called

“fattening” in which the Hausdorff dimension of the solution can increase.

For geometric applications, this can be quite undesirable unless fattening

is well understood. Our goal is to contribute to the understanding of this

phenomenon by summarizing some of the known results in the context of

Ambrosio and Soner’s work, and also providing a new example of fattening

for immersed curves in R3.

We begin by introducing the precise definition of the mean curvature

flow in Section 2.1 and summarizing the basics of viscosity solution the-

ory necessary to understand Ambrosio and Soner’s work in Section 2.2. In

Chapter 3, we introduce level set flows and prove that they are well-defined

and share some basic properties of smooth solutions of the mean curvature

flow. We then discuss equivalence of the level set flow with smooth solu-

tions when the later exist, and present a recent result of Hershkovitz which

is stronger than that obtained in [2]. Next, we focus our attention on dis-

tance solutions, a kind of “set-theoretic subsolution” to level set flows. A
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highlight of this section is Theorem 3.16, which establishes a new technique

to produce distance solutions by a gluing procedure. In Chapter 4, we in-

troduce the fattening phenomenon and explain some existing results using

the framework of distance solutions. Finally, we prove Theorem 4.17, which

establishes the occurrence of fattening when curves evolving in R3 develop

transverse self-intersections. The proof of this theorem makes crucial use

of the gluing result for distance solutions, as well as a construction of such

solutions satisfying a degenerate Dirichlet problem.
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Chapter 2

Preliminaries

2.1 Mean Curvature Flow

In this thesis, we consider the evolution of immersed submanifoldsMk ↪−→Rn+k

by the mean curvature flow. To define this process, first recall that if

F : M → Rn+k is an immersion, the Levi-Civita connection on M with

respect to the pullback g of the Euclidean metric is given by

∇XY = (∇̄X̄ Ȳ )>

where ∇̄ is the Euclidean connection on Rn+k and (·)> denotes projection

onto the tangent space of M . Then the difference between the Euclidean

connection and the induced connection

A(X,Y ) = ∇̄X̄ Ȳ −∇XY

is a symmetric bilinear form with values in NxM called the second funda-

mental form. We can then define the shape operator Aν : TxM → TxM for

a unit normal vector ν ∈ NxM by

g(Aν(X), Y ) = 〈A(X,Y ), ν〉.

4



For an orthonormal basis {ei} of TxM we define

H = trA =
∑
i

A(ei, ei)

to be the mean curvature vector of M at x. It can be verified that H is

independent of the choice of basis.

On the other hand, we can define the area of the immersion F by

A(F ) =

∫
M

dvolg

where, as above, g is the pullback metric by F . Then if X is a compactly

supported normal vector field on M , the first variation of A with respect to

X is given by

δA(F )X = −
∫
M
〈H,X〉 dvolg .

From this formula, it is natural to consider the negative gradient flow of A

for immersions. This leads to the definition of the mean curvature flow for

immersions.

Definition 2.1. A family of smooth immersions F : M × I → Rn+k on a

time interval I ⊂ R is a smooth mean curvature flow if(
∂F

∂t

)⊥
= H(x, t) for x ∈M, t ∈ I (2.1)

where H(x, t) is the mean curvature vector of the immersion F at x.

Note that in the following, we will often refer a family of immersed

manifolds Mt which are the images of some smooth mean curvature flow as

simply a smooth flow. Also, when M is a 1-manifold, the mean curvature

flow is traditionally known as the curve shortening flow.

Classical solutions of (2.1) have been studied extensively in both the

cases where the codimension k = 1 and for higher codimension. Short

time existence and uniqueness of smooth flows is well known. Note that

by composing F with a diffeomorphism of M it is possible to produce non-

identical solutions of (2.1) which have the same image Mt = F (M, t) ([21],
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Proposition 3.1). Therefore, when discussing uniqueness of smooth solutions

to Equation (2.1), we will always consider whether the images Mt are unique,

rather than the immersions F themselves.

Proposition 2.2 ([21], Propositions 3.2 and 3.11). Suppose that F0 : M →
Rn+k is a smooth immersion of a compact manifold M . Then there exists a

smooth flow F : M × [0, T )→ Rn+k satisfying (2.1) such that F (·, 0) = F0.

The images Mt = F (M, t) are uniquely defined by F0(M). Furthermore, for

the maximal such T , we have

lim sup
t→T

max
Mt

|A|2 =∞

where |A|2 =
∑
|A(ei, ei)|2 for an orthonormal basis {ei} of TxM .

It is also well known that if M is compact the maximal time of existence

T to solutions of (2.1) will be finite. Therefore, a major goal of research on

the mean curvature flow has been to understand the formation of singulari-

ties. In this area, codimension-1 flows are somewhat better understood, in

part due to the availability of stronger maximum principles in this setting.

For example, the following avoidance property applies.

Proposition 2.3 ([18], Theorem 2.2.1). Suppose that Mt and Nt are smooth

mean curvature flows of n-dimensional submanifolds of Rn+1 on [0, T ) such

that M0 and N0 are embedded and disjoint. Then Mt and Nt will each

remain embedded and the pair will remain disjoint for all t < T .

When k > 1, Proposition 2.3 does not hold. This will become an impor-

tant issue when we discuss weak solutions to (2.1) in higher codimension.

2.2 Viscosity Methods

The class of weak solutions to the mean curvature flow that we consider are

based on the theory of viscosity solutions to second order nonlinear elliptic

and parabolic equations introduced by Crandall and Lions. In this section
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we introduce this theory and prove some basic results about such solutions.

The main reference here is the “User’s Guide to Viscosity Solutions” [10].

Recall that a function u : Ω ⊂ Rd → R is said to be upper (resp.

lower) semicontinuous if lim supx→x0 u(x) ≤ u(x0) (resp. lim infx→x0 u(x) ≥
u(x0)). Importantly, upper and lower semicontinuous function achieve their

suprema and infima on compact sets. If u is locally bounded we define the

upper semicontinuous envelope of u by

u∗(x0) = lim sup
x→x0

u(x),

and define the lower semicontinuous envelope u∗ analogously. Clearly, the

upper semicontinuous envelope is an upper semicontinuous function satisfy-

ing u∗(x) ≥ u(x), and likewise for the lower semicontinuous envelope.

Our goal is to define a weak notion of sub- and supersolutions to equa-

tions of the form

ut + F (u,∇u,∇2u) = 0 (2.2)

which applies to functions u which are only semicontinuous. This will be

accomplished by requiring a local version of the maximum principle to hold

for such solutions. To this end, we make the following definition.

Definition 2.4. A function F : R × Rd × Sd → R (where Sd is the set of

symmetric d× d matrices) is called degenerate elliptic if

F (r, p,X) ≤ F (r, p, Y ) for Y ≤ X

where Y ≤ X if and only if X − Y is a positive semidefinite matrix. Fur-

thermore, we say that F is proper if it is increasing in its first argument.

If F is proper and degenerate elliptic, the problem (2.2) will be called de-

generate parabolic. Now we can define our notion of sub- and supersolutions

to problems involving such operators.

Definition 2.5. Suppose that F : R × Rd × Sd → R is proper, degenerate

elliptic, and locally bounded. Let Ω ⊂ Rd be a locally compact, open set. We
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say that an upper semicontinuous function u : Ω× (0, T )→ R is a viscosity

subsolution of (2.2) if we have

φt(x0, t0) + F ∗(u(x0, t0),∇φ(x0, t0),∇2φ(x0, t0)) ≤ 0 (2.3)

for all φ ∈ C2(Ω× (0, T )) and (x0, t0) which are local maxima of u− φ.

Likewise, we say a lower semicontinuous function u is a viscosity super-

solution of (2.2) if the reverse inequality holds for F∗ at local minima of

u− φ.

We will call u a viscosity solution of (2.2) if it is both a viscosity subsolu-

tion and a viscosity supersolution, and when it is clear, the term “viscosity”

will be omitted. Note that this definition is justified in that if u is a C2

solution of ut = F (u,∇u,∇2u), it is easy to check by the weak maximum

principle that u is a viscosity solution.

We say that φ ∈ C2 touches u from above at (x0, t0) if φ(x0, t0) =

u(x0, t0) and φ ≥ u on an open neighborhood of (x0, t0). Correspondingly,

φ touches u from below at (x0, t0) if the opposite inequality holds. The

following lemma gives a characterization of viscosity sub- and supersolutions

using these conditions, which is often easier to use in practice than the

original definition.

Lemma 2.6. A function u is a viscosity subsolution of (2.2) if and only

if for every (x0, t0) ∈ Ω × (0, T ) and φ ∈ C2 touching u from above at

(x0, t0), (2.3) holds. Likewise, u is a viscosity supersolution if and only if

the corresponding condition holds for φ touching u from below.

Proof. Suppose that (2.3) holds for test functions touching u above at (x0, t0).

Let φ ∈ C2 be such that u − φ has a local maximum at (x0, t0). Then

φ̃ = φ− φ(x0, t0) + u(x0, t0) touches u from above at (x0, t0). Thus we have

φ̃t(x0, t0) + F ∗(u(x0, t0),∇φ̃(x0, t0),∇2φ̃(x0, t0)) ≤ 0.

Since the derivatives of φ̃ are equal to those of φ, this implies that u is a

viscosity subsolution of (2.2).
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On the other hand, suppose that u is a viscosity subsolution of (2.2). If

that φ touches u from above at (u0, t0), then u− φ has a local maximum at

(x0, t0), so (2.3) holds.

We now prove two important lemmas which allow us to construct new

viscosity solutions from existing ones. First, we define the following weak

limit operations.

Definition 2.7. Suppose that (un)∞n=1 : Ω ⊂ Rd → R, we define

lim sup∗ u(x) = sup

{
lim sup
n→∞

un(xn)
∣∣ (xn)∞n=1 → x

}
and

lim inf∗ u(x) = inf
{

lim inf
n→∞

un(xn)
∣∣ (xn)∞n=1 → x

}
.

These limits are called, respectively, the upper and lower half-relaxed limits

of un.

Note that it is easy to check that the upper (resp. lower) half-relaxed

limit of upper (resp.) semicontinuous functions is upper (resp. lower) semi-

continuous. It turns out that these operations are the correct limit under

which viscosity sub- and supersolutions are preserved.

Lemma 2.8 ([10], Lemma 6.1). If un is a sequence of viscosity subsolu-

tions of (2.2), and if the upper half-relaxed limit ū = lim sup∗ un is bounded

above, it is also a viscosity subsolution. The same holds for sequences of

supersolutions and their lower half-relaxed limit.

Next, we consider a convolution-type operation which also preserves vis-

cosity solutions.

Definition 2.9. Let f, g : Rd → R and define the supremal convolution of

f and g by

f ∗sup g = sup
{
f(y) + g(x− y)

∣∣ y ∈ Rn
}
.

Likewise, define the infimal convolution of f and g by

f ∗inf g = inf
{
f(y) + g(x− y)

∣∣ y ∈ Rn
}
.
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As with the half-relaxed limits, these operations preserve upper and lower

semicontinuity respectively.

