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Abstract 

Tree improvement programs are long-term and resource-demanding endeavors consisting of 

repeated cycles of breeding, testing, and selection and suffer from protracted testing phases. 

Phenotypic selection is commonly practiced and often requires trees reaching certain age and/or 

size resulting in slow accumulation of genetic gain. Open-pollinated (OP) family testing is the 

simplest and most economical means for screening, evaluating, and ranking large number of 

candidate parent trees but suffers from inflated additive genetic variance and heritability estimates. 

This dissertation investigates genomic selection (GS) and its applicability to forestry in selection 

and progeny testing evaluation. 

To address these two applications, I studied yield and wood traits from two white spruce 

populations, genotyped using Genotyping-by-Sequencing and SNPs array. I investigated the 

applicability of GS using the Ridge Regression Best Linear Unbiased Predictor (RR-BLUP) and 

the Generalized Ridge Regression (GRR)) algorithms and validated the derived predictive models 

in space across three progeny testing sites in interior British Columbia. Moreover, using principal 

component analysis (PCA), I fitted a multi-traits GS predictive model to address the inter-

correlation among the studied attributes. Additionally, the Genomic Best Linear Unbiased 

Predictor (GBLUP) was used in genetic variance decomposition framework to unravel additive 

from non-additive genetic variances and I compared the results to that from the traditional 

pedigree-based (ABLUP) analysis. Differences between the RR-BLUP and GRR predictive 

models’ accuracies were observed indicating that the studied attributes’ genetic architecture is 

complex. Validating the GS’s predictive models in space clearly confirmed multi- to single-site 

superiority as they account for the genotype x environment interaction, commonly observed in 

forestry evaluation trials. When PCA scores used as multi-trait representatives, GS prediction 
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models produced surprising results where the concurrent selection of negatively correlated traits 

such as wood density and growth is possible. The genetic variance decomposition indicated that 

the genomic-based approach outperformed that of the pedigree-based with the successfully 

separation of additive from non-additive genetic effects. This approach was demonstrated in a 

single- and extended to multi-site scenario, propelling OP testing to the forefront of forest trees 

genetic evaluation. In general, the effectiveness of GS was clearly demonstrated as an alternative 

selection and evaluation method. 
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Gamal El-Dien O, Ratcliffe B, Kĺap̌st ̌e J, Porth I, Chen C, El-Kassaby YA. (2016). Genetic 

variance decomposition using genomic relationships in interior spruce multi-site open-pollinated 

family testing. (under review). 

The author, Omnia Ibrahim 

University of British Columbia 



v 

 

Table of Contents 

Abstract .......................................................................................................................................... ii 

Preface ........................................................................................................................................... iv 

Table of Contents ...........................................................................................................................v 

List of Tables ............................................................................................................................... vii 

List of Figures ............................................................................................................................... ix 

Acknowledgements ...................................................................................................................... xi 

Dedication .................................................................................................................................... xii 

Chapter 1: Introduction ............................................................................................................... 1 

 From traditional tree improvement to Genomic Selection (GS) ................................. 1 

 Research objectives ..................................................................................................... 4 

 Thesis overview .......................................................................................................... 4 

Chapter 2: Genomic selection (GS) and its validation in space ................................................ 6 

 Introduction ................................................................................................................. 6 

 Materials and methods ................................................................................................ 9 

 Results ....................................................................................................................... 17 

 Discussion ................................................................................................................. 23 

 Summary ................................................................................................................... 30 

Chapter 3: Genomic-based vs. pedigree-based approach to genetic variance decomposition 

in single-site OP white spruce population ................................................................................. 45 

 Introduction ............................................................................................................... 45 

 Materials and methods .............................................................................................. 48 

 Results ....................................................................................................................... 52 



vi 

 

 Discussion ................................................................................................................. 56 

 Summary ................................................................................................................... 64 

Chapter 4: Extension of the OP testing genetic analysis to multi-site using Interior spruce 

populations from British Columbia .......................................................................................... 73 

 Introduction ............................................................................................................... 73 

 Materials and methods .............................................................................................. 75 

 Results ....................................................................................................................... 79 

 Discussion ................................................................................................................. 83 

 Summary ................................................................................................................... 88 

Chapter 5: Conclusion ................................................................................................................ 96 

 Research novelties and potential applications .......................................................... 96 

 Conclusions regarding goals and future research directions ..................................... 97 

 Strengths and limitations........................................................................................... 99 

Bibliography ...............................................................................................................................100 

 



vii 

 

List of Tables 

Table 2.1 The comparison of imputation methods’ accuracies .................................................... 32 

Table 2.2 Imputation methods used for genotyping-by-sequencing data ..................................... 32 

Table 2.3 Imputation accuracy of kNN-Fam method with different K1 and K2 values .............. 32 

Table 2.4 Multi- and single site heritability estimates and their standard errors using pedigree 

(ABLUP) and genomic (GBLUP) best linear unbiased predictors. .............................................. 33 

Table 2.5 Within site (PGTIS, Aleza Lake (AL), and Quesnel) genomic selection prediction 

accuracies and their standard errors for RR-BLUP and GRR models across 30% missing data 

imputation methods (MI-30% and EM-30%). .............................................................................. 34 

Table 2.6 Within site (PGTIS, Aleza Lake (AL), and Quesnel) genomic selection prediction 

accuracies and their standard errors for RR-BLUP and GRR models across 60% missing data 

imputation methods (MI-60%, kNN-Fam-60% and SVD-60%). ................................................. 35 

Table 2.7 Within multi-site genomic selection prediction accuracies and their standard errors for 

RR-BLUP and GRR models for the studied five imputation methods. ........................................ 36 

Table 2.8 Single site GS prediction accuracies and their standard errors resulting from using the 

multi-sites as training population for RR-BLUP and GRR models for kNN-Fam-60% imputation 

method........................................................................................................................................... 37 

Table 2.9 Cross-site GS prediction accuracies for all studied combinations (GS prediction model, 

imputation method, and trait). ....................................................................................................... 38 

Table 3.1 Estimates of genetic variance components and their standard errors for height (HT) and 

wood density (WD) for the Québec white spruce population across the four genetic models. .... 65 

Table 3.2 Correlations for height (HT) and wood density (WD) between estimated individual 

additive breeding values (EBV) and predicted individual additive breeding values (PBV) ........ 66 



viii 

 

Table 3.3 Estimates of genetic variance components and their standard errors using the dominance 

matrix proposed by Su et al. (2012) and discussed by Vitezica et al. (2013) ............................... 67 

Table 4.1 Estimates of genetic variance components (source of variation (S.O.V.) and their 

standard errors (SE) for height (HT) and wood density (WD) across the four genetic models ... 90 

Table 4.2 Height (HT) and wood density (WD) predictability (Pearson product-moment 

correlations between PBV-CV and phenotype) and prediction accuracy (Pearson product-moment 

correlation between PBV-CV and EBV-all) within and among models (ABLUP, GBLUP-A, 

GBLUP-AD, and GBLUP-ADE) using random and family folding (standard errors) ................ 91 

 



ix 

 

List of Figures 

Figure 2.1 Genomic selection prediction accuracies for the seven traits using the RR-BLUP model 

and KNN-60% imputation ............................................................................................................ 41 

Figure 2.2 Genomic selection prediction accuracies for the seven traits using GRR model and 

KNN-60% imputation ................................................................................................................... 42 

Figure 2.3 Cross-site GS accuracy, type-b genetic correlations between sites (Y-axis) and their 

Pearson-product-moment correlations across sites (X-axis) for the seven traits. ......................... 43 

Figure 2.4 The relationship between height genetic gain and genetic diversity for ABLUP (status 

number (Ns)) and GBLUP (number of founder genome equivalent (NGE)) across a range of co-

ancestry penalties. ......................................................................................................................... 44 

Figure 3.1 Representative histograms of the genomic pairwise relationship coefficients ............ 68 

Figure 3.2 Standard error of the predictions (SEP) of breeding values (BV) ............................... 69 

Figure 3.3 Cumulative proportion of the variance explained by eigenvalues .............................. 70 

Figure 3.4 Ranking plots for the top 50 performing white spruce individuals ............................. 71 

Figure 3.5 Ranking plots for the top 50 performing white spruce individuals for GBLUP-A versus 

GBLUP-AE ................................................................................................................................... 72 

Figure 4.1 Height (left) and wood density (right) fitted line plot (predicted ŷ vs observed y values) 

for the four models. ....................................................................................................................... 92 

Figure 4.2 Height (left) and wood density (right) standard error for the predictions of breeding 

values. ........................................................................................................................................... 93 

Figure 4.3 Histogram showing the frequency of observed heterozygosity for GBS derived SNP 

sites. .............................................................................................................................................. 94 



x 

 

Figure 4.4 Height (left) and wood density (right) breeding value ranking plots comparing ABLUP 

versus GBLUP-ADE. .................................................................................................................... 95 

 

 



xi 

 

Acknowledgements 

IN THE NAME OF GOD, MOST GRACIOUS, MOST MERCIFUL 

My PhD journey is the first enjoyable educational challenge in my life, challenges are a part of my 

life but enjoying them is a new feeling for me. I stared to realize the meaning of “UBC a place of 

mind” after beginning the fourth year of my program. It is not only a place where my mind was 

growing and developing scientifically but also a place where my understanding to a lot of life 

perspectives changed. This incredible experience really created a paradigm shift not only in my 

career but also in my whole life aspects. 

On presenting this work, I would like to express my endless thanks to my program supervisor Dr. 

Yousry El-Kassaby for giving me this valuable chance to join his group and creating the perfect 

environment to smoothly transition from pharmaceutical to genomics perspective. I couldn’t find 

enough words to express my appreciation for his support during this enjoyable and challenging 

journey and for trusting my capability of doing this transformation. I would like also to thank my 

supervisory committee members, Drs. Richard Hamelin (UBC), Michael Stoehr (British Columbia 

Ministry of Forests, Lands and Resource Operations), Jaroslav Klápště (Scion, New Zealand 

(formerly known as Forest Research Institute Ltd.)), and Charles Chen (Oklahoma State 

University) for keeping me on the track to finish my thesis and I would like also to thank Dr. Ilga 

Porth (Université Laval) for her generous support and advises during my program. My thanks are 

also extended to Dr. Valerie LeMay (UBC) for her valuable courses and advises, being her student 

and graduate teaching assistance really helped me to build up my biometrics knowledge and 

teaching expertise, and to Dr. Robert Kozak (UBC) for giving me the chance to be one of his 

graduate teaching assistants which greatly enriched my experience. Moreover, I would like to 

thank my funding agencies; the Johnson’s Family Forest Biotechnology Endowment, 

FPInnovations’ ForValueNet, and the Natural Sciences and Engineering Research Council of 

Canada (NSERC) Discovery Grant to Dr. Yousry El-Kassaby. 

Also, I want to express my great appreciation to Blaise Ratcliffe, my lab mate who is working on 

the same project, for sharing data, ideas, and valuable comments. I would like to extend my 

gratitude to the rest of my lab mates for their friendly support: Yang Liu, Susan Song, Faisal Al-

harbi, and Frances Thistlethwaite and to the Departmental stuff specially Natasha and Rosemary. 

I would also like to thank Irina Fundova and Tomas Funda for phenotyping, Tomas Funda and Jiri 

Korecky for DNA extraction, and Cornell’s Genomic Diversity Facility for genotyping (GBS), 

and Barry Jaquish for access to progeny test trials and sharing phenotypic data. 

No words can express my deep thanks to my special family: especially my tender mother Hala 

who is always the light that showed me my path with all her care, blessings and support without 

waiting for something in return, my sisters Yasmine and Menna for their unrelenting 

encouragements especially in my ebbs, my lovely sons Aly, Ahmed and Adam for giving me the 

motive to come to Canada looking for better future and giving me the power to never give up, and 

my aunts, uncles and friends for their prayers and support. Finally, I owe very special endless 

thanks to my dear husband Moustafa for his continuous help, encouragement and support that gave 

me the strength to continue this work and for considering my success his own success.                                                                                                                               

------------“This thesis could have never been accomplished without their support” 

 



xii 

 

Dedication 

To the spirit of my dearest father 

Gamal EL-Dien 

 

 

 

 

To my dear 
Supervisor 

Mother 
Husband 

Sisters 
Sons 

 



1 

 

Chapter 1: Introduction 

 From traditional tree improvement to Genomic Selection (GS) 

The tree improvement programs are long-term and resource demanding endeavors consisting of 

repeated cycles of breeding, testing, and selection following the recurrent selection scheme (White 

et al. 2007). All conventional tree breeding programs are facing three major challenges; the long 

term breeding cycle, the large progeny test sites, and the late expression of most economic 

quantitative trait such as wood density (Grattapaglia 2014). The phenotypic-based selection 

approach is commonly used in the tree improvement programs and often requires trees reaching 

certain age and/or size resulting in slow accumulation of genetic gain per unit time and cost (El-

Kassaby et al. 2014). 

In the past two decades due to the development of molecular technologies and the 

discovery of Next-Generation-Sequencing (NGS), a new approach started to be implemented in 

breeding programs, which is the molecular breeding or genotype based selection. The main 

concept of molecular breeding is the linkage between genetic markers with Quantitative Trait Loci 

(QTLs), which are the genes controlling trait variation of interest (Lande and Thompson 1990; 

Paterson et al. 1991). In 1990’s breeders started to use this technology in the form of Marker-

Assisted-Selection (MAS) “which is the use of a genetic marker for indirect selection of a trait of 

interest, but this technique required the prior knowledge of the genes or marker associated with 

the trait of interest (Lande and Thompson 1990; Paterson et al. 1991). 

As most traits of interest, in breeding programs, are complex quantitative traits controlled 

by many genes, each with small effect (Fisher, 1918), thus it is very difficult to identify all these 

genes and as a result the markers associated with them. For that reason MAS was ineffective in 

both animal and crop breeding and few successes mostly involving oligo-genic traits with simple 
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inheritance (qualitative traits that are controlled by major genes, each with large effect, e.g., disease 

resistance (Neale & Williams, 1991; Williams & Neale, 1992)), were reported (Stuber et al. 1999; 

Dekkers 2004). 

In 2001, the concept of Genomic Selection (GS) was developed by Theo Meuwissen 

(Meuwissen et al. 2001) with the main idea of using all available marker data from the genome as 

predictors of the phenotype, in other word the genomic estimated breeding value (GEBV) of an 

individual. So the major advantage of GS is that it doesn’t require the identification of neither the 

QTLs nor the linked markers, thus making this method suitable for the selection of complex 

quantitative traits, thus creating a paradigm shift from phenotype-based breeding to phenotype-

predicted selection. Using GS, selection can be made at any age and/or size, as long as genotypic 

information can be available; in addition, it has the potential to replace the testing phase, which 

will shorten the breeding cycles and increase the genetic gain per unit time. GS has replaced 

conventional progeny testing in dairy cattle breeding (Goddard et al. 2010; Wiggans et al. 2016) 

and it was also successfully applied in some of major crop breeding programs (Heslot et al. 2012; 

Poland et al. 2012) but GS is still at its infancy in tree breeding programs (Resende, Muñoz, 

Acosta, et al. 2012; Resende, Muñoz, Resende, et al. 2012; Zapata-Valenzuela et al. 2012; 

Beaulieu et al. 2014; Grattapaglia 2014; Isik, Bartholomé, et al. 2015; Isik, Kumar, et al. 2015; 

Bartholomé et al. 2016). 

Alternatively a smaller subset of markers can be used to estimate realized genomic 

relationships matrix, known as (G-matrix), using genotypes shared by individuals and standardizes 

with allele frequencies (VanRaden 2008). Then, the average numerator relationship matrix (A-

matrix) derived from pedigree (Wright 1922) is substituted by the genomic relationship matrix (G-

matrix) to predict genomic estimated breeding values (VanRaden 2008). This analysis is known 
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as Genomic Best Linear Unbiased Predictor (GBLUP) and has the potential to be a powerful tool 

in forest tree breeding programs. Such genomic-based models can capture the Mendelian 

segregation effect in half- and full-sib families, which is not the case using the expected additive 

genetic relationships (A-matrix) (Zapata-Valenzuela et al. 2013). Moreover, GBLUP can remove 

hidden relatedness resulting in more accurate genetic parameters and variance components 

estimates. 

Open-pollinated (OP) (also known as wind-pollinated) family testing is, by far, the simplest 

and most economical means for screening, evaluating, and ranking large number of candidate 

parent trees. OP testing assumes that the tested material are half-sib families, so only additive 

genetic variance will be possible to be determined using pedigree information (traditional 

breeding) (White et al. 2007). As the assumption of half-sib families is hardly fulfilled, all OP 

based estimated genetic parameters (e.g., additive genetic variance, heritability, breeding values, 

etc.) are unreliable, largely reducing the efficiency of this testing method (Namkoong 1966; 

Squillace 1974; Askew and El-Kassaby 1994). 

White and Interior spruce are the most economically important forest tree species in BC. 

Interior spruce is a complex of white spruce (Picea glauca (Moench) Voss), Engelmann spruce 

(Picea engelmannii Parry), and their hybrids and, because of their similar growing habitats and 

silvicultural requirements, they are often collectively treated as one species complex (Sutton et al. 

1991). 

In this study I used two OP testing trials: a multi-site Interior spruce growing in British 

Columbia (N=1,126) replicated over three sites, and a single-site white spruce population growing 

in Quebec (N=1,649). The British Columbia’s populations were genotyped using genotyping-by-

sequencing (GBS), while Quebec population were genotyped using array-based SNP genotyping 
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platform and the phenotypic and genotypic data for this populations are available online at 

(http://datadryad.org/resource/doi:10.5061/dryad.6rd6f) from another study by Beaulieu et al. 

(2014). 

 Research objectives 

This dissertation has two main objectives: 

 Present a proof-of-concept for the applicability of genomic selection (GS) in tree 

improvement programs. 

 Increase reliability of Open-Pollinated testing’s estimated genetic parameters by using 

genomic analysis (GBLUP). 

 Thesis overview 

To achieve these objectives, I divided my thesis into three chapters: 

1.3.1 Chapter 2: Genomic selection (GS) and its validation in space 

Here different GS algorithms and imputation methods (for GBS data) were applied to validate GS's 

predictability in space (in other words, the applicability of a specific-site predictive models to other 

sites within the same breeding zone). The possibility of fitting a multi-traits GS model was also 

investigated. The data used in this chapter included 1,126 trees from 25 OP families of interior 

spruce families replicated over three sites in British Columbia. The phenotypic data were growth 

and wood density attributes and genotypic data were generated using Genotyping-by-Sequencing 

(GBS). This study is the first in using GBS on large scale in forestry’s research. 

1.3.2 Chapter 3: Genomic-based vs. pedigree-based approach to genetic variance 

decomposition in single-site OP white spruce population 

In this chapter, the strength of the GS approach known as Genomic Best Linear Predictor (GBLUP) 

to decompose dominant and epistatic genetic variance from the additive was tested. Commonly, 

http://datadryad.org/resource/doi:10.5061/dryad.6rd6f
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the additive genetic relationship is estimated using the pedigree-based genetic relationship matrix 

(A-matrix; commonly known as ABLUP). Here, I am substituting the A-matrix with the genomic-

based relationship matrix (G-matrix) in the mixed effect linear model to estimate genetic 

parameters, including individuals’ breeding values. GBLUP enabled us to separate the additive 

from non-additive genetic effects (dominance and epistasis) through implementation of additive 

and non-additive marker based relationship matrices, a situation is not possible with pedigree 

analysis (ABLUP). Our results have showed reliable genetic variance estimates using GBLUP, 

particularly for OP families where the additive variance is always inflated when pedigree-based 

analysis is used. It is noteworthy to mention that this study provided the first attempt of such an 

analytical approach in OP family testing. For this analysis, I used a single-site population of pure 

white spruce (N=1,694) representing 214 families growing in Quebec with phenotypic data 

represented by height and wood density and genotypic data generated from SNPs array. The data 

used for this chapter were available online from the Dryad Digital Repository 

(http://datadryad.org/resource/doi:10.5061/dryad.6rd6f) (Beaulieu et al. 2014) 

1.3.3 Chapter 4: Extension of the OP testing genetic analysis to multi-site using interior 

spruce populations from British Columbia  

Here, I extended the model developed in chapter 3 from single-site to multi-site using the same 

population I studied in chapter 2 (i.e., height and wood density and the same genotypes). The 

advantage of multi-site analysis exists in its ability to account for the genotype x environment 

effect which increase the reliability of genetics estimates. Additionally, this model extension 

demonstrated its potential to use on all similar multi-site OP testing programs around the world. 

http://datadryad.org/resource/doi:10.5061/dryad.6rd6f
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Chapter 2: Genomic selection (GS) and its validation in space 

 Introduction 

Tree improvement programs are long-term and resource demanding endeavors requiring repeated 

cycles of selection, breeding and testing. Most of conventional tree breeding programs face major 

challenges; including, long breeding cycles, large field experiments planted over vast territory, late 

expression of economic traits (e.g., wood density), and low to medium heritability of traits 

(Grattapaglia 2014). The phenotypic selection approach coupled with long testing phase often 

result in slow accumulation of genetic gain per unit time and cost (El-Kassaby et al. 2014). Plant 

breeders adopted Marker-Assisted-Selection (MAS) to take advantage of the linkage 

disequilibrium (LD) between genetic markers and Quantitative Trait Loci (QTLs) and realized the 

method’s potential to increase breeding efficiency (Lande and Thompson 1990; Paterson et al. 

1991). Similarly, tree breeders perceived MAS as a means to reduce the time required for 

phenotypic selection, increasing selection intensity, and improving selection precision particularly 

for low heritability and late expressing traits as well as its ability to overcome major conventional 

breeding obstacles such as the long and costly breeding cycle (Neale and Williams 1991; Williams 

and Neale 1992). However, MAS faced several challenges; as most associations were limited to 

only specific genetic background due to the rapidly decaying LD in forest trees, the interaction of 

QTLs effects with the genetic background, the genotype by environment (GxE) interaction, and 

the fluctuation of the alleles frequency over generations (Strauss et al. 1992). The complex nature 

of quantitative traits (Fisher 1918) rendered MAS ineffective in both animal and crop breeding 

and few successes mostly involving traits with simple inheritance (e.g., disease resistance) were 

reported (Stuber et al. 1999; Dekkers 2004). 
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Meuwissen et al. (Meuwissen et al. 2001) introduced Genomic Selection (GS) as a method 

that collectively uses the genome-wide marker data in predicting the phenotype by estimating the 

genomic breeding values for each individual. The major advantage of GS is that it does not require 

the identification of the QTLs or linked markers with target traits as all marker effects are estimated 

simultaneously and used to develop the prediction model for estimating Genomic Estimated 

Breeding Values (GEBV) for each individual. Thus, this method is suitable for selection of traits 

with complex genetic architecture as it does not rely on the identification of a single causal variant, 

rather it fits the genetic effects of all markers regardless of their known functional relevance 

(Meuwissen et al. 2001; Goddard and Hayes 2009). In forest tree breeding context, GS has the 

ability to predict the phenotype for selecting elite genotypes at early age and developmental stage, 

thus substantially shortening the breeding cycle and increasing the selection differential, ultimately 

raising the genetic gain per unit time (Resende, Muñoz, Acosta, et al. 2012; Resende, Muñoz, 

Resende, et al. 2012; Zapata-Valenzuela et al. 2012; Beaulieu et al. 2014). The time savings 

involve tree testing (for late expressing traits in particular), which is not needed in the next few 

generations with GS being implemented in the conifer breeding program, thus providing 15-25 

years anticipated savings (Beaulieu et al. 2014). 