Lemma 2.10. Suppose that u : Ω× (0, T )→ R is a viscosity subsolution of

ut + G(∇u,∇2u) = 0, and g : Ω → R is an upper semicontinuous function

satisfying g ≤ c. Let

ũ(·, t) = u(·, t) ∗sup g.

Then ũ is also a viscosity subsolution. The same holds for viscosity super-

solutions and infimal convolution with g ≥ c.

Proof. (Following [20], Lemma 4.2.) Suppose that φ touches ũ from above

at (x0, t0). Because g is upper-semicontinuous and bounded above, there

exists y0 ∈ Ω such that ũ(x0, t0) = u(y0, t0) + g(x0 − y0). Let φ̃(x, t) =

φ(x+ x0 − y0, t)− g(x0, y0). Then

φ̃(y0, t0) = φ(x0, t0)− g(x0, y0) = u(y0, t0).

Furthermore, for x, t sufficiently close to (y0, t0) we have

φ̃(x, t) ≥ ũ(x+ x0 − y0, t)− g(x0, y0) ≥ u(x+ x0 − y0, t)

by definition of ũ. Hence φ̃ touches u from above at (y0, t0) and so we have

φ̃t(y0, t0) +G(∇φ̃(y0, t0),∇2φ̃(y0, t0)) ≤ 0.

This implies that the same equation holds for φ at (x0, t0), and thus ũ is

a subsolution. The same argument with inequalities reversed applies for

supersolutions.

Note that the procedure of shifting test functions used in the proof of

Lemma 2.10 is characteristic of the arguments which will be used later when

working with viscosity solutions.
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Chapter 3

Level Set Flows and Distance

Solutions

3.1 Definition and Fundamentals

In order to define a notion of weak solutions to mean curvature flow using the

machinery of viscosity solutions, we must represent an embedded manifold

Mn ↪−→Rn+k via a single function u. We then aim to write an equation of

the form (2.2) for u which gives an equivalent evolution of the embedding.

If k = 1, it is natural to represent Mt as a regular level set of a smooth

function u : Rn+1 × (0, T ) → R. We begin this section by showing how

the corresponding evolution equation ought to be written. The situation is

somewhat more complicated for k > 1, as Mt must be represented as a level

set of u at a singular value.

First, consider a function u : Rn+1 × (0, T ) → R and a local parame-

terization of the zero-level set by φ : Ω ⊂ Rn × (0, T ) → Rn+1 such that

u(φ(x, t), t) = 0. Differentiating gives

ut(φ, t) = −〈∇u(φ, t), φt〉.

If the zero-level set is to move normally with speed v (to be determined
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later), then we take φt = v ∇u|∇u| , which gives

ut(φ, t) = −|∇u(φ, t)|v.

We generalize this to hold on all points to obtain

ut = −|∇u|v. (3.1)

In the case when k = 1, the mean curvature of a level set of u is simply

given by

H = −div

(
∇u
|∇u|

)
.

Therefore, using v = H in (3.1) the MCF equation for Mt becomes

ut = |∇u|div

(
∇u
|∇u|

)
. (3.2)

This equation was considered in context of viscosity solutions by Evans and

Spruck [12] and Chen, Giga, and Goto [9]. It was shown that (3.2) corre-

sponds to a degenerate parabolic problem which admits a unique viscosity

solution for uniformly continuous initial data u0. Furthermore, the evolution

of the zero level set depends only on its initial geometry, not the choice of

u0, and this evolution agrees with a smooth mean curvature flow if it exists.

Proceeding from this work, Ambrosio and Soner [2] generalized this ap-

proach to the case when k > 1. This generalization will be the main class of

weak solution considered here, so we will explain it in detail. As above, the

surface Mt will be represented by the zero level set of u : Rn+k× (0, T )→ R.

However, as noted above, the difficulty is that Mt must be represented by

a singular level set of u, and therefore geometric quantities are difficult to

compute for this level set. Ambrosio and Soner instead consider regular ε-

level sets for ε small. Such level sets are smooth hypersurfaces which “wrap

tightly” around Mt so we expect them to have k − 1 principle curvatures

which are very large and n principle curvatures which closely approximate

those of Mt nearby. With this intuition, they design a flow which moves

regular level sets by the sum of their smallest n principle curvatures. To do

12



so, we first represent the shape operator in terms of the level set function u.

Lemma 3.1. Suppose that M is the zero level set of u : Rn+k → R and

∇u 6= 0 on M . Then M is a smooth manifold with normal vector field

ν = ∇u
|∇u| . At x ∈ M , let B = 1

|∇u|P∇u∇
2uP∇u where P∇u = I − ∇u⊗∇u|∇u|2 is

the orthogonal projection onto TxM . Then

B = Aν ⊕ 0

where Aν is the shape operator on TxM and 0 acts on NxM .

Proof. Note that Bη = 0 for η ∈ NxM , and BX ∈ TxM for X ∈ TxM

by definition of P∇u so B splits into these subspaces. We can compute for

X ∈ TxM

BX =
1

|∇u|
P∇u(∇2u)X =

∇2u

|∇u|
X − 1

|∇u|3
〈∇u, (∇2u)X〉∇u.

On the other hand, we have

AνX = ∇X
∇u
|∇u|

= 〈X,∇|∇u|−1〉∇u+
∇2u

|∇u|
X

=
∇2u

|∇u|
X − 1

|∇u|3
〈(∇2u)X,∇u〉∇u.

Thus we have BX = AνX.

By Lemma 3.1, we see that the principle curvatures of a regular level

set of u are the eigenvalues of B with eigenvectors orthogonal to ∇u. This

motivates us to define F : Rn+k \ {0} × Sn+k → R by

F (p,X) = −
n∑
i=1

λi(p,X) (3.3)

where λi(p,X) are the ordered eigenvalues of PpXPp with eigenvector or-

thogonal to p and Pp = I − p⊗p
|p|2 as in (3.1). Then the equation

ut + F (∇u,∇2u) = 0 (3.4)
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corresponds to the level set evolution equation (3.1) taking v to be the sum

of the smallest n principle curvatures on regular level sets. The zero level

sets of viscosity solutions of this equation will be our weak solutions to mean

curvature flow.

Definition 3.2. Suppose that Γ∗ ⊂ Rd is closed and let u0 be any uniformly

continuous function on Rd such that Γ∗ =
{
x
∣∣ u0(x) = 0

}
. Suppose u ∈

C(Rn+k × [0,∞)) is a viscosity solution of the problemut + F (∇u,∇2u) = 0 on Rn+k × (0,∞)

u(x, 0) = u0(x, 0) for x ∈ Rn+k.
(3.5)

We let

Γt =
{
x
∣∣ u(x, t) = 0

}
(3.6)

and call Γ =
⋃
t∈[0,∞) Γt × {t} the n-dimensional level set flow of Γ∗.

Note that F is in fact a continuous degenerate elliptic operator away

from p = 0, so (3.4) can be considered in the viscosity sense. Furthermore,

we record

F∗(0, A) = min
|p|=1

F (p,A) and F ∗(0, A) = max
|p|=1

F (p,A) (3.7)

which will be used later. In [2] the following fundamental facts about solu-

tions to (3.5) were proven.

Proposition 3.3 ([2], Theorems 2.2-2.4). (a) (Comparison) Suppose that

u and v are sub- and supersolutions of (3.4) such that at least one of

u or v is uniformly continuous and there exists K > 0 such that

|u(x, t)|+ |v(x, t)| ≤ K(1 + |x|)

then u− v ≤ sup
{
u(x, 0)− v(x, 0)

∣∣ x ∈ Rn+k
}

.

(b) (Existence) If u0 is uniformly continuous, there exists a unique uni-

formly continuous solution u to (3.5) defined on Rn+k × [0,∞).
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(c) (Relabeling) If u is a subsolution (resp. supersolution) of (3.4), and

θ : R → R is uniformly continuous and nondecreasing, then θ ◦ u is

also a subsolution (resp. supersolution).

As a demonstration of the methods used in the viscosity solution theory,

we use Proposition 3.3 to prove that the n-dimensional level set flow of a

set is well-defined.

Lemma 3.4. Suppose that Γ∗ ⊂ Rn+k is closed and u0 and ũ0 are two

uniformly continuous function which both have Γ∗ as their zero-level set.

Let u and ũ be the corresponding solutions of (3.5). Then the zero-level set

of u is equal to that of ũ.

Proof. (Following [2], Theorem 2.5) In particular, we will show that the

lemma holds if u0(x) = dist(x,Γ), from which the full result follows by

transitivity. Let Γt and Γ̃t be the zero-level sets of u and ũ respectively.

(Γt ⊂ Γ̃t): Let ω(s) = sup
{
ũ0(y)

∣∣ dist(y,Γ∗) ≤ s
}

. Then since ũ0 is uni-

formly continuous, ω(s) is a non-decreasing uniformly continuous function,

and thus by Proposition 3.3(c), ω ◦ u is a supersolution of (3.4). Now note

that

ω(u0(x)) = ω(dist(x,Γ)) ≥ ũ0(x).

Hence by Proposition 3.3(a), ũ ≤ ω ◦ u. Therefore, if x ∈ Γt, ω(u(x, t)) = 0

so ũ(x, t) = 0, and so x ∈ Γ̃t.

(Γ̃t ⊂ Γt): Let hε(s) be a sequence of non-decreasing cutoff functions with

hε ≡ 0 on (−∞, 0] and hε ≡ 1 on [ε,∞). By Proposition 3.3(c), hε ◦
ũ is a supersolution of (3.4) for each ε. By Lemma 2.8, it follows that

lim inf∗ h
ε ◦ ũ = 1− χ

Γ̃t
is also supersolution. Finally, let v = min(u, 1), so

that v(x, 0) ≤ 1−χΓ and by comparison v ≤ 1−χ
Γ̃t

for all t. This inequality

implies that if x ∈ Γ̃t, then v(x, t) = 0, and so x ∈ Γt.

It is an easy computation to check that F satisfies

F (λp, λX + σp⊗ p) = λF (p,X) (3.8)
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for λ > 0 and σ ∈ R. This identity allows us to extend the usual scaling of

solutions to mean curvature flow to level set flows.

Lemma 3.5. Suppose Γ is the level set flow of Γ∗. Then for λ > 0, the

level set flow Γ̃ of λΓ∗ is given by Γ̃t = λΓλ−1t.

Proof. Let u be a solution to (3.5) with initial data u0 zero on Γ∗. Define

v(x, t) = λ−1u(λ−1x, λ−1t). Note that the zero level set of v(·, 0) is λΓ∗. We

claim that v solves (3.4). Suppose that φ touches v from below at (x0, t0).

Define φ̃(x, t) = λφ(λx, λt). Then we have

φ̃(λ−1x0, λ
−1t0) = λφ(x0, t0) = λv(x0, t0) = u(λ−1x0, λ

−1t0)

and for x and t sufficiently close to λ−1x0 and λ−1t0

φ̃(x, t) = λφ(λx, λt) ≤ λv(λx, λt) = u(x, t).

Hence φ̃ touches u from below at (λ−1x0, λ
−1t0), and so at this point we

have

φ̃t + F (∇φ̃,∇2φ̃) ≥ 0.

Applying the definition of φ̃ and (3.8) we have

λ2φt(x0, t0) + λ2F (∇φ(x0, t0),∇2φ(x0, t0)) ≥ 0.

Therefore v is a viscosity supersolution of (3.4). The same argument with

inequalities reversed shows that v is also a subsolution. Since v is a solution

of (3.4), Γ̃t is the zero-level set of v(·, t), which is exactly λΓλ−1t by the

definition of v.

3.2 Equivalence with Smooth Flows

An important property of any formulation of weak solutions to the mean

curvature flow problem is agreement with smooth flows when they exist.

In the codimension-1 case, this equivalence was proven in [12] and [9]. In

16



their original paper on level set flows in arbitrary codimension, Ambrosio

and Soner proved the following result.

Proposition 3.6. If Mt ⊂ Rn+k is a smooth flow of embedded n-dimensional

submanifolds on [0, T ), then the n-dimensional level set flow Γ of M0 satis-

fies Γt = Mt for 0 ≤ t < T .

Ambrosio and Soner prove this result by considering the evolution of the

distance function δ(x, t) = dist(x,Mt). Recall that if, for all 0 < t < T ,

Mt has a tubular neighborhood of radius ρ, the distance function δ(·, t) is

smooth on U =
{

(x, t)
∣∣ 0 ≤ t < T, 0 < δ(x, t) < ρ

}
. Ambrosio and Soner

show that on U we have

F (∇δ,∇2δ) ≤ δt ≤ F (∇δ,∇2δ) + Cδ (3.9)

for some constant C independent of x and t. Using these bounds, they

modify δ (while maintaining the zero level set) to construct suitable sub-

and supersolutions
¯
u and ū of (3.5), which are bounded above and below

by δ(·, 0) at t = 0. By the comparison principle of Proposition 3.3(a), if u

is the solution of (3.5) with initial data δ(·, 0), we have

¯
u ≤ u and ū ≥ u.

As in the proof of Lemma 3.4, these bounds show that Mt = Γt.

While this is one of Ambrosio and Soner’s fundamental results and is

important in justifying the definition of the level set flow, it is not entirely

satisfying because it says nothing about the case when Mt is a smooth flow

on (0, T ) but does not extend smoothly to t = 0. This case is important

in applications of the weak solution theory to the question of solvability

of the mean curvature flow equation for rough initial data. In particular,

establishing equivalence of the level set flow and a smooth flow can be used

to prove uniqueness of the smooth flow.

Hershkovits takes this approach in [14] when he considers the short time

existence of smooth solutions of the mean curvature flow when the initial

data is an ε-Reifenberg set. Briefly, such sets are embedded topological
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manifolds which have approximate tangent spaces at each point which are

allowed to vary according to a scale parameter (the details are not relevant

here; see [19] for a complete definition). To apply the level set flow theory

of Ambrosio and Soner in this setting, Hershkovits proves a stronger version

of Proposition 3.6.

Proposition 3.7. Suppose that Mt is a smooth flow of embedded n-dimensional

submanifolds of Rn+k on (0, T ) and M0 is a connected compact set. Suppose

further that for constants c2
1 ≤ 1

8 and 1
4c1
− c2 >

√
2n, Mt satisfies

(i) supMt
|A(t)| ≤ c1√

t

(ii) dH(Mt,M0) ≤ c2

√
t

(iii) Mt has a tubular neighborhood of radius at least
√
t

4c1

where A(t) is the second fundamental form of Mt and dH is the Hausdorff

distance. Then the level set flow of M0 is equal to Mt on (0, T ).

Note that while the constants in the statement of this result may seem

somewhat arbitrary, they cannot be easily scaled away (i.e. we cannot trade

a worse bound on c1 for a better bound on c2) because (i-iii) are all scale

independent with respect to the spacetime scaling of mean curvature flow.

To prove this result, Hershkovits establishes a more precise version of

(3.9). In particular for (x, t) in the same neighborhood U as above we have

δt = F (∇δ,∇2δ) + δ
n∑
i=1

〈A(vi, vi),∇δ〉2

1− δ〈A(vi, vi),∇δ〉
(3.10)

where {vi} are principle directions for the shape operator A−∇δ at the closest

point on Mt to x, and A is evaluated at the same point.

We will also need the following lemma, which says that n-dimensional

level set flows do not cross spheres evolving by the sum of their first n

principle curvatures. Note that this is actually a very special property of

spheres, since in general the avoidance properties that hold in codimension-1

(c.f. Proposition 2.3) do not apply in higher codimension. We will use this

result to bound the rate at which the level set flow can move away from M0.
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Lemma 3.8. Suppose that Γ∗ is a closed set and v : Rn+k × (0, T ) → R is

a supersolution of (3.5), with v(x, 0) = dist(x,Γ∗). Then

v(x0, t) ≥ v(x0, 0)−
√

2nt (3.11)

for all x0 ∈ Rn+k.

Proof. We fix x0 ∈ Rn+k and define

u(x, t) = v(x0, 0)−
√
|x− x0|2 + 2kt.

Note that u(x, 0) = dist(x0,Γ
∗)− |x− x0|. Using the fact that the distance

function to Γ∗ is 1-Lipschitz, we have u(x, 0) ≤ v(x, 0). Furthermore, it is

easy to check that u is in fact a solution to (3.4). (One can either compute

directly, or use the fact that the level sets of u are spheres moving by their

first n principle curvatures.) Therefore by Proposition 3.3(a), we have

u(x0, t) ≤ v(x0, t) =⇒ v(x0, 0)−
√

2nt ≤ v(x0, t)

which proves the claim.

Proof of Proposition 3.7. Following Herskovitz, Theorem 1.7 [14], let Γ be

the level set flow of M0 with level set function u solving (3.5) with initial

data dist(M0, ·). The argument of [2] that was discussed above still suffices

to show that Mt ⊂ Γt. We will only consider the more difficult problem of

showing that Γt ⊂Mt.

To do this, we consider v(x, t) = δ(x,t)√
t

defined on

N =

{
(x, t)

∣∣ 0 ≤ t ≤ T, δ(x, t) <
√
t

4c1

}
.

Note that N ∩ (Rn+k × {0}) is empty, and so by (iii) v is smooth on N .

Then, a computation using (3.10) and assumptions (i) and (ii) show that v

is a classical subsolution of (3.4) on N . (Here is where the condition c2
1 <

1
8

is used.)
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Now, if we can use the comparison principle to conclude that u ≥ v, we

will be done, since then x ∈ Γt would imply u(x, t) = 0 and so v(x, t) = 0

which implies x ∈ Mt. A (slightly modified version) of the comparison

principle will apply if we can show that u ≥ v on the parabolic boundary

of N which consists of (x, t) such that t > 0 and δ(x, t) =
√
t

4c1
. Using this

characterization along with (ii) we have

√
t

4c1
= δ(x, t) ≤ δ(x, 0) + dH(Mt,M0) ≤ δ(x, 0) + c2

√
t.

This implies that δ(x, 0) ≥
(

1
4c1
− c2

)√
t. Applying Lemma 3.8, we have

u(x, t) ≥ δ(x, 0)−
√

2nt ≥
(

1

4c1
− c2 −

√
2n

)√
t = αv(x, t)

where α is a positive constant by the constraints on c1 and c2. By the rela-

beling result Proposition 3.3(c) for solutions of (3.4), αv is also a subsolution

on N , and by comparison we have u ≥ αv on N .

3.3 Distance Solutions and Gluing

In the previous section, (3.9) shows that the distance function to a family

of smooth manifolds evolving by mean curvature is a classical supersolution

of (3.4) within a tubular neighborhood. In fact, we will see below that the

distance function is actually a viscosity supersolution everywhere. From this

conclusion, Ambrosio and Soner extract the following definition, which can

be understood as an intrinsic characterization of “set-theoretic subsolutions”

of the level set flow.

Definition 3.9. Suppose that Γ ⊂ Rn+k × (0, T ) and for each t ∈ (0, T )

supposed Γt = Γ ∩ Rn+k × {t} is closed. For any such set write

δΓ(x, t) = dist(x,Γt)

for the spatial distance function. We call Γ an n-dimensional distance solu-
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tion if δΓ is a supersolution of (3.5). Let

lim inf
t→0

Γt =
⋂

t∈(0,T )

⋃
s∈(0,t)

Γs.

Given a closed set Γ∗ ⊂ Rn+k, a distance solution is said to satisfy the initial

inclusion Γ0 ⊂ Γ∗ if lim inft→0 Γt ⊂ Γ∗.

The following lemma will be used extensively when considering distance

solutions in the remainder of this thesis. It greatly simplifies the process of

checking whether a set Γ is a distance solution by restricting the class of

test functions that must be considered.

Lemma 3.10. Suppose that Γ ⊂ Rn+k×(0, T ). Then Γ is a distance solution

if for all C2 test function φ touching δΓ from below at a point (y0, t0) on Γ

we have

φt(y0, t0) + F∗(∇φ(y0, t0),∇2φ(y0, t0)) ≥ 0.

Furthermore, if t 7→ Γt is continuous with respect to the Hausdorff distance

dH, we need only consider φ and (y0, t0) such that ∇φ(y0, t0) 6= 0 and y0 ∈
Γt0 is the minimizer in Γt0 of distance to some point outside Γ.

Proof. Let φ be an arbitrary C2 test function which touches δΓ from below

at (x0, t0) ∈ Rn+k × (0, T ). Let y0 ∈ Γt0 be such that δΓ(x0, t0) = |x0 − y0|,
and define

φ̃(x, t) = φ(x+ x0 − y0, t)− |x0 − y0|.

Note that φ̃(y0, t0) = 0. Let ε be such that φ(z, t) ≤ δΓ(z, t) for (z, t) ∈
B2ε((x0, t0)). Let y ∈ Bε(y0) and t ∈ (t0− ε, t0 + ε). Then (y+ x0− y0, t) ∈
Bε((x0, t0)) and so

φ̃(y, t) = φ(y + x0 − y0)− |x0 − y0| ≤ δΓ(y + x0 − y0, t)− |x0 − y0|.

By the triangle inequality, we have δΓ(y + x0 − y0, t) ≤ |x0 − y0|+ δΓ(y, t),

so we obtain

φ̃(y, t) ≤ δΓ(y, t).
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Thus φ̃ is a C2 function touching δΓ from below at (y0, t0). By our assump-

tion, we have

φ̃t(y0, t0) + F∗(∇φ̃(y0, t0),∇2φ̃(y0, t0)) ≥ 0.

But the derivatives of φ at (x0, t0) are equal to those of φ̃ at (y0, t0), so we

have

φt(x0, t0) + F∗(∇φ(x0, t0),∇2φ(x0, t0)) ≥ 0.

From this it follows that Γ is a distance solution.