The development of Next-Generation-Sequencing (NGS) technologies and the 

implementation of genetic markers from sequence data in quantitative genetics related to GS, the 

Genomic Best Linear Unbiased Predictor (GBLUP) (VanRaden 2008), and the unified single-step 

evaluation approach (also known as HBLUP, single-step combining pedigree and realized kinship 

information) (Misztal et al. 2009) have created novel opportunities for breeding, including forest 

trees (El-Kassaby and Lstibůrek 2009; El-Kassaby, Cappa, et al. 2011; El-Kassaby et al. 2014; 

Isik 2014). Genotyping-By-Sequencing (GBS) (Elshire et al. 2011), of the NGS technologies, 



8 

 

offers a promising opportunity in studying non-model species including those with large and 

complex genomes with no assembled reference sequence such as conifers (Chen et al. 2013). GBS 

uses restriction enzymes to allow the sequencing of a reduced subset of the studied genome and 

the resulting fragments are DNA barcoded to permit multiplexed sequencing. GBS has made 

genome-wide population studies possible due to the affordability of the method and its capability 

of resolving tens of thousands of markers scattered throughout the genome. 

In this study, using GBS as a genotyping platform, we developed GS prediction models in 

a dataset of 1,126 Interior spruce trees representing 25 open-pollinated families replicated over 

three sites in British Columbia (BC), Canada. White and Interior spruce are one of the most 

economically important forest tree species in BC. Interior spruce is a complex of white spruce 

(Picea glauca (Moench) Voss), Engelmann spruce (Picea engelmannii Parry), and their hybrids 

and, because of their similar growing habitats and silvicultural requirements, they are often 

collectively treated as one complex (Sutton et al. 1991). While white spruce shows transcontinental 

distribution, the natural distribution of Engelmann spruce is much more limited and scattered and 

in BC province is confined to the northern part of central BC. Hybridization occurs mainly at mid 

elevations, where their distributions overlap. Recently, extensive genetic and genomic resources 

became available for this species (4.9 million scaffolds from the 20.8 giga base pairs draft genome 

of Interior spruce individual PG29, Birol et al (Birol et al. 2013); 21,840 spruce ESTs microarray 

employed in genetical genomics of interior spruce progenies (Porth et al. 2012)). 

The objectives of the present study were to: 1) evaluate the efficiency of GBS as a rapid 

genetic marker genotyping platform for GS studies, 2) investigate different imputation algorithms 

for GBS data on GS prediction accuracy, 3) compare two GS approaches (Ridge regression best 

linear unbiased predictor (RR-BLUP) and generalized ridge regression (GRR)), 4) investigate the 
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heterogeneous GxE effect on GS prediction accuracy in space, and 5) use PCA in the comparisons 

of multi- vs. single-trait GS prediction models. 

 Materials and methods 

2.2.1 Experimental population and DNA sampling 

For this study, 1,126 38-year-old Interior spruce trees (Picea glauca (Moench) Voss x Picea 

engelmannii Parry ex Engelm.) were sampled from a progeny test trial established by the Ministry 

of Forests, Lands and Natural Resource Operations of British Columbia Canada, and planted on 

three sites [Aleza Lake (Lat. 54 03’ 15.7” N, Long. 122 06’ 35.4” W, Elev. 700 mas), Prince 

George Tree Improvement Station (PGTIS) (Lat. 53 46’ 17.9” N, Long. 122 43’ 07.6”W, Elev. 

610 mas), and Quesnel (Lat. 52 59’ 27.2” N, Long. 122 12’ 30.6” W, Elev. 915 mas)]. The sites 

were established in 1972/73 and consisted of 181 open-pollinated families using 3-year-old 

seedlings planted at 2.5x2.5m spacing in a complete randomized block design with five or ten 

blocks and ten or fifteen tree-row-plots, respectively. Twenty-five families were selected based on 

their superior growth traits and four trees per family from four blocks per site were randomly 

sampled (maximum of 32 trees per family). Evidence of similar genetic diversity between selected 

and unselected populations have been reported for spruces, including white spruce (Chaisurisri 

and El-Kassaby 1994; Stoehr and El-Kassaby 1997). The differences across all the three sites in 

the relationship between overall X-ray density and growth traits (see below) indicated that the 

Quesnel site is most while PGTIS least favorable for growing interior spruce (YA El-Kassaby, 

pers. obs.). 

2.2.2 Genotyping and SNP selection 

DNA extraction was performed from dormant vegetative buds of the sampled trees using a CTAB 

procedure modified after Doyle and Doyle (Doyle and Doyle 1990). To generate a high-density 
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SNP profile for the 1,126 spruce DNA extracts, we conducted a multiplexed, high-throughput 

Genotyping-by-Sequencing (GBS) following Elshire et al. (Elshire et al. 2011) and Chen et al. 

(Chen et al. 2013). A 48-plex GBS library comprising of 47 DNA samples and a negative control 

(without DNA) was prepared and each of the 47 spruce DNA extracts was barcoded. In brief, each 

DNA extract (500ng) was digested with restriction enzyme ApeKI for 2 hours. The details of 

oligonucleotide sequences for the ApeKI barcode adapters and temperature cycles are provided in 

Chen et al. (Chen et al. 2013). Ligation products from each DNA extract were pooled and purified 

using QIAquick PCR purification kit (Qiagen). The amplified 48-plex libraries were diluted and 

sequenced (single-end reads only) twice on the Illumina HiSeq 2000 at the Cornell University 

Genomics Core Laboratory to achieve the sequencing coverage equivalent to 24-plex. Raw DNA 

short-read sequences were analyzed with a pipeline, the Universal Network Enabled Analysis Kit 

(UNEAK), tailored to species lacking reference genome information (Lu et al. 2013). This SNP 

detection pipeline is available in TASSEL v5.0 (Bradbury et al. 2007). To reduce sequencing error 

in genotype determination, we set the error tolerance rate to 0.03 (to pass the expected Illumina 

sequencing error rate at 0.4%). The resulting SNP table was further filtered using minimum value 

of inbreeding coefficient (mnF = 0.05) and minimum minor allele frequency (mnMAF = 0.05), 

and finally, SNPs that are present in less than 40% of the samples were eliminated from further 

analysis. 

2.2.3 Missing data imputation 

To interpret missing values present in the filtered SNP set, five different imputation algorithms 

were employed: (1) mean imputation (MI), (2) singular value decomposition imputation 

(SVD:(Troyanskaya et al. 2001)), (3) traditional k nearest neighbor (kNN:(Troyanskaya et al. 
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2001)), (4) expectation maximization imputation (EM:(Dempster et al. 1977b)), and (5) k-nearest 

neighbor imputation but newly derived for half-sib family structure (kNN-Fam). 

For SVD, the original SNP matrix was used to obtain a set of the k most significant 

eigenvectors of the SNP markers. The k eigenvectors were then used as predictors for linear 

regression estimation of the missing data. SVD was implemented in R (R Core Team 2014)  using 

the “bcv” pakage (Perry 2009). The resultant numerical SNP values (x) were further classified into 

three separate genotype classes, -1, 0, and 1. The classification algorithm was taken as a modified 

k-means algorithm (Hartigan and Wong 1979), with the centroids set at -1 (k1), 0 (k2), and 1 (k3). 

The assignment of genotypes was done by satisfying: 

𝑎𝑟𝑔𝑚𝑖𝑛(𝑆𝑆) = ∑ ∑ ‖𝑥 − 𝑘𝑖‖𝑥∈𝑆𝑖

𝑘
𝑖=1   [1] 

where (1) defines the minimum distance for the SNP value from the centroids. 

For traditional kNN, the missing values were replaced with the weighted average of SNP 

values at the k closest SNP markers. The distances between all possible pairs of markers were 

computed by Euclidean distance. We selected five families (6, 11, 17, 21, and 47) to test the 

imputation accuracy, as well as the efficiency of iterations for convergence (2, 3, 5 and 10 

iterations for SVD; for EM, we tested the distance between the new estimate and the previous 

values less than 0.01). K = 10 and 20 were selected for accuracy estimates for kNN imputation. 

All iterations reached convergence criteria that were used in (Rutkoski et al. 2013), however they 

resulted in different accuracies (Table 2.1). 

The kNN-Fam algorithm is derived from the kNN method of Troyanskaya et 

al.(Troyanskaya et al. 2001). Missing values in the SNP table were first replaced with the mean of 

the locus by MI. A standardized genomic similarity matrix for all samples was calculated based 

on VanRaden (VanRaden 2008) and the Euclidean distance between SNP markers was defined 
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following  Rutkoski et al.(Rutkoski et al. 2013). Instead of the classic k-nearest neighbor method, 

where 

𝑦̂ = (1

𝐾
)𝑠𝑖𝑔𝑚𝑎(𝑦)  [2] 

the missing SNP values were replaced with: 

𝑦̂ = 𝑚𝑜𝑑𝑒( 1

𝐾1+𝐾2
𝑦)  [3] 

where K1 is the number of neighbors within the half-sib family based on the genomic similarity, 

K2 is the number of neighbors from outside the family based on the Euclidean distance, and y is 

the original locus mean. We conducted exhaustive search for the optimal values of K1 and K2, by 

permutating K1 through 1 to 30 (the nearest neighbor set as 1, and then 2, 5, 10, 15, 20 to the 

maximum family size of 30), and K2 from 1 to 250, as the total sample size of the panel is 1,126. 

The accuracy of kNN-Fam imputation was conducted for each permutation by randomly masking 

one million known data points from the filtered SNP table of the 5 selected families, and 

calculating the percentages of markers being imputed back to the correct SNP values. 

2.2.4 Phenotypic data 

The studied trees were phenotyped for (a) two growth traits (height in m (HT) and diameter at 

breast height in cm (DBH) which were subsequently used to estimate stem volume in m3 (VOL) 

following Millman’s formula (Millman 1976)) and (b) three wood quality attributes (wood density 

in kg/m3 using X-ray densitometry (WDX-ray), resistance to drilling (WDRes), and acoustic velocity 

in km/s (VDir)) (El-Kassaby, Mansfield, et al. 2011). Furthermore, WDX-ray and VDir were used to 

derive the dynamic modulus of elasticity (MoEd) (Auty and Achim 2008). WDX-ray is commonly 

used to estimate wood density using increment cores extracted from the sampled trees, while 

WDRes and VDir represent indirect (i.e., non-invasive) methods that rely on wood density for either 
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creating resistance during drilling or the speed of transmitting sound though the wood, respectively 

(El-Kassaby, Mansfield, et al. 2011). 

2.2.5 Estimated breeding values (EBV) 

The breeding value for each tree was estimated using ASReml v.3 using two different mixed linear 

models (Gilmour et al. 2009). The first used the pooled populations to estimate multi-site breeding 

values (MSEBV), while the second was used to estimate single-site breeding values (SSEBV) as 

follows: 

Multi-site model: 

𝑦 = 𝑿𝑏 + 𝒁1𝑎 + 𝒁2𝑠𝑏 + 𝒁3𝑠𝑎 + 𝑒  [4] 

where y is the phenotypic measurement of the analyzed trait, b is a vector of fixed effect (i.e., the 

overall mean and the site effect), a is a vector of random additive effect of individual trees  ̴ N(0, 

Aσ2
a), sb is a vector of the random effect of block within site  ̴ N(0, Iσ2

sb), sa is a vector of random 

site x genotype interaction  ̴ N(0, Iσ2
sa), e is a vector of random residual effect  ̴ N(0, Iσ2

e), and X 

and Z1-Z3 are incidence matrices assigning fixed and random effects to each observation and I and 

A are the identity and average numerator relationship matrices, respectively. Narrow-sense 

heritability was calculated as h2 = σa
2/ (σa

2+σsa
2+σe

2) for the multi-site model. 

Single-site model: 

𝑦 = 𝑿𝑏 + 𝒁1𝑏 + 𝒁2𝑎 + 𝑒  [5] 

This model is identical to the multi-site mixed linear model but without all terms related to site 

(site, block nested within site, and site x genotype interaction). Narrow-sense heritability was 

calculated as h2 = σa
2/ (σa

2 +σe
2). Additionally, Genomic Best Linear Unbiased Predictor (GBLUP) 

(VanRaden 2008) was used to estimate the narrow-sense heritabilities of the traits for single and 

multi-site using genotypes from imputed data produced by the EM algorithm with 30% missing 
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data. This analysis was performed by substituting average numerator relationship matrix with 

marker-based relationship matrix (VanRaden 2008) using observed allele frequencies. 

2.2.6 Genomic selection analyses 

The SNP effects were estimated on the basis of two different methods: 1) Ridge Regression Best 

Linear Unbiased Predictor (RR-BLUP) implemented in R package rrBLUP (Endelman 2011) and 

2) Generalized Ridge Regression (GRR) implemented in R package bigRR (Shen et al. 2013). In 

both cases the following mixed linear models were fitted: 

𝑦 = 𝑿𝛽 + 𝒁𝑏 + 𝑒  [6] 

where y is the vector of EBV, β  is the vector of fixed effect which is the overall mean, b is the 

vector of random SNP effects, X and Z are incidence matrices for β and b, respectively, X is a 

vector of 1 while Z was built from (-1, 0, 1) for aa, Aa and AA, respectively. The codes for Z were 

standardized according to the allele frequency using VanRaden’s method (VanRaden 2008). β and 

b are estimated simultaneously using Henderson’s mixed model equation (MME) (Henderson 

1953): 

( X′X           X′Z
Z′X    Z′Z + λI

) (
𝛽
𝑏

) = (
X′y

Z′y
)  [7] 

where  𝜆 =  𝜎̂𝑒
2

 
/  𝜎̂𝑏

2  is the shrinkage parameter for the random SNP effects, so all the SNPs will 

have the same shrinkage magnitude, in other words, all are penalized to the same degree. In GRR, 

the SNPs with small effects are more penalized. The first step in GRR is an ordinary RR, then it 

again uses MME to fit the heteroscedastic model: 

(
X′X           X′Z

Z′X    Z′Z + diag(λ)
) (

𝛽
𝑏

) = (
X′y

Z′y
)  [8] 
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where diag (𝛌) is the diagonal matrix of SNP specific shrinkage parameters estimated as 𝜆𝑗 =

 𝜎̂𝑒
2

 
/  𝜎̂𝑏𝑗

2  , where 𝜎̂𝑏𝑗
2  is variance attributed to jth SNP and is estimated as: 

𝜎̂𝑏𝑗
2 =

 𝑏̂𝑗
2

1−ℎ𝑗𝑗
  [9] 

where, bj is the SNP effect, and hjj is the (n + j)th diagonal element of the matrix H = T (T’T)-1T’, 

where 

𝑇 = (
𝑋              Z  
0     diag(λ) 

)  [10] 

𝜎̂𝑏𝑗
2  is needed as it represents the form of implemented variable selection. 

2.2.7 Cross-validation, predictive accuracy and type-b genetic correlation 

The predictive accuracy was estimated using a 10-fold cross-validation approach with 20 

replications. In each replication, the data were randomly divided into 10 subsets (folds) and each 

one was used as validation population (representing 10% of the data set), while the remaining 9-

folds were used as the training population (90% of the data set) to fit the GS model. This process 

was repeated 20 times with random assignment of the data to the 10 folds (Gianola et al. 2011; 

González-Camacho et al. 2012; Crossa et al. 2013). One advantage of this scheme is that it 

provides the degree of uncertainty (i.e., standard error) around these point estimates. In all the 

replicates, the models were fitted to the training data set and used to predict the GEBV of the 

validation data set by multiplying the vector of the marker effect estimated from the training 

population with the incidence matrix Z of the individuals in the validation population and summing 

over the estimated general mean: 

𝑦̂𝑗 = 𝑢̂ +  ∑ 𝑍𝑖𝑗𝑖 𝑚̂𝑖  [11] 
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where u is intercept, Z is genotype at the ith locus of the jth individual and m is the marker effect. 

The accuracy of GS to predict the breeding value (BV) was estimated as the correlation of the 

vector of GEBV for all individuals (predicted from the validation step) with their estimated BV 

(MSEBV or SSEBV according to the validation scenario). As we used 20 replicates, we obtained 

20 estimates for prediction accuracy and we estimated means and standard errors for these 

estimates. The developed models were validated under the following four scenarios, namely, (1) 

within site, (2) in all 6 possible combinations for cross-validation comparisons across sites, (3) as 

a multi-site population, where training and validation populations were derived from the combined 

population for cross-validation and (4) again as a multi-site population, but where the entire multi-

site population was used as training population and the individual site as validation population. 

Moreover, we estimated the type-b genetic correlation across sites, which is the additive genetic 

correlation between the traits measured on different individuals from the same genetic group but 

present in different environments, using a method described by Burdon (Burdon 1977). 

2.2.8 Multi-trait GS model 

We applied Principle Component Analysis (PCA) to distil the correlated variables (EBV) into a 

set of linearly independent variables (i.e., the principal components (PCs)). We used HT, DBH, 

VDir, WDRes, and WDX-ray EBVs as variables to determine the PCs that best express these 

phenotypes and used their score as a new phenotype in subsequent RR-BLUP GS model for the 

multi-site scenario using the kNN-Fam imputation. 

2.2.9 ABLUP vs. GBLUP elite genotype selection comparison 

Notwithstanding the relatively small number of 25 open-pollinated families under investigation, 

to illustrate the benefits of incorporating genomic information in selection, we conducted a 

selection exercise of 40 elite genotypes for inclusion into a hypothetical production population 

http://en.wikipedia.org/wiki/Correlation_and_dependence
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(seed orchard) following the group merit selection scheme of Lindgren and Mullin (Lindgren and 

Mullin 1997). Group merit selection is founded on penalizing the average BV of a selected subset 

by increasing the weight on the entire group co-ancestry (measured by co-ancestry coefficient) to 

reach a desired ‘‘status number (Ns)’’ (Lindgren et al. 1996) which is an approximation of the 

effective number of parents (Ne) (i.e., measure of diversity). In this method, the co-ancestry 

coefficients are estimated from the pedigree values of the selected individuals (ABLUP) while in 

the GBLUP case, we used the marker-based relationship matrix (VanRaden 2008) to approximate 

the co-ancestry of the selected individuals and their diversity was estimated by the number of 

founder genome equivalents (Nge: (Caballero and Toro 2000)). 

 Results 

2.3.1 Genotyping, missing data imputation, and selection of imputation method 

In this study, 1,126 38-year-old Interior spruce trees (Picea glauca (Moench) Voss x Picea 

engelmannii Parry ex Engelm.) originating from 25 open-pollinated families selected for their 

superior growth traits were sampled from the progeny test trial planted on three sites, (1) Aleza 

Lake, (2) Prince George Tree Improvement Station (PGTIS), and (3) Quesnel. A cost-effective 

NGS technology, genotyping-by-sequencing (GBS), was employed for genotyping a 20GB 

unassembled genome such as spruce. After two 48-multiplexed sequencing passes, a total of 

4,798,791,310 good barcoded reads was generated, and the median of read depth per site was at 

3.92 (averaged 4.58±4.28). TASSEL UNEAK SNP calling pipeline was used to determine SNP 

polymorphism for these 1,126 spruce trees, resulting in a large genotype table of 1,232,406 SNPs 

(Lu et al. 2013; Chen et al. 2013) . Typical to GBS, a low coverage sequence platform, many 

markers tended to have missing data even after the repeated sequencing of all studied trees (see 

Discussion, for more details). From the identified 1,232,406 SNPs, the applied imputation methods 
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and filtering (minimum minor allele frequency of 0.05) used produced genotyping files ranged 

from 8,868 (MI-30% and EM-30%) to 62,618 (kNN-Fam-60%) SNPs (Table 2.2). Imputation 

accuracy ranges from 0.77 (SVD 10 iterations) to 0.82 (SVD with 2 iterations). On average, SVD 

with 2 iterations produced the best accuracy in the four currently existing methods: MI, SVD, EM 

and kNN. Using K's (in K-nearest neighbors) from family versus non-family members, accuracy 

for kNN-Fam imputation ranged from 0.77 to 0.85. In general, including more family members 

resulted in higher accuracy (Table 2.3); however, imputation accuracy remained unchanged (and 

did not improve), when the number of non-family members that was included was larger than the 

family size. The best imputation accuracy gained was at K1 = 5 and K2 = 20, which represented 

the K values used in this study for imputing the whole SNP table (Table 2.3). As a result, we chose 

kNN-Fam over kNN of Troyanskaya et al. (Troyanskaya et al. 2001) due to its slight superiority 

in accuracy. The SNP table imputed with this method is referred to as kNN-Fam. 

The selection of specific imputation methods for genomic selection analyses were 

restricted to the method with greater GS accuracies within the same percentage of missing data 

class (i.e., 30% vs. 60%). For the 30% missing data, the EM-30% produced greater accuracy than 

MI-30%, similarly for the 60% missing data, the kNN-Fam-60% and SVD-60% produced better 

accuracies comparing to MI-60%; however, the kNN-Fam-60% was superior to SVD-60% (see 

below). This comparison was done based on GS prediction accuracies produced for the two GS 

models and the seven studied traits for both single- and multi-site scenarios (see below). 

2.3.2 Traits’ heritability 

Using genotypes resulting from the EM-30% algorithm imputed data, the narrow-sense 

heritabilities of the traits estimated from the pedigree (ABLUP, i.e. the conventional BLUP model 

using the pedigree-based relationship matrix) and genomic best linear unbiased predictors 
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(GBLUP using the genomic-based realized kinship matrix) produced several broad generalizations 

that include: 1) single- and multi-site heritabilities were higher for ABLUP than those from their 

GBLUP counterparts, 2) multi-site heritabilities were lower than that of a single site for both 

ABLUP and GBLUP, 3) trait heritabilities varied among sites for both ABLUP and GBLUP; 

however, the differences were lower for the GBLUP than that of the ABLUP, 4) the Quesnel site 

produced higher heritabilities than PGTIS and Aleza Lake, yet they have some overlapping ranges, 

and 5) standard error estimates of heritabilities obtained from ABLUP were higher than those from 

GBLUP for single- and multi-site (Table 2.4). Lower GBLUP heritabilities were expected as 

ABLUP tended to inflate the estimates as the pedigree based analysis assumptions are often 

violated due to mating pattern, relatedness built-up due to population history, and inability to 

separate common environment effect from genetics.  

2.3.3 Prediction accuracy for different GS models and imputation methods 

The accuracy of GS models (RR-BLUP and GRR) in predicting the GEBV were evaluated for the 

seven studied traits using all imputation methods (30% missing data: MI and EM, and 60% missing 

data: MI, kNN-Fam, and SVD) and over the four cross-validation scenarios: 1) within each 

individual site, 2) cross-site (all possible combinations), 3) within multi-site (the three sites 

combined), and 4) the multi-site population in predicting individual site (see below). 

2.3.3.1 Within site GS accuracies 

Across all imputation methods (30% and 60% missing data), the RR-BLUP produced higher 

within site GEBV accuracies than the GRR (Tables 2.5 and 2.6, Figures 2.1 and 2.2). In general, 

the RR-BLUP produced higher accuracies than the GRR (100 out of the possible 105 comparisons 

for both GS models) and this was also mirrored by their standard error estimates (Tables 2.5 and 

2.6). Within the 30% missing data imputation methods, the EM-30% produced greater accuracy 
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than MI-30% for all traits for RR-BLUP (traits averages were 0.51, 0.50, and 0.46 as opposed to 

0.52, 0.51, and 0.46 for PGTIS, Aleza Lake, and Quesnel sites, respectively) and GRR (averages 

were 0.49, 0.43, and 0.41 vs. 0.49, 0.46, and 0.41 for PGTIS, Aleza Lake, and Quesnel sites, 

respectively) (Table 2.5). The 60% missing data imputation methods produced similar GS 

prediction and confirmed the superiority of the RR-BLUP over GRR and additionally highlighting 

the better accuracies for kNN-Fam-60% compared to MI-60% and SVD-60% (Table 2.6). 