Finally, if we only consider (x0, t0) 6∈ Γ in the proof above, we obtain

that δΓ is a supersolution of (3.4) on (Rn+k × (0, T )) \ Γ. For such points φ

in the above has ∇φ̃(x0, t0) 6= 0, since φ touches δΓ from below at a point

away from its zero level set. Furthermore, by definition y0 is a minimizer

in Γt0 of the distance to x0. To show that δΓ is a supersolution on all of

Rn+k × (0, T ) we apply Lemma 3.11 below to δΓ. We note that by the

assumption of dH-continuity, assumption (i) of the lemma is satisfied.

Lemma 3.11 ([2], Lemma 3.11). Suppose that u : Rn+k × (0, T ) is lower

semicontinuous and

(i) for (x, t) such that u(x, t) = 0 there exists a sequence (xn, tn)→ (x, t)

with tn < t and u(xn, tn) = 0;

(ii) u is a viscosity supersolution of (2.2) on
{

(x, t)
∣∣ u(x, t) > 0

}
;

(iii) and u(·, t) is K-Lipschitz continuous with K independent of t.

Then u is also a viscosity supersolution of (2.2) on Rn+k × (0, T ).

Note that Lemma 3.10 shows that the distance function to a smooth flow

is actually a viscosity supersolution globally since we only need to consider

test functions touching δ from below at points onMt, and δ is a supersolution

near Mt. Thus, smooth flows are distance solutions. (In fact, the main idea

of Lemma 3.10 is extracted from the proof of this fact in [2].)

A distance solution Γ may be quite poorly behaved. For example, entire

connected components Γt may disappear instantaneously, and δ need only be
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lower semicontinuous in time. However, it turns out that maximal distance

solutions (with respect to containment as sets) are exactly level set flows,

which explains how distance solutions may be viewed as subsolutions.

Proposition 3.12. Suppose that Γ∗ ⊂ Rn+k is closed and Γ is the n-

dimensional level set flow of Γ∗. Then Γ is the maximal distance solution

satisfying the initial inclusion Γ0 ⊂ Γ∗.

Proof. (Following [2], Theorem 4.4) Let u be any solution of (3.5) with zero

level set Γ. Let hε be as in the proof of Lemma 3.4. Let
¯
u = lim inf∗ h

ε ◦ u.

As before
¯
u = 1 − χΓ is a supersolution by Lemma 2.8. Now let vK(·, t) =

K(1− χΓ(·, t)) ∗inf g where g(x) = |x| and K > 0. By Lemma 2.10, vK is a

supersolution. We claim that

vK(x, t) = min(δΓ(x, t), inf
{
K + |x− y|

∣∣ y 6∈ Γt
}

).

The infimum in the definition of the infimal convolution must be attained

since g becomes unbounded as x→∞. Hence there exists y such that

vK(x, t) = K(1− χΓ(y, t)) + |x− y|.

If y ∈ Γt, then vK(x, t) = |x− y|. Otherwise, vK(x, t) = K + |x− y|. Hence

vK(x, t) = min(inf
{
|x− y|

∣∣ y ∈ Γt
}
, inf

{
K + |x− y|

∣∣ y 6∈ Γt
}

)

which is exactly the claim above. Finally, by Lemma 2.8 δΓ = lim inf∗ vK

must be a supersolution, and so Γ is a distance solution satisfying the initial

inclusion Γ0 ⊂ Γ∗.

On the other hand, if Γ̃ is any other distance solution satisfying Γ̃0 ⊂ Γ∗,

we note that δ
Γ̃
≤ u by Proposition 3.3(a). Hence Γ̃ ⊂ Γ, and so Γ is in fact

the maximal distance solution satisfying Γ0 ⊂ Γ∗.

As an example of the utility of this result, we consider the situation in

which Γ∗ sits in an affine subspace Σ of Rn+k. If Γ∗ is a submanifold, its

smooth mean curvature flow clearly remains in Σ and is equivalent to that

23



obtained when Γ∗ is viewed as a subspace of Σ. The following proposition

generalizes this fact to level set flows.

Proposition 3.13. Let Σ ⊂ Rn+k be a d-dimensional affine subspace. Sup-

pose that Γ∗ ⊂ Σ. Let Γ be the n-dimensional level set flow of Γ∗ in Rn+k

and Γ̃ be the level set flow of Γ∗ in Σ. Then Γ = Γ̃.

Proof. Without loss of generality, we identify Σ with the plane Rd × {0} ⊂
Rn+k. We will write x = (y, z) ∈ Rd × Rn+k−d for coordinates in this

decomposition.

(Γ̃ ⊂ Γ): We will show that if Γ̃ is any distance solution as a subset of

Σ, then it is also a distance solution in Rn+k. By the characterization of

level set flows as maximal distance solutions, this will prove Γ̃ ⊂ Γ. Let Fd

and Fn+k refer to the operator F defined in (3.3) for ambient dimensions

d and n + k respectively. By Lemma 3.10, we consider a test function

φ : Rn+k × (0, T )→ R touching δ
Γ̃

from below at ((y0, 0), t0) ∈ Γ̃. We then

need to show that

φt(y0, 0, t0) + (Fn+k)∗(∇φ(y0, 0, t0),∇2φ(y0, 0, t0)) ≥ 0.

By restricting φ to φ̃(y, t) = φ(y, 0, t), and using the fact that Γ̃ is a distance

solution in Σ, we have

φt(y0, 0, t0) + (Fd)∗(∇φ̃(y0, t0),∇2φ̃(y0, t0)) ≥ 0.

Write A = ∇2φ(y0, 0, t0) and p = ∇φ(y0, 0, t0), and correspondingly Ã =

∇2φ̃(y0, t0) and p̃ = ∇φ̃(y0, t0). We will show that

(Fd)∗(Ã, p̃) ≥ (Fn+k)∗(A, p) (3.12)

which suffices to establish the necessary inequality. First we consider the

case when p 6= 0. Recall that the variational characterization of eigenvalues

gives

λj(PpAPp) = max
S⊂Rn+k

dim(S)≥n+k−j+1

min
x∈S
|x|=1
〈x,p〉=0

〈PpAPpx, x〉, (3.13)
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where the condition 〈x, p〉 = 0 is due to the fact that we consider only

eigenvalues with eigenvectors orthogonal to p. On the other hand, we have

λj(Pp̃ÃPp̃) = max
S⊂Σ

dim(S)≥d−j+1

min
x∈S
|x|=1
〈x,p̃〉=0

〈Pp̃ÃPp̃x, x〉. (3.14)

Letting q = (p̃, 0) ∈ Rn+k, we can write (3.14) in terms of vectors x ∈ Rn+k

as

λj(Pp̃ÃPp̃) = max
S⊂Rn+k

dim(S)≥d−j+1

min
x∈S∩Σ
|x|=1
〈x,q〉=0

〈PqAPqx, x〉. (3.15)

In (3.13) and (3.14) using the symmetry of Pp and Pq and the constraints

on x, we have

〈PpAPpx, x〉 = 〈Ax, x〉 and 〈PqAPqx, x〉 = 〈Ax, x〉.

Finally, since d < n + k, if S is considered in the maximum in (3.13), then

it is considered in (3.15) and the corresponding minimum is over a larger

set. Hence λj(Pp̃ÃPp̃) ≥ λj(PpAPp). From the definition of Fd and Fn+k,

(3.12) holds. Finally, note that having removed the normalization by |p| and

|p̃|, Equations (3.13) and (3.14) are valid for all p, so the above argument

applies in the case when p = 0 or p̃ = 0 as well.

(Γ ⊂ Γ̃): Using the avoidance of spheres proven in Lemma 3.8, it is easy to

see that Γ remains within the subspace Σ. (Choose arbitrarily large spheres

tangent to each point on Σ.) We will apply Lemma 3.10 again to show that

Γ is a distance solution viewed as a subset of Σ. Therefore, we consider a C2

test function φ on Σ× (0, T ) which touches δΓ|Σ from below at (x0, t0) ∈ Γ.

Let λ be larger than all of the eigenvalues of P∇φ∇2φP∇φ at (x0, t0), and

define

φ̃(y, z, t) = φ(y, t) +
1

2
λ|z|2.

Using the fact that δΓ(y, z, t) =
√
δΓ(y, 0, t)2 + |z|2, it is easy to check that

φ̃ touches δΓ from below at (x0, t0). Then, using the definition of φ̃, we can
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compute that

φt(x0, t0) = φ̃t(x0, t0)

≥ Fn+k(∇φ̃(x0, t0),∇2φ̃(x0, t0))

= Fd(∇φ(x0, t0),∇2φ(x0, t0)).

where the last equality is because our choice of λ ensures that any new

eigenvalues of P∇φ̃∇
2φ̃P∇φ̃ are large.

From Proposition 3.12, we also see that distance solutions provide a

simple method of proving “set theoretic lower bounds” on level set flows. In

particular, if we can prove that Γ is a distance solution satisfying Γ0 ⊂ Γ∗,

then the level set flow of Γ∗ must include Γ. We will take advantage of

this fact in our discussion of the fattening phenomenon in Section 4.2. As

a preliminary, we now develop a method to glue together several distance

solutions into a new distance solution. Clearly by the properties of viscosity

supersolutions, the union of two distance solutions is a distance solution,

so instead we consider sets which are distance solutions apart from some

“boundary.”

Definition 3.14. Let Γ ⊂ Rn+k × (0, T ) and Σ ⊂ Γ be such that Γt and

Σt are closed. The pair (Γ,Σ) will be called an interior distance solution if

every point (x, t) ∈ Rn+k × (0, T ) such that x ∈ Γt \ Σt has a neighborhood

U on which δΓ is a viscosity supersolution of (3.4). The set Σ will be called

the boundary of (Γ,Σ).

The following proposition allows us to construct interior distance solu-

tions by cutting subsets out of distance solutions. (This is also the justifi-

cation for the terms interior distance solution and boundary.)

Proposition 3.15. Let Γ be a distance solution and Ω ⊂ Γ be such that Ωt

is compact and t 7→ Ωt is continuous with respect to the Hausdorff distance.

Let ∂ΓΩ be the boundary of Ω relative to Γ. Then (Ω, ∂ΓΩ) is an interior

distance solution.
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Proof. Let (x, t) be such that x ∈ Ωt \ ∂ΓΩt. Note that δΩ ≥ δΓ because

Ωt ⊂ Γt. Therefore, we will prove that there exists a neighborhood V 3 (x, t)

on which δΩ ≤ δΓ. Then δΩ|V ≡ δΓ|V , and so δΩ is a supersolution on V .

Since (x, t) 6∈ ∂ΓΩ, the definition of the relative boundary implies the

existence of a neighborhood U 3 (x, t) such that U ∩ Ω = U ∩ Γ. Let

ε > 0 be small enough that K = {x} × [t − ε, t + ε] ⊂ U . Define η =

inf
{
|k − x|

∣∣ k ∈ K and x ∈ U c
}

. Note that by the dH-continuity of t 7→
Ωt, Ω\U is closed, so η > 0. Furthermore, we can choose δ > 0 such that for

all |t′ − t| < δ we have dH(Ωt,Ωt′) < η/4. Now let V = Bη/4(x)×Bmin(ε,δ)(t).

Suppose to the contrary that there exists (y, s) ∈ V such that δΩ(y, s) >

δΓ(y, s). Then we have dH(Ωt,Ωs) < η/4, so there exists x′ ∈ Ωs such

that |x− x′| < η/4. On the other hand, there exists z ∈ Γs \ Ωs such that

δΓ(y, s) = |z − y|. Furthermore, we must have z ∈ U c, since if z ∈ U then

z ∈ U ∩ Γs = U ∩Ωs, but z 6∈ Ωs. Therefore |z − x| ≥ η. Also, by definition

of z, |z − y| < |x′ − y|. Then we can compute

η ≤ |z − x| ≤ |z − y|+|y − x| <
∣∣x′ − y∣∣+|y − x| ≤ ∣∣x′ − x∣∣+2|x− y| ≤ 3η/4.

This is a contradiction, so we must have δΩ|V ≤ δΓ|V .

Now, our main result in this section describes how interior distance so-

lutions may be glued to form distance solutions. The idea is that if the

solutions are joined so that each point which minimizes the distance to an

external point is in the interior of one of the solutions, then the distance

function will not be able to detect the boundaries.

Theorem 3.16. Suppose that (Γi,Σi) for i = 1, . . . , N are interior distance

solutions. Let Γ = Γ1 ∪ · · · ∪ ΓN , and suppose that

(i) if x ∈ Rn+k \ Γt and y ∈ Γt are such that δΓ(x, t) = |x− y|, then

y ∈ Γjt \ Σj
t for some j ∈ 1, . . . , N ;

(ii) the mapping t 7→ Γt is continuous with respect to dH.

Then Γ is a distance solution.
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Proof. In order to appeal to Lemma 3.10, we consider a test functions φ

touching δΓ from below at a point (y0, t0) ∈ Γ. By assumption (ii), the

second part of the lemma allows us to assume further that there exists

x0 ∈ Rn+k \ Ωt such that δΓ(x0, t0) = |x0 − y0|. By assumption (i) this

implies that y0 ∈ Γjt \ Σj
t for some j ∈ 1, . . . , N . By the definition of an

interior distance solution, there exists a neighborhood U 3 (y0, t0) on which

δΓj is a supersolution. But since Γj ⊂ Γ, we have δΓ ≤ δΓj . Hence φ also

touches δΓj from below at (y0, t0). Since δΓj is a supersolution, this implies

that

φt(y0, t0) + F (∇φ(y0, t0),∇2φ(y0, t0)) ≥ 0.

Thus the condition of Lemma 3.10 is satisfied, and so Γ is a distance solution.

Note that, in fact, the finiteness of the collection of interior distance

solutions to be glued was not used in the proof of Theorem 3.16. Therefore,

any collection of interior distance solutions satisfying assumptions (i) and

(ii) may be glued in this fashion. Additionally, the following corollary to

Theorem 3.16 will be useful in understanding level set flows in the case

when k = 1.

Corollary 3.17. Suppose that Γ is a distance solution with t 7→ Γt contin-

uous with respect to dH and K is the closure of a connected component of

(Rn+k × (0, T )) \ Γ. Then Γ ∪K is also a distance solution.

Proof. Note that the entire space Rn+k × (0, T ) is a distance solution, so

the subset K satisfies the assumptions of Proposition 3.15. Hence, (K, ∂K)

is an interior distance solution. Since ∂K ⊂ Γ, the pair of interior distance

solutions (Γ, ∅) and (K, ∂K) satisfies the assumptions of Theorem 3.16. Thus

Γ ∪K is a distance solution.

As an example of Theorem 3.16, consider two round circles C1
0 and C2

0

in R2 incident at a point (see Figure 3.1). Each evolves by mean curvature

flow by shrinking about its center, giving two interior distance solutions

(C1, ∅) and (C2, ∅). Let L be the line through the centers of C1
0 and C2

0
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Figure 3.1: Gluing a segment between two circles

and St ⊂ L be the segment between the intersections of L with C1
t and

C2
t . Let p(t) and q(t) be the endpoints of St. Then by Proposition 3.15,

(S, {p(t), q(t)}) is an interior distance solution. Theorem 3.16 implies that

Γt = C1
t ∪ C2

t ∪ St is a distance solution. Note that Γ0 = C1
0 ∪ C2

0 , so

by Proposition 3.12, Γt is contained in the level set flow of C1
0 ∪ C2

0 . This

shows that intersecting smooth manifolds may produce level set flows which

are distinct from the union of their smooth flows. This idea is explored in

greater detail in Chapter 4.

29



Chapter 4

The Fattening Phenomenon

4.1 Definition and Previous Results

In this chapter, we consider a particular type of singularity which can arise in

the level set flows considered in Section 3.1. As was noted in that section, the

level set flow from an arbitrary closed initial set is well-defined and unique.

Furthermore, as was shown in Section 3.3, the level set flow must contain all

distance solutions. In particular, if there are multiple smooth flows whose

images approach the initial set at t = 0 (in e.g. Hausdorff distance), they

must all be contained in the level set flow. If such non-uniqueness occurs, we

expect the level set flow to become large in some sense. This is manifested

in the fattening phenomenon.

Definition 4.1. Let Γ∗ ⊂ Rn+k be a closed set, and let Γ be its n-dimensional

level set flow on a time interval I ⊂ R. Following [6], we will say that Γ∗

develops α-dimensional fattening at time t∗ ∈ I if

Hα(Γt) = 0 for t ≤ t∗ and Hα(Γt) > 0 for t ∈ (t∗, t∗ + ε)

for some ε > 0 and α ∈ (n, n+ k].

The occurrence of fattening for curves in R2 (with n = k = 1) is fully

understood and provides a prototype for understanding the relationship be-

tween this phenomenon and uniqueness of classical solutions. First, recall
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the following theorem of Lauer [17].

Proposition 4.2 ([17], Theorem 1.2 and Corollary 9.3). Suppose that γ∗

is the continuous image of S1 in R2 and H1(γ∗) < ∞. Let γ be the 1-

dimensional level set flow of γ∗. There exists T > 0 such that at each time

0 < t < T , the topological boundary ∂γt (viewed as a subset of R2) is the

disjoint union of N > 0 smooth closed curves, each of which evolve by mean

curvature flow. Furthermore, γ∗ is a Jordan curve, then N = 1.

Also recall the fact that for a simple smooth closed curve in R2 evolving

by curvature, the enclosed area A(t) satisfies

∂A

∂t
= −2π. (4.1)

From these facts we summarize the characterization of fattening obtained

by Lauer.

Proposition 4.3. If γ∗ is as in Proposition 4.2 and ∂γt has N components

for 0 < t < T , then either

(i) N = 1, γ∗ never develops α-dimensional fattening for any α > 1, and

there is a unique smooth curve shortening flow of γ∗ on (0, T );

(ii) or N > 1, γ∗ develops 2-dimensional fattening at t = 0, and there are

at least two smooth curve shortening flows of γ∗ on (0, T ).

Proof. First note that if N = 1, then for 0 < t < T , γt is a simple smooth

closed curve so no fattening occurs. By the results of [13], the unique clas-

sical evolution of this curve will exist up until it shrinks to a round point.

Now, we assume that N > 1. Then for any time 0 < t < T , ∂γt

consists of non-intersecting curves γ1
t , . . . , γ

N
t . Without loss of generality,

assume that γ1
t , . . . , γ

N−1
t are contained in the region bounded by γNt . Let

K be the closure of the connected component of R2 × (0, T ) \ ∂γ which is

bounded between γN and γ0 = γ1 ∪ · · · ∪ γN−1 (see Figure 4.1). Then by

Corollary 3.17, Ω = ∂γ ∪K is a distance solution. In fact, it is easy to see
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Figure 4.1: Fattening of a figure-eight curve

that Ω must be the level set flow of γ∗ as Ω cannot be enlarged without

enlarging its boundary. Note that the area of Ω is given by

H2(Ωt) = 2π(N − 1)t

by evolution of enclosed area (4.1) for each of the boundary components of

Ω. Finally, further results of Lauer imply that γN and γ0 are both smooth

curve shortening flows of γ∗ on (0, T ).

Proposition 4.3 shows that in the case of continuous curves of zero

Lebesgue measure in R2, fattening of γ at time t = 0 is equivalent to the

non-uniqueness of the smooth curve shortening flow originating at γ∗. Such

non-uniqueness can be attributed to the possibility of parameterizing the

initial data in at least two non-equivalent ways. For example, in Figure 4.1,

the initial curve can be parameterized in at least three ways: smoothly by

traversing the self-intersection transversely, as a Lipschitz curve with two

corners at the self-intersection, or as a Lipschitz image of S1qS1. The later

parameterizations produce the outer and inner solutions γ3
t and γ1

t ∪ γ2
t ,

while the first parameterization produces a self-intersecting distance solu-

tion contained in Kt.

For codimension-1 surfaces Γ∗ ⊂ Rn+1, Ilmanen has proven that a result

similar to Proposition 4.3 holds. In particular, Theorems 11.4 and 12.9 of

[15] imply that if the n-dimensional level set flow of Γ∗ does not develop
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n-dimensional fattening, there is a unique “boundary motion” of Γ∗ which

can be thought of as a kind of maximal Brakke flow. While the details

of this result are outside the scope of this thesis, the tools that we have

developed allow us to prove that non-fattening implies uniqueness of smooth

codimension-1 flows. (Note that the while the statement of the this result

is not taken directly from any of the references, the principle is well-known

and not original to this work.)

Proposition 4.4. Suppose Γ∗ ⊂ Rn+k has an n-dimensional level set flow

Γ which does not develop n-dimensional fattening at t = 0. Then there is at

most one embedded smooth flow M of Γ∗ satisfying limt→0 dH(Mt,Γ
∗) = 0.

Proof. Suppose that there exist two different smooth flows M and N of Γ∗

which approach Γ∗ in Hausdorff distance. Note that M and N are distance

solutions by the results of Section 3.2. Furthermore, it is easy to see that if

lim inft→0Mt 6⊂ Γ∗, for some there would be points inMt at least ε away from

Γ∗ for arbitrarily small t. Hence we could not have limt→0 dH(Mt,Γ
∗) = 0.

Therefore, the initial inclusions M0 ⊂ Γ∗ and N0 ⊂ Γ∗ hold.

As in the proof of Proposition 4.3, our approach is to glue in the region

between Mt and Nt. Let δM and δN be the signed distance functions to

Mt and Nt, defined so that
{
x
∣∣ δM (x, t)

}
is compact, and likewise for δN .

Define

Kt =
{
x
∣∣ δM (x, t)δN (x, t) ≤ 0

}
.

It is easy to check that Kt satisfies the assumptions of Corollary 3.17, and so

Ω = K ∪M ∪N is a distance solution. Since M and N are distinct smooth

solutions, by continuity Kt (and thus Ωt) has non-empty interior for t > 0.