2.3.3.2 Cross-site GS accuracies  

Unlike within site cross-validation, testing the applicability of a GS model for a specific site to 

predict the GEBV of other sites generally produced lower accuracies for both models (RR-BLUP 

and GRR) (Figures 2.1 and 2.2, Table 2.9). This is expected due to the GxE interaction even when 

the three sites are located within one breeding zone (Prince George Seed Planning Zone 

(http://www.for.gov.bc.ca/hfd/pubs/docs/mr/annual/ar_1995-96/pspzm.htm)). For simplicity, in 

this section we will restrict the cross-sites comparisons to the imputation method with the highest 

number of SNPs (i.e., kNN-Fam-60% (62,198 SNPs)), and the GS model with highest accuracies 

(i.e., RR-BLUP (Figure 2.1)). Over the seven studied traits, the RR-BLUP model produced cross-

site validation accuracies ranging from 0.16 and 0.23 when PGTIS was used to predict the GEBV 

of Aleza Lake (12), 0.13 and 0.24 for 21, 0.01 and 0.32 for PGTIS to predict Quesnel (13), 

0.0 and 0.38 for 31, 0.06 and 0.36 for 2 3, and 0.03 and 0.39 for 3 2 (Figure 2.2, Table 2.9). 

The estimated type-b genetic correlations between sites mimicked the trend observed for cross 

sites GS accuracy with their Pearson-product-moment correlations ranging between 0.94 and 0.99 

(P<0.05) over the seven studied traits for the kNN-Fam-60% imputation method (Figure 2.3). 
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2.3.3.3 Within multi-site GS accuracies 

Similar to within site assessment, the within multi-site cross-validation produced higher GEBV 

accuracies for RR-BLUP as compared to GRR and this increase in accuracy persisted across all 

30% and 60% missing data imputation methods (Table 2.7). Comparisons between imputation 

methods revealed that EM-30% and kNN-Fam-60% produced better accuracies (Table 2.7, Figures 

2.1 and 2.2). Again, we will restrict the GEBV accuracy comparisons to the kNN-Fam-60% 

imputation method as it uses the largest number of SNPs (62,198 SNPs). On average and across 

the seven studied traits, GS accuracies ranged between 0.62 and 0.77 for both RR-BLUB and GRR 

(Table 2.7). The span of this range is far greater than the one observed within sites and cross-sites 

validation (Tables 2.4, 2.5 and 2.6). These estimates represent the most realistic accuracies as they 

accommodated the GxE interaction and, furthermore, were produced with a large training 

population size (90% of the total N = 1,126). 

2.3.3.4 Single- vs. multi-site accuracies 

When the meta-population was used to predict the GEBV for each individual site, the observed 

accuracies were high with Aleza Lake producing the highest accuracies (average over the 7 traits 

of 0.49 for RR-BLUP and GRR) followed by Quesnel (averages of 0.46 and 0.45 for RR-BLUP 

and GRR, respectively) and PGTIS which produced the lowest accuracies (average of 0.42 for 

both RR-BLUP and GRR) (Table 2.8). These accuracies are higher than those observed for the 

cross-site validation (Table 2.8, Figures 2.1 and 2.2). 

2.3.4 Multi-trait GS prediction models 

The first three principle components, PCA1-3, collectively accounted or 86% of the total 

phenotypic variation and individually accounted for 44, 25, and 17%, respectively. PCA1 

produced significant (P<0.002 - 0.0001) loading for all the studied traits and was positive for 
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height (HT) (0.69), diameter at breast height (DBH) (0.80), and acoustic velocity (VDir) (0.09) and 

negative for wood density using X-ray densitometry (WDX-ray) (-0.71) and wood density using 

resistance to drilling (WDRes) (-0.75). PCA2 produced interesting results with significant 

(P<0.0001) and positive loadings for HT (0.39), VDir (0.92), and WDX-ray (0.49). Similarly, PCA3 

produced significant (P<0.0001) and positive loadings for HT (0.46), DBH (0.38), WDX-ray (0.19) 

and WDRes (0.64). The fact that growth and wood quality traits produced significant and positive 

loadings, even if it is for PCA2 and PCA3, is interesting as it creates concurrent selection 

opportunities for yield and wood quality traits that are commonly known to be negatively 

correlated. The two GS models produced high prediction accuracies for PCA1 with 0.72±0.001 

and 0.71±0.001 for RR-BLUP and GRR, respectively. Similar results were observed for PCA 2 

(RR-BLUP: 0.65±0.001 and GRR: 0.64±0.001) and PCA3 (RR-BLUP: 0.57±0.001 and GRR: 

0.55±0.002) using the multi-site GS model. 

2.3.5 ABLUP vs. GBLUP elite genotype selection comparison 

Expectedly, across all the range of genetic gain penalties, the selection of 40 elite individuals 

yielded ABLUP genetic gain higher than that of the GBLUP with percentage increase between 9.2 

and 14.6% for 100 and 1,000 penalty classes, respectively (Figure 2.4). Naturally, any increase in 

co-ancestry is associated with increase in genetic gain; however, the GBLUP offers greater 

flexibility for elite genotype selection than the ABLUP as the effective number of genomic 

equivalent provides a continuum for selection as opposed to the pedigree-based status number 

which offers only two options of relatedness (unrelated or half-sibs). 
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 Discussion 

2.4.1 GBS and imputation methods 

The utilization of NGS technology, and GBS in particular, provides a low cost opportunity for 

genomic studies for non-model species (Chen et al. 2013). In the present study, GBS produced 

exceedingly large number of SNPs (1,232,406); however, the low coverage nature of the technique 

has substantially reduced the available SNPs for analyses due to missing data. Missing data could 

also result from either the absence of the restriction site in the genomic sequence or due to technical 

issues associated with DNA digestion or PCR amplification (Wang et al. 2011; Pan et al. 2015). 

Out of the five imputation methods used, the expectation maximization (EM-30%: (Dempster et 

al. 1977b)) and the newly developed half-sib family-based k-nearest neighbor (kNN-Fam-60%) 

method resulted in 8,868 and 62,198 SNPs, respectively, and produced the greatest accuracies 

(Figure 2.1, for kNN-Fam-60%). We used the EM-30% imputation method in estimating the trait 

heritabilities employing the GBLUP approach (VanRaden 2008), while all described imputation 

methods were used to evaluate the GS models across all described scenarios. We believe that the 

higher GEBV accuracies attained from the kNN-Fam imputation method are attributable to the 

method’s capacity of recovering resemblance among individuals within families. In addition, 

kNN-Fam method proportionately weights family structure and the underlying LD of SNPs, which 

is also likely contributing to the slightly higher predictability due to its strength of simultaneously 

capturing identical-by-state with the variants in LD with the causal genes (Solberg et al. 2008). 

2.4.2 Heritability estimates 

Treating the offspring from open-pollinated families as half-sibs is often associated with inflated 

heritability estimates, resulting in an exaggeration of the expected genetic gain (Namkoong 1966; 

Squillace 1974; Askew and El-Kassaby 1994). In the present study, heritability estimates obtained 
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from the ABLUP were higher than those from the GBLUP (Table 2.4), highlighting the advantages 

of incorporating genomic information in standard quantitative genetic analyses (VanRaden 2008) 

to obtain realistic estimates of breeding values and genetic gain (see ABLUP vs. GBLUP elite 

genotype selection comparison below). 

Our results are similar to those reported for another open-pollinated white spruce progeny trial in 

Québec, Canada (Beaulieu et al. 2014).While heritability estimates were population-specific, 

slight differences in GBLUP-based heritability estimates for wood density (WDX-ray) and height 

(36- vs. 22-year-old height) were observed between the two studies (wood density: 0.18 vs. 0.24 

and height: 0.20 vs. 0.16) (Beaulieu et al. 2014). Additionally, our results suggest that the trait 

heritability has only limited effect on the prediction accuracy (PA) as diameter at breast height 

(DBH) and stem volume (VOL) showed high multi-site RR-BLUP predictability despite their low 

heritability estimates (DBH: h2 = 0.07 and PA = 0.77; VOL: h2 = 0.09 and PA = 0.73), results 

consistent with those reported for loblolly pine (Pinus taeda) (Grattapaglia and Resende 2011; 

Zapata-Valenzuela et al. 2012). 

2.4.3 GS models 

GS models suffer from the “large p, small n” problem, where the number of predictor effects p 

exceeds by far the number of observations n (p>>n). A variety of statistical methods were proposed 

to handle this issue and they can be classified into three major categories: shrinkage models, 

Bayesian methods (including variable selection), and semi- or non-parametric methods such as 

support vector regression and random forest regression. Those methods are different in their 

assumptions regarding the genetic architecture of the tested traits (Lorenz et al. 2011; Grattapaglia 

2014). RR-BLUP, the most common shrinkage model, assumes that the trait is controlled by many 

genes each with small effects, thus is suitable for traits following the infinitesimal model (Fisher 
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1918). RR-BLUP assumes that all marker effects are random, normally, and identically distributed 

and have a common variance, thus all the effects will be equally shrunken toward zero(Lorenz et 

al. 2011; Shen et al. 2013; Grattapaglia 2014). This approach was described previously by 

Meuwissen et al. (Meuwissen et al. 2001) and termed SNP-BLUP. In GS and genome wide 

association studies (GWAS), it is not realistic to use common shrinkage effects for all fitted SNPs 

across the genome as not all markers will be linked to functional genes and not all gene effects are 

normally distributed (Meuwissen et al. 2001). To overcome this assumption, the Bayesian methods 

were developed to provide more flexibility in modeling oligogenic traits (i.e., traits that are 

controlled by few genes each with large effects) (Lorenz et al. 2011); however, these methods are 

computationally demanding (Hofheinz and Frisch 2014). A new, fast, deterministic, and flexible 

Ridge regression method was suggested by Shen et al. (Shen et al. 2013) known as the generalized 

Ridge regression (GRR). The main difference between RR-BLUP and GRR is that a SNP-specific 

shrinkage will be used instead of the common shrinkage effect (Shen et al. 2013), which is more 

realistic and more suitable to model oligogenic traits and represents a viable alternative to Bayesian 

models (Troyanskaya et al. 2001). 

Our results showed that GRR produced either similar or even lower prediction accuracies 

as compared to RR-BLUP, which indicates that marker selection by giving different degree of 

penalization through the application of different shrinkage effects is inadequate for the tested traits. 

This provides evidence that the tested traits (growth and wood quality) follow the infinitesimal 

model. Moreover, experimental results in both plants and animals suggested that RR-BLUP 

provides the best adjustment/compromise between the computational effort and the prediction 

efficiency (Lorenz et al. 2011). This supports the notion that most of the economically important 

traits are complex and quantitative in nature (i.e., follow the infinitesimal model). For example, in 
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loblolly pine, Resende et al.(Resende, Muñoz, Resende, et al. 2012) evaluated RR-BLUP and three 

Bayesian models across 17 traits related to growth, development, and fusiform rust resistance and 

the resulting prediction accuracies were marginally different across the four models, except for 

rust resistance, an oligogenic trait, where the Bayes A and C models resulted in moderately larger 

performance than RR-BLUP. 

2.4.4 Within site vs. within multi-site validation 

The multi-site cross-validation produced higher prediction accuracies as compared to single-sites 

(Tables 2.5, 6 and 2.7, Figure 2.1) as the multi-site training population is three times larger than 

any of the single-site models, resulting in more accurate estimation of marker effects and this is 

consequently reflected in higher prediction accuracy and precision (Lorenz et al. 2011; 

Grattapaglia 2014). Previous GS studies conducted on plant and animal populations clearly 

demonstrated the role of training population size on prediction accuracy and illustrated the 

importance of the training population size as compared to the number of markers used in the 

models, thus supporting the present study results (VanRaden et al. 2009; Luan et al. 2009; 

Lorenzana and Bernardo 2009). In forestry context, our results are also consistent with prediction 

accuracies obtained for growth and wood quality attributes in loblolly pine and Eucalyptus 

(Resende, Muñoz, Acosta, et al. 2012; Resende, Resende, et al. 2012; Zapata-Valenzuela et al. 

2012). However, comparing the prediction accuracies between our study and those from the 

Québec white spruce open-pollinated progeny trial is of interest as the experimental settings were 

somewhat similar (Beaulieu et al. 2014). Height, wood density, and dynamic modulus of elasticity 

were common traits between the two studies; however, their prediction accuracies were lower than 

in the present study (height: 0.17 vis. 0.63, wood density: 0.33 vis. 0.64, dynamic modulus of 

elasticity: 0.21 vs. 0.67). In general, the lower prediction accuracies in the Québec study across all 
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the traits compared to our and other tree species studies, is mainly due to the considerably larger 

number of tested families (214 vs. 25 families) which resulted in higher Ne (effective population 

size). It is also worth mentioning that we used the EBV as opposed to the raw phenotype in training 

our GS models; this could have also contributed to the observed differences. 

2.4.5 Cross-site validation 

The economic and ecological importance of interior spruce to British Columbia promoted 

thorough understanding of the various ecological regions of the species and subsequently 6 unique 

Seed Planning Zones (SPZs) were identified (Bukley Valley, East Kootenay, Nelson, Prince 

George, Peace River, and Thompson Okanagan). To date, most forestry GS studies were conducted 

within the confines of a single “environment model” similar to those GS studies conducted in 

animal breeding programs where the assumption of a common environment was invoked. The 

assumption of “common environment” is not suitable in forestry as estimates of GxE, even within 

a single breeding zone, are high (Burdon 1977) and this motivated breeders to evaluate the 

performance of a specific genotype or family across different environments to identify generalists 

for their inclusion in seed production populations (Annicchiarico 2002). For the successful 

implementation of GS in tree breeding, it is essential that GS models remain accurate across sites, 

at least within the dedicated breeding zone. Only two out of the published four GS studies in forest 

tree tested GxE interaction, these include loblolly pine (Resende, Muñoz, Resende, et al. 2012) 

and white spruce (Beaulieu et al. 2014). In the present study, we used data from three sites within 

the Prince George breeding zone and the observed prediction accuracies of a single site to predict 

another site were generally low (Figures 2.1 and 2.2). The observed reduced prediction accuracies 

across sites were lower than those obtained from the white spruce and loblolly pine studies. Thus, 

it is important to pay considerable attention to the structure of the training population; hence the 
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developed models reflect the underpinning forces affecting trait expression and their response to 

sites heterogeneities. 

2.4.6 Multi-trait GS prediction models 

GS models are trait-specific and do not lend themselves to multi-trait selection as does index 

selection method which maximizes the correlation between the index score of an individual and 

its breeding value (Hazel 1943). Yet, selection indices require prior knowledge about the economic 

value of the traits for proper scaling before optimum phenotypic weights can be estimated. The 

use of Principle Component Analysis offered an opportunity to handle a set of correlated variables 

by reducing the dimensionality to a set of uncorrelated ones (i.e., principal components). Negative 

genetic correlations between yield and wood quality traits are commonly observed (Bouffier et al. 

2008) and the results from PC1 which accounts for 44% of the total variation confirmed these 

observations. However, while yield and wood quality are known to act in antagonizing fashion, 

the results based on PC2 and PC3, albeit collectively accounting for 42% of the total variation, 

created interesting opportunities for the concurrent selection for both traits without any adverse 

effect associated with the known negative correlations. It seems that PC2 and PC3 accessed 

different combinations of SNPs (i.e., causal genes) that work in the same direction. 

While we did not consider any prior economic knowledge for weighing in constructing the 

PCs, the results from PC2-3 clearly demonstrated that it is (to a certain extent) also possible to 

artificially co-select such attributes that are commonly known to be negatively correlated in the 

same positive direction. Considering economic weights for traits during constructing selection 

indices can result in changing the magnitude of genetic correlation among these traits as a 

consequence of selection. This change in genetic correlation is expected to change SNP effects 

and thus frequent training is required for GS model to be effective over generations. Finally, our 
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objective of using PCA is to offer a simple method that accounts for the inter-relation (genetic 

correlation) between the studied traits and provide an opportunity for further expansions that 

consider economic weights. 

2.4.7 ABLUP vs. GBLUP elite genotype selection comparison 

The observed genetic gain differences between the ABLUP and GBLUP across all co-ancestry 

penalties were not surprising as heritability, breeding value of an individual, and genetic gain 

estimates are expected to be higher in open-pollinated populations due to the ABLUP inability to 

ascertain the true genetic relationship among offspring (Namkoong 1966; Squillace 1974; Askew 

and El-Kassaby 1994). On the other hand, GBLUP relies on estimating the realized kinship which 

provides a more accurate ascertainment of the genealogical relationships among members of an 

open-pollinated family and thus, resulting in more realistic gain estimates due to adjustment for 

Mendelian sampling term (Hayes et al. 2009a). Our results are similar to those reported in the 

Québec white spruce study as they consistently produced higher gains from pedigree- vs. marker-

based methods (Beaulieu et al. 2014). 

It should be pointed out that the Bulmer effect (i.e., reduction in response to selection) 

would be similar for ABLUP and GBLUP and thus the response to selection for both methods will 

be similarly affected irrespective of the breeding values estimation method used (Van Grevenhof 

et al. 2012). If genomic selection effectively reduces generation interval, then in the forestry 

context, a relatively smaller reference (training) population size is needed to attain the same 

response to selection from larger traditional population (i.e., ABLUP). Conversely, if generation 

turnover is not possible, then larger training population size is required, therefore defeating GS 

goals. Bastiaansen et al. (Bastiaansen et al. 2012) found similar response to selection for GBLUP 
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and ABLUP but the former accumulated lower level of inbreeding and consequently higher genetic 

variance than the latter. 

 Summary 

Background: Genomic selection (GS) in forestry can substantially reduce the length of breeding 

cycle and increase gain per unit time through early selection and greater selection intensity, 

particularly for traits of low heritability and late expression. Affordable next-generation 

sequencing technologies made it possible to genotype large numbers of trees at a reasonable cost. 

Results: Genotyping-by-sequencing was used to genotype 1,126 Interior spruce trees representing 

25 open-pollinated families planted over three sites in British Columbia, Canada. Four imputation 

algorithms were compared (mean value (MI), singular value decomposition (SVD), expectation 

maximization (EM), and a newly derived, family-based k-nearest neighbor (kNN-Fam)). Trees 

were phenotyped for several yield and wood attributes. Single- and multi-site GS prediction 

models were developed using the Ridge Regression Best Linear Unbiased Predictor (RR-BLUP) 

and the Generalized Ridge Regression (GRR) to test different assumption about trait architecture. 

Finally, using PCA, multi-trait GS prediction models were developed. The EM and kNN-Fam 

imputation methods were superior for 30 and 60% missing data, respectively. The RR-BLUP GS 

prediction model produced better accuracies than the GRR indicating that the genetic architecture 

for these traits is complex. GS prediction accuracies for multi-site were high and better than those 

of single-sites while multi-site predictability produced the lowest accuracies reflecting type-b 

genetic correlations and deemed unreliable. The incorporation of genomic information in 

quantitative genetics analyses produced more realistic heritability estimates as half-sib pedigree 

tended to inflate the additive genetic variance and subsequently both heritability and gain 

estimates. Principle component scores as representatives of multi-trait GS prediction models 
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produced surprising results where negatively correlated traits could be concurrently selected for 

using PCA2 and PCA3. 

Conclusions: The application of GS to open-pollinated family testing, the simplest form of tree 

improvement evaluation methods, was proven to be effective. Prediction accuracies obtained for 

all traits greatly support the integration of GS in tree breeding. While the within-site GS prediction 

accuracies were high, the results clearly indicate that single-site GS models ability to predict other 

sites are unreliable supporting the utilization of multi-site approach. Principle component scores 

provided an opportunity for the concurrent selection of traits with different phenotypic optima. 
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Table 2.1 The comparison of imputation methods’ accuracies 

 MI SVD_2 SVD_3 SVD_5 EM_0.01 EM_0.001 kNN_10 kNN_30 

family 11 0.799 0.806 0.805 0.800 0.771 0.771 0.799 0.795 

family 17 0.808 0.812 0.810 0.803 0.778 0.777 0.788 0.809 

family 21 0.805 0.805 0.801 0.795 0.769 0.768 0.769 0.800 

family 6 0.800 0.822 0.809 0.802 0.767 0.767 0.799 0.802 

family 47 0.803 0.802 0.800 0.798 0.770 0.770 0.773 0.809 

Average 0.803 0.810 0.805 0.799 0.771 0.771 0.785 0.803 

 

Table 2.2 Imputation methods used for genotyping-by-sequencing data 

1 See main text for abbreviations 

Table 2.3 Imputation accuracy of kNN-Fam method with different K1 and K2 values 

K2: K value selected from non-family samples 

K1 1 2 3 4 5 10 20 50 100 250 

1 0.771 0.818 0.819 0.830 0.832 0.843 0.848 0.848 0.846 0.845 

2 0.816 0.816 0.830 0.830 0.837 0.845 0.848 0.848 0.846 0.845 

5 0.824 0.834 0.835 0.839 0.840 0.846 0.849 0.848 0.846 0.845 

10 0.837 0.838 0.842 0.842 0.843 0.845 0.848 0.848 0.846 0.845 

15 0.840 0.842 0.843 0.843 0.844 0.846 0.848 0.848 0.846 0.845 

20 0.840 0.842 0.843 0.843 0.844 0.845 0.848 0.848 0.846 0.845 

30 0.842 0.843 0.844 0.844 0.844 0.846 0.847 0.847 0.846 0.845 

 

 

 

 

Imputation  

method1 

Missing Data  

Threshold 
Imputation algorithm # of SNPs 

MI 30% Mean imputation (MI) 8,868 

MI 60% Mean imputation (MI) 47,521 

EM 30% Expectation-maximization (EM) 8,868 

kNN-Fam 60% Family-based K-nearest neighbor (kNN-Fam) 62,198 

SVD 60% Singular Value Decomposition (SVD) 55,618 



33 

 

Table 2.4 Multi- and single site heritability estimates and their standard errors using 

pedigree (ABLUP) and genomic (GBLUP) best linear unbiased predictors. 

Trait 

ABLUP GBLUP (EM-30%) 

Multi-

site 

Single site Multi-

site 

Single site 

PGTIS Aleza L. Quesnel PGTIS Aleza L. Quesnel 

HT 0.35±0.14 0.64±0.22 0.43±0.19 0.98±0.02 0.20±0.06 0.50±0.15 0.32±0.14 0.56±0.13 

DBH 0.05±0.08 0.39±0.17 0.28±0.15 0.55±0.19 0.07±0.06 0.37±0.15 0.26±0.13 0.53±0.15 

VOL 0.09±0.10 0.45±0.18 0.29±0.15 0.76±0.23 0.09±0.06 0.42±0.15 0.27±0.13 0.60±0.15 

VDir 0.28±0.12 0.31±0.15 0.38±0.17 0.78±0.24 0.12±0.06 0.17±0.11 0.37±0.15 0.49±0.14 

WDres 0.27±0.12 0.59±0.21 0.65±0.22 0.42±0.15 0.10±0.06 0.49±0.15 0.28±0.13 0.42±0.14 

WDX-ray 0.38±0.14 0.55±0.20 0.48±0.19 0.59±0.20 0.18±0.06 0.28±0.13 0.39±0.15 0.43±0.13 

MoEd 0.28±0.12 0.31±0.15 0.38±0.17 0.78±0.24 0.12±0.06 0.17±0.11 0.37±0.15 0.49±0.14 

Note: Traits are HT: height in m; DBH: diameter at breast height in cm; VOL: stem volume in 

m3; VDir: acoustic velocity in km/s; WDRes: resistance to drilling; WDX-ray: wood density in 

kg/m3 using X-ray densitometry; MoEd: dynamic modulus of elasticity. 
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Table 2.5 Within site (PGTIS, Aleza Lake (AL), and Quesnel) genomic selection prediction accuracies and their standard errors 

for RR-BLUP and GRR models across 30% missing data imputation methods (MI-30% and EM-30%). 

Trait GS 

Model 

Imputation method 

MI-30% EM-30% 

PGTIS AL Quesnel PGTIS AL Quesnel 

HT 
RR-BLUP 0.48±0.0031 0.46±0.002 0.33±0.003 0.50±0.003 0.48±0.003 0.35±0.004 

GRR 0.44±0.003 0.45±0.010 0.27±0.007 0.46±0.005 0.45±0.005 0.29±0.006 

DBH 
RR-BLUP 0.58±0.002 0.55±0.003 0.53±0.004 0.58±0.003 0.55±0.002 0.53±0.003 

GRR 0.54±0.003 0.47±0.017 0.51±0.006 0.53±0.004 0.49±0.006 0.51±0.003 

VOL 
RR-BLUP 0.56±0.002 0.54±0.003 0.44±0.003 0.55±0.004 0.54±0.002 0.45±0.002 

GRR 0.52±0.003 0.50±0.004 0.42±0.006 0.53±0.004 0.49±0.004 0.41±0.006 

VDir 
RR-BLUP 0.55±0.002 0.54±0.002 0.41±0.004 0.55±0.003 0.55±0.002 0.41±0.004 

GRR 0.52±0.003 0.48±0.004 0.31±0.006 0.52±0.013 0.50±0.005 0.33±0.004 

WDRes 
RR-BLUP 0.47±0.003 0.37±0.003 0.59±0.003 0.49±0.003 0.39±0.004 0.59±0.003 

GRR 0.46±0.005 0.34±0.005 0.54±0.005 0.44±0.009 0.33±0.007 0.54±0.005 

WDX-ray 
RR-BLUP 0.41±0.003 0.49±0.003 0.50±0.002 0.43±0.003 0.48±0.003 0.50±0.001 

GRR 0.41±0.004 0.25±0.011 0.50±0.004 0.42±0.003 0.46±0.020 0.50±0.002 

MoEd 
RR-BLUP 0.55±0.003 0.55±0.002 0.40±0.004 0.55±0.002 0.55±0.002 0.39±0.003 

GRR 0.53±0.004 0.51±0.003 0.30±0.006 0.55±0.004 0.52±0.005 0.29±0.006 

Ave. 
RR-BLUP 0.51±0.062 0.50±0.067 0.46±0.088 0.52±0.051 0.51±0.060 0.46±0.085 

GRR 0.49±0.051 0.43±0.097 0.41±0.113 0.49±0.052 0.46±0.063 0.41±0.108 

Ave.: average across all traits.
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Table 2.6 Within site (PGTIS, Aleza Lake (AL), and Quesnel) genomic selection prediction accuracies and their standard errors 

for RR-BLUP and GRR models across 60% missing data imputation methods (MI-60%, kNN-Fam-60% and SVD-60%). 

Trait GS 

Model 

Imputation method 

MI-60% kNN-Fam-60% SVD-60% 

PGTIS AL Quesnel PGTIS AL Quesnel PGTIS AL Quesnel 

HT RR-BLUP 0.54±0.002 0.51±0.003 0.40±0.002 0.55±0.002 0.56±0.002 0.42±0.002 0.53±0.003 0.50±0.004 0.42±0.003 

GRR 0.51±0.005 0.45±0.011 0.34±0.007 0.51±0.005 0.51±0.006 0.39±0.005 0.51±0.004 0.47±0.006 0.37±0.005 

DBH RR-BLUP 0.62±0.002 0.60±0.002 0.56±0.003 0.62±0.001 0.63±0.002 0.55±0.002 0.60±0.002 0.59±0.003 0.54±0.003 

GRR 0.59±0.009 0.58±0.004 0.53±0.006 0.59±0.005 0.62±0.004 0.53±0.004 0.59±0.002 0.57±0.004 0.52±0.004 

VOL RR-BLUP 0.60±0.002 0.58±0.003 0.49±0.003 0.61±0.002 0.63±0.001 0.47±0.002 0.59±0.002 0.57±0.003 0.48±0.003 

GRR 0.58±0.005 0.55±0.006 0.44±0.009 0.58±0.003 0.59±0.005 0.44±0.005 0.58±0.003 0.56±0.004 0.45±0.005 

VDir RR-BLUP 0.62±0.002 0.57±0.002 0.46±0.003 0.63±0.002 0.61±0.002 0.49±0.002 0.58±0.002 0.55±0.002 0.46±0.003 

GRR 0.59±0.005 0.51±0.010 0.40±0.006 0.60±0.003 0.57±0.005 0.46±0.006 0.57±0.004 0.53±0.003 0.42±0.004 

WDRes RR-BLUP 0.53±0.002 0.44±0.002 0.62±0.002 0.55±0.002 0.49±0.002 0.62±0.002 0.56±0.003 0.46±0.004 0.58±0.002 

GRR 0.46±0.007 0.36±0.009 0.58±0.004 0.47±0.005 0.44±0.007 0.59±0.005 0.54±0.003 0.43±0.005 0.56±0.003 

WDX-ray RR-BLUP 0.49±0.002 0.51±0.002 0.53±0.003 0.51±0.002 0.53±0.002 0.53±0.002 0.50±0.002 0.50±0.002 0.50±0.003 

GRR 0.45±0.006 0.47±0.005 0.49±0.009 0.48±0.005 0.50±0.006 0.48±0.009 0.49±0.005 0.49±0.003 0.49±0.004 

MoEd RR-BLUP 0.62±0.001 0.57±0.002 0.45±0.002 0.64±0.001 0.61±0.001 0.49±0.002 0.59±0.003 0.54±0.004 0.45±0.004 

GRR 0.60±0.003 0.52±0.007 0.38±0.007 0.61±0.004 0.58±0.004 0.45±0.004 0.58±0.002 0.52±0.004 0.41±0.005 

Ave. RR-BLUP 0.57±0.053 0.54±0.056 0.50±0.074 0.59±0.050 0.58±0.054 0.51±0.064 0.56±0.037 0.53±0.045 0.49±0.055 

GRR 0.54±0.065 0.49±0.073 0.45±0.086 0.55±0.060 0.54±0.063 0.48±0.065 0.55±0.039 0.51±0.050 0.46±0.067 
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Table 2.7 Within multi-site genomic selection prediction accuracies and their standard 

errors for RR-BLUP and GRR models for the studied five imputation methods. 

Trait GS Model 

Imputation method 

MI-30% EM-30% MI-60% kNN-Fam-

60% 

SVD-60% 

HT 
RR-BLUP 0.56±0.001 0.58±0.001 0.60±0.001 0.63±0.001 0.61±0.001 

GRR 0.50±0.002 0.48±0.004 0.57±0.003 0.62±0.002 0.58±0.002 

DBH 
RR-BLUP 0.71±0.001 0.72±0.001 0.75±0.001 0.77±0.001 0.76±0.001 

GRR 0.71±0.001 0.73±0.001 0.74±0.001 0.77±0.001 0.75±0.001 

VOL 
RR-BLUP 0.67±0.001 0.68±0.001 0.71±0.001 0.73±0.001 0.72±0.001 

GRR 0.67±0.001 0.68±0.001 0.70±0.001 0.72±0.001 0.71±0.001 

VDir 
RR-BLUP 0.59±0.001 0.61±0.001 0.63±0.001 0.67±0.001 0.65±0.001 

GRR 0.52±0.004 0.50±0.003 0.62±0.002 0.66±0.001 0.62±0.006 

WDRes 
RR-BLUP 0.56±0.001 0.58±0.001 0.62±0.001 0.64±0.001 0.63±0.001 

GRR 0.48±0.002 0.47±0.003 0.59±0.003 0.64±0.002 0.60±0.003 

WDX-ray 
RR-BLUP 0.55±0.001 0.56±0.001 0.59±0.001 0.62±0.001 0.61±0.001 

GRR 0.54±0.002 0.55±0.001 0.59±0.002 0.62±0.001 0.60±0.002 

MoEd 
RR-BLUP 0.50±0.001 0.61±0.001 0.63±0.001 0.67±0.001 0.65±0.001 

GRR 0.50±0.013 0.56±0.002 0.63±0.002 0.66±0.001 0.64±0.002 

Ave. 
RR-BLUP 0.59±0.073 0.62±0.059 0.65±0.060 0.68±0.055 0.66±0.057 

GRR 0.56±0.091 0.57±0.101 0.63±0.063 0.67±0.056 0.64±0.063 
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Table 2.8 Single site GS prediction accuracies and their standard errors resulting from using 

the multi-sites as training population for RR-BLUP and GRR models for kNN-Fam-60% 

imputation method. 

Traits GS Model 
Cross-validation 

Multi-sites PGTIS Aleza Lake Quesnel 

HT 
RR-BLUP 0.63±0.001 0.37±0.001 0.53±0.002 0.45±0.001 

GRR 0.62±0.002 0.36±0.003 0.52±0.003 0.45±0.002 

DBH 
RR-BLUP 0.77±0.001 0.37±0.001 0.50±0.001 0.40±0.001 

GRR 0.77±0.001 0.37±0.002 0.50±0.001 0.40±0.001 

VOL 
RR-BLUP 0.73±0.001 0.34±0.001 0.50±0.001 0.41±0.001 

GRR 0.72±0.001 0.34±0.002 0.50±0.002 0.40±0.002 

VDir 
RR-BLUP 0.67±0.001 0.50±0.001 0.47±0.001 0.49±0.001 

GRR 0.66±0.001 0.49±0.001 0.47±0.001 0.48±0.002 

WDRes 
RR-BLUP 0.64±0.001 0.41±0.001 0.48±0.001 0.46±0.001 

GRR 0.64±0.002 0.41±0.002 0.48±0.002 0.45±0.003 

WDX-ray 
RR-BLUP 0.62±0.001 0.46±0.001 0.49±0.002 0.50±0.001 

GRR 0.62±0.001 0.46±0.002 0.49±0.002 0.50±0.002 

MoEd 
RR-BLUP 0.67±0.001 0.50±0.001 0.46±0.001 0.48±0.001 

GRR 0.66±0.001 0.49±0.002 0.45±0.002 0.47±0.002 

Ave. 
RR-BLUP 0.68±0.055 0.42±0.066 0.49±0.023 0.46±0.039 

GRR 0.67±0.056 0.42±0.063 0.49±0.023 0.45±0.038 

  



38 

 

Table 2.9 Cross-site GS prediction accuracies for all studied combinations (GS prediction 

model, imputation method, and trait). 

Traits 

Imputation MI-60% 

Sites 1 & 2 1 & 3 2 & 3 

GS model 1 --> 2 2 --> 1 1 --> 3 3 --> 1 2 --> 3 3 --> 2 

HT 
RR-BLUP 0.22±0.002 0.21±0.002 0.17±0.002 0.18±0.002 0.32±0.002 0.34±0.002 

GRR 0.19±0.003 0.20±0.004 0.15±0.005 0.17±0.006 0.28±0.007 0.29±0.006 

DBH 
RR-BLUP 0.23±0.002 0.19±0.002 -0.01±0.002 -0.01±0.003 0.06±0.002 0.03±0.002 

GRR 0.21±0.005 0.18±0.003 0.00±0.004 0.01±0.004 0.05±0.005 0.03±0.005 

VOL 
RR-BLUP 0.18±0.001 0.15±0.001 0.00±0.002 -0.01±0.001 0.15±0.002 0.13±0.002 

GRR 0.17±0.005 0.14±0.004 0.00±0.004 0.00±0.004 0.14±0.005 0.12±0.004 

VDir 
RR-BLUP 0.17±0.001 0.14±0.001 0.30±0.002 0.36±0.002 0.22±0.002 0.22±0.002 

GRR 0.17±0.005 0.12±0.004 0.28±0.004 0.34±0.004 0.21±0.006 0.19±0.004 

WDRes 
RR-BLUP 0.13±0.001 0.20±0.002 0.13±0.002 0.13±0.001 0.27±0.002 0.21±0.001 

GRR 0.12±0.005 0.17±0.008 0.12±0.006 0.12±0.003 0.23±0.006 0.21±0.004 

WDX-ray 
RR-BLUP 0.20±0.002 0.23±0.001 0.28±0.002 0.31±0.002 0.28±0.002 0.27±0.002 

GRR 0.19±0.005 0.21±0.005 0.27±0.004 0.29±0.005 0.26±0.007 0.27±0.004 

MoEd 
RR-BLUP 0.16±0.001 0.15±0.002 0.28±0.001 0.35±0.002 0.20±0.002 0.20±0.002 

GRR 0.16±0.003 0.14±0.004 0.27±0.004 0.33±0.006 0.19±0.005 0.18±0.005 

Traits 

Imputation KNN-60% 

Sites 1 & 2 1 & 3 2 & 3 

GS model 1 --> 2 2 --> 1 1 --> 3 3 --> 1 2 --> 3 3 --> 2 

HT 
RR-BLUP 0.21±0.002 0.19±0.002 0.17±0.002 0.19±0.002 0.36±0.002 0.39±0.002 

GRR 0.18±0.005 0.17±0.005 0.16±0.005 0.18±0.005 0.33±0.007 0.34±0.006 

DBH 
RR-BLUP 0.21±0.002 0.17±0.001 0.01±0.001 -0.01±0.002 0.06±0.002 0.03±0.002 

GRR 0.21±0.005 0.16±0.004 0.01±0.004 0.00±0.004 0.05±0.003 0.03±0.004 

VOL 
RR-BLUP 0.17±0.001 0.13±0.001 0.01±0.001 0.00±0.002 0.16±0.002 0.14±0.002 

GRR 0.15±0.004 0.14±0.005 0.01±0.004 0.00±0.003 0.15±0.005 0.13±0.005 

VDir 
RR-BLUP 0.17±0.001 0.14±0.001 0.32±0.002 0.38±0.002 0.22±0.001 0.22±0.001 

GRR 0.17±0.005 0.14±0.005 0.30±0.003 0.37±0.003 0.22±0.004 0.21±0.003 

WDRes 
RR-BLUP 0.16±0.002 0.23±0.002 0.14±0.002 0.14±0.001 0.29±0.002 0.24±0.001 

GRR 0.14±0.004 0.22±0.005 0.12±0.005 0.13±0.002 0.26±0.004 0.24±0.003 

WDX-ray 
RR-BLUP 0.23±0.002 0.24±0.002 0.32±0.002 0.34±0.002 0.30±0.001 0.31±0.002 

GRR 0.22±0.004 0.22±0.004 0.30±0.005 0.32±0.004 0.29±0.003 0.29±0.005 

MoEd 
RR-BLUP 0.16±0.001 0.14±0.001 0.31±0.001 0.38±0.002 0.20±0.001 0.21±0.002 

GRR 0.16±0.003 0.15±0.003 0.29±0.004 0.36±0.005 0.20±0.003 0.22±0.004 
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Table 2.9 Cross-site GS prediction accuracies for all studied combinations (GS prediction 

model, imputation method, and trait). 

 

Traits 
Imputation SVD-60% 

Sites 1 & 2 1 & 3 2 & 3 
 GS model 1 --> 2 2 --> 1 1 --> 3 3 --> 1 2 --> 3 3 --> 2 

HT 
RR-BLUP 0.25±0.001 0.22±0.001 0.20±0.003 0.25±0.002 0.31±0.003 0.32±0.002 

GRR 0.23±0.003 0.21±0.003 0.19±0.004 0.25±0.003 0.30±0.004 0.30±0.006 

DBH 
RR-BLUP 0.20±0.002 0.18±0.002 0.03±0.002 0.04±0.002 0.06±0.002 0.01±0.002 

GRR 0.19±0.003 0.17±0.003 0.03±0.003 0.04±0.004 0.06±0.003 0.02±0.004 

VOL 
RR-BLUP 0.18±0.002 0.14±0.002 0.05±0.001 0.06±0.002 0.13±0.002 0.11±0.001 

GRR 0.17±0.004 0.14±0.003 0.04±0.002 0.06±0.003 0.13±0.003 0.11±0.003 

VDir 
RR-BLUP 0.19±0.002 0.17±0.002 0.30±0.002 0.37±0.002 0.20±0.002 0.24±0.002 

GRR 0.19±0.003 0.17±0.004 0.30±0.003 0.35±0.003 0.18±0.003 0.24±0.004 

WDRes 
RR-BLUP 0.14±0.003 0.21±0.003 0.11±0.002 0.16±0.002 0.28±0.002 0.19±0.002 

GRR 0.13±0.003 0.21±0.005 0.11±0.004 0.16±0.004 0.25±0.004 0.19±0.003 

WDX-ray 
RR-BLUP 0.22±0.002 0.25±0.002 0.26±0.002 0.30±0.002 0.29±0.002 0.27±0.002 

GRR 0.21±0.003 0.24±0.004 0.26±0.003 0.30±0.003 0.29±0.004 0.26±0.003 

MoEd 
RR-BLUP 0.18±0.002 0.16±0.002 0.29±0.002 0.36±0.001 0.18±0.002 0.23±0.001 

GRR 0.17±0.003 0.16±0.004 0.28±0.003 0.34±0.004 0.17±0.003 0.22±0.004 

Traits 
Imputation MI-30% 

Sites 1 & 2 1 & 3 2 & 3 
 GS model 1 --> 2 2 --> 1 1 --> 3 3 --> 1 2 --> 3 3 --> 2 

HT 
RR-BLUP 0.20±0.001 0.18±0.002 0.14±0.002 0.15±0.002 0.30±0.002 0.34±0.003 

GRR 0.17±0.004 0.13±0.008 0.13±0.005 0.14±0.007 0.27±0.006 0.28±0.008 

DBH 
RR-BLUP 0.19±0.002 0.20±0.002 0.03±0.003 -0.02±0.003 0.04±0.002 0.04±0.002 

GRR 0.19±0.003 0.17±0.007 0.03±0.004 0.01±0.006 0.03±0.005 0.03±0.004 

VOL 
RR-BLUP 0.16±0.002 0.15±0.002 0.02±0.002 -0.03±0.003 0.12±0.003 0.14±0.003 

GRR 0.16±0.003 0.13±0.004 0.02±0.004 0.02±0.004 0.11±0.004 0.10±0.005 

VDir 
RR-BLUP 0.13±0.002 0.14±0.002 0.26±0.002 0.31±0.002 0.18±0.002 0.19±0.002 

GRR 0.11±0.004 0.14±0.003 0.24±0.003 0.28±0.004 0.17±0.004 0.15±0.005 

WDRes 
RR-BLUP 0.08±0.002 0.12±0.003 0.11±0.002 0.12±0.002 0.25±0.002 0.19±0.002 

GRR 0.09±0.004 0.10±0.004 0.09±0.004 0.11±0.004 0.20±0.005 0.18±0.005 

WDX-ray 
RR-BLUP 0.17±0.003 0.19±0.003 0.24±0.002 0.26±0.002 0.25±0.002 0.23±0.003 

GRR 0.17±0.004 0.13±0.010 0.24±0.003 0.26±0.003 0.19±0.008 0.23±0.004 

MoEd 
RR-BLUP 0.10±0.002 0.13±0.002 0.25±0.002 0.30±0.002 0.17±0.002 0.17±0.003 

GRR 0.09±0.003 0.13±0.003 0.23±0.003 0.25±0.004 0.17±0.004 0.11±0.005 
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Table 2.9 Cross-site GS prediction accuracies for all studied combinations (GS prediction 

model, imputation method, and trait). 

Traits 

Imputation EM-30% 

Sites 1 & 2 1 & 3 2 & 3 

GS model 1 --> 2 2 --> 1 1 --> 3 3 --> 1 2 --> 3 3 --> 2 

HT 
RR-BLUP 0.21±0.002 0.19±0.002 0.14±0.003 0.16±0.002 0.32±0.002 0.37±0.002 

GRR 0.20±0.004 0.16±0.005 0.14±0.004 0.13±0.004 0.30±0.005 0.31±0.008 

DBH 
RR-BLUP 0.18±0.002 0.19±0.002 0.03±0.002 -0.02±0.002 0.04±0.002 0.06±0.003 

GRR 0.18±0.003 0.18±0.003 0.03±0.003 0.00±0.004 0.03±0.005 0.05±0.003 

VOL 
RR-BLUP 0.16±0.002 0.15±0.002 0.02±0.002 -0.02±0.003 0.13±0.001 0.16±0.002 

GRR 0.16±0.003 0.13±0.003 0.02±0.004 0.01±0.005 0.13±0.003 0.15±0.004 

VDir 
RR-BLUP 0.13±0.002 0.15±0.002 0.28±0.002 0.34±0.002 0.17±0.002 0.19±0.002 

GRR 0.12±0.004 0.14±0.005 0.26±0.010 0.29±0.004 0.16±0.003 0.14±0.003 

WDRes 
RR-BLUP 0.10±0.002 0.13±0.002 0.12±0.002 0.13±0.003 0.26±0.002 0.20±0.002 

GRR 0.10±0.003 0.12±0.005 0.11±0.004 0.12±0.004 0.21±0.005 0.19±0.003 

WDX-ray 
RR-BLUP 0.17±0.003 0.19±0.003 0.25±0.002 0.27±0.002 0.25±0.002 0.22±0.002 

GRR 0.17±0.003 0.18±0.004 0.25±0.004 0.27±0.003 0.24±0.008 0.22±0.003 

MoEd 
RR-BLUP 0.11±0.002 0.14±0.002 0.26±0.002 0.32±0.002 0.16±0.002 0.17±0.003 

GRR 0.09±0.003 0.13±0.004 0.25±0.004 0.26±0.004 0.15±0.004 0.12±0.007 

For sites: 1 refers to PGTIS, 2 refers to Aleza Lake, and 3 refers to Quesnel
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Note: (within single site (three values), cross-sites (six values), within multi-site (one value), and for multi-site to single site (three 

values)), with narrow-sense heritabilities (h2) from single- and multi-site GBLUP analyses. Sites are Prince George Tree 

Improvement Station (PGTIS), Quesnel, Aleza lake, and multi-site (ALL). 

 

Figure 2.1 Genomic selection prediction accuracies for the seven traits using the RR-BLUP model and KNN-60% imputation 
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Traits are HT: height in m; DBH: diameter at breast height in cm; VOL: stem volume in m3; VDir: acoustic velocity in km/s; 

WDRes: resistance to drilling; WDX-ray: wood density in kg/m3 using X-ray densitometry; MoEd: dynamic modulus of elasticity. 

For within single site and within multi-site, single- and multi-site GBLUP heritabilities are presented. 

 

Figure 2.2 Genomic selection prediction accuracies for the seven traits using GRR model and KNN-60% imputation 
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Note: Sites are Prince George 

Tree Improvement Station 

(PGTIS), Quesnel, and Aleza 

lake. Traits are HT: height in m; 

DBH: diameter at breast height in 

cm; VOL: stem volume in m3; 

VDir: acoustic velocity in km/s; 

WDRes: resistance to drilling; 

WDX-ray: wood density in kg/m3 

using X-ray densitometry; MoEd: 

dynamic modulus of elasticity. 