Finally, one can see that

dH(Kt,Γ
∗) ≤ dH(Mt ∪Nt,Γ

∗) ≤ max {dH(Mt,Γ
∗), dH(Nt,Γ

∗)} → 0

so K satisfies the initial inclusion K0 ⊂ Γ∗. Hence Ω ⊂ Γ and Γ has n-

dimensional fattening at t = 0.

As an application of Proposition 4.4, we consider the case when Γ∗ is

star-shaped about a point x0 ∈ Rn+1. That is, each ray originating at
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x0 intersects Γ∗ exactly once. Under this hypothesis, we will show that

the level set flow of Γ∗ does not develop n-dimensional fattening for small

t > 0, and therefore Γ∗ admits at most one embedded smooth flow Mt with

limt→0 dH(Mt,Γ
∗) = 0. Note that Soner has proven a similar result using

rather different methods [22].

Proposition 4.5 ([22], Theorem 9.3). Let Ω ⊂ Rn+1 be a compact domain

and assumed Γ∗ = ∂Ω is star-shaped about x0, then its level set flow Γ does

not develop n-dimensional fattening at t = 0.

Proof. Without loss of generality, suppose that x0 = 0. For x ∈ Rn+1 \ {0}
define p(x) to be the unique intersection the ray from 0 through x with Γ∗.

Let ρ(x) = |p(x)|
|x| . Now define

u0(x) =


1/2 if ρ(x) ≤ 1/2

3/2 if ρ(x) ≥ 3/2

ρ(x) otherwise.

Note that Γ∗ is the 1-level set of u, and u0 is uniformly continuous. Note

that in codimension-1, Lemma 3.4 holds for every level set see e.g. [12].

That is, the level set flow of the λ-level set of u0 is given by the λ-level sets

of the solution u to (3.5) with initial data u0. In particular Γ is the 1-level

set of u.

Now suppose to the contrary that Γ develops n-dimensional fattening

at t = 0. Let Γλ be the level set flow of λΓ∗. By Lemma 3.5 we have

Γλt = λΓλ−1t. On the other hand, for 1
2 ≤ λ ≤ 3

4 , λΓ∗ is exactly the λ-level

set of u0. Therefore for 1
2 < λ < 3

2 , the λ-level sets of u are given by 1
λΓλt.

Thus, if Hn(Γt) > 0 for 0 < t < t0, an uncountable number of level sets

of u will have positive Hn-measure at some small positive time, which is

impossible.

In the case when k > 1, much less is known about the fattening phe-

nomenon. On one hand, the results of Herskovitz discussed in Section 3.2

show that if the initial data Γ∗ is a ε-Reifenberg set with ε sufficiently small,
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then Γ will not develop α-dimensional fattening at t = 0 for any α > n. (In

fact even if dimH Γ∗ > n, then Γ will “thin” down to dimension n for some

positive time.) On the other hand, it is possible for sets which are initially

smooth to develop self-intersections from which fattening occurs after finite

time. One known example of this phenomenon was produced by Bellettini,

Novaga, and Paolini. Using methods based on the geometric barrier formu-

lation of di Giorgi, they showed in some special cases that disjoint curves

in R3 develop 3-dimensional fattening at the time of their first transverse

intersection [6]. This suggests that, even in the case of curves, there may

not be a characterization of fattening as simple as that in Proposition 4.3.

4.2 Fattening of Immersed Curves

In this section we extend the example of Bellettini et al. of fattening of

curves in R3 mentioned above. To introduce our results, we first give a

more detailed description of this example. Bellettini et al. consider a pair

of embedded closed curves in R3 which lie in distinct planes, and which

are initially linked. Up until the time at which they intersect, these curves

evolve smoothly by curve shortening flow. It is shown that from the time of

the intersection onward, there is (in the language of this thesis) a distance

solution which remains connected. There is also a disconnected distance

solution consisting of the smooth evolutions of the original curves. The

authors then use a similar method to that in Corollary 3.17 to prove fattening

by joining together these distance solutions. The proof of the existence of

the connected distance solution relies heavily on the fact that the initial

curves are planar. Hence, the method is not applicable to single curves

which develop a self-intersection, such the one shown in Figure 4.2.

Our aim is generalize the example of linked planar curves by proving

that if any smooth curve in R3 (possibly non-compact or with multiple com-

ponents) evolving by curve shortening flow has a transverse self-intersection,

then the corresponding level set flow develops fattening at the time of the

self intersection. This result was expected by Bellettini et al. and broadens

the cases in which fattening is known to occur. As with previous examples
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Figure 4.2: A twisted curve in R3

of fattening, the method will be to apply Theorem 3.16 to prove that the

level set flow contains a large set after the time of the intersection. In par-

ticular, we consider suitably chosen planes Σ through the intersection point.

We show that Σ contains two distinct intersections with the evolving curve

after the time of the self-intersection. We then construct a distance solution

contained in Σ which connects these two intersections. Finally, we show

that all of these distance solutions must be contained in the level set flow.

In this section, M will be a 1-manifold (possibly disconnected) and

γ : M × I → R3 will be a smooth immersed curve evolving by the curve

shortening flow on some time interval I. That is

∂

∂t
γ = κN (4.2)

where κ is the curvature of γ and N is the Frenet unit normal vector. Note

that the combination κN is always well-defined even though N may not be.

The unit tangent vector of γ will be denoted by T .

To set up our construction, we first define the type of self-intersections

which we consider. The following definition ensures that a self-intersection

will immediately break apart and that the curve does not lie in a single

plane.

Definition 4.6. A self-intersection γ(p1, t) = γ(p2, t) for p1 6= p2 will be
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called strongly transverse if

〈κ(p1, t)N(p1, t), κ(p2, t)N(p2, t)〉 < 0 (4.3)

and

dim span {N(p1, t), T (p1, t), N(p2, t), T (p2, t)} = 3. (4.4)

Note that the normal vectors in (4.4) are well-defined because (4.3) ensures

that κ(p1, t) and κ(p2, t) are non-zero.

From now on, we will assume without loss of generality that γ has a

strongly transverse self-intersection at t = 0 such that γ(p1, 0) = γ(p2, 0) =

0. We proceed by constructing a large family of planes which have well-

controlled intersections with γ(·, t) for t > 0.

Lemma 4.7. With the above assumptions, for all ε > 0 there exists ν ∈ S2

such that ∣∣∣∣〈κ(pi, 0)N(pi, 0), ν〉
〈T (pi, 0), ν〉

∣∣∣∣ < ε for i = 1, 2.

and 〈T (pi, 0), n〉 6= 0 for i = 1, 2.

Proof. For brevity, we let Ni = N(pi, 0), Ti = T (pi, 0) and κi = κ(pi, 0) for

i = 1, 2.

There are two cases to consider. First, if N1 and N2 are linearly depen-

dent, then we can write ∣∣∣∣〈κ2N2, ν〉
〈T2, ν〉

∣∣∣∣ =

∣∣∣∣〈λκ2N1, ν〉
〈T2, ν〉

∣∣∣∣
for some λ, and choose ν such that 〈N1, ν〉 = 0 while 〈Ti, ν〉 6= 0 for i = 1, 2.

On the other hand, suppose that N1 and N2 are linearly independent.

Then N1 ×N2 6= 0. We claim that one of 〈N1 ×N2, T1〉 or 〈N1 ×N2, T2〉 is

non-zero, for if both were zero, then the sets

A = {N1, N2, T1}

B = {N1, N2, T2}
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would both be linearly dependent. Thus the nullspace of the matrix X with

A∪B as columns would have dimension at least 2, and X would have rank

at most 2, contradicting (4.4). Now, without loss of generality, suppose that

|〈N1 ×N2, T1〉| > 0. Then we can choose ν such that 〈κ2N2, ν〉 = 0 and ν is

close enough to N1 ×N2 that ∣∣∣∣〈κ1N1, ν〉
〈T1, ν〉

∣∣∣∣ < ε

because the norm of the denominator is bounded below as ν → N1×N2.

Lemma 4.7 now allows us to apply the implicit function theorem to

choose planes Σ through the origin for which the intersections of Σ and

γ move away from each other after t = 0 and the curves traced by the

intersection points have bounded gradient (in a sense made precise below).

Proposition 4.8. Suppose that γ is as above. For ν ∈ S2, let Σ(ν) be

the plane through 0 ∈ R3 with normal vector ν. There exists a closed ball

N ⊂ S2, a time T > 0, and δ0 > 0 such for any ν ∈ N , there exist smooth

αi : [0, T ]→ Σ(ν) (i = 1, 2) such that

(i) αi(0) = 0 and αi(t) ∈ γ(M, t);

(ii) 〈α′1(t), α′2(t)〉 < 0;

(iii) and

∣∣∣∣〈 α′i(t)

|α′i(t)|
, α̂

〉∣∣∣∣ ≥ δ0 for t ∈ [0, T ]

where α̂ is a unit vector in the direction α′1(0)− α′2(0).

Proof. Let ε > 0 and choose ν0 according to Lemma 4.7. Choose a neigh-

borhood U 3 p1 on which we can parameterize γ by arc length s such that

at t = 0, s = 0 corresponds to p1. Consider the function F : S2×U × I → R
given by

F (n, s, t) = 〈γ(s, t), n〉.

Note that we have F (ν0, 0, 0) = 0 and Fs(ν0, 0, 0) = 〈T (p1, 0), ν0〉 6= 0 by 4.7.

Hence, by the implicit function theorem, there exists a neighborhood V ⊂

38



S2× I containing (ν0, 0) and a function s1 : V →M such that s1(n0, 0) = 0

and F (ν, s1(ν, t), t) = 0. Let α1(ν, t) = γ(s1(ν, t), t). Define α2(ν, t) in the

same way, using p2 in place of p1.

By definition of F , we have αi(ν, t) ∈ Σ(ν)∩ γ(M, t) hence condition (i)

is satisfied. The implicit function theorem and the evolution of γ also give

α′i(ν, 0) = κ(pi, 0)N(pi, 0)− 〈κ(pi, 0)N(pi, 0), ν〉
〈T (pi, 0), ν〉

T (pi, 0).

Using the fact that 〈κ(p1, 0)N(p1, 0), κ(p2, 0)N(p2, 0)〉 < 0, we can ensure

that the choice of ε above is small enough that 〈α′1(ν0, 0), α′2(ν0, 0)〉 is nega-

tive. (Note also that choosing such ε depends only |κ(pi, 0)|.) Furthermore,

a simple computation shows that 〈α1(ν0, 0), α2(ν0, 0)〉 < 0 implies that α̂

exists and ∣∣∣∣〈 α′i(ν0, 0)

|α′i(ν0, 0)|
, α̂

〉∣∣∣∣ > 0.

Using the fact that conditions (ii) and (iii) hold for ν = ν0 and t = 0,

by continuity of α1 and α2 we can choose a cylinder Bρ(ν0)× [0, T ] ⊂ V on

which they hold uniformly.