Cross-site GS accuracy (          ) 

Type-b genetic correlations 

between sites ( _ _ _ ) 

 

 

 

Figure 2.3 Cross-site GS accuracy, type-b genetic correlations between sites (Y-axis) and 

their Pearson-product-moment correlations across sites (X-axis) for the seven traits.  
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Figure 2.4 The relationship between height genetic gain and genetic diversity for ABLUP 

(status number (Ns)) and GBLUP (number of founder genome equivalent (NGE)) across a 

range of co-ancestry penalties. 
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Chapter 3: Genomic-based vs. pedigree-based approach to genetic variance 

decomposition in single-site OP white spruce population 

 Introduction 

Open-pollinated (OP) (also known as wind-pollinated) family testing is, by far, the simplest and 

most economical means for screening, evaluating, and ranking large number of candidate parent 

trees. Thus, OP testing combines the simplest known field experimental design in pedigree testing 

as candidate trees enter the test as maternal parents and their offspring are assumed to represent 

independent half-sib families. OP testing has been widely implemented for several tree species 

throughout the world (e.g., radiata pine (Pinus radiata D. Don) (Burdon and Shelbourne 1971), 

Interior spruce (Picea glauca (Moench) Voss x P. engelmannii Parry ex Engelm.) (Kiss and 

Yanchuk 1991), Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) (El-Kassaby and Sziklai 

1982; Johnson 1997), western larch (Larix occidentalis Nutt.) (Ratcliffe et al. 2013), and Scots 

pine (P. sylvestris L.) (Korecký et al. 2013)), and it is often considered as a prelude to full-pedigree 

testing (Jayawickrama and Carson 2000). 

Genealogically speaking, OP testing (i.e., partial pedigree) is positioned between the “no 

pedigree” provenance testing (Callaham 1964) and the “full-pedigree” mating design-based 

progeny testing that includes all higher levels of relatedness and connectivity among the created 

families (Namkoong et al. 2012). Thus, the accuracy of all OP testing-based estimated genetic 

parameters (e.g., additive genetic variance, heritability, breeding values, etc.) is superior to the 

former yet somewhat limited comparing to the latter (but also see, Hallingbäck and Jansson 2013). 

In fact, doubts are often raised regarding the accuracy of OP family testing-derived genetic 



46 

 

parameters as the assumption of “half-sibling” is hardly fulfilled (Namkoong 1966; Squillace 

1974; Askew and El-Kassaby 1994). 

The pedigree-based genetic relationships among individuals (based on the so-called A-

matrix: average numerator relationship matrix (Wright 1922)) are often used to estimate the 

genetic variance components by using the Restricted Maximum Likelihood (Gilmour et al. 1995) 

and predict each individual’s breeding value using the Best Linear Unbiased Prediction algorithms 

(Henderson 1975, 1976, 1984). However, while effective, this method with its traditional pedigree-

based approach does not adjust for the Mendelian sampling term, that is, this method ignores 

variation among family members of a half- or full-sib family around the family’s average 

relatedness (as all sibs are not alike (Hill and Weir 2011)). Furthermore, the utilization of the A-

matrix, specifically, in the case of the well-known “shallow” pedigree present within most forest 

tree breeding and testing populations does not permit detecting hidden co-ancestry and inbreeding. 

Consequently, individuals’ estimated breeding values are inflated by the overestimation of the 

additive genetic variance. 

With the affordability, scalability, and high-throughput nature of Next Generation 

Sequencing technologies, tens of thousands of single nucleotide polymorphism (SNP) have 

become available for model and non-model species (Baird et al. 2008; Elshire et al. 2011; Peterson 

et al. 2012; Poland et al. 2012; Truong et al. 2012; Chen et al. 2013). This technical advancement 

made it possible to ascertain, with great level of accuracy, the actual fraction of alleles shared 

between individuals, and the estimates of the individuals’ pairwise realized relationship including 

potential inbreeding can be easily determined (Santure et al. 2010). Therefore, genomic 

fingerprinting data permit the accurate estimation of the realized relationships among any set of 

individuals, irrespective of their genealogy, to construct the realized genomic relationship matrix 
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(G-matrix) which can be used to substitute the A-matrix (VanRaden 2008). This advancement 

represents a clear quantitative genetics watershed as the complete dependency on known pedigree 

relationships (i.e., A-matrix) for estimating genetic parameters can be circumvented in the so-

called “pedigree-free models” using the G-matrix. As already demonstrated in earlier cases, the G-

matrix can provide relatively accurate genetic variance components and breeding values estimates 

without the need for elaborate mating designs (Thomas et al. 2002; Frentiu et al. 2008; Hayes et 

al. 2009b; El-Kassaby et al. 2012; Gay et al. 2013; Porth et al. 2013; Zapata-Valenzuela et al. 

2013; Klápště et al. 2014; Muñoz et al. 2014). 

The use of the G-matrix in OP family testing has several implications and is expected to: 

1) overcome the drawback of the average numerator relationship matrix (A-matrix) as genomic 

data will unravel any undetectable hidden relatedness such as full-sibs, self-sibs, and self-halfs that 

inflates the estimated additive genetic variance (Namkoong 1966; Squillace 1974; Askew and El-

Kassaby 1994) (Figure 3.1), 2) provide more accurate genetic co-variances among relatives, thus 

accounting for the Mendelian sampling term (Visscher et al. 2006), and 3) provide higher 

flexibility in capturing the allele frequency segregation in quantitative trait loci (QTLs) (present 

vs. absent QTL) (Lippert et al. 2013). Additionally, we hypothesize that also for OP families the 

use of genomic markers will create an opportunity to effectively decompose the genetic variance 

components, thus separating the additive and non-additive genetic components through the 

definition of realized genomic relationship matrix related to specific variance components, a so far 

unattainable feat for OP family testing. 

Here, we used 1694 trees representing 214 white spruce OP families grown on one site 

(Mastigouche Arbortum, Quebec, Canada (Lat. 46° 38’ N, Long. 73° 13’ W, Elev. 230m)) in a 

randomized complete block design, replicated over six blocks (replications) with each OP family 
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is represented by a 5-tree row plots within each of the six blocks (for complete details, see 

(Beaulieu et al. 2014)).We compared the genetic variance estimates generated from both, the 

average numerator relationship matrix (the expected relationships) and the realized genomic 

relationship matrix (the observed relationships), to demonstrate the genomic markers’ utility in 

partitioning the genetic variance components into additive and non-additive effects. To our 

knowledge, this study provides the first attempt of such an analysis approach in OP families. 

 Materials and methods 

3.2.1 White spruce open-pollinated progeny test, phenotype data, and genotyping 

The white spruce (Picea glauca (Moench) Voss) phenotypic and genotypic data used are available 

online from the Dryad Digital Repository: doi:10.5061/dryad.6rd6f (Beaulieu et al. 2014). Briefly, 

the study site is a part of a larger, 3-site white spruce provenance-progeny test established in 1979 

by the Canadian Forest Service in Quebec, Canada. Each site was planted as randomized complete 

block design with six blocks and five-tree row plots at 1.2 and 2.4m spacing within and between 

rows, respectively. The present study is based on a subset of the provenance-progeny test that 

include 8 individuals per each OP family from 214 families representing a total of 1,694 

individuals, the average family representation per block was 1.32 trees since not all families were 

present in all blocks. It is noteworthy to state that the 214 open-pollinated families were selected 

from 43 provenances throughout Quebec, thus population effect might be present. Beaulieu et al. 

(2014), using principal component analysis, reported the presence of weak population structure 

with no defined geographical pattern. In fact, Beaulieu et al. (2014) estimated that 1.3% of the 

total variance was explained by the first two principal component analysis eigenvectors and 

indicated that their lack of population structure is concordant with previous studies using the same 

populations, thus population structure was not considered in the present study. Wood density was 
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determined using X-ray densitometry from 12-mm increment cores collected at 1.3m from ground 

(see (Beaulieu et al. 2011), for details). Trees were genotyped for 7,338 single nucleotide 

polymorphic (SNP) loci from 2,814 genes using Illumina Infinium HD iSelect bead chip PgAS1 

(Illumina, San Diego, CA, USA) (for details see Rigault et al. 2011). The data used are available 

from the Dryad Digital Repository: doi:10.5061/ dryad.6rd6f (Beaulieu et al. 2014). 

3.2.2 Relationship matrices 

The additive relationship matrix was estimated following: 

𝑮𝒂𝒅𝒅 =
𝒁𝒁′

2 ∑ 𝑝𝑖(1−𝑝𝑖)
  [1] 

where Z is rescaled genotype matrix following M - P, M is genotype matrix containing genotypes 

coded as 0, 1, and 2 according to the number of alternative alleles and P is a vector of twice the 

allelic frequency, p (VanRaden 2008). The dominance genetic variance was fitted by including a 

marker based dominance relationship matrix following: 

𝑮𝒅𝒐𝒎 =
𝑾𝑾′

(2𝑝𝑞)2   [2] 

where W is matrix containing -2q2 for alternative homozygote, 2pq for heterozygote, and -2p2 for 

reference allele homozygote (Vitezica et al. 2013). Similarly, epistatic variance was fitted by 

including several relationship matrices capturing first order additive x additive, dominance x 

dominance, and additive x dominance interaction. The relationship matrices were constructed as 

the Hadamard product of the relationship matrices defined above: Gadd#Gadd, Gdom#Gdom and 

Gadd#Gdom (Su et al. 2012; Muñoz et al. 2014). 

The variance components from pedigree based analysis (ABLUP) were obtained by solving 

the following mixed model: 

𝒚 = 𝑿𝜷 + 𝒁𝒊𝒖 + 𝒁𝒋𝒓 + 𝒁𝒌𝒓𝒙𝒇 + 𝒆  [3] 
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where y is vector of phenotypic measurements, β is vector of fixed effects (overall mean), u is 

vector of random additive genetic effects following u~N(0, A𝜎𝑎
2), where A is average numerator 

relationship matrix and 𝜎𝑎
2 is additive genetic variance, r is vector of random replication effect 

following r~N(0, I𝜎𝑟
2), where 𝜎𝑟

2 is replication variance, 𝒓𝒙𝒇is vector of random replication x 

family interaction effects following 𝒓𝒙𝒇~N(0, I𝜎𝒓𝒙𝒇
2 ), where 𝜎𝒓𝒙𝒇

2  is replication x family interaction 

variance, and e is a vector of the random residual effects following e~N(0, I𝜎𝑒
2) where 𝜎𝑒

2 is 

residual error variance, X, Zi, Zj, and Zk are incidence matrices relating fixed and random effects 

to measurements in vector y. 

The variance components from the analysis using marker based additive relationship 

matrix (GBLUP-A) were obtained from the model described above but the average numerator 

relationship matrix A is substituted by marker based relationship matrix Gadd. The extended model 

for the dominance terms are performed as follows: 

𝒚 = 𝑿𝜷 + 𝒁𝒊𝒖 + 𝒁𝒍𝒅 + 𝒁𝒋𝒓 + 𝒁𝒌𝒓𝒙𝒇 + 𝒆  [4] 

where d is vector of the random dominance effect following d~N(0, Gdom𝜎𝑑
2) where 𝜎𝑑

2 is the 

dominance variance. Additional model extension for epistatic terms is performed as follows: 

𝒚 = 𝑿𝜷 + 𝒁𝒊𝒖 + 𝒁𝒍𝒅 + 𝒁𝒎𝒂𝒙𝒂 + 𝒁𝒏𝒅𝒙𝒅 + 𝒁𝒑𝒂𝒙𝒅 + 𝒁𝒋𝒓 + 𝒁𝒌𝒓𝒙𝒇 + 𝒆  [5] 

where axa is the vector of random additive x additive epistatic interaction effects following 

axa~N(0, Gadd#add𝜎𝑎𝑥𝑎
2 ) where 𝜎𝑎𝑥𝑎

2  is the additive x additive epistatic interaction variance, dxd is 

the vector of random dominance x dominance epistatic interaction effects following dxd~N(0, 

Gdom#dom𝜎𝑑𝑥𝑑
2 ) where 𝜎𝑑𝑥𝑑

2  is dominance x dominance epistatic interaction variance, axd is the 

vector of random additive x dominance epistatic interaction effects following axd~N(0, 



51 

 

Gadd#dom𝜎𝑎𝑥𝑑
2 ) where 𝜎𝑎𝑥𝑑

2  is the additive x dominance epistatic interaction variance, and 𝒁𝒍, 𝒁𝒎, 

𝒁𝒏 and 𝒁𝒑 are incidence matrices relating random effects to measurements in vector y. 

Narrow-sense heritability was estimated as ℎ̂2 = 𝜎̂𝑎
2/𝜎̂𝑝

2, where 𝜎̂𝑎
2 represents the estimate 

of the additive variance and 𝜎̂𝑝
2 equals the sum of 𝜎̂𝑒

2  and all random model effect variance 

components estimates such as additive, dominance, additive x additive, additive x dominance, 

dominance x dominance interactions following that of the ABLUP and GBLUPs (GBLUP-A, 

GBLUP-AD, and GBLUP-ADE) models, respectively (Table 3.1). The analyses and the derived 

genetic and environmental parameters and their standard errors for the ABLUP and GBLUPs were 

estimated using ASRemlTM v. 3.0 software (Gilmour et al. 2009). 

3.2.3 Models comparison and cross-validation 

Models were compared using the AIC estimates obtained from each analysis (Gilmour et al. 2009) 

and the precision of the estimated variance components and their dependence was assessed by 

investigation of accumulated eigenvalues of the asymptotic sampling correlation matrix of 

variance component estimates F, where F = L-1/2VL-1/2 using the asymptotic variance-covariance 

matrix of estimates of variance components V and its diagonal matrix L (Muñoz et al. 2014). 

A 10-fold cross-validation scenario with five replications were used to assess prediction 

accuracy and consistency within and between the various models, respectively. Folding of the 

training population was either random, block restricted, or family restricted. The latter scenario 

removes the genetic relatedness between the training and validation populations according to the 

pedigree information. That is, all individuals belonging to a single OP family were strictly assigned 

to either the training or validation population. Block restricted folding was performed as a leave 

one block out scenario. That is, all individuals belonging to single block were assigned as the 
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validation population, while the individuals belonging to remaining five experimental blocks were 

randomly divided into 10 folds as the training population. Random folding had no prior restriction 

when assigning the folds. 

Prediction accuracy within, and consistency between models was evaluated using the mean 

Pearson correlation from the five replications. Specifically, the correlation values for each 

replication were calculated as: 

𝑟𝐸𝐵𝑉𝑙,𝑃𝐵𝑉𝑚𝑛
=

𝑐𝑜𝑣(𝐸𝐵𝑉𝑙,𝑃𝐵𝑉𝑚𝑛)

𝜎𝐸𝐵𝑉𝑙
𝜎𝑃𝐵𝑉𝑚𝑛

   [6] 

where, EBV refers to the individual additive breeding value of the validation population obtained 

using the entire data set (1,694 individuals) for the lth model (ABLUP, GBLUP-A, GBLUP-AD, 

GBLUP-ADE), PBV is the individual additive breeding value of the validation population 

obtained using the mth model (ABLUP, GBLUP-A, GBLUP-AD, GBLUP-ADE) and nth cross-

validation scenario (random, block, family), 𝑐𝑜𝑣 is the covariance, and 𝜎 is the standard deviation. 

Standard error of the mean for the correlations was computed using the following equation: 

𝑆𝐸 =
𝜎

√𝑛
  [7] 

where 𝜎 is the standard deviation of the Pearson correlations and 𝑛 is the number of replicates. 

 Results 

3.3.1 Genetic variance components and heritability estimates 

As expected, replication and family x replication interaction produced constant variance 

components across the four studied models for both height (4.7 and 22%) and wood density (1 and 

2-5%), leaving most of the within replication effects residing within the residual terms (Table 3.1). 

The greatest observed difference between the pedigree- (ABLUP) and the marker-based (GBLUP-

A) models was the substantial discrepancy of the additive genetic variance estimates’ magnitude 
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(Table 3.1). The additive genetic variance estimated from GBLUP- A were 64.4 and 46.9% of 

those from the ABLUP for height and wood density, respectively (Table 3.1). Naturally, this 

change is reflected in the residual terms as they increased to 110.1 and 168.4% of that of the 

ABLUP and subsequently resulting in substantial reduction of narrow-sense heritability estimates 

(ℎ̂2: from 0.25 down to 0.16 for height and from 0.61 down to 0.30 for wood density comparing 

ABLUP vs. GBLUP-A, respectively). Overall, narrow-sense heritability was reduced by 65% for 

height, and 50% for wood density, when the genomic relationship matrix GBLUP-A was employed 

(Figure 3.1), highlighting known caveats of OP progeny testing. Also, the inflation of additive 

genetic variance observed in ABLUP and the subsequent impact on heritability estimates were 

expected, thus it is more reasonable to use the results from the GBLUP-A as the basis for 

comparing the extended analyses that included dominance (GBLUP-AD), and epistasis and 

dominance (additive x additive, dominance x dominance, and additive x dominance first-order 

interaction) (GBLUP-ADE). 

The GBLUP-AD analysis produced identical results to that of the GBLUP-A confirming 

the existence of minuscule and non-significant dominance variance estimates, accounting for 1.13 

and 2.84% of the total phenotypic variance for height and wood density, respectively (Table 3.1). 

This is not surprising considering the small sample size of the studied OP families (≈8 

individuals/family) or simply due to the fact that these traits do not possess dominance genetic 

variance (see Discussion). Including dominance variance in the models increased the AIC values 

for the models, indicating that GBLUP-AD models were over-fitted compared to GBLUP-A 

models (Table 3.1), and that the simpler GBLUP-A models should be preferred. 

The GBLUP-ADE analysis produced the most striking results with further reduction as to 

the additive genetic and the residual variances compared to the ABLUP and GBLUP-AD models 
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for height and wood density, respectively (Table 3.1). This observed reduction in the additive 

genetic and residual variances was caused by the presence of significant additive x additive genetic 

variance within the total phenotypic variance (Table 3.1). This observed additive x additive genetic 

variance in turn resulted in further reduction of the narrow-sense heritability estimates; from 0.16 

to 0.13, and from 0.30 to 0.18 in GBLUP-AD compared to GBLUP-ADE for height and wood 

density, respectively. Again, the GBLUP-ADE analysis did not cause any change to the dominance 

variances (Table 3.1). Small and not significant dominance x dominance and additive x dominance 

first-order interactions were observed for height and wood density in the GBLUP-ADE (Table 

3.1). The AIC statistics for this model produced the best fit with value lower than that observed 

for all tested models for wood density (-9,726.65), supporting the inclusion of the additional 

epistasis terms in the model, specifically that of the additive x additive (Table 3.1). Unexpectedly, 

the AIC for GBLUP-A (17,465.80) produced the best fit for height (Table 3.1). 

3.3.2 Models comparison and cross-validation 

Comparing the standard errors for the predictions (SEP) of breeding values (BV) between the 

ABLUP and GBLUP-A models, all of SEPs for height and wood density BVs were smaller for 

GBLUP-A compared to ABLUP as all SEPs were below the 45° reference lines, clearly indicating 

the superiority of the GBLUP-A model (Figure 3.2). GBLUP-A and GBLUP-AD models produced 

identical results owing to the lack of significant dominance effects and all SEPs for height and 

wood density BVs resided on the diagonal 45° reference lines. Additionally, SEPs for height and 

wood density BVs from the GBLUP-ADE model were smaller than the corresponding SEPs 

produced by the GBLUP-A model indicating the effectiveness of the GBLUP-ADE model (Figure 

3.2). When we compared the pedigree- and the marker-based models using the cumulative 

proportion of variance that was explained by eigenvalues of the sampling variance-covariance 
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matrix of variance component estimates, we found that the GBLUP-A outperformed the pedigree-

based (ABLUP) models as indicated by the closeness of their respective lines to the ideal scenario 

(straight line) where the variance components are completely independent (Figure 3.3). Finally, 

since the GBLUP-ADE model does not have a corresponding model in the pedigree method, 

GBLUP-ADE was plotted only against the 45° diagonal for reference (Figure 3.3). 

Cross-validation prediction accuracies (Table 3.2; diagonals) indicated that the ABLUP 

model was associated with the lowest values among all tested models for both random and block 

restricted folding (range: 0.451-0.475 and 0.439-0.449 for height and wood density, respectively), 

while the GBLUP models produced greater prediction accuracies under the same two folding 

scenarios (range: 0.735-0.772 and 0.748-0.783, for height and wood density, respectively). 

Prediction accuracies were lowest under the family restricted scenario for the GBLUP models 

(range: 0.683-0.698 and 0.651-0.658, for height and wood density, respectively), with random 

folding producing the greatest prediction accuracies. Comparison of prediction accuracies among 

the GBLUP models using random folding showed that difference between GBLUP-A and 

GBLUP-AD were not significant (based on standard errors), however the two were significantly 

greater than GBLUP-ADE for both height and wood density. The family and random folding 

scenarios both produced no significant differences in prediction accuracy among the GBLUP 

models. 

Pairwise model comparisons (Table 3.2; off-diagonals) showed high consistency between 

all GBLUP models within the individual folding scenarios. It is also noteworthy to mention that 

under the family folding scenario, the ability of ABLUP to produce across family prediction 

challenges the assumption of zero expected relatedness among OP families, thus predictions of 

individual additive breeding values here would simply be equal to the overall mean. 
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 Discussion 

Traditionally, the pedigree-based average numerator relationship matrix (A-matrix) is used to 

estimate the genetic variance components for forest tree progeny test populations. The estimated 

genetic variance components (e.g., additive and dominance genetic variances, etc.) often are 

mating design-dependent and the mating scheme determines which component can be obtained. 

In most cases, this approach is incapable of disentangling the within-family genetic from within-

family micro-environment effects. This is even more problematic in OP family screening as 

separating additive from non-additive genetic variances is limited by shallow pedigrees and lack 

of connectedness among the tested families; furthermore, as shown in Table 1, the estimated 

additive genetic variance is inflated as the half-sib assumption is hardly fulfilled (Namkoong 1966; 

Squillace 1974; Askew and El-Kassaby 1994). In fact, the estimated genomic pairwise 

relationships of the studied 214 OP families showed deviation from the expected 0.25 coefficient 

of relatedness for half-siblings, confirming causes for additive genetic variance overestimation, 

while the relationships among members of unrelated families clustered around the expected 0.0 

(Figure 3.1). The availability of dense genomic marker panels made it possible to genotype 

individuals for a large numbers of single nucleotide polymorphisms (SNPs) and obtain the realized 

genomic relationship matrix (G-matrix) among these individuals. In turn, the G-matrix can be used 

as a substitute to the A-matrices to estimate more accurate and precise genetic variance components 

as the G-matrix represents the realized pedigree as well as having the capacity to exploit the 

Mendelian sampling/segregation within families (VanRaden 2008; Hayes et al. 2009b). It is 

worthwhile to note that some of the recently reported gain increase in animal breeding programs 

is mainly due to exploiting the Mendelian sampling term (Avendaño et al. 2004). 
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The utility of the G-matrix in generating improved estimates of the genetic variance 

parameters from experimental populations of forest trees (e.g., full-sib families) have recently been 

explored (Zapata-Valenzuela et al. 2013; Klápště et al. 2014; Muñoz et al. 2014). The present 

study, to our knowledge, represents the first attempt to implement the G-matrix in OP family 

testing, thus not only, overcoming the common bias associated with the unfulfilled half-sib 

assumption, but also separating the additive from the non-additive genetic variance components. 

It is well known that separating the additive from the non-additive (dominance and epistatic 

variances) genetic components requires elaborate mating designs with large number of inter-

connected full-sib families coupled with the inclusion of replicated clonal material (Foster and 

Shaw 1988; Bradshaw and Foster 1992). Our study accomplished a mixed-model approach for 

variance decomposition, providing realized estimates of the additive, dominance, and epistatic 

genetic variances without the need for mating designs to generate inter-connected full-sib families 

or vegetative propagation for the production of replicated clonal material. 

It is interesting to note that the estimated additive genetic variances for the three realized 

genomic relationship matrix-based analyses (GBLUP-A, GBLUP-AD, and GBLUP-ADE) were 

lower than those of the average numerator relationship matrix (ABLUP) (Table 3.1), an 

observation already reported for mice (Lee et al. 2010), loblolly pine (Muñoz et al. 2014), and 

Brown Swiss cattle populations (Loberg et al. 2015). The improved performance of the GBLUP-A 

compared to that of the ABLUP indicates that the former model took full advantage of: 1) the 

within family variation (i.e., Mendelian sampling term), 2) discerning if full-sibs, self-sibs, and 

self-halfs existed within the studied 214 open-pollinated families, 3) the ability to estimate among-

family relationships even if it was as small as seen in Figure 3.1, and 3.4) identifying pedigree 

errors if present, as shown in Figure 3.1 (i.e., some individuals have a coefficient of relationship 
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of 0.0 within the same OP family). The observed reduction in the additive genetic variance between 

the two models (ABLUP vs. GBLUP-A) resulted in concomitant increase in the residual error 

terms and hence considerably reduced narrow-sense heritability estimates for height (0.25 vs. 0.16) 

and also for wood density (0.61 vs. 0.30) along with improvement in the model fit based on 

improved AIC values (Table 3.1). Additionally, GBLUP-A produced greater precision for its 

estimated breeding value (EBV) as indicated by the EBV’s smaller standard errors compared to 

the ABLUP (Figure 3.2; ABLUP vs. GBLUP-A). 

It is noteworthy to mention that the present study is based on data collected from one site, 

thus there is a chance that the estimated genetic parameters could be upwards biased due to the 

genotype x environment confounding effects specific to this particular site or year. However, 

results from chapter four for the same species and attributes for a set of 25 open-pollinated families 

planted in replicated trials over three sites in British Columbia were consistent to that reported here 

with the added benefits of estimating the additive and dominance x site (environment) interactions. 

The observed overall trend in genetic variance decomposition persisted when the 

dominance genetic variance was estimated using the alternative genotypic approach proposed by 

Su et al. (2012) and discussed by Vitezica et al. (2013); however, the dominance genetic variance 

of wood density showed a slight increase (Table 3.3). 

Additionally, estimating the dominance genetic variance is only feasible when full-sib 

families are available (Zapata-Valenzuela et al. 2013; Klápště et al. 2014; Muñoz et al. 2014). 

This scenario is easily resolved when pedigree- and marker-based models are compared for mating 

design accommodating full-sib families (Muñoz et al. 2014) However, the utility of the GBLUP-

AD model in OP family testing is still worth exploring to discern the dominance genetic variance 

- if existing - as well as separating the genetic variances from the confounding environment effects. 
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It should be noted that the goodness-of-fit statistics (AIC) for the GBLUP-AD clearly indicated 

that adding the dominance genetic variance resulted in model over fit and this is expected due to 

the extremely small and non-significant dominance genetic variance (1.1 and 2.8% for height and 

wood density, respectively). 

The model that included the additive, dominance, and epistatic variances (GBLUP-ADE) 

offered better partitioning of the variance complements, as the additive x additive epistatic 

variance became extremely pronounced and accounted for 11 and 52% of the total variance for 

height and wood density, respectively (Tables 3.1 and 3.3). When we removed the dominance 

genetic variance from the GBLUP-ADE model, the revised models (GBLUP-AE) produced better 

model fit for height (17,466.9 vs. 14,472.9) and wood density (-9,732.6 vs. -9,726.6), confirmed 

that dominance variance was negligible (Table 3.1). Interestingly, both models (GBLUP-ADE and 

GBLUP-AE) produced similar variance components apportionment and heritability estimates 

(Table 3.1). Similar magnitude of the additive x additive epistatic variance to that of the additive 

variance, per se, was also observed in loblolly pine (Muñoz et al. 2014), a situation meeting 

theoretical expectations where the additive x additive epistatic variance is commonly absorbed by 

both the additive and the residual variances (Lynch, M., Walsh 1998; Jannink 2007; Mackay 

2014). The power of the GBLUP-ADE and/or GBLUP-AE models in identifying and separating 

the additive x additive epistasis from the additive genetic variance lies in the genetic background 

of the tested families for providing a range of options to demonstrate all established interactions 

between the alleles at the various loci that are affecting the studied traits. The magnitude of the 

epistatic additive x additive genetic variance observed for height and wood density along with the 

AIC values produced from the tested models require some reflection. The observed AIC values 

support GBLUP-A and GBLUP-AE to be the best model for height and wood density, respectively 
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(Table 3.1). However, in wood density where the additive x additive is ≈3 times as that of the 

additive variance, the prediction accuracy of the GBLUP-AE and GBLUP-A models were almost 

similar (Tables 3.1 and 3.2). This indicates that the additive x additive and additive relationship 

matrices are in a “tug-of-war” state over the same variance. In fact, we estimated the correlation 

between these two relationship matrices and it was close to perfect correlation (r = 0.988), 

confirming our notion and makes us believe that while we observed exceedingly large epistatic 

additive x additive genetic variance, as the impact on predicting the breeding values between 

GBLUP-A and GBLUP-AE is similar (Figure 3.5). 

The subject of genetic epistasis is controversial as all variance components, including 

epistasis are dependent on the allele frequencies in the studied population. Thus, epistasis could 

have an allusive and unique effect across different scenarios (Hill et al. 2008; Mackay 2014). The 

role of epistasis on the genetic architecture of quantitative traits is still not clearly determined due 

to several discrepancies between statistical and functional definition of epistasis. The statistical 

approach considers the epistatic variance orthogonal to the additive genetic variance and assumes 

a clear determination (separation) of both components by the implementation of independent terms 

in the model. Moreover, the epistatic effects are transient and disappear by breaking of linkage 

disequilibrium (LD) (Hill et al. 2008; Crow 2008, 2010). The functional approach assumes that 

allelic substitution effect depends on the genetic background. Hill et al. (2008) based their 

empirical evidence on an exhaustive review across a wide range of species. This includes 

comparisons between narrow- and broad-sense heritability estimates, concluding that complex 

traits are mainly controlled by additive genetic variance as most studied cases supported the notion 

that the majority of the genetic variance appeared to be additive (Crow 2010). However, in the 

present study, if we utilized the heritability estimates derived from the GBLUP-A or GBLUP-AD 
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models alone (without the application of the GBLUP-ADE and/or GBLUP-AE models), then the 

part of the genetic variance attributable to additive x additive interaction would have been excluded 

from the calculations, and thus our conclusion would have been mainly based on inflated additive 

genetic variance. Clearly, the utilization of the marker-based relationship method enabled 

disentangling the additive from the non-additive genetic component, while effectively accounting 

for the proper environment variance through the removal of possible confounding effects. Such 

methodology provides much more realistic breeding value estimations for an individual. 

Habier et al. (2007; 2010; 2013) indicated that the realized genomic relationships do not 

only capture relatedness among individuals but also the LD between SNPs and quantitative trait 

loci, the deviation from independent segregation of alleles on the same gamete if the loci are linked 

(co-segregation or classical linkage), as well as the additive genetic relationship. Habier et al. 

(2013) demonstrated that these types of information collectively have different effects on the 

accuracy of the EBV. As a result, it is safe to state that there is more to the realized genomic 

relationship than the straightforward accounting for the Mendelian sampling term, hence resulting 

in the superior decomposition of the genetic variance components and breeding values estimation. 

When ABLUP is used to estimate the genetic variance components from either half- or 

full-sib families, the above factors are barely considered, except those that were captured through 

common ancestry. As indicted above, the OP/half-sib structure is incapable of estimating the 

dominance and the epistatic genetic variances. This situation was clearly demonstrated in the study 

by Muñoz et al. (2014), as more accurate breeding value estimates and effective partitioning of 

variance components were obtained from their single site, full-sib, and clonally replicated loblolly 

pine experiment. The present study, on the other hand, demonstrated the power of the realized 

genomic relationship in quantitative genetic analyses using a more challenging structure (OP 
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families). As proof-of-concept we compared the rank order among the top 50 performing 

individuals based on the conventional ABLUP versus the GBLUP-ADE/GBLUP-AE (see details 

in the interaction plots of Figure 3.4). Only 23 and 33 of the top 50 individuals persisted from 

ABLUP to GBLUP-ADE/GBLUP-AE for height and wood density, respectively, and overall, the 

individuals’ ranking among the top 50 trees dramatically changed from ABLUP to GBLUP-AE. 

Interestingly, for the 10 best performing trees, only 2 and 4 individuals persisted for height and 

wood density, respectively (Figure 3.4). The true estimated breeding value of an individual is 

commonly determined from experiments with deep pedigree with ample connectedness; however, 

when the ABLUP approach is used in forestry progeny testing experiments that are characterized 

by shallow and inadequate connectedness, then the obtained breeding value is expected to greatly 

deviate from its true value as the assumption of mixed models of error-free covariance matrices is 

not met (Mrode 2005). The greatest difference between the GBLUP and ABLUP models is the 

ability of the former to more precisely define the genetic relationship between any two individuals 

as compared to the latter (Figure 3.1). Our models cross-validation supports this notion as the 

prediction accuracy for the GBLUP models was greater than those produced by ABLUP, 

regardless of the folding scenario (Table 3.2; diagonals). This difference is due to the quantity of 

realized pairwise genetic relationship information used for prediction, wherein ABLUP only the 

information from the pedigreed OP family is used to predict the breeding value. Conversely in 

GBLUP all information from related individuals are used regardless of family assignment, this can 

be seen in the family folding scenario (Table 3.2). Thus, we believe that the estimated breeding 

values produced by the GBLUP models are closer to the true value as more information is used. 

We feel that our results have important and immediate implications for tree improvement 

programs in forestry as most programs are long-term and resource-dependent (El-Kassaby 1995). 
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The conventional genetic improvement in forestry follows the classical recurrent selection scheme 

with repeated cycles of selection, breeding and testing over time and space (Gamal El-Dien et al. 

2015; Ratcliffe et al. 2015). These programs often include: 1) phenotypic selection of untested 

candidate parents from natural or managed forests, 2) propagation of the selected parents as grafts 

followed by a period of inactivity until sexual maturity, 3) the sexual production of structure 

pedigreed offspring from the selected parents using a specific mating designs, 4) field testing over 

vast geographic areas for a reasonable period to attain meaningful data for target traits, 5) 

estimation of genetic parameters and ranking of individuals based on their breeding values, and 6) 

genotypic selection of superior individuals for the second round of breeding and/or seed production 

from seed orchard populations. Obviously, the completion of a single breeding-testing-selection 

cycle is a protracted endeavor due to several uncontrollable biological factors; namely, the time 

needed for reaching sexual maturity for structured pedigree production and reproductive 

phenology and fertility variation that hinder the mating design completion (El-Kassaby et al. 1984; 

El-Kassaby 1989; El-Kassaby and Barclay 1992). Therefore, the use of OP family testing, as 

demonstrated in the present study, allows immediate testing and evaluating large number of 

individuals using their naturally produced offspring through wind-pollination without the need for 

structured pedigree. The present study also demonstrated the utility of the realized genomic 

relationship approach in providing a simple and extremely efficient method for generating accurate 

genetic parameters from a simple OP testing that is characterized by shallow genealogy that is 

typical of most forest tree testing populations. It is noteworthy to mention that the use of the 

realized genomic relationship also allowed the generation of genetic parameters comparable to 

those generated only from elaborate mating designs coupled with cloning approaches. In 

conclusion, the utility of the realized genomic relationship in a simple, yet extremely efficient 
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testing method, such as OP families, cannot be overlooked and calls for the re-evaluation of 

present-day conventional elaborate testing methods that are incapable of providing the genetic 

information produced in the present study. 

 Summary 

Background: The open-pollinated (OP) family testing combines the simplest known progeny 

evaluation and quantitative genetics analyses as candidates’ offspring are assumed to represent 

independent half-sib families. The accuracy of genetic parameter estimates is often questioned as 

the assumption of “half-sibling” in OP families may often be violated.  

Results: We compared the pedigree- versus marker-based genetic models by analyzing 22-year 

height and 30-year wood density for 214 white spruce (Picea glauca (Moench) Voss) OP families 

represented by 1,694 individuals growing on one site in Quebec, Canada. Assuming half-sibling, 

the pedigree-based model was limited to estimating the additive genetic variances which, in turn, 

were grossly overestimated as they were confounded by very minor dominance and major additive-

by-additive epistatic genetic variances. In contrast, the implemented genomic pairwise realized 

relationship models allowed the disentanglement of additive from all non-additive factors through 

genetic variance decomposition.  

Conclusions: The marker-based models produced more realistic narrow-sense heritability 

estimates and, for the first time, allowed estimating the dominance and epistatic genetic variances 

from OP testing. In addition, the genomic models showed better prediction accuracies compared 

to pedigree models and were able to predict individual breeding values for new individuals from 

untested families, which was not possible using the pedigree based model. Clearly, the use of 

marker-based relationship approach is effective in estimating the quantitative genetic parameters 

of complex traits’ even under simple and shallow pedigree structure. 
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Table 3.1 Estimates of genetic variance components and their standard errors for height (HT) and wood density (WD) for the 

Québec white spruce population across the four genetic models. 

  ABLUP GBLUP-A GBLUP-AD GBLUP-ADE GBLUP-AE 

Trait S.O.V

. 

Value (SE) % Value (SE) % Value (SE) % Value (SE) % Value (SE) % 

HT 𝝈𝑹𝒆𝒑
𝟐  561.4 (383.72) 4.70 554.8 (379.47) 4.68 555.9 (380.27) 4.69 555.3 (379.85) 4.69 555.2 (3.80E+02) 4.69 

𝝈𝑭∗𝑹𝒆𝒑
𝟐  2,624.8 (497.90) 21.97 2,653.7 (479.62) 22.38 2,658.6 (479.60) 22.43 2,614.4 (481.24) 22.08 2,613.1 (480.94) 22.07 

𝝈𝑨
𝟐  2,178.9 (879.65) 18.24 1,404.0 (413.19) 11.84 1,385.3 (413.98) 11.69 1,160.9 (482.52) 9.80 1,159.0 (480.98) 9.79 

𝝈𝑫
𝟐  N/A  N/A  133.29 (391.83) 1.13 12.15 (406.64) 0.10 N/A  

𝝈𝑨𝑨
𝟐  N/A  N/A   N/A  1,334.8 (1664.2) 11.27 1,352.7 (1,595.60) 11.43 

𝝈𝑫𝑫
𝟐  N/A  N/A  N/A  9.86E-03 (2.23E-03) 0.00 N/A  

𝝈𝑨𝑫
𝟐  N/A  N/A  N/A  9.86E-03 (2.23E-03) 0.00 N/A  

𝝈𝑬
𝟐  6,581.7 (808.23) 55.09 7,243.6 (535.33) 61.10 7,119.8 (640.48) 60.06 6,163.2 (1391.3) 52.05 6,159.1 (1,390.90) 52.02 

𝒉𝟐 0.249 (0.095)  0.162 (0.046)  0.160 (0.045)  0.134 (0.055)  0.134 (0.054)  

           

AIC 17,478.64  17,465.80  17,467.66  17,472.94  17,466.94  

WD1 𝝈𝑹𝒆𝒑
𝟐  1.36E-05 (1.11E05) 1.07 1.24E-05 (1.04E-05) 1.01 1.26E-05 (1.05E-05) 1.02 1.34E-05 (1.10E-05) 1.10 1.34E-05 (1.10E-05) 1.10 

𝝈𝑭∗𝑹𝒆𝒑
𝟐  2.47E-05 (4.77E-05) 1.95 5.89E-05 (4.70E-05) 4.78 5.88E-05 (4.69E-05) 4.78 4.65E-05 (4.65E-05) 3.83 4.65E-05 (4.65E-05) 3.83 

𝝈𝑨
𝟐  7.48E-04 (1.28E-04) 59.01 3.51E-04 (5.52-E05) 28.50 3.48E-04 (5.52E-05) 28.25 2.07E-04 (5.85E-05) 17.05 2.07E-04 (5.85E-05) 17.05 

𝝈𝑫
𝟐  N/A  N/A  3.50E-05 (4.88E-05) 2.84 7.90E-11 (2.78E-11) 0.00 N/A  

𝝈𝑨𝑨
𝟐  N/A  N/A  N/A  6.32E-04 (1.34E-04) 52.03 6.32E-04 (1.34E-04) 52.03 

𝝈𝑫𝑫
𝟐  N/A  N/A  N/A  5.05E-10 (1.78E-10) 0.00 N/A  

𝝈𝑨𝑫
𝟐  N/A  N/A  N/A  5.05E-10 (1.78E-10) 0.00 N/A  

𝝈𝑬
𝟐  4.81E-04 (1.12E-03) 37.96 8.10E-04 (6.28E-05) 69.71 7.77E-04 (7.62E-05) 63.11 3.16E-04 (1.11E-04) 25.98 3.16E-04 (1.11E-04) 25.98 

𝒉𝟐 0.609 (0.093)  0.303 (0.043)  0.300 (0.043)  0.179 (0.049)  0.179 (0.049)  

           

AIC -9,687.42  -9,716.32  -9,714.86  -9,726.64  -9,732.64  

1log transformation
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Table 3.2 Correlations for height (HT) and wood density (WD) between estimated individual additive breeding values (EBV) 

and predicted individual additive breeding values (PBV) 

   EBV – Full data 

   HT WD 

   ABLUP GBLUP-A GBLUP-AD GBLUP-ADE ABLUP GBLUP-A GBLUP-AD GBLUP-ADE 

P
B

V
 –

 C
ro

ss
 V

a
li

d
a

ti
o

n
 

R
a

n
d

o
m

 

F
o

ld
in

g
 

ABLUP 0.475 (0.003) 0.407 (0.003) 0.407 (0.003) 0.401 (0.003) 0.449 (0.004) 0.554 (0.004) 0.554 (0.004) 0.523 (0.004) 

GBLUP-A 0.331 (0.004) 0.771 (0.003) 0.770 (0.003) 0.772 (0.003) 0.402 (0.002) 0.781 (0.001) 0.781 (0.001) 0.773 (0.001) 

GBLUP-AD 0.334 (0.003) 0.773 (0.002) 0.772 (0.002) 0.774 (0.002) 0.405 (0.004) 0.783 (0.003) 0.783 (0.003) 0.775 (0.003) 

GBLUP-ADE 0.322 (0.004) 0.762 (0.003) 0.761 (0.003) 0.765 (0.003) 0.385 (0.002) 0.765 (0.002) 0.765 (0.002) 0.773 (0.002) 

B
lo

ck
 F

o
ld

in
g

 ABLUP 0.451 (0.001) 0.381 (0.001) 0.381 (0.001) 0.374 (0.001) 0.439 (0.000) 0.549 (0.000) 0.549 (0.000) 0.518 (0.000) 

GBLUP-A 0.329 (0.000) 0.735 (0.001) 0.735 (0.001) 0.736 (0.001) 0.383 (0.000) 0.748 (0.000) 0.748 (0.000) 0.739 (0.000) 

GBLUP-AD 0.328 (0.001) 0.734 (0.001) 0.735 (0.001) 0.736 (0.001) 0.383 (0.000) 0.748 (0.001) 0.748 (0.000) 0.740 (0.000) 

GBLUP-ADE 0.313 (0.001) 0.711 (0.001) 0.712 (0.001) 0.715 (0.001) 0.366 (0.000) 0.728 (0.001) 0.728 (0.001) 0.733 (0.001) 

F
a

m
il

y
 F

o
ld

in
g

 ABLUP NA1 NA NA NA NA NA NA NA 

GBLUP-A 0.178 (0.011) 0.683 (0.010) 0.682 (0.010) 0.691 (0.009) 0.249 (0.006) 0.651 (0.005) 0.651 (0.005) 0.663 (0.005) 

GBLUP-AD 0.188 (0.005) 0.692 (0.005) 0.691 (0.005) 0.699 (0.005) 0.254 (0.003) 0.656 (0.002) 0.656 (0.002) 0.668 (0.002) 

GBLUP-ADE 0.190 (0.006) 0.691 (0.006) 0.689 (0.006) 0.698 (0.006) 0.228 (0.007) 0.627 (0.007) 0.627 (0.007) 0.658 (0.006) 

1NA; predicted individual additive breeding value is equal to the overall mean of the model. Note: Validation produced by 10-fold cross-

validation for the four models (ABLUP, GBLUP-A, GBLUP-AD, and GBLUP-ADE) using random, block, and family based folding. 