Note that because the smooth solution γ exists past the time T given in

Proposition 4.8, all of the time derivatives of the αi are uniformly bounded

on [0, T ]. In particular |α′i| ≤ κ0 where κ0 is the upper bound on the

curvature of γ on [0, T ].

Our goal is now to find, for each ν ∈ N ⊂ S2, a connected set ην ⊂
Σ(ν)× [0, T ] such that(ην ,

{
αi(ν, t)

∣∣ i = 1, 2
}

) is an interior distance solution

(ην)0 = {0}
(4.5)

Ideally, such a solution would simply be a curve evolving by curve shortening

flow with endpoints α1(ν, t) and α2(ν, t); however, the problem of finding

such a curve is ill-posed since the nominal initial curve is not regular. To

avoid this problem, we will find such a curve on the time interval [t0, T ]

and show that we can obtain a solution to (4.5) by taking a weak limit
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as t0 ↘ 0. It turns out that this limit may not be a curve, but this is

acceptable for our purposes. For the time being, we fix a particular ν ∈ N
and let αi(t) = αi(ν, t). The gradient bounds above let us represent αi as a

graph over α̂.

Lemma 4.9. Let {e1, e2} be orthonormal vectors in Σ(ν) with e1 = α̂, and

let {x, y} be the corresponding coordinates of Σ(ν). For i = 1, 2, there exist

functions βi : [0, Bi] → R and xi : [0, T ] → [0, Bi] such that xi(0) = 0 and

αi(t) = xi(t)e1 + βi(xi(t))e2. Furthermore, |β′i(x)| < δ−1
0 , the functions xi

are monotonic, and B1 < 0 < B2.

Proof. Let xi(t) = 〈αi(t), e1〉. Then using (ii) and (iii) from Proposition 4.8,

we see that xi(t) is monotonic and therefore invertible. Thus we can define

βi(x) = 〈αi(x−1
i (x)), e2〉. Clearly this gives αi(t) = xi(t)e1 +βi(xi(t))e2. We

can compute

β′i(x) =
〈α′i(x

−1
i (x)), e2〉

〈α′i(x
−1
i (x)), e1〉

and using condition (iii) again we have

∣∣β′i(x)
∣∣ < 1

δ0

∣∣∣∣〈 α′i(t)

|α′i(t)|
, e2

〉∣∣∣∣ ≤ δ−1
0 .

Finally, we have Bi = xi(T ). Using the monotonicity of the xi along with the

fact that 〈α′1(0), α′2(0)〉 < 0 the Bi must have opposite sign. By relabeling

if necessary we have B1 < 0 < B2.

Using the notation from Lemma 4.9, for a time interval I, let

ΩI =
{

(x, t)
∣∣ t ∈ I and x1(t) < x < x2(t)

}
(4.6)

as usual ΩI will be the closure of ΩI and ∂PΩI will be the parabolic bound-

ary. We may now consider the restricted graphical problem
ut = uxx

1+u2x
in Ω[t0,T ]

u(xi(t), t) = βi(xi(t)) for i = 1, 2

u(x, t0) = u0(x) for x ∈ [x1(t0), x2(t0)].

(4.7)
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By the usual graphical formulation of the curve shortening flow problem, it

is clear that the graphs of solutions to (4.7) are solutions to (4.5) on the

time interval [t0, T ].

Proposition 4.10. Let x0
i = xi(t0) for i = 1, 2. Suppose that u0 : [x0

1, x
0
2]→

R is a smooth function which satisfies the compatibility conditions

u0(x0
i ) = βi(x

0
i ) (4.8)

(u0)x(x0
i ) = (βi)x(x0

i ) (4.9)

(u0)xx(x0
i ) = 0. (4.10)

Then there exists a smooth solution of (4.7) on Ω̄[t0,t1] for some t1 > t0.

Proof. We first need to construct a smooth function G : Ω[t0,T ] → R such

that G(xi(t), t) = βi(xi(t)) for i = 1, 2 and G(x, t0) = u0(x), and

Gt(x, t0) =
Gxx(x, t0)

1 +Gx(x, t0)2
. (4.11)

The only thing that needs to be checked is that (4.11) holds at x = x0
i , as

G can be always be chosen so (4.11) holds for x ∈ (x0
1, x

0
2). To do this, we

can compute

Gx(xi(t), t)x
′
i(t) +Gt(xi(t), t) = (βi)x(xi(t))x

′
i(t)

which implies that

Gt(x
0
i , t0) = ((βi)x(x0

i )−Gx(x0
i , t0))x′i(t0) = ((βi)x(x0

i )−(u0)x(x0
i ))x

′
i(t0) = 0

using the compatibility condition on u0. On the other hand,

Gxx(x0
i , t0) = (u0)xx(x0

i ) = 0
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so (4.11) holds at x = x0
i . Thus, (4.7) reduces tout = uxx

1+u2x
in Ω[t0,T ]

u|∂P Ω[t0,T ]
= G|∂P Ω[t0,T ]

.
(4.12)

Standard theory on quasilinear parabolic equations ([16], Theorem VI.4.1)

now implies the existence of a smooth solution on Ω[t0,t1] for some t1 >

t0.

In order to complete the construction of solutions to (4.5), we must show

that the short time solutions given by (4.10) can be extended to [t0, T ], and

that we can obtain a solution in the limit as t0 ↘ 0. The following uniform

gradient bound will serve both of these needs.

Proposition 4.11. Suppose that u is a smooth solution to (4.7) on Ω[t0,t1)

with |(u0)x| < δ−1
0 . Then |ux| ≤ δ−1

0 on Ω̄[t0,t1).

Proof. First we show that |ux(xi(t), t)| ≤ δ−1
0 for t ∈ [t0, t1). To simplify

matters, we will prove ux(x2(t), t) ≤ δ−1
0 . The same proof will work for the

other cases. Suppose toward a contradiction that at t′ ∈ [t0, t1) we have

ux(x2(t′), t′) > δ−1
0 . Let `(x) = δ−1

0 (x− x2(t′)) + β2(x2(t′)) describe the line

through α2(t′) with slope δ−1
0 . We claim that there exists x′ ∈ (x1(t′), x2(t′))

such that `(x′) = u(x′, t′). In particular, note that for some ε > 0 we have

`(x2(t′) − ε) − u(x2(t′) − ε, t′) > 0 by our assumption on ux. A simple

computation using the bound (βi)x < δ−1
0 and the fact that x1(t′) < 0 shows

that `(x1(t′))− u(x1(t′), t′) < 0 (see Figure 4.3). Hence by the intermediate

value theorem there exists x′ as claimed above. Note that the graphs of u

and ` must cross transversely at (x′, u(x′, t′)), and thus by continuity this

crossing must have existed on some time interval before t′.

Let G(u) and G(`) denote the graphs of u and `. Both G(u) and G(`)

move by curve shortening flow on their interiors. Thus the intersection

principle of Angenent ([3], Section 5), implies that the number of crossings

between these curves is non-increasing as long as the endpoints of G(u)

remain disjoint from G(`). It is easy to see that t′ is the first time that an

endpoint of G(u) intersects G(`). Furthermore, G(`) is disjoint from G(u0)
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Figure 4.3: Schematic of the proof of the gradient bound in Proposition 4.11.
The shaded region on the left shows the area that u0 may lie in. Note that
it must be disjoint from `.

by the assumption that |ux| ≤ δ−1
0 . Hence we have obtained a contradiction

as the number of interior intersections of G(u) and G(`) must be zero up to

time t′. This completes the proof that |ux(xi(t), t)| ≤ δ−1
0 for t ∈ [t0, t1).

Now, we apply the maximum principle to prove the result on the entire

domain. Denote by ∂
∂s the operator which gives the derivative with respect

to arc length. It is well known (see, e.g. [1]) that for a curve moving by

curve shortening flow with tangent vector T and V a fixed vector, we have

∂

∂t
〈T, V 〉 =

∂2

∂s2
〈T, V 〉+ 2κ2〈T, V 〉. (4.13)

In our case, ∂
∂s = 1√

1+u2x

∂
∂x and we take V = e2 to obtain

∂

∂t

(
ux

1 + u2
x

)
=

∂2

∂s2

(
ux

1 + u2
x

)
+ 2κ2

(
ux

1 + u2
x

)
. (4.14)

Thus 〈T, e2〉 = ux
1+u2x

satisfies the parabolic maximum principle. Combining

the assumptions and the first part of this proof give bounds on ∂PΩ[t0,t1),

which then extend to the interior. Thus |〈T, e2〉| <
δ−1
0

1+δ−2
0

, from which the

conclusion follows.

It is well known that it is possible to obtain strong curvature bounds
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for graphical solutions of mean curvature flow satisfying a uniform gradient

bound.

Proposition 4.12. Suppose that u is a solution to (4.7) with |ux| ≤ δ−1
0 .

Let κ = uxx
(1+u2x)3/2

. Recall that κ0 is the uniform bound on the curvature of

the original evolving curve γ. We have

(a)
∣∣∣∂lκ∂sl ∣∣∣ ≤ Cl(u0, δ0, ‖α1‖Cl , ‖α2‖Cl) for l = 0, 1, 2, . . .;

(b) and (t− t0)κ(x, t)2 ≤ C(δ0, κ0) for (x, t) ∈ Ω(t0,t1).

Proof. These bounds follow from well-known results of Ecker and Huisken

[11]. Proposition 4.12(a) is proven via an inductive application of the max-

imum principle to the evolution equations satisfied by the derivatives of κ

([11], Proposition 4.3). For Proposition 4.12(b), see [11], Proposition 4.4.

The only modification necessary is the incorporation of the contribution of

the derivatives of the boundary data αi into the constants.

These bounds allow us to extend the solution up to time T using the

usual long-time existence procedure (see, e.g. [11], Theorem 4.6).

Lemma 4.13. With the same notation as Proposition 4.10, if |(u0)x| ≤ δ−1
0 ,

there exists a smooth solution of (4.7) on Ω[t0,T ] satisfying the bounds of

Proposition 4.12.

Proof. Let A ⊂ [t0, T ] be the set of times up to which the maximal solution

of (4.7) is defined. By Proposition 4.10, A is open and non-empty. Since

u0 satisfies the hypothesis of Proposition 4.11, the maximal solution has

bounded gradient for all time, and therefore Proposition 4.12(a) and the

Arzela-Ascoli theorem imply that A is closed. Therefore A = [t0, T ].

In order to make use of the long-time existence theory above, we need

to construct appropriate initial data for each time t0 > 0. Note that we do

not assert any curvature bounds on our choice of initial data, and in fact,

none are possible if α′1(0) 6= −α′2(0). Therefore, the curvature independent

bound of Proposition 4.12(b) is crucial in obtaining convergence below.
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Lemma 4.14. For each t0 > 0, there exists an initial function u0 : [x0
1, x

0
2]→

R, satisfying the compatibility condition of Proposition 4.10 and with |(u0)x| <
δ−1

0 .