Prediction accuracies are represented by bold diagonals and pairwise model correlations on the off-diagonals (standard errors in 

parentheses). 
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Table 3.3 Estimates of genetic variance components and their standard errors using the dominance matrix proposed by Su et 

al. (2012) and discussed by Vitezica et al. (2013)  

  ABLUP GBLUP-A GBLUP-AD GBLUP-ADE GBLUP-AE 

Trait S.O.V. Value (SE) % Value (SE) % Value (SE) % Value (SE) % Value (SE) % 

HT 𝝈𝑹𝒆𝒑
𝟐  561.40 (383.72) 4.70 554.81 (379.47) 4.68 558.75 (381.80) 4.71 557.67 (381.19) 4.71 555.15 (379.81) 4.69 

𝝈𝑭∗𝑹𝒆𝒑
𝟐  2,624.8 (497.90) 21.97 2,653.7 (479.62) 22.38 2,663.2 (479.19) 22.46 2,625.2 (481.03) 22.16 2613.1 (480.94) 22.07 

𝝈𝑨
𝟐  2,178.9 (879.65) 18.24 1,404.0 (413.19) 11.84 1,259.6 (457.28) 10.62 1,110.2 (500.29) 9.37 1,159.0 (480.98) 9.79 

𝝈𝑫
𝟐  N/A  N/A  350.24 (535.22) 2.95 215.63 (552.36) 1.82 N/A  

𝝈𝑨𝑨
𝟐  N/A  N/A  N/A  1134 (1653.9) 9.57 1,352.7 (1595.6) 11.43 

𝝈𝑫𝑫
𝟐  N/A  N/A  N/A  7.79E-03 (1.75E-03) 0.00 N/A  

𝝈𝑨𝑫
𝟐  N/A  N/A  N/A  5.09E-03 (1.14E-03)  0.00 N/A  

𝝈𝑬
𝟐  6,581.7 (808.23) 55.09 7,243.6 (535.33) 61.10 7,028.6 (622.61) 59.26 6,203.8 (1391.6) 52.37 6,159.1 (1390.9) 52.02 

𝒉𝟐 0.249 (0.095)  0.162 (0.046)  0.146 (0.051)  0.128 (0.057)  0.134 (0.054)  

           

AIC 17,478.64  17,465.80  17,467.30  17,472.76  17,466.94  

WD1 𝝈𝑹𝒆𝒑
𝟐  1.36E-05 (1.11E05) 1.07 1.24E-05 (1.04E-05) 1.01 1.24E-05 (1.04E-05) 1.01 1.32E-05 (1.09E-05) 1.09 1.34E-05 (1.10E-05) 1.10 

 𝝈𝑭∗𝑹𝒆𝒑
𝟐  2.47E-05 (4.77E-05) 1.95 5.89E-05 (4.70E-05) 4.78 5.39E-05 (4.66E-05) 4.37 4.38E-05 (4.63E-05) 3.61 4.65E-05 (4.65E-05) 3.83 

 𝝈𝑨
𝟐  7.48E-04 (1.28E-04) 59.01 3.51E-04 (5.52-E05) 28.50 2.91E-04 (5.93E-05) 23.63 1.78E-04 (6.07E-05) 14.65 2.07E-04 (5.85E-05) 17.05 

 𝝈𝑫
𝟐  N/A  N/A  1.48E-04 (6.78E-05) 11.99 9.64E-05 (6.64E-05) 7.94 N/A  

 𝝈𝑨𝑨
𝟐  N/A  N/A  N/A  5.71E-04 (1.37E-04) 46.98 6.32E-04 (1.34E-04) 52.03 

𝝈𝑫𝑫
𝟐  N/A  N/A  N/A  1.54E-10 (5.36E-11) 0.00 N/A  

𝝈𝑨𝑫
𝟐  N/A  N/A  N/A  5.00E-10 (1.75E-10) 0.00 N/A  

 𝝈𝑬
𝟐  4.81E-04 (1.12E-03) 37.96 8.10E-04 (6.28E-05) 69.71 7.26E-04 (7.20E-05) 59.00 3.13E-04 (1.09E-04) 25.73  3.16E-04 (1.11E-04) 25.98 

𝒉𝟐 0.609 (0.093)  0.303 (0.043)  0.250 (0.048)  0.154 (0.051)  0.179 (0.049)  

           

AIC -9,687.42  -9,716.32  -9,719.42  -9,728.84  -9,732,64  
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Figure 3.1 Representative histograms of the genomic pairwise relationship coefficients 

Note: Relationship among (Left panel) and within (Right panel) members of the 214 white spruce 

open-pollinated families showing relationships clustering around the expected 0.25 with 

deviations from 0.25 as indicative of imperfect half-sib family (Right panel) and clustering around 

0.00 as indicative of no relationship (Left panel). 
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Figure 3.2 Standard error of the predictions (SEP) of breeding values (BV) 

Note: BV from the ABLUP (X-axis) against that from the GBLUP-A (y-axis) for height (left panel) 

and wood density (right panel) and that from the GBLUP-A against those from the GBLUP-AD 

and GBLUP-ADE. 
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Figure 3.3 Cumulative proportion of the variance explained by eigenvalues 

Note: Proportion for ABLUP vs. GBLUP-A (top panel) and GBLUP-ADE (bottom panel) for 

height (left) and wood density (right). Diagonal line represents an orthogonal correlation matrix. 
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Figure 3.4 Ranking plots for the top 50 performing white spruce individuals 

Note: Ranking plot for height (left) and wood density (right), respectively, comparing results of 

ABLUP versus GBLUP-ADE assessments (note; the number of highly ranked individuals in the 

ABLUP that dropped from the top 50 in the GBLUP-ADE). 
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Figure 3.5 Ranking plots for the top 50 performing white spruce individuals for GBLUP-A 

versus GBLUP-AE 

Note: Ranking plot for height (left) and wood density (right), revealing the minor change in rank 
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Chapter 4: Extension of the OP testing genetic analysis to multi-site using 

Interior spruce populations from British Columbia 

 Introduction 

Traditional quantitative genetics analyses are mainly pedigree-dependent utilizing the 

genealogical relationships among individuals for genetic parameters estimation (i.e., the average 

numerator relationship matrix (A-matrix; (Wright 1922)). These methods were effective as 

evidenced by the gains attained for a substantial number of plant and animal genetic improvement 

programs (Allard 1999; Lush 2013). This paradigm is changing with the availability of dense 

Single Nucleotide Polymorphism (SNP) panels through whole genome sequencing (Bentley 2006) 

and various high-throughput Next Generation Sequencing (NGS) technologies (Schuster 2008). 

Dense sequencing data permit the accurate determination of the actual fraction of alleles shared 

between individuals, related or otherwise, and the estimation of their genomic pairwise realized 

relationship (Santure et al. 2010). The resulting genomic relationship between any pair of 

individuals is more accurate than their assumed pedigree-based as genomic data allow capturing 

their known contemporary pedigree and their unknown historic pedigree as well (Powell et al. 

2010). When the genomic pairwise additive relationship is estimated for a group of individuals, 

the outcome is known as the realized additive genomic relationship matrix (G-matrix) which can 

be used as a substitute to the A-matrix in quantitative genetics analyses (VanRaden 2008). Also, 

SNP data can be used to construct all types of relationship matrices such as dominance and 

epistasis genomic relationship matrices regardless of the mating design. The advantage of the 

genomic-based relationship over that of its counterpart, the traditional pedigree-based, is the ability 

of the former to adjust for the Mendelian sampling term, while the latter ignores the existing 
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variation among single half- or full-sib family members and treats them equally, thus the G-matrix 

provides more accurate genetic co-variances among relatives (Visscher et al. 2006; Hill and Weir 

2011). Additionally, the genomic-based relationship is capable of detecting hidden relatedness 

among members of a specific family, as commonly observed for open-pollinated (OP) family 

testing (Namkoong 1966; Squillace 1974; Askew and El-Kassaby 1994), thus providing unbiased 

additive genetic variances. 

In a previous study (Gamal El-Dien et al. 2016), we utilized the additive, dominance and 

epistasis realized genomic relationship matrices to estimate height and wood density related 

genetic variances for 214 white spruce OP families growing on one site in Québec and successfully 

partitioned the genetic variance into its different components, namely, the additive, dominance, 

and epistatic components. We also demonstrated the presence of a systematic pedigree-based 

additive genetic variance bias that is commonly observed in OP family testing, as it assumes that 

family members are all half-sibs and that only additive genetic variance, albeit biased, can be 

estimated. In this respect, the use of the genomic relationship also permitted estimating both 

dominance and epistatic genetic variances from testing experiments that do not lend themselves to 

these genetic components estimation. 

Using 25 Interior spruce OP families grown in a replicated block design over three sites in 

British Columbia (Canada), we compared the genetic variance estimates generated from the 

average numerator relationship A-matrix (the expected relationships) and the realized genomic 

relationship G-matrix (the observed relationships). The extended genetic models including 

dominance and epistasis relationship matrices were added in comparison to assess the genomic 

markers’ utility in partitioning the genetic variance components into additive and non-additive 

effects. In this study, we also demonstrated the applicability of G-matrix for existing OP programs 
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by extending our previous work to a more generalized multiple sites model that accounts for 

genotype x environment interaction. 

 Materials and methods 

4.2.1 Interior spruce open-pollinated progeny test sites, phenotype data and genotyping 

Interior spruce is a complex of white spruce (Picea glauca (Moench) Voss), Engelmann spruce 

(Picea engelmannii Parry), and their natural hybrids and, because of their similar growing habitat 

and silvicultural requirements, they are often collectively treated as one complex species (Sutton 

et al. 1991). A total of 1,126 38-year-old Interior spruce trees, representing 25 open-pollinated 

(OP) families, growing on three progeny test sites in the Interior of British Columbia, Canada, 

were phenotyped for total tree height (HT) and wood density (WD). The field trials were 

established by the British Columbia Ministry of Forests, Lands and Natural Resource and are 

located in Aleza Lake (Lat. 54° 03’ 15.7” N, Long. 122° 06’ 35.4” W, Elev. 700 mas), Prince 

George Tree Improvement Station (Lat. 53° 46’ 17.9” N, Long. 122° 43’ 07.6”W, Elev. 610 mas), 

and Quesnel (Lat. 52° 59’ 27.2” N, Long. 122° 12’ 30.6” W, Elev. 915 mas) and planted in a 

complete randomized block design with multiple tree-row-plots within each block (see Kiss and 

Yanchuk (Kiss and Yanchuk 1991) for details). The sampled trees/sites are part of a larger test 

with 197 OP families with an average family size of 374 trees. From each site, four blocks were 

sampled and HT (in meters) was measured using an ultrasonic clinometer VertexTM III (Haglöf, 

Sweden); WD (g·cm-3) was determined from bark-to-bark wood cores using X-ray scanning 

(QTRS-01X Tree Ring Scanner, Quintek Measurement Systems Inc., USA); the cores were 

extracted from each tree at breast height in the north-south direction by 5-mm increment borers. 

Genotyping-by-sequencing (GBS) (Elshire et al. 2011) was the genotyping platform used. 

For complete details related to DNA extraction, specific sequencing protocol and SNP detection 
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pipeline see Chen et al. (Chen et al. 2013). The SNP data used for estimating the realized genomic 

relationship matrix were those published previously (Gamal El-Dien et al. 2015; Ratcliffe et al. 

2015); in brief, SNP filtering consisted of constraining individual “missingness” to the best 1,000 

of the 1,126 genotyped individuals, resulting in an average of 40 genotyped individuals (range was 

32 to 45) across the 25 families. Subsequently, SNPs with no more than 30%missing data were 

retained. Missing information was imputed using an expectation maximizing (EM) algorithm 

(Dempster et al. 1977a), resulting in a total of 30K SNP markers to infer the genetic relationships. 

4.2.2 Relationship matrices and genetic models 

The additive relationship matrix was estimated as follows: 

𝑮𝒂𝒅𝒅 =
𝒁𝒁′

2 ∑ 𝑝𝑖(1−𝑝𝑖)
  [1] 

where Z is the rescaled genotype matrix following M - P, M is the genotype matrix containing 

genotypes coded as 0, 1, and 2 according to the number of alternative alleles and P is the vector of 

twice the allelic frequency p (VanRaden 2008). The dominance genetic variance was fitted by 

including the marker-based dominance relationship matrix following: 

𝑮𝒅𝒐𝒎 =
𝑾𝑾′

(2𝑝𝑞)2   [2] 

where W is the matrix containing -2q2 for the alternative homozygote, 2pq for the heterozygote, 

and -2p2 for the reference allele homozygote (Vitezica et al. 2013). Similarly, epistatic variance 

was fitted by including several relationship matrices capturing first order additive x additive, 

dominance x dominance, and additive x dominance interaction. The relationship matrices were 

constructed as the Hadamard product of the relationship matrices defined above: Gadd#Gadd, 

Gdom#Gdom and Gadd#Gdom (Su et al. 2012; Muñoz et al. 2014). 
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The variance components from the pedigree based analysis (ABLUP) were obtained by 

solving the mixed models following: 

𝒚 = 𝑿𝜷 +  𝒁𝟏𝒂 + 𝒁𝟐𝒂𝒙𝒆 + 𝒁𝟑𝒓(𝒔) + 𝒆  [3] 

where y is the vector of measurements, β is the vector of fixed effects (overall mean and site), a is 

the vector of random additive genetic effects following a ~ N(0, A𝜎𝑎
2), where A is the average 

numerator relationship matrix and 𝜎𝑎
2 is the additive genetic variance, axe is the vector of random 

additive x environment (sites) interaction effects following axe ~ N(0, I𝜎𝑎𝑥𝑒
2 ), where I is the 

identity matrix and 𝜎𝑎𝑥𝑒
2  is the additive x environment interaction variance, r(s) is the vector of 

random replication nested within the site effect following r(s) ~ N(0, I𝜎𝑟(𝑠)
2 ), where 𝜎𝑟(𝑠)

2  is the 

replication nested within the site variance, and e represents a vector of the random residual effects 

following e ~ N(0, I𝜎𝑒
2) where 𝜎𝑒

2 is the residual error variance, X and Zs are incidence matrices 

relating fixed and random effects to measurements in the vector y. The variance components from 

the analysis using the marker-based additive relationship matrix (GBLUP-A) was obtained from 

the model described above but the average numerator relationship matrix A is substituted by the 

marker-based relationship matrix Gadd. The extended model for the dominance term (GBLUP-AD) 

is performed as follows: 

𝒚 = 𝑿𝜷 +  𝒁𝟏𝒂 + 𝒁𝟒𝒅 + 𝒁𝟐𝒂𝒙𝒆 + 𝒁𝟓𝒅𝒙𝒆 + 𝒁𝟑𝒓(𝒔) + 𝒆  [4] 

where d is the vector of the random dominance effect following d ~ N(0, Gdom𝜎𝑑
2) with 𝜎𝑑

2 the 

dominance variance and dxe the random vector of dominance x environment interaction effects 

following dxe ~ N(0, I𝜎𝑑𝑥𝑒
2 ) where 𝜎𝑑𝑥𝑒

2  is the dominance x environment interaction variance. 

Additional model extension for epistatic terms (GBLUP-ADE) is performed as follows: 

𝒚 = 𝑿𝜷 + 𝒁𝟏𝒂 + 𝒁𝟒𝒅 + 𝒁𝟔𝒂𝒙𝒂 + 𝒁𝟕𝒅𝒙𝒅 + 𝒁𝟖𝒂𝒙𝒅 + 𝒁𝟐𝒂𝒙𝒆 + 𝒁𝟓𝒅𝒙𝒆 + 𝒁𝟑𝒓(𝒔) + 𝒆 [5] 
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where axa is the vector of random additive x additive epistatic interaction effects following axa ~ 

N(0, Gadd#add𝜎𝑎𝑥𝑎
2 ) where 𝜎𝑎𝑥𝑎

2  is the additive x additive epistatic interaction variance, dxd is the 

vector of random dominance x dominance epistatic interaction effects following dxd ~ N(0, 

Gdom#dom𝜎𝑑𝑥𝑑
2 ) where 𝜎𝑑𝑥𝑑

2  is dominance x dominance epistatic interaction variance, and axd is the 

vector of random additive x dominance epistatic interaction effects following axd ~ N(0, 

Gadd#dom𝜎𝑎𝑥𝑑
2 ) where 𝜎𝑎𝑥𝑑

2  is the additive x dominance epistatic interaction variance. 

The narrow-sense heritability estimate was estimated as ℎ̂2 = 𝜎̂𝑎
2/𝜎̂𝑝

2, where 𝜎̂𝑎
2 represents 

the estimate of the additive variance and 𝜎̂𝑝
2 equals 𝜎̂𝑒

2  in addition to the other variance components 

estimates such as additive, dominance, additive x additive, additive x dominance, dominance x 

dominance, additive x environment, dominance x environment interactions following that of the 

ABLUP and GBLUPs (termed GBLUP-A, GBLUP-AD, and GBLUP-ADE, respectively) models, 

respectively (Table 4.1). The estimations of the variance components and their stand errors were 

performed using a standalone version of ASRemlTM v. 3.0 software (Gilmour et al. 2009), while 

the marker-based relationship matrices construction and models’ cross-validations were done in R 

(R Core Team 2014). Additionally, the breeding values (BVs) rank order for the top 50 performing 

individuals was compared between ABLUP and GBLUP-AD and GBLUP-ADE for HT and WD, 

respectively. 

4.2.3 Models comparison and cross-validation 

Finally, for comparing the relative quality of the goodness-of-fit for said models, the variance 

explained by each model (R2) was used (Nakagawa and Schielzeth 2013) that is the summary 

statistics for the goodness-of-fit of the linear mixed-effects models (LMM) and the fitted line plot 
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(graph of predicted ŷ versus y values), while the standard error (SE) of the predictions (SEPs) of 

the breeding values (BVs) was used to assess the precision of the BVs. 

The predictability (i.e. the Pearson product-moment correlation between phenotypes and 

the predicted BVs from cross-validation (PBV-CV)) and the prediction accuracy (i.e. the Pearson 

product-moment correlation between the estimated BVs from full data (EBV-all) and predicted 

BVs from cross-validation (PBV-CV)) for the four models were estimated using 10-folds CV and 

five replicates. Two folding scenarios were used, i.e. random and family folding, as in the latter, 

and to test the effect of removing relatedness between the two sets during CV, the validation set 

represented families that were absent in the training set. In each replicate, the data was divided 

into 10-folds according to the used folding scenario, 9-folds was assigned as the training 

population, while the last fold was used as the validation population to estimate PBV-CV. The five 

replicates were used to estimate the SE of the correlation. Model pairwise-prediction accuracy was 

also estimated between the four models in order to evaluate the ability of predicting each other. In 

this case, accuracy was estimated as the Pearson product-moment correlation between EBV-all of 

one model and PBV-CV of the other model (see above). 

 Results 

4.3.1 Genetic variance components and heritability estimates 

Replications of within-site variance components were consistent across the four models and 

accounted in each case for a relatively small variance component for both height (HT: 1.29-1.66%) 

and wood density (WD: 6.99-8.86%) (Table 4.1). The main difference between the ABLUP and 

GBLUP-A was the substantial decrease in the additive and additive x environment interaction 

(Table 4.1). The additive genetic variances obtained from GBLUP-A were 81 and 66% of the 

ABLUP additive genetic variance for HT and WD estimates, respectively (Table 4.1). This 
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decrease in the additive genetic variance apportionment subsequently decreased the additive x 

environment interaction (32.01% vs. 20.99% and 16.72% vs. 13.03%, for height HT and WD, 

respectively) and increased the residual term (36.61% vs. 53.38% and 40.08% vs. 55.19%, for 

height HT and WD, respectively), resulting in reduced heritability estimates (0.30 vs. 0.25 and 

0.39 vs. 0.26, for height HT and WD, respectively) (Table 4.1). 

The GBLUP-AD analysis produced surprising results for HT as the dominance variance 

component was significant and accounted for 28.74% while it was non-significant for WD (4.14%) 

(Table 4.1). It is noteworthy to mention that the dominance variance estimates did affect neither 

the additive genetic variances nor the heritability estimates and that their appearance is mostly 

reflected in the reduction of the residual term estimates (i.e., the dominance variances were 

confounded in the residual terms) (Table 4.1). 

The GBLUP-ADE produced exactly the same results as GBLUP-AD for HT, indicating 

absence of first order interactions while WD showed a significant additive x additive interaction 

accounting for 23.34% of the total variance (Table 4.1). The appearance of additive x additive 

variance for WD reduced the residual term (50.36 vs. 28.80%) as well as the additive term (23.97 

vs. 20.97%), further reducing the WD heritability estimate (from 0.26 to 0.23) (Table 4.1). The 

additive x additive estimate was confounded mainly within the residuals and to a lesser extent 

within the additive variances. 

4.3.2 Models comparison and cross-validation 

We used two methods for model comparison, namely, the variance explained by the model (R2) 

and the fitted line plots (represented by the graph of predicted values ŷ versus observed values y). 

Moving from ABLUP to the GBLUP-A was characterized by the lack of improvement for the two 

model comparison methods (Table 4.1 and Figure 4.1). However, this result is not surprising, as 
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the ABLUP models were inaccurate due to the observed inflated additive genetic variance which 

in turn makes the total variance explained by the model inflated too. The R2 method showed 

reduced values between ABLUP and GBLUP-A (63.39 vs. 46.62 and 56.92 vs. 44.81, for HT and 

WD, respectively) (Table 4.1). Comparing GBLUP-A with GBLUP-AD, generally showed 

improvement, which was more pronounced for HT (80.04 vs. 46.62) than for WD (49.64 vs. 44.81) 

due to the observed significant dominance variance (Table 4.1). The R2 values for HT did not 

change between GBLUP-AD and GBLUP-ADE due to the lack of epistatic genetic variances, 

indicating that GBLUP-AD is the best (and sufficient) model for HT (Table 4.1). WD, on the other 

hand, showed substantial R2 value improvement (49.64 vs. 71.20), reflecting the presence of 

significant additive x additive genetic variances and indicating that GBLUP-ADE is the best model 

for WD, these differences potentially reflecting the two traits’ different genetic architecture (Table 

4.1). These results collectively indicate that the genomic-based models are superior to the 

pedigree-based model. 

The fitted line plot comparisons (shown in Figure 4.1) reflected the conclusions based on 

R2 while the differences between the ABLUP and GBLUP-A models for HT and WD showed 

worse fitting, supporting the notion that the ABLUP models harbor inflated additive genetic 

variance. Similarly, the plots show that the GBLUP-AD and GBLUP-ADE are the best fit for HT 

and WD, respectively, and this is illustrated by the points’ distribution and their closeness to the 

45° reference lines (Figure 4.1). 

Comparing breeding values’ (BVs) precision, using the standard errors for predictions 

(SEP), between the ABLUP and GBLUP-A models, indicated that the SEPs of HT and WD were 

universally smaller for GBLUP-A as compared to ABLUP (as all SEP values were below the 45° 

reference lines (Figure 4.2; GBLUP-A#ABLUP)), clearly confirming the superiority of the 
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GBLUP-A model. For this reason, we used the GBLUP-A model as a reference for the extended 

models’ comparisons. GBLUP-AD and GBLUP-ADE were proven to be the best models for HT 

and WD, respectively (Figure 4.2; GBLUP-AD#GBLUP-A (left panel) and GBLUP-

ADE#GBLUP-A (right panel) for HT and WD, respectively). 

Random folding cross-validation prediction accuracy was the lowest for ABLUP for both 

traits (0.620 and 0.624 for HT and WD, respectively) compared to the GBLUPs models which 

gave a range of 0.676 (GBLUP-AD) to 0.685 (GBLUP-A) and 0.689 (GBLUP-ADE) to 0.692 

(GBLUP-AD) for HT and WD, respectively (Table 4.2; diagonal values). On the other hand, the 

pairwise prediction accuracy between ABLUP and GBLUPs (HT: 0.562 to 0.615; WD: 0.540 to 

0.643) was lower than between the GBLUPs models themselves (HT: 0.676 to 0.683; WD: 0.685 

to 0.693) (Table 4.2; off-diagonal values). When GBLUPs models were used to predict ABLUP, 

the prediction accuracies ranged from 0.610 to 0.615 (HT) and from 0.640 to 0.643 (WD), while 

when the ABLUP was used to predict GBLUPs, the range was significantly lowered (from 0.562 

to 0.573 and from 0.540 to 0.547, for HT and WD, respectively) (Table 4.2). Regarding 

predictability, expressed as the correlation between the predicted BVs from cross-validation (PBV-

CV) and the phenotype, GBLUP-A and ABLUP showed the highest values (0.228 and 0.233 for 

HT and WD, respectively) (Table 4.2; random folding, first column). 

For family folding, the predictability and prediction accuracy were generally much lower 

as compared to random folding (Table 4.2). The use of the ABLUP model for individual breeding 

value prediction for members of new families is not applicable as the relatedness is equal to zero 

and the predicted value will be simply the overall mean of the model (Table 4.2). 
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 Discussion 

Current tree improvement programs depend mainly on phenotypic selection and the pedigree-

based average numerator relationship (A-matrix) for estimating genetic parameters and variance 

decomposition. The utilized mating design determines mainly which genetic component can be 

generated and, in some cases, additional efforts such as combining full-sib families with replicated 

clonal trials is attempted to estimate dominance and epistatic genetic variances (Foster and Shaw 

1988; Bradshaw and Foster 1992). OP family testing represents the most efficient method for 

screening large numbers of individuals in terms of low cost and less time; however, it suffers from 

inflated additive variance estimates due to the impossibility of meeting the commonly assumed 

half-sib structure (Namkoong 1966; Squillace 1974; Askew and El-Kassaby 1994). The 

availability and affordability of DNA high-throughput fingerprinting methods, such as 

Genotyping-by-sequencing (GBS), made it possible to use single nucleotide polymorphisms 

(SNPs) to estimate the realized relationship matrix (G-matrix) among individuals and substitute 

the A-matrix in estimating genetic variance components particularly in forest trees population 

(Zapata-Valenzuela et al. 2013; Klápště et al. 2014; Muñoz et al. 2014; de Almeida Filho et al. 

2016; Gamal El-Dien et al. 2016). These studies illustrated the superiority of the GBLUP and 

resulted in generating more precise genetic parameters, mainly due to the method’s efficiency in 

separating the additive from non-additive (dominance and epistasis) genetic variances as well as 

accounting for the Mendelian sampling within families (VanRaden 2008; Hayes et al. 2009b). In 

our previous study conducted to parse out additive and non-additive genetic variances (Gamal El-

Dien et al. 2016), we used data from a single and pure white spruce site and demonstrated the 

presence of non-significant dominance as well as significant epistatic genetic variances; however, 

the study might have produced biased , because G x E (genotype x environment interaction) 
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component was not able to be assessed in a single site study. Here, we extended the model to 

include multiple sites to be able to account also for the G x E, using an Interior spruce OP testing 

population growing in British Columbia, Canada. 

Predictably, the results from the present study produced different additive variance 

estimates across the tested models (ABLUP vs. GBLUPs). The three GBLUP models produced 

lower additive genetic variance than the ABLUP model, results concur with those reported for the 

single-site (Gamal El-Dien et al. 2016) and other forest tree studies (Muñoz et al. 2014; de Almeida 

Filho et al. 2016). The reduced additive genetic variance subsequently lowered the heritability 

estimates; however, this observed reduction in the present study was smaller than the one observed 

in the single-site study (Gamal El-Dien et al. 2016), highlighting the benefits of using the multi-

site approach in producing realistic estimates (i.e., G x E inclusion). Notwithstanding the better R2 

and fitted line plot of the ABLUP model (Table 4.1; Figure 4.1) compared to GBLUP-A, the 

obtained precise genetic variance and breeding value (Figure 4.2) estimates from the GBLUP-A 

demonstrate the added value of the realized relationship-based models as their estimates are devoid 

of hidden relatedness inflating additive genetic variance and un-accounting the Mendelian term 

(VanRaden 2008; Hayes et al. 2009b; Gamal El-Dien et al. 2016). 

The GBLUP-AD model produced surprising results with a significant dominance variance 

for HT relative to the additive variance with a higher R2 value supporting better model fit (Table 

4.1). This was also illustrated by the fitted line plot and the breeding values’ SEPs graph (GBLUP-

AD: Figure 4.1 and 4.2 left panels). This trend was not observed for WD as the dominance variance 

was not significant (based on SE) and only accounted for a small amount of the total genetic 

variance (Table 4.1 and Figure 4.1 and 4.2, right panels), supporting similar observations on 

Douglas-fir and white spruce (El-Kassaby and Park 1993; Gamal El-Dien et al. 2016). The 
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significant dominance genetic variance for HT in Interior spruce mirrored that reported for loblolly 

pine (Muñoz et al. 2014; de Almeida Filho et al. 2016), but see our previous study (Gamal El-

Dien et al. 2016). The observed significant dominance variance for HT is unexpected as the GBS 

fingerprinting is expected to under-represent heterozygosity estimates (Nielsen et al. 2011; 

Glaubitz et al. 2014). Indeed, the heterozygous individuals’ under-representation is also detected 

in our study and we postulate that it is a by-product of the GBS’ low coverage (Figure 4.3). 

Additionally, the ability to detect dominance variance is also dependent on the nature of the 

population and the type of markers used to construct the dominance (fraternity) relationship 

matrix. In a simulation study, García-Cortés et al. (García-Cortés et al. 2014) reported that the 

presence of multi-allelic markers is a prerequisite for the precise estimation of the dominance 

coefficients, a condition, which can potentially affect the ability to estimate the dominance 

variance component when using exclusively biallelic markers such as SNPs. It is interesting that 

the HT additive genetic variance and heritability estimates did not change between GBLUP-A and 

GBLUP-AD, which means that the additive variance was accurately estimated in the GBLUP-A 

model and was not confounded with the dominance effect for this trait. Probably this is the reason 

why the prediction accuracy of GBLUP-AD did not improve when compared with GBLUP-A 

(Table 4.2; diagonal). 

The full model (GBLUP-ADE), which was extended to include first order interaction, gave 

exactly the same results as GBLUP-AD for HT indicating the absence of all kind of epistatic 

interactions and furthermore did not show any improvement in all goodness-of-fit measures and 

precision estimates (Table 4.1, Figures 4.1 and 4.2). Results were distinct from our previous study 

on P. glauca (Gamal El-Dien et al. 2016), where HT showed significant additive x additive 

interaction and non-significant dominance, while here, HT showed a significant dominance 
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component which was extracted from the residual variance without any effect on the additive 

variance. The hybrid nature of Interior spruce (P. glauca x P. engelmannii) in British Columbia 

(De La Torre et al. 2014) can explain such distinct results as hybridization is reflected in higher 

diversity and higher heterozygosity which may make the dominance effect pronounced, and, 

additionally, dominance variance is also known to be population specific (Falconer et al. 1996). 

For the WD trait, GBLUP-ADE resulted in improved genetic variance partitioning and showed a 

relatively larger additive x additive component that was extracted mainly from the residual 

variance and to a some extent also from the additive variance component (Table 4.1), supporting 

the theoretical expectation that additive x additive variance is absorbed by additive and residual 

variances (Lynch, M., Walsh 1998; Jannink 2007; Mackay 2014). The superiority of GBLUP-

ADE model for WD was supported by the R2 estimates (Table 4.1), the fitted line plot and the SEP 

graph (Figures 4.1 and 4.2). A significant additive x additive component was also observed in our 

previous study (Gamal El-Dien et al. 2016) and previously in a full-sibs based population of 

loblolly pine (Muñoz et al. 2014). Thus, the WD results were consistent with our first study in 

pure white spruce (Gamal El-Dien et al. 2016); both studies showed non-significant dominance in 

addition to a significant additive x additive interaction that was extracted from the additive and 

residual variances. Also in both studies, substantial epistasis was detected in the genetic 

architecture of WD in spruce, and therefore, this result cannot be an artifact based on the population 

sampling and/or genotyping methodology as the two studies used completely different genotyping 

platforms. 

The advantage of GBLUP models is their use of the realized genomic relationship among 

individuals regardless of their genealogy, while the ABLUP is mainly dependent on the pedigree-

structure created by the used mating design. In addition to capturing the additive relatedness among 
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individuals, the realized genomic relationship matrix is also capturing the linkage disequilibrium 

(LD) between the SNPs and quantitative trait loci (QTLs) and their co-segregation (Habier et al. 

2007, 2010, 2013). These factors, collectively, affect the accuracy of the genomic estimated BVs 

(Habier et al. 2013). Most tree improvement breeding programs are in their early stage of tree 

domestication, thus they suffer from their shallow and simple pedigrees which making ABLUP’s 

estimates questionable. Our cross-validation results support this notion as the GBLUP models 

produced higher prediction accuracy than the ABLUP (Table 4.2). Additionally, using the 

GBLUPs to predict ABLUP produced better results than the reverse scenario. This is expected as 

the GBLUP models are capable of capturing contemporary as well as historical relatedness (Table 

4.2; see the off-diagonal estimates). The GBLUP models’ superiority was already illustrated by 

Muñoz et al. (Muñoz et al. 2014). In their study on loblolly pine, Muñoz et al. successfully 

estimated the epistatic genetic variance from a full-sib mating design with clonally replicated trials 

using the GBLUP approach, while the ABLUP failed to estimate the epistatic genetic variance 

despite having full-sib families and clonal replications. 

It is noteworthy to mention that extending the GBLUP models to include the dominance 

(GBLUP-AD in the case of HT) and dominance as well epistasis variances (GBLUP-ADE in the 

case of WD) resulted in improving the breeding values’ estimates precision (Figure 4.2); however, 

these adjustments did not improve the prediction accuracy in the cross-validation compared to the 

GBLUP-A (Table 4.2; diagonal). Such scenario was also observed in a similar genetic variance 

decomposition study in the context of genomic selection for milk production in cattle (Ertl et al. 

2014). This discrepancy can be explained by the fact that both dominance and epistatic genetic 

variances were mainly extracted from the residual term, thus resulting in no or minimal impact on 

the additive variance component. 
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The reported multi-site genetic variance decomposition along with the selection of the best 

model for each studied trait is expected to improve the genetic variance partition (see above) as 

well as the individuals’ breeding values. We compared the ranking of the top 50 individuals for 

HT and WD between the pedigree-based ABLUP and the genomic-based GBLUP models 

(GBLUP-AD and GBLUP-ADE, for HT and WD, respectively) (Figure 4.4). Only 76% and 72%, 

respectively, of the top 50 individuals persisted between the ABLUP (HT) and the GBLUP-AD 

(HT), and between the ABLUP (WD) and GBLUP-ADE (WD), and both rankings indicated that 

some of the top ranked individuals from ABLUP have completely dropped out, warrantying 

potential genetic gain loss when applying only traditional ABLUP approach (Figure 4.4).  

 Summary 

Background: The simplicity of open pollinated (OP) family testing made it an ideal method for 

screening and ranking a large number of parents and their offspring without the reliance on any 

mating design with structured-pedigree testing. OP testing assumes that the tested material are 

half-sib families, an assumption that is hardly fulfilled, thus additive variance estimates are often 

inflated and ranking and gain calculations are unreliable. 

Results: Here, we extend the OP testing genetic variance decomposition from single- to multi-site 

using height and wood density measurements from 1,126 38-year-old Interior spruce (Picea glauca 

(Moench) Voss x P. engelmannii Parry ex Engelm.) trees, representing 25 OP families, growing 

on three sites in interior British Columbia, Canada. The advantage of multi-site testing is its ability 

to account for the genotype x environment effect. Individuals were fingerprinted for 30k SNPs 

using genotyping-by-sequencing technology, which in turn were used to estimate the genomic 

realized relationship among the studied individuals. The genomic-based model was extended to 
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account for additive, dominance, epistatic genetic variances and their interactions with the 

environment. 

Conclusions: Compared to the pedigree-based OP model, the genomic-based models produced 

more realistic narrow-sense heritability, breeding value estimates, and better prediction accuracy. 

Such higher precision resulting into different ranking for the tested individuals compared to the 

pedigree-based model. Moreover, the marker-based models were able to predict the breeding 

values for individuals from families that were not included in the developed models, which was 

not possible with the pedigree-based model. By extending the genomic-based models from single- 

to multi-site, the developed models are applicable to OP testing programs and offer a more reliable 

genetic variance decomposition and reliable individuals’ ranking and gain estimates. 
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Table 4.1 Estimates of genetic variance components (source of variation (S.O.V.) and their standard errors (SE) for height (HT) 

and wood density (WD) across the four genetic models 

1 see Material and Methods for S.O.V. explanation

  ABLUP1 GBLUP-A GBLUP-AD GBLUP-ADE 

Trait S.O.V.1 Value (SE) % Value (SE) % Value (SE) % Value (SE) % 

HT σR/S
2  0.04 (0.04) 1.29 0.04 (0.04) 1.35 0.04 (0.04) 1.66 0.04 (0.04) 1.66 

 σA
2  1.00 (0.49) 30.09 0.72 (0.25) 24.29 0.60 (0.26) 24.30 0.60 (0.26) 24.30 

 σD
2  N/A  N/A  0.70 (0.39) 28.74 0.70 (0.39) 28.74 

 σAA
2  N/A  N/A  N/A  0.00 (0.00) 0.00 

 σDD
2  N/A  N/A  N/A  0.00 (0.00) 0.00 

 σAD
2  N/A  N/A  N/A  0.00 (0.00) 0.00 

 σAxE
2  1.06 (0.39) 32.01 0.62 (0.27) 20.99 0.57 (0.29) 23.34 0.57 (0.29) 23.34 

 σDxE
2  N/A  N/A  0.05 (0.07) 2.00 0.05 (0.07) 2.00 

 σE 
2  1.21 (0.44) 36.61 1.59 (0.29) 53.38 0.49 (0.66) 19.96 0.49 (0.66) 19.96 

 h2 0.30 (0.14)  0.25 (0.08)  0.25 (0.10)   0.25 (0.10)  

 R2 63.39  46.62  80.04  80.04  

WD  σR/S
2  4.93E-05 (2.64E-05) 6.99 5.04E-05 (2.71E-05) 7.77 5.09E-05 (2.73E-05) 8.08 5.14E-05 (2.76E-05) 8.86 

 σA
2  2.55E-04 (1.04E-04) 36.22 1.56E-04 (4.82E-05) 24.01 1.51E-04 (5.03E-05) 23.97 1.22E-04 (5.52E-05) 20.97 

 σD
2  N/A  N/A  2.61E-05 (7.66E-05) 4.14 2.47E-05 (7.56E-05) 4.25 

 σAA
2  N/A  N/A  N/A  1.36E-04 (1.22E-04) 23.34 

 σDD
2  N/A  N/A  N/A  2.68E-10 (2.92E-10) 0.00 

 σAD
2  N/A  N/A  N/A  1.69E-11 (1.85E-11) 0.00 

 σAxE
2  1.18E-04 (5.97E-05) 16.72 8.45E-05 (4.78E-05) 13.03 5.30E-05 (5.25E-05) 8.41 6.34E-05 (5.20E-05) 10.91 

 σDxE
2  N/A  N/A  3.17E-05 (1.31E-05) 5.04 1.67E-05 (1.83E-05) 2.88 

 σE 
2  2.83E-04 (8.78E-05) 40.08 3.58E-04 (5.72E-05) 55.19 3.17E-04 (1.31E-04) 50.36 1.67E-04 (1.83E-04) 28.80 

 h2 0.39 (0.15)  0.26 (0.08)  0.26 (0.08)   0.23 (0.09)  

 R2 59.92  44.81  49.64  71.20  
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Table 4.2 Height (HT) and wood density (WD) predictability (Pearson product-moment correlations between PBV-CV and 

phenotype) and prediction accuracy (Pearson product-moment correlation between PBV-CV and EBV-all) within and among 

models (ABLUP, GBLUP-A, GBLUP-AD, and GBLUP-ADE) using random and family folding (standard errors) 
 

HT WD 

Phenotypes 

EBV – all2 

Phenotypes 

EBV - all 

ABLUP 
GBLUP 

ABLUP 
GBLUP 

-A -AD -ADE -A -AD -ADE 

P
B

V
 –

 C
V

1
 

R
a
n

d
o
m

 F
o
ld

in
g
 ABLUP 

0.222  

(0.002) 

0.620  

(0.001) 

0.615  

(0.001) 

0.610  

(0.001) 

0.610 

 (0.001) 

0.233  

(0.002) 

0.624  

(0.002) 

0.643  

(0.001) 

0.643  

(0.001) 

0.640  

(0.001) 

GBLUP-A 
0.228  

(0.004) 

0.573  

(0.004) 

0.685  

(0.003) 

0.683  

(0.003) 

0.683  

(0.003) 

0.212  

(0.002) 

0.545  

(0.002) 

0.690  

(0.002) 

0.690  

(0.002) 

0.691  

(0.002) 

GBLUP-AD 
0.224  

(0.003) 

0.562  

(0.004) 

0.677  

(0.003) 

0.676 

 (0.003) 

0.676  

(0.003) 

0.213  

(0.003) 

0.547  

(0.002) 

0.692  

(0.002) 

0.692  

(0.002) 

0.693  

(0.002) 

GBLUP-ADE 
0.225 

(0.002) 

0.570  

(0.002) 

0.683  

(0.002) 

0.680  

(0.002) 

0.680  

(0.002) 

0.215  

(0.004) 

0.540  

(0.006) 

0.685  

(0.005) 

0.686  

(0.005) 

0.689  

(0.005) 

F
a

m
il

y
 F

o
ld

in
g
 

ABLUP NA3 NA NA NA NA NA NA NA NA NA 

GBLUP-A 
0.060  

(0.008) 

0.061 

 (0.012) 

0.222  

(0.014 ) 

0.226  

(0.014) 

 0.226  

(0.014) 

-0.034  

(0.007) 

0.007  

(0.013) 

0.191  

(0.016) 

0.193  

(0.016) 

0.210  

(0.016) 

GBLUP-AD 
0.063  

(0.004) 

0.083  

(0.012) 

0.245  

(0.013) 

0.251  

(0.013) 

0.251  

(0.012) 

-0.021  

(0.010) 

 0.032  

(0.017) 

0.210  

(0.016) 

0.213  

(0.016) 

0.232  

(0.016) 

GBLUP-ADE 
0.064  

(0.009)  

0.082  

(0.016) 

0.241 

(0.012) 

0.246 

(0.013) 

0.246 

 (0.013) 

-0.031  

(0.005) 

0.019  

(0.008) 

0.201 

(0.008) 

0.203 

(0.008) 

0.221  

(0.008) 

1PBV-CV: Predicted breeding values using cross-validation; 2EBV-all: Estimated breeding values using all data; 3NA: predicted 

individual additive breeding value is equal to the overall mean of the model. 
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Figure 4.1 Height (left) and wood density (right) fitted line plot (predicted ŷ vs observed y 

values) for the four models.
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Figure 4.2 Height (left) and wood density (right) standard error for the predictions of 

breeding values. 

Note: Comparisons for GBLUP-A vs ABLUP, GBLUP-AD vs GBLUP-A and GBLUP-ADE vs 

GBLUP-A. 
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Figure 4.3 Histogram showing the frequency of observed heterozygosity for GBS derived 

SNP sites. 
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Figure 4.4 Height (left) and wood density (right) breeding value ranking plots comparing 

ABLUP versus GBLUP-ADE. 

Note: this assessment is for forward selection of the top performing top 50 individuals. 
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Chapter 5: Conclusion 

 Research novelties and potential applications 

Genomic selection (GS) has created a paradigm shift in animal and crops breeding but it still in its 

infancy in forestry. GS can substantially reduce the length of breeding cycle and increase gain per 

unit time through early selection and greater selection intensity in tree improvement programs, 

particularly for traits of low heritability and late expression. Affordable next-generation 

sequencing technologies also have made it possible to genotype large numbers of trees at a 

reasonable cost. 

Open-pollinated family testing is a formidable and economically viable option for 

screening a larger number of candidate parents without the development of “structured pedigree” 

that represents the backbone of most conventional tree breeding methods. The simplicity of the 

method made it an attractive first step before starting a full-blown tree improvement program. 

However, the commonly used assumption of treating open-pollinated offspring as half-sib family 

is by far the greatest drawback of this method as most genetic parameters (e.g., breeding values, 

trait heritabilities, and gain estimates) are upwardly biased and this was clearly demonstrated in 

many studies including the present one. 

The introduction of genomic data (e.g., SNP markers) has provided the means to overcome 

this drawback and the genealogical relationship among open-pollinated family members is clearly 

and accurately ascertained. At present, many open-pollinated family testing trials have reached an 

advanced age but often abandoned, though they could provide badly needed information for late 

expressed traits that could not be obtained from younger conventional trials. The present study 

(Chapter 2) and that of Beaulieu et al., 2014 provided the first examples for the application of GS 

for producing yield and wood quality attributes data with unprecedented accuracy in OP testing in 
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tree improvement programs. This study is also one of the first studies to focus on the validation of 

GS model in space. The GBLUP analyses (Chapters 3 and 4) were the first attempt of such an 

analytical approach in OP families aiming at increasing the reliability of this kind of testing. To 

our knowledge, this study represents the first large-scale use of GBS (affordable genotyping 

technique) in a forest tree species known to a have complex genome and for which no reference 

sequence has been assembled yet. 

 Conclusions regarding goals and future research directions 

In the present study (Chapter 2), the accuracy of GS model in predicting breeding values varied 

across the different studied validation scenarios with within multi-site being the highest and cross 

sites being the lowest (Figures 2.1 and 2.2). The high within multi-site GS prediction accuracies 

offer an opportunity to obtain reliable results for difficult traits such as wood density and yield and 

point towards considering “old” open-pollinated tests as a valuable source of information. The 

developed predictive models could be used for selecting elite genotypes with unprecedented 

selection intensity for their inclusion in future seed production populations, and this can be 

accomplished without the creation of a single cross. The results reported here suggest that GBS 

can be used as a genotyping platform for the application of GS in forestry. The use of proper 

missing marker data imputation algorithms is needed to overcome the commonly observed 

problem of missing data with GBS. Greater GS prediction accuracies were obtained for RR-BLUP 

as compared to GRR indicating that the studied traits follow the infinitesimal model of complex 

traits. Greater accuracies were obtained for multi-site GS model and point to the inherent lack of 

reliability for cross-site prediction. The use of principle component analysis as a multi-trait GS 

approach was proven to be effective in dealing with negatively correlated traits. 
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The GBLUP analyses (Chapters 3 and 4) also demonstrated the utility of the realized 

genomic relationship approach in providing a simple and extremely efficient method for 

generating more accurate genetic parameters from the simple OP testing compared to pedigree 

analysis (ABLUP) and overcame the drawback of this simple kind of testing. It is noteworthy to 

mention that the use of the realized genomic relationship also allowed the decomposition of 

dominance and epistasis genetic effects which requires full sibs mating designs coupled with 

cloning approaches. Persistence of the superiority of GBLUP over ABLUP after extending the 

GBLUP analysis from single-site (Chapter 3) to multi-site (Chapter 4), regardless the spruce 

populations and genotyping platforms (SNPs array and GBS, respectively) used, highlight the 

robustness of the GBLUP analyses and demonstrates the efficiency of the cost-effective GBS 

genotyping techniques. 

Furthermore, the application of the A-matrix, specifically, in the case of the well-known 

“shallow” pedigree present within most forest tree breeding and testing populations does not 

permit detecting hidden co-ancestry and inbreeding. Consequently, individuals’ estimated 

breeding values are inflated by the overestimation of the additive genetic variance. GBLUP made 

it possible to ascertain, with great level of accuracy, the actual fraction of alleles shared between 

individuals, and the estimates of the individuals’ pairwise realized relationship including potential 

inbreeding can be easily determined (Santure et al. 2010). Furthermore, the G-matrix offers a 

unique opportunity for better genetic management as it provides information such as inbreeding 

and degree of relatedness among individuals. 

In conclusion, the utility of genomic data in a simple, yet extremely efficient testing 

method, such as OP families calls for the re-evaluation of present-day conventional elaborate 

testing methods that are incapable of providing the genetic information produced in the present 
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study. In general, the effectiveness of GS was clearly demonstrated as an alternative selection and 

evaluation method. 

 Strengths and limitations 

In the present study, GBS successfully provided the information needed for genomic-based 

quantitative genetics analyses at reasonable cost. It is noteworthy to mention that this study was 

initiated before the release of Norway and white spruce genome sequences (Nystedt et al. 2013; 

Birol et al. 2013). However, as the assemblies of the two spruce genomes are not anchored and 

ordered along the chromosomes, there is little advantage over de novo SNP markers discovery 

used in this study. 

In the single-site GBLUP analysis (Chapter 3), the collected data was limited to a single 

site of pure white spruce OP testing growing in Quebec, which resulted in biased results due to 

inability to account for genotype x environment interaction. At the same time, the more expensive 

better quality genotyping technique (SNPs array vs GBS), the bigger sample size (N =1,694 vs N 

≈ 330/site) and the different population nature (pure white spruce vs hybrid white spruce) 

encouraged us to study the applicability of GBLUP in OP in this population and to compare it with 

our first studied population (Chapters 2 and 4). This drawback was circumvented by extending the 

model to multi-site analysis using a different population (Chapter 4). The sample size in chapter 4 

(N= 1,000 for the three sites collectively) didn’t enable us to fit a single-site model (N ≈ 330/site). 
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