Proof. Let ε > 0 and define

ũ0(x) =


β1(x0

1) + (β1)x(x0
1)(x− x0

1) if x0
1 ≤ x ≤ x0

1 + ε

β2(x0
2) + (β2)x(x0

2)(x− x0
2) if x0

2 − ε ≤ x ≤ x0
2

ξ(x) otherwise

where ξ(x) is the linear function which makes ũ0 continuous. By taking ε

small enough, we can see that ũ0 is Lipschitz with constant less than δ−1
0 by

using the bounds on the βi and their derivatives. Thus, we can obtain u0

by smoothing ũ0 slightly near the two corners at x0
1 + ε and x0

2 − ε.

To obtain weak limits of the solutions to (4.7) on [t0, T ] from which we

can construct the desired interior distance solution, we need to ensure that

these limits will have sufficient regularity. In particular, we show that half

relaxed limits preserve local Lipschitz constants.

Lemma 4.15. Let U be a connected domain in Rd. Suppose that un : U → R
is a sequence such that for each K ⊂⊂ U , un|K is L-Lipschitz for some

constant L depending only on K. The upper and lower half relaxed limits

ū = lim sup∗ un and
¯
u = lim inf∗ un also satisfy this property with the same

Lipschitz constants.

Proof. We prove the result for the upper half relaxed limit. Let x, y ∈ U
and K ⊂ U be a compact set containing x and y. Then un|K is Lipschitz

with constant L. Suppose xn → x and yn → y. Without loss of generality

we can assume that xn ⊂ K and yn ⊂ K. Then we have

|un(xn)− un(yn)| ≤ L|xn − yn| ⇒ un(xn) ≤ L|xn − yn|+ un(yn).

Taking the lim sup of both sides gives

lim supun(xn) ≤ L|x− y|+ lim supun(yn).
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Taking the supremum over such sequences xn and yn gives

ū(x)− ū(y) ≤ L|x− y|.

To obtain the lower bound, the argument can be repeated, switching the

roles of x and y. For the lower half-relaxed limit, the same proof applies.

Finally, we can put together the results above to obtain existence of

solutions to (4.5).

Proposition 4.16. There exists a solution η to (4.5) such that ηt consists of

the region in Σ(ν) bounded by two Lipschitz curves joining α1(t) and α2(t).

Proof. By Lemma 4.13, for each n > 1, we obtain a solution un of (4.7) on

Ω[T/n,T ] with initial data un0 given by Lemma 4.14. If K ⊂⊂ Ω(0,T ], then

for some N and all n > N , un will be defined on K. The uniform gradient

bound of Proposition 4.11 combined with the interior time-derivative bound

of Proposition 4.12(b) shows that un|K is L-Lipschitz for some constant

depending L on δ0, κ0, and K only. Thus, by Lemma 4.15,

ū = lim sup∗ un and
¯
u = lim inf∗ u

n

are locally Lipschitz with ū ≥
¯
u. Furthermore, by Lemma 2.8, ū (resp.

¯
u)

is a subsolution (resp. supersolution) of (4.7) on Ω(0,T ]. We define

ηt =
{
xe1 + ye2

∣∣ x1(t) ≤ x ≤ x2(t) and
¯
u(x) ≤ y ≤ ū(x)

}
for t > 0 and η0 = {0} and

∂η =
{

(x, t)
∣∣ t ∈ [0, T ], x = α1(ν, t) or x = α2(ν, t)

}
.

It remains to be shown that (η, ∂η) is an interior distance solution. Suppose

that (x, t) ∈ η \ ∂η. By a similar argument to that in the proof of Proposi-

tion 3.15, there exists a neighborhood (x, t) ∈ U ⊂ Σ(ν) × I such that for

(x0, t0) ∈ U and y0 ∈ ηt with δη(x0, t0) = |x0 − y0|, we have y0 ∈ ηt\∂ηt∩U .

We will show that δη|U is a supersolution of (3.4) with n = k = 1. The proof
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of Proposition 3.13 will then imply that δη|U×R is a supersolution of (3.4)

with k = 2.

The strategy to do this is to convert test functions for η into test functions

for
¯
u and ū, and then apply the equations obtained using the fact that

¯
u

and ū are supersolutions and subsolutions of (4.7) (see Figure 4.4). We first

consider a point (p0, t0) ∈ U such that p0 is given in the coordinates used

above as (x0, y0) and satisfies

¯
u(x0, t0) > y0.

Let φ : Σ(ν) × I → R be a C2 function touching δ from below at (p0, t0).

Define

φ̃(q0, t) = φ(x+ p0 − q0, t)− |p0 − q0|

where q0 ∈ η \ ∂η is such that δη(p0, t0) = |p0 − q0|. Let

Zt =
{
φ̃(x, t) = 0

∣∣ x ∈ Σ(ν)
}
.

We claim

(i) there exists a neighborhood V 3 (q0, t0) such that Zt ∩ Vt lies below

the graph of
¯
u(·, t);

(ii) and φ̃y(q0, t0) < 0.

To see (i), let W 3 (p0, t0) be such that φ ≤ δη on W , and define V ={
(x− p0 + q0, t)

∣∣ (x, t) ∈W
}

. Let (z̃, t) ∈ V ∩Z. Then there exists (z, t) ∈
W such that z̃ = z − p0 + q0. We then have

0 = φ̃(z̃, t) = φ(z̃ + p0 − q0, t) = φ(z, t)− |p0 − q0|.

By definition of W , this implies

δ(z, t) ≥ φ(z, t) = |p0 − q0|.

Since |z̃ − z| = |p0 − q0| either z̃ lies outside ηt or on the boundary of ηt.

Therefore z̃ must lie below the graph of
¯
u.
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To see (ii), note that ∇φ̃(q0, t0) = ∇φ(p0, t0) 6= 0, since φ touches a

distance function from below away from its zero set. Thus, if φ̃y(q0, t0) = 0,

the implicit function theorem would give w such that φ̃((w(y, t), y), t) = 0 in

a neighborhood of (q0, t0). Unless the graph of
¯
u had a vertical tangent at

q0, this would contradict (i). Since
¯
u is locally Lipschitz, this is impossible.

Furthermore, note that for ε small, we have

φ((x0, y0 + ε), t0) ≤ δη((x0, y0 + ε), t0) ≤ δη((x0, y0), t0) = φ(p0, t0)

since p0 lies below the graph of
¯
u. Hence φy(p0, t0) ≤ 0. Combining these

facts gives φ̃y(q0, t0) < 0.

From (i) and (ii), the implicit function theorem gives v such that

φ̃((x, v(x, t)), t) = 0 (4.15)

and v(x, t) ≤
¯
u(x, t) (4.16)

for (x, t) in a neighborhood of ((q0)x, t0). Note also that v((q0)x, t0) = (q0)y,

so v touches
¯
u from below at ((q0)x, t0). Therefore, by the fact that

¯
u is a

supersolution of (4.7), we have

vt ≥
vxx

1 + v2
x

. (4.17)

at ((q0)x, t0). Differentiating (4.15) and substituting into (4.17) gives

− φ̃t
φ̃y
− 1

φ̃y
F (∇φ̃,∇2φ̃) ≥ 0

at (q0, t0). Using (ii) and the definition of φ̃, this gives

φt + F (∇φ,∇2φ) ≥ 0

at (p0, t0), which shows that δη is a supersolution of (3.4) on the portion of U

lying below the graph of
¯
u. The same argument, with inequalities reversed,

and using the fact the ū is a supersolution, implies that δη is likewise a
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Figure 4.4: Schematic of the proof of Proposition 4.16. The shaded region
is the interior of (ην)t.

supersolution on the portion of U lying above the graph of ū. Finally, we

apply Lemma 3.11 to conclude that δη is a supersolution on all of U , and

therefore (η, ∂η) is an interior distance solution.

Theorem 4.17. Suppose that γ : M × [−ε, ε) → R3 is a smooth immersed

curve evolving by curve shortening flow which has a strongly transverse

self-intersection at time 0. Then the level set flow Γ of γ−ε develops 2-

dimensional fattening at time 0.

Proof. Let N ⊂ S2 and 0 < T < ε be as in Proposition 4.8. Then by

Proposition 4.16, for each ν ∈ N , there exists a solution ην of (4.5) defined

on [0, T ]. By the construction of these solution, Theorem 3.16 shows that

the set

Ω = γ(M, [−ε, ε)) ∪
⋃
ν

ην
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is a distance solution on [−ε, T ). (Note that γ(M, [−ε, ε]) is a distance

solution because it is locally a union of embedded smooth flows.) Therefore

Ωt ⊂ Γt for −ε ≤ t < T .

At time 0 < t < T , there must be at least one curve in N on which

the maps ν 7→ αi(ν, t) are injective and the segment `ν joining α1(ν, t) to

α2(ν, t) does not pass through the origin. Then each ην for ν along this curve

contains at least one Lipschitz curve (say the graph of
¯
u). Furthermore, by

the condition on `ν , this curve has a segment with length bounded below

which lies only in Σ(ν). This is enough to show that H2(Γt) > 0.

As an example of the type of case which Theorem 4.17 addresses which

is not covered by [6], consider the twisted curve depicted in Figure 4.2.

By symmetry, it is easy to see that the small central twist must develop a

strongly transverse self intersection after a finite amount of time. At this

point, we conclude that the level set flow will develop (at least) 2-dimensional

fattening.
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Chapter 5

Conclusion

In this thesis, we have studied generalized evolutions of submanifolds by

mean curvature flow, focusing on the level set solutions of Ambrosio and

Soner, and the fattening phenomenon which occurs with such solutions.

Apart from presenting some of the existing results on this phenomenon, our

main contributions have been to prove Theorem 3.16, a new gluing result

for distance solutions, and to use this result to prove Theorem 4.17 which

demonstrates the occurrence of fattening when immersed curves develop

self-intersections.

Theorem 4.17 may help to understand the fattening phenomenon in

higher codimension in several ways. First, it verifies a case of fattening

which was suspected, but not proven to occur except in some very special

cases [6]. Second, it provides an interesting piece of information when consid-

ering the relationship between fattening and non-uniqueness. In particular,

the existence results for smooth flows with rough initial data in higher codi-

mension generally require a smallness assumption (on e.g. the Lipschitz or

Reifenberg constants of the initial data [14]). On the other hand, such an

assumption may not be satisfied by a parameterization of a self-intersecting

curve. Thus, it seems plausible that the fattening proven in Theorem 4.17

is not directly due to the existence of multiple smooth solutions, in con-

trast to the case of curves in R2 (Proposition 4.3). Finally, we note that

while some of results in Section 4.2 were specific to curves, the basic method
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of constructing multiple codimension-1 distance solutions confined to affine

subspaces in order to prove fattening may be applicable in other situations.

For example, the same method could feasibly be used to demonstrate fatten-

ing when a 2-dimensional surface in R4 develops a self-intersection along a

curve. Constructing such examples of fattening in higher codimension may

further illuminate our understanding of this phenomenon, and subsequently

allow for more applications of the mean curvature flow.
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